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Basic notation and abbreviations
Here we present a list of basic notation and abbreviations used in our work. Some
other notation concerning the locally finite measures can be found in Section 1.1.

N,Z the set of all natural numbers and the set of all integers
(Rd, |·|) the d-dimensional Euclidean space with the standard norm
⟨·, ·⟩ the standard dot product in Rd

Zd the set of all integer valued vectors in Rd

Bd, Bd
b , the Borel σ-algebra on Rd and its subset of bounded sets

λ, λΛ the Lebesgue measure on Rd and its restriction to the set Λ
B(x, r), U(x, r) the closed and open ball in Rd with centre x and radius r

int(A), clo(A) the interior and closure of A ⊂ Rd

bd(A), conv{A} the boundary and convex hull of A ⊂ Rd

A ⊕ B, Ac Minkowski sum of sets A, B ⊂ Rd and the complement of A

|A| the Lebesgue or counting (for A at most countable) measure
of the set A

Λn the set [−n, n)d for n ∈ N, d ∈ N
Hk the k-dimensional Hausdorff measure, k ∈ N
1{·}, δx the indicator function and Dirac measure, x ∈ Rd

M(E) the set of all simple counting locally finite measures on E
(S, ∥ · ∥) the mark space and its norm
ϑz the shift operator on Rd defined as ϑz(x) = x + z, z ∈ Rd

πµ, πz
Λ the distribution of a Poisson point process∑︂ ̸= sum over all pairwise different tuples

w. r. t. with respect to
w. l. o. g. without loss of generality
a. s., a. a. almost surely, almost all
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Introduction
It is a basic knowledge in the field of spatial modelling, that the Poisson point
process is a model for complete spatial randomness, but if we wish to consider
more general situation with interactions between the points, we need to consider
more complicated processes.

A useful class of point processes are the Gibbs point processes (GPP). GPP
consist of a broad family of models, which take into consideration various pos-
sibilities of interactions between the points. The effect of these interactions is
explained through the notion of an energy function, with states with lower en-
ergy being more probable then the states with higher energy. This convention
stems from the physical interpretation, as the notion of GPP was first introduced
in statistical mechanics, see Ruelle [1969] for the standard reference. The family of
GPP includes for example the well known pairwise interaction process, Strauss’s
hard–core process or the Widow–Rowlinson process but also more complicated
geometric models such as the quermass–interaction process or models for random
tessellations. Among others, Møller and Waagepetersen [2004], Chapter 6, and
Dereudre [2019] provide a general introduction to the topic of GPP in the context
of spatial modelling.

Gibbs point processes in a bounded window are defined using a density w. r. t.
the distribution of a Poisson point process and they are characterized uniquely
by the DLR equations. The problem with this approach is that the normalizing
constant (also called the partition function) is often intractable. Although we
do not consider this in our work, we note that this problem can be overcome by
considering conditional intensities instead of densities and the GNZ equations
instead of the DLR equations, as these two approaches are equivalent.

However, the situation gets much more complicated, once we start to con-
sider processes in the whole Rd. As we can no longer use the approach with
a density w. r. t. a reference process, we can no longer define the distribution of
an infinite–volume Gibbs process (also called the infinite–volume Gibbs measure)
explicitly. Instead, we use the DLR equations, which prescribe the distribution
of the process inside a bounded window conditionally on a fixed configuration
outside of this window. The question, still relevant today, is whether and under
what conditions such processes exist.

The standard approach on how to obtain an infinite–volume Gibbs measure
is based on the topology of local convergence and the result from Georgii and
Zessin [1993] for level sets of a specific entropy. Instead of an entropy tools, other
approaches can be used, see Appendix B in Jansen [2019] for a proof based on the
convergence of correlation functions and Janossy densities.

One of the standard assumptions for the energy function is the finite–range
assumption which enforces that the range of interactions is uniformly bounded.
In Dereudre [2009], it was proved that the quermass–interaction process with un-
bounded grains (i. e. unbounded interactions) exists. Using this article as an in-
spiration, an existence result for marked Gibbs point processes with unbounded
interaction was proved in Rœlly and Zass [2020]. The aim of this work was to
consider different models for marked Gibbs point processes with unbounded range
of the interaction and use the existence result from Rœlly and Zass [2020] to show
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that the infinite–volume Gibbs processes exist.
The content of this thesis is separated into four chapters. In the first one, we

summarize the theory of marked point processes and present the class of Gibbs
processes and the set of tempered configurations as well as the entropy tools.

The second chapter is devoted to the proof of the existence theorem from
Rœlly and Zass [2020]. We address the assumptions posed on the energy function
and present the modified version of the range assumption, as we have a major
objection to its formulation in the original work. Afterwards, we go through
particular parts of the proof to see that it still holds.

In the third chapter we study Gibbs facet processes in Rd, which present a
special case of particle processes. A facet in Rd is a (d − 1)-dimensional bounded
set, which is obtained by intersecting a d-dimensional ball with (d−1)-dimensional
linear subspace of Rd. The energy is a function of the intersections of tuples of
facets. We prove that the repulsive model (i. e. model with non–negative energy
function) satisfies assumptions of the existence theorem and therefore the infinite–
volume Gibbs facet process exists in this case. On the other hand, for the mixed
and clustering models (i. e. models with possibly negative energy function) we
find counterexamples in R2 and R3 for the stability assumption and we extend
the counterexample in R2 to prove that the Gibbs facet processes in bounded
windows do not exist.

In the last chapter, we consider a model for a random tessellation of R2.
A tessellation is a locally finite partition of the space R2 into bounded cells Ci,
which are convex polytopes. We consider the Laguerre tessellation L(γ), which
partitions R2 based on the set of generators γ ⊂ R2 × (0, ∞). Each generator
(x′, x′′) ∈ γ defines a circle S(x′, x′′) and the space R2 is partitioned based on
the power w. r. t. the generating circles. The random Laguerre tessellation can
be modelled using a marked point process as its set of generators. The Poisson–
Laguerre tessellation L(Ψ), where Ψ is a stationary marked Poisson point process,
has been studied in Lautensack [2007]. We consider more general situation with
the random generator Ψ being a marked Gibbs point process with the energy
function depending on the geometric properties of cells of L(Ψ).

Gibbs point processes with geometry-dependent interactions (which include
random tessellations) were considered in Dereudre et al. [2012]. Using the hyper-
graph structure, an existence result was derived for the unmarked case under a set
of complicated assumptions. It was remarked in the same work that the same
existence result would extend to the marked case, and based on this remark
the existence of an infinite–volume Gibbs measure for several models of Gibbs–
Laguerre tessellations of R3 was derived in Jahn and Seitl [2020]. However, the
marks were considered bounded. Our intent was to use Rœlly and Zass [2020] and
consider the unbounded case. Unfortunately, the range assumption from Rœlly
and Zass [2020] turned out to be more restricting than initially expected.

However, noticing that we can still use several of the results from Rœlly and
Zass [2020] for a non–negative energy function and after a careful analysis of the
behaviour of the Laguerre diagram, we considered a model with energy given by
the number of vertices in the tessellation. For this model we were able to prove
new existence theorem, which states that under the condition that we almost
surely see a point, there exists an infinite–volume Gibbs–Laguerre tessellation
of R2 with energy given by the number of vertices. As a by-product of this proof,
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several useful observations arose, which could be helpful in the study of other
Gibbs–Laguerre models.

To conclude we note that the original results in this work consist of Sections
2.1.3 and 2.3, Chapter 3 and Chapter 4 (without Section 4.1 up to Theorem 23).
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1. Theory of Point Processes
In this chapter, we present the necessary theory for our work. In the first section,
we briefly summarize the theory for marked point processes, for references see
Rataj [2006] (in Czech) or Møller and Waagepetersen [2004] (in English). After-
wards, we summarize the theory for Gibbs point processes. The notation we use
will mainly be chosen so that it is in accordance with the article Rœlly and Zass
[2020], which is the core of this work.

1.1 Marked Point Processes
Let (E , ρ) be a complete separable metric space which satisfies that every closed
and bounded subset of E is compact. The space E will be called the state space.
Denote by B(E) the Borel σ-algebra on E , by Bb(E) the set of all bounded Borel
subsets of E and by K(E) the set of all compact subsets of E .
Remark. For E = Rd, d ≥ 2, we write shortly Bd = B(Rd), Bd

b = Bb(Rd) and
Kd = K(Rd). The standard Euclidean norm on Rd will be denoted by |x| , x ∈ Rd,
and the Lebesgue measure on Rd will be denoted by λ.

Definition 1. A Borel measure ν on E is called locally finite, if it holds that
ν(K) < ∞, ∀K ∈ K(E).

Thanks to our assumptions on the space E , every locally finite measure ν is
also finite on all bounded Borel subsets of E .

Definition 2. We say that a locally finite measure ν on E is

• a counting measure, if it holds that ν(B) ∈ N ∪ {0, ∞}, ∀B ∈ B(E).

• simple, if it is a counting measure such that ν ({x}) ≤ 1, ∀x ∈ E.

Let us denote by N (E) the set of all locally finite measures on the space E ,
by N ∗(E) the set of all counting locally finite measures on E and by M∗(E) the
set of all simple counting locally finite measures on E . Particularly we have that
M∗(E) ⊂ N ∗(E) ⊂ N (E).

As is usual, we endow the set N (E) with σ-algebra N(E), where N(E) is the
smallest σ-algebra on N (E) such that the projections pB : N (E) → R, where
pB(ν) = ν(B), are measurable ∀B ∈ B(E). We then endow the set N ∗(E) with
the σ-algebra N∗(E) defined as the trace of the σ-algebra N(E) on N ∗(E) and
the set M∗(E) is analogously endowed with the σ-algebra M∗(E) defined as the
trace of N(E) on M∗(E).

Now we can define a point process in E .

Definition 3. Let (Ω, A, P) be a probability space. Any measurable mapping
Φ : (Ω, A, P) → (N ∗(E), N∗(E)) is called a point process in E. We say that
a point process Φ is simple, if P (Φ ∈ M∗(E)) = 1.

The distribution of a point process Φ will be denoted by PΦ, i. e. for every
U ∈ N∗(E) we have PΦ(U) = P(Φ ∈ U). Let us remark that for a point process Φ
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and a set B ∈ Bb(E), the number of points of Φ in the set B is a random variable
denoted by Φ(B).

The essential definition for the theory of point processes is the definition of
a Poisson point process.

Definition 4. Let µ ∈ N (E) be a locally finite measure. A point process Φ is
called a Poisson point process with intensity measure µ, if it satisfies the
following two conditions:

i) Φ(B) has a Poisson distribution with parameter µ(B), ∀B ∈ Bb(E),

ii) Φ(B1), . . . , Φ(Bn) are independent random variables ∀B1, . . . , Bn ∈ Bb(E)
pairwise disjoint, ∀n ∈ N.

In this work, we will consider only a special type of point processes, so-called
marked point processes. Take state space in the product form E = Rd × S, where
d ≥ 2 and the so-called mark space (S, ∥ · ∥) is a normed space.1 Each point
(x, m) ∈ Rd × S consists of two parts, the location part x and the mark m.
Marked point processes are defined as a special class of point processes in the
product space Rd × S.

Definition 5. Let N ∗
m(E) = {ν ∈ N ∗(E) : ν(· × S) ∈ N ∗(Rd)}. We say that

a point process Φ on E is a marked point process, if P(Φ ∈ N ∗
m(E)) = 1.

Furthermore, let M∗
m(E) = {ν ∈ N ∗(E) : ν(· × S) ∈ M∗(Rd)}. We say that

a marked point process Φ is simple, if P(Φ ∈ M∗
m(E)) = 1.

Notice that not every point process in Rd ×S is a marked point process – it is
required that the so-called ground process Φ′(·) = Φ(· ∩ S) is a. s. a point process
in Rd. Also, not every simple point process in Rd × S is a simple marked point
process – for the marked point process to be simple, we require that the ground
process is simple. In the following text, we will only consider simple marked point
processes. For simplicity, we will use M(E) instead of M∗

m(E) and we will denote
by M(E) the usual σ-algebra on M(E).

Before we proceed further, we state several useful remarks considering the
notation for γ ∈ M(E) and define some special subsets of M(E).

1. Each γ ∈ M(E) can be written as

γ =
N∑︂

i=1
δ(xi,mi),

where (xi, mi) ∈ Rd × S are pairwise different points and N ∈ N ∪ {0, ∞}.
Therefore we can identify γ with its support

γ ≡ supp γ = {(x1, m1), (x2, m2), . . . } ⊂ E .

The zero measure ō is identified with ∅. Throughout this text, we will write
(x, m) ∈ γ, instead of (x, m) ∈ supp γ and use this remark when it will be
convenient to regard γ ∈ M(E) as a (locally finite) subset of E instead of
a simple counting locally finite measure. The marked point x = (x, m) ∈ γ
is called an atom of γ.

1In general, it is possible to consider a metric space as the mark space, however, for the
purposes of this work, we require the existence of a norm.
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2. Denote for γ ∈ M(E), z ∈ Rd and Λ ∈ Bd

γΛ =
∑︂

i:xi∈Λ
δ(xi,mi) ... the restriction of γ to Λ × S,

|γ| = γ(E) ... the number of atoms of γ,
m(γ) = sup

(x,m)∈γ

∥m∥ ... the supremum of norms of all marks in γ,

γ + z =
∑︂

(x,m)∈γ

δ(x+z,m) ... the measure γ shifted by the vector z.

3. For γ, ξ ∈ M(E) we denote by

γ ξ =
∑︂

(x,m)∈γ

δ(x,m) +
∑︂

(y,n)∈ξ

δ(y,n)

the sum of measures γ and ξ. Notice that γ ξ always belongs to ∈ N ∗
m(E),

but it does not necessarily lie in M(E). However, it does hold that γA ξB

belongs to M(E) for A, B ∈ Bd, A ∩ B = ∅.

4. For γ ∈ M(E), a > 0 and Λ ∈ Bd define special subsets of M:

MΛ(E) = {γ ∈ M(E) : γ = γΛ}

is the set of all measures whose atoms lie in Λ × S,

Mf (E) = {γ ∈ M(E) : |γ| < ∞}

is the set of all finite measures γ ∈ M(E) and

Ma(E) = {γ ∈ M(E) : m(γ) ≤ a}

is the set of measures whose marks have norm at most a.

5. Let γ ∈ M(E) and let f : E → R be a measurable γ-integrable function.
Then we will write

⟨γ, f⟩ =
∫︂

f(x)γ(dx) =
∑︂
x∈γ

f(x).

6. We will often use the term configuration for γ ∈ M(E). If the state space
E is clear from the context, we will write M instead of M(E).

Let us now recall the standard definition of a point process with density in
the setting of marked point processes.

1.1.1 Processes with density
Let πµ be the distribution of a simple marked Poisson point process in E with
finite intensity measure µ. Then it is a finite process (i. e. πµ(Mf ) = 1) and for
every measurable set U ∈ M(E) we can write

πµ(U) =e−µ(E) · 1{ō ∈ U}

+ e−µ(E)
∞∑︂

k=1

1
k!

∫︂
E

· · ·
∫︂

E
1

{︄
k∑︂

i=1
δxi

∈ U

}︄
µ(dx1) · · · µ(dxk).

(1.1)
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It is well known that the points of the Poisson point process do not interact
with each other. To define more complicated models with interactions between
the points, the following definition is often useful. We consider πµ–integrable
non–negative function, which specifies our new model, and define the new (finite)
point process as the process with absolutely continuous distribution w. r. t. πµ.
As we will see in the next section, this is how we define the finite–volume Gibbs
process.
Definition 6. Let p : Mf → [0, ∞) be a measurable function, which satisfies∫︁

p(γ) πµ(dγ) = 1. Then we define a point process with density p w. r. t.
πµ, as the marked point process Φ with distribution

PΦ(dγ) = p(γ) πµ(dγ). (1.2)

Particularly, it easy to see, using (1.1), that for a measurable set U ∈ M(E)
we can write

PΦ(U) = e−µ(E) · 1{ō ∈ U} · p(ō)

+ e−µ(E) ·
∞∑︂

k=1

1
k!

∫︂
E

· · ·
∫︂

E
1

{︄
k∑︂

i=1
δxi

∈ U

}︄
p

(︄
k∑︂

i=1
δxi

)︄
µ(dx1) · · · µ(dxk).

Clearly from (1.2) the distribution PΦ favours configurations with higher values
of p.

1.2 Tempered Configurations
From now on we fix δ > 0. Before we dive into the theory of Gibbs processes,
we will define a special set Mtemp ⊂ M of so-called tempered configurations (for
reference see Section 2.2 in Rœlly and Zass [2020]). As we will see later, in
Section 2.2.3, the infinite–volume Gibbs measure is concentrated on the set of
tempered configurations and therefore many of the assumptions and theoretical
results can be stated only for the set Mtemp.
Remark. For x ∈ Rd and r > 0 we denote by U(x, r) the open ball with centre
x and radius r and by B(x, r) the closed ball with centre x and radius r. The
complement of a set A ⊂ Rd will be denoted by Ac.
Definition 7. Define the set of tempered configurations

Mtemp =
⋃︂
t∈N

Mt,

where Mt =
{︂
γ ∈ M :

⟨︂
γU(0,l), (1 + ∥m∥d+δ)

⟩︂
≤ t · ld holds ∀l ∈ N

}︂
.

Clearly, for t < s, we have that Mt ⊂ Ms. Tempered configurations have the
following important properties (see Lemmas 1 and 2 from Rœlly and Zass [2020])
which we present together with their proofs.
Lemma 1. Let γ ∈ Mt, t ≥ 1, then it holds that

lim
l→∞

1
l
m(γU(0,l)) = 0. (1.3)

Furthermore there exists l(t) such that ∀l ≥ l(t) the following implication holds

(x, m) ∈ γU(0,2l+1)c =⇒ B(x, ∥m∥) ∩ U(0, l) = ∅. (1.4)
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Proof. Fix t ∈ N and take γ ∈ Mt. Let us prove (1.3). From the definition of
the set Mt, we can write for all l ∈ N that

m(γU(0,l)) ≤
(︂
tld
)︂ 1

d+δ =⇒
m(γU(0,l))

l
≤

(︂
tld
)︂ 1

d+δ

l
= t

1
d+δ · l

−δ
d+δ −→

l→∞
0. (1.5)

Now consider (1.4). At first, define

l1

(︃
t,

1
2

)︃
=
(︄

t

(1/2)d+δ

)︄ 1
δ

.

Then for all l ≥ l1
(︂
t, 1

2

)︂
we can write, using (1.5)

m(γU(0,l))
l

≤

(︂
tld
)︂ 1

d+δ

l
= t

1
d+δ · l

−δ
d+δ ≤ t

1
d+δ ·

(︃
l1

(︃
t,

1
2

)︃)︃ −δ
d+δ

= 1
2 . (1.6)

Let l(t) = 1
2 l1
(︂
t, 1

2

)︂
and take l ≥ l(t). Denote for a > 0 : ⌈a⌉ = ⌊a⌋ + 1, where

⌊a⌋ is the integer part of a (i. e. the largest natural number less or equal to a).
Then for any point (x, m) ∈ γU(0,2l+1)c we have that x ∈ U(0, ⌈|x|⌉) and

|x| ≥ 2l + 1. Therefore ⌈|x|⌉ ≥ l1
(︂
t, 1

2

)︂
and using (1.6) for ⌈|x|⌉, we can write

|x| − ∥m∥ ≥ |x| − 1
2⌈|x|⌉ ≥ 1

2 |x| − 1
2 ≥ l, (1.7)

which completes the proof, since if there existed z ∈ B(x, ∥m∥) ∩ U(0, l), then we
would have |x| ≤ |x − z| + |z| < ∥m∥ + l, which is a contradiction with (1.7).

Notice, that l(t) depends only on t, i. e. the implication (1.4) holds ∀γ ∈ Mt.
We also need to define the following increasing sequence of subsets of Mtemp,
whose definition is inspired by Lemma 1.

Definition 8. Take l ∈ N and define

Ml =
{︂
γ ∈ Mtemp : ∀k ∈ N, k ≥ l, ∀(x, m) ∈ γU(0,2k+1)c

B(x, ∥m∥) ∩ U(0, k) = ∅
}︂
.

We can see from Lemma 1 that ∀t ≥ 1 we have Mt ⊂ M⌈l(t)⌉. We can also
see that

Mtemp =
⋃︂
l∈N

Ml.

For simplicity, we will write Ml(t) instead of M⌈l(t)⌉ in the following text.
Remark. The sets Mt, t ≥ 1 and Ml, l ≥ 1, and consequently also Mtemp, are
measurable. It also holds that whenever ξ ∈ Mt then ∀B ⊂ Rd also ξBc ∈ Mt

and analogously for Ml: ξ ∈ Ml =⇒ ξBc ∈ Ml, ∀B ⊂ Rd.
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1.3 Gibbs Measures and Processes
In this section, we summarize the theory for marked Gibbs point processes. As
a foundation we take the theory presented in Rœlly and Zass [2020] and enlarge it
to give broader introduction to the theory of Gibbs point processes, with Dereudre
[2019] as our reference.

1.3.1 Finite–volume Gibbs measures
As we have stated before, the finite–volume Gibbs point process is defined as
a point process with density (see Section 1.1.1). For us, the reference distribution
πµ will be the distribution of an independently marked Poisson point process.

The density of Gibbs process depends on energy of a configuration.

Definition 9. An energy function is a mapping H : Mf → R∪ {+∞} which
is measurable, translation invariant and satisfies2 H(ō) = 0.

Consider a probability measure Q on the mark space (S, ∥·∥), which will serve
as our reference mark distribution. Random variable with values in S distributed
according to Q will be called a typical mark. Take Λ ∈ Bd

b and z > 0 and denote
by πz

Λ the distribution of the marked Poisson point process in E with intensity
measure zλΛ(dx)⨂︁Q(dm), where λΛ(dx) is the restriction of the Lebesgue mea-
sure λ on Λ and ·⨂︁ · denotes the standard product of measures. Now we define
Gibbs processes.

Definition 10. Take Λ ∈ Bd
b , z > 0 and energy function H. Then finite–

volume Gibbs process in Λ with energy function H, activity z and with free
boundary condition is the point process with density p w.r.t. πz

Λ, where

p(γ) = 1
ZΛ

· e−H(γΛ).

Here, ZΛ is called the partition function, ZΛ =
∫︁

e−H(γΛ)πz
Λ(dγ).

Notice that Gibbs processes favour configurations with small energy compared
to those with high energy, which is in accordance with the physical interpretation.
It is possible for a configuration γ to have infinite energy and such configurations
are called forbidden, since they occur with probability 0.

Throughout this text we mostly work with the distributions of Gibbs pro-
cesses, which are called Gibbs measures.

Definition 11. Take Λ ∈ Bd
b , z > 0 and energy function H. We then define the

finite–volume Gibbs measure in Λ with energy function H, activity z and
with free boundary condition as the distribution PΛ of the corresponding Gibbs
process, i. e.

PΛ(dγ) = 1
ZΛ

· e−H(γΛ) πz
Λ(dγ).

2The assumption that H(ō) = 0 is in fact not restricting. Consider function H such that
H(ō) = a, a ∈ R, a ̸= 0. Then we can take H̃ = H − a.
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Clearly, for the finite–volume Gibbs measure and Gibbs process to be well
defined, we need 0 < ZΛ < ∞. This does not hold in general for every energy
function H. Let us briefly comment on some standard assumptions for the energy
function of a Gibbs point process. Our set of assumptions on H and Q, under
which the inequalities 0 < ZΛ < ∞ hold, will be specified later, in Section 2.1.2.

At first consider the hereditarity assumption:

∀γ ∈ Mf , (x, m) ∈ γ : H(γ) < ∞ =⇒ H(γ − δ(x,m)) < ∞.

It means that removing a point from a configuration, which is not forbidden,
cannot lead to a forbidden configuration3.

Another standard assumption is the stability assumption:

∃C ∈ R : H(γ) ≥ C · |γ| , ∀γ ∈ Mf .

Notice that this assumption ensures, that the partition function is finite.
To state some examples, we present the following two energy functions (see

Example 2 in Rœlly and Zass [2020]), which are based on interactions between
pairs of points. Some other examples can be found in Dereudre [2019], Section
5.2.2. We will treat more complicated models in the following chapters.
Example (Pairwise interaction models). Let E = Rd × S and consider

H1(γ) =
∑̸︂=

(x,m), (y,n)∈γ

ϕ(x, y) · 1{|x − y| ≤ ∥m∥ + ∥n∥}

H2(γ) =
∑̸︂=

(x,m), (y,n)∈γ

(+∞) · 1{|x − y| ≤ ∥m∥ + ∥n∥}
(1.8)

where ϕ : Rd × Rd → R is a non–negative measurable function, called the pair
potential. We use the convention +∞ · 0 = 0.

One of the key properties of a finite–volume Gibbs measure is that it sat-
isfies the DLR equations, named after Dobrushin, Lanford and Ruelle. These
equations prescribe the conditional distributions for a configuration inside some
bounded window ∆ given a fixed configuration outside this window (i. e. given a
fixed boundary condition).

Proposition 2. Let Λ, ∆ ∈ Bd
b , ∆ ⊂ Λ. Then it holds for any bounded measurable

function F : M → R that∫︂
MΛ

F (γ) PΛ(dγ) =
∫︂

MΛ

∫︂
M∆

F (γ∆ξ∆c) 1
Z∆

Λ (ξ)e−(H(γ∆ξ∆c )−H(ξ∆c ))πz
∆(dγ) PΛ(dξ),

where Z∆
Λ (ξ) =

∫︁
M∆

e−(H(γ∆ξ∆c )−H(ξ∆c ))πz
∆(dγ) is the normalizing constant.

Proof. See Proposition 5.3 in Dereudre [2019].
3While Rœlly and Zass [2020] do not state this assumption explicitly, we note that without

hereditarity we could get the conditional energy (see Definition 12) equal to −∞, which would
lead to contradiction with the local stability assumption (see Section 2.1.2).
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1.3.2 Infinite–volume Gibbs measures
Although there is a natural generalization of the measures πz

Λ to πz, where πz

is the distribution of a marked Poisson point process with intensity measure
zλ(dx)⨂︁Q(dm), we cannot generalize the definition of a finite–volume Gibbs
measure for an infinite–volume Gibbs measure using density w. r. t. the mea-
sure πz. One reason is that we would need a suitable generalization for energy of
an infinite configuration (as it could be +∞ simply due to the infinite number of
points even for a configuration which should not be forbidden).

Therefore we need to use a different approach, based on the conditional energy
of a configuration γ in a bounded window Λ.

Definition 12. For energy function H and Λ ∈ Bd
b we define the conditional

energy of γ ∈ M in Λ given its environment as

HΛ(γ) = lim
n→∞

H(γΛn) − H(γΛn\Λ), (1.9)

where Λn = [−n, n)d.

Again, it is not clear whether the conditional energy is well defined or not.
Indeed, we will need to pose some assumptions on H for this to be true. We will
in fact work with such energy functions, for which the limit (1.9) is attained in
finitely many steps.

Let us note that the basic assumption for the conditional energy is the finite–
range assumption:

∃R > 0 such that ∀γ ∈ M, ∀Λ ∈ Bd
b : HΛ(γ) = H(γΛ⊕B(0,R)) − H(γΛ⊕B(0,R)\Λ),

where Λ ⊕ B(0, R) = {x ∈ Rd : ∃y ∈ Λ, |x − y| ≤ R}. This means that the range
of interactions between the points is uniformly bounded over all configurations.
On the contrary, Rœlly and Zass [2020] deals with a situation, where the range is
finite, but unbounded, i. e. the finite–range assumption is not satisfied. We will
address our range assumption in Section 2.1.3.

To define an infinite–volume Gibbs measure, we need the following definition.

Definition 13. Let Λ ∈ Bd
b . Function F : M → R is called Λ-local if it satisfies

F (γ) = F (γΛ) for all γ ∈ M. Function F : M → R is called local, if there
exists Λ ∈ Bd

b such that it is Λ-local.

In other words, the value of a local function depends only on the configuration
in a bounded window. We also need to define a Gibbs probability kernel.

Definition 14. For Λ ∈ Bd
b , z > 0, energy function H and ξ ∈ M, define the

Gibbs probability kernel associated to H as

ΞΛ(ξ, dγ) = e−HΛ(γΛξΛc )

ZΛ(ξ) πz
Λ(dγ),

where ZΛ(ξ) =
∫︁

e−HΛ(γΛξΛc )πz
Λ(dγ) is the normalizing constant.
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Again, for ΞΛ(ξ, dγ) to be well defined, we need 0 < ZΛ(ξ) < ∞. We will show
that under the assumptions given in Section 2.1.2, this will be true for ξ ∈ Mtemp.
Notice that ZΛ(ξ) = ZΛ(ξΛc) for any ξ ∈ M.

Now we can define an infinite–volume Gibbs measure as the probability mea-
sure on M, which satisfies the DLR equations. This definition follows naturally
from the fact that the finite–volume Gibbs measure also satisfies DLR.
Definition 15. A probability measure P on M is called an infinite–volume
Gibbs measure with energy function H and activity z, if for all Λ ∈ Bd

b and for
all measurable bounded local functions F : M → R the DLRΛ equation holds:∫︂

M
F (γ) P(dγ) =

∫︂
M

∫︂
MΛ

F (γΛξΛc) ΞΛ(ξ, dγ) P(dξ).

For completion, we also define an infinite–volume Gibbs process.
Definition 16. A marked point process Φ on E is called an infinite–volume
marked Gibbs point process with energy function H and activity z, if its
distribution is an infinite volume Gibbs measure.

Now the questions are, whether and under what assumptions such measure
exists and whether it is uniquely defined by the DLR equations. The exis-
tence problem will be addressed in the next chapter, where we prove that under
some variations of the stability and range assumptions on the energy function
H, an infinite–volume Gibbs measure exists. Many existence results for different
models have been published over the years.

The uniqueness problem is, as far as we have seen, a much harder problem,
which is not always addressed. It is believed, however, that for small activity z
and (in some sense) low energy function, the Gibbs measure is unique. For more
information and references on this problem as well as proofs for a uniqueness
and a non–uniqueness result, see Dereudre [2019], Sections 5.3.7 and 5.3.8. For
an example of a sufficient condition for uniqueness of the Gibbs measure with
non–negative pairwise potential see Jansen [2019].

1.3.3 Topology of local convergence
The standard method used to obtain an infinite–volume Gibbs measure is based
on the result from Georgii and Zessin [1993]. At first, we have to define a suitable
topology on the space P(M) of probability measures on M.
Definition 17. A function F on M is called tame, if there exists a > 0 such
that |F (γ)| ≤ a

(︂
1 +

⟨︂
γ, 1 + ∥m∥d+δ

⟩︂)︂
.

Recall that function F is local, if for some Λ ∈ Bd
b we have F (γ) = F (γΛ) for

all configurations γ.
Definition 18. Denote by L the set of all tame local functions F : M → R.
We define the topology τL of local convergence on P(M) as the smallest
topology such that ∀F ∈ L the mapping P →

∫︁
FdP is continuous.

Finally we define a relative and specific entropy for two probability measures,
which are important tools in existence proofs. We remark that P ≪ P′ denotes
that P is absolutely continuous w. r. t. P′ and the corresponding density is denoted
by dP

dP′ .
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Definition 19. Let Λ ∈ Bd
b and take two probability measures P, P′ on M. Then

we define the relative entropy of P with respect to P′ on Λ as

IΛ(P|P′) =
∫︂

log f dPΛ if PΛ ≪ P′
Λ and f = dPΛ

dP′
Λ

,

IΛ(P|P′) = +∞ otherwise,

where PΛ denotes the image of P under the mapping γ → γΛ.
We then define specific entropy of P with respect to P′ as

I(P|P′) = lim
n→∞

1
|Λn|

IΛn(P|P′).

For us the reference measure P′ is the distribution of a marked Poisson point
process with intensity measure zλ(dx)⨂︁Q(dm), P′ = πz. Let z ∈ Rd and recall
that P ∈ P(M) is invariant under translation ϑz,

ϑz : M → M, ϑz(γ) = γ + z,

if P = P ◦ ϑ−1
z , where P ◦ ϑ−1

z is the image of measure P under ϑz. Then we have
the key property.

For any a > 0 the level sets

P(M)a = {P ∈ P(M) : P invariant under ϑκ, κ ∈ Zd, I(P|πz) ≤ a} (1.10)

are relatively compact in the τL topology.

Specially, any sequence (Pk)k∈N ⊂ P(M)a has a subsequence with limit
P ∈ P(M) in the τL topology. It holds that this limit is also invariant under
translations by κ ∈ Zd. As a standard reference, we state4 Proposition 2.6 from
Georgii and Zessin [1993].

4However, we add that this article works in the setting of stationary probability measures
(i. e. invariant under translation by all z ∈ Rd). In our work, we have measures invariant under
translations by z ∈ Zd. We appeal to Dereudre [2009] and Rœlly and Zass [2020] for a reference
for this case.
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2. Existence of Marked Gibbs
Point Processes with Unbounded
Interactions
In this section, we present the proof of the existence of an infinite–volume Gibbs
measure from Section 3 in Rœlly and Zass [2020]. At first, we present the as-
sumptions on the energy function and reference mark distribution. As we state in
Section 2.1.3, we have some objections to the formulation of the range assumption
and its use in the proof. We propose a modified version of this assumption, which
overcomes the particular problems, and afterwards go through specific parts of
the proof to see that it still holds.

2.1 Assumptions
To be able to prove the existence of an infinite–volume Gibbs measure, we will
need the following four assumptions: the moment assumption Hm, the stability
assumption Hs, the local stability assumption Hl and the range assumption Hr.

2.1.1 The moment assumption
Recall that we have fixed δ > 0 in Section 1.2 and we have chosen a reference
mark distribution Q in Section 1.3.1. We need to assume that Q satisfies

Hm :
∫︂

S
exp(∥m∥d+2δ)Q(dm) < ∞.

This means that the distribution of the norm of the typical mark ∥M∥ has super-
exponential moment.

2.1.2 Stability assumptions
We now pose a version of the stability assumption for the energy function H.

Hs : There exists c ≥ 0 such that ∀γ ∈ Mf : H(γ) ≥ −c
⟨︂
γ, 1 + ∥m∥d+δ

⟩︂
.

Notice that this assumption is weaker than the standard stability assumption
(see Section 1.3.1) thanks to the additional term ∥m∥d+δ. It is clear that if H is
non-negative, then Hs holds trivially for c = 0.

As we have promised, we will now show that under assumptions Hm and Hs,
the partition function is finite and therefore the finite–volume Gibbs measures
are well defined.

Lemma 3. Under the assumptions Hs and Hm we have 0 < ZΛ < ∞, ∀Λ ∈ Bd
b .

Proof. We have that

ZΛ =
∫︂

e−H(γΛ)πz
Λ(dγ) ≥ e−H(ō)πz

Λ({ō}) = e−z|Λ| > 0.
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On the other hand we can write

ZΛ =
∫︂

e−H(γΛ)πz
Λ(dγ)

Hs

≤
∫︂

ec⟨γ,1+∥m∥d+δ⟩πz
Λ(dγ)

= exp{−z |Λ|} · exp{ecz |Λ|
∫︂

S
exp(c∥m∥d+δ)Q(dm)} Hm

< ∞.

The second equality holds thanks to the formula (1.1) and the Levi formula for
the non–negative function ec⟨γ,1+∥m∥d+δ⟩.

For the infinite volume Gibbs measure to be well defined, we need an analogue
of the stability assumption for the conditional energy – so-called local stability
assumption.

Hl : For all Λ ∈ Bd
b and all t ∈ N there exists c(Λ, t) ≥ 0 such that ∀ξ ∈ Mt

the following inequality holds for any γΛ ∈ MΛ :
HΛ(γΛ ξΛc) ≥ −c(Λ, t)

⟨︂
γΛ, 1 + ∥m∥d+δ

⟩︂
.

Let us emphasize that the lower bound for the conditional energy must hold
uniformly over Mt.

Contrary to the stability assumption, local stability is not automatically sat-
isfied for non-negative energy functions. However, it will often be the case. We
state the following claim.
Claim 4. Assume that the energy function H satisfies H(γA) − H(γB) ≥ 0, for
all γ ∈ Mf whenever B ⊂ A, ∀A, B ∈ Bd

b . Then the conditional energy is
non-negative and the local stability assumption Hl holds.
Proof. Let γ ∈ M and Λ ∈ Bd

b . Then ∃K ∈ N and points x1, . . . , xK ∈ Rd × S
such that γΛ = ∑︁K

i=1 δxi
and we can write

HΛ(γ) = lim
n→∞

H(γΛn) − H(γΛn\Λ)

= lim
n→∞

K∑︂
i=1

H(γΛn\{x1,...,xi−1}) − H(γΛn\{x1,...,xi}) ≥ 0.

In the same way the stability ensures that the partition function is finite,
the local stability condition Hl ensures that the normalizing constants of Gibbs
probability kernels are positive and finite for tempered configurations.
Lemma 5. Let Λ ∈ Bd

b and ξ ∈ Mtemp. Under assumptions Hl and Hm we have
that 0 < ZΛ(ξ) < ∞.
Proof. Let ξ ∈ Mt and Λ ∈ Bd

b . Then we can write

ZΛ(ξ) =
∫︂

e−HΛ(γΛξΛc )πz
Λ(dγ) ≥ e−HΛ(ξΛc )πz

Λ({ō}) = e−z|Λ| > 0,

since ∀ξ ∈ Mt we have that HΛ(ξΛc) = 0. On the other hand, in the same way
as in the proof of Lemma 3:

ZΛ(ξ) =
∫︂

e−HΛ(γΛξΛc )πz
Λ(dγ)

Hl

≤
∫︂

ec(Λ,t)⟨γΛ,1+∥m∥d+δ⟩πz
Λ(dγ)

= exp{−z |Λ|} · exp{ec(Λ,t)z |Λ|
∫︂

S
exp(c(Λ, t)∥m∥d+δ)Q(dm)} Hm

< ∞.
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2.1.3 The range assumption
The last assumption (and perhaps the most crucial one as Hs and Hl are often
satisfied thanks to H being non-negative), considers the range of the interactions
among the points. Contrary to the usual assumption of finite range, the existence
result in Rœlly and Zass [2020] allows for the range to be finite, but unbounded
in the sense that it can depend on the whole configuration. In other words, the
range of the interaction is an unbounded random variable.

Let us at first state the range assumption from Rœlly and Zass [2020].

Hr
˜ : Fix Λ ∈ Bd

b . For any γ ∈ Mt, t ≥ 1, there exists τ(γ, Λ) > 0 such that
HΛ(γ) = H(γΛ⊕B(0,τ(γ,Λ))) − H(γΛ⊕B(0,τ(γ,Λ))\Λ).

It is noted that the choice of τ(γ, Λ) can be

τ(γ, Λ) = 2l(t) + 2m(γΛ) + 1, (2.1)

and this choice is used in the proof of the existence theorem. However, we have
two comments regarding this choice.

1. Contrary to the claims in Rœlly and Zass [2020], this choice of τ(γ, Λ)
does not work for the presented examples of the energy function. For a
counterexample supporting our claim, see Lemma 6. It is not hard to
see, using the proof of this lemma, that this choice of τ will not work for
such models, where two points (x, m) and (y, n) interact with each other if
B(x, ∥m∥) ∩ B(y, ∥n∥) ̸= ∅.

2. The choice of the range (2.1) assumes a very specific dependence of the
range on the configuration both inside and outside of Λ. Particularly, the
range depends on γΛc only through l(t), which is later used in the proof to
find a certain uniform estimate over Mt. Therefore, the proof cannot be
directly modified for general τ(γ, Λ).

In the following lemma, we present the counterexample, which shows that the
choice of range (2.1) is not suitable for energy functions (1.8).
Lemma 6. Let E = R2 × R and take energy function

H(γ) =
∑̸︂=

(x,m),(y,n)∈γ

ϕ(x, y) · 1{|x − y| ≤ ∥m∥ + ∥n∥}.

Then ∀δ > 0 there exist Λ ∈ B2
b and a set MC ⊂ M1 such that ∀γ ∈ MC

lim
n→∞

H(γΛn) − H(γΛn\Λ) = HΛ(γ) ̸= H(γΛ⊕B(0,τ)) − H(γΛ⊕B(0,τ)\Λ))

if we choose τ = 2l(1) + 2m(γΛ) + 1.
Proof. We will at first consider for simplicity δ = 1

2 and afterwards modify the
example for general δ > 0.

Step 1) Let δ = 1
2 . It holds that (according to the proof od Lemma 1)

l(t) = 1
2 l1

(︃
t,

1
2

)︃
= 1

2 · t
1
δ · 2 2+δ

δ = t2 · 24.

Therefore for t = 1 we get that l(t) = 24 = 16. Take points (x, m), (y, n) ∈ R2×R,
where x = (120, 120), m = 1, y = (150, 150) and n = 43. Let Λ = B(x, ε), where
ε ∈ [0, 1] and set γ = δ(x,m) + δ(y,n). Then it holds that
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i) γ ∈ M1,

ii) B(x, m) ∩ B(y, n) ̸= ∅,

iii) (y, n) /∈ γΛ⊕B(0,τ) for τ = 2l(1) + 2m(γΛ) + 1 = 35.

Part i) can be easily shown by checking the definition, ii) follows from the simple
computation |x − y| =

√︂
(150 − 120)2 + (150 − 120)2 =

√
2 · 30 < 43 and iii)

follows from |x − y| =
√

2 · 30 > 36.
We get that

lim
n→∞

H(γΛn) − H(γΛn\Λ) = ϕ(x, y),

H(γΛ⊕B(0,τ)) − H(γΛ⊕B(0,τ)\Λ) = 0 − 0 = 0.

Choose k ∈ N such that k ≥ l(1) and Λ ⊕ B(0, 1) ⊂ U(0, k) and define the set
MC = {γ ξU(0,2k+1)c : ξ ∈ M1, (x, m) ∈ ξ, (y, n) ∈ ξ}. Then we get that also
∀γ ∈ MC

lim
n→∞

H(γΛn) − H(γΛn\Λ) = ϕ(x, y),

H(γΛ⊕B(0,τ)) − H(γΛ⊕B(0,τ)\Λ) = 0 − 0 = 0,

and MC ⊂ M1.
Step 2) Let δ > 0. Then we can choose (x, m) and (y, n) in the following way:

1. m = 1 and x = (x′, 0) where x′ is large enough so that

4 + 2 · 2 2
δ ≤ 1

2 + ((4 + 2 · 2 2
δ + x′)2 − 3)

1
2+δ and x′ > 1.

2. y = (y′, 0), where y′ = 4 + 2 · 2 2
δ + x′ and n = ((y′)2 − 3)

1
2+δ

Set γ = δ(x,m) + δ(y,n) and choose Λ = B(x, ε), where ε ∈
[︂
0, 1

2

]︂
. We again get

that

i) γ ∈ M1

ii) B(x, m) ∩ B(y, n) ̸= ∅

iii) (y, n) /∈ γΛ⊕B(0,τ) for τ = 2l(1) + 2m(γΛ) + 1 = 2 · 2 2
δ + 2 + 1.

and the choice of MC proceeds in the same way as in the first step.

Particularly, we have found a counterexample to the claim that for any con-
figuration γΛ ∈ MΛ and any ξ ∈ Mt the equality HΛ(γΛξΛc) = HΛ(γΛξ∆\Λ) holds
as soon as Λ ⊕ B(0, 2l(t) + 2m(γΛ) + 1) ⊂ ∆.

We have given the counterexample for d = 2, t = 1 and pairwise–interaction
model, however it should be clear that it would be possible to find counterex-
amples in the same way for d ≥ 3, t ∈ N and other energy functions, for which
the interactions between two points is given strictly by the intersection of their
respective balls.

Considering the two comments above, we propose the following modification
of the range assumption.
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Hr: Fix Λ ∈ Bd
b and l ∈ N. Then for all γ ∈ Mtemp such that γΛc ∈ Ml there

exists τ = τ(m(γΛ), l, Λ) > 0 such that

HΛ(γ) = H(γΛ⊕B(0,τ)) − H(γΛ⊕B(0,τ)\Λ),

holds and τ(m(γΛ), l, Λ) is a non-decreasing function of m(γΛ). Particularly, τ
depends on γΛc only through l.

In the next section, we will show that the proof of the existence theorem from
Rœlly and Zass [2020] does work for the choice of the range assumed in Hr instead
of (2.1).

2.2 The Proof of the Existence Result
From now on we assume that the energy function H satisfies Hl, Hs, Hm and
our modified range assumption Hr. The proof consists of the following four steps
(corresponding to Sections 3.1 – 3.4 in Rœlly and Zass [2020]):

1. Introducing a stationarised sequence of probability measures (P̄n)n∈N with
the help of the finite–volume Gibbs measures in windows Λn ↑ Rd.

2. Proving the existence of a limit measure P̄ for a subsequence of (P̄n)n∈N in
the topology of local convergence.

3. Showing that the measures P̄n and P̄ are concentrated on the set of tempered
configurations.

4. Introducing sequence (P̂n)n∈N of measures, that satisfy DLR and which has
the same asymptotic behaviour as (P̄n)n∈N. Using this sequence, we show
that also P̄ satisfies DLR equations and is therefore an infinite–volume
Gibbs measure.

Since steps 1,2 and 3 of the proof do not use the assumption Hr, we will only
state the necessary definitions and partial results from these sections and refer to
the article Rœlly and Zass [2020] for the complete proofs. The last step will be
presented in more detail.

2.2.1 Stationary measures P̄n

Denote by Pn = PΛn the finite–volume Gibbs measure in Λn, where Λn = [−n, n)d,
n ∈ N. For n ∈ N and κ ∈ Zd set Λκ

n = Λn + 2nκ. Then {Λκ
n}κ∈Zd is a disjoint

partition of the space Rd.
For all n ∈ N let P̃n be the probability measure on M satisfying that the

marginal distributions of a configuration in disjoint sets Λκ
n are independent and

identically distributed according to the finite volume Gibbs measure Pn, i.e.

P̃n =
⨂︂

κ∈Zd

Pn ◦ ϑ−1
2nκ, (2.2)

where P ◦ ϑ−1
κ denotes the image of the measure P under the translation ϑκ,

ϑκ : M → M, ϑκ(γ) = γ + z. Then we can define the stationary sequence.
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Definition 20. For n ∈ N we define the empirical field associated to the proba-
bility measure P̃n as a probability measure P̄n:

P̄n = 1
(2n)d

∑︂
κ∈Λn∩Zd

P̃n ◦ ϑ−1
κ .

The probability measures P̄n, n ∈ N are invariant under ϑκ, κ ∈ Zd and the
following upper bounds hold.

Lemma 7. There exists a constant a1 such that

∀n ∈ N Jn =
∫︂

M
⟨γ, 1 + ∥m∥d+δ⟩Pn(dγ) ≤ a1 |Λn| . (2.3)

There also exists a constant a2 such that

∀n ∈ N Kn =
∫︂

M
⟨γΛn , 1 + ∥m∥d+δ⟩P̄n(dγ) ≤ a2 |Λn| . (2.4)

Proof. For the proof of (2.3) see Lemma 5 in Rœlly and Zass [2020]. The inequal-
ities (2.4) (stated as an observation without proof in Rœlly and Zass [2020]) can
be proved using the following observation.

There exists ad ∈ N and vectors b1, . . . , bad ∈ Zd such that ∀n ∈ N and
∀κ ∈ Λn ∩ Zd: (Λn − κ) ∩ Λb

n = ∅ whenever b ̸= bi for all i. Therefore we can
write ∀n ∈ N:

Kn = 1
(2n)d

∑︂
κ∈Λn∩Zd

∫︂
⟨γΛn , 1 + ∥m∥d+δ⟩P̃n ◦ ϑ−1

κ (dγ)

= 1
(2n)d

∑︂
κ∈Λn∩Zd

∫︂
⟨γΛn−κ, 1 + ∥m∥d+δ⟩P̃n(dγ)

= 1
(2n)d

∑︂
κ∈Λn∩Zd

ad∑︂
i=1

∫︂
M

Λbi
n

⟨γ(Λn−κ)∩Λbi
n

, 1 + ∥m∥d+δ⟩Pn ◦ ϑ−1
2nbi

(dγ)

≤ 1
(2n)d

∑︂
κ∈Λn∩Zd

ad∑︂
i=1

∫︂
M

Λbi
n

⟨γΛbi
n

, 1 + ∥m∥d+δ⟩Pn ◦ ϑ−1
2nbi

(dγ)

= 1
(2n)d

∑︂
κ∈Λn∩Zd

ad∑︂
i=1

∫︂
MΛn

⟨γ, 1 + ∥m∥d+δ⟩Pn(dγ)

≤ a1 · ad · |Λn| .

2.2.2 The existence of the limit measure P̄
Recall the definition of the topology of local convergence τL from Section 1.3.3
as well as the definitions of the relative and the specific entropy. We will use the
property (1.10) for level sets of the specific entropy.

Lemma 8. Let (P̄n)n∈N be the stationarised sequence defined in Definition 20.
Then there exists constant a3 > 0 such that

∀n ∈ N I(P̄n|πz) ≤ a3.
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Proof. See Proposition 1 in Rœlly and Zass [2020].

Therefore there exists a subsequence (P̄nk
)k∈N such that P̄nk

τL→ P̄, where P̄ is
a probability measure on M invariant under translations by κ ∈ Zd.

In the following text, we for simplicity denote the converging subsequence by
(P̄n)n∈N instead of (P̄nk

)k∈N. Now our task is to show that the limit measure P̄ is
the infinite–volume Gibbs measure.

2.2.3 Supports of measures P̄n and P̄
As we have stated earlier, the set of tempered configurations has the important
property of containing the support of the infinite–volume Gibbs measure.

Lemma 9. The measures P̄n and P̄ satisfy

∀n ∈ N P̄n(Mtemp) = 1 and P̄(Mtemp) = 1.

Proof. See Proposition 2 in Rœlly and Zass [2020].

Since Mtemp = ⋃︁
t∈N Mt and Mt ⊂ Mt+1, we can find ∀n ∈ N and ∀ε > 0

large enough t so that
P̄n(Mt) ≥ 1 − ε.

However, in the next step of the proof, we need this t to be determined uniformly
for all n ∈ N. From the remark in Rœlly and Zass [2020], we know that this does
not work for the sequence Mt, t ∈ N but it is possible if we consider the sequence
Ml, l ∈ N.

Lemma 10. Let ε > 0, then there exists l ∈ N such that

∀n ∈ N P̄n(Ml) ≥ 1 − ε.

Proof. See Proposition 3 in Rœlly and Zass [2020].

2.2.4 P̄ is a Gibbs measure
In this final section, we will prove that the limit measure P̄ is indeed an infinite
volume Gibbs measure with energy function H. At first, let us note the following
observation concerning the Gibbs kernel ΞΛ (recall Definition 14).

Lemma 11. For Λ ∈ Bd
b and F : M → R measurable function also the mapping

ξ →
∫︁

MΛ
F (γ) ΞΛ(ξ, dγ) defined on Mtemp is measurable.

Proof. See Lemma 7. in Rœlly and Zass [2020].

To prove that P̄ is a Gibbs measure, we will need the following estimate of
the Gibbs probability kernel ΞΛ, which only considers bounded marks inside Λ
and the outside environment only in some bounded set ∆ ⊃ Λ.
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Definition 21. For ∆ ∈ Bd
b such that ∆ ⊃ Λ and for m0 > 0 we define the

(∆, m0)–cut off Ξ∆,m0
Λ of the Gibbs kernel ΞΛ as the probability kernel

Ξ∆,m0
Λ (ξ, dγ) = 1{m(γ) ≤ m0} · e−HΛ(γΛξ∆\Λ)

Z∆,m0
Λ (ξ∆\Λ)

πz
Λ(dγ),

where Z∆,m0
Λ (ξ∆\Λ) =

∫︁
1{m(γ) ≤ m0} · e−HΛ(γΛξ∆\Λ)πz

Λ(dγ) is the normalizing
constant.

We have the following remarks considering this definition.

i) The cut off Ξ∆,m0
Λ is well defined, since Z∆,m0

Λ (ξ∆\Λ) is finite and positive.

ii) For any bounded measurable Λ-local function G the mapping

ξ →
∫︂

MΛ
G(γ) Ξ∆,m0

Λ (ξ, dγ)

is local (∆-local), measurable and bounded. Particularly it belongs to L.

The proof of i) would be the same as the proof of Lemma 5 and ii) is clear from
the definition. The usefulness of this definition arises in the next lemma, where
we prove that the cut–off Ξ∆,m0

Λ is a uniform estimate of the Gibbs kernel ΞΛ over
the set Mt.

Lemma 12. Let Λ ∈ Bd
b be a bounded set and take a measurable, bounded and

Λ-local function F : M → R . For any ε > 0 and any t ∈ N there exists m0 > 0
and ∆ ⊃ Λ such that

sup
ξ∈Mt

⃓⃓⃓⃓∫︂
MΛ

F (γ) Ξ∆,m0
Λ (ξ, dγ) −

∫︂
MΛ

F (γ) ΞΛ(ξ, dγ)
⃓⃓⃓⃓
≤ ε, (2.5)

whenever ∆ ⊂ ∆ and m0 ≤ m0.

Proof. Take γΛ ∈ MΛ and ξ ∈ Mt. Then from the assumption Hr we know that

HΛ(γΛξΛc) = H(γΛξΛ⊕B(0,τ)\Λ) − H(ξΛ⊕B(0,τ)\Λ),

where τ = τ(m(γΛ), l(t), Λ). Therefore for any ξ ∈ Mt we have that

Λ ⊕ B(0, τ(m(γΛ), l(t), Λ)) ⊂ ∆ =⇒ HΛ(γΛξΛc) = HΛ(γΛξ∆\Λ).

Denote for ∆ ∈ Bd
b and m0 > 0

1∆,m0(γ, l(t)) := 1{m(γΛ) > m0 or Λ ⊕ B(0, τ(m(γΛ), l(t), Λ)) ̸⊂ ∆},

then we can write for any ∆ ∈ Bd
b and m0 > 0⃓⃓⃓

Z∆,m0
Λ (ξ∆\Λ) − ZΛ(ξΛc)

⃓⃓⃓
=
⃓⃓⃓⃓∫︂

(1{m(γΛ) ≤ m0}e−HΛ(γΛξ∆\Λ) − e−HΛ(γΛξΛc ))πz
Λ(dγ)

⃓⃓⃓⃓
≤
∫︂
1∆,m0(γ, l(t)) · (e−HΛ(γΛξ∆\Λ) + e−HΛ(γΛξΛc ))πz

Λ(dγ)
Hl

≤
∫︂
1∆,m0(γ, l(t)) · 2 · ec(Λ,t)⟨γΛ,1+∥m∥d+δ⟩πz

Λ(dγ).
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This upper bound does not depend on ξ and therefore

sup
ξ∈Mt

⃓⃓⃓
Z∆,m0

Λ (ξ∆\Λ) − ZΛ(ξΛc)
⃓⃓⃓

≤
∫︂
1∆,m0(γ, l(t)) · 2 · ec(Λ,t)⟨γΛ,1+∥m∥d+δ⟩πz

Λ(dγ).

Taking limit in m0 ↑ ∞ and ∆ ↑ Rd, the right side goes to 0 (we can exchange
limit and integral thanks to the assumption Hm and the dominated convergence
theorem) and therefore for given ε and t there exist m0(ε, t) > 0 and ∆(ε, t) ⊃ Λ
such that ∀m0 ≥ m0 and ∀∆ ⊃ ∆ we get that

sup
ξ∈Mt

⃓⃓⃓
Z∆,m0

Λ (ξ∆\Λ) − ZΛ(ξΛc)
⃓⃓⃓
≤ ε.

Since F is assumed to be bounded, the formula (2.5) can be proven analogously.

We will also need to define conditional Gibbs kernels. Take m0 > 0 and let

ΞΛ(ξ, dγ|{ν : m(ν) ≤ m0}) = 1{γ : m(γ) ≤ m0}
ΞΛ(ξ, {ν : m(ν) ≤ m0})

e−HΛ(γΛξΛc )

ZΛ(ξ) πz
Λ(dγ),

ΞΛ(ξ, dγ|{ν : m(ν) > m0}) = 1{γ : m(γ) > m0}
ΞΛ(ξ, {ν : m(ν) > m0})

e−HΛ(γΛξΛc )

ZΛ(ξ) πz
Λ(dγ).

(2.6)

Now we are ready to prove that the probability measure P̄ satisfies the DLRΛ
equations for a given function F .

Lemma 13. Let Λ ∈ Bd
b be a bounded set and take a measurable, bounded and

Λ-local function F : M → R .Then the probability measure P̄ from Section 2.2.2
satisfies ∫︂

Mtemp
F (γ) P̄(dγ) =

∫︂
Mtemp

∫︂
MΛ

F (γΛ) ΞΛ(ξ, dγ) P̄(dξ).

Proof. At first, denote by i0 ∈ N the smallest n such that Λ ⊂ Λn. Since P̄n

do not satisfy DLRΛ, we need to at first define a sequence of measures (P̂n)n∈N
which is asymptotically equivalent to (P̄n)n∈N, but unlike P̄n, satisfies DLRΛ, at
least for n ≥ i0 (hence in the following we only consider n ≥ i0).

The estimating sequence is defined as follows. Take n ∈ N, then

P̂n = 1
|Λn|

∑︂
κ∈Zd∩Λn: Λ⊂ϑκ(Λn)

Pn ◦ ϑ−1
κ ,

where ϑκ(Λn) = {z + κ, z ∈ Λn}. We have the following observations

1. For all l ∈ N we have that P̂n((Ml)c) ≤ P̄n((Ml)c).

2. For any tame, local1 measurable function G : M → R it holds that

lim
n→∞

⃓⃓⃓⃓∫︂
G(γ) P̂n(dγ) −

∫︂
G(γ) P̄n(dγ)

⃓⃓⃓⃓
= 0. (2.7)

1The proof given in Rœlly and Zass [2020] was only for G being Λ-local, nevertheless we
need this more general claim, therefore we modify the proof from Rœlly and Zass [2020] (using
Lemma 3.5 from Dereudre [2009] as a guide).
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Proof of 2): Let G : M → R be tame, ∆-local and measurable function and
choose n0 so that Λ ∪ ∆ ⊂ Λn0 . Then we can write ∀n ≥ n0:

δ0 =
⃓⃓⃓⃓∫︂

Mtemp
G(γ) P̂n(dγ) −

∫︂
Mtemp

G(γ) P̄n(dγ)
⃓⃓⃓⃓
=

=
⃓⃓⃓⃓
⃓ 1
(2n)d

∑︂
κ∈Zd∩Λn: Λ⊂ϑκ(Λn)

∫︂
Mtemp

G(γ) Pn ◦ ϑ−1
κ (dγ)

− 1
(2n)d

∑︂
κ∈Zd∩Λn

∫︂
Mtemp

G(γ) P̃n ◦ ϑ−1
κ (dγ)

⃓⃓⃓⃓
⃓

≤ 1
(2n)d

∑︂
κ∈Zd∩Λn: Λ∪∆ ̸⊂ϑκ(Λn)

⃓⃓⃓⃓∫︂
Mtemp

G(γ) P̃n ◦ ϑ−1
κ (dγ)

⃓⃓⃓⃓

≤ a

(2n)d

∑︂
κ∈Zd∩Λn: Λ∪∆ ̸⊂ϑκ(Λn)

∫︂
Mtemp

(︂
1 + ⟨γ∆, 1 + ∥m∥d+δ

)︂
P̃n ◦ ϑ−1

κ (dγ).

The rest of the proof follows in the same way as in Rœlly and Zass [2020] (page
989) with the modification that we use ∆ ∪ Λ instead of Λ.

3. P̂n is not a probability measure, but using (2.7) with G(γ) = 1 we get that
∀ε > 0 there exists n0 such that ∀n ≥ n0 we have that P̂n(M) ≥ 1 − ε.

4. It holds that ∀n ≥ i0 the measures P̂n satisfy DLRΛ:∫︂
M

F (γ) P̂n(dγ) =
∫︂

M

∫︂
MΛ

F (γΛξΛc) ΞΛ(ξ, dγ)P̂n(dξ). (2.8)

Unfortunately the mapping ξ →
∫︁

MΛ
F (γ)ΞΛ(ξ, dγ) is not local, since our

range is not uniformly bounded, and therefore we cannot take a limit on both
sides of (2.8). We have to use the estimating kernel Ξ∆,m0

Λ and Lemma 12.
To finish the proof, we will show that ∀ε > 0

δ1 =
⃓⃓⃓⃓∫︂

Mtemp
F (γ) P̄(dγ) −

∫︂
Mtemp

∫︂
MΛ

F (γ) ΞΛ(ξ, dγ) P̄(dξ)
⃓⃓⃓⃓
< ε.

Take ε > 0. By Lemmas 9 and 10 there exists a5 > 0 such that ∀t > a5 and
∀n ≥ 1 it holds that

P̄(Mt) ≥ 1 − ε/2, P̄n(Ml(t)) ≥ 1 − ε (2.9)

Now fix t > a5. For this t there exists m0(t) > 0 such that

P̄({γ : m(γΛ) ≤ m0(t)}) ≥ 1 − ε/2.

The last inequality comes from formula (1.6) from proof of Lemma 1. Now since
P̄n

τL−→ P̄ and function F (γ) = 1{m(γΛ) ≤ m0(t)} is tame and local, there exist
n1 (w. l. o. g. n1 ≥ n0 from 3. and n1 ≥ i0) such that

P̄n({γ : m(γΛ) ≤ m0(t)}) ≥ 1 − ε ∀n ≥ n1.

Using Remark 3, we can conclude that ∀n ≥ n1 we have

P̂n(Ml(t)) ≥ 1 − 2ε and P̂n({γ : m(γΛ) ≤ m0(t)}) ≥ 1 − 2ε. (2.10)
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For our fixed t we can find m0(ε, t) > 0 and ∆(ε, t) from Lemma 12 (recall that
F and Λ are given). Take m0 > max{m0(t), m0(ε, t)} and take ∆ such that

Λ ⊕ B(0, τ(m0, l(t), Λ)) ⊂ ∆ and ∆(ε, t) ⊂ ∆.

Assume for simplicity that F is bounded by 1. We can write

δ1 ≤ P̄((Mt)c) +
⃓⃓⃓⃓∫︂

F (γ)P̄(dγ) −
∫︂

Mt

∫︂
MΛ

F (γ)ΞΛ(ξ, dγ)P̄(dξ)
⃓⃓⃓⃓

Using Lemma 12 we get that⃓⃓⃓⃓∫︂
Mt

∫︂
MΛ

F (γ)Ξ∆,m0
Λ (ξ, dγ)P̄(dξ) −

∫︂
Mt

∫︂
MΛ

F (γ)ΞΛ(ξ, dγ)P̄(dξ)
⃓⃓⃓⃓
≤ ε,

and therefore we can write

δ1
(2.9)
≤ 2ε +

⃓⃓⃓⃓∫︂
F (γ)P̄(dγ) −

∫︂
Mt

∫︂
MΛ

F (γ)Ξ∆,m0
Λ (ξ, dγ)P̄(dξ)

⃓⃓⃓⃓
(2.9)
≤ 3ε +

⃓⃓⃓⃓∫︂
Mtemp

F (γ)P̄(dγ) −
∫︂

Mtemp

∫︂
MΛ

F (γ)Ξ∆,m0
Λ (ξ, dγ)P̄(dξ)

⃓⃓⃓⃓
.

From Remark 2 we know that there exists n2 (w. l. o. g. n2 > n1) such that ∀n ≥ n2⃓⃓⃓⃓∫︂
Mtemp

∫︂
MΛ

F (γ)Ξ∆,m0
Λ (ξ, dγ)P̂n(dξ) −

∫︂
Mtemp

∫︂
MΛ

F (γ)Ξ∆,m0
Λ (ξ, dγ)P̄(dξ)

⃓⃓⃓⃓
≤ ε,⃓⃓⃓⃓∫︂

Mtemp
F (γ)P̂n(dγ) −

∫︂
Mtemp

F (γ)P̄(dγ)
⃓⃓⃓⃓
≤ ε,

since both functions F and ξ →
∫︁

MΛ
F (γ)Ξ∆,m0

Λ (ξ, dγ) are tame and local. There-
fore, we can write ∀n ≥ n2

δ1 ≤ 5ε +
⃓⃓⃓⃓∫︂

Mtemp
F (γ)P̂n(dγ) −

∫︂
Mtemp

∫︂
MΛ

F (γ)Ξ∆,m0
Λ (ξ, dγ)P̂n(dξ)

⃓⃓⃓⃓
(2.10)
≤ 7ε +

⃓⃓⃓⃓
⃓
∫︂

Mtemp
F (γ)P̂n(dγ) −

∫︂
Ml(t)

∫︂
MΛ

F (γ)Ξ∆,m0
Λ (ξ, dγ)P̂n(dξ)

⃓⃓⃓⃓
⃓

≤ 7ε +
⃓⃓⃓⃓
⃓
∫︂

Mtemp
F (γ)P̂n(dγ) −

∫︂
Ml(t)

∫︂
MΛ

F (γ)ΞΛ(ξ, dγ)P̂n(dξ)
⃓⃓⃓⃓
⃓

+
⃓⃓⃓⃓
⃓
∫︂

Ml(t)

∫︂
MΛ

F (γ)ΞΛ(ξ, dγ)P̂n(dξ) −
∫︂

Ml(t)

∫︂
MΛ

F (γ)Ξ∆,m0
Λ (ξ, dγ)P̂n(dξ)

⃓⃓⃓⃓
⃓ .

From (2.8) and (2.10) we get that⃓⃓⃓⃓
⃓
∫︂

Mtemp
F (γ)P̂n(dγ) −

∫︂
Ml(t)

∫︂
MΛ

F (γ)ΞΛ(ξ, dγ)P̂n(dξ)
⃓⃓⃓⃓
⃓

≤ 2ε +
⃓⃓⃓⃓∫︂

F (γ)P̂n(dγ) −
∫︂ ∫︂

MΛ
F (γ)ΞΛ(ξ, dγ)P̂n(dξ)

⃓⃓⃓⃓
= 2ε.

For the other summand, we will use the conditional kernels defined in (2.6). Let
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A(ξ, m0) = ΞΛ(ξ, {ν : m(ν) > m0}). We can write⃓⃓⃓⃓
⃓
∫︂

Ml(t)

∫︂
MΛ

F (γ)(ΞΛ(ξ, dγ) − Ξ∆,m0
Λ (ξ, dγ))P̂n(dξ)

⃓⃓⃓⃓
⃓ =

=
⃓⃓⃓⃓
⃓
∫︂

Ml(t)

∫︂
MΛ

F (γ)
[︂
Ξ∆,m0

Λ (ξ, dγ) − ΞΛ(ξ, dγ|{ν : m(ν) ≤ m0}) · (1 − A(ξ, m0))

− ΞΛ(ξ, dγ|{ν : m(ν) > m0}) · A(ξ, m0)
]︂
P̂n(dξ)

⃓⃓⃓⃓
⃓

≤
⃓⃓⃓⃓
⃓
∫︂

Ml(t)

∫︂
MΛ

F (γ)
[︂
Ξ∆,m0

Λ (ξ, dγ) − ΞΛ(ξ, dγ|{ν : m(ν) ≤ m0})
]︂
P̂n(dξ)

⃓⃓⃓⃓
⃓

+ 2
∫︂

Ml(t)
ΞΛ(ξ, {ν : m(ν) > m0})P̂n(dξ).

Now using (2.10) and the fact that P̂n satisfies DLRΛ with the local bounded
function F (γ) = 1{m(γΛ) > m0} we get that

2
∫︂

Ml(t)
ΞΛ(ξ, {ν : m(ν) > m0})P̂n(dξ) ≤ P̂n({ν : m(νΛ) > m0}) ≤ 4ε.

Since we have chosen ∆ so that Λ ⊕ B(0, τ(m0, l(t), Λ)) ⊂ ∆ and from Hr we
know that τ(m(γΛ), l(t), Λ) ≤ τ(m0, l(t), Λ) whenever m(γΛ) ≤ m0, we get that
∀ξ ∈ Ml(t): Ξ∆,m0

Λ (ξ, dγ) = ΞΛ(ξ, dγ|{ν : m(ν) ≤ m0}). Altogether we can write

δ1 ≤ 7ε +
⃓⃓⃓⃓
⃓
∫︂

Ml(t)
F (γ)P̂n(dγ) −

∫︂
Ml(t)

∫︂
MΛ

F (γ)ΞΛ(ξ, dγ)P̂n(dξ)
⃓⃓⃓⃓
⃓

+
⃓⃓⃓⃓
⃓
∫︂

Ml(t)

∫︂
MΛ

F (γ)ΞΛ(ξ, dγ)P̂n(dξ) −
∫︂

Ml(t)

∫︂
MΛ

F (γ)Ξ∆,m0
Λ (ξ, dγ)P̂n(dξ)

⃓⃓⃓⃓
⃓

≤ 13ε +
⃓⃓⃓⃓
⃓
∫︂

Ml(t)
F (γ)(Ξ∆,m0

Λ (ξ, dγ) − ΞΛ(ξ, dγ|{ν : m(ν) ≤ m0}))P̂n(dξ)
⃓⃓⃓⃓
⃓

= 13ε,

which completes the proof.

Let us note that the assumption that F is Λ-local is posed just for simplicity
of notation. For F general ∆-local, we would take i0 such that Λ ∪ ∆ ⊂ Λi0 and
define P̂n so that Λ ∪ ∆ ⊂ ϑκ(Λn). Altogether, we have the existence result.
Theorem 14 (Theorem 1 in Rœlly and Zass [2020]). Under assumptions Hs, Hl,
Hr and Hm there exists at least one infinite–volume Gibbs measure with energy
function H.
Proof. This proof is just a simple corollary of all the derivations in Section 2.2.
From Section 2.2.2 we get that there exists a limit probability measure P̄. We
want to show that it satisfies Definition 15. Take Λ ∈ Bd

b and F : M → R local
bounded measurable function. Then by Lemma 13 we get that∫︂

Mtemp
F (γ)P̄(dγ) =

∫︂
Mtemp

∫︂
MΛ

F (γΛ ξΛc)ΞΛ(ξ, dγ)P̄(dξ)

holds. Since by Lemma 9 we get that P̄(Mtemp) = 1, we can conclude that P̄
satisfies the DLR equations and is therefore an infinite–volume Gibbs measure
with energy function H.
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2.3 A Note on the Choice of the Mark Space
We require that the mark space is a space with a norm, however sometimes
the model requires only some type of marks (for example non-negative numbers
instead of R or normalized vectors). The following lemma reinforces the claim
that we can then only consider configurations with marks from a chosen subset
of the mark space S.

Lemma 15. Let Q be a reference mark distribution on the mark space (S, ∥ · ∥)
and let U ∈ B(S) such that Q(U) = 1. Then also

P̄({γ ∈ M(Rd × S) : m ∈ U, ∀(x, m) ∈ γ}) = 1,

where P̄ is the limit probability measure from Section 2.2.2.

Proof. In this proof, we will treat γ ∈ M as γ ⊂ Rd × S (see Remark 1 from
Section 1.1). Recall the probability measures Pn, P̃n and P̄n defined in Section
2.2.1.

Take disjoint partition ⋃︁k∈N Bk = Rd and define functions

Fk(γ) = 1{γ ∈ M(Rd × S) : γBk
⊂ Bk × U}, k ∈ N.

These functions are bounded and local for all k ∈ N, particularly Fk ∈ L, ∀k ∈ N.
Therefore

lim
n→∞

∫︂
Fk(γ)P̄n(dγ) =

∫︂
Fk(γ)P̄(dγ)

holds for all k ∈ N. From the definition of Pn and from Q(U) = 1 we get that∫︂
Fk(γ)Pn(dγ) = Pn({γ : γBk

⊂ Bk × U}) = 1.

Therefore also
∫︁

Fk(γ)P̃n(dγ) = 1 and consequently
∫︁

Fk(γ)P̄n(dγ) = 1 holds for
all k ∈ N and we get that

P̄({γ : γBk
⊂ Bk × U}) =

∫︂
Fk(γ)P̄(dγ) = lim

n→∞

∫︂
Fk(γ)P̄n(dγ) = 1, ∀k ∈ N,

and this finishes the proof.
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3. Gibbs Facet Process
The first model we consider will be the process of facets (presented in Večeřa
and Beneš [2016]). Informally speaking, we want to model a situation where
we have a random configuration of (d − 1)-dimensional objects (called facets)
in Rd located in random points (centres of facets) and having random tilt. We
could model such situation using the particle processes (see Schneider and Weil
[2008] for the general theory) or marked point processes, where the location points
identify the centre of the facet and the mark space S is chosen so that each mark
uniquely describes one facet.

Facets can interact with each other by intersecting. We would like to consider
a Gibbs model, which takes into account the interactions between the facets –
i.e. the energy of a configuration will be a function of the intersections. We will
consider three possible assumptions on the interactions – repulsive interactions
between facets (intersections lead to higher energy), attractive interactions be-
tween facets (intersections lead to lower energy) and mixed interactions – and try
to verify the assumptions of Theorem 14 to show that there exists an infinite–
volume Gibbs facet process.

3.1 Definition of a Facet Process
For d ≥ 2 we denote by Gd the space of all (d − 1)-dimensional linear subspaces
of Rd. Let Sd−1 denote the unit sphere in Rd, then A(n) ∈ Gd denotes the linear
subspace with unit normal vector n ∈ Sd−1.

Definition 22. Let A(n) ∈ Gd and R > 0. Then we define facet V (n, R) as

V (n, R) = A(n) ∩ B(0, R).

We will call R the radius of the facet and n the normal vector of the facet.
Furthermore we define the space of facets Vd = {A∩B(0, R) : A ∈ Gd, R > 0}.

Remark. Facet is a (d−1)-dimensional object in Rd with centre in 0. Particularly,
facet is a line segment in R2 (see Figure 3.1) and a ”disk” in R3.

As we can see from the definition above, each facet is uniquely described by
its radius R and its normal vector n (up to the orientation of n). It is therefore
natural to choose the state space as Rd × S, with the space of marks being
(S, ∥ · ∥) = (Rd+1, ∥ · ∥), the (d + 1)-dimensional Euclidean space with standard
Euclidean norm1 ∥m∥ =

√︂∑︁d+1
i=1 m2

i .
The marks will be specified using the reference mark distribution. We will

restrict ourselves to distributions Q on S satisfying2

Q(Sd−1
+ × (0, ∞)) = 1, (3.1)

1We will use the notation ∥m∥ while talking about mark m from Rd and |x| while talking
about location point x from Rd.

2Eventually, we could model a situation, where the facets have orientation and therefore
V (n, R) ̸= V (−n, R). Then we would use Q(Sd−1 × (0, ∞)) = 1.
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n
B(0,R)

A(n)

V(n,R)

Figure 3.1: The construction of a two-dimensional facet V (n, R) (green line seg-
ment), which is obtained as an intersection of the line A(n) with normal vector
n (in red) and the closed ball B(0, R).

where Sd−1
+ is the semi–closed unit hemisphere in Rd,

Sd−1
+ =

d⋃︂
i=1

{u ∈ Sd−1 : u1 = 0, · · · , ui−1 = 0, ui > 0}.

Thanks to Lemma 15, we can from now on only work with configurations γ
with marks m ∈ Sd−1

+ × (0, ∞). It is clear from the definition of Sd−1
+ that there

exists a bijection between m ∈ Sd−1
+ × (0, ∞) and the space of facets Vd,

m = (n, R) ≡ V (n, R),
i.e. first d coordinates define the normal vector for the corresponding facet and
the last coordinate defines the radius. Notice that we have ∥m∥ =

√
1 + R2.

Definition 23. Let γ ∈ M, then we define
A(γ) = {x + V (n, R) : (x, n, R) ∈ γ}

the set of all facets (shifted to their location) corresponding to configura-
tion γ.

An example of γ and its corresponding set of facets A(γ) in R2 can be seen
in Figure 3.2. As we have said, the energy of a configuration will depend on the
number (and volume) of intersections among facets.
Definition 24. The energy function of a facet process is the function
H : Mf → R, where

H(γ) =
d∑︂

j=2
ajϕj(γ),

ϕj(γ) =
∑︂ ̸=

K1,...,Kj∈A(γ)
Hd−j

⎛⎝ j⋂︂
i=1

Ki

⎞⎠ · 1

⎡⎣Hd−j(
j⋂︂

i=1
Ki) < ∞

⎤⎦ .

(3.2)
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Here a2, . . . , ad ∈ R are fixed constants (and at least one of them is not 0) and
Hk denotes the k-dimensional Hausdorff measure on Rd.
Remark. Notice that the dimension of ⋂︁j

i=1 Ki ̸= ∅ is larger than or equal to
(d− j) and it is equal to (d− j) if the facets Ki have linearly independent normal
vectors.

By ∑̸︁=
K1,...,Kj∈A(γ) we mean sum over all j-tuples from the set A(γ). For

simplicity, we will denote the indicator in (3.2) by 1∞, since the j-tuple of sets it
concerns is clear from the context.

We will consider the following three assumptions regarding the constants aj:
F1: We have aj ≥ 0 for all j = 2, . . . , d.

F2: We have aj ≤ 0 for all j = 2, . . . , d.

F3: There exist indices j, k ∈ {2, . . . , d} such that aj > 0 and ak < 0.
The first assumption leads to repulsive interactions between the facets – con-
figurations with a lot of interacting facets will have higher energy compared to
those with disjoint facets. On the other hand, the second assumption leads to
attractive interactions. The third assumption leads to a mixed model, as for
some j ∈ {2, . . . , d} the intersection of a j-tuple will add some energy to the total
energy of the configuration and for other j, it will lower the total energy. Now
we can define the Gibbs facet process.
Definition 25. Finite (or infinite)–volume Gibbs facet process with ac-
tivity z is defined as the finite (infinite)–volume Gibbs process with energy function
H defined in (3.2) and activity z.

In the next chapter, we consider, whether such processes exist.

3.2 Verification of Assumptions
To verify the existence of the Gibbs facet process, we must verify the assumptions
from Theorem 14: Hs, Hl, Hr and Hm. Since the assumption Hm only concerns
the mark distribution, we present a small note considering the relationship be-
tween the distribution of the normal vector and the radius. As we will see in
the following section, the range assumption Hr is satisfied for all three assump-
tions F1, F2, F3. The stability and local stability assumption Hs and Hl hold
under the assumption F1. On the other hand, for the assumptions F2 and F3,
we present counterexamples (for d = 2 and d = 3) showing that the stability
does not hold. Furthermore we prove (for d = 2) that the finite–volume Gibbs
measures do not exist.

3.2.1 The moment assumption
Let us at first comment on assumption Hm. We have to choose such mark distri-
bution Q that

∞
Hm
>
∫︂

S
exp(∥m∥d+2δ)Q(dm) =

∫︂
Rd+1

exp((∥n∥2 + R2)d/2+δ)Q(d(n, R))
(3.1)=

∫︂
Sd−1

+ ×(0,∞)
exp((1 + R2)d/2+δ)Q(d(n, R)).
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Figure 3.2: (a) Marked point pattern in R2. Each point consist of a green location
and a red mark. (b) Pattern of facets corresponding to the configuration in (a),
green points denote the centres of facets. The facet corresponding to the point
(x1, n1, r1) has its mark shown.
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Particularly, if Q = Qn
⨂︁QR, where Qn is a probability measure on Sd−1

+ and QR

is a probability measure on (0, ∞) (i.e. the tilt and the radius of the facet are
independent), we can further write

∞
Hm
>
∫︂
Sd−1×(0,∞)

exp((1 + R2)d/2+δ)Q(d(n, R)) =
∫︂ ∞

0
exp((1 + R2)d/2+δ)QR(dR).

In this case, whether our model satisfies Hm or not depends only on the distri-
bution of the radius of facets.

3.2.2 The range assumption
To address the assumption Hr, recall Definition 8 of the sets Ml, l ∈ N, from Sec-
tion 1.2. In the following lemma we just rewrite this definition into the language
of facets.

Lemma 16. Take γ ∈ Mtemp, γ ∈ Ml0. Then ∀l ≥ l0 and for all K ∈ A(γ) we
have the following implication: K ∈ A(γU(0,2l+1)c) =⇒ K ∩ U(0, l) = ∅.

Proof. From the definition of Ml0 we know that the implication

(x, m) ∈ γU(0,2l+1)c =⇒ U(0, l) ∩ B(x, ∥m∥) = ∅

holds ∀l ≥ l0 and in our case B(x, ∥m∥) = B(x,
√

1 + R2). Clearly we have that
K ⊂ B(x,

√
1 + R2) and therefore K ∩ U(0, l) = ∅.

Now we will show that the range assumption holds. Notice that the following
theorem does not specify any of the situations F1 – F3.

Theorem 17. The energy function H(γ) of a facet process defined in (3.2) sat-
isfies the assumption Hr.

Proof. Fix Λ ∈ Bd
b and l0 ∈ N. We want to prove that for all γ ∈ Mtemp such that

γΛc ∈ Ml0 there exists τ = τ(m(γΛ), l0, Λ) > 0 which is an increasing function of
m(γΛ) and for which it holds that

HΛ(γ) = H(γΛ⊕B(0,τ)) − H(γΛ⊕B(0,τ)\Λ). (3.3)

Take i0 ∈ N large enough so that Λ ⊂ Λi0 = [−i0, i0)d. From the definition of the
conditional energy, we have that

HΛ(γ) = lim
n→∞

(︂
H(γΛn) − H(γΛn\Λ)

)︂
.

We can write for all n ≥ i0

H(γΛn) − H(γΛn\Λ) =
d∑︂

j=2
aj

∑︂ ̸=

K1,...,Kj∈A(γΛn )
Hd−j

⎛⎝ j⋂︂
i=1

Ki

⎞⎠ · 1∞

−
d∑︂

j=2
aj

∑̸︂=

K1,...,Kj∈A(γΛn\Λ)
Hd−j

⎛⎝ j⋂︂
i=1

Ki

⎞⎠ · 1∞.
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To simplify this formula, define for general sets A ⊂ B ∈ Bd
b and for j = 2, . . . , d

the set of all j-tuples of points from γ in B (or more specifically the set of (non–
ordered) j-tuples of facets represented by these points) such that at least one of
these points lies in A:

Cj(γ, A, B) = {{K1, . . . , Kj} : Ki ∈ A(γB) for all i = 1, . . . , j

and ∃i such that Ki ∈ A(γA)}.

Then for any τ > 0 and n large enough so that Λ ⊕ B(0, τ) ⊂ Λn we can write

H(γΛn) − H(γΛn\Λ) =
d∑︂

j=2
aj

∑︂
{K1,...,Kj}∈Cj(γ,Λ,Λn)

Hd−j

⎛⎝ j⋂︂
i=1

Ki

⎞⎠ · 1∞

=
d∑︂

j=2
aj

∑︂
{K1,...,Kj}∈Cj(γ,Λ,Λ⊕B(0,τ))

Hd−j

⎛⎝ j⋂︂
i=1

Ki

⎞⎠ · 1∞

+
d∑︂

j=2
aj

∑︂
{K1,...,Kj}∈Cj(γ,Λ,Λn)\Cj(γ,Λ,Λ⊕B(0,τ))

Hd−j

⎛⎝ j⋂︂
i=1

Ki

⎞⎠ · 1∞.

(3.4)

Clearly the first sum does not depend on n and it is in fact equal to the desired
H(γΛ⊕B(0,r)) − H(γΛ⊕B(0,r)\Λ)). So it is sufficient to show that for the right choice
of τ each summand in the second sum is 0.

Let us discuss the choice of τ so that it satisfies Hr.

1. Since m(γΛ) is finite (there is only finitely many points in γΛ) there exists
l1(m(γΛ), Λ) = min{l ∈ N : Λ ⊕ B(0, m(γΛ)) ⊂ U(0, l)} < ∞.

2. Let l2(m(γΛ), l0, Λ) = max{l0, l1(m(γΛ), Λ)}.

3. Take

τ(m(γΛ), l0, Λ) = min{k ∈ N : U(0, 2l2(m(γΛ), l0, Λ) + 1) ⊂ Λ ⊕ B(0, k)}.

Then clearly for a < b we have that τ(a, l0, Λ) ≤ τ(b, l0, Λ). Now let n0 be
the smallest n such that Λ ⊕ B(0, τ(m(γΛ), l0, Λ)) ⊂ Λn. Let n ≥ n0 and fix
j ∈ {2, . . . , d}. For simplicity denote τ = τ(m(γΛ), l0, Λ) and l2 = l2(m(γΛ), l0, Λ)
from the second step in the definition of τ .

Take {K1, . . . , Kj} ∈ Cj(γ, Λ, Λn)\Cj(γ, Λ, Λ⊕B(0, τ)). From the definition of
Cj there exist indices i, k ∈ {1, . . . , j}, i ̸= k such that Ki = x + V (n, R) ∈ A(γΛ)
and Kk ∈ A(γΛn\Λ⊕B(0,τ)).

In particular, considering the choice of τ above, it holds that

i) Ki ⊂ U(0, l2) from the first and second step,

ii) Kk ∈ A(γU(0,2l2+1)c) from the third step,

iii) l2 ≥ l0 from the second step.
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We get from Lemma 16 that Ki ∩ Kk = ∅ and so Hd−j
(︂⋂︁j

i=1 Ki

)︂
= 0. This holds

for all {K1, . . . , Kj} ∈ Cj(γ, Λ, Λn) \ Cj(γ, Λ, Λ ⊕ B(0, τ)) and therefore we have
that ∀n ≥ n0, using (3.4) for τ = τ(m(γΛ), l0, Λ):

H(γΛn) − H(γΛn\Λ) =
d∑︂

j=2
aj

∑︂
{K1,...,Kj}∈Cj(γ,Λ,Λ⊕B(0,τ))

Hd−j

⎛⎝ j⋂︂
i=1

Ki

⎞⎠ · 1∞.

Therefore we get that

HΛ(γ) = lim
n→∞

H(γΛn) − H(γΛn\Λ)

=
d∑︂

j=2
aj

∑︂
{K1,...,Kj}∈Cj(γ,Λ,Λ⊕B(0,τ))

Hd−j

⎛⎝ j⋂︂
i=1

Ki

⎞⎠ · 1∞.

=
d∑︂

j=2
aj

∑︂ ̸=

K1,...,Kj∈A(γΛ⊕B(0,τ))
Hd−j

⎛⎝ j⋂︂
i=1

Ki

⎞⎠ · 1∞

−
d∑︂

j=2
aj

∑̸︂=

K1,...,Kj∈A(γΛ⊕B(0,τ)\Λ)
Hd−j

⎛⎝ j⋂︂
i=1

Ki

⎞⎠ · 1∞

= H(γΛ⊕B(0,τ)) − H(γΛ⊕B(0,τ)\Λ).

Remark. Notice that analogous choice of τ would also work for the energy func-
tions from (1.8).

3.2.3 Stability and local stability assumptions
Recall the assumptions Hl and Hs from Section 2.1.2 and the assumptions F1,
F2 and F3 for the energy function of facet process. Then we present the following
two results. The first one is that under F1 (i.e. the repulsive model), the infinite
volume Gibbs facet process exists.

Theorem 18. Let the energy function of a facet process satisfy F1 and assume
that the reference mark distribution Q satisfies Hm. Then the infinite–volume
Gibbs facet process exists.

Proof. If we consider the situation F1, i.e. aj ≥ 0, ∀j ∈ {2, . . . , d}, then the
energy function of a facet process H is non–negative and therefore the stability
assumption Hs holds. Since H clearly satisfies Claim 4, also the local stability
assumption Hl holds. Theorem 17 shows that also the range assumption Hr is
satisfied and therefore the assumption of Theorem 14 hold and the existence is
proven.

Considering situations F2 and F3 (i.e. the clustering and mixed models), we
bring following results.
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3.2.4 A counterexample for negative aj in R2

In this subsection we consider facet process in R2, i.e.

H(γ) = a2
∑̸︂=

K1,K2∈A(γ)
H0 (K1 ∩ K2) · 1∞. (3.5)

Suppose that a2 < 0, we can assume for simplicity that a2 = −1. We will show
that not only are we able to find a counterexample proving that the stability
assumption does not hold, but we are in fact able to prove that the finite volume
Gibbs measures do not exist at all.

The first step will be to find a sequence {γN}N∈N ⊂ Mf contradicting the
stability assumption Hs. In the second step we show that we can for some Λ ∈ B2

b

(and under some mild assumptions on the mark distribution Q) modify these
configurations to form a sequence of subsets AΛ,N ⊂ Mf such that

i) πz
Λ(AΛ,N) > 0, ∀N ∈ N,

ii) Hs does not hold on ⋃︁N∈N AΛ,N .

In the final step we use sets AΛ,N to show that the partition function ZΛ is infinite.

Step 1) Consider the following lemma.

Lemma 19. The energy function of a facet process in R2 (i.e. (3.5)) does not
satisfy the stability assumption Hs for a2 < 0.

Proof. Take N ∈ N even, n1, n2 ∈ S1
+ and R > 0 and take γN ∈ Mf satisfying

i) supp γN = {(x1, n1, R), . . . , (xN
2

, n1, R), (xN
2 +1, n2, R), . . . , (xN , n2, R)},

ii) normal vectors n1, n2 ∈ S1
+ satisfy n1 ̸= n2,

iii) location points satisfy xi = (x1
i , 0)T , where 1 = x1

1 > x1
2 > · · · > x1

N
2

> 0
and −1 = x1

N
2 +1 < x1

N
2 +2 < · · · < x1

N < 0,

iv) R is a large enough constant (depending on n1, n2) such that the facets
x1 + V (n1, R) and xN

2 +1 + V (n2, R) intersect.

For such configuration it holds that each facet given by points (xi, n1, R),
i ∈ {1, . . . , N

2 } intersects all facets given by the second half of the points and
there are no intersections within the first half and within the second half. So we
have that

H(γN) = −
∑︂ ̸=

K1,K2∈A(γN )
H0 (K1 ∩ K2) · 1∞ = −N

2 · N

2 .

At the same time
⟨︂
γN , 1 + ∥m∥2+δ

⟩︂
=

N∑︂
i=1

(1 + (1 + R2)1+ δ
2 ) = N · (1 + (1 + R2)1+ δ

2 ).
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Denote by b := (1 + (1 + R2)1+ δ
2 ) < ∞ the constant, which does not depend

on N . Assume for contradiction that Hs holds, i.e. there ∃c > 0 such that
∀γ ∈ Mf : H(γ) ≥ −c

⟨︂
γ, 1 + ∥m∥2+δ

⟩︂
. Then we get that ∀N ∈ N even

−N

2 · N

2 ≥ −c · N · b,

which is clearly a contradiction. Therefore, the assumption Hs cannot hold for
a2 < 0, since we would need the energy to grow somehow linearly, but we sum
over all pairs of points, i.e. the growth can be, in the worst case, quadratic.

Remark. Consequently, the energy function of a facet process in R2 also does not
satisfy Hl.

Step 2) From now on we assume that there exist vectors u, v ∈ S1
+, constants

0 < a ≤ b < ∞ and ε > 0 such that

Q(U(u ± ε) × (a, b)) > 0, Q(U(v ± ε) × (a, b)) > 0,

U(u ± ε) ∩ U(v ± ε) = ∅.
(3.6)

where U(u ± ε) = {w ∈ S1
+ : |∢(u, w)| ≤ ε} (here by ∢(u, w) we denote the

angle between the vectors u and w).
We are able to find a set Λ such that if two facets have centres inside Λ, their

normal vectors do not differ too much from u and v, respectively, and their length
is at least a, then they must intersect in one point.

Lemma 20. For given constants a, ε > 0 and two different vectors u, v ∈ S1
+

there exists set Λ ∈ B2
b such that

|(x + V (n, R)) ∩ (y + V (m, T ))| = 1

holds for all x, y ∈ Λ, x ̸= y, n ∈ U(u ± ε), m ∈ U(v ± ε) and R > a, T > a.

Proof. Set Λ0 = [−1, 1]2 and take x, y ∈ Λ0, n ∈ U(u ± ε), n = (n1, n2)T , and
m ∈ U(v ±ε), m = (m1, m2)T . We will denote by ⟨x, y⟩ the standard dot product
on R2. Denote by

p(x, n) = {z ∈ R2 : ⟨z, n⟩ = ⟨n, x⟩}

the line given by a point x and a normal vector n and analogously line p(y, m)
given by a point y and a normal vector m. Then because of assumption (3.6)
n ̸= ±m and these two lines intersect in one point:

P (x, y, n, m) = A−1b,

where b = (⟨n, x⟩ , ⟨m, y⟩)T and

A =
(︄

n1 n2
m1 m2

)︄
.

Then we can define a function f1 as the distance from point x to the intersection
P (x, y, n, m):

f1(x, y, n, m) = ∥x − P (x, y, n, m)∥.
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This is a continuous function on Λ0 ×Λ0 ×U(u±ε)×U(v±ε), which is a compact
subset of R8. Therefore, function f1 has a maximum M1 on this set. Analogously,
we can define f2 as the distance from point y to the intersection P (x, y, n, m) and
there exists its maximum M2 on Λ0 × Λ0 × U(u ± ε) × U(v ± ε). Now we only
need the following observation. Take any s > 0, then

f1(sx, sy, n, m) = ∥sx − P (sx, sy, n, m)∥ =
= ∥sx − A−1(⟨n, sx⟩ , ⟨m, sy⟩)T ∥ = s∥x − A−1b∥ =
= sf1(x, y, n, m).

Therefore the maximum of f1 on sΛ0 × sΛ0 × U(u ± ε) × U(v ± ε) is sM1 and
analogously the maximum of f2 on sΛ0 × sΛ0 × U(u ± ε) × U(v ± ε) is sM2. Now
it is enough to find s > 0 small enough such that max{sM1, sM2} < a and take
Λ = sΛ0 = [−s, s]2.

Now we take Λ from Lemma 20 and denote

Gu = Λ × U(u ± ε) × (a, b) and Γu = (zλΛ ⊗ Q) (Gu),
Gv = Λ × U(v ± ε) × (a, b) and Γv = (zλΛ ⊗ Q) (Gv),

D = Λ × S \ (Gu ∪ Gv) and ∆ = (zλΛ ⊗ Q) (D).

Then we define, ∀k ∈ N, the following set of configurations

AΛ,2k = {γ ∈ Mf : |γ| = 2k, γ(Gu) = k, γ(Gv) = k} ⊂ MΛ. (3.7)

Thanks to the assumption (3.6), it holds that

πz
Λ(AΛ,2k) = e−∆ · e−Γu · Γk

u

k! · e−Γv · Γk
v

k! > 0 (3.8)

and thanks to Lemma 20 we have that ∀k ∈ N and ∀γ ∈ AΛ,2k

H(γ) = −
∑︂

K1,K2∈A(γ)
H0 (K1 ∩ K2) · 1∞ = −k · k,

⟨︂
γ, 1 + ∥m∥2+δ

⟩︂
=

2k∑︂
i=1

(1 + (1 + R2
i )1+ δ

2 ) ≤ 2k · (1 + (1 + b2)1+ δ
2 ).

(3.9)

Therefore we have the following claim.

Claim 21. 1. Assumption Hs does not hold on the set ⋃︁k∈N AΛ,2k.

2. It holds that πz
Λ(AΛ,2k) > 0, ∀k ∈ N and consequently πz

Λ(⋃︁k∈N AΛ,2k) > 0.

Proof. Analogously like in step 1), if for contradiction there existed c > 0 such
that

∀γ ∈
⋃︂

k∈N
AΛ,2k : H(γ) ≥ −c

⟨︂
γ, 1 + ∥m∥2+δ

⟩︂
,

then we would get, using (3.9), that ∀k ∈ N

−k · k ≥ −c · 2k · (1 + (1 + b2)1+ δ
2 ).

Part 2) is proven in (3.8).
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Step 3) So far, we have only shown that the assumptions Hs (and consequently
Hl) are not satisfied for negative a2 and therefore we cannot use Theorem 14 to
show that the infinite volume Gibbs measure for the facet process exists. However,
using the sets AΛ,2k defined above, we are in fact capable to prove that the finite–
volume Gibbs measures do not exist.

Recall the Stirling’s formula:

lim
n→∞

n!√
2πn(n

e
)n

= 1. (3.10)

Theorem 22. If a2 < 0 and mark distribution Q satisfies (3.6) then it holds that
ZΛ̃ = +∞, ∀Λ̃ ∈ B2

b , and therefore the finite volume Gibbs measures do not exist.

Proof. Take Λ from Lemma 20 and AΛ,2k, k ∈ N, defined in (3.7). Then we can
write ∀k ∈ N that

ZΛ =
∫︂

MΛ
e−H(γ)πz

Λ(dγ) ≥
∫︂

AΛ,2k

e−H(γ)πz
Λ(dγ) =

= ek2 · πz
Λ(AΛ,2k) = ek2 · e−∆ · e−Γu · (Γu)k

k! · e−Γv · (Γv)k

k! .

We have used (3.8) and (3.9). Thanks to the Stirling’s formula (3.10) the right
side converges to ∞ with k → ∞ and therefore ZΛ = ∞. Now take any Λ̃ ∈ Bd

b .
Since H is assumed to be translation invariant we can, without loss of generality,
assume that there exists a constant 1 ≥ t > 0 such that tΛ ⊂ Λ̃. Going back to
the proof of Lemma 20, we could have used the approach from Step 2) for tΛ and
everything would have worked in the same way, so we can assume, without loss
of generality, that Λ ⊂ Λ̃.

Now denote D̃ = Λ̃ × S \ (Gu ∪ Gv) and ∆̃ = (zλΛ̃ ⊗ Q)(D̃). Then we can
write

ZΛ̃ =
∫︂

MΛ̃

e−H(γ)πz
Λ̃(dγ) ≥

∫︂
AΛ,2k

e−H(γ)πz
Λ̃(dγ) =

= ek2 · πz
Λ̃(AΛ,2k) = ek2 · e−∆̃ · e−Γu · (Γu)k

k! · e−Γv · (Γv)k

k! ,

and we can again use the Stirling’s formula to get that ZΛ̃ = ∞.

3.2.5 A counterexample for negative aj in R3

In this subsection we consider the facet process in R3. We have

H(γ) = a3
∑̸︂=

K1,K2,K3∈A(γ)
H0

(︄ 3⋂︂
i=1

Ki

)︄
· 1∞ + a2

∑̸︂=

K1,K2∈A(γ)
H1

(︄ 2⋂︂
i=1

Ki

)︄
· 1∞. (3.11)

The number of triplets is of order N3 while the number of pairs is only of order
N2, where N = |γ|. Therefore for large N the second sum will be negligible with
respect to the first sum. For a3 < 0 and a2 ∈ R we will run into similar problems
as in the previous example. It remains to consider whether we could take a3 > 0
and a2 < 0.
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As it turns out, this approach also does not work as we are capable to construct
such configuration γN for which any triplet of facets K1, K2, K3 ∈ A(γN) does
not intersect, but ”enough” (i.e. of quadratic order) pairs intersect.

Fix N ∈ N even and consider the following construction. Set γN ∈ Mf ,
supp γN = {(x1, n1, R), . . . , (xN

2
, n1, R), (xN

2 +1, n2, R), . . . , (xN , n2, R)}, where

i) n1 = 1√
2(1, 0, 1)T and n2 = 1√

2(−1, 0, 1)T ,

ii) location points satisfy xi = (x1
i , 0, 0)T , where 1 = x1

1 > x1
2 > · · · > x1

N
2

> 0
and −1 = x1

N
2 +1 < x1

N
2 +2 < · · · < x1

N < 0,

iii) R is a large enough constant (e.g. R = 2).

We can see these configurations in Figure 3.3.
For such γN , no triplet of facets intersects and each facet belonging to the first

half of the points intersects every facet belonging to the second half of the points.
Therefore we have N

2 · N
2 pairs of facets K1, K2 ∈ A(γN) such that K1 ∩ K2 ̸= ∅.

Moreover, if we denote by K and L the facets belonging to the furtherest
apart points (x1, n1, R) and (xN

2 +1, n2, R) (from the construction of γN these
do not depend on N), we have that H1 (K ∩ L) ≤ H1 (Ki ∩ Kj) for any other
intersecting pair Ki, Kj ∈ A(γN), ∀N ∈ N even.

Suppose again for contradiction, that there ∃c > 0 such that

∀γ ∈ Mf : H(γ) ≥ −c
⟨︂
γ, 1 + ∥m∥3+δ

⟩︂
for H defined in (3.11) for a3 > 0 and a2 < 0 (again, we can assume that a2 = −1).
Then we can write ∀N ∈ N even

N2

4 · H1 (K ∩ L) ≤
∑︂

K1,K2∈A(γN )
H1

(︄ 2⋂︂
i=1

Ki

)︄
· 1∞ = −H(γN)

Hs

≤ c
⟨︂
γ, 1 + ∥m∥3+δ

⟩︂
= N(1 + (1 + R) 3+δ

2 ).

This implies N ≤ 4
H1(K∩L) · (1 + (1 + R) 3+δ

2 ) for all N ∈ N even, which is clearly
a contradiction.
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Figure 3.3: Examples of configurations γN defined in Section 3.2.5 with the num-
ber of points being in order N = 2, N = 4 and N = 6 and with R = 2.
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4. Gibbs-Laguerre Process
In this section we will consider the class of Gibbs-Laguerre processes, that present
a model for random tessellations. We only consider tessellations of R2. We were
not able to use the existence theorem from article Rœlly and Zass [2020] to prove
that an infinite-volume Gibbs-Laguerre processes exist in general, but we were
able to derive new existence theorem for a particular energy function, under the
assumption that we almost surely see a point.

The theory for tessellations and Laguerre diagrams in R2, presented in Sec-
tion 1.5 and Chapter 2 in Lautensack [2007] for general Rd, is summarized in
Section 4.1 and enlarged by our own auxiliary lemmas in Section 4.1.2. Then in
Section 4.2 we consider Gibbs process with energy function (4.10).

In this chapter, it will be useful to regard γ ∈ M as a locally finite subsets
of the state space rather then a locally finite measure (see Remark 1. in Section
1.1).

4.1 Tessellations and Laguerre Geometry
Recall that a convex polytope in R2 is defined as a convex hull of finitely many
points and it holds that a bounded intersection of finitely many closed half–
planes is a convex polytope. For a convex polytope P we define an edge of
the polytope P (more generally called 1–face) as a 1-dimensional intersection
of P with its supporting hyperplanes and we define a vertex of the polytope
P (more generally called 0–face) as a 0-dimensional intersection of P with its
supporting hyperplanes1. We denote the set of all edges of P by ∆1(P ) and the
set of all vertices of P by ∆0(P )
Remark. For A ⊂ R2 we denote by int(A) the interior of the set A, by clo(A) the
closure of A and by bd(A) = clo(A) \ int(A) the boundary of A.

Definition 26. We say that a set T = {Ci : i ∈ N}, where Ci ⊂ R2, is a
tessellation of R2, if

i) int(Ci) ∩ int(Cj) = ∅ for i ̸= j,

ii) ⋃︁i Ci = R2 (it is space filling) ,

iii) |{Ci ∈ T : Ci ∩ B ̸= ∅}| < ∞ for all B ⊂ R2 bounded (T is locally finite),

iv) the sets Ci (called cells) are convex compact sets with interior points.

It holds that the cells of a tessellation are convex polytopes (see Lemma 10.1.1
in Schneider and Weil [2008]).

Particularly we have the sets of all vertices and edges of a cell C denoted by
∆0(C) and ∆1(C), respectively. Then we can define the set of edges of cells of a
tessellation T as ∆1(T ) = ⋃︁

C∈T ∆1(C). We can also define the set of edges of a
tessellation.

1See Schneider [1993], Section 2.4., for the theoretical background.
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Figure 4.1: Three examples of a tessellation of R2. Left: a general tessellation,
that is not face-to-face, middle: a face-to-face tessellation, that is not normal and
right: a normal tessellation.

Definition 27. We define the set of edges of a tessellation T as

S1(T ) =
{︂
F (y) : dim(F (y)) = 1, y ∈ R2

}︂
,

where the set F (y) is the intersection of all cells of T containing the point y,

F (y) =
⋂︂

C∈T : y∈C

C.

Analogously, we could define S0(T ), the set of vertices of a tessellation T.
It always holds that ∆0(T ) = S0(T ), but it can happen that ∆1(T ) ̸= S1(T ). We
will not consider such tessellations in our work.

Definition 28. A tessellation T of R2 is called face-to-face, if the edges of the
cells and the edges of the tessellation coincide, i.e. ∆1(T ) = S1(T ).

Not every tessellation is face-to-face, as we can see in Figure 4.1. We will also
pose assumptions on the vertices of the tessellation.

Definition 29. A tessellation T is called normal, if it is face-to-face, every edge
is contained in the boundary of exactly two cells and every vertex is contained in
the boundary of exactly three cells.

An example of a normal and non-normal tessellation can be seen in Figure
4.1. We will now focus only on a special kind of tessellations, so-called Laguerre
diagrams, which are based on the power distance from some fixed set of weighted
points.

Definition 30. For x, z ∈ R2 and u ≥ 0 define the power distance of z and
weighted point (x, u) as ρ(z, (x, u)) = |x − z|2 − u2.
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Figure 4.2: The geometric interpretation of the power distance.

The geometric interpretation of the power distance can be seen in Figure
4.2. The power distance ρ(z, (x, u)) is a power of the point z w. r. t. the circle
S(x, u) with centre x and radius u. Particularly we have that ρ(z, (x, u)) > 0
for z ∈ B(x, u)c, ρ(z, (x, u)) = 0 for z ∈ bd(B(x, u)) and ρ(z, (x, u)) < 0 for
z ∈ U(x, u). Denote for points x, y ∈ R2 and weights u, v ≥ 0

HP ((x, u), (y, v)) =
{︂
z ∈ R2 : ρ(z, (x, u)) = ρ(z, (y, v))

}︂
=
{︂
z ∈ R2 : 2 ⟨y − x, z⟩ = |y|2 − |x|2 + u2 − v2

}︂
the line separating R2 into two half-planes based on the power distances to (x, u)
and (y, v) and

P ((x, u), (y, v)) =
{︂
z ∈ R2 : ρ(z, (x, u)) ≤ ρ(z, (y, v))

}︂
=
{︂
z ∈ R2 : 2 ⟨y − x, z⟩ ≤ |y|2 − |x|2 + u2 − v2

}︂ (4.1)

the closed half-plane, whose points are closer to (x, u) then to (y, v) w. r. t. to the
power distance. Particularly the line HP ((x, u), (y, v)) for two weighted points
(x, u), (y, v) is the radical axis of the circles S(x, u) and S(y, v) and is perpendic-
ular to the line going through x and y.

Now take at most countable subset γ ⊂ R2 × (0, ∞) of weighted points. We
will use the notation x = (x′, x′′) for x ∈ γ, where x′ denotes the location and x′′

the weight of the point. We consider the following assumption

(R0) ∀z ∈ R2 ∃ min
x∈γ

ρ(z, x).

Definition 31. Take at most countable subset γ ⊂ R2 × (0, ∞) satisfying the
assumption (R0). Then we can define the Laguerre diagram of γ as

L(γ) = {L(x, γ) : x ∈ γ, L(x, γ) ̸= ∅},
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Figure 4.3: An example of a Laguerre diagram with a point with empty cell (red
nucleus) and a point whose nucleus does not lie in its cell (green nucleus and
green cell). The reference for this figure is Lautensack [2007].

where L(x, γ) is the Laguerre cell of x in γ defined as

L(x, γ) = {z ∈ R2 : ρ(z, x) ≤ ρ(z, y) ∀y ∈ γ}.

We call x′ the nucleus of the cell L(x, γ) and γ the set of generators of L(γ).

Special case of Laguerre diagram is the Voronoi diagram, which is generated
by a configuration of points with constant weights. Voronoi diagram generated
by γ is a partition of R2 into sets of points closest to each nucleus in the Euclidean
norm. Particularly, each nucleus produces a cell and lies in it.

Unfortunately, Laguerre diagram does not keep these properties in general, as
can be seen in Figure 4.3. Nucleus does not necessarily lie in its cell and some
nuclei may not generate a cell at all. The necessary condition for a point x to
produce an empty cell is that

B(x′, x′′) ⊂
⋃︂

y∈γ, y ̸=x

B(y′, y′′),

but unfortunately, it is not a sufficient condition. We will denote the set of points
from γ, whose Laguerre cells are empty, as E(γ) = {x ∈ γ : L(x, γ) = ∅}.

Clearly from the definition, the (possibly empty) Laguerre cell can be written
as

L(x, γ) =
⋂︂
y∈γ

P (x, y). (4.2)

We would like to know whether L(γ) is, under some conditions, a normal tessel-
lation. The definition of a tessellation assumes that the cells are bounded subsets
of R2, however this will not be true for some Laguerre cells if the set of gener-
ators is finite. Therefore we treat the situation with a finite set of generators
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separately in the next section. For the countable set of generators we have two
sets of assumptions.

Definition 32. We say that γ ⊂ R2 × (0, ∞) fulfils regularity conditions, if
it satisfies

(R1) for all (z, t) ∈ R2 ×R only finitely many x ∈ γ satisfy |z − x′|2 − (x′′)2 ≤ t,

(R2) conv{x′ : (x′, x′′) ∈ γ} = R2.

Notice that (R1) =⇒ (R0).

Definition 33. We say that γ ⊂ R2 × (0, ∞) is in general position, if the
following conditions hold

(GP1) no 3 nuclei are contained in a 1-dimensional affine subspace of R2,

(GP2) no 4 points have equal power distance to some point in R2.

Then the following theorem holds.

Theorem 23. Let γ satisfy (R1) and (R2). Then every cell L(x, γ), where x ∈ γ,
is compact, L(γ) is locally finite and space filling and

L̃(γ) = {L(x, γ) ∈ L(γ) : int(L(x, γ)) ̸= ∅}

is a face-to-face tessellation. If γ satisfies (R1),(R2), (GP1) and (GP2), then
all cells of L(γ) have dimension 2 and the Laguerre diagram L(γ) is a normal
tessellation.

Proof. Lautensack [2007], from Proposition 2.2.2 to Theorem 2.2.8.

Finite set of generators will not satisfy the condition (R2), hence Theorem 23
cannot be used in this case.

4.1.1 A finite set of generators
Assume that γ ⊂ R2 × (0, ∞) is finite, γ = {x1, . . . , xN} for some N ∈ N. Then
the assumption (R0) surely holds and therefore the Laguerre cell L(x, γ) is well de-
fined ∀x ∈ γ. We have from (4.2) that each cell is an intersection of finitely many
closed hyperplanes. Bounded L(x, γ) are therefore convex polytopes. Clearly

R2 =
N⋃︂

i=1
L(xi, γ)

and for two points xi, xj ∈ γ such that their cells have non-empty interiors, we
get that int (L(xi, γ)) ∩ int (L(xj, γ)) = ∅.

Analogously as in the previous part we define the sets

• S1(γ) = {F (y) : dim(F (y)) = 1, y ∈ R2}

• S0(γ) = {F (y) : dim(F (y)) = 0, y ∈ R2}

of edges and vertices of diagram L(γ). We can also define the sets of vertices and
edges of the Laguerre cell L(x, γ)
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• ∆i(γ) = ⋃︁
x∈γ ∆i(x, γ) for i = 0, 1,

where ∆i(x, γ) denotes the set of i-dimensional intersections of the cell L(x, γ)
with the hyperplanes HP (x, y), y ∈ γ.

Claim 24. The diagram L(γ) is well defined for a finite set of generators γ.
Assume that γ satisfies (GP1) and (GP2). Then it holds that the cell L(x, γ) is
either empty or it has dimension 2, S1(γ) = ∆1(γ), each vertex v ∈ ∆0(γ) lies in
the boundary of exactly three cells and each edge e ∈ ∆1(γ) lies in the boundary
of exactly two cells.

Proof. Assume that L(x, γ) ̸= ∅ and dim(L(x, γ)) ≤ 1. If dim(L(x, γ)) = 1,
then it must hold that L(x, γ) ⊂ HP (xi, xj) for some xi, xj ∈ γ, xi ̸= xj ̸= x.
But this would mean that the three points xi, xj, x lie on a line, since then
HP (xi, xj) = HP (x, xj) = HP (xi, x) and these hyperplanes are perpendicular
to the lines going through the corresponding pairs of points. Hence we get a
contradiction with (GP1). Analogously if an edge u lies in the boundary of three
or more cells, then their nuclei lie on a line, a contradiction with (GP1).

If dim(L(x, γ)) = 0 i.e. L(x, γ) = {z} for some z ∈ R2, then there exist
xi, xj, xk ∈ γ such that x, xi, xj, xk have the same power distance to z, which is
a contradiction with (GP2). Analogously if a vertex lies in the boundary of four
or more cells, then the power distance of the vertex and the nuclei of these cells
would be the same, a contradiction with (GP2).

For finite γ in general position we say that L(γ) is a generalized normal
tessellation.

4.1.2 Auxiliary lemmas
In this section we present several technical lemmas about Laguerre diagram, its
cells and the preservation of regularity conditions and the general position. The
main goal of this section is to rigorously derive properties, which will be used
in the following sections rather intuitively. We will also connect the tempered
configurations and Laguerre theory, as we know from the previous sections that
Gibbs measures are concentrated on the set Mtemp.

Lemma 25. Let γ ⊂ R2 × (0, ∞) be at most countable set of points such that it
satisfies (GP1) and (GP2) and E(γ) = ∅. Then for all x ∈ γ also E(γ \ x) = ∅
and γ \ x satisfies (GP1) and (GP2).

Proof. Conditions (GP1) and (GP2) cannot be broken by removing a point. The
rest holds since ∀x, y ∈ γ, y ̸= x we can write L(y, γ) ⊂ L(y, γ \ {x}).

Remark. The fact that L(x, γ) ⊂ L(x, ν) for x ∈ ν ⊂ γ is a simple but useful
property, which is important to keep in mind for the future derivations.

Denote for γ ⊂ R2 × (0, ∞) the set of its nuclei γ′ = {x′ : (x′, x′′) ∈ γ}.

Lemma 26. Let γ ⊂ R2 × (0, ∞) satisfy (R1) and (R2). Then it holds that also
γ \ {x} satisfies (R1) and (R2), ∀x ∈ γ.
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Proof. Let γ satisfy (R1) and (R2) and take x ∈ γ. Clearly the condition (R1)
is satisfied for γ \ {x}. Concerning condition (R2), we will at first show that for
A ⊂ R2 we have that clo(conv{A}) = R2 =⇒ conv{A} = R2.

If for contradiction ∃ z ∈ clo(conv{A}) \ conv{A}, then by a separating theo-
rem (see Schneider [1993], Theorem 1.3.4.) there exists a closed half-plane L such
that conv{A} ⊂ L, which implies that R2 = clo(conv{A}) ⊂ L, a contradiction.

Now assume for contradiction that conv{γ′} = R2 but conv{γ′ \ {x′}} ̸= R2.
Then x′ /∈ clo(conv{γ′ \ {x′}}) (since if x′ ∈ clo(conv{γ′ \ {x′}}), then we would
have clo(conv{γ′ \ {x′}}) = R2 =⇒ conv{γ′ \ {x′}} = R2). Therefore we can
strongly separate point x′ and closed convex set clo(conv{γ′ \ {x′}}) by a closed
half-plane H (again see Schneider [1993], Theorem 1.3.4.), i.e.

clo(conv{γ′ \ {x′}}) ⊂ H and x′ /∈ H.

We can choose z ∈ R2 such that x′ ∈ H + z and therefore γ′ ⊂ H + z which in
turn implies R2 = conv{γ′} ⊂ H + z, which is a contradiction.

Next we will show that Laguerre cells can be represented as a finite inter-
sections of the closed half-planes P (x, y) (see (4.1)). This proof is just a slight
modification of the proof of Lemma 10.1.1. in Schneider and Weil [2008], however,
since the formula (4.3) is a key property, we include it in here.

Lemma 27. Let γ ⊂ R2 × (0, ∞) be such that L(γ) is a tessellation. Then
∀L(x, γ) ∈ L(γ) there exist kx ∈ N and yx

i ∈ γ \ E(γ), i = 1, . . . , kx, such that

L(x, γ) =
kx⋂︂

i=1
P (x, yx

i ). (4.3)

Proof. Clearly ∀x ∈ γ we can write

L(x, γ) =
⋂︂
y∈γ

P (x, y). (4.4)

Take L(x, γ) ∈ L(γ). Since L(γ) is a tessellation, then from Definition 26 iii) and
iv) we get that

kx + 1 = |{L(y, γ) ∈ L(γ) : L(y, γ) ∩ L(x, γ) ̸= ∅}| < ∞. (4.5)

Denote yx
1 , . . . , yx

kx
such points from γ \ {x} that L(x, γ) ∩ L(yx

i , γ) ̸= ∅. We want
to show that L(x, γ) = ⋂︁kx

i=1 P (x, yx
i ).

Clearly from (4.4) we get that L(x, γ) ⊂ ⋂︁kx
i=1 P (x, yx

i ). Assume for contra-
diction that there exists z ∈ ⋂︁kx

i=1 P (x, yx
i ) such that z /∈ L(x, γ). From Defi-

nition 26 iv) we get that ∃w ∈ int(L(x, γ)) ⊂ int
(︂⋂︁kx

i=1 P (x, yx
i )
)︂
. Denote by

U = {λz + (1 − λ)w : λ ∈ [0, 1]} the line segment with end points z and w. Then
∃z′ ∈ U ∩ bd (L(x, γ)), z ̸= z′, and we have the following two properties (see the
end of this proof for the arguments why they hold)

1) bd (L(x, γ)) = ⋃︁kx
i=1

(︂
L(x, γ) ∩ L(ykx

i , γ)
)︂

,

2) z′ ∈ int
(︂⋂︁kx

i=1 P (x, yx
i )
)︂

.
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But since z′ ∈ bd (L(x, γ)), 1) implies that there exists j ∈ {1, . . . , kx} such
that z′ ∈ L(yx

j , γ). On the other hand 2) implies that ∀i ∈ {1, . . . , kx} we have

z′ ∈ int(P (x, yx
i )). Therefore 1) and 2) imply that ρ(z′, yx

j )
1)
≤ ρ(z′, x)

2)
< ρ(z′, yx

j ),
which is a contradiction. Therefore ⋂︁kx

i=1 P (x, yx
i ) ⊂ L(x, γ), which completes the

proof.
Proof of 1): We have that

bd (L(x, γ)) D.26= bd (L(x, γ)) ∩
⋃︂
y∈γ

L(y, γ) = bd (L(x, γ)) ∪
kx⋃︂

i=1
(L(x, γ) ∩ L(yx

i , γ))

from the choice of yx
i . We denote

A =
kx⋃︂

i=1
L(x, γ) ∩ L(yx

i , γ),

then clearly A ⊂ bd (L(x, γ)). Let z ∈ bd (L(x, γ)), then for all n ∈ N there
exists zn ∈ B(z, 1

n
) ∩ ⋃︁y∈γ,y ̸=x L(y, γ). Therefore zn → z and

{zn, n ∈ N} ⊂ B(z, 1) ∩
⋃︂

y∈γ,y ̸=x

L(y, γ) D.26,iii)= B(z, 1) ∩
N⋃︂

j=1
L(yj, γ),

hence {zn, n ∈ N} ⊂ ⋃︁N
j=1 L(yj, γ) which is closed, so also z ∈ ⋃︁N

j=1 L(yj, γ) and
∃j such that z ∈ L(yj, γ) (i.e. L(x, γ) ∩ L(yj, γ) ̸= ∅). But from the choice of yx

i

it must hold that ∃i such that yj = yx
i and therefore z ∈ A.

Proof of 2): Since z′ ̸= z we have that z′ ∈ {λz + (1 − λ)w : λ ∈ [0, 1)}. Since
w ∈ int⋂︁kx

i=1 P (x, yx
i ) and z ∈ ⋂︁kx

i=1 P (x, yx
i ), we get that

{λz + (1 − λ)w : λ ∈ [0, 1)} ⊂ int
⎛⎝ kx⋂︂

i=1
P (x, yx

i )
⎞⎠ .

Remark. For x ∈ γ, we will call {yx
1 , . . . , yx

kx
}, defined by (4.5) as those points

whose cells intersect the cell L(x, γ), the set of neighbours of the point x.
For γ finite and in general position, each non-empty Laguerre cell can also be

written (using (4.2) and analogous proof as in Lemma 27) as

L(x, γ) =
kx⋂︂

i=1
P (x, yx

i ),

where yx
i are as in Lemma 27.

If we furthermore take into consideration the definition of tempered configu-
rations, we can get a similar result for empty Laguerre cells.

Lemma 28. Let γ ⊂ R2 × (0, ∞) be such that γ ∈ Mtemp, it satisfies regularity
conditions and it is in general position. Then ∀x ∈ E(γ) = {x ∈ γ : L(x, γ) = ∅}
there exist kx ∈ N and yx

1 , . . . , yx
kx

∈ γ such that L(x, γ) = ⋂︁kx
i=1 P (x, yx

i ).
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Proof. Let x ∈ E(γ), i.e. L(x, γ) = ∅. Then it must hold that

B(x′, x′′) ⊂
⋃︂

y∈γ,y ̸=x

B(y′, y′′).

The set B(x′, x′′) is bounded and γ is tempered, therefore there exists l such that
l ≥ l(t), where l(t) is from Lemma 1, and B(x′, x′′) ⊂ U(0, l). Therefore we know
that ∀y ∈ γU(0,2l+1)c we have that B(x′, x′′) ∩ B(y′, y′′) = ∅. So we can write

B(x′, x′′) ⊂
⋃︂

y∈γU(0,2l+1), y ̸=x

B(y′, y′′).

Let φ = γU(0,2l+1)c ∪ {x}, then according to Lemmas 25 and 26 it holds that
φ satisfies regularity condition and is in general position. Particularly L(φ) is
a (normal) tessellation. Furthermore it holds that B(x′, x′′) ̸⊂ ⋃︁

y∈φ,y ̸=x B(y′, y′′)
and therefore ∅ ̸= L(x, φ) ∈ L(φ). This allows us to use Lemma 27 and we get
that there exist yx

1 , . . . , yx
nx

∈ φ such that L(x, φ) = ⋂︁nx
i=1 P (x, yx

i ).
Altogether we get that

L(x, γ) =
⋂︂
y∈γ

P (x, y) =
⋂︂

y∈γU(0,2l+1)

P (x, y) ∩
⋂︂

y∈γU(0,2l+1)c

P (x, y) =

=
⋂︂

y∈γU(0,2l+1)

P (x, y) ∩ L(x, φ) =
⋂︂

y∈γU(0,2l+1)

P (x, y) ∩
nx⋂︂
i=1

P (x, yx
i ).

Thanks to the local finiteness of γ, there is only finitely many points in γU(0,2l+1),
which completes the proof.

Notice that, in contrast with non-empty cells, we do not have a specific formula
for the ”neighbours” of an empty Laguerre cell, we can only say that it is empty
thanks to finitely many points. What follows now is an auxiliary lemma for the
proof that tempered configurations satisfy (R0) and (R1).

Lemma 29. Let l ∈ N. Then ∀z ∈ U
(︂
0, 1

2 l
)︂

and ∀y′ ∈ U(0, 2l+1)c the following
inequalities hold

ρ(z, (y′, |y′| − l)) > l2 ≥ sup
w∈U(0, 1

2 l)
|w − z|2 .

Proof. Clearly the second inequality holds. For the first one, we can simply write

ρ(z, (y′, |y′| − l)) = |z − y′|2 − (|y′| − l)2

= |z|2 + |y′|2 − 2 ⟨z, y′⟩ − |y′|2 + 2l |y′| − l2

≥ |z|2 − 2 |z| |y′| + 2 |y′| l − l2

= |z|2 + l(|y′| − l) + |y′| (l − 2 |z|) ≥ l2 + l > l2.

We have used the Cauchy-Schwartz inequality and the fact that

|y′| − l ≥ 2l + 1 − l ≥ l + 1 and l − 2 |z| ≥ 0.
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Lemma 30. It holds that all γ ∈ Mtemp satisfy (R0) and therefore the Laguerre
cells L(x, γ) are well defined. Furthermore it holds that all γ ∈ Mtemp satisfy the
first regularity condition (R1).

Proof. Take z ∈ R2 and γ ∈ Mt, t ∈ N. We want to show that there exists
minx∈γρ(z, x). Clearly, if γ ∈ Mf , the assumption is satisfied. Consider infinite
configuration γ.

We will use the property of tempered configurations given by Lemma 1, which
states that there exist l(t) such that ∀l ≥ l(t) the following implication holds:

(x′, x′′) ∈ γ(U(0,2l+1))c =⇒ B(x′, x′′) ∩ U(0, l) = ∅. (4.6)

Choose l large enough so that

i) l ≥ l(t),

ii) z ∈ U
(︂
0, 1

2 l
)︂

and there exists x ∈ γU(0, 1
2 l).

Clearly such l can be chosen. Lemma 29 states that the following inequality holds
∀y′ ∈ U(0, 2l + 1)c:

ρ(z, (y′, |y′| − l)) ≥ sup
w∈U(0, 1

2 l)
|w − z|2 . (4.7)

We know, because of the property (4.6), that

∀y = (y′, y′′) ∈ γ(U(0,2l+1))c : y′′ ≤ |y′| − l (4.8)

and therefore

ρ(z, y) = |y′ − z|2 − (y′′)2 ≥ |y′ − z|2 − (|y′| − l)2 = ρ(z, (y′, |y′| − l)). (4.9)

Then, using (4.7) together with point ii) above, we get that ∀y ∈ γ(U(0,2l+1))c

ρ(z, y) ≥ sup
w∈U(0, 1

2 l)
|w − z|2 ≥ |x′ − z|2 ≥ ρ(z, x)

and this completes the proof as then

minx∈γρ(z, x) = minx∈γU(0,2l+1)ρ(z, x),

which exists thanks to the local finiteness of γ.
Now consider (R1). We want to show that for every z ∈ R2 and t ∈ R only

finitely many elements y ∈ γ satisfy |z − y′|2 − (y′′)2 ≤ t. But this is a clear
consequence of the derivations above. Take z ∈ R2 and t ∈ R. Then there exists
l large enough such that l2 > t and such that it satisfies i) and ii). Then we have
that ∀y ∈ γ(U(0,2l+1))c

|z − y′|2 − (y′′)2 ≥ |z − y′|2 − (|y′| − l)2 ≥ l2 > t,

and therefore only the points y ∈ γU(0,2l+1) (and there is finitely many of them)
can satisfy |z − y′|2 − (y′′)2 ≤ t.

Before we move to the next section, where we add randomness to Laguerre
diagrams, let us emphasize the points (4.8) and (4.9) as these two properties of
tempered configurations will be useful in the next part as well.
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4.2 Gibbs-Laguerre Measures
To model a random Laguerre diagram, we consider Laguerre diagram with ran-
dom generator L(Ψ), where Ψ is a marked point process in the space R2 × (0, ∞).
Our aim was to consider Ψ to be an infinite-volume Gibbs measure with energy
function depending on the geometric properties of L(Ψ) and use article Rœlly and
Zass [2020] to show that there exists an infinite-volume Gibbs-Laguerre measure
with unbounded weights. Unfortunately, the range assumption Hr turned out to
be an insurmountable obstacle.

Let us briefly discuss the reason behind this. The main problem lies in the
fact that we would need a uniform range for all boundary conditions ξ ∈ Ml.
However, the behaviour of L(γΛξΛc) depends heavily on the actual locations of
points from ξ. Imagine that for fixed ξ ∈ Ml we have a range r > 0, i.e. ∀x ∈ γΛ
we have that L(x, γΛξΛc) = L(x, γΛξΛ⊕B(0,r)\Λ). Then also φ = ξ(Λ⊕B(0,r))c belongs
to Ml but at the same time there also exists x ∈ γΛ such that

L(x, γΛφ) ̸= L(x, γΛ) = L(x, γΛφΛ⊕B(0,r)\Λ).

However, for a non-negative energy function and reference mark distribution
satisfying Hm the first three parts of the existence proof from Rœlly and Zass
[2020] still work. For the energy function defined in (4.10), we were able to prove
that the limit measure P̄ is an infinite-volume Gibbs measure, under the condition
that P̄(ō) = 0.

4.2.1 Energy function and finite–volume Gibbs measures
Let the state space be E = R2 × R with mark space (R, ∥ · ∥) and take mark
distribution Q such that Q((0, ∞)) = 1 and such that Hm holds.

Recall the notation:

1. for γ ∈ M and x ∈ γ we use the notation x = (x′, x′′) with x′ being the
nuclei and x′′ being the weight.

2. ∆0(x, γ) is the set of all vertices of the cell L(x, γ), ∆0(γ) = ⋃︁
x∈γ ∆0(x, γ).

3. E(γ) denotes the set of points from γ with empty cells.

Consider the following energy function H : Mf → R ∪ {+∞}

H(γ) =
⎧⎨⎩
∑︁

x∈γ |∆0(x, γ)| if E(γ) = ∅,

+∞ if E(γ) ̸= ∅,
γ ∈ Mf . (4.10)

We sum the number of vertices for each Laguerre cell and we forbid the configu-
rations for which there exists an empty cell.
Remark. If γ is in general position, then H(γ) = 3 · |∆0(γ)|.

Clearly H is non-negative and therefore the stability assumption Hs is satis-
fied. According to Lemma 3, the partition function ZΛ is finite for all Λ ∈ B2

b

and the finite-volume Gibbs measure in Λ with energy function H and activity z
is well defined for all z > 0,

PΛ(dγ) = 1
ZΛ

e−H(γ)πz
Λ(dγ).
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It holds ∀Λ ∈ B2
b , ∀z > 0 that

πz
Λ ({γ ∈ M : γ is in general position}) = 1 (4.11)

(see Lautensack [2007], Proposition 3.1.5, or Zessin [2008]). Therefore also

PΛ({γ ∈ M : γ is in general position}) = 1,

particularly for PΛ-a.a. γ the Laguerre diagram L(γ) is a generalized normal tes-
sellation. Since configurations with empty cells are forbidden, we also get that

PΛ({γ : E(γ) = ∅}) = 1. (4.12)
In the following proposition, we present the key observation for the energy

function H from (4.10). This observation will later allow us to show that the
conditional energy HΛ is attained as soon as all of the cells belonging to the
points in Λ are bounded.

Proposition 31. Let H be the energy function defined in (4.10) and take γ ∈ Mf

such that it satisfies (GP1), (GP2) and E(γ) = ∅. Assume that the Laguerre cell
L(x, γ) of a point x ∈ γ is bounded. Then we have that

H(γ) − H(γ \ {x}) = 6.

Proof. Let γ and x be as assumed. Then L(γ) (and also L(γ \ x) thanks to
Lemma 25) is a generalized normal tessellation and we know that

L(x, γ) =
k⋂︂

i=1
P (x, yx

i )

for yi ∈ γ such that L(x, γ) ∩ L(yi, γ) ̸= ∅, k ∈ N. Particularly, since L(x, γ) is
bounded, we have |∆0(x, γ)| = k. The Laguerre cells of points y ∈ γ\{yx

1 , . . . , yx
k}

do not change by removing the point x and therefore we can write

H(γ) − H(γ \ {x}) = |∆0(x, γ)| +
k∑︂

i=1
|∆0(yx

i , γ)| − |∆0(yx
i , γ \ {x})|

= k +
k∑︂

i=1
|∆0(yx

i , γ)| − |∆0(yx
i , γ \ {x})| .

By removing the point x, the neighbours of x partition the cell L(x, γ) into k
non-empty bounded convex polytopes K1, . . . , Kk such that

L(yx
i , γ \ {x}) = Ki ∪ L(yx

i , γ),

(see Figure 4.4). Denote by vi the number of new vertices attained by the nucleus
yx

i , vi = |∆0(Ki)| − |∆0(Ki) ∩ ∆0(L(yx
i , γ))| = |∆0(Ki)| − 2, (each neighbour yx

i

shares 2 vertices with the nucleus x). Altogether, we can write

H(γ) − H(γ \ {x}) = k +
k∑︂

i=1
|∆0(yx

i , γ)| − |∆0(yx
i , γ \ {x})|

= k +
k∑︂

i=1
2 − vi = 3k −

k∑︂
i=1

vi.

(4.13)
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Figure 4.4: Comparison of a Laguerre diagram with and without the point x.
The Laguerre cell L(x, γ) is the red pentagon, full red lines are its edges, the
edges of the neighbouring cells in L(γ) are the red dashed lines, red points are
the vertices in L(γ). Blue points are the additional vertices in L(γ \ {x}) and
blue dashed lines are the additional edges of the cells L(yx

i , γ \ {x}) arising from
the removal of the point x.

The partition of the cell L(x, γ) by its neighbours defines a graph structure (see
Figure 4.4) with vertices V = ∆0(x, γ) ∪ V2, where V2 is the set of new vertices,
which appear after the removal of the point x, V2 = ∆0(γ \ {x}) \ ∆0(γ). The
set of edges is defined as E = ∆1(x, γ) ∪ E2, where E2 is the set of new edges
(intersected with L(x, γ)), which appear after the removal of the point x. Since
both L(γ) and L(γ \ {x}) are normal, all of the vertices have degree 3. Thus we
have that

3 · |V | = 2 · |E| =⇒ 3(k + |V2|) = 2(k + |E2|). (4.14)

Since we assume that there are no empty cells, the graph (V, E2) is a connected
graph without cycles (i.e. a tree) and we know that

|V | = |E2| + 1 =⇒ k + |V2| = |E2| + 1. (4.15)

Putting together (4.14) and (4.15), we get that |V2| = k − 2. From the normality
we also get that ∑︁k

i=1 vi = 3 · |V2| and that together with (4.13) completes the
proof.

4.2.2 The existence of P̄ and its support
Consider finite volume Gibbs measure Pn = PΛn with energy function H from
(4.10) and activity z > 0 in the window Λn = [−n, n)2, n ∈ N and recall Sections
2.2.1, 2.2.2 and 2.2.3. We have the periodic extension to the whole R2 of the
finite-volume Gibbs measure denoted by P̃n (see (2.2)) and stationarised empirical
field P̄n (see Definition 20). Since the energy function H satisfies the stability
assumption, the results of Lemmas 7, 8, 9 and 10 are valid. Particularly, we have
the following claim.
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Claim 32. There exists a probability measure P̄ such that
i) P̄ is invariant under translations by κ ∈ Z2,

ii) (w. l. o. g.) P̄n
τL−→ P̄,

iii) P̄(Mtemp) = P̄n(Mtemp) = 1, for all n ∈ N.
We also get that ∀ε > 0 there exists l ∈ N such that

iv) P̄n(Ml) ≥ 1 − ε for all n ∈ N.
We would like to show that P̄ satisfies Definition 15 for our energy function H,

however since the range assumption Hr is not satisfied, we cannot use Theorem 14.
In the last section of this chapter, we will prove that P̄ is an infinite-volume Gibbs
measure under the condition that P̄({ō}) = 0.

At first we need to prepare some preliminary results. We will show that P̄-a.a.
configurations satisfy that L(γ) is a normal tessellation with no empty cells. We
already know, thanks to Lemma 30 and Claim 32 iii), that P̄-a.a. γ satisfy (R0)
and (R1).

For the condition (R2), we need the following lemma (as was remarked in
Lautensack [2007]). In its proof we work with the notion of random closed set.
We refer to Chapter 2 in Schneider and Weil [2008] for the definition and general
theory.
Lemma 33. It holds that if Ψ is a simple marked point process whose distribu-
tion is invariant under translation by κ ∈ Z2 then it almost surely satisfies the
assumption (R2) or it is empty, i.e. P(conv{x′ : (x′, x′′) ∈ Ψ} ∈ {R2, ∅}) = 1.
Proof. We will proceed in three steps.

Step 1) The following claim holds:
Let Z be a convex random closed set such that ∀κ ∈ Z2 it holds that Z

D= Z+κ.
Then P(Z ∈ {∅,R2}) = 1.

Since the proof of this claim is just a slight modification of the proof of The-
orem 2.4.4. in Schneider and Weil [2008] (which assumes invariance under all
translations, not just by integer-valued vectors), we only show the part where
they differ. The proof is the same up to a definition of the set Ak. We have
x, y ∈ Q2, y ̸= 0 such that

P(∅ ≠ Z ∩ K(x, y) ⊂ x + |y| B(0, 1)) =: p > 0.

Choose m ∈ N such that my ∈ Z2 and define
Ak = {∅ ≠ Z ∩ K(x + 2mky, y) ⊂ x + 2kmy + |y| B(0, 1)}.

The rest of the proof follows as in Schneider and Weil [2008].
Step 2) If Ψ is a simple marked point process whose distribution is invariant

under translations by all κ ∈ Z2, then suppΨ′ is a random closed set (see Chap-
ter 3 in Schneider and Weil [2008]) =⇒ clo(conv{suppΨ′}) is a convex random
closed set (see Theorem 2.4.3. in Schneider and Weil [2008]) which satisfies

clo(conv{suppΨ′}) D= clo(conv{suppΨ′ + κ}) = clo(conv{suppΨ′}) + κ

∀κ ∈ Z2 and therefore step 1. gives us that P(clo(conv{suppΨ′}) ∈ {∅,R2}) = 1.
Step 3) We have already shown in the proof of Lemma 26 that for A ⊂ R2 we

have that clo(conv{A}) = R2 =⇒ conv{A} = R2, which finishes the proof.
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For the assumptions (GP1) and (GP2) and the non-emptiness of the cells, we
use the convergence in the τL topology.

Lemma 34. For P̄-a.a. γ we get that it is in general position and E(γ) = ∅.

Proof. Denote

Mgp = {γ ∈ M : γ is in general position},

Mk
gp = {γ ∈ M : γΛk

is in general position}, k ∈ N, Λk = [−k, k)2 .

Then we have that Mgp = ⋂︁
k∈N Mk

gp and Mk
gp ⊂ Mk−1

gp . Therefore for any
probability measure P on M we have that

lim
k→∞

P(Mk
gp) = P(Mgp).

Now fix k ∈ N. Then according to (4.11) we have for all Λ ∈ B2
b and for all

z > 0 that πz
Λ(Mgp) = 1, so also πz

Λ(Mk
gp) = 1. Therefore for n ≥ k we have that

Pn(Mk
gp) =

∫︂
Mk

gp

1
ZΛn

e−H(γΛn )πz
Λn

(dγ) = 1

and since Λk ⊂ Λn we also have P̃n(Mk
gp) = 1. Now for P̄n:

P̄n = 1
(2n)2

∑︂
κ∈Λn∩Z2

P̃n ◦ ϑ−1
κ .

It holds that if Λk + κ ⊂ Λn then P̃n ◦ ϑ−1
κ (Mk

gp) = 1. It also holds that for all
κ ∈ Λn−k−1 ∩ Z2 we have Λk + κ ⊂ Λn, so we can write ∀n ≥ k + 1

P̄n(Mk
gp) = 1

(2n)2

∑︂
κ∈Λn∩Z2

P̃n ◦ ϑ−1
κ (Mk

gp)

= (2(n − k − 1))2

(2n)2 + 1
(2n)2

∑︂
κ∈Λn\Λn−k−1∩Z2

P̃n ◦ ϑ−1
κ (Mk

gp).

Therefore limn→∞ P̄n(Mk
gp) = 1. Since P̄ is a limit of {P̄n}n∈N in the τL topology

and 1

[︂
γ ∈ Mk

gp

]︂
is a tame and local function, we get that

1 = lim
n→∞

P̄n(Mk
gp) = P̄(Mk

gp).

This holds ∀k ∈ N and therefore P̄(Mgp) = 1. For the second part, we define sets

Mz = {γ ∈ M : E(γ) = ∅},

Mk
z = {γ ∈ M : E(γΛk

) = ∅}, k ∈ N, Λk = [−k, k)2 .

Because of Lemma 28 and the fact that P̄-a.a. γ ∈ M satisfy regularity conditions
and are in general position, we can write

lim
k→∞

P̄(Mk
z) = P̄(Mz).

For fixed k ∈ N and n ≥ k we have Pn(Mk
z) = 1 thanks to (4.12) and the fact

that
E(γΛn) = ∅ =⇒ E(γΛk

) = ∅.

The rest of the proof follows analogously as in the previous case.

57



Altogether, we have the following proposition.

Proposition 35. Define the set of admissible configurations

M = {γ ∈ Mtemp : γ satisfies (R1),(R2),(GP1),(GP2) and E(γ) = ∅} ∪ {ō}.

It holds that P̄(M) = 1. Particularly for P̄-a.a. γ ̸= ō we have that L(γ) is
a normal tessellation.

Proof. Lemma 30 gives (R1), (R2) is implied by Lemma 33, since P̄ is invariant
under translations by κ ∈ Z2 and conditions (GP1), (GP2) and non-emptiness of
the cells are implied by Lemma 34.

4.2.3 An infinite-volume Gibbs-Laguerre measure
Recall Definition 12 of the conditional energy of configuration γ in Λ,

HΛ(γ) = lim
n→∞

H(γΛn) − H(γΛn\Λ).

Thanks to Proposition 31, we know how this function looks for admissible con-
figurations.

Lemma 36. Take γ ∈ M. Then for all Λ ∈ B2
b we obtain HΛ(γ) = 6 · |γΛ|.

Proof. If γ = ō, then it clearly holds. For γ ̸= ō we have that γΛ = {x1, . . . , xM}
for some M ∈ N. Denote γi

Λ = {x1, . . . , xi}. From the definition of conditional
energy

HΛ(γ) = lim
n→∞

H(γΛn) − H(γΛn\Λ) =
M∑︂

i=1
lim

n→∞
H(γΛn\Λγi

Λ) − H(γΛn\Λγi−1
Λ ).

Thanks to the assumptions on γ we get that L(γ) is a normal tessellation with
no empty cells and therefore for all i = 1, . . . , M there exists n large enough so
that L(xi, γΛn\Λγi

Λ) is bounded. With the help of Proposition 31 we get that

lim
n→∞

H(γΛn\Λγi
Λ) − H(γΛn\Λγi−1

Λ ) = 6,

which finishes the proof.

Recall that Ma = {γ ∈ M : m(γ) ≤ a}, a ∈ N, is the set of configurations
whose marks are at most a. We define an increasing sequence of local sets (i.e.
subsets of M whose indicator is a local function). Take Λ ∈ B2

b and l, n, a ∈ N
and define

C(Λ, a, l, n) = {ξ ∈ M : ξ satisfies assumptions (C1) and (C2)} , where

(C1) : there exists u ∈ ξΛn\Λ : u′ ∈ U
(︃

0,
1
2 l
)︃

,

(C2) : ∀γ ∈ Ma, ∀x ∈ γΛ we have L(x, ξΛn\Λ ∪ {x}) ⊂ U
(︃

0,
1
2 l
)︃

.

(4.16)

Put

B(Λ, a, l) =
⋃︂

n∈N
C(Λ, a, l, n),

A(Λ, a) =
⋃︂
l∈N

B(Λ, a, l),
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then clearly ∀Λ ∈ B2
b , ∀a, l, n ∈ N:

C(Λ, a, l, n) ⊂ C(Λ, a, l + 1, n), C(Λ, a, l, n) ⊂ C(Λ, a, l, n + 1),
B(Λ, a, l) ⊂ B(Λ, a, l + 1),
A(Λ, a) ⊃ A(Λ, a + 1).

We also have the following equality.

Lemma 37. For all Λ ∈ B2
b we have that

M =
⋂︂

a∈N

⋃︂
l∈N

⋃︂
n∈N

M ∩ C(Λ, a, l, n) ∪ {ō}.

Proof. The relation ⊃ clearly holds. Take ξ ∈ M, ξ ̸= ō. We would like to show
that ∀a ∈ N there exist l, n ∈ N such that ξ ∈ C(Λ, a, l, n). Take a ∈ N and
consider

• n0 = min{n ∈ N : ∃u ∈ ξΛn\Λ},

• l0 = min{l ∈ N : Λn0 ⊂ U(0, 1
2 l)}.

We will consider n ≥ n0 and l ≥ l0. This will assure that the assumption (C1)
is satisfied. Now w. l. o. g. assume that Λ is closed (otherwise work with clo(Λ))
and recall that we have chosen fixed a ∈ N. We will use the observation that
L((x′, x′′), γ) ⊂ L((x′, a), γ), whenever x′′ ≤ a. Therefore to prove (C2), it is
enough to prove that for some n, l ∈ N and ∀x′ ∈ Λ we have that

L
(︂
(x′, a), ξΛn\Λ ∪ {(x′, a)}

)︂
⊂ U

(︃
0,

1
2 l
)︃

.

It holds (since ξ ∈ M) that ∀x′ ∈ Λ there exist nx, lx such that

L
(︂
(x′, a), ξΛnx \Λ ∪ {(x′, a)}

)︂
⊂ U

(︃
0,

1
2 lx

)︃
.

Then, because of the representation (4.2) and the openness of U
(︂
0, 1

2 lx
)︂
, there

exists εx > 0 such that also ∀y′ ∈ U(x′, εx) we have that

L
(︂
(y′, a), ξΛnx \Λ ∪ {(y′, a)}

)︂
⊂ U

(︃
0,

1
2 lx

)︃
.

Therefore we have an open cover of Λ, Λ ⊂ ⋃︁
x′∈Λ U(x′, εx) and since Λ is a

compact set, there exists a finite cover Λ ⊂ ⋃︁N
i=1 U(x′

i, εxi
). To finish the proof,

it is enough to take n = max{n0, nx1 , . . . , nxN
} and l = max{l0, lx1 , . . . , lxN

}.

Recall Definition 14 of Gibbs kernel ΞΛ:

ΞΛ(ξ, dγ) = e−HΛ(γΛξΛc )

ZΛ(ξ) πz
Λ(dγ).

Since we do not in general have the local stability assumption Hl, we need to
make sure that this quantity is well defined, at least for almost all configurations.
To do that we need the following observation.
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Lemma 38. Take ξ ∈ M such that it is in general position. Then for all Λ ∈ B2
b

and for all z > 0 we get that for πz
Λ-a.a. γ ∈ M also ξΛcγΛ is in general position.

Proof. Using (4.11), it is enough to show that for fixed points A, B, C ∈ Λc and
fixed weights a, b, c > 0 we have that for πz

Λ-a.a. γ ∈ M

1. no 2 points from γ′ lie on a line with A and no point from γ′ lies on a line
going through A and B,

2. no 3 points from γ and (A, a), no 2 points from γ and (A, a), (B, b) and
no point from γ and (A, a), (B, b), (C, c) have equal power distance to some
x ∈ R2.

All of these can be proven similarly as (4.11) in Lautensack [2007], Proposition
3.1.5. (see also Møller [1994], Proposition 4.1.2.).

Now we can show that the Gibbs kernel is well defined for all ξ ∈ M ∪ Mf .
Lemma 39. Let ξ ∈ M or ξ ∈ Mf such that it is in general position and
E(ξ) = ∅, then ∀Λ ∈ B2

b , ∀z > 0 we have that 0 < ZΛ(ξ) < ∞.
Proof. At first take ξ ∈ M. Then we know that ξ is in general position, satisfies
regularity conditions and also E(ξ) = ∅. Then thanks to Lemma 26 we have that
∀γ ∈ M also ξΛcγΛ satisfies regularity conditions and according to Lemma 38
we have that for πz

Λ-a.a. γ ∈ M it holds that ξΛcγΛ is in general position. If
E(ξΛcγΛ) ̸= ∅, then HΛ(ξΛcγΛ) = +∞. Otherwise thanks to Lemma 36 we get
that HΛ(ξΛcγΛ) = 6 |γΛ|. Altogether HΛ(ξΛcγΛ) ≥ 0 for πz

Λ-a.a. γ, and therefore

ZΛ(ξ) =
∫︂

e−HΛ(γΛξΛc )πz
Λ(dγ) ≤ 1 < ∞.

Now take ξ ∈ Mf , which is in general position and has no empty cells and denote
M = |ξΛc |. Then thanks to Lemma 38 we can only work with such γΛ so that
L(ξΛcγΛ) is a generalized normal tessellation and we can write

HΛ(ξΛcγΛ) = H(ξΛcγΛ) − H(ξΛc) ≥ −H(ξΛc) ≥ −3 ·
(︄

M

3

)︄
,

since L(ξΛc) can have at most
(︂

M
3

)︂
vertices. Therefore

ZΛ(ξ) =
∫︂

e−HΛ(γΛξΛc )πz
Λ(dγ) ≤ e3·(M

3 ) < ∞.

The part 0 < ZΛ(ξ) can be shown in the same way as in Lemma 3.

Particularly, ΞΛ is well defined for all ξ ∈ M and ξ ∈ Mf which are in general
position and satisfy E(ξ) = ∅. Recall Definition 21 of the cut-off Ξ∆,m0

Λ . We will
denote Ξn,a

Λ := ΞΛn,a
Λ , i.e.

Ξn,a
Λ (ξ, dγ) = 1{γΛ ∈ Ma} · e−HΛ(γΛξΛn\Λ)

Zn,a
Λ (ξΛn\Λ) πz

Λ(dγ).

Using the second part of the proof of Lemma 39, we can see that Ξn,a
Λ is well

defined for all ξ in general position with E(ξ) = ∅.
Recall Definition 8 of the sets Ml. This final auxiliary lemma will justify the

definition in (4.16) of the sets C(Λ, a, l, n). These sets are in fact chosen so that
the conditional energy depends only on the boundary condition inside Λn.
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Lemma 40. Let Λ ∈ B2
b , and take a, n, l ∈ N such that U (0, 2l + 1) ⊂ Λn and

Λ ⊕ B(0, a) ⊂ U(0, 1
2 l). Then for all ξ ∈ C(Λ, a, l, n) ∩ Ml and for all γ ∈ Ma

such that ξΛcγΛ are in general position and E(ξΛc) = ∅ we have that

i) E(ξΛcγΛ) ̸= ∅ ⇐⇒ E(ξΛn\ΛγΛ) ̸= ∅,

ii) HΛ(ξΛcγΛ) = HΛ(ξΛn\ΛγΛ).

Proof. At first we assume i) and prove ii). Take ξ, γ satisfying the assumptions
and assume that i) holds. We have γΛ = {x1, . . . , xM} for some M ∈ N. Denote
γi

Λ = {x1, . . . , xi}, i = 1, . . . , M .
If E(ξΛcγΛ) ̸= ∅ then according to i) also E(ξΛn\ΛγΛ) ̸= ∅ and we have

HΛ(ξΛcγΛ) = +∞ = HΛ(ξΛn\ΛγΛ).

If E(ξΛcγΛ) = E(ξΛn\ΛγΛ) = ∅, then thanks to the definition of the set C(Λ, a, l, n)
we have that the cells L(xi, ξΛn\Λγi

Λ) are bounded ∀i ∈ {1, . . . , M}. Recalling the
key Proposition 31 for our energy function H, we can write

HΛ(ξΛn\ΛγΛ) = H(ξΛn\ΛγΛ) − H(ξΛn\Λ)

=
M∑︂

i=1
H(ξΛn\Λγi

Λ) − H(ξΛn\Λγi−1
Λ ) P.31=

M∑︂
i=1

6 = 6 · |γΛ| .

Using Lemma 36 we also have that HΛ(ξΛcγΛ) = 6 · |γΛ|.
Now it remains to prove i). Take ξ, γ satisfying the assumptions. The impli-

cation ⇐= always holds, so we only have to prove that if there exists an empty
cell for ξΛcγΛ, then it is already empty in ξΛn\ΛγΛ (remember that E(ξΛc) = ∅).

Let there exist x ∈ ξΛcγΛ such that L(x, ξΛcγΛ) = ∅ and assume for contradic-
tion that E(ξΛn\ΛγΛ) = ∅. This means that either x ∈ ξΛc

n
or L(x, ξΛn\ΛγΛ) ̸= ∅.

Recall Lemma 29 and consider the three possible locations of the point x:

1) x ∈ γΛ: Then for all z ∈ L(x, ξΛn\ΛγΛ) there exists y ∈ ξΛc
n

such that
ρ(z, y) ≤ ρ(z, x). However, from the choice of n and l and from the definition of
the set C(Λ, a, l, n) we know that y′ ∈ U(0, 2l+1)c, x′ ∈ U(0, 1

2 l) and z ∈ U(0, 1
2 l).

Using Lemma 29 we get that

ρ(z, y) ≤ ρ(z, x) ≤ l2 L.29
< ρ(z, (y′, |y′| − l)) ≤ ρ(z, y),

which is clearly a contradiction.

2) x ∈ ξΛn\Λ: We know that L(x, ξΛcγΛ) = ∅ but L(x, ξΛn\ΛγΛ) ̸= ∅ and
L(x, ξΛc) ̸= ∅. Therefore

∀z ∈ L(x, ξΛc) ∃u ∈ γΛ such that z ∈ L(u, ξΛcγΛ),
∀z ∈ L(x, ξΛn\ΛγΛ) ∃y ∈ ξΛc

n
such that z ∈ L(y, ξΛcγΛ).

(4.17)

If ∃z ∈ L(x, ξΛc) ∩ L(x, ξΛn\ΛγΛ), then there exist u ∈ γΛ and y ∈ ξΛc
n

such that
ρ(z, y) = ρ(z, u) and we again get a contradiction with Lemma 29. Therefore
L(x, ξΛc) ∩ L(x, ξΛn\ΛγΛ) = ∅. Then there exists z ∈ L(x, ξΛn\ΛγΛ) such that
∃u ∈ γΛ such that ρ(z, x) = ρ(z, u), i.e. z ∈ L(u, ξΛn\ΛγΛ). Since by (4.17) there
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also exists y ∈ ξΛc
n

such that z ∈ L(y, ξΛcγΛ), we again get the contradiction
ρ(z, y) ≤ ρ(z, u).

3) x ∈ ξΛc
n
: We know that L(x, ξΛcγΛ) = ∅ and L(x, ξΛc) ̸= ∅. Therefore

∀z ∈ L(x, ξΛc) ∃u ∈ γΛ such that ρ(z, u) < ρ(z, x). Particularly we can assume
that ρ(z, u) ≤ ρ(z, v) for all v ∈ γΛ and therefore z ∈ L(u, ξΛcγΛ) ⊂ U(0, 1

2 l).
Therefore L(x, ξΛc) ⊂ U(0, 1

2 l). Notice that x′ ∈ U(0, 2l+1)c. From the definition
of the set C there exists y ∈ ξΛn\Λ such that y′ ∈ U(0, 1

2 l) =⇒ ∀z ∈ L(x, ξΛc) we
have that

ρ(z, x) ≤ ρ(z, y) ≤ l2 L.29
< ρ(z, (x′, |x′| − l)) ≤ ρ(z, x),

which is the final contradiction and the proof is finished.

Now we are ready to prove our main result.
Theorem 41. Consider the probability measure P̄ from Claim 32 and assume
that it satisfies P̄({ō}) = 0. Then for all Λ ∈ B2

b and for all measurable bounded
local functions F the DLRΛ equations hold. Particularly, P̄ is an infinite-volume
Gibbs measure with energy function H defined in (4.10) and activity z > 0.
Proof. Take Λ ∈ B2

b and measurable bounded Λ-local function F . We will show
that ∀ε > 0

δ0 =
⃓⃓⃓⃓∫︂

F (γ)P̄(dγ) −
∫︂ ∫︂

F (γΛ)ΞΛ(ξ, dγ)P̄(dξ)
⃓⃓⃓⃓
< ε.

Fix ε > 0. Find i0 smallest such that Λ ⊂ Λi0 . We will w. l. o. g. assume that
i0 = 1 (otherwise work with n ≥ i0 in the whole proof). Then there exists a ∈ N
such that

1. πz
Λ(Ma) ≥ 1 − ε.

For this a find l ∈ N such that
2. Λ ⊕ B(0, a) ⊂ U(0, 1

2 l),

3. P̄(Ml) ≥ 1 − ε, P̄n(Ml) ≥ 1 − ε for all n ∈ N (from Claim 32),

4. P̄(B(Λ, a, l)) ≥ 1 − ε (from Proposition 35, Lemma 37 and P̄({ō}) = 0).
For these a and l we can find k ∈ N such that

5. U(0, 2l + 1) ⊂ Λk

6. P̄(C(Λ, a, l, k)) ≥ 1 − 2ε.

Fix a, l, k and recall the definition of the measures P̂n from the proof of Lemma 13:

P̂n = 1
|Λn|

∑︂
κ∈Z2∩Λn: Λ⊂ϑκ(Λn)

Pn ◦ ϑ−1
κ .

We know that P̂n satisfy (DLR)Λ and they are asymptotically equivalent to P̄n

in the sense that for any G ∈ L we get that

lim
n→∞

⃓⃓⃓⃓∫︂
G(γ)P̂n(dγ) −

∫︂
G(γ)P̄n(dγ)

⃓⃓⃓⃓
= 0.

Particularly there exists n0 such that ∀n ≥ n0 we get that P̂n(M) ≥ 1−ε. It also
holds that P̄n((Ml)c) ≥ P̂n((Ml)c). Therefore there exists n1 ≥ n0 such that
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7. P̂n(Ml) ≥ 1 − 2ε for all n ≥ n1,

8. P̂n(C(Λ, a, l, k)) ≥ 1 − 3ε for all n ≥ n1.

The second part is true thanks to 6. and the fact that G(γ) = 1{γ ∈ C(Λ, a, l, k)}
is a bounded and Λk-local function.

Now we have everything we need to estimate δ0. Assume w. l. o. g. that |F | ≤ 1
and recall that P̄(M) = 1.

δ0 =
⃓⃓⃓⃓∫︂

F (γ)P̄(dγ) −
∫︂ ∫︂

F (γΛ)ΞΛ(ξ, dγ)P̄(dξ)
⃓⃓⃓⃓
≤ P̄((C(Λ, a, l, k) ∩ Ml)c)

+
⃓⃓⃓⃓
⃓
∫︂

F (γ)P̄(dγ) −
∫︂

C(Λ,a,l,k)∩Ml

∫︂
F (γΛ)ΞΛ(ξ, dγ)P̄(dξ)

⃓⃓⃓⃓
⃓

3.,6.

≤ 3ε +
⃓⃓⃓⃓
⃓
∫︂

F (γ)P̄(dγ) −
∫︂

C(Λ,a,l,k)∩Ml

∫︂
F (γΛ)Ξk,a

Λ (ξ, dγ)P̄(dξ)
⃓⃓⃓⃓
⃓

+
⃓⃓⃓⃓
⃓
∫︂

C(Λ,a,l,k)∩Ml

[︃∫︂
Ma

F (γΛ)Ξk,a
Λ (ξ, dγ) −

∫︂
Ma

F (γΛ)ΞΛ(ξ, dγ)
]︃

P̄(dξ)
⃓⃓⃓⃓
⃓

+
⃓⃓⃓⃓
⃓
∫︂

C(Λ,a,l,k)∩Ml

∫︂
(Ma)c

F (γΛ)ΞΛ(ξ, dγ)P̄(dξ)
⃓⃓⃓⃓
⃓ .

Now we have for some b < ∞:⃓⃓⃓⃓
⃓
∫︂

C(Λ,a,l,k)∩Ml

∫︂
(Ma)c

F (γΛ)ΞΛ(ξ, dγ)P̄(dξ)
⃓⃓⃓⃓
⃓

≤
∫︂ ∫︂

(Ma)c

1
ZΛ(ξ)πz

Λ(dγ)P̄(dξ) ≤ πz
Λ((Ma)c) · 1

πz
Λ({ō})

1.
≤ b · ε.

(4.18)

Now for P̄-a.a. ξ ∈ C(Λ, a, l, k) ∩ Ml we can use Lemma 40 to show that⃓⃓⃓⃓∫︂
Ma

F (γΛ)Ξk,a
Λ (ξ, dγ) −

∫︂
Ma

F (γΛ)ΞΛ(ξ, dγ)
⃓⃓⃓⃓

=
⃓⃓⃓⃓
⃓
∫︂

Ma

F (γΛ)e−HΛ(ξΛc γΛ)
(︄

ZΛ(ξ) − Zk,a
Λ (ξ)

ZΛ(ξ) · Zk,a
Λ (ξ)

)︄
πz

Λ(dγ)
⃓⃓⃓⃓
⃓

≤
∫︂

Ma

⃓⃓⃓
ZΛ(ξ) − Zk,a

Λ (ξ)
⃓⃓⃓

πz
Λ({ō})2 πz

Λ(dγ)

≤ b2 ·
⃓⃓⃓
ZΛ(ξ) − Zk,a

Λ (ξ)
⃓⃓⃓
= b2 ·

⃓⃓⃓⃓
⃓
∫︂

(Ma)c
e−HΛ(ξΛc γΛ)πz

Λ(dγ)
⃓⃓⃓⃓
⃓ 1.
≤ b2 · ε.

(4.19)

Therefore we can estimate

δ0 ≤ c · ε +
⃓⃓⃓⃓
⃓
∫︂

F (γ)P̄(dγ) −
∫︂

C(Λ,a,l,k)∩Ml

∫︂
F (γΛ)Ξk,a

Λ (ξ, dγ)P̄(dξ)
⃓⃓⃓⃓
⃓ =: c · ε + δ1,

where c = 3 + b + b2. We continue with δ1:

δ1 =
⃓⃓⃓⃓
⃓
∫︂

F (γ)P̄(dγ) −
∫︂

C(Λ,a,l,k)∩Ml

∫︂
F (γΛ)Ξk,a

Λ (ξ, dγ)P̄(dξ)
⃓⃓⃓⃓
⃓

≤ P̄((C(Λ, a, l, k) ∩ Ml)c) +
⃓⃓⃓⃓∫︂

F (γ)P̄(dγ) −
∫︂ ∫︂

F (γΛ)Ξk,a
Λ (ξ, dγ)P̄(dξ)

⃓⃓⃓⃓
3.,6.

≤ 3ε +
⃓⃓⃓⃓∫︂

F (γ)P̄(dγ) −
∫︂ ∫︂

F (γΛ)Ξk,a
Λ (ξ, dγ)P̄(dξ)

⃓⃓⃓⃓
=: 3ε + δ2.
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Now we use the asymptotic equivalence for P̂n and P̄n and the fact that F (γ) and
G(γ) =

∫︁
F (ν)Ξk,a

Λ (γ, dν) are bounded (and therefore tame) local functions. Let
n ≥ n1, then we have the following estimate for δ2:

δ2 =
⃓⃓⃓⃓∫︂

F (γ)P̄(dγ) −
∫︂ ∫︂

F (γΛ)Ξk,a
Λ (ξ, dγ)P̄(dξ)

⃓⃓⃓⃓
≤
⃓⃓⃓⃓∫︂

FdP̄ −
∫︂

FdP̂n

⃓⃓⃓⃓
+
⃓⃓⃓⃓∫︂

F (γ)P̂n(dγ) −
∫︂ ∫︂

F (γΛ)Ξk,a
Λ (ξ, dγ)P̂n(dξ)

⃓⃓⃓⃓
+
⃓⃓⃓⃓∫︂ ∫︂

F (γΛ)Ξk,a
Λ (ξ, dγ)P̄(dξ) −

∫︂ ∫︂
F (γΛ)Ξk,a

Λ (ξ, dγ)P̂n(dξ)
⃓⃓⃓⃓
.

We can choose n2 ≥ n1 so that ∀n ≥ n2 we have⃓⃓⃓⃓∫︂
F (γ)P̄(dγ) −

∫︂
F (γ)P̂n(dγ)

⃓⃓⃓⃓
≤ ε,⃓⃓⃓⃓∫︂ ∫︂

F (γΛ)Ξk,a
Λ (ξ, dγ)P̄(dξ) −

∫︂ ∫︂
F (γΛ)Ξk,a

Λ (ξ, dγ)P̂n(dξ)
⃓⃓⃓⃓
≤ ε.

Therefore for n ≥ n2 we can write

δ2 =
⃓⃓⃓⃓∫︂

F (γ)P̄(dγ) −
∫︂ ∫︂

F (γΛ)Ξk,a
Λ (ξ, dγ)P̄(dξ)

⃓⃓⃓⃓
≤ 2ε +

⃓⃓⃓⃓∫︂
F (γ)P̂n(dγ) −

∫︂ ∫︂
F (γΛ)Ξk,a

Λ (ξ, dγ)P̂n(dξ)
⃓⃓⃓⃓
=: 2ε + δ3.

Now for our last estimate. Since P̂n satisfies DLRΛ we can write

δ3 =
⃓⃓⃓⃓∫︂

F (γ)P̂n(dγ) −
∫︂ ∫︂

F (γΛ)Ξk,a
Λ (ξ, dγ)P̂n(dξ)

⃓⃓⃓⃓
≤ 0 +

⃓⃓⃓⃓∫︂ ∫︂
F (γΛ)ΞΛ(ξ, dγ)P̂n(dξ) −

∫︂ ∫︂
F (γΛ)Ξk,a

Λ (ξ, dγ)P̂n(dξ)
⃓⃓⃓⃓

≤
⃓⃓⃓⃓
⃓
∫︂

C(Λ,a,l,k)∩Ml

[︃∫︂
F (γΛ)ΞΛ(ξ, dγ) −

∫︂
F (γΛ)Ξk,a

Λ (ξ, dγ)
]︃

P̂n(dξ)
⃓⃓⃓⃓
⃓

+ 2 · P̂n((C(Λ, a, l, k) ∩ Ml)c)
7.,8.

≤
⃓⃓⃓⃓
⃓
∫︂

C(Λ,a,l,k)∩Ml

[︃∫︂
Ma

F (γΛ)ΞΛ(ξ, dγ) −
∫︂

Ma

F (γΛ)Ξk,a
Λ (ξ, dγ)

]︃
P̂n(dξ)

⃓⃓⃓⃓
⃓

+
⃓⃓⃓⃓
⃓
∫︂ ∫︂

(Ma)c
F (γΛ)ΞΛ(ξ, dγ)P̂n(dξ)

⃓⃓⃓⃓
⃓+ 10 · ε.

Now analogously as in (4.18) and (4.19) we can estimate⃓⃓⃓⃓
⃓
∫︂ ∫︂

(Ma)c
F (γΛ)ΞΛ(ξ, dγ)P̂n(dξ)

⃓⃓⃓⃓
⃓ ≤ b · ε⃓⃓⃓⃓

⃓
∫︂

C(Λ,a,l,k)∩Ml

∫︂
Ma

F (γΛ)
[︂
ΞΛ(ξ, dγ) − Ξk,a

Λ (ξ, dγ)
]︂

P̂n(dξ)
⃓⃓⃓⃓
⃓ ≤ b2 · ε.

Putting everything together we get that (recall that c = 3 + b + b2):

δ0 ≤ c · ε + δ1 ≤ (c + 3)ε + δ2 ≤ (c + 5)ε + δ3 ≤ (2c + 12)ε.

This finishes the proof.
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Conclusion
To conclude this work, let us summarize our main results and comment on pos-
sible future extensions for the considered processes. We believe that particularly
the results from Chapter 4 deserve an additional examination as they could po-
tentially be extended to other energy functions.

This work was concentrated on marked Gibbs point processes. In the second
chapter, we considered the recent existence theorem from Rœlly and Zass [2020]
and expressed our objections (justified by a counterexample) to the formulation
of the range assumption. We presented a reformulation of the range assumption
and checked that the proof of the existence theorem still holds.

Therefore, we could use this theorem in the third chapter, where we studied
the Gibbs facet process. As was expected, we proved that for the repulsive model
F1 (i.e. the model with non–negative energy function) the infinite volume Gibbs
facet process in Rd exists. We also considered the case of non–positive and real
energy function, i.e. the clustering and mixed models F2 and F3. In R2 we proved
that the finite–volume Gibbs facet processes with negative energy function do not
exist. In R3 we found a counterexample showing that the stability assumption is
not satisfied for positive interactions between triplets and negative interactions
between pairs of facets. We believe that after a careful analysis, we should be
able to find counterexamples for any situation from F2 and F3 in any dimension
d and modify them similarly as in the two-dimensional case to show that the
finite–volume Gibbs measures do not exist.

In the last chapter, we considered the Gibbs–Laguerre tessellations of R2 and
proved that under the assumption that we almost surely see a point, the infinite–
volume Gibbs–Laguerre process exists for the energy function given in (4.10).

The important tool for this proof was the definition of the sets C(Λ, a, l, n) in
(4.16) and Proposition 31, which allowed us to prove the equality of the condi-
tional energies in Lemma 40. However, the proof of the first part of Lemma 40
raises a question, whether the definition of the sets C(Λ, a, l, n) is not in itself
enough to show that the conditional energies are already equal. We hope to
further examine this situation and potentially consider other energy functions in
a future work.

Another problem which we wish to address in the future is the assumption
P̄({ō}) = 0. We have not yet been able to prove that this assumption holds,
using the tools of the local convergence. We hope to find a proof or an estimating
rule that would enable us to get rid of this assumption altogether. Alternatively,
we could try to show that the family of sets {C(Λ, a, l, n)}n,l∈N forms an uniform
estimate of the support of the measures P̄n (as in Proposition 3 in Rœlly and
Zass [2020]).
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