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the investigated system. When the parameters of multivariate LGCP process are
estimated, the minimum contrast method is usually used. However, we investigate
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Introduction
We find the inspiration for this thesis in the article Waagepetersen et al. [2016],
which aims to explore the data describing the location of trees in Lansing Woods.
The authors use the multivariate log-Gaussian Cox process for this. In order to
capture as many influences as possible that affect the growth of trees in this area,
the intensity function of these processes consists of a deterministic function that
describes the inhomogeneity in the area and also two independent Gaussian fields.
One of them explains clustering within one tree species and the other describes
environmental variables that affect all trees, but this effect may vary from species
to species. This article further discusses how to estimate the parameters in this
model choosing the least squares method. At this point, we decided to take
a different approach to the article. However, instead of the minimum contrast
estimator we exploit the composite likelihood method.

The article inspired some further work. Before we focus in more detail on
what this thesis offers, let us mention some of them. For example, the article
Jalilian et al. [2020] performs a detailed analysis of the multivariate log-Gaussian
Cox process also on data on the occurrence of different tree species, but this time
in the Hyrcanian Forest. A very interesting application is offered in an article
Jullum et al. [2020], which aims to estimate the annual production of seal pups in
the Greenland Sea. The authors use the multivariate log-Gaussian Cox process to
describe the occurrence of pups in aerial photographs. The paper Hessellund et al.
[2020] assumes a semiparametric model for multidimensional intensity functions
containing an unspecified complex factor common to all types of points. It is used
to create their own composite likelihood function, which the authors estimate the
parameters of the second-order for log-Gaussian Cox process. If we want to focus
on how to find numerically stable and efficient estimates, especially for highly
multivariate log-Gaussian Cox processes, we can start with the article Choiruddin
et al. [2019]. On a bit another note, article Mateu and Jalilian [2022] proposes
to examine point processes not using classical statistical analysis, but to involve
neural networks. Like the others, it also suggests their use for the multivariate
log-Gaussian process presented here.

Coming back to the content of this thesis. In the first chapter we build
a basic theory of point processes. We introduce their first- and second-order
characteristics and state a few of their basic relations. In addition to single-
species processes, we do the same for multivariate point processes. Next, we
introduce the Poisson point process, and this chapter culminates in the definition
of the Cox point process. It is the basis of the processes we want to focus on in
this thesis.

Chapter 2 deals with the univariate log-Gaussian Cox process. It presents
its definition and basic characteristics, specifically what its intensity function,
second-order product density and also the K-function look like.

In Chapter 3, we establish a multivariate log-Gaussian Cox process. That is
exactly the one from the already mentioned Waagepetersen et al. [2016] article.
We will carefully define this process here and derive in detail what the species-
specific and inter-species covariance structure looks like. And also the resulting
intensity functions, second-order product density, cross pair correlation function
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and last but not least the K-function and cross K-function.
In Chapter 4, we begin to consider the appropriate composite likelihood func-

tion by which we can estimate the parameters of the log-Gaussian Cox process,
whether in the univariate or multivariate case. We are inspired by Waagepetersen
[2007], whose idea is to divide the observation window into individual cells and
approximate the probability of whether a point occurs in the cell by the intensity
function multiplied by the cell area. Subsequently, we refine such partition to the
limit until we get the expression of the composite likelihood function. However,
since we are not satisfied only with the characteristics of the first order, we de-
velop this idea to examine the probability of occurrence of a pair of points in cell
pairs and its subsequent approximation using the second-order product density.
We elaborate on both of these cases in detail. Next, we derive how to develop
this method so that we can apply it to a multivariate process. We also use the
Dvořák and Prokešová [2012] article, which advise us on how to avoid the numer-
ically too demanding integrations that would await us if we left the composite
likelihood function in its basic form and did not modify it further. We show what
the respective composite likelihood functions look like for both univariate and
multivariate log-Gassian Cox process.

Chapter 5 then introduces the popular form of composite likelihood function
from the Guan [2006] article. We do not discuss it in as much detail as the
composite likelihood function derived in the previous chapter. We present only
its basic idea and form in which we can use it for univariate and multivariate
log-Gaussian Cox process.

The last Chapter 6 is devoted to a simulation study. On the simulated data we
examine and compare how well both composite likelihood functions from Chapters
4 and 5 estimate the parameters of the models. We deal with both univariate
and multivariate log-Gaussian Cox processes.
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1. Basic definitions
In the very beginning of this thesis, we need to set basic definitions. Next few sec-
tions will deal with introduction of descriptive characteristics of points processes
and Cox point process. However, it is a long way to work on the Cox process,
which is at the heart of this work.

1.1 Spatial point process
First of all, we need to define a point process. There are two ways to look at it.
The first one, which [Møller and Waagepetersen, 2004, Chapter 2] state, gives us
a nice intuitive idea of what to imagine under this term. We can think about
spatial point process X as a random countable subset of space E, provided that
E ⊂ Rd.

The second way of looking at the point process is more robust and can be a
bit more difficult to get oriented in. However, it allows us to move in the world
of point processes with mathematical accuracy. That is why we will mention it
as well. To do this, however, we must first introduce the concept of the space of
all locally finite measures. This and other definitions in this subsection are based
on [Cressie, 1993, Section 8.3].

Definition 1. Let (E, ρ) be a separable metric space where every closed bounded
set is compact. Further, let µ be a measure on (E, B), where B = B(E) stands for
Borel sets on E. Then µ is called locally finite measure if µ(K) < ∞ for every
K ∈ B compact.
Additionally, we define set of all locally finite measures on (E, B):

M(E) = M = {µ measure on (E, B); µ is locally finite}.

In the theses, we will consider E = Rd and ρ an the Euclidean metric on
Rd. In addition, we will focus on counting processes and therefore introduce the
appropriate set for the locally finite measures.

Definition 2. Let M be set of all locally finite measures on (E, B). Then we
denote set of all locally finite counting measures on (E, B) as following

N (E) = N = {µ ∈ M; µ(B) ∈ N ∪ {0, ∞} ∀B ∈ B}.

The next step is to assign suitable σ-algebras to sets M and N . The one-
dimensional projection will help us with that. For a fixed set B ∈ B, we define it
as follows.

πB : M −→ [0, ∞]
µ ↦−→ µ(B)

Taking the smallest σ-algebra of images of all such projections that are addi-
tionally measurable, we will get the coveted σ-algebra on the space M:

M = σ{π−1
B (A); B ∈ B, A ∈ [0, ∞]}.
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Since N is clearly a subset of M, we can define its σ-algebra as a trace of M:

N = {U ∩ N ; U ∈ M}.

With the correctness of this definition we can refer to [Cressie, 1993, Sec-
tion 8.3].

Now we can finally define a point process and also its generalization a random
measure.
Definition 3 (Random measure, point process). Let (Ω, A,P) be a probability
space. Then, a measurable mapping Ψ : (Ω, A,P) −→ (M,M) is called a random
measure.
Furthermore, we call a measurable mapping Φ : (Ω, A,P) −→ (N ,N) a point
process.

To work with variously distributed random measures, we introduce their prob-
ability distribution.
Definition 4 (Probability distribution). Let Ψ : (Ω, A,P) −→ (M,M) be a
random measure. Then its probability distribution is a probability measure Q on
(M,M) given by formula

Q(U) = P (ω ∈ Ω; Ψ(ω) ∈ U) , U ∈ M.

As is customary in spatial statistics, we will use abbreviated notation Ψ(B)
instead of Ψ(ω)(B).

We should realize ∀ B ∈ B : Ψ(B) is a random variable if and only if Ψ is a
random measure.

1.2 Marked point process
In the next step, we would like to assign different marks to the individual points
of the point process. It is conceivable that we would assign different marks to
trees randomly growing in the forest. For example, an assigned tag can represent
the height of a tree or its species. In this way, we get the so-called marked point
process. We will formally introduce it using the following definition.

Here, as in the rest of the work, we take advantage of the point of view which
treats X as a random set. We will denote individual events of the point process
X by x ∈ X.
Definition 5 (Marked point process). Let X be a point process on E ⊂ Rd. Let
M be a complete separable locally compact metric space such that for each x in
X, there is a random variable mx ∈ M. Then XM = {(x, mx); x ∈ X} is called
marked point process with points in E and mark space M. Further, the elements
mx are called marks.

If marked point process XM has points of k different types, i.e. its marked
space is M = {1, . . . , k}, k ∈ N, we speak about multitype point process. We
can equivalently look at it as k-tuple (X1, . . . , Xk) of point process X1, . . . , Xk

corresponding to types of points 1, . . . , k. Then we speak about k-dimensional
multivariate point process.
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1.3 Summary statistics for point processes
In this section, let X be a point process on E = Rd. We will denote the corre-
sponding Borel sigma algebra by Bd = B(Rd).

The first introduced characteristics will be intensity measure (of a point pro-
cess). It indicates the number of process points that can be expected to be
observed in a given set.

Definition 6 (Intensity measure). Let X be a point process on Rd. We define
intensity measure Λ by relation

Λ(B) = ENX(B), B ∈ Bd,

where NX(B) denotes random variable defined as count of points of X on B, i.e.
NX(B) = ∑︁

u∈X 1[u∈B].

If it exists, we can define Radon–Nikodym derivative with respect to Lebesgue
measure for the intensity measure. In this context, it is called the intensity
function.

Definition 7 (Intensity function). Let X be a point process on Rd with intensity
measure Λ. If there exist a non-negative function ρ such that Λ(B) =

∫︁
B ρ(u) du

for each B ∈ Bd, then ρ is called intensity function.

If ρ is constant, then X is homogeneous (or first-order stationary) point pro-
cess with intensity ρ. Otherwise, X is called inhomogeneous point process.

For a homogeneous point process, we can interpret intensity ρ as mean num-
ber of points per unit volume.

Similarly to intensity measure, we can also define the basic characteristics of
the second order called second-order factorial moment measure. It indicates the
expected number of process point pairs in a certain set.

Definition 8 (second-order factorial moment measure). Let X be a point process
on Rd. Then the following formula defines the second-order factorial moment
measure

α(2)(C) = E
̸=∑︂

u,v∈X

1[(u,v)∈C], C ⊂ B
(︂
Rd × Rd

)︂
.

Let us define a density of α(2).

Definition 9 (second-order product density). Let X be a point process on Rd with
second-order factorial moment measure α(2)(C). If there exists a non-negative
function ρ(2) for which it holds α(2)(C) =

∫︁ ∫︁
1[(u,v)∈C]ρ

(2)(u, v) du dv, C ⊂
B
(︂
Rd × Rd

)︂
. Then ρ(2) is called second-order product density.

Just defined statistics ρ and ρ(2) allow us to introduce the concept of pair
correlation function so that we can examine the relationships between pairs of
points.
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Definition 10 (Pair correlation function). Let X be a point process on Rd such
that intensity function ρ and second-order product density ρ(2) exist. We define
pair correlation function:

g(u, v) = ρ(2)(u, v)
ρ(u)ρ(v) , u, v ∈ Rd.

If ρ(x) = 0 for some x ∈ X, we use convention c/0 = 0 for c ≥ 0.
We should also add an important second-order functional characteristic, the

so-called K-function. It is often used to compare whether the examined dataset
is more or less clustered compared to the Poisson point process that will be
introduced in the Section 1.5 .

Definition 11 (K-function). Let X be a stationary and isotropic point process
on Rd with non-zero intensity ρ. Then, we define K-function for t > 0 as

K(t) = ρ−1E[number of extra events within distance t of an arbitrary event].

Note that whenever we talk about the K-function argument in this thesis, we
will always consider it as a positive number. Although we do not always state
this explicitly.

As shown by [Diggle, 2013, Chapter 4], the following relationship holds be-
tween the K-function and the pair correlation function.

Lemma 1. Let X be a stationary and isotropic point process on Rd with pair
correlation function g(u, v) = g(u − v) = g(∥u − v∥) and K-function K. Then

K(t) =
∫︂

b(0,t)
g(u) du, t > 0.

Respectively,

g(t) = K ′(t)
σdtd−1 , t > 0,

where K ′(t) is the derivative of K and σd is the surface area of unit sphere in Rd,
i.e. σd = 2πd/2

Γ(d/2) . Futher, b (0, t) denotes ball centred in zero with radius t > 0.

1.4 Summary statistics for multivariate point
processes

Since we do not want to be satisfied with just examining intraspecific relation-
ships, we will first be forced to perform generalizations of the function g(x, y) from
definition 10 to multivariate processes. Respectively, generalize the factorial mo-
ment measure α(2)(C) and second-order product density ρ(2)(x, y) from definitions
8 and 9.We will use the definition stated by [Møller and Waagepetersen, 2004,
Chapter 4.4] to do this.

Definition 12 (Multivariate factorial moment measure, multivariate second-order
product density). Let X be a marked point process on Rd with marks 1, . . . , p. Let
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C ⊂ Rd × Rd. Then we define multivariate factorial moment measure of process
X as

α
(2)
i,j (C) = E

̸=∑︂
u∈Xi,
v∈Xj

1[(u,v)∈C], i, j = 1, . . . , p.

If such Radon-Nikodym derivative exists, we define multivariate second-order
product density ρ

(2)
i,j of X by relation

α
(2)
i,j (C) =

∫︂ ∫︂
1[(u,v)∈C]ρ

(2)
i,j (u, v) d(u)d(v).

We then get the so-called cross pair correlation function as the ratio of mul-
tivariate second-order product density and the appropriate intensity functions.
Definition 13 (Cross pair correlation function). Let X be a marked point process
on Rd with marks 1, . . . , p. Let ρi be its intensity function for mark i = 1, . . . , p
and ρ

(2)
i,j multivariate second-order product density. Then we define cross pair

correlation function as

gi,j(u, v) =
ρ

(2)
i,j (u, v)

ρi(u)ρj(v) , u, v ∈ Rd, i, j = 1, . . . , p.

Of course, we cannot miss the multivariate variant of K-function either.
Definition 14 (Cross K-function). Let X be a marked point process on Rd with
marks 1, . . . , p. Let ρi be its intensity function for mark i = 1, . . . , p. Suppose
that measure

Kij(B) = 1
|A|

E
∑︂

u∈Xi,
v∈Xj

1[u∈A,v−u∈B]

ρi(u)ρj(v)
, B ⊂ Rd, i, j = 1, . . . , p.

does not depend on the choice of A ⊂ Rd such that 0 < |A| < ∞. Then, we define
the cross K-function Kij as a measure of Kij on a ball:

Kij(r) = Kij (b (0, r)) , r > 0.

As in the case of the K-function, for the cross K-function we will always
assume that the argument is positive.

For isotropic processes we then obtain the relation of the cross K-function
and the cross-pair correlation function. It is no surprise, just an exact analogy of
the relationship given in the Lemma 1. For the proof of the statement, we refer
again to [Møller and Waagepetersen, 2004, Chapter 4.4].
Lemma 2. Let X be a stationary and isotropic marked point process on Rd with
marks 1, . . . , p, with cross pair correlation function gij(u, v) = gij(u − v) =
gij(∥u − v∥) and cross K-funciton Kij. Then

Kij(t) =
∫︂

b(0,t)
gij(u) du, t > 0.

Respectively,

gij(t) =
K ′

ij(t)
σdtd−1 , t > 0,

where K ′
ij(t) is the derivative of Kij and σd is the surface area of unit sphere in

Rd, i.e. σd = 2πd/2

Γ(d/2) .
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1.5 Poisson point process
The basic processes that spatial statistics study are the Poisson point process.
Their class represents ”no interaction” models. At the same time, we are able
to perform many calculations for them. They also serve as reference processes
when summary characteristics are studied. Last but not least, we derive more
complex models from Poisson’s point processes, including Cox’s point processes,
which we want to deal with primarily in this thesis, we will draw from [Møller
and Waagepetersen, 2004, Section 4].

We can naturally look at the Poisson point process as a generalization of the
well-known one-dimensional version of this process. The Poisson process on R
with intensity λ is then defined by two properties. On the one hand, its number
of points in each bounded interval (a, b] has a Poisson distribution with mean
value λ(b − a). And secondly, for every collection of disjoint bounden intervals
(a1, b1], . . . , (an, bn], the numbers of points in them are independent random vari-
ables, n = 2, 3, . . . , see Baddeley et al. [2007]. The following definition of the
Poisson point process was set by [Rataj, 2006, Section 6].

Definition 15 (Poisson point process). Let X be a point process on E ⊂ Rd

with intensity measure Λ that is finite on all compact sets. Let both following
conditions hold.

1. NX(B) has a Poisson distribution with mean Λ(B), i.e.

NX(B) ∼ Po (Λ(B)) , ∀ B ∈ B(E) bounded,

2. NX(B1), . . . , NX(Bn) are independent for each n ∈ N and B1, . . . , Bn ∈
B(E) pairwise disjoint bounded sets.

Then, X is called Poisson point process with intensity measure Λ.

We will generalize this definition slightly. If Λ(B) = 0 then NX(B) a.s.= 0, B ∈
B(E). And for Λ(B) = ∞, B ∈ B(E), we define NX(B) a.s.= ∞.

Definition 16 ((In)homogeneous and standard Poisson point process). Consider
Poisson point process X with intensity function ρ on Rd. If the intensity function
is constant, X is called homogeneous Poisson process on Rd. Otherwise we say
X is inhomogeneous. Furthermore, for ρ = 1, we call X standard Poisson point
process on Rd.

Now we can move on to the Cox point process.

1.6 Cox point process
The next step is to extend Poisson point process by randomizing the intensity
function. Thus obtained point process is called Cox point process, we can also
speak about doubly stochastic Poisson process.

Definition 17 (Cox point process). Let us consider Poisson point process XΛ
on Rd with locally finite intensity measure Λ ∈ M. Denote its distribution ΠΛ.
Suppose Ψ be a random diffuse measure on (Rd, Bd) (i.e. Ψ({u}) = 0 for all
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u ∈ Rd) with distribution QΨ. Then, the Cox point process X with driving
random measure Ψ is given by distribution

Q(·) =
∫︂

M
ΠΛ(·)QΨ(dΛ). (1.1)

To define the Cox point process, in addition to the driving random measure
Ψ, we can also use the so-called driving random function φ, which is a Radon-
Nikodym derivative (with respect to Lebesgue measure) of Ψ, if it exists. Then,

Ψ(B) =
∫︂

B
φ(u) du, B ∈ B.

One of the most basic properties of the Cox point process is that the intensity
measure is equal to the mean value of its driving measure. Symbolically written:

ENX(B) = EΨ(B), B ∈ Bd.

This equality can be obtained as follows.

ENX(B) =
∫︂

N
µ(B)Q(dµ) =

∫︂
M

∫︂
N

µ(B)ΠΛ(dµ)QΨ(dΛ)

=
∫︂

M
ENXΛ(B)QΨ(dΛ) =

∫︂
M

Λ(B)QΨ(dΛ) = EΨ(B), B ∈ Bd.
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2. Univariate log-Gaussian Cox
process
The main model we will want to deal with in this thesis is the multivariate
log-Gaussian Cox process. First, however, we introduce its basic form, the uni-
variate log-Gaussian Cox process, which considers points from only one type of
process instead of adding different marks to them. We will refer to [Møller and
Waagepetersen, 2004, Section 5.6] and [Dvořák and Prokešová, 2012, Section 3]
when defining the univariate model and setting out the basic properties.

The last thing we need to define before we can introduce a log-Gaussian Cox
process is a Gaussian random field. We will use the definitions given by [Cressie,
1993, Section 2.3].

Definition 18 (Random field). Let E ⊂ Rd. A random field is a collection of
real random variables {Z(x); x ∈ E} defined on a probability space (Ω, A,P).

Definition 19 (Gaussian random field). A random field {Z(x); x ∈ E} is
called Gaussian random field if the random vector (Z (x1) , . . . , Z (xn))⊤ has n-
dimensional normal distribution for any x1, . . . , xn ∈ E and n ∈ N.

2.1 Model definition
Let {Z(u); u ∈ R2}, be a Gaussian random field. Then Cox point process X
driven by intensity function φ(u) = exp{Z(u)}, u ∈ R2 is called log-Gaussian
Cox process on R2. We will use the usual abbreviation LGCP.

The distribution of this process is fully determined by the mean and covariance
function

µ(u) = EZ(u) and c(u, v) = cov(Z(u), Z(v)), u, v ∈ R2.

2.2 First and second-order characteristics
Since we want to focus mainly on multivariate LGCP, we will leave the derivation
of characteristics to the next section. For the univariate case, we will just state
their form.

For the general univariate LGCP we can determine the intensity function,
which is

ρ(u) = exp
{︂
µ(u) + 1

2c(u, u)
}︂
, u ∈ R2

and the second-order product density

ρ(2)(u, v) = ρ(u)ρ(v) exp
{︂
c(u, v)

}︂
, u, v ∈ R2.

However, it is often enough for us to consider a simplified model that is sta-
tionary and isotropic. Furthermore, we will consider only a family of models with
an exponential covariance function. This is very advantageous, as these models
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are often used in applications. We will therefore study models with a covariance
function equal to

c(u, v) = c(∥u − v∥) = σ2 exp
{︂

− δ∥u − v∥
}︂
, δ > 0, σ2 > 0, u ∈ R2. (2.1)

Then µ(u) = µ, ∀ u ∈ R2 and the intensity function equals to

ρ(u) = ρ = exp
{︂
µ + σ2

2
}︂
, u ∈ R2

and the second-order product density is

ρ(2)(u, v) = ρ(2)(u − v) = ρ2 exp
{︃

σ2 exp
{︂

− δ∥u − v∥
}︂}︃

, u ∈ R2.

Then we are also able to calculate K-function:

K(r) = 2π
∫︂ r

0
s exp

{︂
σ2 exp{−δs}

}︂
ds, r ≥ 0.

Let us move on to the multivariate case.
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3. Multivariate log-Gaussian Cox
process
Now we can finally focus on multivariate LGCP. As we have already indicated,
this is a generalization of univariate LGCP. Specifically, we add a random field
describing interspecies relationships. We will build on the article [Waagepetersen
et al., 2016, Section 2]. This article works with data from Lansing Woods, which
shows the exact location of six different tree species.

3.1 Model definition
We will now introduce so called multivariate log-Gaussian Cox process.

Consider a multivariate point process X = (X1, . . . , Xp), p > 1, in R2 where
for each i ∈ {1, . . . , p} component Xi is a Cox point process with driving intensity
function φi which is of the form

φi(u) = exp{Zi(u)}, where Zi(u) = µi(u) + Yi(u) + Ui(u), u ∈ R2.

Whereas µi is considered to be a deterministic function. In contrast, Ui and Yi

random fields, specifically, these are mutually independent zero-mean Gaussian
fields. We will also add assumptions about their correlation structure.

To better understand what the individual variables in this model mean, imag-
ine that the model describes the mentioned location data of different tree species.
Then the random variable Ui describes clustering based on species-specific fac-
tors. For example, how far the seeds of tree species i usually spread. While, the
independent field Y describes combined influence of various variables such as soil
acidity, which affect all types of trees, but possibly in a different manner.

Assume Ui be independent on Uj for each i ̸= j. Further, let Ui be stationary
and isotropic with covariance function

cov (Ui(u), Ui(u + h)) = σ2
i ci(||h||) for u, h ∈ R2.

Therefore both mean and variance of Ui(u) are constant for each u ∈ R2 :
EUi(u) = 0 and var Ui(u) = σ2

i .

The inner structure of the other fields is significantly more complex. Suppose
we can get Y (u) = (Y1(u), . . . , Yp(u))⊤ in the form

Y (u) = AE(u), u ∈ R2,

where A = (aij)p,q
i,j=1 is p × q real matrix of coefficients. Further, E(u) =

(E1(u), . . . , Eq(u))⊤, u ∈ R2 is zero-mean unit variance Gaussian process which is
in addition stationary, isotropic and its components are independent. Its correla-
tion structure is given by covariance functions rj(·), j = 1, . . . , q and multivariate
covariance function R(·):

rj(t) = cov (Ej(u), Ej(u + h)) , j = 1, . . . , q,

R(t) = cov (E(u), E(u + h)) = diag(r1(t), . . . , rq(t)), ∥h∥ = t ≥ 0, u, h ∈ R2.
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We use notation diag(d1, . . . , dn) for n-dimensional diagonal matrix with diag-
onal elements d1, . . . , dn. We can see that all just defined covariance functions
depend only on the length of the argument shift as it follows from stationarity
and isotropy. Furthermore,we assume that the components are uncorrelated.

Let’s now look at what all this means for the correlation structure of Y .

3.2 Model properties
It is easy do derive the covariance function C(·):

C(t) = cov (Y (u), Y (u + h)) = cov (AE(u),AE(u + h))

= Acov (E(u), E(u + h))A⊤ = AR(t)A⊤ =
q∑︂

i=1
ri(t)a·ia

⊤
·i ,

for every ∥h∥ = t ≥ 0, u, h ∈ R2, where a·i denotes i−th column of matrix A,
i ∈ 1, . . . , p.

For a better idea of covariance function of Yi, i = 1, . . . , p, we will take ad-
vantage of matrix notation.

Y (u) =

⎛⎜⎜⎝
Y1(u)

...
Yp(u)

⎞⎟⎟⎠ = AE(u) =

⎛⎜⎜⎝
a1·
...

ap·

⎞⎟⎟⎠
⎛⎜⎜⎝

E1(u)
...

Eq(u)

⎞⎟⎟⎠ =

⎛⎜⎜⎝
∑︁q

j=1 a1jEj(u)
...∑︁q

j=1 apjEj(u)

⎞⎟⎟⎠ ,

where ai· denotes i-th row of matrix A. Now we can easily see the following form
of the desired covariance function.

cov (Yi(u), Yi(u + h)) = cov
⎛⎝ q∑︂

j=1
aijEj(u),

q∑︂
j=1

aijEj(u + h)
⎞⎠

=
q∑︂

j=1

q∑︂
k=1

aijaikcov (Ej(u), Ek(u + h))

=
q∑︂

j=1
a2

ijcov (Ej(u), Ej(u + h)) +
q∑︂

j=1
j ̸=k

aijaikcov (Ej(u), Ek(u + h))

=
q∑︂

j=1
a2

ijrj(∥h∥), u, h ∈ R2.

The last equality comes from independence and subsequent zero correlation
of components Ej(u) and Ek(u + h) for different j and k.

So, using the assumption ri(0) = 1, we can see that the variance of the random
variable Yi(·) equals to

var Yi(u) =
q∑︂

j=1
a2

ij = ai·a
⊤
i· , u ∈ R2, i = 1, . . . , p.

Let’s now focus on the properties and basic characteristics of the individual
processes Xi, i = 1, . . . , p. Firstly, we would like to explore the intensity function.
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For this purpose, let’s denote for each process Xi, i = 1, . . . , p its intensity
measure Λi and its driving random measure Ψi. Then the relation holds

Ψi(B) =
∫︂

B
φi(u)d(u), B ∈ B2.

Since Xi is a Cox point process, we know that its intensity measure and mean
of driving measure are equal:

Λi(B) = ENXi
(B) = EΨi(B), B ∈ B2. (3.1)

Substituting into the formula above and using the definition relationship
Λi(B) =

∫︁
B ρi(u)du helps us to express the intensity function ρi in a more con-

crete form.

∫︂
B

ρi(u)du = EΨi(B) = E
∫︂

B
φi(u)du.

If we further change the order of the mean value and the integral, we get∫︂
B

ρi(u)du =
∫︂

B
Eφi(u)du,

so the following formula expressing the intensity function holds almost everywhere

ρi(u) = Eφi(u) = E exp{µi(u) + Ui(u) + Yi(u)}. (3.2)

We will use the non-randomness of the function µ and the independence of
the random variables Ui and Yi, so that we can write it in the following form.

ρi(u) = E exp{µi(u) + Ui(u) + Yi(u)}
= exp{µi(u)}E exp{Ui(u)}E exp{Yi(u)}, u ∈ R2.

In order to calculate the intensity function, it is enough to determine the mean
values of random variables exp{Ui(u)} and exp{Yi(u)}. In both cases, it is an
exponential transformation of a normally distributed random variable. In other
words log-Gaussian random variables. So we can easily determine their mean
value according to the formula given by the following Lemma, see [Crow, 1987,
Chapter 4].

Lemma 3 (Log-Gaussian distribution). Let Z = (Z1, . . . , Zk)⊤, k ∈ N, be a
k−dimensional random vector with multivariate normal distribution Nk (ν, Σ),
where ν = (ν1, . . . , νk)⊤ and Σ = (Σij)k

ij=1. Then random vector obtained as
exponential transformation of Z has multivariate log-normal distributions and
with mean whose i-th element, i = 1, . . . , k, equals

E exp{Zi} = exp
{︃

νi + 1
2Σii

}︃
and covariance matrix Var exp{Z} whose element in position (i, j), i, j = 1, . . . , k,
is shaped

(Var exp{Z})ij = exp
{︃

νi + νj + 1
2 (Σii + Σjj)

}︃
(exp{Σij} − 1) .
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By substituting, we gain equalities

E exp{Ui(u)} = exp
{︃1

2σ2
i

}︃
and

E exp{Yi(u)} = exp
{︃1

2ai·a
⊤
i· .
}︃

All together, the intensity function of Xi equals

ρi(u) = exp
{︃

µi(u) + 1
2σ2

i + 1
2ai·a

⊤
i·

}︃
, u ∈ R2. (3.3)

Having gained a basic idea of the intensity with which the various points of
our process occur, let’s now focus on their interrelationships. The cross pair
correlation function gij will be used for this. Definitions can be recalled in the
Section 1.4.

Let us calculate the multivariate second order product density ρ
(2)
ij for our

case. Similarly to the relation (3.1) for the Cox process, the following relation
applies to the second order:

α
(2)
i,j (B1 × B2) = EΨi(B1)Ψj(B2), B1, B2 ⊂ R2.

By disintegration for points of the process u ∈ Xi, v ∈ Xj we then get the
formula

ρ
(2)
i,j (u, v) = Eφi(u)φj(v).

from which we can already calculate the rest. Since we are considering a station-
ary and isotropic process, these functions are given only by the distance of the
points u ∈ Xi, u + h ∈ Xj, which we will denote ∥h∥.

Please note that in this thesis we will use the usual abuse of notation, where
we use the same symbol for both a function with a scalar argument and a vector
or pair of vector arguments.

So, let’s put it further

ρ
(2)
i,j (∥h∥) = ρ

(2)
i,j (u, u + h) = Eφi(u)φj(u + h)

= E exp{µi(u) + Ui(u) + Yi(u)} exp{µj(u + h) + Uj(u + h) + Yj(u + h)}
= exp{µi(u) + µj(u + h)}E exp{Ui(u) + Yi(u) + Uj(u + h) + Yj(u + h)}.

Let’s now look at the distribution of the sum of random variables in the argument
of the exponential function, the individual distributions of which are these

Ui(·) ∼ N (0, σ2
i ), Uj(·) ∼ N (0, σ2

j )
Yi(·) ∼ N (0, ai·a

⊤
i· ), Yj(·) ∼ N (0, aj·a

⊤
j·),

then
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Ui(u) + Yi(u) ∼ N
(︂
0, σ2

i + ai·a
⊤
i· + 2cov (Ui (u) , Yi (u))

)︂
= N

(︂
0, σ2

i + ai·a
⊤
i·

)︂
,

similarly, of course

Ui(u + h) + Yi(u + h) ∼ N
(︂
0, σ2

i + ai·a
⊤
i·

)︂
.

And so

Ui(u) + Yi(u) + Uj(u + h) + Yj(u + h)
∼ N

(︂
0, var (Ui(u) + Yi(u)) + var (Uj(u + h) + Yj(u + h))

+ 2cov (Ui (u) + Yi (u) , Uj (u + h) + Yj (u + h))
)︂
,

where using the independence of fields U and Y:

cov (Ui (u) + Yi (u) , Uj (u + h) + Yj (u + h))
= cov (Ui (u) , Uj (u + h)) + cov (Ui (u) , Yj (u + h))

+ cov (Yi (u) , Uj (u + h)) + cov (Yi (u) , Yj (u + h))

= 1[i=j]σ
2
i ci (∥h∥) + 0 + 0 +

q∑︂
k=1

aikajkrk (∥h∥) ,

so

Ui(u) + Yi(u) + Uj(u + h) + Yj(u + h)

∼ N
(︄

0, σ2
i + ai·a

⊤
i· + σ2

j + aj·a
⊤
j· + 1[i=j]2σ2

i ci (∥h∥) + 2
q∑︂

k=1
aikajkrk (∥h∥)

)︄
.

And thus exp{Ui(u)+Yi(u)+Uj(u+h)+Yj(u+h)} has a log-normal distribution
with mean value

exp
{︄

1
2
(︂
σ2

i + σ2
j + ai·a

⊤
i· + aj·a

⊤
j·

)︂
+ 1[i=j]σ

2
i ci (∥h∥) +

q∑︂
k=1

aikajkrk (∥h∥)
}︄

.

Therefore, the second order product density equals

ρ
(2)
i,j (u, u + h) = exp

{︄
µi(u) + µj(u + h) + 1

2

(︄
σ2

i + σ2
j +

+ ai·a
⊤
i· + aj·a

⊤
j·

)︄
+ 1[i=j]σ

2
i ci (∥h∥) +

q∑︂
k=1

aikajkrk (∥h∥)
}︄

.

Finally, we can determine the desired cross pair correlation function using the
already calculated intensity function (3.3):

gi,j (∥h∥) = gi,j (u, u + h) =
ρ

(2)
i,j (u, u + h)

ρi(u)ρj(u + h)

= exp
{︃

1[i=j]σ
2
i ci (∥h∥) +

q∑︂
k=1

aikajkrk (∥h∥)
}︃

.
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In addition, we can calculate K-function, resp. cross K-function using the
relation from the Lemmas 1 and 2:

Ki(r) = 2π
∫︂ r

0
s exp

{︃
σ2

i ci (s) +
q∑︂

k=1
a2

ikrk (s)
}︃

ds,

Kij(r) = 2π
∫︂ r

0
s exp

{︃ q∑︂
k=1

aikajkrk (s)
}︃

ds.

Finally, we should mention that, as in the case of the univariate model, we
will want to work with models with the exponential covariance function, which
is popular in practice. A proposal for its use can be found, for example, in
[Møller and Waagepetersen, 2004, Chapter 4.2]. We will therefore consider these
functions in the form of

ci(h) = exp{−δih}, δi > 0, i = 1, . . . , p,

rk(h) = exp{−ϵkh}, ϵk > 0, k = 1, . . . , q.
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4. Composite likelihood
estimation
In this chapter we will deal with estimating the model parameters. We will
focus especially on composite likelihood method. We are inspired by the article
[Waagepetersen, 2007, Sections 2 and 6] and also by [Møller and Waagepetersen,
2007, Section 8] which develops the idea. We will derive it for the first and second
order of the unmarked point process. We then generalise the composite likelihood
for the marked point process and calculate it for the investigated multivariate log-
Gaussian Cox process presented in the previous chapter.

As usual, the vector of unknown parameters will be denoted by θ from the
parameter space Θ. We will also work with points of point process X, denoting
u ∈ X. Since we are looking for parameters on specific data set, i.e. a realization
of the process X, we will look at the points as deterministic, not stochastic.

In order to develop this method, we will assume the existence of intensity
function, second-order product density, pair correlation function and cross pair
correlation function throughout the thesis.

4.1 Composite likelihood for the first order

4.1.1 Derivation of the general formula
In order to derive a formula for calculating composite likelihood, we need to
introduce assumptions for the intensity function. Specifically, we need this to be
continuous, integrable and bounded for each θ ∈ Θ, that is∫︂

W
ρθ(u) du < ∞ and ∃ M1 ∈ R ∀ u ∈ R2 : |ρθ(u)| ≤ M1.

Consider sequence of partition (Dn)n∈N of observation window W with de-
scending norms, with cells of the same size and property

∀ s ∈ Sn :
⃓⃓⃓
ρθ(un

s )|Cn
s |
⃓⃓⃓
< 1, (4.1)

where Cn
s are cells of partition Dn, un

s a representing point in Cn
s and Sn the

index set of Dn. By the norm of partition, we mean the maximum cell area of
this partition.

Next, we denote the indicator that a point from the process X appears in the
cell Cn

s is called Nn
s = 1[NX(Cn

s )>0] and finally the probability of the truth of this
condition for the given parameter θ ∈ Θ is pn

s (θ) = Pθ [Nn
s = 1]. We assume that

the process behaves independently in the cells. Then, the composite likelihood
function of the discrete, approximating model is given by

Ln(θ) =
∏︂

s∈Sn

pn
s (θ)Nn

s (1 − pn
s (θ))(1−Nn

s ) .

However, we simplify the situation and probability of the occurrence of a point
in a given cell is approximated by the intensity function multiplied by the cell
area:

pn
s (θ) ≈ ρθ(un

s )|Cn
s |.
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Then, the composite likelihood function is following

CLn(θ) =
∏︂

s∈Sn

(ρθ(un
s )|Cn

s |)Nn
s (1 − ρθ(un

s )|Cn
s |)(1−Nn

s ) .

To make the calculation even easier, let’s move to the logarithmic form. This can
be further broken down into four individual summands.

log CLn(θ) =
∑︂

s∈Sn

Nn
s log (ρθ(un

s )|Cn
s |) + (1 − Nn

s ) log (1 − ρθ(un
s )|Cn

s |)

=
∑︂

s∈Sn

Nn
s log ρθ(un

s ) +
∑︂

s∈Sn

Nn
s log |Cn

s |

+
∑︂

s∈Sn

log (1 − ρθ(un
s )|Cn

s |) −
∑︂

s∈Sn

Nn
s log (1 − ρθ(un

s )|Cn
s |).

Let’s go through each of these four sums now and see what their value will be
if we send the cell sizes to zero.

• ∑︁
s∈Sn Nn

s log ρθ(un
s ) :

If we consider the limit shrinkage of cells Cs, then there can be at most one point
in each cell. And non-zero are only those summands in which we consider a cell
that contains at least one point of the process.

Next, we need to deal with the possibility that the intensity function ρθ(·)
equals to zero. And so its logarithm is equal to −∞. However, from the definition
of this function, this can only happen with zero probability. If we denote A =
{u ∈ W ; ρθ(u) = 0}, then ENX(A) = 0 and P(NX(A) ≥ 1) = 0. So we can write∑︂

s∈Sn

Nn
s log ρθ(un

s ) −−−→
n→∞

∑︂
u∈X

log ρθ(u).

Notice the limit sum does not depend on the cells area.

• ∑︁
s∈Sn Nn

s log |Cn
s | :

The second sum does not depend on the unknown parameter θ. Therefore, it has
no effect on maximizing the composite likelihood function.

Let us realize that although these elements tend to infinity, if we reduce area
of cells Cn

s , we do not mind. Since we construct the composite likelihood function
for one discrete model (with a given partition), the desired point of the maximum
is not affected by this term. Therefore, we can consider an equivalent composite
likelihood function denoted by a tilde, in which we omit this term.

• ∑︁
s∈Sn log (1 − ρθ(un

s )|Cn
s |) :

For the third sum, we will use Taylor’s expansion for the logarithmic function. It
has the Maclaurin series

log(1 − x) = −
∞∑︂

l=1

xl

l
, x ∈ [−1, 1). (4.2)

We might apply this expansion for x = ρθ(un
s )|Cn

s | using property (4.1).
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We will use only the first element of the Taylor series to approximate the
logarithmic function. Therefore we get∑︂

s∈Sn

log (1 − ρθ(un
s )|Cn

s |) ≈ −
∑︂

s∈Sn

ρθ(un
s )|Cn

s |

which we can also look at as an integral from the intensity function, if we send
the cell sizes |Cn

s | to zero:

−
∑︂

s∈Sn

ρθ(un
s )|Cn

s | −−−→
n→∞

−
∫︂

W
ρθ(u) du.

The limit integral thus derived is Riemann. According to [Jarńık, 1984, The-
orem 157] we know that this exists if it is constructed on a bounded set that has
zero measure of its boundary, and moreover, the integrated function is continuous
up to the set of measure zero. Then there is also the Lebesgue integral and both
integrals are equal, see [Jarńık, 1984, Theorem 161]. The following two Theorems
testify to this.

Theorem 4 (Existence of Riemann integral). Let M ⊂ Rn be a bounded set and
f be a real function on Rn which is bounded on M . Then, Riemann integral of f
on M exists if and only if both following conditions are satisfied:

1. The boundary of set M has zero Lebesgue measure.

2. The set of inner points of M where function f is not continuous has zero
Lebesgue measure.

Theorem 5 (Identity of Riemann and Lebesgue integrals). Let M ⊂ Rn set
and f be a real function on Rn. If Riemann integral of f on M exists then also
Lebesgue integral of f on M exists and they are equal.

The observation window, which we consider bounded and satisfies the zero-
measure condition for its boundary. We also assumed the boudedness and conti-
nuity of the intensity function. Since all assumptions are met,the limit transition
to the integral is completely justified.

Now, let us examine the behavior of the remaining elements of Taylor’s ex-
pansion. We will show that it converges to zero if we shrink the cells Cn

s . To
estimate the remaining elements of the series, we will use the Cauchy’s form which
we recall in Lemma 6 as stated by Darah [2020].

Lemma 6 (Cauchy’s Form of the Remainder). Let k ∈ N, I interval, a, x ∈ I
and f function such that it is continuous and (k + 1)-st derivative of f , denoted
by f (k+1) exists on I. Then there is ξ between point a and x such that

f(x) −
(︄

k∑︂
l=0

f (l)(a)
l! (x − a)l

)︄
= 1

k!f
(k+1)(ξ)(x − ξ)k(x − a).

We use this statement for f(x) = log(1−x), k = 1, a = 0 and x = ρθ(un
s )|Cn

s |.
So

−
∞∑︂

l=2

ρl
θ(un

s )|Cn
s |l

l
= − 1

(1 − ξn)2 (ρθ(un
s )|Cn

s | − ξn) ρθ(un
s )|Cn

s |,
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where ξn ∈ (0, ρθ(un
s )|Cn

s |).
However, we need to explore sum of remainders over all cells in the partition

resp. its limit behaviour when n tends to infinity. So, let us look at the expression

∑︂
s∈Sn

− 1
(1 − ξn)2 (ρθ(un

s )|Cn
s | − ξn) ρθ(un

s )|Cn
s |.

Since ξn ∈ (0, ρθ(un
s )|Cn

s |), and function ρθ is non-negative and bounded, we
can bound it from above and have a look at its limit.

⃓⃓⃓⃓
⃓⃓ ∑︂

s∈Sn

− 1
(1 − ξn)2 (ρθ(un

s )|Cn
s | − ξn) ρθ(un

s )|Cn
s |

⃓⃓⃓⃓
⃓⃓

≤
∑︂

s∈Sn

1
(1 − ρθ(un

s )|Cn
s |)2

⃓⃓⃓⃓
ρθ(un

s )|Cn
s | − ξn

⃓⃓⃓⃓
ρθ(un

s )|Cn
s |

≤
∑︂

s∈Sn

1
(1 − ρθ(un

s )|Cn
s |)2 ρ2

θ(un
s )|Cn

s |2

≤
∑︂

s∈Sn

1
(1 − supu∈W ρθ(u)|Cn

s |)2 sup
u∈W

ρ2
θ(u)|Cn

s |2

=
∑︂

s∈Sn

1
(1 − supu∈W ρθ(u)|W |)2 sup

u∈W
ρ2

θ(u)|Cn
1 |2

= |W | 1
(1 − supu∈W ρθ(u)|W |)2 sup

u∈W
ρ2

θ(u)|Cn
1 | −−−→

n→∞
0.

In the last equation, we used the independence of summands on coefficient s
and the fact that the size of the set Sn equal to |W |

|Cn
1 | which follows from uniformity

of cell size in each partition.
As the norm of partition decreases with increasing n, the sum of Cauchy’s

remainders after Taylor approximation tend to zero and

∑︂
s∈Sn

log (1 − ρθ(un
s )|Cn

s |) −−−→
n→∞

−
∫︂

W
ρθ(u) du.

• ∑︁
s∈Sn Nn

s log (1 − ρθ(un
s )|Cn

s |) :

The fourth sum converges with decreasing areas |Cn
s | to zero, because only

the finite number of indicators Nn
s is non-zero and for such s ∈ Sn the argument

of the logarithm converges to one, i.e. the logarithm tends to zero.

So, overall, we can take the log composite likelihood function for unknown
parameter θ ∈ Θ in the following form

log ˜︃CL(θ) =
∑︂
u∈X

(log ρθ(u)) −
∫︂

W
ρθ(u) du.

4.1.2 first-order CL in multivariate LGCP
If we had additional information about the function µi, we could include in the
vector of unknown parameters only σ2

i and elements of the matrix A. However,
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since we lack it, we also need to estimate this function. To do this, we use a
simplification, namely assume stationarity, so µi is constant, i.e.

µi(u) = µi ∀u ∈ R2.

Therefore, in the LGCP model we examined, the vector of unknown parame-
ters for process Xi equals:

θi = (σ2
i , ai1, . . . , aip, µi)

and the simplified intensity function has form

ρi,θ(u) = ρi,θ = exp
{︄

µi + 1
2σ2

i + 1
2

q∑︂
l=1

a2
il

}︄
.

This function is continuous, integrable and bounded on a bounded observation
window W . This can be assumed as it is intended to describe a real situation in
which it determines the expected number of points in the W , which is certainly
not infinite. The assumptions used in this composite likelihood function are
therefore met.

So the relevant log composite likelihood function equals

log ˜︃CL(θi) =
∑︂

u∈Xi

(︄
µi + 1

2σ2
i + 1

2

q∑︂
l=1

a2
il

)︄
−
∫︂

W
exp

{︄
µi + 1

2σ2
i + 1

2

q∑︂
l=1

a2
il

}︄
du

=NXi
(W )

(︄
µi + 1

2σ2
i + 1

2

q∑︂
l=1

a2
il

)︄
− |W | exp

{︄
µi + 1

2σ2
i + 1

2

q∑︂
l=1

a2
il

}︄
.

However, we see that this model has too many unknown parameters to use
this composite likelihood in a multivariate LGCP. In addition, we have not yet
looked at any interactions between points. So, move on to second-order composite
likelihood.

4.2 Composite likelihood for the second order
Determining the parameters as we showed in the previous section is, of course,
fully correct. However, this procedure does not take into account the interaction
of points. Note that in composite likelihood it counts only one characteristic,
namely the number of points. To improve the estimation of parameters, we will
include second-order characteristics in the calculation.

4.2.1 Derivation of the formula
Again, we are inspired by the article [Møller and Waagepetersen, 2007, Sec-
tion 8.1], which suggests how to include the second order in the calculation of
composite likelihood function. For this purpose, we will consider the density de-
rived from the probability that there is a pair of points in two given cells of the
split observation window. We then estimate this probability using the second-
order product density.

In order to build this procedure, we need to meet three assumptions. We
have already met them in an analogous form at the first-order case, they are
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continuity, integrability and boundedness, this time applied to the second-order
product density. I.e. for θ ∈ Θ:

lim
(u,v)→(u0,v0)

ρ
(2)
θ (u, v) = ρ

(2)
θ (u0, v0),∫︂

W

∫︂
W

ρ
(2)
θ (u, v) du dv < ∞,

∃ M2 ∈ R ∀ u, v ∈ R2 : |ρ(2)
θ (u, v)| ≤ M2.

The third one is stationarity of process X, which will ensure constant intensity
function ρ.

So let us introduce notation for the construction of second-order composite
likelihood. Consider the sequence of partitions the observation window (Dn)n∈N
with cells of the same area Cn

s indexed by s from the index set Sn. The areas of
cells tend to zero when n increases. By un

s we understand a representing point
from cell Cn

s .
Consider only such small partitions that for all n ∈ N

∀ s, t ∈ Sn : ρ
(2)
θ (un

s , un
t ) |Cn

s | |Cn
t | < 1. (4.3)

.
Next, let’s have indicators of the simultaneous occurrence of a pair of points

of the process X in the cells Cn
s and Cn

t , where s, t ∈ Sn :

Nn
s,t = 1[NX(Cn

s )>0 & NX(Cn
t )>0.]

We denote the probability that the point occurs in the two cells, for given pa-
rameter θ, as

pn
s,t(θ) = P

[︂
Nn

s,t = 1
]︂

.

We assume that the individual indicators are independent. Then, the composite
likelihood function has for unknown parameter θ ∈ Θ form

Ln(θ) =
̸=∏︂

s,t∈Sn

pn
s,t (θ)Nn

s,t

(︂
1 − pn

s,t (θ)
)︂(1−Nn

s,t)
.

The symbol ∏̸︁=
a,b denotes the product over all pairs of different points a and b.

As mentioned in the introduction to this section, we approximate probability
pn

s,t using the second-order product density. Which makes good sense if we look
at the second-order density as the density of a pair of points.

pn
s,t (θ) ≈ ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |

The rest of the derivation will be very similar to the first order. Hence the
form of the composite likelihood is

CLn(θ) =
̸=∏︂

s,t∈Sn

(︂
ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂Nn

s,t
(︂
1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂(1−Nn

s,t)
.

And the log-composite likelihood function again consists of four sums, which we
will examine separately.
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log CLn(θ) =
̸=∑︂

s,t∈Sn

Nn
s,t log

(︂
ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂

+
(︂
1 − Nn

s,t

)︂
log

(︂
1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂

=
̸=∑︂

s,t∈Sn

Nn
s,t log ρ

(2)
θ (un

s , un
t ) +

̸=∑︂
s,t∈Sn

Nn
s,t log (|Cn

s ||Cn
t |)

+
̸=∑︂

s,t∈Sn

log
(︂
1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂

−
̸=∑︂

s,t∈Sn

Nn
s,t log

(︂
1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂
.

So let us see how the individual sums behave if we send the cell size to zero.

• ∑︁
s,t∈Sn Nn

s,t log ρ
(2)
θ (un

s , un
t ):

If we consider small enough cells into which no more than one point of the
process falls, we can neglect the zero summands of the first sum.

As in the case of the first order, here we should mention the possibility that
ρ

(2)
θ (un

s , un
t ) = 0, for which we would get summand equal to minus infinity. How-

ever, this will only happen with a probability of zero. So we can write that

̸=∑︂
s,t∈Sn

Nn
s,t log ρ

(2)
θ (un

s , un
t ) −−−→

n→∞

̸=∑︂
u,v∈X

log ρ
(2)
θ (u, v).

• ∑̸︁=
s,t∈Sn Nn

s,t log (|Cn
s ||Cn

t |):

This sum does not depend on the unknown parameter θ, we will therefore consider
equivalent composite likelihood function in which we neglect it. The point of
maximum that we find in this way will, of course, be the same as if we continued
to consider this term.

• ∑̸︁=
s,t∈Sn log

(︂
1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂
:

For the logarithmic function we use the expansion into the Taylor’s series
(4.2). Assumption (4.3) ensures that the variable ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t | belongs to

the desired interval [−1, 1). We will use the first term of Taylor’s expansion for
the estimation:

log
(︂
1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂

≈ −ρ
(2)
θ (un

s , un
t )|Cn

s ||Cn
t |,

respectively

̸=∑︂
s,t∈Sn

log
(︂
1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂

≈ −
̸=∑︂

s,t∈Sn

ρ
(2)
θ (un

s , un
t )|Cn

s ||Cn
t |,
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If we consider the limit of zero size of cells Cn
s and Cn

t , then we can look at the
estimating sum as a double integral:

lim
n→∞

̸=∑︂
s,t∈Sn

ρ
(2)
θ (un

s , un
t )|Cn

s ||Cn
t | =

∫︂
W

∫︂
W

ρ
(2)
θ (u, v) du dv

As in the case of the first order, it is necessary to stop here and pay attention
to the limit transition from discrete series to the double integral. Again, we can
use the Theorems 4 and 5 to guarantee that this integral exists, is well defined,
and can be viewed not only as Riemann integral but also as a Lebesgue integral.
All the assumptions are fulfilled. The observation window is bounded, its bound-
ary has zero Lebesgue measure and the second-order product density is assumed
to be bounded and continuous.

For the other elements of the power series we will use Cauchy’s form of the
remainder stated by Lemma 6. We will get out of here

−
∞∑︂

l=2

ρ
(2)
θ (un

s , un
t )l|Cn

s |l|Cn
t |l

l
= − 1

(1 − ξn)2

(︂
ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t | − ξn

)︂
· ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |,

where ξn ∈
(︂
0, ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂
.

Again, we will be interested in the limit of the sum of these remainders.⃓⃓⃓⃓
⃓⃓ ̸=∑︂

s,t∈Sn

− 1
(1 − ξn)2

(︂
ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t | − ξn

)︂
ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |

⃓⃓⃓⃓
⃓⃓

≤
̸=∑︂

s,t∈Sn

1
(1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |)2

(︂
ρ

(2)
θ (un

s , un
t )
)︂2

|Cn
s |2|Cn

t |2

≤
̸=∑︂

s,t∈Sn

1
(1 − supu,v∈W ρ

(2)
θ (u, v)|Cn

s ||Cn
t |)2

(︄
sup

u,v∈W
ρ

(2)
θ (u, v)

)︄2

|Cn
s |2|Cn

t |2

≤
̸=∑︂

s,t∈Sn

1
(1 − supu,v∈W ρ

(2)
θ (u, v)|W |2)2

(︄
sup

u,v∈W
ρ

(2)
θ (u, v)

)︄2

|Cn
1 |4

≤ |W |2

(1 − supu,v∈W ρ
(2)
θ (u, v)|W |2)2

(︄
sup

u,v∈W
ρ

(2)
θ (u, v)

)︄2

|Cn
1 |2 −−−→

n→∞
0.

The last inequality results from the fact that the number of different pairs in the
set Sn is this:

̸=∑︂
s,t∈Sn

1 = |Sn|(|Sn| − 1)
2 = |W |

2|Cn
1 |

(︄
|W |
|Cn

1 |
− 1

)︄
≤ |W |2

|Cn
1 |2

.

We have shown that the sum of Cauchy remainders converges to zero for
partition whose norm tents to zero:

lim
n→∞

̸=∑︂
s,t∈Sn

log
(︂
1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂

= −
∫︂

W

∫︂
W

ρ
(2)
θ (u, v) du dv.
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• ∑̸︁=
s,t∈Sn Nn

s,t log
(︂
1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂

The last sum consists only of finitely many non-zero elements. Due to bounded-
ness of the second-order product density the argument of logarithmic function to
one when cell size tends to zero. Hence

lim
n→∞

̸=∑︂
s,t∈Sn

Nn
s,t log

(︂
1 − ρ

(2)
θ (un

s , un
t )|Cn

s ||Cn
t |
)︂

= 0.

We will therefore consider the logarithmic composite likelihood in the form

log ˜︃CL(θ) =
̸=∑︂

u,v∈X

(︂
log ρ

(2)
θ (u, v)

)︂
−
∫︂

W

∫︂
W

ρ
(2)
θ (u, v) du dv.

4.2.2 Avoiding numerical integration in the CL criterion
Until now, deriving composite likelihood has been analogous to first-order case.
But now comes the question of how to maximize this function. There is a mul-
tiple integral in the formula we have just derived. This can be potentially very
computationally intensive. We will therefore use an estimate to avoid this calcu-
lation.

Here we will finally use the assumption of stationarity and isotropy. In the
summand containing the double integral, we use the expression second-order
product density using correlation function g:

ρ
(2)
θ (u, v) = gθ(u, v)ρθ(u)ρθ(v),

using the assumption of stationarity and isotropy we might write

ρ
(2)
θ (∥u − v∥) = gθ (∥u − v∥) ρ2

θ.

We can combine this with the expression of the correlation function using the
K-function using formula g(r) = K′(r)

2πr
from Lemma 1, so we receive expression

∫︂
W

∫︂
W

ρ
(2)
θ (u, v) du dv = ρ2

θ

∫︂
W

∫︂
W

K ′
θ (∥u − v∥)
2π∥u − v∥

du dv.

In addition, the article [Dvořák and Prokešová, 2012, Section 4.2] exhors us to
consider only pairs of points that are not too far apart in our calculation. Points
that lie too far apart do not to carry information about interaction parameters
but they would bias the estimate. Then the relationship implies

∫︂
W⊖R

∫︂
W

1[∥u−v∥<R] ρ
(2)
θ (u, v) du dv = ρ2

θ |W⊖R| Kθ(R), R>0,

where W⊖R = {u ∈ W : b(u, R) ⊂ W}. R needs to be chosen smaller than half
of width of the observation window. However, we usually choose one quarter of
the smaller side of W . Or the corresponding size if the observation window is not
rectangular.
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Then, for an appropriate fixed R > 0, we will look for the parameter θ as the
maximum argument of the simplified composite likelihood function

log ˜︃˜︃CL(θ) =
̸=∑︂

u,v∈X

(︂
log ρ

(2)
θ (u, v)

)︂
− ρ2

θK(R)|W⊖R|. (4.4)

4.3 CL on the univariate LGCP
Let us now look at what this composite likelihood function looks like if we want
to use it to estimate parameters in the univariate LGCP model. Then, assuming
stationarity and isotropy

log ˜︃˜︃CL(θ) =
̸=∑︂

u,v∈X

(︂
log ρ

(2)
θ (u, v)

)︂
− ρ2

θK(R)|W⊖R|

=
̸=∑︂

u,v∈X

(︂
2µ + σ2 + σ2 exp{−δ∥u − v∥}

)︂
− exp{2µ + σ2}2π

∫︂ r

0
s exp

{︂
σ2 exp{−δs}

}︂
ds |W⊖R| .

4.4 CL on the multivariate LGCP
For estimates in a model where there is more than one type of point, we would
like to take this fact into account and approach these individual processes in part
separately. We will therefore apply a composite likelihood estimate in two steps.

In the first step, we will be interested in parameters that relate to only one type
of process, species-specific parameters. So we will apply the composite likelihood
function to each process Xi separately. In this way we a priori estimate all the
parameters, but we keep only those that influence only one process. We discard
the other estimates. Like this, we avoid that the estimation of these parameters
is too biased by inter-species interactions. In the case of the multivariate LGCP
model, to which we will soon apply the composite likelihood method, it turns out
that it is advantageous to choose new parameters as a function of some species-
specific and inter-species interaction parameters. Then, the dimensionality of the
problem is reduced in this step, and there is no need to discard the estimated
parameters at the end. Specifically, it is described in the Section 4.4.1.

In the second step, we will apply the procedure to pairs of points from dif-
ferent processes as well. Our goal will be to estimate inter-species interaction
parameters. Since we will already have estimates of species-specific parameters
from the previous step, we will insert them into the estimates as a fixed input. In
addition, this approach will greatly reduce the dimensionality of the optimization
problem.

Let us look at deriving a formula for the second step.
To work with marked processes, we will use the same sequence of partitions

that we introduced in the Section 4.2.1. On the pairs of cells of the partition, we
define the indicators of occurrence of the points of Xi and Xj, i ̸= j:

Nn,i,j
s,t = 1[NXi

(Cn
s )>0 & NXj

(Cn
t )>0].
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We further define the probabilities of these events and a given parameter θ ∈ Θ:

pn,i,j
s,t (θ) = P

[︂
Nn,i,j

s,t = 1
]︂

.

Then, the composite likelihood function has form

Ln(θ) =
p∏︂

i,j=1
i≤j

̸=∏︂
s,t∈Sn

pn,i,j
s,t (θ)Nn,i,j

s,t

(︂
1 − pn,i,j

s,t (θ)
)︂(1−Nn,i,j

s,t )

We approximate the probability of a pair of points occurring in the respective
cells by the multivariate second-order product density ρ

(2)
i,j,θ:

pn,i,j
s,t (θ) ≈ ρ

(2)
i,j,θ(un

s , un
t )|Cn

s ||Cn
t |.

Again, we need the assumption of continuity, integrability and boundedness of
the multivariate second-order product density.

When we move to log composite likelihood function, we get the formula

log CLn(θ) =
p∑︂

i,j=1
i≤j

⎛⎝ ̸=∑︂
s,t∈Sn

Nn,i,j
s,t log ρ

(2)
i,j,θ(un

s , un
t ) +

̸=∑︂
s,t∈Sn

Nn,i,j
s,t log (|Cn

s ||Cn
t |)

+
̸=∑︂

s,t∈Sn

log
(︂
1 − ρ

(2)
i,j,θ(un

s , un
t )|Cn

s ||Cn
t |
)︂

−
̸=∑︂

s,t∈Sn

Nn,i,j
s,t log

(︂
1 − ρ

(2)
i,j,θ(un

s , un
t )|Cn

s ||Cn
t |
)︂⎞⎠ .

We will no longer derive in detail all the limit and approximation relationships
that will lead to the following composite likelihood. It would be a direct analogy
of the unmarked case.

log ˜︃CL(θ) =
p∑︂

i,j=1
i≤j

⎛⎜⎜⎜⎝ ∑︂
u∈Xi,
v∈Xj

(︂
log ρ

(2)
i,j,θ(u, v)

)︂
−
∫︂

W

∫︂
W

ρ
(2)
i,j,θ(u, v) du dv

⎞⎟⎟⎟⎠ .

We will simplify this formula further for the purposes of easier calculations.
We will use the cross K-function Kij, its relations with cross pair correlation
function gij given in Section 1.4 and assumption of stationarity and isotropy,
which means ρi,θ(u) = ρi,θ ∀u ∈ Xi, i = 1, . . . , p. So we get formula

log ˜︃˜︃CL(θ) =
p∑︂

i,j=1
i≤j

⎛⎜⎜⎜⎝ ∑︂
u∈Xi,
v∈Xj

(︂
log ρ

(2)
θ (u, v)

)︂
− ρi,θρj,θKij(R)|W⊖R|

⎞⎟⎟⎟⎠ . (4.5)
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4.4.1 second-order CL in multivariate LGCP
Let us apply the derived method to the multivariate LGCP model introduced in
Section 3. As we have outlined, we will proceed in two steps. However, we will
still have to simplify our model a bit to be able to estimate its parameters. The
current model has so many parameters whose effects are intertwined that we have
trouble to distinguish them from each other.

In addition, we will use one more idea, which is represented by [Kopecký and
Mrkvička, 2016, Section 3.2], for example. This is the use of intensity estimate
beyond the composite likelihood. We get it as the ratio of the number of points
to the size of the observation window, i.e.

ˆ︃ρi,θi
= NXi

(W )
|W |

.

Model simplification

We will assume that the internal exponential covariance structure of the Gaussian
fields U and Y across all marginals is given by the same parameter. Specifically,
we introduce parameter δ such that

∀ i = 1, . . . , p ∀ l = 1, . . . , q : δ = δi = ϵl.

To estimate this parameter correctly, we will not maximize the composite like-
lihood functions separately for each species in the first step, but will maximize
their sum

p∑︂
i=1

log ˜︃˜︃CLi(θi).

Species-specific parameters

In this step we will use also reparametrization. Let us introduce a new parameter
ν = (ν1, . . . , νp)⊤ as

νi = σ2
i +

q∑︂
l=1

a2
il.

Then, recalling the assumption of stationarity and isotropy, we can express
the intensity and second-order product density as follows:

ρi,θi
= ρi,θi

(u) = exp
{︄

µi + 1
2σ2

i + 1
2

q∑︂
l=1

a2
il

}︄
= exp

{︃
µi + 1

2νi

}︃
(4.6)

and

ρ
(2)
i,i,θi

(h) = ρ
(2)
i,i,θi

(u, v) = exp
{︄

2µi + σ2
i +

q∑︂
l=1

a2
il + σ2

i exp{−δih} (4.7)

+
q∑︂

l=1
a2

il exp{−ϵlh}
}︄

= exp
{︄

2µi + νi + νi exp{−δh}
}︄

,
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where h = ∥u − v∥.
In addition, thanks to the intensity estimate, we can express µi = log ρi,θi

− 1
2νi

and therefore plug it in the composite likelihood function in form

µi = log NXi
(W )

|W |
− 1

2νi.

Therefore, in the first step we will search for the parameters ν1, . . . , νp, δ.
The exact form of logarithmic composite likelihood is obtained using the in-

tensity function and the second-order product density.
Note that even in this case there is no problem with integrability or bound-

edness of functions ρi,θi
and ρi,θj

, so we can use the previously derived composite
likelihood. By plugging into the (4.5) we get the exact form for our model

log ˜︃˜︃CLi(θi) =
̸=∑︂

u,v∈Xi

(︄
2µi + σ2

i +
q∑︂

l=1
a2

il + σ2
i exp{−δih} +

q∑︂
l=1

a2
il exp{−ϵlh}

)︄

− |W⊖R| exp
{︄

2µi + σ2
i +

q∑︂
l=1

a2
il

}︄

· 2π
∫︂ r

0
s exp

{︃
σ2

i e−δis +
q∑︂

l=1
a2

ile−ϵls
}︃

ds

which for our simplified model means

log
˜︃˜︃˜︃CLi(θi) =

̸=∑︂
u,v∈Xi

⎛⎝2
(︄

log NXi
(W )

|W |
− 1

2νi

)︄
+ νi + νi exp{−δh}

⎞⎠
− |W⊖R| exp

{︄
2
(︄

log NXi
(W )

|W |
− 1

2νi

)︄
+ νi

}︄

· 2π
∫︂ r

0
s exp

{︃
νi exp{−δh}

}︃
ds

=
̸=∑︂

u,v∈Xi

(︄
2 log NXi

(W )
|W |

+ νi exp{−δh}
)︄

− |W⊖R| exp
{︄

2 log NXi
(W )

|W |

}︄
2π
∫︂ r

0
s exp

{︃
νi exp{−δs}

}︃
ds,

where h = ∥u − v∥.
Therefore, we will maximize the function

p∑︂
i=1

log
˜︃˜︃˜︃CLi(θi) =

p∑︂
i=1

⎛⎝ ̸=∑︂
u,v∈Xi

(︄
2 log NXi

(W )
|W |

+ νi exp{−δh}
)︄

− |W⊖R| exp
{︄

2 log NXi
(W )

|W |

}︄
2π
∫︂ r

0
s exp

{︃
νi exp{−δs}

}︃
ds

⎞⎠.

When we get estimates ˆ︁νi and ˆ︁δ, we can also estimate the parameter µi as

ˆ︂µi = log NXi
(W )

|W |
− 1

2
ˆ︁νi.
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Inter-species interaction parameters

In this step, we want to include the relationships between the processes Xi and
Xj in the estimation of parameters A. We will now take the parameters δ, νi and
µi, i = 1, . . . , p, we firstly estimated as given.

We will now derive how exactly the respective composite likelihood function
will look like. We will consider a vector of unknown parameters θ = (a11, . . . , apq).

In order to express this formula (4.5) for our model, let us recall that mul-
tivariate second-order product density for points from of type i and j using the
assumption of stationarity and isotropy:

ρ
(2)
i,j (u, v) = exp

{︄
µi + µj + 1

2

(︄
σ2

i + σ2
j

)︄
+ 1

2

q∑︂
k=1

(︂
a2

ik + a2
jk

)︂
(4.8)

+1[i=j]σ
2
i exp{−δi∥u − v∥} +

q∑︂
k=1

aikajk exp {−ϵk∥u − v∥}
)︄}︄

.

Plugging into the formula for composite likelihood function:

log ˜︃˜︃CL(θ) =
p∑︂

i,j=1
i≤j

⎛⎜⎜⎜⎝ ∑︂
u∈Xi,
v∈Xj

⎛⎝µi + µj + 1
2

(︄
σ2

i + σ2
j +

q∑︂
k=1

a2
ik +

q∑︂
k=1

a2
jk

)︄

+ 1[i=j]σ
2
i exp{−δi∥u − v∥} +

q∑︂
k=1

aikajk exp {−ϵk∥u − v∥}

⎞⎠
− exp

{︄
µi + µj + 1

2
(︂
σ2

i + σ2
j

)︂
+ 1

2

q∑︂
l=1

(︂
a2

il + a2
jl

)︂}︄

·2π
∫︂ r

0
s exp

{︃
1[i=j]σ

2
i e−δis +

q∑︂
l=1

ailajle−ϵls
}︃

ds|W⊖R|

⎞⎟⎟⎟⎠ .

Using the reparametrization relation σ2
i = νi −

∑︁q
i=l a2

il we receive the function
to maximize. Let us recall that we will maximize it only for the parameters
a11, . . . , apq, the others have fixed values obtained by the estimates in the previous
step.
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log ˜︃˜︃CL(θ) =
p∑︂

i,j=1
i≤j

⎛⎜⎜⎜⎝ ∑︂
u∈Xi,
v∈Xj

⎛⎝µi + µj + 1
2νi + 1

2νj

+ 1[i=j]

(︄
νi −

q∑︂
i=l

a2
il

)︄
exp{−δ∥u − v∥}

+
q∑︂

k=1
aikajk exp {−δ∥u − v∥}

⎞⎠
− exp

{︄
µi + µj + 1

2νi + 1
2νj

}︄

·2π
∫︂ r

0
s exp

{︃
1[i=j]

(︄
νi −

q∑︂
i=l

a2
il

)︄
e−δs +

q∑︂
l=1

ailajle−δs
}︃

ds|W⊖R|

⎞⎟⎟⎟⎠
Finally, we can estimate the last of the parameters, the parameter σ2

i as

ˆ︂σ2
i = ˆ︁νi −

q∑︂
i=l

ˆ︂ail
2. (4.9)

Thus, we have obtained estimates of all parameters from the original parameter-
ization of the model.
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5. Guan’s composite likelihood
At present, if we wanted to find the parameters θ for the log-Gaussian Cox
process using a moment-based method, we would probably turn to the composite
likelihood derived by Yongtao Guan in his article [Guan, 2006, Section 2].

In order to determine the accuracy of both methods, Guan’s and the one in
the Section 4 we will compare them on simulated data, first from a univariate
log-Gaussian Cox process, and then from the extended multivariate log-Gaussian
Cox process we presented in Section 3.

5.1 Composite likelihood by Guan
Contrary to the approach we demonstrate here, Guan’s method is based on the
idea that the density for two events from stationary and isotropic point process
X can be expressed as the second-order product density, ρ

(2)
θ . It is the density

describing the occurrence of a pair of points of the process at locations u and v.
In order to talk about density, we must of course standardize it. So

f(u, v) = ρ
(2)
θ (u − v)∫︁

W

∫︁
W ρ

(2)
θ (x − y) dx dy

, u, v ∈ X.

Therefore, if we consider the product of such partial densities for each pair
of points, we obtain a composite likelihood function. An introduction to this
approach can be found in Lindsay [1988]. In addition, when we add the idea
that only pairs of points to the distance R carry significant information, where R
makes sense to think at most equal to quarter the shorter side of the observation
window W , for θ ∈ Θ we get the expression

L(θ) =
∏︂

u ̸=v∈X∩W

∥u−v∥<R

ρ
(2)
θ (u − v)∫︁

W

∫︁
W ρ

(2)
θ (x − y) dx dy

.

From here we can move on to log composite likelihood function:

log CL(θ) =
∑︂

uv∈X∩W
∥u−v∥<R

log ρ
(2)
θ (u − v)∫︁

W

∫︁
W ρ

(2)
θ (x − y) dx dy

.

The article [Dvořák and Prokešová, 2012, Section 4.2] then suggests to use
the modification of this composite likelihood function, using the K-function and
estimate the parameters from formula

log ˜︃CL(θ) =
∑︂

0<∥u−v∥<R

u∈X∩W⊖R

v∈X∩W

log ρ
(2)
θ (u − v)

ρ2
θ|W⊖R|K(R) ,

where ρθ is according to our standard notation intensity function, K denotes K-
function and W⊖R denotes the observation window reduced by the edge of width
R. We thus avoid the need to calculate the four-dimensional integral, which
significantly reduces the computational complexity.

37



5.2 Guan’s CL on univariate LGCP
If we substitute the form of characteristics for univariate LGCP from the Section
2.2 into this formula for composite likelihood, we get the following form.

log ˜︃CL(θ) =
∑︂

0<∥u−v∥<R

u∈X∩W⊖R

v∈X∩W

log
ρ2

θ exp
{︂
c(u, v)

}︂
ρ2

θ|W⊖R|K(R)

=
∑︂

0<∥u−v∥<R

u∈X∩W⊖R

v∈X∩W

log
exp

{︂
σ2 exp{−δ∥u − v∥}

}︂
|W⊖R|2π

∫︁ r
0 s exp

{︂
σ2 exp{−δs}

}︂
ds

=
∑︂

0<∥u−v∥<R

u∈X∩W⊖R

v∈X∩W

(︂
σ2 exp{−δ∥u − v∥}

)︂

− NR
X(2) log

(︃
|W⊖R|2π

∫︂ r

0
s exp

{︂
σ2 exp{−δs}

}︂
ds
)︃

,

where NR
X(2) denotes number of pairs of different points (u, v) such that u ∈

X ∩ W⊖R, v ∈ X ∩ W and ∥u − v∥ < R.
Note that we do not estimate parameter µ in this procedure. We will not

obtain it using composite likelihood, but from estimating the intensity function
as the ratio of the number observed to the size of the observation window: ˆ︂ρθ =
NX(W )

|W | . Then we express the estimate of µ as from the intensity calculation
formula (2.1), so

ˆ︁µ = logˆ︂ρθ −
ˆ︂σ2

2 .

5.3 Guan’s CL on multivariate LGCP
Now we want to apply Guan’s composite likelihood to the multivariate LGCP
model we are studying.

As in the previous section, to use Guan’s composite likelihood, we simplify
the model by substituting a single parameter into the exponential covariance
structures. So, for i = 1, . . . , p and l = 1, . . . , q :

δ = δi = ϵl.

And we will also take advantage of substituting

νi = σ2
i +

q∑︂
l=1

a2
il.

As in the case of the previous composite likelihood function, we will now
proceed in two steps. Firstly, we estimate parameters that depend on only one
type of the process. In the second step, we will use these estimates as input for
estimating interaction parameters.
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Species-specific parameters

Since the intensity for stationary isotropic process equals to (4.6) and the second-
order product density is (4.7), the marginal composite likelihood with unknown
parameters θi = (νi, δ) equals to

log ˜︃CLi(θi) =
∑︂

0<h=∥u−v∥<R

u∈Xi∩W⊖R

v∈Xi∩W

log
ρ

(2)
i,i,θi

(h)
ρ2

i,θi
|W⊖R|Ki(R)

=
∑︂

0<h=∥u−v∥<R

u∈Xi∩W⊖R

v∈Xi∩W

log
exp

{︃
σ2

i exp {−δih} +∑︁q
l=1 a2

il exp{−ϵlh}
}︃

|W⊖R|2π
∫︁ r

0 s exp
{︃

σ2
i e−δis +∑︁q

l=1 a2
ile−ϵls

}︃
ds

=
∑︂

0<h=∥u−v∥<R

u∈Xi∩W⊖R

v∈Xi∩W

(︄
σ2

i exp {−δih} +
q∑︂

l=1
a2

il exp{−ϵlh}
)︄

−NR
i log

(︄
|W⊖R|2π

∫︂ r

0
s exp

{︃
σ2

i e−δis +
q∑︂

l=1
a2

ile−ϵls
}︃

ds

)︄
=

∑︂
0<h=∥u−v∥<R

u∈Xi∩W⊖R

v∈Xi∩W

(νi exp{−δh})

−NR
i log

(︃
|W⊖R|2π

∫︂ r

0
s exp

{︃
νi exp{−δs}

}︃
ds
)︃

,

where NR
i denotes the number of different pairs of process points Xi limited to

the reduced window W⊖R, i.e. the elements of the set {(u, v); 0 < ∥u − v∥ <
R, u ∈ Xi ∩ W⊖R, v ∈ Xi}.

So, overall, we want to maximize function
p∑︂

i=1
log ˜︃CLi(θi) =

∑︂
0<h=∥u−v∥<R

u∈Xi∩W⊖R

v∈Xi∩W

(νi exp{−δh})

−NR
i log

(︃
|W⊖R|2π

∫︂ r

0
s exp

{︃
νi exp{−δs}

}︃
ds
)︃

,

Then, from the resulting estimate of νi, we receive estimate of µi as

ˆ︂µi = log NXi
(W )

|W |
− 1

2
ˆ︁νi.

Inter-species interaction parameters

In the next step we will estimate the remaining parameters, specifically elements
of matrix A. From these and using the estimate of νi, we can express the estimate
of σ2

i then. So now we will work with θ = {a11, . . . , apq}. We will use second-order
product density in the form (4.8) and relation σ2

i = νi −∑︁q
i=l a2

il

39



log ˜︃CL(θ) =
p∑︂

i,j=1
i≤j

˜︃CLi,j(θ) =
p∑︂

i,j=1
i≤j

∑︂
0<h=∥u−v∥<R

u∈Xi∩W⊖R

v∈Xj∩W

log
ρ

(2)
i,j,θ(h)

ρi,θρj,θ|W⊖R|Kij(R)

=
p∑︂

i,j=1
i≤j

∑︂
0<h=∥u−v∥<R

u∈Xi∩W⊖R

v∈Xj∩W

log
exp

{︃
1[i=j]σ

2
i e−δih +∑︁q

l=1 ailajle−ϵls

}︃
|W⊖R|2π

∫︁ r
0 s exp

{︃
1[i=j]σ

2
i e−δih +∑︁q

l=1 ailajle−ϵls

}︃
ds

=
p∑︂

i,j=1
i≤j

∑︂
0<h=∥u−v∥<R

u∈Xi∩W⊖R

v∈Xj∩W

(︄
1[i=j]σ

2
i exp{−δih} +

q∑︂
l=1

ailajl exp{−ϵlh}
)︄

−NR
ij log

(︄
|W⊖R|2π

∫︂ r

0
s exp

{︃
1[i=j]σ

2
i e−δis +

q∑︂
l=1

ailajle−ϵls
}︃

ds

)︄

=
p∑︂

i,j=1
i≤j

∑︂
0<h=∥u−v∥<R

u∈Xi∩W⊖R

v∈Xj∩W

(︄
1[i=j]

(︄
νi −

q∑︂
i=l

a2
il

)︄
exp{−δh} +

q∑︂
l=1

ailajl exp{−δh}
)︄

−NR
ij log

(︄
|W⊖R|2π

∫︂ r

0
s exp

{︃
1[i=j]

(︄
νi −

q∑︂
i=l

a2
il

)︄
e−δs +

q∑︂
l=1

ailajle−δs
}︃

ds

)︄
,

where NR
ij indicates the appropriate number of point pairs, specifically NR

ij =∑︁
0<h=∥u−v∥<R
u∈Xi∩W⊖R

v∈Xj∩W

1.

And very lastly, we can calculate estimate of σ2
i as

ˆ︂σ2
i = ˆ︁νi −

q∑︂
i=l

ˆ︂ail
2.
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6. Comparison of composite
likelihoods
As we have already outlined, we would now like to see how well our composite
likelihood can estimate the parameters of the LGCP model. On the simulated
data, we compare the method presented by us in Chapter 4 with Guan’s composite
likelihood function as set in Chapter 5.

We perform the comparison on both univariate and multivariate log-Gaussian
Cox point processes.

We will determine the distance of our estimates from the true value of the
parameters according to two measures, relative bias and relative mean squared
error. We define the relative bias of the parameter θ in n simulations as

relBias (θ) = 1
n

n∑︂
i=1

ˆ︁θi − θ0

|θ0|

and the mean squared error is defined as

relMSE (θ) = 1
n

n∑︂
i=1

(︂ˆ︁θi − θ0
)︂2

θ2
0

where ˆ︁θi is estimate of the parameter θ in the i-th simulation and θ0 is its true
value.

Due to the presence of non-negligible number of outlying estimates, we decided
not to calculate these characteristics from all estimates. Instead, we do not use
5% of the simulations those relative mean squared error would be the highest.
Even in practical applications, we would not hesitate to discard measurements
that would be obvious to be outliers. The results from the full range of simulations
can be found in Appendix A. In order not to confuse these characteristics, we
will be the one for whom we have chosen 95% of the best estimates denote by
relBias95, resp. relMSE95.

To simulate data from appropriate models, we used the spatstat package
for R (Baddeley et al. [2015]). Optimization of the composite likelihood functions
was also performed using the R (R Core Team [2017]), specifically using the optim
function based on the Nelder-Mead algorithm. The scripts can be found in the
electronic appendix of this thesis.

6.1 Univariate LGCP
First, let us look at the simulation in the univariate LGCP model. There were 100
runs, all with the choice R = 0.25. We see their results in terms of relative bias
and relative mean squared error in Table 6.1. These results are computed without
the five percent worst realizations. The notation ρ0, σ2

0 and δ0 indicates that the
estimates in the right part of the table were calculated from data simulated from
a univariate LGCP model with these true parameter values.

We can observe that both methods estimate the parameter µ reasonably well,
but it is interesting to observe that while our method tends to overestimate it,
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Our CL Guan’s CL
relBias95 relMSE95 relBias95 relMSE95

ρ0 σ2
0 δ0 ˆ︁µ ˆ︂σ2 ˆ︁δ ˆ︁µ ˆ︂σ2 ˆ︁δ ˆ︁µ ˆ︂σ2 ˆ︁δ ˆ︁µ ˆ︂σ2 ˆ︁δ

150 1 10 0.14 -0.04 -0.39 0.03 0.01 17.46 -0.13 -0.12 0.11 0.02 0.56 0.27
0.5 10 0.09 0.90 -1.00 0.01 0.83 1.00 -0.09 -0.22 0.06 0.01 0.46 0.06

250 1 10 0.14 -0.08 0.77 0.03 0.03 44.13 -0.17 -0.17 0.08 0.03 0.38 0.21
0.5 10 0.08 0.85 -1.00 0.01 0.78 1.00 -0.17 -0.15 0.10 0.03 0.38 0.06

Table 6.1: Relative biases and relative mean squared errors of the estimates of the
univariate LGCP computed from 95% of the best simulations. Using R = 0.25.

Guan’s method underestimates it. This is due to the use of non-parametric
estimation.

We also find the estimation of σ2 to be satisfactory for Guan’s method. How-
ever, our method estimated it with sufficiently small error only when its true
value was 1. When it decreased, our method was no longer able to estimate the
parameter well.

Guan’s method estimates the parameter δ quite well, at least for higher in-
tensities. On the other hand, our method failed here. In many cases it tends to
estimate the delta very close to zero, and in the case of smaller σ2 it estimates
practically equal to zero in all realizations. Overall, the quality of the estimates
deteriorates as the intensity decreases. If the actual value of σ2 is low, then it is
harder to estimate the value of δ, since the effect of both parameters on the exact
configuration of the points is much weaker than with high σ2. Guan’s method
turns out to be more sensitive than ours in this respect and it is therefore possible
to distinguish this effect even at lower σ2.

6.2 Multivariate LGCP
For the multivariate LGCP model, we first had to decide how large model to
choose. Based on the experience from the univariate model, we decided to ex-
amine the results on as small structure as possible to have a chance of obtaining
relevant estimates. Thus, we used a model with two types of points, thus we
chose p = 2, and also with two environmental effects, i.e. q = 2.

We also simulated the model 100 times. Again, we use the option R = 0.25.
Table 6.2 offers a comparison of the results in terms of relative bias, while Table
6.3 talks about the relative mean squared error. Similarly to the univariate ap-
proach, we use the notation ρ0, σ2

0, δ0 and A0 to indicate the true values of the
parameters indicating the simulations from which the estimates were computed.

Note that both methods estimate the parameter µ = (µ1, µ2) very well. This
good estimate is due to the fact that both CL methods estimate µ in a non-
parametric way. Our method seems to work even a little better than Guan’s.
Similarly to the univariate LGCP model, our method tends to underestimate µ,
while Guan’s tends to do the opposite in most cases.

Another similarity with the univariate case is shown by the estimation of the
parameter δ. Guan’s method has no significant problems with it. While ours
strongly underestimates it, essentially failing to estimate it at all in certain cases.

Similar conclusions can be drawn for the estimates of the elements of the
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matrix A if both its non-diagonal elements are positive. Guan’s method can
determine them satisfactorily well. However, our method strongly underestimates
the elements on the diagonal in the vast majority of cases. Even though the non-
diagonal parameters are estimated quite satisfactorily, the negative effect of the
estimates of the matrix A on the estimation of σ2 cannot be denied. It turns out
that in the case of biased estimates of the elements of A, computing the estimate
of σ2 from the formula (4.9) does not ensure that this estimate is positive. In cases
where one of the elements of the matrix A is negative, Guan’s method also fails.
Neither method is able to identify the negativity of this parameter. However, the
corresponding estimate of σ2 is not negatively affected, since the elements of A
are squared in its calculation.

relBias95

ρ0 σ2
0 δ0 A0 method ˆ︁µ ˆ︂σ2 ˆ︁δ ˆ︁A

(200, 400) (1, 1) 10
(︄

1 0.5
0.5 1

)︄
Ours (-0.05, 0.09) (-0.53, -13.12) -0.61

(︄
0.06 0.24
0.26 1.90

)︄

Guan’s (0.08, -0.18) (-0.30, 1.55) 0.16
(︄

−0.65 0.30
0.16 −0.56

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (0.00, -0.03) (0.95, 0.54) -0.97

(︄
−0.96 2.30
0.18 −0.86

)︄

Guan’s (0.06, 0.04) (-0.98, -1.19) 0.17
(︄

0.15 2.21
0.19 0.16

)︄

(0.5, 0.5) 10
(︄

1 0.5
0.5 1

)︄
Ours (-0.06, -0.07) (2.38, -1.27) -0.92

(︄
−0.86 0.30
0.18 −0.67

)︄

Guan’s (0.03, 0.04) (-1.71, -1.97) 0.31
(︄

0.19 0.20
0.20 0.19

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (-0.07, -0.05) (2.52, -0.46) -0.91

(︄
−0.90 2.30
0.18 −0.71

)︄

Guan’s (0.02, 0.04) (-1.50, -1.74) 0.27
(︄

0.15 2.20
0.19 0.15

)︄

(300, 300) (1, 1) 10
(︄

1 0.5
0.5 1

)︄
Ours (-0.02, -0.01) (0.99, 0.25) -0.98

(︄
−0.98 0.30
0.18 −0.83

)︄

Guan’s (0.04, 0.08) (-0.93, -1.18) 0.23
(︄

0.19 0.20
0.20 0.18

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (-0.01, -0.02) (0.93, 0.53) -1.00

(︄
−0.95 −.30
0.18 −0.87

)︄

Guan’s (0.06, 0.05) (-1.06, -1.22) 0.24
(︄

0.17 2.20
0.20 0.17

)︄

(0.5, 0.5) 10
(︄

1 0.5
0.5 1

)︄
Ours (-0.05, -0.06) (2.65, -0.48) -0.97

(︄
−0.90 0.30
0.18 −0.72

)︄

Guan’s (0.03, 0.05) (-1.76, -2.15) 0.28
(︄

0.19 0.20
0.20 0.20

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (-0.05, -0.07) (2.61, -0.86) -1.00

(︄
−0.89 2.30
0.18 −0.69

)︄

Guan’s (0.04, 0.03) (-1.51, -1.78) 0.24
(︄

0.17 2.20
0.20 0.15

)︄

Table 6.2: Relative biases of the multivariate LGCP computed from 95% of the
best simulations. Using R = 0.25.
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relMSE95

ρ0 σ2
0 δ0 A0 method ˆ︁µ ˆ︂σ2 ˆ︁δ ˆ︁A

(200, 400) (1, 1) 10
(︄

1 0.5
0.5 1

)︄
Ours (0.01, 0.02) (4.64, 4.92) 0.60

(︄
0.26 0.66
1.39 0.06

)︄

Guan’s (0.03, 0.08) (1.00, 9.21) 0.11
(︄

0.54 0.09
0.03 0.76

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (0.01, 0.01) (1.20, 2.52) 0.97

(︄
0.98 5.29
0.03 1.08

)︄

Guan’s (0.03, 0.01) (2.08, 2.19) 0.11
(︄

0.09 4.87
0.04 0.08

)︄

(0.5, 0.5) 10
(︄

1 0.5
0.5 1

)︄
Ours (0.01, 0.01) (7.75, 298.14) 0.91

(︄
0.91 0.09
0.03 2.38

)︄

Guan’s (0.01, 0.01) (5.88, 7.49) 0.21
(︄

0.04 0.04
0.04 0.05

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (0.01, 0.01) (8.66, 218.95) 0.91

(︄
0.92 5.30
0.03 2.06

)︄

Guan’s (0.01, 0.01) (6.14, 6.45) 0.14
(︄

0.08 4.86
0.04 0.09

)︄

(300, 300) (1, 1) 10
(︄

1 0.5
0.5 1

)︄
Ours (0.00, 0.01) (0.99, 12.73) 0.98

(︄
0.97 0.09
0.03 1.30

)︄

Guan’s (0.02, 0.02) (2.23, 2.51) 0.16
(︄

0.05 0.04
0.04 0.05

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (0.01, 0.01) (1.05, 2.37) 1.00

(︄
0.98 5.29
0.03 1.07

)︄

Guan’s (0.02, 0.01) (2.16, 2.42) 0.17
(︄

0.06 4.86
0.04 0.08

)︄

(0.5, 0.5) 10
(︄

1 0.5
0.5 1

)︄
Ours (0.01, 0.01) (7.71, 232.52) 0.97

(︄
0.91 0.09
0.03 2.07

)︄

Guan’s (0.01, 0.01) (6.09, 6.80) 0.19
(︄

0.05 0.04
0.04 0.05

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (0.01, 0.01) (7.92, 238.05) 1.00

(︄
0.91 5.3
0.03 2.20

)︄

Guan’s (0.01, 0.01) (5.15, 8.3) 0.16
(︄

0.07 4.86
0.04 0.08

)︄

Table 6.3: Relative mean squared errors of the multivariate LGCP computed
from 95% of the best simulations. Using R = 0.25.
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Conclusion
We began this thesis by building the necessary theory and describing the univari-
ate and multivariate log-Gaussian Cox process. We based this on the definition of
the multivariate LGCP as introduced in article Waagepetersen et al. [2016]. For
these processes we derived the form of their first- and second-order characteristics.

Our aim was to estimate the parameters in the LGCP models using the com-
posite likelihood method. Thus, we took inspiration from article Waagepetersen
[2007] and constructed composite likelihood functions of first and second order
as limit of the likelihoods of approximating discrete models. Furthermore, we
generalized this for multivariate models. Moreover, thanks to the article Dvořák
and Prokešová [2012], we were able to avoid the need for numerically demanding
multiple integration when maximizing composite likelihood functions.

Furthermore, we showed how the well-established Guan’s CL method could
be applied to multivariate log-Gaussian Cox process.

We then compared the two methods in a simulation study. Both of them
approximate very well the parameters that give the frequency of points of each
species. For the parameters expressing the internal correlation structures and
variability, the Guan’s CL method then performed well. However, the way in
which the variability parameter is calculated here cannot ensure that its estimate
is positive, as we would expect. It might be a matter for further research to
find out how to resolve this inconvenience, e.g. by modifying the optimization
procedure to incorporate the positivity constraint.

This work can certainly serve as inspiration for much further research. It
would certainly be interesting to investigate the properties of the composite like-
lihood method we derived, specifically the consistency and asymptotic normality
of its estimates. However, it would be even more attractive to compare the es-
timates obtained using the composite likelihood method, either ours or Guan’s,
with those obtained using the minimum contrast method, which has been sug-
gested earlier in the literature for multivariate log-Gaussian Cox process.
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A. Model comparison on all
simulations
To provide a complete picture of the results of the simulations performed, you
can find here tables showing the results from all simulations. That is, without
excluding the 5% of outliers.

Table A.1 shows the results for the univariate LGCP model. Table A.2 shows
the relative bias for the multivariate LGCP model and in the last Table A.3
reported here we find the relative MSE for the multivariate LGCP model.

The conclusions drawn from them are comparable to those presented in section
6.

Our CL Guan’s CL
relBias relMSE relBias relMSE

ρ0 σ0 δ0 ˆ︁µ ˆ︁σ ˆ︁δ ˆ︁µ ˆ︁σ ˆ︁δ ˆ︁µ ˆ︁σ ˆ︁δ ˆ︁µ ˆ︁σ ˆ︁δ
150 1 10 0.16 -0.07 1.88 0.03 0.02 128.27 -0.14 0.02 0.27 0.03 0.73 1.81

0.5 10 0.10 0.92 -1.00 0.01 0.86 1.00 -0.10 -0.06 0.03 0.01 1.00 0.09
250 1 10 0.16 -0.09 5.3 0.03 0.10 558.57 -0.18 -0.04 0.21 0.04 0.71 0.60

0.5 10 0.09 0.90 -0.44 0.01 0.93 15.71 -0.17 -0.02 0.11 0.03 0.70 0.09

Table A.1: Relative biases and relative mean squared errors of the estimates of
the univariate LGCP computed from all simulations. Using R = 0.2.
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relBias

ρ0 σ2
0 δ0 A0 method ˆ︁µ ˆ︂σ2 ˆ︁δ ˆ︁A

(200, 400) (1, 1) 10
(︄

1 0.5
0.5 1

)︄
Ours (-0.06, 0.11) (-1.54, -2.15) -0.63

(︄
0.34 0.50
0.89 0.11

)︄

Guan’s (0.07, -0.22) (-0.11, 1.34) 0.23
(︄

−0.67 0.30
0.17 −0.40

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (-0.02, -0.04) (0.57, -0.72) -0.97

(︄
−0.83 2.30
0.19 −0.63

)︄

Guan’s (0.06, 0.05) (-1.01, -1.27) 0.20
(︄

0.10 2.21
0.19 0.11

)︄

(0.5, 0.5) 10
(︄

1 0.5
0.5 1

)︄
Ours (-0.07, -0.07) (2.53, -6.4) -0.92

(︄
−0.87 0.30
0.18 −0.33

)︄

Guan’s (0.04, 0.04) (-1.85, -2.20) 0.36
(︄

0.15 0.21
0.20 0.17

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (-0.08, -0.05) (2.65, -4.46) -0.92

(︄
−0.89 2.30
0.18 −0.41

)︄

Guan’s (0.03, 0.05) (-1.66, -1.88) 0.31
(︄

0.10 2.21
0.20 0.09

)︄

(300, 300) (1, 1) 10
(︄

1 0.5
0.5 1

)︄
Ours (-0.02, -0.01) (0.69, -1.59) -0.98

(︄
−0.87 0.30
0.19 −0.53

)︄

Guan’s (0.05, 0.09) (-1.03, -1.26) 0.27
(︄

0.13 0.21
0.20 0.12

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (-0.02, -0.03) (0.51, -0.98) -1.00

(︄
−0.83 2.30
0.19 −0.61

)︄

Guan’s (0.07, 0.06) (-1.14, -1.31) 0.29
(︄

0.11 2.21
0.20 0.13

)︄

(0.5, 0.5) 10
(︄

1 0.5
0.5 1

)︄
Ours (-0.06, -0.07) (2.56, -4.32) -0.97

(︄
−0.88 0.30
0.18 −0.42

)︄

Guan’s (0.04, 0.06) (-1.75, -2.28) 0.32
(︄

0.14 0.21
0.20 0.15

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (-0.05, -0.08) (2.65, -4.55) -1.00

(︄
−0.90 2.30
0.18 −0.40

)︄

Guan’s (0.03, 0.02) (-1.43, -1.66) 0.3
(︄

0.11 2.21
0.2 0.09

)︄

Table A.2: Relative biases of the multivariate LGCP computed from all simula-
tions. Using R = 0.25.
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relMSE

ρ0 σ2
0 δ0 A0 method ˆ︁µ ˆ︂σ2 ˆ︁δ ˆ︁A

(200, 400) (1, 1) 10
(︄

1 0.5
0.5 1

)︄
Ours (0.01, 0.03) (5.7, 5.93) 0.62

(︄
0.31 0.89
1.58 0.09

)︄

Guan’s (0.04, 0.16) (1.6, 12.3) 0.28
(︄

0.56 0.09
0.03 1.08

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (0.01, 0.01) (3.49, 43.02) 0.97

(︄
1.08 5.29
0.04 1.88

)︄

Guan’s (0.03, 0.02) (2.44, 2.47) 0.14
(︄

0.13 4.91
0.04 0.13

)︄

(0.5, 0.5) 10
(︄

1 0.5
0.5 1

)︄
Ours (0.02, 0.01) (8.92, 861.37) 0.91

(︄
0.91 0.09
0.03 4.25

)︄

Guan’s (0.01, 0.01) (6.64, 10.21) 0.27
(︄

0.07 0.04
0.04 0.11

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (0.02, 0.01) (9.57, 530.82) 0.91

(︄
0.92 5.30
0.03 3.44

)︄

Guan’s (0.02, 0.01) (6.89, 7.19) 0.19
(︄

0.13 4.89
0.04 0.14

)︄

(300, 300) (1, 1) 10
(︄

1 0.5
0.5 1

)︄
Ours (0.01, 0.01) (2.87, 79.13) 0.98

(︄
1.05 0.09
0.04 2.54

)︄

Guan’s (0.02, 0.03) (2.51, 2.78) 0.23
(︄

0.09 0.05
0.04 0.10

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (0.01, 0.01) (4.00, 53.50) 1.00

(︄
1.11 5.29
0.04 2.06

)︄

Guan’s (0.02, 0.02) (2.44, 2.79) 0.24
(︄

0.11 4.89
0.04 0.14

)︄

(0.5, 0.5) 10
(︄

1 0.5
0.5 1

)︄
Ours (0.01, 0.01) (9.11, 519.37) 0.97

(︄
0.92 0.09
0.03 3.39

)︄

Guan’s (0.02, 0.01) (7.80, 7.53) 0.24
(︄

0.07 0.04
0.04 0.08

)︄
(︄

1 −0.5
0.5 1

)︄
Ours (0.01, 0.01) (8.09, 503.99) 1.00

(︄
0.92 5.3
0.03 3.45

)︄

Guan’s (0.01, 0.02) (6.54, 10.31) 0.25
(︄

0.11 4.89
0.04 0.13

)︄

Table A.3: Relative mean squared errors of the multivariate LGCP computed
from all simulations. Using R = 0.25.
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