
MASTER THESIS

Bc. Tomáš Krňák

Verifiable Delay Functions
from Lucas sequences

Computer Science Institute of Charles University

Supervisor of the master thesis: Mgr. Pavel Hubáček, Ph.D.
Study programme: Mathematics

Study branch: Mathematics for Information
Technologies

Prague 2022

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my advisor, Mgr. Pavel Hubáček, Ph.D., for his guidance
support throughout this thesis. I really appreciate he “took me under his wings”
during my studies and he brought many interesting opportunities to my academic
journey. I would also like to dedicate a special thanks to Chethan Kamath, Ph.D.
for his assistance and consultations during writing this thesis.

ii

Title: Verifiable Delay Functions from Lucas sequences

Author: Bc. Tomáš Krňák

Department: Computer Science Institute of Charles University

Supervisor: Mgr. Pavel Hubáček, Ph.D., Computer Science Institute of Charles
University

Abstract:

Lucas sequences are constant-recursive integer sequences with a long history of
applications in cryptography, both in the design of cryptographic schemes and
cryptanalysis. In this work, we study the sequential hardness of computing Lucas
sequences over an RSA modulus.

First, we show that modular Lucas sequences are at least as sequentially hard
as the classical delay function given by iterated modular squaring proposed by
Rivest, Shamir, and Wagner in the context of time-lock puzzles. Moreover, there
is no obvious reduction in the other direction, which suggests that the assumption
of sequential hardness of modular Lucas sequences is strictly weaker than that
of iterated modular squaring. In other words, the sequential hardness of modu-
lar Lucas sequences might hold even in the case of an algorithmic improvement
violating the sequential hardness of iterated modular squaring.

Second, we demonstrate the feasibility of constructing practically efficient verifi-
able delay functions based on the sequential hardness of modular Lucas sequences.
Our construction builds on the work of Pietrzak (ITCS 2019) by leveraging the
intrinsic connection between the problem of computing modular Lucas sequences
and exponentiation in an appropriate extension field.

Keywords: Lucas sequences, verifiable delay function, modular squaring, strong
primes

iii

Contents

1 Introduction 2
1.1 Overview . 2
1.2 Our Approach to VDFs . 3
1.3 Our Techniques . 5
1.4 Related Work . 7
1.5 Organisation . 8

2 Preliminaries 9
2.1 Verifiable Delay Functions . 9
2.2 Proof Systems . 11

3 DF from Lucas sequences 12
3.1 Atomic operation . 12
3.2 Construction . 13
3.3 Reduction to RSW puzzles . 14

4 VDF from Lucas sequences 15
4.1 Structure of ZN [x]/(x2 − Px+Q) 15
4.2 Strong groups and strong primes 16
4.3 Interactive protocol . 17

4.3.1 Restriction to elements of (Z∗N,f)(a) 18
4.3.2 Description of interactive protocol for our VDF 19
4.3.3 Security proof . 20

4.4 Generating strong primes . 21
4.5 Construction . 22

5 Linear recurrences of higher order 25

6 Conclusion 27

Bibliography 28

A Analogue for Wesolowski’s construction 33

B Safe primes modulus 34

C Strong primes example 36

1

1. Introduction

1.1 Overview
A Verifiable Delay Function (VDF) is a function that satisfies two properties.
First, it is a delay function, which means it must take a prescribed time T to
compute f , irrespective of the amount of parallelism available. Second, it should
be possible for anyone to quickly verify – say, given a short proof π – the value of
the function (even without resorting to parallelism), where by quickly we mean
that the verification time should be independent or significantly smaller than T
(e.g., logarithmic in T). If we drop either of the two requirements, then the
primitive turns out trivial to construct. For instance, for an appropriately chosen
hash function h, the delay function f(x) = hT (x) defined by iterated hashing is
a natural heuristic for an inherently sequential task which, however, seems hard
to verify more efficiently than by recomputing. On the other hand, the identity
function f(x) = x is trivial to verify but also easily computable. Designing
a simple function satisfying the two properties simultaneously proved to be a
nontrivial task.

The notion of VDFs was introduced in [LW17] and later formalised in [BBBF18].
In principle, since the task of constructing a VDF reduces to the task of incrementally-
verifiable computation [Val08, BBBF18], constructions of VDFs could leverage
succinct non-interactive arguments of knowledge (SNARKs): take any sequentially-
hard function f (for instance the iterated hashing) as the delay function and then
use the SNARK on top of it as the mechanism for verifying the computation of
the delay function. However, as discussed in [BBBF18], the resulting construc-
tion is not quite practical since we would rely on a general-purpose machinery
of SNARKs with significant overhead. Moreover, the VDF construction would
inherit the non-standard knowledge-of-exponent assumption on which the current
constructions of SNARKs rely on.

Efficient VDFs via algebraic delay functions VDFs have recently found
interesting applications in the area of cryptocurrency [CP19b], where efficiency is
an important factor. This has resulted in a flurry of constructions that are tailored
with the application and practicality in mind. They rely on more algebraic,
structured delay functions that often involve iterating an atomic operation so that
one can resort to simpler machinery than SNARKs to achieve verifiability. These
constructions involve a range of algebraic setups like the RSA modulus [Pie19,
Wes19], permutation polynomials over finite fields [BBBF18], and isogenies of
elliptic curves [FMPS19, Sha19].

The constructions in [Pie19, Wes19] are arguably the most practical and the
mechanism that underlies their delay function is the same: carry out iterated
squaring in the RSA modulus or, more generally, any group of unknown order
(e.g. class groups of an imaginary quadratic fields). What distinguishes these
two proposals is the way verification is carried out: while Pietrzak [Pie19] resorts
to an LFKN-style recursive proof system [LFKN92], Wesolowski [Wes19] uses a
clever linear decomposition of the exponent. The constructions from [FMPS19,
Sha19], on the other hand, work in the algebraic setting of isogenies of elliptic

2

curves. Since no analogue of square and multiply is known for this setting, these
constructions simply rely on “exponentiation”. That said, these constructions are
far from being practically efficient.

Squaring and sequentiality Since the delay function that underlies the VDF
in both [Pie19] and [Wes19] is the same, they also end up relying on the same hard-
ness assumption, that iterated squaring is inherently sequential in a group of un-
known order (suggested in the context of time-lock puzzles by Rivest, Shamir, and
Wagner [RSW96]). As shown in [BS07], modular exponentiation, and hence mod-
ular repeated squaring, is amenable to parallelism when carried out in batches.
Therefore, it would be prudent to have efficient VDFs based on other atomic
operations than modular squaring. This constitutes one of the main motivations
of our work and, as we show, it is indeed possible without having to sacrifice
efficiency by a large margin.

1.2 Our Approach to VDFs
In this work, we construct verifiable delay functions that are of a different flavour
compared to the known constructions. The sequentiality of our delay function
relies on an atomic operation that is related to the computation of so-called
Lucas sequences [Luc78, Leh30], explained next. Integer sequences like Fibonacci
numbers and Mersenne numbers are special cases of Lucas sequences.

Lucas sequence A Lucas sequence is a constant-recursive integer sequence
that satisfies the recurrence relation

xn = Pxn−1 −Qxn−2

for integers P and Q. Specifically, we focus on Lucas sequences Uk and Vk defined
bellow.

Definition 1. For P,Q ∈ Z we define Lucas sequences of integers (Uk(P,Q))k∈N
and (Vk(P,Q))k∈N recursively by

V0 = 2, V1 = P, Vk = PVk−1 −QVk−2 and
U0 = 0, U1 = 1, Uk = PUk−1 −QUk−2.

The sequences can be alternatively defined by the characteristic polynomial
z2 − Pz +Q. Specifically, given the discriminant D = P 2 − 4Q of the character-
istic polynomial, one can alternatively compute the sequences in the extension
field

Z[
√
D] ≃ Z[z]/(z2 −D)

using the identities

Un = ωn − ωn

ω − ω
and Vn = ωn + ωn, (1.1)

where ω = (P +
√
D)/2 and its conjugate ω = (P −

√
D)/2 are roots of the

characteristic polynomial. Since conjugation and exponentiation commute in

3

the extension field (i.e., ωn = ωn), computing the n-th terms of the two Lucas
sequences over integers reduces to computing ωn in the extension field, and vice
versa.

The intrinsic connection between computing the terms in the Lucas sequences
and that of exponentiation in the extension has been leveraged to provide alter-
native instantiations of public-key encryption schemes like RSA and ElGamal in
terms of Lucas sequences [LS93, BBL95]. We briefly discuss the analogue of RSA
encryption system. Henceforth, we focus on the Vn sequence, but our observations
mostly apply to Un too.

LUC encryption scheme When the Lucas sequence is computed modulo an
integer N chosen as in the RSA encryption scheme, it gives rise to an interesting
cycle structure. The exact structure depends on the choice of N , P and Q but,
with high probability the cycle is of length Ψ(N), where Ψ(·) is the generalised
totient function for Lucas sequences [Leh30]. In particular, for any k ∈ N,

VkΨ(N)+1 = V1 mod N. (1.2)

This allows defining an analogue of the RSA encryption scheme in the setting of
the Lucas sequence modulo N . The key pair is (e, d) such that ed = 1 mod Ψ(N)
and the encryption of a message m works by simply computing c = Ve(m, 1), the
e-th term in the Lucas sequence defined by P = m and Q = 1. The decryption
can be carried out by computing Vd(c, 1), the d-th term in the Lucas sequence
defined by P = c and Q = 1. The correctness is guaranteed by the identity in
eq.1.2.

Overview of our VDF Our VDF builds on the construction of Pietrzak [Pie19]
and Wesolowski [Wes19], where the delay function is defined as the iterated squar-
ing base x in a “safe” RSA modulus N :

fN(x, T) := x2T mod N.

The choice of modulus N is said to be safe if N = pq for safe primes p = 2p′ + 1
and q = 2q′ + 1, where p′ and q′ are also prime.

Our delay function is the analogue in the setting of Lucas sequences:

fN(P,Q, T) := (U2T (P,Q) mod N, V2T (P,Q) mod N).

As already observed, computing this function can be carried out equivalently in
the extension field ZN [

√
D] using

fN(P,Q, T) := ω2T mod (N, z2 −D).

Note that the atomic operation of our VDF is “doubling” the index of an element
of the Lucas sequence modulo N (i.e., (Un, Vn) ↦→ (U2n, V2n)), or equivalently
squaring in the extension field ZN [

√
D] (as opposed to squaring in ZN). Using

the representation of ZN [
√
D] as {a+ b

√
D | a, b ∈ ZN}, squaring in ZN [

√
D] can

be expressed as a combination of squaring, multiplication and addition modulo
N , since

(a+ b
√
D)2 = (a2 + b2D) + 2ab

√
D. (1.3)

4

Since ZN [
√
D] is a group of unknown order (provided the factorization of N is

kept secret), iterated squaring remains hard here. In fact, we show in Section 3.3
that iterated squaring in ZN [

√
D] is at least as hard as iterated squaring modulo

N .
As for the second property of a VDF, i.e., efficient verifiability, we show how

to adapt the interactive protocol from [Pie19] to our setting which then – via the
Fiat-Shamir Transform [FS86] – yields the non-interactive verification algorithm.
However, the modification of Pietrzak’s protocol is not trivial and we have to
overcome several hurdles that we face in this task, which we elaborate on in the
next section.

Advantages of our approach.

• Our main advantage is the reliance of potential weaker (sequential) hard-
ness assumption: we show in section 3.3 that modular Lucas sequences are
at least as sequentially-hard as the classical delay function given by iter-
ated modular squaring [RSW96]. Despite the linear recursive structure of
Lucas sequences, there is no obvious reduction in the other direction, which
suggests that the assumption of sequential hardness of modular Lucas se-
quences is strictly weaker than that of iterated modular squaring. In other
words, the sequential hardness of modular Lucas sequences might hold even
in the case of an algorithmic improvement violating the sequential hardness
of iterated modular squaring.

• Second, shared generation of RSA modulus is cost-intensive (see [CCD+20]
and the references therein) and therefore a modulus, say in blockchain ap-
plications, is usually generated for long-term usage and reusability in mind.
Once the modulus is fixed, the operations are also inadvertently fixed. This
unfortunately would allow optimising dedicated hardware for the atomic
operation. However, in our case there is another free parameter D that is
yet to be set (see eq. 1.3) which then determines the atomic operation even
after the modulus N has been fixed. This parameter could be varied from
protocol execution to protocol execution. Therefore, we believe that our
setting might offers some level of mitigation against both these issues. Note
that this comes at a slight price of working in the extension field, where
the size of the elements and the cost of an atomic operation is, roughly
speaking, twice that of working in the multiplicative group modulo N .

1.3 Our Techniques
Pietrzak’s VDF Let N = pq be an RSA modulus where p and q are safe
primes and let x be a random element from Z∗N . At its core, Pietrzak’s VDF
relies on the interactive protocol for the statement

“(N, x, y, T) satisfies y = x2T mod N”.

The protocol is recursive and in a round-by-round fashion reduces the claim to a
smaller statement by halving the time parameter. To be precise, in each round
the (honest) prover sends the “midpoint” µ = x2T/2 of the current statement to
the verifier and they together reduce the statement to

5

“(N, x′, y′, T/2) satisfies y′ = (x′)2T/2 mod N”,

where x′ = xrµ and y′ = µry for a random challenge r from the uniform distribu-
tion over Z2λ . This is continued until (N, x, y, T = 1) is obtained, at which point,
the verifier simply checks whether y = x2 mod N .

Since the challenges r are public, the protocol can be compiled into a non-
interactive one using the Fiat-Shamir transform [FS86] and this yields a means
to verify the delay function

fN(x, T) = x2T mod N.

It is worth pointing out that the choice of safe primes is crucial for proving
soundness: in case the group has easy-to-find elements of small order then it
becomes easy to break soundness of the above protocol.

Adapting Pietrzak’s protocol to Lucas sequences For a modulus N = pq
and integers P,Q, T ∈ N, recall that our delay function is defined as

fN(T, P,Q) = (U2T (P,Q) mod N, V2T (P,Q) mod N),

or equivalently
fN(T, P,Q) = ω2T in ZN [

√
D],

for the discriminant D = P 2 − 4Q of the characteristic polynomial x2 − Px+Q.
Towards building a verification algorithm for this delay function, the natural first
step is to design an interactive protocol for the statement

“(N,P,Q, y, T) satisfies y = ω2T in ZN [
√
D].”

It turns out that the interactive protocol from [Pie19] can be adapted for this
purpose. However, we encounter two technicalities in this process.

Dealing with elements of small order. The main problem that we face while
designing our protocol is avoiding elements of small order. In the case of [Pie19],
this was accomplished by moving to the setting of so-called signed quadratic
residues [HK09] in which the sub-groups are all of large order. It is not clear a
corresponding object exists for our algebraic setting. However, in an earlier draft
of Pietrzak’s protocol[Pie18], the issue of low-order elements was dealt with in a
different manner: the prover sends a square root of µ, from which the original µ
can be recovered easily (by squaring it) with a guarantee, that the result lies in a
group of quadratic residues QRN . Notice that the prover knows the square root
of µ, because it is just a previous term in the sequence he computed.

Square roots. In our setting, we cannot simply ask for the square root of
the midpoint as the subgroup of ZN [

√
D] we effectively work in has a different

structure. Nevertheless, we can use a similar approach: for an appropriately
chosen small a, we provide an a-th root of ω (instead of ω itself) to the prover in
the beginning of the protocol. Prover then computes whole sequence for ω 1

a . In
the end, he has the a-th root of every term of the original sequence and he can
recover any element of the original sequence by powering to a.

Sampling strong modulus. The second technicality is related to the first one.
In order to ensure that we can use the above trick, we require a modulus where the
small subgroups are reasonably small not only in the modulus ZN but also in the

6

extension ZN [
√
D]. Thus, the traditional sampling algorithms that are used to

sample strong primes (e.g., [RS01]) are not sufficient for our purposes. However,
we show in Section 4.4 that sampling strong primes that suit our criteria can still
be carried out efficiently.

Extensions First, we show that our construction can be extended to other
linear recurrences than Lucas sequence in Chapter 5. Second, we prove in Ap-
pendix A that if the adaptive root assumption (introduced in [Wes19]) holds in
RSA group then it also holds for Lucas sequences and thus Weselowski’s protocol
can be used for verification of our delay function. Third, we show in Appendix B
that the strong primality requirement (introduced in section 4.2) can be relaxed
to safe primality, assuming computational hardness of the Quadratic residuocity
problem.

1.4 Related Work
Related work to VDFs The notion of VDFs was introduced in [LW17] and
later formalised in [BBBF18]. VDFs are closely-related to the notions of time-lock
puzzles [RSW96] and proofs of sequential work [MMV13]. Roughly speaking, a
time-lock puzzle is a delay function that additionally allows efficient sampling of
the output via a trapdoor. A proof of sequential work, on the other hand, is a
delay “map”, in the sense that the output is not necessarily unique. Constructions
of time lock puzzles are rare [RSW96, BGJ+16], and there are known limitations:
e.g, that it cannot exist in the random-oracle model [MMV13]. However, we
know how to construct proofs of sequential work in the random-oracle model
[MMV13, CP18, AKK+19, DLM19].

Since VDFs have recently found important applications in the area of cryp-
tocurrency [CP19b], there have been several candidate constructions. Among
them, the most notable are the iterated-squaring based construction from [Pie19,
Wes19], the permutation-polynomial based construction from [BBBF18] and the
isogenies-based construction from [FMPS19, Sha19]. Isogenies-base construc-
tions, where no analogue of square and multiply is known, simply rely on “ex-
ponentiation”. Although, these constructions provide certain form of quantum
resistance, they are presently far from efficient. On the other hand, construc-
tions in [Pie19, Wes19] based on iterated-squaring are quite practical (see the
survey [BBF18]) and the VDF currently being used for consensus in the cryp-
tocurrency Chia1 is basically their construction adapted to the algebraic setting
of class groups [CP19b].

There are several other interesting use cases of VDFs. Servers can use VDFs to
mitigate DoS attacks by challenging each new user with a VDF instance [RG21].
Publicly verifiable randomness beacons can be constructed via VDFs [SJH+20,
EFKP20]. So-called short-live signatures and short-live zero-knowledge proofs
are constructed via VDFs in [ABC22]. This short-liveness means that after a
specified period of time, the proof (resp. the signature) is no longer convincing.

1In particular, Chia blockchain uses this VDF to avert long range attacks, where an adversary
tries to generate a chain that forked (from the chain seen by the honest parties) many blocks in
the past [CP19a]. In the Chia network, it is difficult to extend a forked chain quickly, because
every new block must be finalized by solving a VDF challenge.

7

As VDFs are becoming building blocks of many protocols, there also already
exists whole spectrum of newly required features. A VDF is said to be unique if
the proof that is used for verification is unique [Pie19]. A VDF is tight [DGMV19]
if the gap between simply computing the function and computing it with a proof
is small. Yet another extension is a continuous VDF, where all steps of the com-
putation (i.e. f(t′) for t′ < t) are publicly and continuously verifiable [EFKP20].
Cooperative VDF (coVDF) are designed to be computed by multiple parties in
either serial or parallel manner[MQ21].

The feasibility of time-lock puzzles and proofs of sequential works were re-
cently extend to VDFs. It was shown [RSS20] that the latter requirement, that
is working in a group of unknown order is inherent in a black-box sense. It was
shown in [DGMV19, MSW19] that there are barriers to constructing tight VDFs
in the random-oracle model.

VDFs have also have surprising connection to complexity theory [CHK+19,
EFKP20].

Work related to Lucas sequence Lucas sequences have long been studied in
the context of number theory: see for example [Rie85] or [Rib00] for a survey of
its applications to number theory. Its earliest application to cryptography can be
traced to the (p+ 1) factoring algorithm [Wil82]. Constructive applications were
found later thanks to the parallels with exponentiation. Several encryption and
signature schemes were proposed, most notably the LUC family of encryption
and signatures [LS93, MN81]. It was later shown that some of these schemes can
be broken or that the advantages it claimed were not present [BBL95]. Statistical
Zero-Knowledge Arguments are constructed using Lucas sequences in [Lip03].

Lucas-Lehmer primality test [Leh27], based on Lucas sequences, is currently
used to search for the biggest primes the human-kind knows [GIM18].

1.5 Organisation
We start with the prerequisite basic definitions (VDFs and interactive protocols)
in Chapter 2. Then, we define a delay function based on Lucas sequences and
discuss its sequentiality in Chapter 3. We describe how to turn this delay function
into verifiable delay function in Chapter 4. Then, in Chapter 5, we show how the
ideas can be extended to linear recurrences other than Lucas sequences. We end
with some concluding remarks and further research directions in Chapter 6.

8

2. Preliminaries

2.1 Verifiable Delay Functions
We adapt the definition of verifiable delay functions from [BBBF18] but we de-
couple the verifiability and sequentiality properties for clarity of exposition of our
results. First, we present the definition of a delay function.

Definition 2. A delay function DF consists of a triple of algorithms
(DF.Setup, DF.Gen, DF.Eval) such that

pp← DF.Setup(1λ):
On input a security parameter 1λ, the algorithm DF.Setup outputs public
parameters pp.

x← DF.Gen(pp, T):
On input public parameters and a time parameter T ∈ N, the algorithm
DF.Gen outputs a challenge x.

y ← DF.Eval(pp, (x, T)):
On input a challenge pair (x, T), the algorithm DF.Eval outputs the value y
of the delay function.

The security property required of a delay function is sequential hardness as
defined below.

Definition 3 (Sequentiality). Let DF be a delay function. We say that DF
satisfies the sequentiality property, if there exists an ϵ ∈ (0, 1) such that for all
T (λ) ∈ poly(λ) and for every adversary A = (A0, A1) using poly(λ) processors
and running in time O(T ϵ(λ)), there exists a negligible function µ such that

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
A1(pp, state, (x, T (λ))) = y

where
pp← DF.Setup(1λ)

state← A0(pp)
x← DF.Gen(pp, T (λ))

y ← DF.Eval(pp, (x, T (λ)))

⎤⎥⎥⎥⎥⎥⎥⎦ ≤ µ(λ).

A few remarks about our definition of sequentiality are in order:

1. We require computing DF(x, T) to be hard in less than T sequential steps
even using any polynomially-bounded amount of parallelism and precom-
putation. Note that it is necessary to bound the amount of parallelism,
as an adversary could otherwise break the underlying hardness assumption
(e.g. hardness of factorization). Analogously, T should be polynomial in λ
as, otherwise, breaking the underlying hardness assumptions becomes easier
than computing DF(x, T) itself for large values of T .

2. Another issue is what bound on the number of sequential steps of the ad-
versary should one impose. For example, the delay function based on T re-
peated modular squarings can be computed in sequential timeO(T/loglog T)

9

using polynomial parallelism [BS07]. Thus, one cannot simply bound the
sequential time of the adversary by o(T). Similarly to [MT19], we adapt the
O(T ϵ) bound for ϵ ∈ (0, 1) which, in particular, is asymptotically smaller
than O(T/loglog T).

3. Further, tuples of parameters (λ, T) cannot be arbitrary (e.g. consider
constant T and infinitely growing λ). We force T to scale with growing λ
by defining T as a polynomial in λ.

4. Without loss of generality, we assume that the size of pp is at least linear
in λ and the adversary A does not have to get the unary representation of
the security parameter 1λ as its input.

The definition of verifiable delay function extends a delay function with the
possibility to compute publicly-verifiable proofs of correctness of the output value.

Definition 4. A verifiable delay function VDF is a delay function
(VDF.Setup, VDF.Gen, VDF.Eval) with two additional algorithms VDF.Prove
and VDF.Verify such that

(y, π)← VDF.Prove(pp, (x, T)):
On input public parameters and a challenge pair (x, T), the VDF.Prove al-
gorithm outputs (y, π), where π is a proof that the output y is the output of
VDF.Eval(pp, (x, T)).

{accept/reject} ← VDF.Verify(pp, (x, T), (y, π)):
On input public parameters, a challenge pair (x, T), and an output pair
(y, π), the algorithm VDF.Verify outputs either accept or reject.

In addition to sequentiality (inherited from the underlying delay function),
the VDF.Prove and VDF.Verify algorithms must together satisfy correctness and
(statistical) soundness as defined below.

Definition 5 (Correctness). A verifiable delay function VDF is correct if for all
T ∈ N

Pr

⎡⎢⎢⎢⎢⎣
VDF.Verify(pp, (x, T), (y, π)) = accept

where
pp← VDF.Setup(1λ)
x← VDF.Gen(pp, T)

(y, π)← VDF.Prove(pp, (x, T))

⎤⎥⎥⎥⎥⎦ = 1.

Definition 6 (Statistical soundness). A verifiable delay function VDF is sta-
tistically sound if for every (potentially computationally unbounded) malicious
prover P ∗ there exists a negligible function µ(λ) such that

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

VDF.Verify(pp, (x, T), (ỹ, π̃)) = accept
and y ̸= ỹ

where
pp← VDF.Setup(1λ)
x← VDF.Gen(pp, T)

y ← VDF.Eval(pp, (x, T))
(ỹ, π̃)← P ∗(pp, (x, T))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ µ(λ).

10

2.2 Proof Systems
An interactive protocol consists of a pair (P,V) of interactive Turing machines
that are run on a common input I. The first machine is called the prover and is
denoted by P, and the second machine, which is probabilistic, is called the verifier
and is denoted by V.

In an ℓ-round (i.e., (2ℓ − 1)-message) interactive protocol, in each round
i ∈ [1, ℓ], first P sends a message αi ∈ Σa to V and then V sends a message βi ∈ Σb

to P, where Σ is a finite alphabet. At the end of the interaction, V runs a (deter-
ministic) Turing machine on input {I, (β11 = , . . . 1 = ,βℓ), (α11 = , . . . 1 = ,αℓ)}.
The interactive protocol is public-coin if βi is a uniformly distributed random
string in Σb.

The notion of an interactive proof for a language L is due to Goldwasser,
Micali and Rackoff [GMR89].

Definition 7. An interactive protocol (P,V) is a ϵ-sound interactive proof (IP)
for L if:

• Completeness: For every I ∈ L, if V interacts with P on common input
I, then V accepts with probability 1.

• Soundness: For every I ̸∈ L and every (potentially computationally un-
bounded) cheating prover strategy P˜︁, the verifier V accepts when interacting
with P˜︁ with probability less ϵ(|I|), where ϵ = ϵ(n) is called the soundness
error of the proof system.

A non-interactive proof system involves the prover sending a single message
to the verifier. We work in the CRS model where we assume that both prover
and verifier have access to a common reference string (CRS). When the CRS is
simply a uniformly random string from some domain R, it is referred to as a
common random string. We focus on adaptive proof systems where a cheating
prover gets to see the CRS before forging a proof for a statement of its choice.

Definition 8. A pair of machines (P,V) is an ϵ-adaptively-sound non-interactive
proof system for a language L if V is probabilistic polynomial-time and the fol-
lowing three properties hold:

• Completeness: For every I ∈ L,

Pr
R←R

[V(I,P(I, R), R) = 1] = 1,

where the probability is over the random choice of the CRS R ∈ R.

• Soundness: For every (potentially computationally unbounded) cheating
prover strategy P˜︁,

Pr
R←R

(I,π˜︁)←P˜︁(R)

[V(I, π˜︁, R) = 1 ∧ I ̸∈ L] ≤ ϵ(|I|).

11

3. DF from Lucas sequences
In this section, we propose a delay function based on Lucas sequences and prove
its sequentiality assuming that iterated squaring in a group of unknown order is
sequential. Further, we put forward a conjecture that our delay function candi-
date is even more robust that its predecessor proposed by Rivest, Shamir, and
Wagner [RSW96]. In 4, we turn our delay function candidate into a verifiable
delay function.

3.1 Atomic operation
Our DF is based on subsequences of the Lucas sequences, whose indexes are
powers of two.

Definition 9. For P,Q ∈ Z and t ∈ N ∪ {0}, we define subsequences (ut) and
(ut) of Lucas sequences by

ut := U2t(P,Q) and vt := V2t(P,Q). (3.1)

Although value of (ut, vt) depends on parameters (P,Q), we omit (P,Q) from
the notion because these parameters will be always obvious from the context.

What is the underlying atomic operation our DF

fN(T, P,Q) = (uT mod N, vT mod N) ?

There are several ways how to compute (ut, vt) in t sequential steps. In the
following text, we describe two of them.

Extension ring based approach We can use the extension ring ZN [
√
D],

where D := P 2 − 4Q is the discriminant of the characteristic polynomial f(x) =
x2−Px+Q. The polynomial f(x) has a root ω := (P +

√
D)/2 ∈ ZN [

√
D]. For

∀n ∈ N it holds that

ωn = Un + Vn

√
D

2

Ç
i.e. ω2t = ut + vt

√
D

2

å
Thus by iterated squaring of ω we can compute terms of our target subsequences.
But what does the squaring in the extension ring means exactly? Let ω = a+b

√
D

for some a, b ∈ ZN . Then

(a+ b
√
D)2 = (a2 + b2D) + 2ab

√
D.

We end up with atomic operation

g : (a, b) ↦→ (a2 + b2D, 2ab), gt(
Å
P

2 ,
1
2

ã
) =

(︂ut

2 ,
vt

2

)︂
. (3.2)

12

Identities based approach There exists many useful identities for members
of Lucas sequences, among of them

Um+n = UmVn −QnUm−n, and Vm+n = VmVn −QnVm−n. (3.3)
Setting m = n we get

U2n = UnVn, and V2n = V 2
n − 2Qn. (3.4)

These identities are not hard to derive and a reader can find a proof in [PB91]
Lemma 12.5. Indexes are doubled on each of application of equations 3.4.
Definition 10. For t ∈ N ∪ {0}, we define an auxiliary sequence qt := Q2t.

Using identities 3.4, we get recursive equations
ut+1 = utvt, vt+1 = v2

t − 2qt and qt+1 = q2
t . (3.5)

We end up with the atomic operation
g : (u, v, q) ↦→ (uv, v2 − 2q, q2), gt((1, P,Q)) = (ut, vt, qt). (3.6)

After a closer inspection, the reader may have an intuition that an auxiliary
sequence qt, which introduces a third state variable, is redundant. This intuition
is indeed right. In fact, there is another easily derivable identity

qt = v2
t − u2

tD

4 , (3.7)

which can be found as lemma 12.2 in [PB91]. On the other side, identity 3.7 is
quite interesting, because it allows us to compute large powers of element Q ∈ ZN

only using Lucas sequences. We use this fact in the security reduction.

Conclusion Computing (ut, vt) in the extension field seems to be the most
natural and time and space effective approach. Furthermore, writing the atomic
operation as ω ↦→ ω2 is very clear. In the rest of this thesis, we will follow this
approach.

3.2 Construction

Construction 1 (DF from Lucas sequences).

LCS.Setup(1λ): Samples two λ-bit primes p and q and outputs N := p · q.

LCS.Gen(N, T): Samples Q and P from the uniform distribution on ZN , sets

D := P 2 − 4Q and ω := P + z

2

(where z is a formal variable satisfying z2 = D) and outputs (ω, T).

LCS.Eval(N, (ω, T)): Computes a sequence

ω → ω2 → ω4 → ω8 → . . .→ ω2T −1 → ω2T (3.8)

and returns its last term y := ω2T .

13

3.3 Reduction to RSW puzzles
In order to prove sequentiality (def. 3) of LCS, we use RSW puzzles sequentiality,
implicitly stated in [RSW96], as underlying hardness assumption.

Definition 11 (RSW delay function). We define RSW delay function as follows
RSW.Setup(1λ) outputs an RSA modulus N of bit length λ.
RSW.Gen(N, T) outputs a random element x from uniform distribution on Z∗N .
RSW.Eval(N, (x, T)) outputs y := x2T mod N .

Theorem 1. If RSW delay function has the sequentiality property, then LCS delay
function has the sequentiality property.

Proof. Suppose there exists an adversary (A0, A1) who contradicts the sequential-
ity of LCS, where A0 is a precomputation algorithm and A1 is an online algorithm.
We construct an adversary (B0, B1) who contradicts the sequentiality of RSW as
follows:

• The algorithm B0 is defined identically to the algorithm A0.

• On input (N, state, (x ∈ Z∗N , T)), B1 picks a P from the uniform distribu-
tion on ZN , sets

Q := x, D := P 2 − 4Q, ω := (P + z)/2,

where z is a formal variable satisfying z2 = D, and it runsA1(N, state, (ω, T))
to compute (uT , vT). The algorithm B1 computes y = x2T = Q2T = qT using
the identity in Equation (3.7).

Note that the input distribution for the algorithm A1 produced by B1 differs from
the one produced by LCS.Gen, because the LCS generator samples Q from the uni-
form distribution on Z∗N (instead of ZN). However, this is not a problem since the
size of ZN ∖Z∗N is negligible compared to the size of ZN , and the distribution of ω
produced by B1 is statistically indistinguishable from the distribution of ω sam-
pled by LCS.Gen. Thus, except for a negligible multiplicative loss, the adversary
(B0, B1) attains the same success probability of breaking the sequentiality of RSW
as the probability of (A0, A1) breaking the sequentiality of LCS – a contradiction
to the assumption of the theorem.

We believe that the opposite implication in theorem 1 is not true, i.e. breaking
sequentiality RSW does not necessarily means breaking sequentiality of LCS. Let
us state this conjecture.

Conjecture 1.1. Sequentiality of LCS cannot be reduced to sequentiality of RSW.

A clue to this conjecture is that while RSW is based only on multiplication in
the group Z∗N(·), the LCS uses full arithmetic (addition and multiplication) of the
commutative ring ZN .

Yet another nice feature of our construction is that the result from [BS07],
where O(T/loglog(T)) algorithm for iterated squaring is proposed, does not apply
to our delay function, because our atomic operation differs.

14

4. VDF from Lucas sequences

4.1 Structure of ZN [x]/(x2 − Px +Q)
To construct a VDF from Lucas sequnces, we use an algebraic extension

ZN [x]/(x2 − Px+Q), (4.1)

where N is a RSA modulus and P,Q ∈ ZN . In this section, we describe the
structure of 4.1.

From the knowledge of structure of 4.1 we conclude that using modulus N
composed of safe primes (i.e., p − 1 has a large prime divisor) is necessary but
not sufficient condition for security of our construction. We specify the sufficient
conditions on factors of N in the following Section 4.2.

First, we introduce a simplifying notation for quotient rings.

Definition 12. For n ∈ N and f(x) ∈ Zn, we denote by Zn,f the quotient ring
Z[x]/(n, f(x)), where (n, f(x)) denotes the ideal of the ring Z[x] generated by n
and f(x).

We denote the set of all primes by P. Observation 1, below, allows us to
restrict our analysis only to the structure of Zp,f for prime p ∈ P.

Observation 1. Let p, q ∈ P, N := p · q and f(x) ∈ ZN [x]. Then

ZN,f ≃ Zp,f × Zq,f .

Proof. Using the Chinese reminder theorem

ZN,f ≃
Z[x]/(f(x))

(N) ≃ Z[x]/(f(x))
(p) × Z[x]/(f(x))

(q) ≃ Zp,f × Zq,f .

The following lemma characterizes the structure of Zp,f with respect to the
discriminant of f . We use

Ä
a
p

ä
to denote standard Legendre symbol.

Lemma 1. Let p ∈ P ∖ {2} and f(x) ∈ Zp[x] be a polynomial of degree 2 with
the discriminant D. Then

Z∗p,f (·) ≃

⎧⎪⎨⎪⎩
Zp2−1(+)

Ä
D
p

ä
= −1

Zp−1(+)× Zp(+)
Ä

D
p

ä
= 0 .

Zp−1(+)× Zp−1(+)
Ä

D
p

ä
= 1

Proof. We consider each case separately:
If
Ä

D
p

ä
= −1, then f(x) is irreducible over Zp and Zp,f is a field with p2

elements. Since Zp,f is a finite field, Z∗p,f is cyclic and contains p2 − 1 elements.
If
Ä

D
p

ä
= 0, then D = 0 and f have some double root α. Therefore f(x) can

be written as β(x− α)2 for some β ∈ Z∗p. Since the ring Zp,β(x−α)2 is isomorphic
to the ring Zp,x2 (consider the isomorphism g(x) ↦→ g(x + α)), we can restrict
ourselves to describing structure of Zp,x2 .

15

We will prove that the function ψ,

ψ : Z∗p(·)× Zp(+)→ Z∗p,x2(·),
ψ : (a, b) ↦→ a · (1 + x)b,

is an isomorphism. First, polynom a + cx ∈ Zp,x2 is invertible iff a ̸= 0 (inverse
is a−1 − a−2cx). For choice b = a−1c, we have

ψ(a, b) = a(1 + x)b ≡ a(1 + bx) ≡ a(1 + a−1cx) ≡ a+ cx mod (p, x2).

Thus ψ is onto. Second, ψ is, in fact, a bijection, because

|Z∗p,x2(·)| = p2 − p = (p− 1) · p = |Z∗p(·)× Zp(+)|. (4.2)

Finally, ψ is a homomorphism, because

ψ(a1, b1) · ψ(a2, b2) = a1a2(1 + x)b1+b2 = ψ(a1a2, b1 + b2).

If
Ä

D
p

ä
= 1, then f(x) has two roots β1, β2 ∈ Zp. We have an isomorphism

ψ : Zp[x]/(f(x))→ Zp × Zp

ψ : g(x) + (f(x)) ↦→ (g(β1), g(β2))

and (Zp × Zp)∗ ≃ Z∗p × Z∗p ≃ Zp−1(+)× Zp−1(+).

4.2 Strong groups and strong primes
For sake of our construction, we need Z∗p,f to contain a strong subgroup of order
asymptotically linear in p. We mind a reader that our definition of strong primes
is stronger, than definition by Rivest and Silverman in [RS01].

Definition 13 (Strong groups). For λ ∈ N, we say that a non-trivial group G
is λ-strong, if the order of each subgroup of H (excluding the trivial subgroup) is
greater than 2λ.

Observation 2. If G1 and G2 are λ-strong groups, then G1 × G2 is a λ-strong
group.

It can be seen from lemma 1 that Z∗p,f will always contain groups of small
order (e.g. Z2(+)). To get rid of these, we descend into the subgroup of a-th
powers of elements of Z∗p,f using the following notion.

Definition 14. For Abelian group G and a ∈ N, we define G(a), subgroup of G,
as {xa | x ∈ G} in multiplicative notion, and aG := {ax | x ∈ G} in additive
notion.

Further, we show (in lemma 2 bellow) that (λ, a)-strong primality (defini-
tion 15 bellow) is sufficient condition for (Zp,f)(a) to be a λ-strong group.

Definition 15 (Strong primes). Let p ∈ P and λ, a ∈ N. We say that p is
the (λ, a)-strong prime, if λ > a and there exists W ∈ N, W > 1, such that
p2 − 1 = aW and every factor of W is greater than 2λ.

16

Since a is a public parameter in our setup, super-polynomial a could reveal
partial information about factorization of N . However, we could allow a to be
polynomial in λ. For the sake of simplicity of the definition 15, we rather use
stronger condition a < λ.

Lemma 2. Let p be a (λ, a)-strong prime and f(x) ∈ Zp[x] be a polynomial of
degree 2. Then (Z∗p,f)(a) is a λ-strong group.

Proof. From definition of the strong primes, there exists W ∈ N, whose factors
are bigger than 2λ and p2 − 1 = aW . We denote W− := gcd(p − 1,W) a factor
of W .

It is a simple observation that for ∀m,n ∈ N : nZm ≃ Zm/gcd(m,n). We use
this observation to conclude that every branch from lemma 1 gives a product of
λ-strong groups. According to observation 2, these products are λ-strong groups.

(Z∗p,f)(a) ≃

⎧⎪⎨⎪⎩
aZp2−1(+) ≃ aZaW (+) ≃ ZW (+)

Ä
D
p

ä
= −1

aZp(+)× aZp−1(+) ≃ Zp(+)× ZW −(+)
Ä

D
p

ä
= 0

aZp−1(+)× aZp−1(+) ≃ ZW −(+)× ZW −(+)
Ä

D
p

ä
= 1

Corollary 1. Let p be a (λ, ap)-strong prime, q be a (λ, aq)-strong prime, N = p·q,
a = lcm(ap, aq), P,Q ∈ ZN and f(x) = x2 − Px+Q. Then (Z∗N,f)(a) is λ-strong.

4.3 Interactive protocol
We recall the outline of Pietrzak’s interactive protocol from Section 1.3. Let
N = p · q be an RSA modulus where p and q are strong primes and let x be a
random element from Z∗N . The interactive protocol in [Pie19] allows a prover to
convince the verifier of the statement

“(N, x, y, T) satisfies y = x2T mod N”.

The protocol is recursive and in a round-by-round fashion reduces the claim to a
smaller statement by halving the time parameter. To be precise, in each round
the (honest) prover sends the “midpoint” µ = x2T/2 of the current statement to
the verifier and they together reduce the statement to

“(N, x′, y′, T/2) satisfies y′ = (x′)2T/2 mod N”,

where x′ = xrµ and y′ = µry for a random challenge r. This is continued till
(N, x, y, T = 1) is obtained at which point the verifier simply checks whether
y = x2 mod N .

The main problem, we face while designing our protocol is ensuring that the
verifier can check whether µ sent by prover lies in an appropriate subgroup of
ZN [
√
D]. In the first draft of Pietrzak’s protocol[Pie18], prover sends a square

root of µ, from which the original µ can be recovered easily (by simply squaring
it) with a guarantee, that the result lies in a group of quadratic residues QRN .
Notice that the prover knows the square root of µ, because it is just a previous
term in the sequence he computed.

17

Figure 4.1: Illustration of our computation of the iterated squaring using the a-th
root of ω. Horizontal arrows are x ↦→ x2 and diagonal arrows are x ↦→ xa.

Using Pietrzak’s protocol directly for our delay function would require com-
puting a-th roots in RSA group for some arbitrary a. Since this is a computation-
ally hard problem, we cannot use the same trick. In fact, the VDF construction
of Wesolowski [Wes19] is based on similar hardness assumption.

While Pietrzak shifted from QRN to the group of signed quadratic residues
QR+

N in his following paper [Pie19] to get a proof uniqueness, we resort to his old
idea of ”squaring a square root” and generalise it.

The high level idea is simple. First, on input ω, prover computes the sequence
(ω, ω2, . . . , ω2T). Next, during the protocol, verifier maps all elements sent by the
prover by homomorphism

ψ : Z∗N,f (·)→ (Z∗N,f)(a)(·), ψ(x) = xa (4.3)

into the target strong group (Z∗N,f)(a). This process is illustrated in fig. 4.1.
Notice that the equality y = ω2T for the original sequence implies the equeality
ya = (ωa)2T for the mapped sequence (ωa, ω2a, . . . , ωa2T).

4.3.1 Restriction to elements of (Z∗N,f)(a)

Mapping 4.3 introduces a new technical difficulty. Since ψ is not injective, we
narrow the domain inputs, for which the output of our VDF is verifiable, from
Z∗N,f to (Z∗N,f)(a). Furthermore, the only way how to verify that a certain x is an
element of (Z∗N,f)(a) is to get an a-th root of x and power it to the a. So we have
to represent elements of (Z∗N,f)(a) by elements of Z∗N,f anyway. To resolve these
issues, we introduce a non-unique representation of elements of (Z∗N,f)(a).

Definition 16. For a ∈ N and x ∈ Z∗N,f , we denote xa (an element of (Z∗N,f)(a))
by [x]. Since this representation of xa is not unique, we define an equality relation
by

[x] = [y] def↔ xa = ya

In the following text, the goal of the brackets notion 16 is to distinguish places
where the equality means the equality of elements of Z∗N,f from those places, where
the equality holds up to Ker(ψ). A reader can also see notion 16 as a concrete
representation of elements of a factor group ZN,f/Ker(ψ). We will denote by tilde
(x̃) the elements that were already powered to the a by a verifier (i.e. x̃ = xa).
Therefore tilded variables verifiably belong to the target group (Z∗N,f)(a).

Our security reduction 1 requires the DF to operate everywhere on ZN . This
problem can be bypassed by modifying LCS.Setup to attach the auxiliary set
Ker(ψ) to its output.

18

4.3.2 Description of interactive protocol for our VDF
Setup

λ ∈ N security parameter
a ∈ N exponentiation parameter
N ∈ N a product of (λ, ap)-safe prime p and

(λ, aq)-safe prime q such that a = lcm(ap, aq)
f(x) = x2 − Px+Q for some P,Q ∈ ZN

((N, a, hash), [ω], T) a challenge tuple
((N, a, hash), [ω], T, [y]) a solution tuple

The Interactive Protocol

1. Prover and verifier get a challenge tuple ((N, a, hash), [ω], T) as a
common input.

2. Prover computes the sequence

ω → ω2 → ω4 → . . .→ ω2T

and sends its last element [y] := [ω2T] to the verifier.
3. Prover and verifier repeat the halving protocol, initiated with so-

lution tuple ((N, a, hash), [ω], T, [y]), until verifier either accept or
reject.

The Halving Protocol

1. Prover and verifier get solution tuple ((N, a, hash), [ω], T, [y]) as
common input.

2. If T = 1, then the verifier computes (ω̃, ỹ) = (ωa, ya) and it outputs
accept provided that ỹ = ω̃2 or reject otherwise.

3. Prover sends [µ] := [ω2⌊T/2⌋] to verifier.
4. If µ /∈ Z∗N,f , then verifier output reject.
5. Verifier picks a random r from uniform distribution on Z2λ and he

sends r to the prover.
6. Finally prover and verifier merge solution tuples

((N, a, hash), [ω], ⌊T/2⌋, [µ]) andß
((N, a, hash), [µ], T/2, [y]) for even T
((N, a, hash), [µ], ⌈T/2⌉, [y2]) for odd T

into the new solution tupleß
((N, a, hash), [ωrµ], T/2, [µry]) for even T
((N, a, hash), [ωrµ], ⌈T/2⌉, [(µry)2]) for odd T

and they output this tuple.

19

4.3.3 Security proof
Recall here that (Z∗N,f)(a) is λ-strong group, so there exists
p1, . . . , pn ∈ P ∩ (2λ,∞) and k1, . . . , kn ∈ N such that

(Z∗N,f)(a) ≃ Z
p

k1
1

(+)× · · · × Zpkn
n

(+) (4.4)

Definition 17. For z ∈ (Z∗N,f)(a) and i ∈ [n], we define zi as i-th coordinate of
ψ(z), where ψ is the isomorphism given by eq. (4.4).

Lemma 3. Let T ∈ N and ω, µ, y ∈ (Z∗N,f)(a). If y ̸= ω2T , then

Pr
r←Z2λ

⎡⎢⎢⎣
y′ = (ω′)2T/2

where
ω′ := ωµr

y′ := µry

⎤⎥⎥⎦ <
1
2λ
. (4.5)

Proof. Fix ω, µ and y. Let some r ∈ Z2λ satisfies

µry = (ωrµ)2T/2
. (4.6)

Using notion from def. 17, we rewrite eq. (4.6) as a set of equations

rµ1 + y1 ≡ 2T/2(rω1 + µ1) mod pk1
1 ,

...

rµn + yn ≡ 2T/2(rωn + µn) mod pkn
n .

For every j ∈ [n], by reordering the terms, the j-th equation becomes

r(2T/2ωj − µj) + (2T/2µj − yj) ≡ 0 mod p
kj

j (4.7)

If ∀j ∈ [n] : 2T/2ωj − µj ≡ 0 mod p
kj

j , then µ = ω2T/2 . Further for every
j ∈ [n] : 2T/2µj − yj ≡ 0 mod p

kj

j . It folows that y = µ2T/2 . Putting these two
equations together gives us y = ω2T , which contradicts our assumption y ̸= ω2T .

It follows that there exists j ∈ [n] such that

2T/2ωj − µj ̸≡ 0 mod p
kj

j . (4.8)

Thereafter there exists k < kj such that pk
j divides (2T/2ωj − µj) and

(2T/2ωj − µj)/pk
j ̸≡ 0 mod pj, (4.9)

Furthermore, from eq. (4.7), pk
j divides (2T/2µj − yj). Finally, dividing eq. 4.7 by

pk
j , we get that r is determined uniquely (mod pj),

r ≡ −
(2T/2µj − yj)/pk

j

(2T/2ωj − µj)/pk
j

mod pj.

Using the fact that 2λ < pj, this uniqueness of r upper bounds number of r ∈ Z2λ ,
such that eq. (4.6) holds, to one. It follows that the probability the eq. 4.6 holds
for r is chosen randomly from uniform distribution over Z2λ is less then 1/2λ.

20

Corollary 2. The halving protocol will turn an invalid input tuple (i.e. [y] ̸=
[ω2T]) into a valid output tuple (i.e. [y′] = [(ω′)2T/2]) with probability less then
1/2λ.

Theorem 2. For any computationally unbounded prover who submits anything
else then [y] such that [y] = [ω2T] in the phase 2 of the protocol, the probability
that verifier accepts is upper-bounded by

log T
2λ

.

Proof. In the each round of the protocol, T decreases to ⌈T/2⌉. It follows that
the number of rounds of the halving protocol before reaching T = 1 is upper
bounded by log T .

If the verifier accepts the solution tuple ((N, a, hash), [ω′′], 1, [y′′]) in the last
round, then the equality [y′′] = [(ω′′)2] must hold. It follows that the initial
inequality must have turned into equality in some round of the halving protocol.
By lemma 3, the probability of this event is bounded by 1/2λ. Finally, using the
union bound for all rounds, we obtain the upper bound (log T)/2λ.

4.4 Generating strong primes
We propose two algorithms for sampling strong primes necessary for security of
our verifiable delay function. Recall that if p is a (λ, a)-strong prime, then p2− 1
has only a few small factors and all remaining factors are larger than 2λ. From
p2 − 1 = (p − 1)(p + 1) and gcd(p − 1, p + 1) = 2, it follows that p2 − 1 always
has at least two large factors.

Naive algorithm. To sample a random strong prime, we can simply pick some
random λ-bit pseudo-prime and check if it is a strong prime. First, the algorithm
finds a small factors of p − 1 by trial division and then it checks whether the
co-factor p− := (p− 1)/a− is a prime (where a− denotes the product of all small
factors). Identical test is done for p + 1. If p succeeds in both tests, then p is a
(λ, a−a+)-strong prime.

Algorithm 1 (Naive strong primes generator).

Input: Security parameter 1λ.

Output: Integer tuple (p, a) such that p is (λ, a)-strong prime.

1. Pick a λ-bit pseudo-prime p.

2. Factorize p− 1 to product a−p−, where factors of a− are smaller than
λ. If p− is not a pseudo-prime, goto 1.

3. Factorize p + 1 to product a+p+, where factors of a+ are smaller than
λ. If p+ is not a pseudo-prime, goto 1.

4. Output (p, a−a+).

21

Enhanced algorithm. Note that for every p output by the naive algorithm
(Algorithm 1), both p−1 and p+ 1 have exactly one large prime divisor. We can
increase the efficiency of our strong primes generator by allowing p− 1 and p+ 1
to have two large prime factors. Our enhanced algorithm first fixes p−, a large
prime divisor of p− 1, and p+, a large prime divisor of p+ 1. Using the Chinese
Remainder Theorem (CRT), the algorithm then computes a p such that

p ≡ +1 mod p−,

p ≡ −1 mod p+

and it adds (p−p+) to p until p is a prime.
During the next step, the algorithm checks whether (p − 1)/(a−p−) (resp.

(p+1)/(a+p+)) is a prime, where a− (resp. a+) is the product of all small factors
of (p − 1)/b− (resp. (p + 1)/b+) found by trial division. If at least one of these
tests fails, then the algorithm keeps on adding (p−p+) to p to get get another
prime.

Algorithm 2 (Enhanced strong primes generator).

Input: Security parameter 1λ.

Output: Integer tuple (p, a) such that p is (λ, a)-strong prime.

1. Choose two random λ-bits pseudo-primes p+ and p−.

2. Using CRT compute p s.t.

p ≡ +1 mod p− (i.e., ∃a− : p− 1 = b−p−) and
p ≡ −1 mod p+ (i.e., ∃a+ : p+ 1 = b+p+).

3. While p is not a pseudo-prime: p← p+ (p−p+).

4. Set b+ := (p− 1/p−) and b+ := (p+ 1)/p+.

5. Find all factors of b− (resp. b+) smaller then λ. We denote product of
these small factors a− (resp. a+).

6. If b−/a− is not a prime or b+/a+ is not a prime,
then p← p+ p+p− and goto step. 3.
Otherwise return (p, a), where a = a−a+.

In practice, the primality tests performed both in Algorithm 1 and algorithm 2
would be implemented via a probabilistic primality test such as the Rabin-Miller
test. As a proof of concept, we provide some strong primes generated using these
two algorithms in Appendix C.

4.5 Construction
Analogously to the VDF of Pietrzak [Pie19], we compile our public-coin interac-
tive proof into a VDF using the Fiat-Shamir heuristic. The complete construction

22

is given in Construction 2. For ease of exposition, we assume that the time pa-
rameter T is always a power of two.

Construction 2 (VDF based on Lucas sequences).

LCS.Setup(1λ): Runs a strong primes generator on input 1λ to get a (λ, ap)-
strong prime p and a (λ, aq)-strong prime q and it sets N = p · q. Then
it chooses a hash function

hash : Z× Z3
N → Z2λ .

and it outputs the public parameters

(N := p · q, a := lcm(ap, aq), hash).

LCS.Gen((N, a, hash), T) is identical to LCS.Gen from construction 1.

LCS.Eval((N, a, hash), (ω, T)): is identical to LCS.Eval from construction 1.

LCS.Prove((N, a, hash), ([ω], T)): Computes

y := [ω2T]

and sets (ω1, y1) = (ω, y). For i = 1, . . . , t computes

µi := ω2T/2i

i ,

ri := hash(T/2i−1, ωa
i , y

a
i , µ

a
i),

ωi+1 := ωri
i µ,

yi+1 := µriyi.

It outputs ([y], π = ([µ1], . . . , [µt])).

LCS.Verify((N, a, hash), ([ω], T), ([y], π)): Sets ω̃1 = ωa, ỹ1 = ya and for each
i = 1, . . . , t, computes

µ̃i := µa
i ,

ri := hash(T/2i−1, ω̃i, ỹi, µ̃i),
ω̃i+1 := ωĩ

riµ̃i,

ỹi+1 := µ̃ri
i ỹi.

It outputs accept if
ỹt+1 = ω̃2

t+1, (4.10)
otherwise it outputs reject.

Theorem 3. LCS VDF from construction 2 is correct and statistically sound in
random oracle model.

Proof. The correctness follows directly by construction.

23

To prove a statistical soundness, we proceed in the way similar to [Pie19]. We
cannot apply Fiat-Shamir transformation directly, because our protocol does not
have constant number or rounds, thus we use Fiat-Shamir heuristic to each round
separately.

First, we use a random oracle as the hash function. Second, if a malicious
prover computed a proof accepted by verifier for some tuple ((N, a), ([ω], T), y)
such that

[y] ̸= [ω2T], (4.11)
then he must have succeeded in turning inequality from eq. (4.11) into equality
in some round. By lemma 3, probability of such a flipping is bounded by 1/2λ.
Every such an attempt requires one query to random oracle. Using union bound,
it follows that the probability that a malicious prover who made q queries to
random oracle succeed in flipping initial inequality into equality in some round is
upper-bounded by q/2λ.

Since q is polynomial in λ, q/2λ is a negligible function and thus our protocol
is statistically sound.

24

5. Linear recurrences of higher
order
In this chapter we discuss extension of our approach to linear recurrences with
order greater then 2.

Definition 18. Let R be a ring and k ∈ N. The linear recurrence (si)i∈N0 of order
k is given by set of initial conditions b0, . . . , bk−1 ∈ R s.t. ∀i ∈ 0, . . . , k − 1 : si =
bi and coefficients of linear recurrence a0, . . . , ak−1 ∈ R s.t.

∀i > k : si = ak−1si−1 + . . .+ a0si−k

Definition 19. We define the characteristic polynomial of linear recurrence

f(x) := xk − ak−1x
k−1 − ak−2x

k−2 + . . .+ a0.

Linear recurrences modulo p are known as linear-feedback shift registers
(LSFR) and they are well studied.

Proposition 1 (Galois representation of LSFR). Let (si)i∈N0 be linear re-
currence of elements of a finite field F and f(x) ∈ F[x] be its characteristic
polynomial. There exists a polynomial g(0)(x) ∈ F[x] of degree k− 1 such that for
every i ∈ N0 the leading coefficient of

g(i)(x) := xig(0)(x) mod f(x)

is equal to si.

Corollary 3. The n-th element of linear recurrence can be computed in O(log(n))
sequential steps.

Fact 1. Let p ∈ P, f(x) ∈ Zp[x] be a monic polynomial of degree k, r1(x)·. . .·rℓ(x)
be the factorization of f(x) to irreducible factors. We denote di = deg(ri(x)).
Then

Zp,f ≃
ℓ×

i=1
Zp,ri

≃
ℓ×

i=1
Zpdi−1(+).

We derive sufficient conditions on factors of N to be able to use our protocol
with recurrences of higher order.

First of all, notice that the fact that f has degree 2 is used for proving strength
of (Z∗p,f)(a), but it is no longer needed for protocol security proof. It follows that
if we are able to find p and a < λ, such that (Z∗p,f)(a) is λ-strong group for
all polynomials of degree d over Zp, then we are able to apply our protocol to
recurrences of order d. Fact 1 gives us characterization of primes that satisfy this
property.

If we restrict ourselves to recurrences of order d with irreducible characteristic
polynomial, then p must be (λ, a, d)-strong prime (defined bellow) for some a ∈ N
to achieve λ-strength of (Z∗p,f)(a) and thus λ-bit security.

25

Definition 20 (Generalized strong primes). Let p ∈ P and λ, a, d ∈ N. We
say that p is a (λ, a, d)-strong prime, if λ > a and there exists W ∈ N such that
pd − 1 = aW and every factor of W is greater then 2λ.

If we want to compute recurrences of order d for any characteristic polynomial
f and prove values of their terms by protocol 2 for group λ-strong (Z∗p,f)(a)(·) (for
some a ∈ N), then p must be a (λ, ai, di)-strong prime for every di ∈ {1, . . . , d}.

Generalized strong primes can be generated by analogue of naive algorithm
(algorithm 1). To test (λ, a, d) primality, number pd− 1 is factorized to p− 1 and
pd−1 + pd−2 + . . .+ p+ 1. Each of these factors is cleaned from small factors and
then its primality is checked.

26

6. Conclusion
In this thesis we have seen how VDFs can be based on alternative operation than
iterated squaring without sacrificing efficiency a lot. There are several natural
directions that could be further explored. Here we list a few:

1. Can our VDF be instantiated solely in the RSA modulus avoiding the ex-
tension field altogether? This would require a deeper understanding of the
properties of Lucas sequences, in particular whether there exists an ana-
logue of signed quadratic residues for Lucas sequence. This is also related
to the question of whether our proofs can be made unique since Pietrzak
manages to achieve uniqueness by moving to the algebraic setting of signed
quadratic residues.

2. There have been recent progress [CCD+20, CHI+20] in efficient shared gen-
eration of the standard RSA modulus [BF01]. It is an interesting question
whether any of these techniques can be used to sample strong primes re-
quired for our purposes or for that matter strong primes that are required
in [Pie19].

3. Since Lucas sequences have a lot of structure, it is worth exploring whether
this can be exploited to construct VDFs with additional properties like
batching or aggregation.

27

Bibliography
[ABC22] Arasu Arun, Joseph Bonneau, and Jeremy Clark. Short-lived zero-

knowledge proofs and signatures. Cryptology ePrint Archive, Report
2022/190, 2022. https://ia.cr/2022/190.

[AKK+19] Hamza Abusalah, Chethan Kamath, Karen Klein, Krzysztof
Pietrzak, and Michael Walter. Reversible Proofs of Sequential Work.
In EUROCRYPT (2), volume 11477 of Lecture Notes in Computer
Science, pages 277–291. Springer, 2019.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifi-
able Delay Functions. In Hovav Shacham and Alexandra Boldyreva,
editors, Advances in Cryptology - CRYPTO 2018 - 38th Annual In-
ternational Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2018, Proceedings, Part I, volume 10991 of Lecture Notes in
Computer Science, pages 757–788. Springer, 2018.

[BBF18] Dan Boneh, Benedikt Bünz, and Ben Fisch. A Survey of Two Ver-
ifiable Delay Functions. IACR Cryptology ePrint Archive, 2018:712,
2018.

[BBL95] Daniel Bleichenbacher, Wieb Bosma, and Arjen K. Lenstra. Some Re-
marks on Lucas-Based Cryptosystems. In Don Coppersmith, editor,
Advances in Cryptology - CRYPTO ’95, 15th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 27-
31, 1995, Proceedings, volume 963 of Lecture Notes in Computer Sci-
ence, pages 386–396. Springer, 1995.

[BF01] Dan Boneh and Matthew K. Franklin. Efficient generation of shared
RSA keys. J. ACM, 48(4):702–722, 2001.

[BGJ+16] Nir Bitansky, Shafi Goldwasser, Abhishek Jain, Omer Paneth, Vinod
Vaikuntanathan, and Brent Waters. Time-Lock Puzzles from Ran-
domized Encodings. In ITCS, pages 345–356. ACM, 2016.

[BS07] D.J. Bernstein and J.P. Sorenson. Modular exponentiation via the
explicit Chinese remainder theorem. Mathematics of Computation,
76:443–454, 2007.

[CCD+20] Megan Chen, Ran Cohen, Jack Doerner, Yashvanth Kondi, Eysa Lee,
Schuyler Rosefield, and Abhi Shelat. Multiparty Generation of an
RSA Modulus. IACR Cryptology ePrint Archive, 2020:370, 2020.

[CHI+20] Megan Chen, Carmit Hazay, Yuval Ishai, Yuriy Kashnikov, Daniele
Micciancio, Tarik Riviere, Abhi Shelat, Muthuramakrishnan Venki-
tasubramaniam, and Ruihan Wang. Diogenes: Lightweight Scalable
RSA Modulus Generation with a Dishonest Majority. IACR Cryp-
tology ePrint Archive, 2020:374, 2020.

28

https://ia.cr/2022/190

[CHK+19] Arka Rai Choudhuri, Pavel Hubáček, Chethan Kamath, Krzysztof
Pietrzak, Alon Rosen, and Guy N. Rothblum. PPAD-hardness via
Iterated Squaring Modulo a Composite. IACR Cryptology ePrint
Archive, 2019:667, 2019.

[CP18] Bram Cohen and Krzysztof Pietrzak. Simple Proofs of Sequential
Work. In EUROCRYPT (2), volume 10821 of Lecture Notes in Com-
puter Science, pages 451–467. Springer, 2018.

[CP19a] Bram Cohen and Krzysztof Pietrzak. The chia network blockchain.
2019. https://www.chia.net/assets/ChiaGreenPaper.pdf.

[CP19b] Bram Cohen and Krzysztof Pietrzak. The Chia Network Blockchain,
2019.

[DGMV19] Nico Döttling, Sanjam Garg, Giulio Malavolta, and Prashant Nalini
Vasudevan. Tight Verifiable Delay Functions. IACR Cryptology
ePrint Archive, 2019:659, 2019.

[DLM19] Nico Döttling, Russell W. F. Lai, and Giulio Malavolta. Incremen-
tal Proofs of Sequential Work. IACR Cryptology ePrint Archive,
2019:650, 2019.

[EFKP20] Naomi Ephraim, Cody Freitag, Ilan Komargodski, and Rafael Pass.
Continuous Verifiable Delay Functions. In Advances in Cryptology -
EUROCRYPT 2020 - 39th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, 2020, Proceed-
ings, volume 12107 of Lecture Notes in Computer Science, pages 125–
154, 2020.

[FMPS19] Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso.
Verifiable Delay Functions from Supersingular Isogenies and Pair-
ings. In Steven D. Galbraith and Shiho Moriai, editors, Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on
the Theory and Application of Cryptology and Information Security,
Kobe, Japan, December 8-12, 2019, Proceedings, Part I, volume 11921
of Lecture Notes in Computer Science, pages 248–277. Springer, 2019.

[FS86] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solu-
tions to Identification and Signature Problems. In CRYPTO, volume
263 of Lecture Notes in Computer Science, pages 186–194. Springer,
1986.

[GIM18] GIMPS. GIMPS Project Discovers Largest Known Prime Number:
282,589,933−1, December 2018. https://www.mersenne.org/primes/
press/M82589933.html.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The Knowl-
edge Complexity of Interactive Proof Systems. SIAM J. Comput.,
18(1):186–208, 1989.

29

https://www.chia.net/assets/ChiaGreenPaper.pdf
https://www.mersenne.org/primes/press/M82589933.html
https://www.mersenne.org/primes/press/M82589933.html

[HK09] Dennis Hofheinz and Eike Kiltz. The Group of Signed Quadratic
Residues and Applications. In CRYPTO, volume 5677 of Lecture
Notes in Computer Science, pages 637–653. Springer, 2009.

[Leh27] D. H. Lehmer. Tests for primality by the converse of Fermat’s the-
orem. Bulletin of the American Mathematical Society, 33(3):327 –
340, 1927.

[Leh30] D. H. Lehmer. An Extended Theory of Lucas’ Functions. Annals of
Mathematics, 31(3):419–448, 1930.

[LFKN92] Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan.
Algebraic Methods for Interactive Proof Systems. J. ACM, 39(4):859–
868, 1992.

[Lip03] Helger Lipmaa. On Diophantine Complexity and Statistical Zero-
Knowledge Arguments. In ASIACRYPT, volume 2894 of Lecture
Notes in Computer Science, pages 398–415. Springer, 2003.

[LS93] M. J. J. Lennon and P. J. Smith. LUC: A new public key system. In
E. G. Douglas, editor, Ninth IFIP Symposium on Computer Security,
page 103–117. Elsevier Science Publishers, 1993.

[Luc78] Edouard Lucas. Théorie des Fonctions Numériques Simplement
Périodiques. American Journal of Mathematics, 1(4):289–321, 1878.

[LW17] Arjen K. Lenstra and Benjamin Wesolowski. Trustworthy public ran-
domness with sloth, unicorn, and trx. IJACT, 3(4):330–343, 2017.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly
verifiable proofs of sequential work. In ITCS, pages 373–388. ACM,
2013.

[MN81] W. B. Müller and W. Nöbauer. Some remarks on public-key cryp-
tosystems. Studia Sci. Math. Hungar., 16:71–76, 1981.

[MQ21] Liam Medley and Elizabeth A. Quaglia. Collaborative Verifiable De-
lay Functions. In Yu Yu and Moti Yung, editors, Information Secu-
rity and Cryptology - 17th International Conference, Inscrypt 2021,
Virtual Event, August 12-14, 2021, Revised Selected Papers, volume
13007 of Lecture Notes in Computer Science, pages 507–530. Springer,
2021.

[MSW19] Mohammad Mahmoody, Caleb Smith, and David J. Wu. A Note
on the (Im)possibility of Verifiable Delay Functions in the Random
Oracle Model. IACR Cryptology ePrint Archive, 2019:663, 2019.

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Ho-
momorphic Time-Lock Puzzles and Applications. In Alexandra
Boldyreva and Daniele Micciancio, editors, Advances in Cryptology -
CRYPTO 2019 - 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18-22, 2019, Proceedings, Part I,

30

volume 11692 of Lecture Notes in Computer Science, pages 620–649.
Springer, 2019.

[PB91] C. P. and David M. Bressoud. Factorization and Primality Testing.
Mathematics of Computation, 56(193):400, 1991.

[Pie18] Krzysztof Pietrzak. Simple Verifiable Delay Functions. IACR Cryp-
tology ePrint Archive, 2018:627, 2018.

[Pie19] Krzysztof Pietrzak. Simple Verifiable Delay Functions. In Avrim
Blum, editor, 10th Innovations in Theoretical Computer Science Con-
ference, ITCS 2019, January 10-12, 2019, San Diego, California,
USA, volume 124 of LIPIcs, pages 60:1–60:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

[RG21] Mayank Raikwar and Danilo Gligoroski. Non-Interactive VDF Client
Puzzle for DoS Mitigation. In European Interdisciplinary Cyberse-
curity Conference, EICC, page 32–38, New York, NY, USA, 2021.
Association for Computing Machinery.

[Rib00] Paulo Ribenboim. My Numbers, My Friends: Popular Lectures on
Number Theory. Springer-Verlag New York, 2000.

[Rie85] Hans Riesel. Prime numbers and computer methods for factorization.
1985.

[RS01] Ron Rivest and Robert Silverman. Are ’Strong’ Primes Needed for
RSA. Cryptology ePrint Archive, Report 2001/007, 2001.

[RSS20] Lior Rotem, Gil Segev, and Ido Shahaf. Generic-Group Delay
Functions Require Hidden-Order Groups. IACR Cryptology ePrint
Archive, 2020:225, 2020.

[RSW96] Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock
puzzles and timed-release crypto. Technical report, Massachusetts
Institute of Technology, 1996.

[SB20] István András Seres and Péter Burcsi. A Note on Low Order Assump-
tions in RSA groups. 2020. https://eprint.iacr.org/2020/402.

[Sha19] Barak Shani. A note on isogeny-based hybrid verifiable delay func-
tions. IACR Cryptology ePrint Archive, 2019:205, 2019.

[SJH+20] Philipp Schindler, Aljosha Judmayer, Markus Hittmeir, Nicholas
Stifter, and Edgar Weippl. RandRunner: Distributed Randomness
from Trapdoor VDFs with Strong Uniqueness. Cryptology ePrint
Archive, Report 2020/942, 2020. https://ia.cr/2020/942.

[Val08] Paul Valiant. Incrementally Verifiable Computation or Proofs of
Knowledge Imply Time/Space Efficiency. In TCC, volume 4948 of
Lecture Notes in Computer Science, pages 1–18. Springer, 2008.

31

https://eprint.iacr.org/2020/402
https://ia.cr/2020/942

[Wes19] Benjamin Wesolowski. Efficient Verifiable Delay Functions. In Yuval
Ishai and Vincent Rijmen, editors, Advances in Cryptology - EURO-
CRYPT 2019 - 38th Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Darmstadt, Germany,
May 19-23, 2019, Proceedings, Part III, volume 11478 of Lecture
Notes in Computer Science, pages 379–407. Springer, 2019.

[Wil82] Hugh C. Williams. A p + 1 method of factoring. Math. Comput.,
39(159):225–234, 1982.

32

A. Analogue for Wesolowski’s
construction
Since Weselowski’s VDF [Wes19] can be instantiated over an arbitrary group of
unknown order, we can construct its analogue for Lucas sequences while using
arithmetic of Z[

√
D]. Furthemore, it is possible to reduce the adaptive root game

assumption (defined in [Wes19]) for Z∗N [
√
D] to adaptive root game assumtion

for Z∗N .

Theorem 4. Adaptive root game for ZN [
√
D] is not easier then adaptive root

game for ZN .

Proof. We will proceed similarly to the proof of theorem 1. Assume that there
exists an adversary A with non-negligible advantage in the adaptive root game
in ZN [

√
D]. We construct an adversary A′ who has the same advantage in the

adaptive root game in ZN .
We construct A′ according to the diagram bellow.

A A′ Oraculum
N←−−−−−− N←−−−−−− N ← Gen(1λ)

ω:= 1
2 (V1+U1

√
D)

−−−−−−−−−−→
Q:= 1

4 (V 2
1 +DU2

1)
−−−−−−−−−→

ℓ←−−−−−− ℓ←−−−−−− ℓ← P ∩ [0, 2λ]
ϵ:=(Vk+Uk

√
D)/2−−−−−−−−−−→

C:= 1
4 (V 2

k +DU2
k)

−−−−−−−−−→

The algorithm A uses the identity 3.7 twice. First, when computing deriving Q
from (U1, V1) and second, when deriving C from (Uk, Vk). If (ω, ϵ) returned by A
satisfies ϵℓ = ω, then (Q,C) returned by A′ satisfies Cℓ = Q. Thus success rate
of A′ in Adaptive root game for ZN [

√
D] is equal to success rate of A in Adaptive

root game for ZN .

33

B. Safe primes modulus
In this section we explore how reduce requirements on modulus at the expense of
loosing statistical soundness. Let N be product of two safe primes p = 2p′+1 and
q = 2q′ + 1. Let P be sampled from uniform distribution on ZN , D be sampled
from uniform distribution on

{D ∈ ZN |
Å
D

N

ã
= 1}

and set Q := 1
4(P 2 −D). Since

(︁
D
N

)︁
= 1, there are two possible cases:

1.
Ä

D
p

ä
= −1 and

Ä
D
q

ä
= −1 or

2.
Ä

D
p

ä
= 1 and

Ä
D
q

ä
= 1

Similarly to proof of lemma 2,

(Z∗N,f)(a) ≃
ß
aZp2−1(+)× aZq2−1(+) in case 1
(aZp−1(+))2 × (aZq−1(+))2 in case 2 ,

Since the modulus N is composed of safe primes instead of strong primes,
group (Z∗N,f)(a) can contain subgroups of low order in case 1. We show that the
protocol remains computationally secure assuming that every polynomial adver-
sary has only negligible chance to solve the following decision problem:

Definition 21 (Quadratic residuocity problem). Given an RSA modulus N and
a sampled from uniform distribution on ZN such that

(︁
a
N

)︁
= 1, decide whether a

is a quadratic residue mod N .

Definition 22. Let λ ∈ N be a security parameter and N = Θ(2λ). We say that
τ is a low-order element of ZN , if there exists a e = poly(λ) such that τ e = 1.

Claim 4.1. If there is exists a polynomial malicious prover P ∗ who is able to break
the halving protocol, then there exists a polynomial algorithm A for computing
low-order elements in (Z∗N,f)(a).

Proof sketch. As long as y and x2T differ in in some large component, it is sta-
tistically impossible that we will get an equality y′ = (x′)2T/2 at the end of the
halving protocol. Therefore y and x2T can differ only in some small component
and the desired low-order element can be extracted as y−1x2T .

Formal version of the claim 4.1 with a complete proof can be found in [BBF18].
There is an enhanced version of this claim in [SB20], which shows a sub-exponential
lower-bound on order of element returned by extractor.

Claim 4.2. Let N be a safe primes modulus and D ∈ ZN is such that
(︁

D
N

)︁
= 1.

If there exists a polynomial algorithm A for computing low-order elements in
(Z[
√
D]∗)(2), then there exists a polynomial algorithm B solving the Quadratic

residuocity problem.

34

Proof. For given N,D, algorithm B samples a random P and compute Q :=
1
4(P 2 − D) mod N . B runs algorithm A for group (Z∗N,f)(2) getting element τ .
Algorithm B verifies output of A by verifying τ r = 1 for random r ← Z2λ . Let
denote order of τ by e. If e is polynomial in λ, then this test is true positive with
non-negligible probability 1/e (=1/poly(λ)). Otherwise if e is superpolynomial,
then this test is false negative with only negligible probability 1/e.

If τ passes the low-orderity test, B output 0 (D is not quadratic residuo mod
N). Otherwise B output 1. We split the computation of success rate of B into
two cases.

In case 1, B’s success rate is equal to A’s success rate times success rate of
the low-orderity test (=1/e).

In case 2, there are no low-order elements in (Z∗N,f)(2) and thus output of A
cannot be valid. It follows that success rate of B in this case is equal to true
negativeness of the low-orderity check, which is 1− negl(λ).

Since these two cases occurs with the same probability, this computation
results in

1
2(1− negl(λ)) + 1

2Succ(A) 1
poly(λ) = 1

2 + 1
poly(λ)

success rate of B, where Succ(A) denotes (non-negligible) success rate of A.

35

C. Strong primes example
Here we provide two examples of 1000-bit strong primes as a proof of concept.
Prime p was generated by the naive algorithm 1 and prime q was generated by
the enhanced algorithm 2. Both primes were generated on Intel(R) Core(TM)
i5-7300U CPU @ 2.60GHz in order of minutes using a non-optimized implemen-
tation in Python language.

p = 164085922465767264569699321791946741063666556217835106048358267
87757579355432286287370821698233693249787730659261218535109656726892396
44418348975757669937149605849873877638112191296871434393810322378148573
01294461003011228646280249245388277419575569433809294482835328442333853
23309124719640161469841327

To enable one to verify strong primality of q, we attach factorization of q − 1
and q + 1.

q = 234310875683355859353017539445184202322643928469640122820578995
17282832810289793303637646914076483617421398316444310256771412870006989
92550859534909244209805217509635347700270538351518573488090307705911359
71774823388233385706974253990681529145758352001482553018067333107608724
26408848064390478655071959378603

q−1 = 6×1182252687498401933238233992530697145970189230115473794566
89301647884957151465879697794483493806623752332904995086885048780447580
1126211387024059597783077341× 3303169705329634117042218209873003593147
73977698446822810166305718575766464335772692853747888099647462896338169
7478959470030923336816151545105795187187

q+1 = 4×9651452526034089853835663569171217406842302670395965898300
55069586283900066709170980059646617444954691213080784746088584079836423
774713032529731835526736407× 60693163814285815334827546554817051090377
13324056056661371564295022504243222898379710243833539001919097028278533
426159618911544580597767730536544228493

36

	Introduction
	Overview
	Our Approach to VDFs
	Our Techniques
	Related Work
	Organisation

	Preliminaries
	Verifiable Delay Functions
	Proof Systems

	DF from Lucas sequences
	Atomic operation
	Construction
	Reduction to RSW puzzles

	VDF from Lucas sequences
	Structure of ZN[x]/(x2 -Px + Q)
	Strong groups and strong primes
	Interactive protocol
	Restriction to elements of (ZN,f*)(a)
	Description of interactive protocol for our VDF
	Security proof

	Generating strong primes
	Construction

	Linear recurrences of higher order
	Conclusion
	Bibliography
	Analogue for Wesolowski’s construction
	Safe primes modulus
	Strong primes example

