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Basic notation and abbreviations

Here we present a list of basic notation and abbreviations used in our work. Some
other notation concerning the locally finite measures can be found in Section [1.1]

N,Z

(R )

()

7d

B*, B,

A, Aa

B(x,r), U(z,r)
int(A), clo(A)
bd(A), conv{A}
A® B, A°

|A]

w.T. t.
w.l.o.g.

a.s., a.a.

the set of all natural numbers and the set of all integers
the d-dimensional Euclidean space with the standard norm
the standard dot product in R?

the set of all integer valued vectors in R?

the Borel o-algebra on R? and its subset of bounded sets
the Lebesgue measure on R? and its restriction to the set A
the closed and open ball in R? with centre  and radius r
the interior and closure of A C R?

the boundary and convex hull of A ¢ R?

Minkowski sum of sets A, B C R? and the complement of A
the Lebesgue or counting (for A at most countable) measure
of the set A

the set [-n,n)? forn € N, d € N

the k-dimensional Hausdorff measure, k € N

the indicator function and Dirac measure, z € R?

the set of all simple counting locally finite measures on £
the mark space and its norm

the shift operator on R? defined as ¥,(z) =z + z, z € R?

the distribution of a Poisson point process

sum over all pairwise different tuples

with respect to
without loss of generality

almost surely, almost all



Introduction

It is a basic knowledge in the field of spatial modelling, that the Poisson point
process is a model for complete spatial randomness, but if we wish to consider
more general situation with interactions between the points, we need to consider
more complicated processes.

A useful class of point processes are the Gibbs point processes (GPP). GPP
consist of a broad family of models, which take into consideration various pos-
sibilities of interactions between the points. The effect of these interactions is
explained through the notion of an energy function, with states with lower en-
ergy being more probable then the states with higher energy. This convention
stems from the physical interpretation, as the notion of GPP was first introduced
in statistical mechanics, see Ruelle| [1969] for the standard reference. The family of
GPP includes for example the well known pairwise interaction process, Strauss’s
hard—core process or the Widow—Rowlinson process but also more complicated
geometric models such as the quermass—interaction process or models for random
tessellations. Among others, Mgller and Waagepetersen| [2004], Chapter 6, and
Dereudre| [2019] provide a general introduction to the topic of GPP in the context
of spatial modelling.

Gibbs point processes in a bounded window are defined using a density w.r. t.
the distribution of a Poisson point process and they are characterized uniquely
by the DLR equations. The problem with this approach is that the normalizing
constant (also called the partition function) is often intractable. Although we
do not consider this in our work, we note that this problem can be overcome by
considering conditional intensities instead of densities and the GNZ equations
instead of the DLR equations, as these two approaches are equivalent.

However, the situation gets much more complicated, once we start to con-
sider processes in the whole R%. As we can no longer use the approach with
a density w.r.t. a reference process, we can no longer define the distribution of
an infinite-volume Gibbs process (also called the infinite—volume Gibbs measure)
explicitly. Instead, we use the DLR equations, which prescribe the distribution
of the process inside a bounded window conditionally on a fixed configuration
outside of this window. The question, still relevant today, is whether and under
what conditions such processes exist.

The standard approach on how to obtain an infinite-volume Gibbs measure
is based on the topology of local convergence and the result from (Georgii and
Zessin| [1993] for level sets of a specific entropy. Instead of an entropy tools, other
approaches can be used, see Appendix B in|Jansen| [2019] for a proof based on the
convergence of correlation functions and Janossy densities.

One of the standard assumptions for the energy function is the finite—range
assumption which enforces that the range of interactions is uniformly bounded.
In Dereudre| [2009], it was proved that the quermass—interaction process with un-
bounded grains (i.e. unbounded interactions) exists. Using this article as an in-
spiration, an existence result for marked Gibbs point processes with unbounded
interaction was proved in Reelly and Zass [2020]. The aim of this work was to
consider different models for marked Gibbs point processes with unbounded range
of the interaction and use the existence result from Reelly and Zass| [2020] to show



that the infinite-volume Gibbs processes exist.

The content of this thesis is separated into four chapters. In the first one, we
summarize the theory of marked point processes and present the class of Gibbs
processes and the set of tempered configurations as well as the entropy tools.

The second chapter is devoted to the proof of the existence theorem from
Reelly and Zass [2020]. We address the assumptions posed on the energy function
and present the modified version of the range assumption, as we have a major
objection to its formulation in the original work. Afterwards, we go through
particular parts of the proof to see that it still holds.

In the third chapter we study Gibbs facet processes in R?, which present a.
special case of particle processes. A facet in R? is a (d — 1)-dimensional bounded
set, which is obtained by intersecting a d-dimensional ball with (d—1)-dimensional
linear subspace of R?. The energy is a function of the intersections of tuples of
facets. We prove that the repulsive model (i.e. model with non-negative energy
function) satisfies assumptions of the existence theorem and therefore the infinite—
volume Gibbs facet process exists in this case. On the other hand, for the mixed
and clustering models (i.e. models with possibly negative energy function) we
find counterexamples in R? and R? for the stability assumption and we extend
the counterexample in R? to prove that the Gibbs facet processes in bounded
windows do not exist.

In the last chapter, we consider a model for a random tessellation of R2.
A tessellation is a locally finite partition of the space R? into bounded cells Cj,
which are convex polytopes. We consider the Laguerre tessellation L(vy), which
partitions R? based on the set of generators v C R? x (0,00). Each generator
(2/,2") € 7 defines a circle S(2/,2") and the space R? is partitioned based on
the power w.r.t. the generating circles. The random Laguerre tessellation can
be modelled using a marked point process as its set of generators. The Poisson—
Laguerre tessellation L(W), where VU is a stationary marked Poisson point process,
has been studied in Lautensack| [2007]. We consider more general situation with
the random generator W being a marked Gibbs point process with the energy
function depending on the geometric properties of cells of L(W).

Gibbs point processes with geometry-dependent interactions (which include
random tessellations) were considered in Dereudre et al. [2012]. Using the hyper-
graph structure, an existence result was derived for the unmarked case under a set
of complicated assumptions. It was remarked in the same work that the same
existence result would extend to the marked case, and based on this remark
the existence of an infinite-volume Gibbs measure for several models of Gibbs—
Laguerre tessellations of R* was derived in [Jahn and Seitl [2020]. However, the
marks were considered bounded. Our intent was to use Reelly and Zass [2020] and
consider the unbounded case. Unfortunately, the range assumption from |[Reelly
and Zass| [2020] turned out to be more restricting than initially expected.

However, noticing that we can still use several of the results from Reelly and
Zass [2020] for a non—negative energy function and after a careful analysis of the
behaviour of the Laguerre diagram, we considered a model with energy given by
the number of vertices in the tessellation. For this model we were able to prove
new existence theorem, which states that under the condition that we almost
surely see a point, there exists an infinite-volume Gibbs-Laguerre tessellation
of R? with energy given by the number of vertices. As a by-product of this proof,



several useful observations arose, which could be helpful in the study of other
Gibbs—Laguerre models.
To conclude we note that the original results in this work consist of Sections

and [2.3] Chapter [3|and Chapter [4] (without Section up to Theorem [23).



1. Theory of Point Processes

In this chapter, we present the necessary theory for our work. In the first section,
we briefly summarize the theory for marked point processes, for references see
Rataj| [2006] (in Czech) or |Mgller and Waagepetersen| [2004] (in English). After-
wards, we summarize the theory for Gibbs point processes. The notation we use
will mainly be chosen so that it is in accordance with the article |Reelly and Zass
[2020], which is the core of this work.

1.1 Marked Point Processes

Let (€, p) be a complete separable metric space which satisfies that every closed
and bounded subset of £ is compact. The space £ will be called the state space.
Denote by B(E) the Borel o-algebra on &, by B,(€) the set of all bounded Borel
subsets of £ and by IC(&) the set of all compact subsets of £.

Remark. For & = R d > 2, we write shortly B = B(R?), B! = B,(R?) and
K? = K(R?). The standard Euclidean norm on R will be denoted by ||,z € RY,
and the Lebesgue measure on R? will be denoted by .

Definition 1. A Borel measure v on £ is called locally finite, if it holds that
V(K) < oo, VK € K(E).

Thanks to our assumptions on the space &, every locally finite measure v is
also finite on all bounded Borel subsets of £.

Definition 2. We say that a locally finite measure v on £ is
o a counting measure, if it holds that v(B) € NU{0,00}, VB € B(E).
« simple, if it is a counting measure such that v ({z}) < 1,Vx € £.

Let us denote by N (&) the set of all locally finite measures on the space &,
by N*(€) the set of all counting locally finite measures on € and by M*(E) the
set of all simple counting locally finite measures on £. Particularly we have that
M*(E) C N*(E) C N(E).

As is usual, we endow the set N () with o-algebra M(E), where (&) is the
smallest o-algebra on N(E) such that the projections pg : MN(£) — R, where
p(v) = v(B), are measurable VB € B(E). We then endow the set N*(E) with
the o-algebra 91*(&) defined as the trace of the o-algebra DM(E) on N*(€) and
the set M*(€) is analogously endowed with the o-algebra 9t*(€) defined as the
trace of M(E) on M*(E).

Now we can define a point process in £.

Definition 3. Let (2, A, P) be a probability space. Any measurable mapping
O (Q A P) = (N*E), N*(E)) is called a point process in E. We say that
a point process ® is simple, if P(® € M*(E)) = 1.

The distribution of a point process ® will be denoted by Pg, i.e. for every
U € MN*(€) we have Pg(U) = P(® € U). Let us remark that for a point process ¢



and a set B € By(&), the number of points of ® in the set B is a random variable
denoted by ®(B).

The essential definition for the theory of point processes is the definition of
a Poisson point process.

Definition 4. Let yu € N(E) be a locally finite measure. A point process ® is
called a Potsson point process with intensity measure u, if it satisfies the
following two conditions:

i) ®(B) has a Poisson distribution with parameter p(B), VB € By(E),

it) ®(By),...,P(B,) are independent random variables VBy, ..., B, € By(E)
pairwise disjoint, ¥Yn € N.

In this work, we will consider only a special type of point processes, so-called
marked point processes. Take state space in the product form £ = R? x S, where
d > 2 and the so-called mark space (S,|| - ||) is a normed space[[| Each point
(x,m) € R? x S consists of two parts, the location part x and the mark m.
Marked point processes are defined as a special class of point processes in the
product space R? x S.

Definition 5. Let N (€) = {v € N*(€) : v(- x S) € N*(RY)}. We say that
a point process ® on £ is a marked point process, if P(® € N} (E)) = 1.
Furthermore, let M* (E) = {v € N*(&) : v(- x §) € M*(RY)}. We say that
a marked point process ® is simple, if P(® € M} (£)) = 1.

Notice that not every point process in R? x S is a marked point process — it is
required that the so-called ground process ®'(-) = ®(-NS) is a.s. a point process
in R?. Also, not every simple point process in R? x S is a simple marked point
process — for the marked point process to be simple, we require that the ground
process is simple. In the following text, we will only consider simple marked point
processes. For simplicity, we will use M (&) instead of M (£) and we will denote
by M(E) the usual o-algebra on M(E).

Before we proceed further, we state several useful remarks considering the
notation for v € M(&) and define some special subsets of M(E).

1. Each v € M(&) can be written as

N
Y= Zé(zl,ml%
=1

where (z;,m;) € R? x S are pairwise different points and N € NU {0, 0o}
Therefore we can identify vy with its support

v =supp v = {(z1,m1), (2, ms),... } CE.

The zero measure o is identified with (). Throughout this text, we will write
(x,m) € v, instead of (x,m) € supp 7 and use this remark when it will be
convenient to regard v € M(E) as a (locally finite) subset of £ instead of
a simple counting locally finite measure. The marked point = (z,m) € v
is called an atom of ~.

'In general, it is possible to consider a metric space as the mark space, however, for the
purposes of this work, we require the existence of a norm.
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2. Denote for v € M(E), z € R? and A € B¢

Yo=Y Osmy - the restriction of v to A x S,
P, EA
7| = (&) ... the number of atoms of ~,
m(vy) = sup |m|| ... the supremum of norms of all marks in =,
(z,m)ey

Y4z = Z O(+2,m) --- the measure v shifted by the vector z.
(z,m)€y

3. For v, € M(E) we denote by

ryg_ Z 5acm + Z 5yn

(x,m)ey (y,n)eé

the sum of measures v and £. Notice that ¢ always belongs to € N} (€),
but it does not necessarily lie in M(E). However, it does hold that v4 &g
belongs to M(€) for A,B € B, AN B = 0.

4. For v € M(E), a> 0 and A € B? define special subsets of M:
Ma(E) = {y e M(E) : v =}
is the set of all measures whose atoms lie in A x S,
My(€) ={y € M(&) : || < o0}
is the set of all finite measures v € M(E) and
Ma(€) = {7y € M(£) : m(y) < a}
is the set of measures whose marks have norm at most a.

5. Let v € M(E) and let f : &€ — R be a measurable -integrable function.
Then we will write

= [ @ntdz) = Y f(w)

xey

6. We will often use the term configuration for v € M(E). If the state space
€ is clear from the context, we will write M instead of M(E).

Let us now recall the standard definition of a point process with density in

the setting of marked point processes.

1.1.1 Processes with density

Let 7, be the distribution of a simple marked Poisson point process in £ with
finite intensity measure p. Then it is a finite process (i.e. m,(My) = 1) and for
every measurable set U € MM(E) we can write

m,(U) =e ) . 1{o € U}

+€u<s>§:1k|/ /{Za eU} (deq) - - - p(dag). (1)

9



It is well known that the points of the Poisson point process do not interact
with each other. To define more complicated models with interactions between
the points, the following definition is often useful. We consider m,~integrable
non-negative function, which specifies our new model, and define the new (finite)
point process as the process with absolutely continuous distribution w.r.t. m,.
As we will see in the next section, this is how we define the finite—volume Gibbs
process.

Definition 6. Let p : M; — [0,00) be a measurable function, which satisfies
Jp(y)mu(dy) = 1. Then we define a point process with density p w.r.t.
7., as the marked point process ® with distribution

Pa(dy) = p(v) mu(dv). (1.2)
Particularly, it easy to see, using (1.1)), that for a measurable set U € IM(E)

we can write

Po(U) = ¢ 1{o € U} p(0)

+ e Zk'/ / {25 eU} (Z%) (dacy) - - - p(dacy,).

Clearly from ) the distribution Pg favours configurations with higher values
of p.

1.2 Tempered Configurations

From now on we fix 6 > 0. Before we dive into the theory of Gibbs processes,
we will define a special set M*™ C M of so-called tempered configurations (for
reference see Section 2.2 in Reelly and Zass [2020]). As we will see later, in
Section [2.2.3] the infinite-volume Gibbs measure is concentrated on the set of
tempered configurations and therefore many of the assumptions and theoretical
results can be stated only for the set M™P,

Remark. For x € R? and r > 0 we denote by U(x,r) the open ball with centre
z and radius 7 and by B(z,r) the closed ball with centre z and radius r. The
complement of a set A C R? will be denoted by A°.

Definition 7. Define the set of tempered configurations

M temp U Mt

teN
where M = {v € M : (yuu, (1 + [m[[*+)) <t .19 holds VI € N}.

Clearly, for t < s, we have that M! C M?*. Tempered configurations have the
following important properties (see Lemmas 1 and 2 from Reelly and Zass| [2020])
which we present together with their proofs.

Lemma 1. Let v € M, t > 1, then it holds that

.1
Jim —m(ywp) = 0. (1.3)
Furthermore there exists I(t) such that V1 > [(t) the following implication holds

(x,m) € Yo+ = Bz, ||m|)NU(0,1) = 0. (1.4)

10



Proof. Fix t € N and take v € M. Let us prove (1.3). From the definition of
the set M!, we can write for all [ € N that

1

4\ T m(VU(OZ)) (tld>w 1 =5
m(n) < (H) ™ = D < = tats a5 — 0. (L5)

l { l—00

Now consider ([1.4]). At first, define

1 (13) = ()

Then for all [ >[4 (t, %) we can write, using 1’

1

1) _ 75
m('W;(O,l)) < ( l) - -lﬁ < s (ll <t, 1>>d+5 _ ; (1.6)

=

Let I(t) = 30 (t, %) and take [ > I(t). Denote for a > 0: [a] = |a| + 1, where

|a] is the integer part of a (i.e. the largest natural number less or equal to a).
Then for any point (z,m) € Yy@u+1)e we have that € U(0, [|z|]) and

|x| > 21 + 1. Therefore [|z|] > (t, %) and using 1) for [|x|], we can write

1 1 1
2] = il 2 lal = 5Tl 2 5 lel - 5 2 1 (17)

which completes the proof, since if there existed z € B(z, ||m|)NU(0,[), then we
would have |z| < |z — 2|+ |z| < ||m| +{, which is a contradiction with (1.7). O

Notice, that [(¢) depends only on ¢, i.e. the implication (1.4 holds Vy € M".
We also need to define the following increasing sequence of subsets of M®™m?
whose definition is inspired by Lemma [I}

Definition 8. Tuke | € N and define

M= {7 e M VE eN, k> 1, Y(x,m) € Yo2kt1)e
B(a, ||mll) N U(0, k) = 0}.

We can see from Lemma [1| that V¢ > 1 we have M! C M [®T We can also
see that
Mtemp _ U Ml-
IEN
For simplicity, we will write M'® instead of M1 in the following text.

Remark. The sets M!, t > 1 and M, | > 1, and consequently also M*™ are
measurable. It also holds that whenever ¢ € M! then VB C R? also &5 € M
and analogously for M': ¢ e M! = ¢5. € M',VB Cc R%

11



1.3 Gibbs Measures and Processes

In this section, we summarize the theory for marked Gibbs point processes. As
a foundation we take the theory presented in [Reelly and Zass [2020] and enlarge it
to give broader introduction to the theory of Gibbs point processes, with|Dereudre
[2019] as our reference.

1.3.1 Finite—volume Gibbs measures

As we have stated before, the finite-volume Gibbs point process is defined as

a point process with density (see Section[I.1.1)). For us, the reference distribution

7, will be the distribution of an independently marked Poisson point process.
The density of Gibbs process depends on energy of a configuration.

Definition 9. An energy function is a mapping H : My — RU {400} which
is measurable, translation invariant and satz’sﬁeﬂ H(o) = 0.

Consider a probability measure Q on the mark space (S, || -||), which will serve
as our reference mark distribution. Random variable with values in § distributed
according to Q will be called a typical mark. Take A € B¢ and 2 > 0 and denote
by 7% the distribution of the marked Poisson point process in £ with intensity
measure zAy (dz) @ Q(dm), where Ay (dx) is the restriction of the Lebesgue mea-
sure A on A and - ® - denotes the standard product of measures. Now we define
Gibbs processes.

Definition 10. Take A € B¢, z > 0 and energy function H. Then finite—
volume Gibbs process in A with energy function H, activity z and with free
boundary condition is the point process with density p w.r.t. %, where

1

— — .o HOn)
7, ¢

p(7)

Here, Zy is called the partition function, Zy = [ e H0N g% (dy).

Notice that Gibbs processes favour configurations with small energy compared
to those with high energy, which is in accordance with the physical interpretation.
It is possible for a configuration v to have infinite energy and such configurations
are called forbidden, since they occur with probability 0.

Throughout this text we mostly work with the distributions of Gibbs pro-
cesses, which are called Gibbs measures.

Definition 11. Take A € BE, 2 > 0 and energy function H. We then define the
finite—volume Gibbs measure in A with energy function H, activity z and
with free boundary condition as the distribution Py of the corresponding Gibbs

Process, 1i. e.

1
Pa(dy) = —— e 0V 7§ (dv).
Z\
*The assumption that H(0) = 0 is in fact not restricting. Consider function H such that
H(0o)=a, a €R, a#0. Then we can take H = H — a.

12



Clearly, for the finite-volume Gibbs measure and Gibbs process to be well
defined, we need 0 < Z) < oo. This does not hold in general for every energy
function H. Let us briefly comment on some standard assumptions for the energy
function of a Gibbs point process. Our set of assumptions on H and Q, under
which the inequalities 0 < Z; < oo hold, will be specified later, in Section [2.1.2

At first consider the hereditarity assumption:

Vy e My, (z,m) €y : H(y) <oo = H(y = 0zm)) < 00.

It means that removing a point from a configuration, which is not forbidden,
cannot lead to a forbidden conﬁgurationﬂ
Another standard assumption is the stability assumption:

AC eR:H(y)>C-|v|,Vy € My.

Notice that this assumption ensures, that the partition function is finite.

To state some examples, we present the following two energy functions (see
Example 2 in Reelly and Zass| [2020]), which are based on interactions between
pairs of points. Some other examples can be found in Dereudre [2019], Section
5.2.2. We will treat more complicated models in the following chapters.

Ezample (Pairwise interaction models). Let £ = R? x S and consider

Hy)= 37 @y 1z—y <|m|+]n|}
(z,m), (y,n)EY (1.8)
()= Y7 (+00)- 1|z —y| < [lm] + [n]}

(z,m), (y,n)€Y

where ¢ : R? x R — R is a non negative measurable function, called the pair
potential. We use the convention 400 -0 = 0.

One of the key properties of a finite-volume Gibbs measure is that it sat-
isfies the DLR equations, named after Dobrushin, Lanford and Ruelle. These
equations prescribe the conditional distributions for a configuration inside some
bounded window A given a fixed configuration outside this window (i.e. given a
fixed boundary condition).

Proposition 2. Let A, A € B}, A C A. Then it holds for any bounded measurable
function F': M — R that

1
F PA d’y / / 7A§AC 6_(H(’7A€A0)_H(§AC))7TZA(dry) PA(dS),
My A (5)

where Z§(§) = [y, e H0asae)=H &) 72 (dv) is the normalizing constant.

Proof. See Proposition 5.3 in |Dereudre| [2019). O

3While |[Reelly and Zass [2020] do not state this assumption explicitly, we note that without
hereditarity we could get the conditional energy (see Definition equal to —oo, which would
lead to contradiction with the local stability assumption (see Section [2.1.2)).
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1.3.2 Infinite—volume Gibbs measures

Although there is a natural generalization of the measures 73 to 7%, where 7°
is the distribution of a marked Poisson point process with intensity measure
zA(dz) ® Q(dm), we cannot generalize the definition of a finite-volume Gibbs
measure for an infinite-volume Gibbs measure using density w.r.t. the mea-
sure 7. One reason is that we would need a suitable generalization for energy of
an infinite configuration (as it could be 400 simply due to the infinite number of
points even for a configuration which should not be forbidden).

Therefore we need to use a different approach, based on the conditional energy
of a configuration ~ in a bounded window A.

Definition 12. For energy function H and A € B we define the conditional
energy of v € M in A given its environment as

Hy(y) = lim H(va,) — H(ya0\0), (1.9)

n—oo

where A,, = [-n,n)?.

Again, it is not clear whether the conditional energy is well defined or not.
Indeed, we will need to pose some assumptions on H for this to be true. We will
in fact work with such energy functions, for which the limit is attained in
finitely many steps.

Let us note that the basic assumption for the conditional energy is the finite—
range assumption:

HR > 0 SUCh that V"}/ € M,\V/A € Bg : HA(’)/) = H(W/AEBB(O,R)) — H(VA@B(O,R)\A);

where A® B(0,R) = {x € R : 3y € A, | — y| < R}. This means that the range
of interactions between the points is uniformly bounded over all configurations.
On the contrary, Reelly and Zass| [2020] deals with a situation, where the range is
finite, but unbounded, i.e. the finite-range assumption is not satisfied. We will
address our range assumption in Section [2.1.3]

To define an infinite—volume Gibbs measure, we need the following definition.

Definition 13. Let A € BY. Function F : M — R is called A-local if it satisfies
F(y) = F(ya) for all v € M. Function F : M — R is called local, if there
exists A € B such that it is A-local.

In other words, the value of a local function depends only on the configuration
in a bounded window. We also need to define a Gibbs probability kernel.

Definition 14. For A € B}, z > 0, energy function H and £ € M, define the
Gibbs probability kernel associated to H as

e Ha(vaéae)

Zn (&)

where Zy (&) = [ e Halnéa)xz (dy) is the normalizing constant.

Ea(&, dy) = mx(dy),

14



Again, for Z, (£, dv) to be well defined, we need 0 < Z,(§) < 0o. We will show
that under the assumptions given in Section[2.1.2] this will be true for £ € M.
Notice that Zx(§) = Zx(€ac) for any £ € M.

Now we can define an infinite-volume Gibbs measure as the probability mea-
sure on M, which satisfies the DLR equations. This definition follows naturally
from the fact that the finite—volume Gibbs measure also satisfies DLR.

Definition 15. A probability measure P on M is called an infinite—volume
Gibbs measure with energy function H and activity z, if for all A € B} and for
all measurable bounded local functions F': M — R the DLR equation holds:

| FoP@n = [ /MA F(aéae) Eal€, dy) PdE).

For completion, we also define an infinite-volume Gibbs process.

Definition 16. A marked point process ® on & is called an infinite—volume
marked Gibbs point process with energy function H and activity z, if its
distribution is an infinite volume Gibbs measure.

Now the questions are, whether and under what assumptions such measure
exists and whether it is uniquely defined by the DLR equations. The exis-
tence problem will be addressed in the next chapter, where we prove that under
some variations of the stability and range assumptions on the energy function
H | an infinite—volume Gibbs measure exists. Many existence results for different
models have been published over the years.

The uniqueness problem is, as far as we have seen, a much harder problem,
which is not always addressed. It is believed, however, that for small activity z
and (in some sense) low energy function, the Gibbs measure is unique. For more
information and references on this problem as well as proofs for a uniqueness
and a non—uniqueness result, see Dereudre| [2019], Sections 5.3.7 and 5.3.8. For
an example of a sufficient condition for uniqueness of the Gibbs measure with
non—negative pairwise potential see |Jansen| [2019).

1.3.3 Topology of local convergence

The standard method used to obtain an infinite—volume Gibbs measure is based
on the result from Georgii and Zessin [1993]. At first, we have to define a suitable
topology on the space P(M) of probability measures on M.

Definition 17. A function F on M is called tame, if there exists a > 0 such
that |[F(y)] < a (1+ (7, 1+ [[m[|+?)).

Recall that function F is local, if for some A € B we have F(v) = F(y,) for
all configurations ~.

Definition 18. Denote by L the set of all tame local functions F : M — R.
We define the topology 1, of local convergence on P(M) as the smallest
topology such that VE € L the mapping P — [ F'dP is continuous.

Finally we define a relative and specific entropy for two probability measures,
which are important tools in existence proofs. We remark that P < P’ denotes
that P is absolutely continuous w.r.t. P” and the corresponding density is denoted

by %.
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Definition 19. Let A € B and take two probability measures P, P' on M. Then
we define the relative entropy of P with respect to P’ on A as

dP
dP)’

Ix(P|P) = /logfdPA if PA < Py and f =
IA(P|P") = 40 otherwise,

where Py denotes the image of P under the mapping v — ~a.
We then define specific entropy of P with respect to P’ as

1
AT /
TPIP) = Jim, i a, (PIP).

For us the reference measure P’ is the distribution of a marked Poisson point
process with intensity measure 2A(dz) ® Q(dm), P’ = 7. Let z € R? and recall
that P € P(M) is invariant under translation 4,,

v, M= M, 9,(y) =7+ =,

if P=Pod,!, where Po9_! is the image of measure P under 9J,. Then we have
the key property.

For any a > 0 the level sets
P(M), = {P € P(M) : P invariant under V., k € Z*, Z(P|r*) < a}  (1.10)
are relatively compact in the 1, topology.

Specially, any sequence (Pg)ren C P(M), has a subsequence with limit
P € P(M) in the 7, topology. It holds that this limit is also invariant under
translations by x € Z?. As a standard reference, we stat Proposition 2.6 from
Georgii and Zessin| [1993].

4However, we add that this article works in the setting of stationary probability measures
(i.e. invariant under translation by all z € R?). In our work, we have measures invariant under
translations by z € Z¢. We appeal to Dereudre|[2009] and Reelly and Zass| [2020] for a reference
for this case.
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2. Existence of Marked Gibbs
Point Processes with Unbounded
Interactions

In this section, we present the proof of the existence of an infinite-volume Gibbs
measure from Section 3 in |[Reelly and Zass| [2020]. At first, we present the as-
sumptions on the energy function and reference mark distribution. As we state in
Section [2.1.3] we have some objections to the formulation of the range assumption
and its use in the proof. We propose a modified version of this assumption, which
overcomes the particular problems, and afterwards go through specific parts of
the proof to see that it still holds.

2.1 Assumptions

To be able to prove the existence of an infinite-volume Gibbs measure, we will
need the following four assumptions: the moment assumption H,,, the stability
assumption Hg, the local stability assumption H; and the range assumption H,..

2.1.1 The moment assumption

Recall that we have fixed § > 0 in Section and we have chosen a reference
mark distribution Q in Section [1.3.1 We need to assume that Q satisfies

Mo [Sexp(y|m||d+25)Q(dm) < .

This means that the distribution of the norm of the typical mark || M| has super-
exponential moment.

2.1.2 Stability assumptions

We now pose a version of the stability assumption for the energy function H.
Hs : There exists ¢ > 0 such that Vy € My : H(y) > —c¢ <7, 14 ||m\|d+5> .

Notice that this assumption is weaker than the standard stability assumption
(see Section thanks to the additional term ||m]|?+?. It is clear that if H is
non-negative, then H, holds trivially for ¢ = 0.

As we have promised, we will now show that under assumptions H,,, and H,,
the partition function is finite and therefore the finite-volume Gibbs measures
are well defined.

Lemma 3. Under the assumptions H, and H,, we have 0 < Zy < oo, VA € B.

Proof. We have that
Zp = /e_H(”‘)Wf\(dV) > e Oz ({5}) = e#M > 0.
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On the other hand we can write

Hs
Zn= [ tovmian % [ el ™) ay

= exp{—2|Al} - exp{ez |A] [ exp(e|m|*F)Q(dm)} < oo.

The second equality holds thanks to the formula (1.1)) and the Levi formula for
the non—negative function L ImI ) O

For the infinite volume Gibbs measure to be well defined, we need an analogue
of the stability assumption for the conditional energy — so-called local stability
assumption.

H; : For all A € B and all t € N there exists c(A,t) > 0 such that V¢ € M?
the following inequality holds for any v, € M :
Ha(ya éae) = —c(A, ) (ya, 1+ [m]|**).

Let us emphasize that the lower bound for the conditional energy must hold
uniformly over M¢.

Contrary to the stability assumption, local stability is not automatically sat-
isfied for non-negative energy functions. However, it will often be the case. We
state the following claim.

Claim 4. Assume that the energy function H satisfies H(va) — H(yg) > 0, for
all v € M; whenever B C A, VA, B € B{. Then the conditional energy is
non-negative and the local stability assumption H; holds.

Proof. Let v € M and A € B}. Then 3K € N and points x;,...,zx € R x S
such that vy = Y% | d,, and we can write

Hy(y) = lim H(y,) = H(ya,04)

]

In the same way the stability ensures that the partition function is finite,
the local stability condition H; ensures that the normalizing constants of Gibbs
probability kernels are positive and finite for tempered configurations.

Lemma 5. Let A € B¢ and € € M"™. Under assumptions H; and H,, we have
that 0 < Zx(§) < oo.

Proof. Let € € M and A € BJ. Then we can write
Zne) = /G_HA(M&AC)W/Z\(dW) > ¢ MEIni({o}) = e > 0,

since V¢ € M" we have that Hy(€xc) = 0. On the other hand, in the same way
as in the proof of Lemma [3}

Zn(€) = / =N 12 () < / (CAD (T HImIH) s ()
Hm
:exp{—Z|A|}-eXp{ec(A’”ZIM/SeXp(C(A,t)llmlld”)Q(dM)} < oo.

]
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2.1.3 The range assumption

The last assumption (and perhaps the most crucial one as Hs and H,; are often
satisfied thanks to H being non-negative), considers the range of the interactions
among the points. Contrary to the usual assumption of finite range, the existence
result in Reelly and Zass| [2020] allows for the range to be finite, but unbounded
in the sense that it can depend on the whole configuration. In other words, the
range of the interaction is an unbounded random variable.

Let us at first state the range assumption from Reelly and Zass| [2020].

H, : Fix A € B. For any v € M', t > 1, there exists 7(v, A) > 0 such that
Ha(v) = H(oBo.r6.a)) = H(a08076.00\0)-
It is noted that the choice of 7(, A) can be

T(v,A) = 2l(t) + 2m(vy) + 1, (2.1)

and this choice is used in the proof of the existence theorem. However, we have
two comments regarding this choice.

1. Contrary to the claims in Reelly and Zass [2020], this choice of 7(v,A)
does not work for the presented examples of the energy function. For a
counterexample supporting our claim, see Lemma [6] It is not hard to
see, using the proof of this lemma, that this choice of 7 will not work for
such models, where two points (z,m) and (y,n) interact with each other if

Bz, |lm[) N B(y, [Inll) # 0.

2. The choice of the range assumes a very specific dependence of the
range on the configuration both inside and outside of A. Particularly, the
range depends on 75 only through [(¢), which is later used in the proof to
find a certain uniform estimate over M. Therefore, the proof cannot be
directly modified for general 7(v, A).

In the following lemma, we present the counterexample, which shows that the
choice of range ([2.1]) is not suitable for energy functions (|1.8]).

Lemma 6. Let £ = R? x R and take energy function
£
H(y)= > oy Hz—yl < [lm] + [In}-

(z,m),(y;n)€y

Then ¥ > 0 there exist A € B and a set Mo C M* such that ¥y € M¢
Jim H(ya,) = H(vana) = Ha(v) 7 H(eson) — HOmesomw)

if we choose 7 = 2l(1) + 2m(yx) + 1.

1

5 and afterwards modify the

Proof. We will at first consider for simplicity § =
example for general § > 0.

Step 1) Let 6 = L. It holds that (according to the proof od Lemma
1 1 1 2

I(t) = =1 <t) — 595 =20t
2 2

Therefore for t = 1 we get that [(t) = 2* = 16. Take points (z,m), (y,n) € R?xR,
where z = (120,120), m = 1, y = (150, 150) and n = 43. Let A = B(x,¢), where
e €[0,1] and set ¥ = d(zm) + d(yn). Then it holds that
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i) ve M
i) Bla,m) N Bly,n) £ 0,
i) (5,7) & Taop(om for 7 = 21(1) + 2m(7s) + 1 = 35.

Part i) can be easily shown by checking the definition, ii) follows from the simple
computation |z —y| = \/(150 —120)2 4 (150 — 120)2 = /2 - 30 < 43 and iii)
follows from |z — y| = /2 - 30 > 36.

We get that

lim H(va,) — H(yaa) = 0(2,y),

n—oo

H(IYAEBB(O,T)) - H(VA@B(OJ)\A) =0-0=0.

Choose k € N such that £ > [(1) and A & B(0,1) C U(0,k) and define the set
Me = {7k : £ € M (z,m) € & (y,n) € £&}. Then we get that also
V’y € ./\/lc

H(vreB(0,) — H(MeB00\0) =0—0=0,

and Mo C ML
Step 2) Let § > 0. Then we can choose (z,m) and (y,n) in the following way:

1. m=1and z = (2/,0) where 2’ is large enough so that

+((4+2-2%+x’)2—3)ﬁ and z’ > 1.

>l

442.25 <

N | —

1

2. y=(y,0), where y/ =442-25 + 2/ and n = ((y/)% — 3)75

Set v = 6(zm) + d(y,n) and choose A = B(z,¢), where ¢ € [0, %} We again get
that

i) veM!
ii) B(x,m)N B(y,n) # 0
iii) (y,n) € YaeB(o,r) for 7 =2[(1) +2m(ya) +1=2- 25 +241.
and the choice of M proceeds in the same way as in the first step. n

Particularly, we have found a counterexample to the claim that for any con-
figuration 74 € M, and any £ € M the equality Hx(yaéac) = Ha(7aéa\a) holds
as soon as A @ B(0,20(t) + 2m(y,) + 1) C A.

We have given the counterexample for d = 2, ¢ = 1 and pairwise—-interaction
model, however it should be clear that it would be possible to find counterex-
amples in the same way for d > 3, ¢t € N and other energy functions, for which
the interactions between two points is given strictly by the intersection of their
respective balls.

Considering the two comments above, we propose the following modification
of the range assumption.
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H,: Fix A € Bf and | € N. Then for all ¥ € M*™ such that vy € M there
exists 7 = 7(m(a),l, A) > 0 such that

HA(’Y) = H(’YA@B(O,T)) - H(’YA@B(O,T)\A),

holds and 7(m(7,),, A) is a non-decreasing function of m(v,). Particularly, 7
depends on e only through [.

In the next section, we will show that the proof of the existence theorem from
Reelly and Zass| [2020] does work for the choice of the range assumed in H,. instead

of (2.1).

2.2 The Proof of the Existence Result

From now on we assume that the energy function H satisfies ‘H;, Hs, H,, and
our modified range assumption H,. The proof consists of the following four steps
(corresponding to Sections 3.1 — 3.4 in |Reelly and Zass| [2020]):

1. Introducing a stationarised sequence of probability measures (Isn)neN with
the help of the finite-volume Gibbs measures in windows A,, T R%.

2. Proving the existence of a limit measure P for a subsequence of (P, )nex in
the topology of local convergence.

3. Showing that the measures P,, and P are concentrated on the set of tempered
configurations.

A

4. Introducing sequence (P,,),en of measures, that satisfy DLR and which has
the same asymptotic behaviour as (P,),en. Using this sequence, we show
that also P satisfies DLR equations and is therefore an infinite-volume
Gibbs measure.

Since steps 1,2 and 3 of the proof do not use the assumption H,, we will only
state the necessary definitions and partial results from these sections and refer to
the article Reelly and Zass [2020] for the complete proofs. The last step will be
presented in more detail.

2.2.1 Stationary measures P,

Denote by P,, = Py, the finite-volume Gibbs measure in A,,, where A,, = [—n, n)d,
n € N. For n € Nand k € Z¢ set A% = A, + 2nk. Then {A*}, 54 is a disjoint
partition of the space RY.

For all n € N let P, be the probability measure on M satisfying that the
marginal distributions of a configuration in disjoint sets A% are independent and
identically distributed according to the finite volume Gibbs measure P,,, i.e.

Isn = ® Pn © 192_71157 (22)

KEZL

where P o 97! denotes the image of the measure P under the translation o,
U : M — M, U.(7) =7+ 2. Then we can define the stationary sequence.
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Definition 20. For n € N we define the empzmcal field associated to the proba-
bility measure P,, as a probability measure P,,:

P, = yi > P,od !,

KEA,NZE

The probability measures P,,, n € N are invariant under 9,,, x € Z% and the
following upper bounds hold.

Lemma 7. There exists a constant a; such that
VneN  J, = /Mw, 1+ [[m] 9P (dy) < ar A (2.3)
There also exists a constant as such that
neN K, = /an, 1+ ]| &P (dy) < as [An|. (2.4)

Proof. For the proof of see Lemma 5 in Reelly and Zass| [2020]. The inequal-
ities (stated as an observation without proof in Reelly and Zass [2020]) can
be proved using the following observation.

There exists a® € N and vectors by,...,b,e € Z% such that ¥n € N and
Vi € Ap NZ% (A, — k) N AL = () whenever b # b; for all i. Therefore we can
write Vn € N:

1 = _
K= g [ L4 Il )P0 6. ()
KEAL,NZE
1 / d+6\ B
- (s 1+ ]| )P ()
e

B (2n)¢ Z Z/ <7(A —r)NAL L+ ||m||d+6>P 0192716 (dv)

kEA,NZE i=1 M Abi

1
< Gy ZZ L G Lm0 93, (d)
KEA,NZD i= An
1
~ oy X 5 [, 0 Il P )
neA Nzt i=1
Sal' ‘Anl

2.2.2 The existence of the limit measure P

Recall the definition of the topology of local convergence 7, from Section [1.3.3
as well as the definitions of the relative and the specific entropy. We will use the
property (|1.10) for level sets of the specific entropy.

Lemma 8. Let (ﬁ)n)nEN be the stationarised sequence defined in Definition .
Then there exists constant as > 0 such that

vneN  Z(P,|r%) < as.
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Proof. See Proposition 1 in [Reelly and Zass| [2020]. O

Therefore there exists a subsequence (F_’nk) ren such that I5nk 5 |5, where P is
a probability measure on M invariant under translations by x € Z¢.
In the following text, we for simplicity denote the converging subsequence by

(P, )nen instead of (P, )ken. Now our task is to show that the limit measure P is
the infinite-volume Gibbs measure.

2.2.3 Supports of measures P,, and P

As we have stated earlier, the set of tempered configurations has the important
property of containing the support of the infinite-volume Gibbs measure.

Lemma 9. The measures P,, and P satisfy
Vn € N P (Mm) = 1 and P(MmP) = 1.
Proof. See Proposition 2 in Reelly and Zass [2020]. O

Since M*™ = |J,cxy M and M! € M we can find ¥n € N and Ve > 0
large enough ¢ so that B
P,(M)>1—c¢.

However, in the next step of the proof, we need this ¢t to be determined uniformly
for all n € N. From the remark in [Reelly and Zass| [2020], we know that this does
not work for the sequence M?, t € N but it is possible if we consider the sequence

M leN.
Lemma 10. Let € > 0, then there exists [ € N such that
vneN  P,(MYHY>1-c¢

Proof. See Proposition 3 in [Reelly and Zass| [2020]. O

2.2.4 P is a Gibbs measure

In this final section, we will prove that the limit measure P is indeed an infinite
volume Gibbs measure with energy function H. At first, let us note the following
observation concerning the Gibbs kernel Z, (recall Definition [14).

Lemma 11. For A € B¢ and F : M — R measurable function also the mapping
§ = fa, F(v)Ea(§,d) defined on M™™ is measurable.

Proof. See Lemma 7. in Reelly and Zass| [2020]. O

To prove that P is a Gibbs measure, we will need the following estimate of
the Gibbs probability kernel =5, which only considers bounded marks inside A
and the outside environment only in some bounded set A D A.
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Definition 21. For A € B¢ such that A D A and for myg > 0 we define the
(A, mg)—cut off = "A M0 of the Gibbs kernel 2, as the probability kernel

1{m(y) < mp} - e~ Ha(vaéa\a)
Zy" (Eava)

where Zf’mo(fA\A) = [1{m(y) < mp} - e~ Talnéawiznz (dy) is the normalizing
constant.

ERT(E dy) = i (dy),

We have the following remarks considering this definition.
i) The cut off 28 is well defined, since Z5™ (€ A\a) is finite and positive.

ii) For any bounded measurable A-local function G the mapping
£ [, cmERE )

is local (A-local), measurable and bounded. Particularly it belongs to L.

The proof of i) would be the same as the proof of Lemma [5 and ii) is clear from
the definition. The usefulness of this definition arises in the next lemma, where

we prove that the cut—off HA "0 is a uniform estimate of the Gibbs kernel =, over
the set M.

Lemma 12. Let A € BY be a bounded set and take a measurable, bounded and
A-local function F': M — R . For any € > 0 and any t € N there exists my > 0
and A D A such that

sup
gemt

/MA Fl) EX™ (€ dv) = /M F(M)Er(§ dy)| <, (2.5)

A
whenever A C A and my < my.

Proof. Take vy € My and € € M!. Then from the assumption H, we know that

Hy(aéae) = H(érwno.ma) — H(Eropo.m\0);
where 7 = 7(m(vy),[(t), A). Therefore for any £ € M" we have that
A® B0, 7(m(),1(t),A)) C A = Hx(aéae) = Ha(yalawn)-
Denote for A € B and mg > 0

Lamg(7,1(t)) := T{m(72) > mg or A® B(0, 7(m(a), (1), A)) A},

then we can write for any A € Bf and mg > 0

‘ZAA’mO (€ava) = Za(Ea)

— ’/(]l{m(%) < mo}e_HA(’YAfA\A) — e_HA(’YAfAC)>7-‘-7\(d/y)
< /HA,mo (7, 1(t)) - (efHA(VAiA\A) + e*HA(’YAﬁAC))WI«df}/)

Hl Cl m s z
< [ Loy (0 1(0)) -2 OO 0 ().
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This upper bound does not depend on ¢ and therefore
"0 (Eava) — Za(éac)

< / Lamg (7, 1(£)) - 2+ D ORTHIMIT ) 25 ().

sup
5eMt

Taking limit in mgy 1 co and A 1 R?, the right side goes to 0 (we can exchange
limit and integral thanks to the assumption H,, and the dominated convergence
theorem) and therefore for given € and ¢ there exist mgy(e,t) > 0 and A(e,t) D A
such that Vmg > mg and VA D A we get that

sup
§eMt

"0(Eava) — Za(bac)| < e

Since F'is assumed to be bounded, the formula (2.5 can be proven analogously.

O
We will also need to define conditional Gibbs kernels. Take mg > 0 and let
_ 1{vy:m(y) < mg} e Ha(vaéae)
Za&dy{y i m(v) <mpl) = = i (dy),
A(f 7’{ ( ) 0}) :‘A(g, {I/ : m(l/ < mO}) ZA(f) A( 7) (2 6)

) <
= . - ]l{’y : m(y) > mo} e~ Ha(vaéac)
Eag, dyH{y i m(v) > me}) = Ea& v mv) >me})  Za(§)

Now we are ready to prove that the probability measure P satisfies the DLR,
equations for a given function F'.

mi(d7).

Lemma 13. Let A € Bf be a bounded set and take a measurable, bounded and
A-local function F': M — R .Then the probability measure P from Sectz’on

satisfies
Loy FOVP@N = [ P 2a(6d) P,

Proof. At first, denote by iq € N the smallest n such that A C A,. Since P,
do not satisfy DLRy, we need to at first define a sequence of measures (FA’n)neN
which is asymptotically equivalent to (P,)nen, but unlike P,,, satisfies DLRy, at
least for n > ig (hence in the following we only consider n > ).

The estimating sequence is defined as follows. Take n € N, then

P, = > P,od; !,

|An’ HGZdﬁAn: AC'&N(A’%)

where ¥, (A,) = {z + K, 2 € A,,}. We have the following observations
1. For all [ € N we have that P, ((M")¢) < P, ((M")e).
2. For any tame, loca]ﬂ measurable function G : M — R it holds that

[Ge)Putan) - Gy ‘ 0. (2.7)

IThe proof given in [Reelly and Zass| [2020] was only for G being A-local, nevertheless we
need this more general claim, therefore we modify the proof from Reelly and Zass [2020] (using
Lemma 3.5 from [Dereudre| [2009] as a guide).

lim
n—oo
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Proof of 2): Let G : M — R be tame, A-local and measurable function and
choose ng so that AUA C A,,,. Then we can write Vn > ng:

0y = ‘/Mtemp G() Isn(dy) a /Mtemp ¢ Pn(dv)‘ -

1
= > [ GO P )
‘(2n>d REZANAn: AT (An) * M
1
- > Y)Prody (dv)'
( dnedeA Mtemp

(2n)d Z

KEZINAp: AUAZ D (Ar)

- a6\ B 1
= 2y 2 /Mtemp (14 (ya, T+ [Im]|*F0) Py 0 0 (dy).

KEZANA: AUAZ Y, (Ar)

[ GOPuo ﬁgl(dwj

The rest of the proof follows in the same way as in [Reelly and Zass| [2020] (page
989) with the modification that we use A U A instead of A.

3. P, is not a probability measure, but using (2.7) with G(y) = 1 we get that
Ve > 0 there exists ng such that Vn > ng we have that P,(M) > 1 —e.

4. It holds that Vn > iy the measures Isn satisfy DLR:

/ 7)Puldy) = / / F(yaéac) Zal€, dy)Po(de). (2.8)

Unfortunately the mapping £ — [y, F(7)2a(£,dy) is not local, since our
range is not uniformly bounded, and therefore we cannot take a limit on both
sides of . We have to use the estimating kernel Eﬁ’mo and Lemma .

To finish the proof, we will show that Ve > 0

5y = ‘ /M ) P(dy) — /MW /MA )EA(E,dy) P (dg)‘ <e

Take ¢ > 0. By Lemmas [9] and [I0] there exists a; > 0 such that V¢ > a5 and
Vn > 1 it holds that

PMY >1—-¢/2, P, (M®)>1—¢ (2.9)
Now fix ¢ > a5. For this ¢ there exists mg(t) > 0 such that
P({y:m(m) < mo(t)}) 21 -¢/2.

The last inequality comes from formula (1.6)) from proof of Lemma 1] I Now since
P, - P and function F(v) = 1{m(v,) S mg( )} is tame and local, there exist
ny (w.l.o.g. ny > ng from 3. and ny > ig) such that

P.({y:m(y) <me(t)}) >1—¢ Vn>n,.
Using Remark 3, we can conclude that ¥n > ny; we have

Po(M'®) >1—2¢and P,({y: m(ya) < mo(t)}) > 1 — 2. (2.10)
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For our fixed ¢ we can find mg(e,t) > 0 and A(e, t) from Lemma (12| (recall that
F and A are given). Take mo > max{my(t), mg(e,t)} and take A such that

A @ B(0, 7(mo,1(t),A)) C A and A(e, 1) C A

Assume for simplicity that F' is bounded by 1. We can write

1< PUMY) +| [ FoP@n = [ [ FaEaE dPag)

Using Lemma [12] we get that

o S TR a0P@e) - [ [, PO 0P| <

and therefore we can write
z 25+‘/F )P(dy) — / / (7)™ (¢, dy)P (dg)’
Mt I My
(2.9) _
< se|[  FORE@N - [ [ Fe)zRme dnPg).
Mtemp Mtemp MA

From Remark 2 we know that there exists ny (w.1. 0. g. ny > ny) such that Vn > ny

‘/Mtemp /MA oL RACI R /MA AT (e ) (dg)‘ ..
‘/MtempF v)Pn(dy) —/Mtemp F(v)P(dy)’ <e

since both functions F'and § — [ F (7)2L™ (€, dv) are tame and local. There-
fore, we can write Vn > ny

01 §5€+‘/ |5 d"y / / ”Am0€ d7) n(df)‘
Mtemp Mtemp MA
- . .
75‘}“/ P d’y / / ’_‘A 0 é d'Y) n(dg)’
Mtemp Ml(t) Mo
<7 / F()P,(d _/ / F()EA (6. d)P. (d
<t | [ FOP = [ [ ORGP
= ;—‘A m()
+ | /MW) /MA F(7)Zx(&, dy)P,(dE) — /Mm / (&,dvy)P n(d§)|.
From ([2.8)) and (2.10)) we get that

‘ /M F(7)Po(dy) — /Mlm /MA F(7)E (€, d7) ﬁn(dg)‘
<20+ | [ F)Pu(ay) - [ [, FoEaEan P(de)| =

For the other summand, we will use the conditional kernels defined in (2.6). Let
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A(&,mo) = Ea(&{v : m(v) > mo}). We can write
o [, FOIENE ) = 2570 an)Pufae) =
= ‘/MW /MA F(v) ”M‘“(ﬁ dy) — Ea(&, dy[{v - m(v) <me}) - (1 — A(E,me))
- EA(E ) = ) Al )P

< |/Ml(t) /MA F(v) ”A L dy) — EA(& dy{r i m(v) < mo})}lsn(df)|
+2 EA( {v: m(v) > mo})Py(d).

Ml(i)

Now using 1) and the fact that P, satisfies DLR, with the local bounded
function F(y) = 1{m(ya) > mo} we get that

2 /Mm) Za(6, v s m) > mo})Pu(de) < Po({v: m(vy) > mo}) < de.

Since we have chosen A so that A @& B(0,7(mg,((t),A)) C A and from H, we
know that 7(m(ya),l(t),A) < 7(mo,(t), A) whenever m(v,) < mg, we get that
vE e MIO: 2™ (€, dy) = En(E, dy[{r : m(v) < myg}). Altogether we can write

0 <Te+ ‘/Mz(t) v)Py(dy) — /Mz(t) /MA 7)EA(€, dv)P n(d§>|

‘/Mut) /MA )28 d7)Pa(d) /Ml<t>/ (g dy)P n(df)‘

<1c 4|, FOIER™(6:00) = Z6 {0 miv) < mo})Po(ae)
= 13¢,
which completes the proof. O

Let us note that the assumption that F' is A-local is posed just for simplicity
of notation. For F' general A-local, we would take i¢ such that AU A C A;, and
define P,, so that AU A C 9.(A,,). Altogether, we have the existence result.

Theorem 14 (Theorem 1 in Reelly and Zass| [2020]). Under assumptions Hs, H;,
H, and H,, there exists at least one infinite—volume Gibbs measure with energy
function H.

Proof. This proof is just a simple corollary of all the derivations in Section [2.2]
From Section we get that there exists a limit probability measure P. We
want to show that it satisfies Definition Take A € BY and F : M — R local
bounded measurable function. Then by Lemma (13| we get that

Sy FOP@N = [l en)Za( dP(de)

holds. Since by Lemma |§| we get that P(M"*™) = 1, we can conclude that P
satisfies the DLR equations and is therefore an infinite-volume Gibbs measure
with energy function H. O
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2.3 A Note on the Choice of the Mark Space

We require that the mark space is a space with a norm, however sometimes
the model requires only some type of marks (for example non-negative numbers
instead of R or normalized vectors). The following lemma reinforces the claim
that we can then only consider configurations with marks from a chosen subset
of the mark space S.

Lemma 15. Let Q be a reference mark distribution on the mark space (S, | - ||)
and let U € B(S) such that Q(U) = 1. Then also

P{y e MR*x S):m e U, VY(x,m) €}) =1,
where P is the limit probability measure from Section m

Proof. In this proof, we will treat v € M as v C R? x S (see Remark 1 from
Sectlon D Recall the probability measures P, P, and P, defined in Section
221

Take disjoint partition Uyeny Br = R? and define functions
Fu(y) =1{y € M(R* x S) : v5, C By x U}, k € N.

These functions are bounded and local for all £ € N, particularly Fy, € £,Vk € N.

Therefore
lim / Fo(7)Po(dy) = / Fuly

holds for all k£ € N. From the definition of P,, and from Q(U) = 1 we get that
[ FPuldy) = Pu({: 95, € By x U}) = 1.

Therefore also [ Fy(7)Pn(dy) = 1 and consequently [ Fj,()P,(dy) = 1 holds for
all £ € N and we get that

P({y: 78, C Bxx U}) /Fk hm/Fk J(dy) =1, Vk €N,

and this finishes the proof. n
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3. Gibbs Facet Process

The first model we consider will be the process of facets (presented in |Vecera
and Bene§| [2016]). Informally speaking, we want to model a situation where
we have a random configuration of (d — 1)-dimensional objects (called facets)
in R? located in random points (centres of facets) and having random tilt. We
could model such situation using the particle processes (see Schneider and Weil
[2008] for the general theory) or marked point processes, where the location points
identify the centre of the facet and the mark space S is chosen so that each mark
uniquely describes one facet.

Facets can interact with each other by intersecting. We would like to consider
a Gibbs model, which takes into account the interactions between the facets —
i.e. the energy of a configuration will be a function of the intersections. We will
consider three possible assumptions on the interactions — repulsive interactions
between facets (intersections lead to higher energy), attractive interactions be-
tween facets (intersections lead to lower energy) and mixed interactions — and try
to verify the assumptions of Theorem [14] to show that there exists an infinite—
volume Gibbs facet process.

3.1 Definition of a Facet Process

For d > 2 we denote by G, the space of all (d — 1)-dimensional linear subspaces
of R Let S~ denote the unit sphere in R, then A(n) € G; denotes the linear
subspace with unit normal vector n € S%1.

Definition 22. Let A(n) € G; and R > 0. Then we define facet V(n, R) as
V(n,R) = A(n) N B(0, R).

We will call R the radius of the facet and n the normal vector of the facet.
Furthermore we define the space of facets V, = {ANB(0,R): A€ G4, R > 0}.

Remark. Facet is a (d—1)-dimensional object in R? with centre in 0. Particularly,
facet is a line segment in R? (see Figure and a ”disk” in R3.

As we can see from the definition above, each facet is uniquely described by
its radius R and its normal vector n (up to the orientation of n). It is therefore
natural to choose the state space as R? x S, with the space of marks being
(S, - 1) = (REL || - |]), the (d + 1)-dimensional Euclidean space with standard
Euclidean norm'| [|m|| = /> m?.

The marks will be specified using the reference mark distribution. We will
restrict ourselves to distributions Q on S satisfyingﬂ

QS x (0,00)) =1, (3.1)

'We will use the notation ||m|| while talking about mark m from R? and |z| while talking
about location point = from R?.

2Eventually, we could model a situation, where the facets have orientation and therefore
V(n, R) # V(—n, R). Then we would use Q(S?! x (0,00)) = 1.
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B(O,R)

V(n,R)

Figure 3.1: The construction of a two-dimensional facet V(n, R) (green line seg-
ment), which is obtained as an intersection of the line A(n) with normal vector
n (in red) and the closed ball B(0, R).

where ST is the semi-closed unit hemisphere in R%,
d
S = J{u eSS tuy =0, ,u;q = 0,u; > 0}.
i=1

Thanks to Lemma (15, we can from now on only work with configurations ~
with marks m € S2! x (0,00). It is clear from the definition of ST that there
exists a bijection between m € S x (0, 00) and the space of facets Vg,

m = (n,R) =V (n, R),

i.e. first d coordinates define the normal vector for the corresponding facet and
the last coordinate defines the radius. Notice that we have ||m| =1+ R2.

Definition 23. Let v € M, then we define
A(y) ={z+V(n,R): (z,n, R) € 7}

the set of all facets (shifted to their location) corresponding to configura-
tion .

An example of v and its corresponding set of facets A(v) in R? can be seen
in Figure 3.2l As we have said, the energy of a configuration will depend on the
number (and volume) of intersections among facets.

Definition 24. The energy function of a facet process is the function
H: Mj;— R, where

H(y) = ;aﬂﬁj(ﬂ,

J J (32)
o= S~ H (ﬂ Ki) 1 [Hd‘j(ﬂ K;) < oo] .
™) j

Kl,...,KjEA =1



Here as,...,aq € R are fized constants (and at least one of them is not 0) and
H* denotes the k-dimensional Hausdorff measure on RY.

Remark. Notice that the dimension of (Y_, K; # 0 is larger than or equal to
(d—j) and it is equal to (d— j) if the facets K; have linearly independent normal
vectors.

By Zf(l,...,KjeA(v) we mean sum over all j-tuples from the set A(y). For
simplicity, we will denote the indicator in by 1., since the j-tuple of sets it
concerns is clear from the context.

We will consider the following three assumptions regarding the constants a;:

F1: We have a; > 0 forall j =2,...,d.
F2: We have a; <0 forall j =2,...,d.
F3: There exist indices j,k € {2,...,d} such that a; > 0 and a;, < 0.

The first assumption leads to repulsive interactions between the facets — con-
figurations with a lot of interacting facets will have higher energy compared to
those with disjoint facets. On the other hand, the second assumption leads to
attractive interactions. The third assumption leads to a mixed model, as for
some j € {2,...,d} the intersection of a j-tuple will add some energy to the total
energy of the configuration and for other 7, it will lower the total energy. Now
we can define the Gibbs facet process.

Definition 25. Finite (or infinite)-volume Gibbs facet process with ac-

tivity z is defined as the finite (infinite)—volume Gibbs process with energy function
H defined in and activity z.

In the next chapter, we consider, whether such processes exist.

3.2 Verification of Assumptions

To verify the existence of the Gibbs facet process, we must verify the assumptions
from Theorem [14 Hg, H;, H, and H,,. Since the assumption H,, only concerns
the mark distribution, we present a small note considering the relationship be-
tween the distribution of the normal vector and the radius. As we will see in
the following section, the range assumption H, is satisfied for all three assump-
tions F1, F2, F3. The stability and local stability assumption H, and H; hold
under the assumption F1. On the other hand, for the assumptions F2 and F3,
we present counterexamples (for d = 2 and d = 3) showing that the stability
does not hold. Furthermore we prove (for d = 2) that the finite-volume Gibbs
measures do not exist.

3.2.1 The moment assumption

Let us at first comment on assumption H,,. We have to choose such mark distri-
bution Q that

0o % [ exp(m]**)Q(dm) = [

Rd+

D[ oL B, B)).

_exp(([[n]f* + B)Y*°)Q(d(n, R))
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(n4.r) (Ng.ra)
@ X .X
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Figure 3.2: (a) Marked point pattern in R?. Each point consist of a green location
and a red mark. (b) Pattern of facets corresponding to the configuration in (a),
green points denote the centres of facets. The facet corresponding to the point

(x1,n1,71) has its mark shown.
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Particularly, if Q = Q,, ® Qr, where Q,, is a probability measure on Si‘l and Qp
is a probability measure on (0,00) (i.e. the tilt and the radius of the facet are
independent), we can further write

0 ¥ /sdlx(o (O R*))Q(d(n, R)) = /Ooo exp((1+ R*)Y**)Qp(dR).

In this case, whether our model satisfies H,, or not depends only on the distri-
bution of the radius of facets.

3.2.2 The range assumption

To address the assumption H,, recall Deﬁnitionof the sets M!, | € N, from Sec-
tion In the following lemma we just rewrite this definition into the language
of facets.

Lemma 16. Take y € M*™ ~ c M. Then VIl > ly and for all K € A(v) we
have the following implication: K € A(yuo241)) = KNU(0,1) = 0.

Proof. From the definition of M"Y we know that the implication
(z,m) € Yy = U(0,) N B(z,[|m]) =0

holds VI > Iy and in our case B(z, ||m||) = B(z,v1 + R?). Clearly we have that
K C B(z,v1+ R?) and therefore K N U(0,1) = (. O

Now we will show that the range assumption holds. Notice that the following
theorem does not specify any of the situations F1 — F3.

Theorem 17. The energy function H(vy) of a facet process defined in sat-
isfies the assumption H.,.

Proof. Fix A € B and |y € N. We want to prove that for all v € M such that
Ype € M' there exists 7 = 7(m(7a), lo, A) > 0 which is an increasing function of
m(y,) and for which it holds that

Ha(v) = H(aeB0,5) — H(VaeB0,)\A)- (3.3)

Take ip € N large enough so that A C Ay, = [—io, io)d. From the definition of the
conditional energy, we have that

Hy(y) = lim (H(ya,) = H(a00)) -

n—oo

We can write for all n > 1,

H(ya,) — H(ya,n\a) = ;aj Z# )de (é Ki) T

J
~Ya YT m (m KZ-) oo
VAn\A)

j=2 Ki,..., KjE.A( =1
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To simplify this formula, define for general sets A C B € B and for j = 2,....,d
the set of all j-tuples of points from 7 in B (or more specifically the set of (non—
ordered) j-tuples of facets represented by these points) such that at least one of
these points lies in A:

Cj(’}/,A, B) = {{Kl, . ,Kj} : Kz S A(’}/B) for all © = ]., C ,j
and 3¢ such that K; € A(y4)}.

Then for any 7 > 0 and n large enough so that A @ B(0,7) C A,, we can write

d Y
H(y,) — H(vann) = a; > H* (ﬂ Kz’) oo
j AAn) i=1

J=2 {Ky,. KGREC (A,

d J
=Y q > H? (ﬂ Kz-) Moo (3.4)
i=2 (0.7)) '

{Ki,..., Kj}ch (v.AADB

J
* Zaj Z H* (ﬂ Ki) .
(v, A, ABB(0,7)) i=1

j:2 {K1 ..... KJ}ECJ (W,A,An)\cg

Clearly the first sum does not depend on n and it is in fact equal to the desired
H(vaoB0:)) — H(YaeB0)\0))- So it is sufficient to show that for the right choice
of 7 each summand in the second sum is 0.

Let us discuss the choice of 7 so that it satisfies H,.

1. Since m(y,) is finite (there is only finitely many points in y,) there exists
li(m(ya),A) =min{l e N: A® B(0,m(v,)) C U(0,1)} < 0.

2. Let l2(m<7/\)7 l07 A) = maX{lo, ll(m(’YA% A)}
3. Take

T(m(ya), lo, A) = min{k € N : U(0, 2lo(m(7a), o, A) + 1) € A @ B(0, k)}.

Then clearly for a < b we have that 7(a,ly,A) < 7(b,ly,A). Now let ng be
the smallest n such that A & B(0,7(m(ya),lo,A)) C A,. Let n > ng and fix
j €{2,...,d}. For simplicity denote 7 = 7(m(va),lo, A) and ly = lo(m(ya), lo, A)
from the second step in the definition of 7.

Take { Ky, ..., K;} € Cj(v, A, Ap)\Cj(v, A, A®B(0, 7)). From the definition of
C; there exist indices ¢,k € {1,...,j},i # k such that K; = 2+ V(n, R) € A(ya)

and Ky € A(ya,\reB(0,7))-
In particular, considering the choice of 7 above, it holds that

i) K; C U(0,ly) from the first and second step,
ii) Kk € A(Yu(0,21,+1)c) from the third step,

iii) ly > [y from the second step.
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We get from Lemma that K; N K;, = 0 and so H%J (m{zl Ki) = 0. This holds
for all {Ky,...,K;} € Cij(v,A,A) \ Cj(v,A,A @ B(0,7)) and therefore we have
that Vn > ng, using (3.4)) for 7 = 7(m(va), lo, A):
K| 1.
1

)~

d
H(va,) — H(yana) = Y a; > = (
j=2 (0,7))

{K1 ..... Kj}ECj (’y,A,A@B Y

Therefore we get that

Hy(v) = lim H(ya,) — H(ya,0\0)

n—o0

d J
=Yg > 7 (ﬂ Ki) .
(0,7))

Jj=2  {Ki,..,K;}€C;j(v,A,A®B

= Ed:aj >’ H (ﬁ Ki) oo

=2 Ki,...K;j€A(aeB(0,m) =1

d , e
Lo ¥ w(An)
Jj=2 ) A

Ki,...K;€A(YAgB(0,7)\A

= H(VA@B(O,T)) - H(VA@B(O,T)\A)-

Remark. Notice that analogous choice of 7 would also work for the energy func-
tions from ((1.8).

3.2.3 Stability and local stability assumptions

Recall the assumptions H; and H, from Section and the assumptions F1,
F2 and F3 for the energy function of facet process. Then we present the following
two results. The first one is that under F1 (i.e. the repulsive model), the infinite
volume Gibbs facet process exists.

Theorem 18. Let the energy function of a facet process satisfy F1 and assume
that the reference mark distribution Q satisfies H,,. Then the infinite—volume
Gibbs facet process exists.

Proof. If we consider the situation F1, ie. a; > 0,Vj € {2,...,d}, then the
energy function of a facet process H is non—negative and therefore the stability
assumption H, holds. Since H clearly satisfies Claim [4] also the local stability
assumption H; holds. Theorem (17| shows that also the range assumption H,. is
satisfied and therefore the assumption of Theorem [14] hold and the existence is
proven. O

Considering situations F2 and F3 (i.e. the clustering and mixed models), we
bring following results.
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3.2.4 A counterexample for negative a; in R?

In this subsection we consider facet process in R, i.e.

#
K1,K2€A(v)
Suppose that as < 0, we can assume for simplicity that a; = —1. We will show

that not only are we able to find a counterexample proving that the stability
assumption does not hold, but we are in fact able to prove that the finite volume
Gibbs measures do not exist at all.

The first step will be to find a sequence {yny}nyen C M/ contradicting the
stability assumption H,. In the second step we show that we can for some A € B}
(and under some mild assumptions on the mark distribution Q) modify these
configurations to form a sequence of subsets Ay y C M/ such that

i) mi(Aan) >0, VN €N,
ii) ‘H,s does not hold on Uyeyn Aan-

In the final step we use sets Ax n to show that the partition function Z, is infinite.

Step 1) Consider the following lemma.

Lemma 19. The energy function of a facet process in R? (i.e. ) does not
satisfy the stability assumption Hy for as < 0.

Proof. Take N € N even, ny,ny € Si and R > 0 and take vy € M satisfying
i) supp v = {(z1,n1, R), ..., (x%,nl, R), (x%H, na, R), ..., (zn,n9, R)},
ii) normal vectors ny,ny € S} satisfy ny # no,
iii) location points satisfy z; = (z},0)7, where 1 = 2} > 2} > ... > xlg >0

Loo<aoh o< <2l <0,

and—lzxgﬂ N

iv) R is a large enough constant (depending on nj,ny) such that the facets
21+ V(ny, R) and Tyt V' (n9, R) intersect.

For such configuration it holds that each facet given by points (z;,n, R),
ie{l,..., %} intersects all facets given by the second half of the points and
there are no intersections within the first half and within the second half. So we
have that

How)=— 37 H(KiNKy): 1y =

Ki,K2eA(yN)

N N
2 27
At the same time
§ ol 5 s
<’YN, 1+ [|m]|** > =31+ (1+R)"2) = N - (1+ (14 R*)'*2).

i=1
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Denote by b := (1 + (1 + R2)1+%) < oo the constant, which does not depend
on N. Assume for contradiction that H, holds, i.e. there 3¢ > 0 such that
Vye My H(y) > —c <'y, 1+ Hm|]2+5>. Then we get that VN € N even

N N
— . > _¢.N-b
2 2

which is clearly a contradiction. Therefore, the assumption H, cannot hold for
as < 0, since we would need the energy to grow somehow linearly, but we sum
over all pairs of points, i.e. the growth can be, in the worst case, quadratic. [

Remark. Consequently, the energy function of a facet process in R? also does not
satisfy H;.

Step 2) From now on we assume that there exist vectors u,v € S}H constants
0<a<b<ooand e > 0 such that

QU(uxe) x (a,b)) >0, QUU(v L) x (a,b)) > 0,

Uu+e)NU(v+e) =0, (3.6)

where U(u £¢) = {w € S% : |[<(u,w)| < €} (here by <((u,w) we denote the
angle between the vectors u and w).

We are able to find a set A such that if two facets have centres inside A, their
normal vectors do not differ too much from u and v, respectively, and their length
is at least a, then they must intersect in one point.

Lemma 20. For given constants a,e > 0 and two different vectors u,v € St
there exists set A € BZ such that

(@ +V(n,R)N(y+V(mT))| =1
holds for all x,y € N,z £y, ne€U(ute), meU(vte) and R > a,T > a.

Proof. Set Ag = [~1,1]° and take z,5 € Ag, n € U(u £¢), n = (ny,n5)7, and
m € U(vte), m = (my,me)T. We will denote by (x,y) the standard dot product
on R?2. Denote by

p(z,n) ={z€R?: (z,n) = (n,2)}

the line given by a point x and a normal vector n and analogously line p(y, m)
given by a point y and a normal vector m. Then because of assumption (3.6
n # +m and these two lines intersect in one point:

P(z,y,n,m) = A"'b,

where b = ((n,z), {(m,y))T and

A= (”1 ”2>.
my Mo

Then we can define a function f; as the distance from point x to the intersection
P(z,y,n,m):
filz,y,n,m) = ||z — P(x,y,n,m)|.

38



This is a continuous function on Ag x Ag x U(u=t¢e) x U(v+e), which is a compact
subset of R®. Therefore, function f; has a maximum M, on this set. Analogously,
we can define f, as the distance from point y to the intersection P(z,y,n, m) and
there exists its maximum My on Ag X Ag X U(ux¢) x U(v £ ¢). Now we only
need the following observation. Take any s > 0, then

fi(sz, sy,n,m) = ||sz — P(sx, sy,n,m)|| =
= [|sz — A7 ({n, sz}, (m, sy))"|| = s|lz — A7"'b|| =
= sfi(xz,y,n,m).

Therefore the maximum of f; on sAg X sAg X U(u+¢) x U(v £ ¢) is sM; and
analogously the maximum of fy on sAg x sAg x U(ute) x U(v+e) is sMy. Now

it is enough to find s > 0 small enough such that max{sM;, sMs} < a and take
A =shy=[-s,5]". O

Now we take A from Lemma R0l and denote
G,=AxU(ute)x (a,b) and Ty, = (2Ay @ Q) (GL),

(
Gy,=AxU(w=xe)x(a,b) and T, = (2My ® Q) (G,),
D=AxS\(G,UG,) and A = (22, ® Q) (D).

Then we define, Vk € N, the following set of configurations
AA,2I€ = {’7 S Mf : |/7| = Qk’ /}/(Gu) = ]{7, V(Gv> = k} C Ma. (37>

Thanks to the assumption (3.6)), it holds that
. I N S
WA(AA,gk):eA~6F“-E-6F”'E>O (3.8)
and thanks to Lemma [20] we have that Vk € N and Vy € Aj o
Hy=- Y H(KiNKy) lo=—k-Fk,

K1,K2€A(y)

2% (3.9)
(7, 1+ m**0) = S°(1+ (1+ R2)ME) < 2k - (14 (1+6)'F3).

i=1
Therefore we have the following claim.
Claim 21. 1. Assumption H, does not hold on the set Uen Aa 2k-

2. It holds that 73 (An2k) > 0, Vk € N and consequently 7% (Upen Aa,2x) > 0.

Proof. Analogously like in step 1), if for contradiction there existed ¢ > 0 such
that

Vye U st H(Y) = —c (7, 1+ Im[**)
keN
then we would get, using (3.9)), that Vk € N
—kk>—c- 2k (1+ (1+b2)'T3).
Part 2) is proven in ({3.8]). ]
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Step 3) So far, we have only shown that the assumptions H (and consequently
H;) are not satisfied for negative ay and therefore we cannot use Theorem [14] to
show that the infinite volume Gibbs measure for the facet process exists. However,
using the sets Ay o1, defined above, we are in fact capable to prove that the finite—
volume Gibbs measures do not exist.

Recall the Stirling’s formula:

n!

lim ———— =1. (3.10)

n—00 27T7’L(%)n

Theorem 22. If a; < 0 and mark distribution Q satisfies (@ then it holds that
Z5 = +o0, VA € B, and therefore the finite volume Gibbs measures do not exist.

Proof. Take A from Lemma [20| and Ap o5, k € N, defined in (3.7)). Then we can
write Vk € N that

Z :/ e HM 7z (dy Z/ e HO 7z (dy) =
= [ A = [ e

r,)" r,)*
=t A (Ank) = oA e ( k‘> cet ( k') .

We have used (3.8) and (3.9). Thanks to the Stirling’s formula (3.10) the right
side converges to oo with & — oo and therefore Zy = co. Now take any A € BY.

Since H is assumed to be translation invariant we can, without loss of generality,
assume that there exists a constant 1 > ¢ > 0 such that tA C A. Going back to
the proof of Lemma , we could have used the approach from Step 2) for tA and
everything would have worked in the same way, so we can assume, without loss
of generality, that A C A.

Now denote D = A x S\ (G, UG,) and A = (2); ® Q)(D). Then we can

write

7- :/ e~ HM 2 (4~ > e HM 2 (q~) =
A My WA( v) > e WA( )
—A _ I‘u k — Fv F
=€k2-7T/Z”\(AA,2k):€k2'6A'GF“-(k‘> -eF”-(k!),
and we can again use the Stirling’s formula to get that Z; = oo. O]

3.2.5 A counterexample for negative a; in R?

In this subsection we consider the facet process in R?. We have

Hy)=a; Y7 H (ﬁK) Atay Y7 H <ﬁK> . (3.11)

K1,K2,K3€A(y) K1,K2€A(7)

The number of triplets is of order N3 while the number of pairs is only of order
N?, where N = |y|. Therefore for large N the second sum will be negligible with
respect to the first sum. For a3 < 0 and ay € R we will run into similar problems
as in the previous example. It remains to consider whether we could take az > 0
and ay < 0.
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As it turns out, this approach also does not work as we are capable to construct
such configuration vy for which any triplet of facets Ky, Ko, K3 € A(vn) does
not intersect, but "enough” (i.e. of quadratic order) pairs intersect.

Fix N € N even and consider the following construction. Set vy € My,
supp vy = {(z1,n1, R), ..., (x%,nl, R), (x%H, na, R),...,(zn,n2, R)}, where

i) m = 75(1,0,1)" and no = J5(~1,0,1)",

ii) location points satisfy z; = (z},0,0)T, where 1 = 2} > 2} > .. > 2, >0
2

Voo<zh o< - <oy <0,

and—lzx%Jrl N

iii) R is a large enough constant (e.g. R = 2).

We can see these configurations in Figure |3.3

For such vy, no triplet of facets intersects and each facet belonging to the first
half of the points intersects every facet belonging to the second half of the points.
Therefore we have % . % pairs of facets K7, Ky € A(yy) such that K3 N Ky # 0.

Moreover, if we denote by K and L the facets belonging to the furtherest
apart points (z1,n;, R) and (mgﬂ,nQ,R) (from the construction of ~y these
do not depend on N), we have that H' (K N L) < H'(K; N K;) for any other
intersecting pair K;, K; € A(yy), YN € N even.

Suppose again for contradiction, that there ¢ > 0 such that

¥y € Myt H(y) 2 —c {7, 1+ [ml**?)
for H defined in (3.11)) for ag > 0 and ay < 0 (again, we can assume that as = —1).

Then we can write VN € N even

2

P wans £ e(fR) rem ot
(v~)

K1,K2eA 1=1

Hs
<y 1+ [mlP) = N1+ 1+ R)F).

This implies N < m (14 (14 R)*2") for all N € N even, which is clearly

a contradiction.
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W,

Figure 3.3: Examples of configurations vy defined in Section with the num-
ber of points being in order N =2, N =4 and N =6 and with R = 2.
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4. Gibbs-Laguerre Process

In this section we will consider the class of Gibbs-Laguerre processes, that present
a model for random tessellations. We only consider tessellations of R?. We were
not able to use the existence theorem from article |[Reelly and Zass [2020] to prove
that an infinite-volume Gibbs-Laguerre processes exist in general, but we were
able to derive new existence theorem for a particular energy function, under the
assumption that we almost surely see a point.

The theory for tessellations and Laguerre diagrams in R?, presented in Sec-
tion 1.5 and Chapter 2 in [Lautensack [2007] for general RY, is summarized in
Section and enlarged by our own auxiliary lemmas in Section [4.1.2] Then in
Section we consider Gibbs process with energy function (4.10)).

In this chapter, it will be useful to regard v € M as a locally finite subsets
of the state space rather then a locally finite measure (see Remark 1. in Section

L1).

4.1 Tessellations and Laguerre Geometry

Recall that a convez polytope in R? is defined as a convex hull of finitely many
points and it holds that a bounded intersection of finitely many closed half-
planes is a convex polytope. For a convex polytope P we define an edge of
the polytope P (more generally called 1-face) as a 1-dimensional intersection
of P with its supporting hyperplanes and we define a vertex of the polytope
P (more generally called O—face) as a 0-dimensional intersection of P with its
supporting hyperplaneﬂ. We denote the set of all edges of P by A;(P) and the
set of all vertices of P by Ay (P)

Remark. For A C R? we denote by int(A) the interior of the set A, by clo(A) the
closure of A and by bd(A) = clo(A) \ int(A) the boundary of A.

Definition 26. We say that a set T = {C; : i € N}, where C; C R?, is a
tessellation of R?, if

i) int(C;) Nint(C;) = 0 for i # j,

i) U; C; = R? (it is space filling) ,
iii) {C; € T : C;N B # 0}| < oo for all B C R? bounded (T is locally finite),
i) the sets C; (called cells) are conver compact sets with interior points.

It holds that the cells of a tessellation are convex polytopes (see Lemma 10.1.1
in Schneider and Weil| [2008]).

Particularly we have the sets of all vertices and edges of a cell C' denoted by
Ao(C) and A;(C), respectively. Then we can define the set of edges of cells of a
tessellation T as A(T) = Uger A1(C). We can also define the set of edges of a
tessellation.

1See [Schneider| [1993], Section 2.4., for the theoretical background.
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Figure 4.1: Three examples of a tessellation of R%. Left: a general tessellation,
that is not face-to-face, middle: a face-to-face tessellation, that is not normal and
right: a normal tessellation.

Definition 27. We define the set of edges of a tessellation T as
SU(T) = {F(y) : dim(F(y)) = 1, y € B2},
where the set F(y) is the intersection of all cells of T' containing the point y,

F(y) = ﬂ C.

CeT:yeC

Analogously, we could define Sy(T), the set of vertices of a tessellation T.
It always holds that Ay(T") = So(T'), but it can happen that A (T") # S;(T). We
will not consider such tessellations in our work.

Definition 28. A tessellation T of R? is called face-to-face, if the edges of the
cells and the edges of the tessellation coincide, i.e. Ay(T) = Si(T).

Not every tessellation is face-to-face, as we can see in Figure We will also
pose assumptions on the vertices of the tessellation.

Definition 29. A tessellation T is called normal, if it is face-to-face, every edge
1s contained in the boundary of exactly two cells and every vertex is contained in
the boundary of exactly three cells.

An example of a normal and non-normal tessellation can be seen in Figure
4.1 We will now focus only on a special kind of tessellations, so-called Laguerre
diagrams, which are based on the power distance from some fixed set of weighted
points.

Definition 30. For z,z € R? and u > 0 define the power distance of z and

weighted point (z,u) as p(z, (x,u)) = |& — 2> — u?.
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S(y,v)

Figure 4.2: The geometric interpretation of the power distance.

The geometric interpretation of the power distance can be seen in Figure
4.2, The power distance p(z, (z,u)) is a power of the point z w.r.t. the circle
S(x,u) with centre x and radius u. Particularly we have that p(z, (z,u)) > 0
for z € B(xz,u) p(z, (z,u)) = 0 for z € bd(B(x,u)) and p(z, (z,u)) < 0 for
z € U(z,u). Denote for points z,y € R? and weights u, v > 0

HP ((,u), (y,v)) = {z € R? : p(2, (z,u)) = p(2, (y,v)) }
= {z eR?:2(y—z,2) = |y]> — \x|2+u2—v2}

the line separating R? into two half-planes based on the power distances to (,u)
and (y,v) and

P ((z,u), (y,0)) = {z € R : p(z, (z,u)) < p(z, (y,0)) }

(4.1)
= {26R2:2<y—x,z> < |y|2—|x|2+u2—v2}

the closed half-plane, whose points are closer to (x,u) then to (y,v) w.r.t. to the
power distance. Particularly the line HP((z,u), (y,v)) for two weighted points
(x,u), (y,v) is the radical axis of the circles S(z,u) and S(y, v) and is perpendic-
ular to the line going through = and y.

Now take at most countable subset v C R? x (0, 00) of weighted points. We
will use the notation z = (2, 2”) for x € v, where 2z’ denotes the location and z”
the weight of the point. We consider the following assumption

(RO) Vz € R? 3 I;lelgl p(z,x).

Definition 31. Take at most countable subset v C R?* x (0,00) satisfying the
assumption (R0). Then we can define the Laguerre diagram of v as

L(y) = {L(z,7) : x € v, L(x,7) # 0},
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o) o,

Figure 4.3: An example of a Laguerre diagram with a point with empty cell (red
nucleus) and a point whose nucleus does not lie in its cell (green nucleus and
green cell). The reference for this figure is [Lautensack [2007].

where L(x,7) is the Laguerre cell of x in ~ defined as

L(z,y) = {2z € R®: p(2,2) < p(2,y) Yy € 7}.
We call ' the nucleus of the cell L(x,~y) and 7y the set of generators of L(7).

Special case of Laguerre diagram is the Voronoi diagram, which is generated
by a configuration of points with constant weights. Voronoi diagram generated
by 7 is a partition of R? into sets of points closest to each nucleus in the Euclidean
norm. Particularly, each nucleus produces a cell and lies in it.

Unfortunately, Laguerre diagram does not keep these properties in general, as
can be seen in Figure [4.3] Nucleus does not necessarily lie in its cell and some
nuclei may not generate a cell at all. The necessary condition for a point x to
produce an empty cell is that

B(I/,IH) C U B(y/,y/'),

YEY, y£

but unfortunately, it is not a sufficient condition. We will denote the set of points
from ~y, whose Laguerre cells are empty, as E(y) = {x € v : L(z,7v) = 0}.
Clearly from the definition, the (possibly empty) Laguerre cell can be written
as
L(z,v) = () P(z,y). (4.2)
yey
We would like to know whether L(7) is, under some conditions, a normal tessel-
lation. The definition of a tessellation assumes that the cells are bounded subsets
of R?, however this will not be true for some Laguerre cells if the set of gener-
ators is finite. Therefore we treat the situation with a finite set of generators
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separately in the next section. For the countable set of generators we have two
sets of assumptions.

Definition 32. We say that v C R? x (0,00) fulfils regularity conditions, if
it satisfies

(R1) for all (z,t) € R2 xR only finitely many x € ~ satisfy |z — a')* — (2")? < t,
(R2) conv{x’: (z',2") € v} = R%
Notice that (R1) = (RO).

Definition 33. We say that v C R? x (0,00) is in general position, if the
following conditions hold

(GP1) no 3 nuclei are contained in a 1-dimensional affine subspace of R?,
(GP2) no 4 points have equal power distance to some point in R
Then the following theorem holds.

Theorem 23. Let v satisfy (R1) and (R2). Then every cell L(x,~), where x € v,
is compact, L(7) is locally finite and space filling and

L(y) = {L(z,7) € L(v) : int(L(,7)) # 0}
is a face-to-face tessellation. If v satisfies (R1),(R2), (GP1) and (GP2), then

all cells of L(vy) have dimension 2 and the Laguerre diagram L(v) is a normal
tessellation.

Proof. |Lautensack [2007], from Proposition 2.2.2 to Theorem 2.2.8. O

Finite set of generators will not satisfy the condition (R2), hence Theorem
cannot be used in this case.

4.1.1 A finite set of generators

Assume that v C R? x (0,00) is finite, v = {x1,...,2x} for some N € N. Then
the assumption (RO) surely holds and therefore the Laguerre cell L(x, ) is well de-
fined Va € . We have from that each cell is an intersection of finitely many
closed hyperplanes. Bounded L(z,7) are therefore convex polytopes. Clearly
N
RQ = U L(Ila ’Y)

=1

and for two points x;,z; € 7 such that their cells have non-empty interiors, we
get that int (L(z;,7)) Nint (L(z;,7)) = 0.
Analogously as in the previous part we define the sets

o Si(7) ={F(y) : dim(F(y)) = 1, y € R?}
e So(7) ={F(y) : dim(F(y)) = 0, y € R?}

of edges and vertices of diagram L(y). We can also define the sets of vertices and
edges of the Laguerre cell L(z,7)
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° Az(’)/) = ULUE’Y AZ(IE:’Y) for 1 =0,1,

where A;(x,v) denotes the set of i-dimensional intersections of the cell L(x,~)
with the hyperplanes HP(x,y), y € 7.

Claim 24. The diagram L(7y) is well defined for a finite set of generators =.
Assume that v satisfies (GP1) and (GP2). Then it holds that the cell L(x,~) is
either empty or it has dimension 2, S1(v) = A1(7), each vertex v € Ayg(7y) lies in
the boundary of exactly three cells and each edge e € Aq(y) lies in the boundary
of exactly two cells.

Proof. Assume that L(z,7) # (0 and dim(L(x,7)) < 1. If dim(L(x,7)) = 1,
then it must hold that L(x,v) C HP(x;,z;) for some x;, z; € v, x; # x; # .
But this would mean that the three points x;, x;, x lie on a line, since then
HP(z;,z;) = HP(z,z;) = HP(x;,x) and these hyperplanes are perpendicular
to the lines going through the corresponding pairs of points. Hence we get a
contradiction with (GP1). Analogously if an edge u lies in the boundary of three
or more cells, then their nuclei lie on a line, a contradiction with (GP1).

If dim(L(z,v)) = 0 ie. L(x,7) = {z} for some z € R?, then there exist
x;, xj, Ty € v such that x, z;, x;, x; have the same power distance to z, which is
a contradiction with (GP2). Analogously if a vertex lies in the boundary of four
or more cells, then the power distance of the vertex and the nuclei of these cells
would be the same, a contradiction with (GP2). O

For finite « in general position we say that L(y) is a generalized normal
tessellation.

4.1.2 Auxiliary lemmas

In this section we present several technical lemmas about Laguerre diagram, its
cells and the preservation of regularity conditions and the general position. The
main goal of this section is to rigorously derive properties, which will be used
in the following sections rather intuitively. We will also connect the tempered
configurations and Laguerre theory, as we know from the previous sections that
Gibbs measures are concentrated on the set M*"P,

Lemma 25. Let v C R? x (0,00) be at most countable set of points such that it
satisfies (GP1) and (GP2) and E(vy) = (. Then for all x € v also E(y\ z) =0
and v\ x satisfies (GP1) and (GP2).

Proof. Conditions (GP1) and (GP2) cannot be broken by removing a point. The
rest holds since Vz,y € v,y # x we can write L(y,v) C L(y,v \ {z}). O

Remark. The fact that L(z,v) C L(z,v) for x € v C ~ is a simple but useful
property, which is important to keep in mind for the future derivations.

Denote for v C R? x (0,00) the set of its nuclei v/ = {2’ : (2/,2") € v}.

Lemma 26. Let v C R* x (0,00) satisfy (R1) and (R2). Then it holds that also
v\ {z} satisfies (R1) and (R2), Vx € 7.
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Proof. Let v satisfy (R1) and (R2) and take z € . Clearly the condition (R1)
is satisfied for v\ {z}. Concerning condition (R2), we will at first show that for
A C R? we have that clo(conv{A}) = R*> = conv{A} = R%

If for contradiction 3z € clo(conv{A}) \ conv{A}, then by a separating theo-
rem (see |[Schneider [1993], Theorem 1.3.4.) there exists a closed half-plane L such
that conv{A} C L, which implies that R? = clo(conv{A}) C L, a contradiction.

Now assume for contradiction that conv{y’} = R? but conv{+"\ {z'}} # R>.
Then 2" ¢ clo(conv{y" \ {2'}}) (since if 2" € clo(conv{y" \ {2'}}), then we would
have clo(conv{y’ \ {z'}}) = R*> = conv{y' \ {z'}} = R?). Therefore we can
strongly separate point ' and closed convex set clo(conv{y"\ {2'}}) by a closed
half-plane H (again see |Schneider [1993], Theorem 1.3.4.), i.e.

clo(conv{y’ \ {z'}}) C H and 2’ ¢ H.

We can choose z € R? such that 2’ € H + z and therefore 4/ C H + z which in
turn implies R? = conv{y'} C H + z, which is a contradiction.

[]

Next we will show that Laguerre cells can be represented as a finite inter-
sections of the closed half-planes P(z,y) (see (4.1)). This proof is just a slight
modification of the proof of Lemma 10.1.1. in Schneider and Weil [2008], however,
since the formula (4.3) is a key property, we include it in here.

Lemma 27. Let v C R? x (0,00) be such that L(v) is a tessellation. Then
VL(x,7v) € L(7y) there exist k, € N and yF € v\ E(v), i =1,...,k,, such that

ka
L(z,y) = () Pz, 7). (4.3)
i=1
Proof. Clearly Vx € v we can write
L(z,7) = [ Pz, y). (4.4)
yey

Take L(x,7y) € L(y). Since L(7) is a tessellation, then from Definition [26]iii) and
iv) we get that

ke +1=[{L(y,7) € L(7) : L(y,7) N L(z,7) # 0}| < . (4.5)

Denote yf, ..., yi such points from v\ {z} that L(z,~) N L(yf,~v) # 0. We want
to show that L(z,~) = N, P(z,y?).

Clearly from (4.4) we get that L(z,vy) € N, P(z,y*). Assume for contra-
diction that there exists z € N, P(x,y¥) such that z ¢ L(x,7). From Defi-
nition [26| iv) we get that Jw € int(L(z,v)) C int (ﬂf;l P(x,yf)). Denote by
U={Az+(1—=XNw:\€]0,1]} the line segment with end points z and w. Then
32 e UNbd (L(x,7)), z # 2, and we have the following two properties (see the
end of this proof for the arguments why they hold)

1) bd (L(z,7)) = Uz, (L(x,7) 0 L(yt=,7))
2) 2/ € int (ﬂf;l P(x,yf)) :
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But since 2’ € bd (L(x,7)), 1) implies that there exists j € {1,...,k,} such
that 2’ € L(yf,v). On the other hand 2) implies that Vi € {1,...,k,} we have

1) 2
2" € int(P(z,yf)). Therefore 1) and 2) imply that p(2',y7) < p(2', 7) <) p(2',y5),
which is a contradiction. Therefore N}, P(x,y?) C L(x,~), which completes the

proof.
Proof of 1): We have that

bd (L(z,7)) "2V bd (L(z,)) U Lly,7) = bd (L uU (2,7) N L(yE, 7))

yEY
from the choice of y¥. We denote

ka

A= L(z,7) N Ly, 7),

i=1

then clearly A C bd(L(z,v)). Let z € bd(L(x,7)), then for all n € N there
exists z, € B(z, 2) N Uyeyyze L(y, 7). Therefore z, — z and

{zmneNyC B )0 U Ly "BY B, 1)n U Ly, ),

YEY,YFT Jj=1

hence {z,,n € N} € U, L(y;,7) which is closed, so also z € UJL; L(y;,7) and
Jj such that z € L(y;,v) (ie. L(z,v) N L(y;j,7v) # 0). But from the choice of y¥
it must hold that 3¢ such that y; = y7 and therefore z € A.

Proof of 2): Since 2’ # z we have that 2’ € {A\z4+ (1 —XNw : A € [0,1)}. Since

w € int Nz, Pz, y?) and z € N, P(x,y?), we get that

{Az+(1—=Nw:Ae0,1)} Cint (ﬁ P(m,yf)) :

i=1
[

Remark. For x € , we will call {yf,...,y¢ }, defined by (4.5)) as those points
whose cells intersect the cell L(x,~), the set of neighbours of the point z.

For ~ finite and in general position, each non-empty Laguerre cell can also be
written (using (4.2)) and analogous proof as in Lemma as

ka

L(z,v) = () P(x, ),

i=1

where y? are as in Lemma 27
If we furthermore take into consideration the definition of tempered configu-
rations, we can get a similar result for empty Laguerre cells.

Lemma 28. Let v C R? x (0,00) be such that v € M™*™ it satisfies reqularity
conditions and it is in general position. ThenVx € E(y) ={x € v: L(x,v) =0}
there exist k, € N and yf, ..., yi €~ such that L(z,~) = NE=, P, y?).
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Proof. Let x € E(v), i.e. L(x,7v) = (). Then it must hold that

B(I/,ZL‘H) C U B(y/,y//)~

YEY,YFT

The set B(z',2") is bounded and + is tempered, therefore there exists [ such that
[ > I(t), where [(t) is from Lemma [1} and B(2/,2") C U(0,1). Therefore we know
that Yy € Yy (o,2141)c we have that B(z',2") N B(y',y") = 0. So we can write

B(x/’x//) C U B(yl,y”>-

YEYU(0,214+1) Y7T

Let © = 241 U {}, then according to Lemmas |25 and [26] it holds that
¢ satisfies regularity condition and is in general position. Particularly L(yp) is
a (normal) tessellation. Furthermore it holds that B(z',2") ¢ Uycyyze B, y")
and therefore ) # L(x,p) € L(p). This allows us to use Lemma 27 and we get
that there exist y7,...,y; € ¢ such that L(x,¢) = N2 P(x,y7).

Altogether we get that

L(l‘,’y) = m P(‘%Z/) = m P(x,y)ﬂ ﬂ P($’y) =

yey YEYU(0,21+1) YEYU(0,21+1)¢
Nz
= [ PaynLze)= (1 Py n()Ply).
YEYU(0,21+1) YEYU(0,21+1) =1

Thanks to the local finiteness of «y, there is only finitely many points in yy(,2141),
which completes the proof. O

Notice that, in contrast with non-empty cells, we do not have a specific formula
for the "neighbours” of an empty Laguerre cell, we can only say that it is empty
thanks to finitely many points. What follows now is an auxiliary lemma for the
proof that tempered configurations satisfy (R0) and (R1).

Lemma 29. Letl € N. ThenVz € U (O, %l) and Vy' € U(0,20+41)¢ the following
inequalities hold

p(z, (Y| = 1) >1*> sup |w— 2z
wel(0,31)

Proof. Clearly the second inequality holds. For the first one, we can simply write
P W =D) =z =y = (| - 1)
=2+ 11 = 2(zy) — "+ 2| - 12
> |2 = 22|y + 21y |1 - 12
= 2P+ =D+ Y1 =2]z]) > P+ 1> 1~

We have used the Cauchy-Schwartz inequality and the fact that

|| —1>2l+1—1>1+1andl—2]z| > 0.
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Lemma 30. [t holds that all v € M"™ satisfy (R0) and therefore the Laguerre
cells L(x,v) are well defined. Furthermore it holds that all v € M™™ satisfy the
first reqularity condition (R1).

Proof. Take z € R? and v € M! t € N. We want to show that there exists
min,e,p(z,x). Clearly, if v € M/, the assumption is satisfied. Consider infinite
configuration ~.

We will use the property of tempered configurations given by Lemma |1} which
states that there exist I(¢) such that VI > [(¢) the following implication holds:

(2, 2") € yweasye = B@,2")nU(0,1) = 0. (4.6)
Choose [ large enough so that
i) L= 1(),
ii) zeU (O, %l) and there exists x € Tu(0,41):

Clearly such [ can be chosen. Lemma [29|states that the following inequality holds
Yy € U(0,21 4+ 1)<

p(z, (0, Y| =) > sup  |w—z[*. (4.7)
wel(0,31)

We know, because of the property , that
Yy = (¢,9") € vwoarye : ¥ < |y -1 (4.8)
and therefore
py) =l =2 =W =y =2 = (| =07 =pz (1| - 1) (49)
Then, using together with point ii) above, we get that Yy € vyw(o,2141))e

plz,y) > sup  |w—z[> > |2/ — 2)* > p(z, )
wel(0,11)

and this completes the proof as then

Minge, (2, ) = Milgeyy g P2 T),

which exists thanks to the local finiteness of ~.

Now consider (R1). We want to show that for every z € R? and t € R only
finitely many elements y € ~ satisfy |z — y’|2 — (y")* < t. But this is a clear
consequence of the derivations above. Take z € R? and ¢ € R. Then there exists
[ large enough such that [? > ¢ and such that it satisfies i) and ii). Then we have

that Yy € yw(o,241))c
2=y =" 2=y = (Y| -0 = P>t

and therefore only the points ¥ € Yy (o,2+1) (and there is finitely many of them)
can satisfy |z —y/|> — ()2 < t. O

Before we move to the next section, where we add randomness to Laguerre
diagrams, let us emphasize the points (4.8]) and (4.9)) as these two properties of
tempered configurations will be useful in the next part as well.
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4.2 Gibbs-Laguerre Measures

To model a random Laguerre diagram, we consider Laguerre diagram with ran-
dom generator L(¥), where ¥ is a marked point process in the space R? x (0, 00).
Our aim was to consider W to be an infinite-volume Gibbs measure with energy
function depending on the geometric properties of L(W) and use article [Rcelly and
Zass| [2020] to show that there exists an infinite-volume Gibbs-Laguerre measure
with unbounded weights. Unfortunately, the range assumption H, turned out to
be an insurmountable obstacle.

Let us briefly discuss the reason behind this. The main problem lies in the
fact that we would need a uniform range for all boundary conditions ¢ € M'.
However, the behaviour of L(y5&xc) depends heavily on the actual locations of
points from &. Tmagine that for fixed ¢ € M' we have a range r > 0, i.e. V& € 5
we have that L(z,vaéac) = L(z, yaéaeno,r)\a)- Then also ¢ = §aap(0,r) belongs
to M' but at the same time there also exists = € v, such that

L(x,ya¢) # L(w,9) = L(7, ya@aeB0r)\A)-

However, for a non-negative energy function and reference mark distribution
satisfying H,, the first three parts of the existence proof from |[Reelly and Zass
[2020] still work. For the energy function defined in (4.10)), we were able to prove
that the limit measure P is an infinite-volume Gibbs measure, under the condition

that P(0) = 0.

4.2.1 Energy function and finite-volume Gibbs measures

Let the state space be £ = R? x R with mark space (R, | - ||) and take mark
distribution Q such that Q((0,00)) = 1 and such that #,, holds.
Recall the notation:

1. for v € M and x € v we use the notation z = (2/,2”) with 2’ being the
nuclei and x” being the weight.

2. Ag(z,7) is the set of all vertices of the cell L(x,7), Ao(7) = Upey Do(z,7).

3. E(v) denotes the set of points from ~ with empty cells.
Consider the following energy function H : My — R U {400}

. erw |A0(I”7)| if E(’Y) @a
H(y) = {+OO f B £0 € M;. (4.10)

We sum the number of vertices for each Laguerre cell and we forbid the configu-
rations for which there exists an empty cell.

Remark. 1f 7 is in general position, then H(y) = 3 - [Ay(7)]-

Clearly H is non-negative and therefore the stability assumption H, is satis-
fied. According to Lemma , the partition function Z, is finite for all A € B}
and the finite-volume Gibbs measure in A with energy function H and activity z
is well defined for all z > 0,

1 — z
Pa(dy) = e HO)7Z (dy).
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It holds VA € B}, Vz > 0 that
i ({7 € M : 7 is in general position}) = 1 (4.11)
(see |Lautensack [2007|, Proposition 3.1.5, or Zessin [2008]). Therefore also
Pa({y € M : v is in general position}) = 1,

particularly for Pj-a.a.y the Laguerre diagram L(v) is a generalized normal tes-
sellation. Since configurations with empty cells are forbidden, we also get that

P\({y:E(y)=0}) =1 (4.12)

In the following proposition, we present the key observation for the energy

function H from (4.10). This observation will later allow us to show that the

conditional energy H, is attained as soon as all of the cells belonging to the
points in A are bounded.

Proposition 31. Let H be the energy function defined in and take vy € My
such that it satisfies (GP1), (GP2) and E(v) = 0. Assume that the Laguerre cell
L(z,7) of a point x € vy is bounded. Then we have that

H(y) = H(y\ {z}) = 6.
Proof. Let v and x be as assumed. Then L(v) (and also L(vy \ z) thanks to
Lemma is a generalized normal tessellation and we know that

L(z,7) = (] P(z,y7)

i=1

for y; € v such that L(x,v) N L(y;,v) # 0, k € N. Particularly, since L(z,7) is
bounded, we have |Ag(x,v)| = k. The Laguerre cells of points y € y\{y7, ..., v}
do not change by removing the point  and therefore we can write

H(y) = H(y \ {z}) = [Ao(z, )|+ D [Do(wf, V)] = [Do(yi, 7\ {2})]

=1

=k+ > 1Ay, )| = Doy \ {z})] .-

i=1

By removing the point z, the neighbours of x partition the cell L(x,~) into k
non-empty bounded convex polytopes K1, ..., Ky such that

Ly, v\ {z}) = Ki U L(y/,7),

(see Figure . Denote by v; the number of new vertices attained by the nucleus
yE, v = [Do(KD)| — [80(K) 0 Ag(L(E, 1))| = [Ao(K:)| — 2, (each neighbour g7
shares 2 vertices with the nucleus x). Altogether, we can write

H(y) = Hy\{z}) =k + > 1Al v)| — 120y v\ {2})]
=l (4.13)

k k
i=1 1=1
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1
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Figure 4.4: Comparison of a Laguerre diagram with and without the point z.
The Laguerre cell L(z,7) is the red pentagon, full red lines are its edges, the
edges of the neighbouring cells in L(7) are the red dashed lines, red points are
the vertices in L(y). Blue points are the additional vertices in L(vy \ {z}) and
blue dashed lines are the additional edges of the cells L(y?, v\ {z}) arising from
the removal of the point x.

The partition of the cell L(z,~) by its neighbours defines a graph structure (see
Figure with vertices V' = Ay(z,7) U Vs, where V; is the set of new vertices,
which appear after the removal of the point =, Vo = Ag(vy \ {z}) \ Ao(7). The
set of edges is defined as £ = Ay(z,7) U Ey, where Es is the set of new edges
(intersected with L(z, 7)), which appear after the removal of the point z. Since
both L(v) and L(vy \ {z}) are normal, all of the vertices have degree 3. Thus we
have that

3-VI=2-E] = 3(k+[Va|) =2(k + | E2l). (4.14)

Since we assume that there are no empty cells, the graph (V| Ey) is a connected
graph without cycles (i.e. a tree) and we know that

V| =|E)+1 = k+|W| =|E|+1 (4.15)

Putting together (4.14) and (4.15]), we get that |V3| = k — 2. From the normality
we also get that 37, v; = 3 - |V5| and that together with (4.13) completes the
proof. O

4.2.2 The existence of P and its support

Consider finite volume Gibbs measure P,, = P, with energy function H from
(1.10) and activity z > 0 in the window A, = [—n,n)%, n € N and recall Sections
2.2.1] 2.2.2) and [2.2.3] We have the periodic extension to the whole R? of the
finite-volume Gibbs measure denoted by P,, (see ) and stationarised empirical
field P,, (see Definition . Since the energy function H satisfies the stability
assumption, the results of Lemmas [7}, [§] [9] and [I0] are valid. Particularly, we have
the following claim.
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Claim 32. There ezists a probability measure P such that

i) P is invariant under translations by k € 72,
i) (w.lo.g.) P, =5 P,
iii) P(Mm?) = P, (M) =1, for alln € N.
We also get that Ye > 0 there exists | € N such that
w) Po(M") >1—¢ foralln € N.

We would like to show that P satisfies Definition [L5|for our energy function H,
however since the range assumption .. is not satisfied, we cannot use Theorem |14}
In the last section of this chapter, we will prove that P is an infinite-volume Gibbs
measure under the condition that P({o}) = 0.

At first we need to prepare some preliminary results. We will show that P-a.a.
configurations satisfy that L(y) is a normal tessellation with no empty cells. We
already know, thanks to Lemma [30| and Claim [32|iii), that P-a.a. satisfy (RO)
and (R1).

For the condition (R2), we need the following lemma (as was remarked in
Lautensack| [2007]). In its proof we work with the notion of random closed set.
We refer to Chapter 2 in [Schneider and Weil [2008] for the definition and general
theory.

Lemma 33. [t holds that if V is a simple marked point process whose distribu-
tion is invariant under translation by k € Z* then it almost surely satisfies the
assumption (R2) or it is empty, i.e. P(conv{z’ : (2, 2") € ¥} € {R?,0}) = 1.

Proof. We will proceed in three steps.
Step 1) The following claim holds:

Let 7 be a conver random closed set such that Vk € 72 it holds that Z 2 7 +k.
Then P(Z € {0, R?}) = 1.

Since the proof of this claim is just a slight modification of the proof of The-
orem 2.4.4.in [Schneider and Weil [2008] (which assumes invariance under all
translations, not just by integer-valued vectors), we only show the part where
they differ. The proof is the same up to a definition of the set Az. We have
z,y € Q% y # 0 such that

PO #ZNK(x,y) Cx+ |y B(0,1)) =:p>0.
Choose m € N such that my € Z? and define
A ={0# ZNK(x+2mky,y) C x+ 2kmy + |y| B(0,1)}.

The rest of the proof follows as in [Schneider and Weil [2008].
Step 2) If ¥ is a simple marked point process whose distribution is invariant

under translations by all x € Z?, then suppV¥’ is a random closed set (see Chap-
ter 3 in |Schneider and Weil [2008]) = clo(conv{supp¥’}) is a convex random
closed set (see Theorem 2.4.3. in |Schneider and Weil [2008]) which satisfies

clo(conv{supp¥’'}) 2 clo(conv{supp¥’ + £}) = clo(conv{supp¥'}) +

Vi € Z? and therefore step 1. gives us that P(clo(conv{supp¥’}) € {0, R?}) = 1.
Step 3) We have already shown in the proof of Lemma [26| that for A C R? we
have that clo(conv{A}) = R? = conv{A} = R? which finishes the proof. [
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For the assumptions (GP1) and (GP2) and the non-emptiness of the cells, we
use the convergence in the 7, topology.

Lemma 34. For P-a.a.y we get that it is in general position and E(v) = (.

Proof. Denote
M, = {y € M : v is in general position},
M';p = {y € M : 4y, is in general position}, keN, A, =[—k k).

Then we have that M, = Ny M}, and ME C ME Therefore for any
probability measure P on M we have that

klgf)lo P(M];p) = P(Myg,).

Now fix k € N. Then according to (4.11) we have for all A € B} and for all
z > 0 that 73 (Myg,) = 1, so also w5 (M?E ) = 1. Therefore for n > k we have that

1 — 4
P"(M];p) - /Mk Ze H(MH)WAH (dy) =1

and since A; C A,, we also have Isn(./\/l’;p) = 1. Now for P,,:

_ 1 .
Po=— > P,ov."
(Qn)2 KEN,NZ2
It holds that if Ay + x C A, then P, o 9 }(MF ) = 1. Tt also holds that for all
Kk € N,_p_1 NZ? we have A, + k C A, so we can write Vn >k + 1

1 5 -1 k
_Q@h—k-1) 1 5 091 ME
= n)? oTE > P,od ' (M)

KEAR \An—k—l NZ2

P,(ME) =

Therefore lim,, |5n(./\/l§p) = 1. Since P is a limit of {P,, },ey in the 7, topology
and 1 {”y € /\/l’;p} is a tame and local function, we get that

1= Jim P, (M) = P(ME).

n—oo

This holds Vk € N and therefore P(M,,) = 1. For the second part, we define sets
M. ={yeM:E(y) =0},
ME={yeM:E(w,)=0}, keN, A,=[-kk).

Because of Lemma [28/and the fact that P-a.a.y € M satisfy regularity conditions
and are in general position, we can write

lim P(M") = P(M.).

k—o0

For fixed k € N and n > k we have P, (M%) = 1 thanks to (4.12) and the fact
that

E(y,) =0 = E(y,) =0.

The rest of the proof follows analogously as in the previous case. m
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Altogether, we have the following proposition.

Proposition 35. Define the set of admissible configurations
M = {y € M"™ . v satisfies (R1),(R2),(GP1),(GP2) and E(v) = 0} U {o}.

It holds that P(M) = 1. Particularly for P-a.a.y # 0 we have that L(v) is
a normal tessellation.

Proof. Lemma [30] gives (R1), (R2) is implied by Lemma [33} since P is invariant
under translations by x € Z? and conditions (GP1), (GP2) and non-emptiness of
the cells are implied by Lemma [34] O]

4.2.3 An infinite-volume Gibbs-Laguerre measure

Recall Definition [12| of the conditional energy of configuration v in A,
Hy(y) = lim H(ya,) — H(a,00)-

Thanks to Proposition we know how this function looks for admissible con-
figurations.

Lemma 36. Take v € M. Then for all A € B} we obtain Hx(y) =6 - |y4].

Proof. Tf v = 0, then it clearly holds. For v # 0 we have that vy, = {x1,..., 2y}
for some M € N. Denote 74 = {x1,...,7;}. From the definition of conditional
energy

M
Hy(y) = lim H(ys,) — Haoa) = D0 im H(ya,ava) — HOaaarm ).
=1

Thanks to the assumptions on v we get that L(v) is a normal tessellation with
no empty cells and therefore for all ¢ = 1,..., M there exists n large enough so
that L(z;, va,\a74) is bounded. With the help of Proposition [31{ we get that

lim H(ya,\a7) — Ha7x ) =6,
which finishes the proof. n

Recall that M, = {y € M : m(y) < a}, a € N, is the set of configurations
whose marks are at most a. We define an increasing sequence of local sets (i.e.
subsets of M whose indicator is a local function). Take A € Bf and I,n,a € N
and define

C(A,a,l,n) = {& € M : ¢ satisfies assumptions (C1) and (C2)}, where
: 1
(C1) : there exists u € {0 10 € U (0, 2l> ) (4.16)

1
(C2) : Vy € M,, V& € v, we have L(m,gAn\A u{z})cU (0, 25) )

Put
B(A,a,l) = | C(A,a,l,n),
neN
A(A,a) = U B(A, a,l),
IEN
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then clearly VA € B?, Va,l,n € N:

C(A a,l,n) C C(Aya,l+1,n), C(A,a,l,n) C C(A,a,l,n+ 1),
B(A,a,l) C B(Aya,l+1),
AN a) D AN a+1).

We also have the following equality.

Lemma 37. For all A € B? we have that

M=NU UMnC(A, a,ln)uU{o}.

aeNIeNneN

Proof. The relation D clearly holds. Take & € M, ¢ # 6. We would like to show
that Va € N there exist [,n € N such that £ € C(A,a,l,n). Take a € N and
consider

o no=min{n € N:Ju € & \a},
« lp=min{l e N: A,, C U(0,3])}.

We will consider n > ng and [ > . This will assure that the assumption (C1)
is satisfied. Now w.l.0.g. assume that A is closed (otherwise work with clo(A))
and recall that we have chosen fixed a € N. We will use the observation that
L((z',2"),v) € L((2',a),7), whenever 2”7 < a. Therefore to prove (C2), it is
enough to prove that for some n,l € N and V2’ € A we have that

L ((CL’/, a),f/\n\/\ U {(l’/, CL)}) cU (0, ;l) .

It holds (since £ € ﬂ) that Vo’ € A there exist n,, [, such that
/ / 1
L ((.T 7a>7§Anz\A U {(l‘ 70’)}) -y (07 212?) .

Then, because of the representation 1) and the openness of U (0, %Zx), there
exists €, > 0 such that also Vy' € U(2',¢,) we have that

L((y,a), & a UL, @)}) CU (o, ;zx) .

Therefore we have an open cover of A, A C Uyep U(2',¢,) and since A is a
compact set, there exists a finite cover A € UY., U(x},&,,). To finish the proof,
it is enough to take n = max{ng, Ny, ..., Ny} and | = max{ly, ly,, ..., lz\}. O

Recall Definition [14] of Gibbs kernel Z,:
e~ Ha(vaéac)

Z(§)

Since we do not in general have the local stability assumption H;, we need to
make sure that this quantity is well defined, at least for almost all configurations.
To do that we need the following observation.

Ea(§,dy) = ma(dy).
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Lemma 38. Take & € M such that it is in general position. Then for all A € B
and for all z > 0 we get that for n5-a.a.v € M also Exeyn is in general position.

Proof. Using (4.11)), it is enough to show that for fixed points A, B,C' € A¢ and
fixed weights a, b, c > 0 we have that for 75-a.a.y € M

1. no 2 points from ' lie on a line with A and no point from 7’ lies on a line
going through A and B,

2. no 3 points from 7 and (A,a), no 2 points from v and (A4, a),(B,b) and
no point from « and (A, a), (B, b), (C, c) have equal power distance to some

r € R%
All of these can be proven similarly as (4.11]) in [Lautensack! [2007], Proposition
3.1.5. (see also Mpller| [1994], Proposition 4.1.2.). O

Now we can show that the Gibbs kernel is well defined for all £ € M U M;.

Lemma 39. Let £ € M or & € My such that it is in general position and
E(&) =10, then VA € B, Vz > 0 we have that 0 < Z,(§) < .

Proof. At first take £ € M. Then we know that ¢ is in general position, satisfies
regularity conditions and also E(¢) = (). Then thanks to Lemma [26] we have that
Vv € M also &peyp satisfies regularity conditions and according to Lemma
we have that for m%-a.a.y € M it holds that £reyp is in general position. If
E(&pcyn) # 0, then Hp(Epeya) = +00. Otherwise thanks to Lemma (36| we get
that Hx(§aeya) = 6|yal. Altogether Hy(Epeya) > 0 for mf-a.a. v, and therefore

Zn(&) = /e_HA(WAgAC)WX(dv) <1< o0

Now take £ € M, which is in general position and has no empty cells and denote
M = |€xc|. Then thanks to Lemma [38 we can only work with such ~, so that
L(&peya) is a generalized normal tessellation and we can write

Ha6nn) = Hlgnom) — HGw) = ~Hlew) = =3 () ),

since L(&xc) can have at most (Af > vertices. Therefore

Z0€) = [ eI (dn) < () < oo

The part 0 < Z,(£) can be shown in the same way as in Lemma O

Particularly, =5 is well defined for all £ € M and £ € M which are in general
position and satisfy E(£) = (). Recall Definition [21] of the cut-off Eﬁ’mo. We will

denote Zp* := EA™, ie.
o 1{yn € Mg} - e Ha0néana) .
ENU(Edy) = { ) mi(dy).

Zy(Ean\n)

Using the second part of the proof of Lemma [39] we can see that =} is well
defined for all £ in general position with E(£) = ().

Recall Definition [8] of the sets M. This final auxiliary lemma will justify the
definition in (4.16)) of the sets C'(A,a,l,n). These sets are in fact chosen so that
the conditional energy depends only on the boundary condition inside A,,.
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Lemma 40. Let A € B?, and take a,n,l € N such that U (0,21 +1) C A,, and
A® B(0,a) C U(0,10). Then for all ¢ € C(A,a,l,n) N M and for all v € M,
such that Exeyn are in general position and E(§xc) = () we have that

i) E(€aern) #0 <= E(€anam) # 0,

i) Hp(§aeva) = Ha(Ea,\070)-

Proof. At first we assume i) and prove ii). Take £, satisfying the assumptions
and assume that i) holds. We have vy = {xy,..., 2} for some M € N. Denote
vi=Ax1,.. . 1}, i=1,..., M.

If E(&xeya) # 0 then according to i) also E(&x,\a7a) # 0 and we have

Hp(Eaeya) = +00 = Hp(Ea,\A70)-

If E(&peva) = E(En,\a7a) = 0, then thanks to the definition of the set C(A, a,1,n)
we have that the cells L(z;, {a,\a74) are bounded Vi € {1,..., M}. Recalling the
key Proposition [31] for our energy function H, we can write

Hp(Ea\ava) = H(Ea,a78) — H(Ea,\n)

M ‘ . M
= > H(ana7a) — Héaavm ) e > 6=6|ml.
i=1 i=1
Using Lemma [36| we also have that Hy({acya) = 6 - |yl

Now it remains to prove i). Take &, satisfying the assumptions. The impli-
cation <= always holds, so we only have to prove that if there exists an empty
cell for £xeya, then it is already empty in {a,\a7a (remember that E({xc) = 0).

Let there exist x € {yeyp such that L(z, {peva) = 0 and assume for contradic-
tion that E(&a,\ava) = 0. This means that either € {4e or L(z, &y, \a7a) # 0.
Recall Lemma [29 and consider the three possible locations of the point x:

1) € v5: Then for all z € L(z,&x,\ava) there exists y € e such that
p(z,y) < p(z,z). However, from the choice of n and [ and from the definition of
the set C(A, a,l,n) we know that y' € U(0,20+1)¢, 2/ € U(0, 3{) and z € U(0, 31).
Using Lemma 29] we get that

LEJ ’oy
p(z,y) < plz,2) <P < plz, (v, [y = 1) < p(z,y),

which is clearly a contradiction.

2) T € gAn\A: We know that L(I,fAc’}/A) = @ but L(CC,&\”\A%) 7& @ and
L(x,&xe) # 0. Therefore

Vz € L(x,&xc) Ju € yp such that z € L(u, Excyn),

(4.17)
Vz € L(z,&a,\ava) Jy € Eae such that z € L(y, {aeya).

If 32 € L(x,&ae) N L(x,&A,0\a7A), then there exist u € y4 and y € &xe such that
p(z,y) = p(z,u) and we again get a contradiction with Lemma [29] Therefore
L(z,6x¢) N L(z,€x,0a72) = 0. Then there exists z € L(z,£a,\a7a) such that

Ju € 75 such that p(z,x) = p(z,u), i.e. z € L(u,&x,\ava). Since by (4.17) there
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also exists y € & such that z € L(y,&xeva), we again get the contradiction
p(z,y) < p(z,u).

3) x € &xe: We know that L(z,6aeva) = 0 and L(z,&xc) # 0. Therefore
Vz € L(z,&xc) Ju € ya such that p(z,u) < p(z,z). Particularly we can assume
that p(z,u) < p(z,v) for all v € v, and therefore z € L(u,&xeya) C U(0,31).
Therefore L(z,&xc) C U(0, 51). Notice that 2/ € U(0, 20+ 1)°. From the definition
of the set C there exists y € £4,\a such that y' € U(0,31) = Vz € L(z, {e) we
have that

LE23
p(,2) < plzy) < 2B p(z, (o, 2] - 1) < plz,2),
which is the final contradiction and the proof is finished. O
Now we are ready to prove our main result.

Theorem 41. Consider the probability measure P from Claim and assume
that it satisfies P({0}) = 0. Then for all A € Bi and for all measurable bounded
local functions F' the DLR) equations hold. Particularly, P is an infinite-volume

Gibbs measure with energy function H defined in and activity z > 0.

Proof. Take A € B? and measurable bounded A-local function F. We will show
that Ve > 0

o= [ FQIPWy) = [ [ FOnEME d0)P(ag)| <

Fix ¢ > 0. Find iy smallest such that A C A;;. We will w.l.0.g. assume that
ip = 1 (otherwise work with n > iy in the whole proof). Then there exists a € N
such that

1. 1i(M,) > 1 —¢.
For this a find [ € N such that

2. A® B(0,a) C U(0, 51),

3. PM) >1—¢ P(M)>1—¢cforallneN (from Claim [32),

4. P(B(A,a,1)) > 1 — ¢ (from Proposition [35, Lemma [37|and P({0}) = 0).
For these a and [ we can find k € N such that

5. U0,20+1) C Ay

6. P(C(A,a,l, k) >1— 2.

Fix a, [, k and recall the definition of the measures P, from the proof of Lemma :

p,— 3 P, o0

|ATL | KEZ2NAn: ACYw (Ar)

We know that P, satisfy (DLR), and they are asymptotically equivalent to P,,
in the sense that for any G € £ we get that

lim ’/G(v)ﬁn(dv) - /G(v)ﬁn(dv)‘ =0.

n—oo

Particularly there exists ng such that ¥n > ng we get that Isn(./\/l) > 1—¢. It also
holds that P,((M")¢) > P, ((M")¢). Therefore there exists n; > ng such that

62



7. Isn(Ml) > 1—2¢ for all n > ny,

8. Po(C(A,a,1,k)) > 1— 3¢ for all n. > n,.

The second part is true thanks to 6. and the fact that G(v) = 1{y € C(A,a,l, k)}
is a bounded and Az-local function.

Now we have everything we need to estimate dp. Assume w.1.0.g. that |F/| <1
and recall that P(M) = 1.

o= | [ FOP(@y) = [ [ Plom)Zale, dnP(ag)] < P(CA a1 k) 0 1))
| rapa - [ ez apag)

26. 3e + ’/F(V)P(dw /C(Aalkli/F MWE(E d)P (d€)|

[ FOmER € ) — [ Ozl dv)] Prag)

+J
C(Aalk)NM a M,

F(y4)Z4(&, dy)P(dE))| .
+ /C(A,a,z,k)rwtl /(Ma)c (7a)Za(8:dY) (g)‘

Now we have for some b < oo:

[ /(M) FOonEx(Ed)PLde)

) - (4.18)
</ ZA( d7)Pg) < TR ((Ma)) =gy < b
Now for P-a.a. £ € C(A, a,l, k) N M' we can use Lemma {40| to show that
[ PanEe € ) - /M F)Za(6 dv)
e~ Ha(EacTa) ZA(@ - Z/Ii’a(g)> Z |
|/ ( Zne) - 25e) ) ™
(4.19)

- ‘ZA( — Z"(€)
= G
P aa(e) - 25O =1 [ o) £17e

ma(dy)

Therefore we can estimate

[ PGPy - /C N [ FonE (€ anp (dg)’ —coct 0y,

50<C €+

where ¢ = 3+ b+ b%. We continue with d;:

=\ rapa) =[] F<7A>Ei7“<s,dv>ﬁ<ds>|
< P(C(M, 0,1, k) N M) ‘/F P(dy) //F 7a)ER (€, dy)P (d{)‘

35’3g+‘/F Pdn) — [ [ FnEh (€ )P (df)‘::35+52.
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Now we use the asymptotic equivalence for P, and P, and the fact that F (7) and
G(v) = [ F(v)2%*(y,dv) are bounded (and therefore tame) local functions. Let
n > nq, then we have the following estimate for ds:

% = \/ F()P(dy) / / F() :’;a (&, de(dg)\
‘ n(d7) //F 7A) “A ‘(& dy)P n(df)‘
e { ]

We can choose ny > n; so that Vn > ny we have
[ Fepan - [ PP <
]//F% "(€,d9)P(de) //F% 2 (€ d)Pu(de)| < e
Therefore for n > ny we can write
5= | [ Fo)P(@y) = [ [ Pom)Zhe (6 av)Plag)
<25+‘/F W(dy) — //F%HA (€,dv) n(dg)’::25+53.
Now for our last estimate. Since If’n satisfies DLR, we can write

by = /F n(dy) //F Ya)ER (€, dy)P n(di)’

0+ [ [ FnZa(€ d)Pu(ae) //F%”“gdw ()

Lnmsire L FONENE ) = [ FOnZR (6. a)] F%<ds>'
+2-Po((C(A, a1, k) N MY

Lo L, FONENE ) = [ PO e ] Putae)

IN

IN

7..8.
<

'// F(un)Za(€, d7)P <d§>‘+10~a
Now analogously as in (4.18) and (4.19)) we can estimate

‘// F(ya)Za (&, d7)P,(d9)

<b-¢

<b-e

/C(A,a,z,k;)li / . F(v1) {EA@’ dy) — Ef\’a(& d’y)} lsn(df)

Putting everything together we get that (recall that ¢ = 3 + b + b?):
do<c-e+0 <(c+3)e+ds < (c+5)e+d3 < (2c+ 12)e.

This finishes the proof. O
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Conclusion

To conclude this work, let us summarize our main results and comment on pos-
sible future extensions for the considered processes. We believe that particularly
the results from Chapter 4] deserve an additional examination as they could po-
tentially be extended to other energy functions.

This work was concentrated on marked Gibbs point processes. In the second
chapter, we considered the recent existence theorem from [Reelly and Zass| [2020]
and expressed our objections (justified by a counterexample) to the formulation
of the range assumption. We presented a reformulation of the range assumption
and checked that the proof of the existence theorem still holds.

Therefore, we could use this theorem in the third chapter, where we studied
the Gibbs facet process. As was expected, we proved that for the repulsive model
F1 (i.e. the model with non—negative energy function) the infinite volume Gibbs
facet process in R? exists. We also considered the case of non—positive and real
energy function, i.e. the clustering and mixed models F2 and F3. In R? we proved
that the finite-volume Gibbs facet processes with negative energy function do not
exist. In R? we found a counterexample showing that the stability assumption is
not satisfied for positive interactions between triplets and negative interactions
between pairs of facets. We believe that after a careful analysis, we should be
able to find counterexamples for any situation from F2 and F3 in any dimension
d and modify them similarly as in the two-dimensional case to show that the
finite-volume Gibbs measures do not exist.

In the last chapter, we considered the Gibbs—Laguerre tessellations of R? and
proved that under the assumption that we almost surely see a point, the infinite—
volume Gibbs-Laguerre process exists for the energy function given in (4.10)).

The important tool for this proof was the definition of the sets C'(A, a,l,n) in
and Proposition [31] which allowed us to prove the equality of the condi-
tional energies in Lemma 0] However, the proof of the first part of Lemma
raises a question, whether the definition of the sets C'(A,a,l,n) is not in itself
enough to show that the conditional energies are already equal. We hope to
further examine this situation and potentially consider other energy functions in
a future work.

Another problem which we wish to address in the future is the assumption
P({6}) = 0. We have not yet been able to prove that this assumption holds,
using the tools of the local convergence. We hope to find a proof or an estimating
rule that would enable us to get rid of this assumption altogether. Alternatively,
we could try to show that the family of sets {C'(A, a,l,n)}, en forms an uniform

estimate of the support of the measures P, (as in Proposition 3 in Reelly and
Zass| [2020]).
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