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totickou normalitu. Poté představujeme metodu ”counter-matching” jako rozš́ı-
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Introduction
Time-to-event data is a type of data measuring the time until a specific event, such
as an occurrence of a disease, death, failure of a machine or device, occurrence of
an insurance claim, etc. The analysis of time-to-event data in medical applications
is called survival analysis. In the medical field, the main focus of it is studying
an occurrence of a specific disease. Medical studies usually last for a few years,
therefore the disease of interest might not develop for some individuals during
that time, so there is censoring involved inevitably. This type of data requires
specialized statistical methods and is commonly analyzed by the Cox proportional
hazards model introduced by Cox [1972].

The aim of this thesis is to introduce the nested case-control design and some
of its alternatives. The nested case-control design, first introduced by Cunliffe
et al. [1977], is one of the most popular designs used in practice when studying
rare diseases. Studying such diseases may be time and money inefficient, since
only a small percentage of the subjects get the disease of interest during the time
of the ongoing study, which causes the necessity of having a large amount of
subjects. The nested case-control design presents a method for sampling only
a few controls (individuals who have not had the disease yet) for each observed
case (individual who got the disease of interest) at the time the case’s disease
occurred. This reduction of the number of subjects in the study decreases the
time and money needed to measure all of the necessary covariates of the model.

In the first chapter of the thesis, we present some theoretical foundations of
the Cox proportional hazards model for time-to-event data as described by An-
dersen and Gill [1982] and we make a brief introduction to the martingale theory
written by Fleming and Harrington [1991]. The second chapter is the core of the
thesis where we describe the nested case-control design, which can be analyzed by
partial likelihood, similarly to the Cox model introduced in the first chapter. We
then present the maximum partial likelihood estimator of the regression param-
eter and prove its asymptotic properties (consistency and asymptotic normality)
in a similar way to the one used by Goldstein and Langholz [1992]. In the third
chapter, we present two alternatives to the full cohort and nested case-control
design: counter-matching (introduced by Borgan et al. [1995]) and the pseudo-
likelihood approach (presented by Samuelsen [1997]). In the fourth chapter, we
conduct a simulation study in which we model the risk of developing lung cancer
of smoking cigarettes. We then use all four approaches described in the thesis to
estimate the regression parameter and to compare the accuracy of the designs for
different expected prevalences of the disease.
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1. Theoretical foundations

1.1 Cox proportional hazards model
When working with time-to-event data from medical studies, there is a censoring
involved inevitably. We need not observe the event for some individual, because
the event might never occur whilst observing the subject. The reasons of this
situation might be the individual’s death (caused by a different event than the
one defined as the failure), his decision to leave the study or the end of the study
itself. The time of any of these situations is called the censoring time.

We consider two continuous random variables: T ≥ 0 is the failure time (the
time of the studied event) and C ≥ 0 is the censoring time. If C < T , the event
was not observed. Let X = min(T, C) be the censored failure time and δ = 1{T ≤
C} the failure indicator. During a study, we also collect other information about
the individuals in a form of a d-dimensional vector of covariates Z(t), which may
be time dependent. The data are then in a form of n independent observations
(X1, δ1, Z1(t)), . . . , (Xn, δn, Zn(t)), t ∈ [0, τ ], where τ is a fixed sufficiently large
finite time. Let us also define right-continuous process Ni(t) = 1{Ti ≤ t, δi = 1},
i ∈ {1, . . . , n}, which starts at zero and jumps to one if the failure time is observed.
Denote Yi(t) = 1{Xi ≥ t}, i ∈ {1, . . . , n}, a left-continuous at-risk process, which
starts at one and jumps to zero if the censored failure time occures.

There are multiple ways to describe the distribution of the failure time. A haz-
ard function is one of those possibilities, which is also a subject of interest in the
Cox proportional hazard (Cox PH) model described by Cox [1972] and later by
Andersen and Gill [1982]. A hazard function expresses the risk of having an
event at a certain time given that the event had not occurred before. A cumula-
tive hazard function then expresses the risk of having the event before a certain
time.

Definition 1 (Hazard and cumulative hazard function). The hazard function of
a failure time T is

λ(t) = lim
h→0+

1
h

P[t ≤ T < t + h|T ≥ t], t ∈ [0, τ ]

and its cumulative hazard function is

Λ(t) =
∫︂ t

0
λ(s)ds.

It is important to realize that the hazard function fully specifies the distribu-
tion of the failure time T . More specifically, its density may be written as

f(t) = λ(t)e−Λ(t),

since T is a non-negative random variable.
Now by conditioning the hazard function on the covariates Z, we may define

the following.
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Definition 2 (Conditional (cumulative) hazard function). The conditional haz-
ard function of a failure time T is

λ(t|Z) = lim
h→0+

1
h

P[t ≤ T < t + h|T ≥ t, Z(t)]

and its conditional cumulative hazard function is

Λ(t|Z) =
∫︂ t

0
λ(s|Z)ds.

We now define the independent censoring condition, which is an important
condition for further inferences.

Definition 3 (Independent censoring condition). Let T be the failure time and
C the censoring time. We say that the independent censoring condition holds if

lim
h→0+

1
h

P[t ≤ T < t + h|T ≥ t, Z(t)] = lim
h→0+

1
h

P[t ≤ T < t + h|T ≥ t, C ≥ t, Z(t)].

This condition simply means that the conditional hazard function does not
depend on the fact whether or not the individual has been censored. If the
variables T and C are conditionally independent given Z, then the independent
censoring condition holds. This is however only a sufficient condition. If the
independent censoring condition holds, it does not mean that the variables are
conditionally independent.

For censored data, the most popular model to use is a model for the condi-
tional hazard function proposed by Cox [1972]. We define this model in the next
definition.

Definition 4 (Cox proportional hazards model). We say that the observations
(Xi, δi, Zi(t)), i = 1, . . . , n, satisfy the Cox proportional hazards model if

a) the observations are mutually independent,

b) the conditional hazard function has the form

λ(t|Z) = λ0(t)eβ⊤
0 Z(t).

The function λ0(t) is an unknown and unspecified hazard function of a sub-
ject with all covariates equal to zero and it is called the baseline hazard
function. The vector β0 ∈ Rp is an unknown parameter vector of regres-
sions coefficients.

The Cox model is a semiparametric model because there is a condition on
the form of the association between the covariate and the hazard function, how-
ever there are no assumptions about the baseline hazard. Therefore, we cannot
estimate the parameter by the maximum likelihood methods and we use a mod-
ification proposed by Cox [1972] called the partial likelihood, which does not
depend on the baseline hazard.
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Definition 5 (Partial likelihood in the Cox model). The function

LCox(β) =
n∏︂

i=1

∏︂
s>0

⎧⎨⎩ Yi(s)eβ⊤Zi(s)∑︁n
j=1 Yj(s)eβ⊤Zj(s)

⎫⎬⎭
∆Ni(s)

(1.1)

is the partial likelihood function and the value

β̂ = argmax
β∈Rp

LCox(β)

is called the maximum partial likelihood estimator (MPLE) of the regression pa-
rameter in the Cox proportional hazards model.

In practice, the MPLE is obtained by maximizing the log partial likelihood.
For an easier notation, define for k = 0, 1, 2,

S(k)
n (β, t) = 1

n

n∑︂
i=1

Yi(t)Z⊗k
i (t)eβ⊤Zi(t),

where for a vector a we have a⊗0 = 1, a⊗1 = a and a⊗2 = aa⊤. Surely,

∂

∂β
S(0)

n (β, t) = S(1)
n (β, t),

∂

∂β⊤ S(1)
n (β, t) = S(2)

n (β, t).

We can now write the log partial likelihood as

lCox(β) = log LCox(β) =
n∑︂

i=1

∫︂ τ

0

[︄
β⊤Zi(s) − log nS(0)

n (β, s)
]︄
dNi(s).

We need to differentiate this expression with respect to β to obtain the score
statistic

Un(β) = ∂lCox(β)
∂β

=
n∑︂

i=1

∫︂ τ

0

[︄
Zi(s) − S(1)

n (β, s)
S

(0)
n (β, s)

]︄
dNi(s).

Then the MPLE β̂ is the solution of the system of equations

Un(β̂) = 0.

Numerically, the solution of the system of equations is obtained by the Newton-
Raphson algorithm which looks as follows. Choose an initial value β̂

(0) = 0 and
iterate

β̂
(r+1) = β̂

(r) +
[︂
nIn(β̂(r))

]︂−1
Un(β̂(r)) (1.2)

until convergence. Here In is the observed information matrix which we can
calculate as

In(β) = − 1
n

∂Un(β)
∂β⊤

= 1
n

n∑︂
i=1

∫︂ τ

0

[︄
S(2)

n (β, s)
S

(0)
n (β, s)

−
[︃
S(1)

n (β, s)
S

(0)
n (β, s)

]︃⊗2
]︄
dNi(s).
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The solution β̂ exists and it is unique because Zi, i = 1, . . . , n are all inde-
pendent, hence, the observed information matrix is non-singular and therefore
positive definite at all β. This means that ∂Un(β)

∂β⊤ is negative definite, hence log
partial likelihood lCox(β) is strictly concave and therefore has only one global
maximum.

The MPLE β̂ is a consistent estimator of β0 with an asymptotic normal
distribution under specific assumptions, which were proposed by Andersen and
Gill [1982]:

A.1 The data are observed on a time interval [0, τ ], where τ ∈ (0, ∞) is fixed,
and for all i ∈ {1, . . . , n} and for some δ > 0: P[Yi(τ) = 1] > δ.

A.2 The baseline hazard λ0 is a deterministic function on [0, τ ] and Λ0(τ) =∫︁ τ
0 λ0(t)dt < ∞.

A.3 Let {Ft}t∈[0,τ ] be a right-continuous filtration on (Ω, F , P) defined as

Ft = σ{Ni(s), Yi(s+), Zi(s), s ∈ [0, t], i = 1, . . . , n}.

We assume that Zi are bounded Ft-predictable processes and that the in-
dependent censoring condition holds.

A.4 The variables Ti, Ci, i ∈ {1, . . . , n}, are independent given the covariate Zi

and the processes Zi, Yi, i ∈ {1, . . . , n}, are independent.

A.5 There exists a neighborhood B of the true parameter β0 and functions
s(k), k = 0, 1, 2, defined on B × [0, τ ] such that

sup
β∈B,t∈[0,τ ]

∥S(k)
n (β, t) − s(k)(β, t)∥ P−−−→

n→∞
0

for each k = 0, 1, 2. Here for a ∈ R we have ∥a∥ = |a|, for a vector a ∈ Rd we
denote ∥a∥ = max

j=1,...,d
(|aj|) and for a matrix a ∈ Rd×d, ∥a∥ = max

j,l=1,...,d
(|ajl|).

A.6 The functions s(k) are bounded on B × [0, τ ] and also s(0) is bounded away
from 0 on B × [0, τ ]. The family {s(k)(β, t) : t ∈ [0, τ ]} is equicontinuous at
β0.

A.7 For all β ∈ B and t ∈ [0, τ ], it holds that

∂s(0)(β, t)
∂β

= s(1)(β, t) and ∂s(1)(β, t)
∂β⊤ = s(2)(β, t).

A.8 The Fisher information matrix

I(β0, t) =
∫︂ t

0

[︄
s(2)(β0, s)
s(0)(β0, s) −

[︃
s(1)(β0, s)
s(0)(β0, s)

]︃⊗2
]︄
s(0)(β0, s)dΛ0(s)

is positive definite at t = τ .

The last assumption A.8 is the one that ensures the regularity of the Fisher
information matrix. The assumption A.3 about the bounded covariates is in
place only to simplify the proofs and does not need to hold in order to attain the
asymptotic properties of the MPLE that we await.
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Theorem 1 (Asymptotic properties of the MPLE β̂). Under the assumptions
A.1 - A.5,

β̂
P−−−→

n→∞
β0

and √
n(β̂ − β0) D−−−→

n→∞
N (0, I−1(β0, τ)).

1.2 Martingale theory
In the subsequent chapters, we will find out that it is useful to view censored data
as random processes because we will be able to use the martingale theory to prove
some of the asymptotic properties of the semiparametric estimators. Therefore,
in this subchapter, we will introduce some of the most important definitions and
theorems of the theory of counting processes and martingales by Fleming and
Harrington [1991].

Let us assume that we are working on a probability space (Ω, F , P). We first
introduce a random (stochastic) process on a time interval [0, τ ], τ ∈ (0, ∞) fixed
and non-random.

Definition 6 (Random process). A real random process X on an interval [0, τ ]
is a family of random variables X = {X(t), t ∈ [0, τ ]}, where

X(t) : (Ω, F) → (R, B), ∀t ∈ [0, τ ].

Because a random process is evolving over time, we need to define a family of
σ-algebras which capture the events of the random process and its dynamic.

Definition 7 (Filtration). Let {Ft, t ∈ [0, τ ]} be a family of σ-algebras on a prob-
ability space (Ω, F , P). We say that {Ft} is a filtration if ∀0 ≤ s ≤ t ≤ τ :

Fs ⊆ Ft ⊆ F .

Definition 8 (Process adapted on a filtration). Let {Ft} be a filtration and
let X = {X(t), t ∈ [0, τ ]} be a random process. We say that X is adapted on
a filtration {Ft}, if X(t) is Ft-measurable, ∀t ∈ [0, τ ].

In the survival analysis, we very often count the times when there had been
some event in a particular group of subjects and we use so called counting process
for this. It is a random process which counts for every time the number of events
that have happened before that time or right at that time.

Definition 9 (Counting process). Let {Ft} be a filtration. A random process
N = {N(t), t ∈ [0, τ ]} is an Ft-counting process if

a) N(0) a.s.= 0,

b) N(t) a.s.
< ∞, ∀t ∈ [0, τ ],

c) the trajectories of N are right-continuous, piecewise constant with jumps of
size 1,
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d) N is Ft-adapted.

Because there are jumps only of size 1, the part c) means that there are never
two events that occur at the same time.

We also need to define random processes called martingales because they have
some good properties which are useful later in the text. A martingale is a process
for which the conditional expectation of the future value is equal to the last value
that we have information about, regardless of all the previous values.

Definition 10 (Ft-(sub)martingale). Let {Ft} be a filtration and let X be a
right-continuous Ft-adapted random process with left-hand limits, E |X(t)| < ∞,
∀t ∈ [0, τ ]. We say that X is

a) an Ft-martingale if E [X(t)|Fs] a.s.= X(s), ∀0 ≤ s ≤ t ≤ τ ,

b) an Ft-submartingale if E [X(t)|Fs]
a.s.
≥ X(s), ∀0 ≤ s ≤ t ≤ τ .

Remark. An integrable Ft-counting process is an Ft-submartingale.

Theorem 2 (Sum of martingales). Let Ft be a filtration and let Mi, i = 1, . . . , n
be Ft-martingales. Then ∑︁n

i=1 Mi is also an Ft-martingale.

Martingales have one important property formulated in the Doob-Meyer de-
composition theorem later in this chapter. In order to be able to write this
theorem, we need to define so called predictable σ-algebra and predictable random
process. A predictable process is such that is measurable with respect to the pre-
dictable σ-algebra, which is generated by all left-continuous adapted processes.
The exact definition is given in the following.

Definition 11 (Predictable σ-algebra). Let {Ft} be a filtration and let X be
a random process. A predictable σ-algebra P(Ft) is the smallest σ-algebra con-
taining sets of type {0} × A, A ∈ F0, and (s, t] × A, A ∈ Fs, 0 ≤ s < t ≤ τ .

Definition 12 (Predictable process). Let {Ft} be a filtration, let X be a random
process and let P(Ft) be a predictable σ-algebra. We say that X is Ft-predictable
if it is P(Ft)-measurable.

Claim 3. Let {Ft} be a filtration. Any left-continuous Ft-adapted process is
Ft-predictable.

This next theorem formulates a very useful property of martingales and pre-
dictable processes and it will be used many times in the next chapters of this
thesis.

Theorem 4 (Integral w.r.t. a martingale is a martingale). Let {Ft} be a fil-
tration, let M be an Ft-martingale, ∆M(0) a.s.= 0, and let X be a bounded
Ft-predictable process. Then the integral

∫︁ t
0 X(s)dM(s) is an Ft-martingale,

t ∈ [0, τ ].

Now we can finally formulate the Doob-Meyer decomposition, one of the main
properties of martingales. It claims that every right-continuous non-negative
submartingale may be decomposed to a sum of a right-continuous martingale
and a right-continuous non-decreasing predictable process.
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Theorem 5 (Doob-Meyer decomposition). Let X be a right-continuous non-
negative Ft-submartingale. Then there exists a unique right-continuous non-
decreasing Ft-predictable process A (compensator) and a right-continuous Ft-
martingale M such that:

a) E A(t) < ∞, ∀t ∈ [0, τ ],

b) A(0) a.s.= 0,

c) X(t) a.s.= M(t) + A(t), ∀t ∈ [0, τ ].

We will now use the Doob-Meyer decomposition theorem in the situation
which we have described in Chapter 1.1. Let us define a filtration

Ft = σ{Ni(s), Yi(s+), 0 ≤ s ≤ t, i = 1, . . . , n}, t ∈ [0, τ ],

where Ni(t) and Yi(t) are random processes defined in Chapter 1.1. Then Ni(t)
is a counting process with respect to this filtration.

Theorem 6. Define the right-continuous Ft-predictable process

Ai(t) =
∫︂ t

0
Yi(s)dΛi(s), i ∈ {1, . . . , n},

where Λi is a cumulative hazard function. The process

Mi(t) = Ni(t) − Ai(t), i ∈ {1, . . . , n}

is Ft-martingale if and only if the independent censoring condition holds.

In other words, if the independent censoring condition holds, we know the
form of the compensator of the counting process N(t). Any counting process
can be expressed by its intensity with which the number of new events increases.
By Theorem 6 it is now clear that the intensity process is cumulated into the
compensator. Let us now present the exact definition of an intensity process.

Definition 13 (Intensity process). Let {Ft} be a filtration and N be a counting
process adapted to this filtration. We say that a random process {α(t), t ∈ [0, τ ]}
is an intensity process of the counting process N if

α(t) = lim
h→0+

1
h

E [N(t + h) − N(t)|Ft].

The cumulative intensity of a counting process N is a process {A(t), t ∈ [0, τ ]}
such that

A(t) =
∫︂ t

0
α(u)du.

This is a definition of a time-dependent intensity which we will be working with
during this thesis, however, intensity of a counting process may be also constant
in time. For example, for Poisson counting process N with time-independent
intensity α we have for k ∈ N,

P[N(t) − N(s) = k] = e−α·(t−s) [α · (t − s)]k
k! .
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For Poisson counting process N with time-dependent intensity α(·) and cumula-
tive intensity A(·) we have that

P[N(t) − N(s) = k] = e−(A(t)−A(s)) [A(t) − A(s)]k
k! .

If M is a right-continuous Ft-martingale, then M2 is a right-continuous Ft-
submartingale because of the Jensen inequality. Then there exists a unique de-
composition as we know from Theorem 5. We now define the compensator for
this decomposition.

Definition 14 (Predictable variation process). Let M be a right-continuous Ft-
martingale, E M2(t) < ∞, ∀t ∈ [0, τ ]. Then ⟨M⟩ is called the predictable vari-
ation process of M , which is the compensator for the Ft-submartingale M2, i.e.
M2 − ⟨M⟩ is a right-continuous Ft-martingale.

In a similar way, we define a predictable covariaton process of two martingales
as a compensator of their product.

Definition 15 (Predictable covariation process). Let M , N be right-continuous
Ft-martingales, E M2(t) < ∞, E N2(t) < ∞, ∀t ∈ [0, τ ]. Then

⟨M, N⟩ = 1
4
[︂
⟨M + N⟩ − ⟨M − N⟩

]︂
is called the predictable covariation process of M and N , i.e. M · N − ⟨M, N⟩ is
a right-continuous Ft-martingale.

The notation ⟨M⟩ is only a short version of ⟨M, M⟩ as both of the notations
mean the same thing. There are many properties of predictable variation and
covariation processes. We will introduce only those which will be useful in the
next chapters.

Theorem 7. Let {Ft} be a filtration and A(t) be a continuous compensator of
a counting process N(t), i.e. M(t) = N(t) − A(t) is an Ft-martingale. Then

⟨M⟩(t) = A(t).

Theorem 2 gives us the condition on when the sum of martingales is a martin-
gale. Now we introduce a condition on the product of martingales as it gives us
the knowledge about the predictable covariation process of two martingales. At
first, let us define an orthogonality of martingales.

Definition 16 (Orthogonal martingales). Let {Ft} be a filtration and M1, M2
two Ft-martingales. We say that M1 and M2 are orthogonal if and only if

⟨M1, M2⟩(t) = 0, ∀t ∈ [0, τ ].

Theorem 8 (Condition on orthogonality of martingales). Let {Ft} be a filtration,
Ni(t) Ft-counting processes and Ai(t) its compensators, i.e. Mi(t) = Ni(t)−Ai(t)
are Ft-martingales. If Ni(t) have all distinct times of jumps, then Mi(t), Mj(t)
are orthogonal, i ̸= j, i.e. ⟨Mi, Mj⟩(t) = 0, i ̸= j.

From Definition 15, we can now see the condition on the product of martin-
gales being a martingale.
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Theorem 9 (Product of martingales). Let {Ft} be a filtration and M1(t), M2(t)
two Ft-martingales. If M1(t), M2(t) are orthogonal, then M1(t) · M2(t) is an Ft-
martingale.

By Theorem 4, we know that an integral with respect to a martingale from
a bounded predictable process is also a martingale. The next theorem calculates
the predictable covariation of two such martingales.

Theorem 10 (Predictable covariation process for martingale integrals). Let {Ft}
be a filtration, Hi bounded Ft-predictable processes and Mi Ft-martingales such
that E (Mi)2 < ∞, i = 1, 2. Then for t ∈ [0, τ ],⟨︃ ∫︂ t

0
H1(s)dM1(s),

∫︂ t

0
H2(s)dM2(s)

⟩︃
=
∫︂ t

0
H1(s)H2(s)d⟨M1, M2⟩(s).

Denote Gi(t) =
∫︁ t

0 Hi(s)dMi(s). It is useful to realize that since Gi are mar-
tingales with Hi predictable bounded processes and Mi martingales, then

var[Gi(t)] = E ⟨Gi⟩(t) = E
∫︂ t

0
H2

i (s)d⟨Mi, Mi⟩(s)

and

cov[Gi(t), Gj(t)] = E ⟨Gi, Gj⟩(t) = E
∫︂ t

0
Hi(s)Hj(s)d⟨Mi, Mj⟩(s).

At some point of this thesis, we will prove asymptotic normality of a given
estimator. Since we will again use the knowledge of the martingale theory to do
so, we need to present the central limit theorem for sums of martingale integrals.
Before we do that, we define the Gaussian process, which will be the subject of
the central limit theorem.

Definition 17 (Centered Gaussian process). A random process X = {X(t), t ∈
[0, τ ]} is called a centered Gaussian process if

a) X(0) a.s.= 0,

b) E X(t) = 0, t ∈ [0, τ ],

c) joint distribution of the increments is multivariate normal.

Theorem 11 (Central limit theorem for the sums of martingale integrals). Let
us assume that:

• {N
(n)
i , i = 1, . . . , n} is a multivariate counting process with respect to the

probability space (Ω, F , P),

• A
(n)
i is a continuous compensator of N

(n)
i , i.e. M

(n)
i = N

(n)
i − A

(n)
i ,

• H
(n)
ji , i = 1, . . . , n, j = 1, . . . , d is a bounded Ft-predictable process on [0, τ ].

Denote
U

(n)
ji (t) =

∫︂ t

0
H

(n)
ji (s)dM

(n)
i (s) and U

(n)
j (t) =

n∑︂
i=1

U
(n)
ji (t).
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For any ε > 0 denote

U
(n)
ji,ε(t) =

∫︂ t

0
H

(n)
ji (s)1{|H(n)

ji (s)| > ε}dM
(n)
i (s) and U

(n)
j,ε (t) =

n∑︂
i=1

U
(n)
ji,ε(t).

We know from the martingale theory that for j, k = 1, . . . , d,

⟨U (n)
j , U

(n)
k ⟩(t) =

n∑︂
i=1

∫︂ t

0
H

(n)
ji (s)H(n)

ki (s)dA
(n)
i (s)

and

⟨U (n)
j,ε , U

(n)
k,ε ⟩(t) =

n∑︂
i=1

∫︂ t

0
H

(n)
ji (s)H(n)

ki (s)1{|H(n)
ji (s)| > ε}1{|H(n)

ki (s)| > ε}dA
(n)
i (s).

Let for t ∈ [0, τ ] and j, k ∈ {1, . . . , d} the following two conditions hold:

1. ⟨U (n)
j , U

(n)
k ⟩(t) P−−−→

n→∞
cjk(t) < ∞, where cjk are continuous functions on

[0, τ ],

2. ∀ε > 0 j = 1, . . . , d: ⟨U (n)
j,ε , U

(n)
j,ε ⟩(t) P−−−→

n→∞
0.

Then
(U (n)

1 , . . . , U
(n)
d ) =⇒ (X1, . . . , Xd),

where X1, . . . , Xd are dependent centered Gaussian processes with independent
increments with covariance functions cov[Xj(s), Xk(t)] = cjk(s) j, k ∈ {1, . . . , d},
0 ≤ s ≤ t ≤ τ . The symbol ”=⇒” denotes weak convergence.
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2. Nested case-control design
The nested case-control design is one of the most popular designs to use in practice
when studying rare diseases. In case of rare diseases, we need to include a large
number of people in the study to obtain at least a small amout of individuals who
get the disease of interest. Then there are too many individuals who have not got
the disease or who have been censored during the study and it would cost a lot
of money, effort and time to measure all the covariates on all the participants in
the study. We say that the individual who got the disease of interest at a certain
time ”failed” at that time and we call him a case. The individuals who have
not failed yet are called controls. Hence, an individual is called a control from
the beginning of the study until his (potential) observed failure when he becomes
a case. By conducting the nested case-control design, we select only certain
amount of controls for each case. This reduces the amount individuals needed for
the analysis and therefore we perform only a few necessary covariate measures,
which allows us to minimize the cost and duration of the study.

The way we select controls for the analysis is as follows. For each case at
its failure time we select without replacement a random sample of controls of
size m − 1 from the set of subjects who have not been censored yet and have not
failed before that time including this failure time. Here m is an arbitrary number,
which is usually somewhere between 2 and 6. The set of subjects who have not
been censored yet and have not failed before a specific time t is called the risk set
at time t because the individuals in that set are ”at risk” of getting the disease.
At each failure time we then obtain so called sampled risk set which consists of
the case and m − 1 sampled controls. This method may be also described as
performing a matched case-control design by matching the individuals on their
at-risk status at a particular time.

The nested case-control data can be analyzed by a Cox regression model and
its regression parameters can be estimated by maximizing the partial likelihood
for nested case-control data. The methods of this analysis are modified from
those introduced in Chapter 1.1. In this chapter, we will, based on Goldstein
and Langholz [1992], introduce the model for nested case-control data, the par-
tial likelihood and the maximum partial likelihood estimator and we prove the
consistency and asymptotic normality of this estimator.

2.1 Introduction to the design
Let (Ω, F , P) be a probability space, n be a number of individuals in the pop-
ulation of interest and, for i ∈ {1, . . . , n}, let Ti be failure time, Ci censoring
time, Xi censored failure time, and δi failure indicator for the i-th individual. For
a fixed finite time τ , let Ni, Yi, Zi, i ∈ {1, . . . , n}, be random processes on the
probability space (Ω, F , P) and on a time interval t ∈ [0, τ ] defined as in Chap-
ter 1.1. Specifically, time 0 is understood as the beginning of the study and time
τ as the end. Define

Ft = σ{Ni(s), Yi(s+), Zi(s), 0 ≤ s ≤ t, i = 1, . . . , n}, t ∈ [0, τ ],

a filtration on the probability space (Ω, F , P).
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Let αi denote the intensity process of the counting process Ni as defined in
Definition 13. This definition may be further rewritten as follows:

αi(t|Zi) = lim
h→0+

1
h

E [Ni(t + h) − Ni(t)|Ft]

= lim
h→0+

1
h

P[Ni(t + h) − Ni(t) = 1|Ft]

= lim
h→0+

1
h

P[t ≤ Ti < t + h|Ft].

Under the independent censoring condition (Definition 3), the conditional hazard
function λi(t|Zi) equals

lim
h→0+

1
h

P[t ≤ Ti < t + h|Xi ≥ t, Zi(t)].

Hence, by multiplying the at-risk process Yi(t) = 1{Xi ≥ t} with the conditional
hazard function of the Cox proportional hazards model, we get the intensity of
the counting process Ni as

αi(t) ≡ αi(t|Zi) = Yi(t)λi(t|Zi) = Yi(t)λ0(t)eβ⊤
0 Zi(t), (2.1)

where Zi is the covariate vector for the i-th individual, β0 is a fixed vector of
regression coefficients in Rd, d ∈ N and λ0(t) is the baseline hazard function, which
is unknown and unspecified. The cumulative intensity of Ni may be written as

Ai(t) ≡ Ai(t|Zi) =
∫︂ t

0
αi(s|Zi)ds.

Due to the Doob-Meyer decomposition (Theorem 6), it is useful to realize that
Mi = Ni − Ai is an Ft-martingale, i.e. the cumulative intensity is a compensator
of its counting process.

We will now present the procedure of creating the nested case-control data
from the observations (Xi, δi, Zi(t)), i.e. from the processes Yi, Ni, Zi. For a time
t define

R(t) = {i : Yi(t+) = 1}

a risk set containing all the individuals who are at risk right after time t and
n(t) = |R(t)| the number of individuals in this risk set. Here Yi(t+) is understood
as an indicator whether or not the i-th individual is at risk right after time t.
Because Yi is left-continuous, the t+ in the definition of R(t) is necessary to
ensure that the individual who became a case or was censored at time t does not
belong to R(t).

Define X ′
0 = 0 and X ′

1, X ′
2, . . . an ordered collection of observed censoring

and failure times and Ȳ (t) = ∑︁n
i=1 Yi(t). The process Ȳ (t) is left-continuous

piecewise constant with an initial value equal to n and jumps of size −1 which
occur at times X ′

k. In other words, the value of the process Ȳ (t) at time X ′
k

jumps from n − k + 1 to n − k. For every k ≥ 1, we have a risk set R(X ′
k) which

consists of individuals who have not failed and have not been censored before or
at time X ′

k. This means that the individual denoted as ik who failed at time X ′
k

is not included in the risk set R(X ′
k). Denote Pm,i(R(X ′

k)) a set of all subsets of
R(X ′

k) of size m which include the i-th individual. Clearly, if i ∈ R(X ′
k), then
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Figure 2.1: Denotion of risk sets and the sampled risk set when sampling the nested case-
control data.

Pm,i(R(X ′
k)) includes

(︂
n(X′

k)−1
m−1

)︂
sets, where n(X ′

k) = |R(X ′
k)|. If i /∈ R(X ′

k), then
Pm,i(R(X ′

k)) = ∅.

The selection of controls for each case is done as follows. Let us assume that
for a particular j the time X ′

j is a failure time, i.e. the ij-th individual becomes
a case at time X ′

j. Then we independently and uniformly choose one set from
Pm,ij

(R(X ′
j−1)) and we denote this set as R̃j,ij

≡ R̃j. This is called the sampled
risk set and it consists of the individual ij and m − 1 controls who were at risk
at the failure time X ′

j. We repeat this process for every j ≥ 1 for which X ′
j

is a failure time. The collection of all cases and their selected controls creates
the nested case-control data. For better understanding, the sampling process is
demonstrated in Figure 2.1.

This design allows any individual who had been selected as a control to be
selected again for another case or to become a case itself in the future. This is
because the matching of the controls to a case at any failure time is based on the
at-risk status Y of the individuals at that time and not on the failure indicator δ.

Since we select a fixed number of controls for each case, we need to think
about a certain situation that may occur. Suppose that there are less than m − 1
available controls for a case observed at the end of the study. Then, we select
the controls who are available even though there are fewer of them or none at all.
The estimation of the parameters would still make sense since this situation is
the one of the Cox PH model where we do not sample controls for a case. For an
easier notation, we further consider the situation where there are m − 1 controls
available for each case.

In order to estimate the regression coefficients of this model, we need to write
the form of the nested case-control partial likelihood function. The situation of
the nested case-control data is a situation of censored data where we model the
conditional hazard function and the model is semiparametric, therefore we cannot
use the usual likelihood function and we need to use the partial likelihood.

The partial likelihood may be created the same way as the Cox partial like-
lihood in Definition 5. The numerator of the terms of the product is the hazard
of the case and the denominator is a sum of hazards of the controls and the case
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from the numerator. In this case, the controls are those from the sampled risk
set at the failure time of the case in the numerator, i.e. the denominator is a
sum over all subjects in the sampled risk set R̃k for the observed case ik. We
take the product over the individuals who became cases during the study, which
is also done in the Cox partial likelihood because ∆Ni(s) = 1 if and only if the
i-th individual failed at time s. Also, Yi(s) as an at-risk indicator process, is left-
continuous, and since the product is taken over the failed individuals, the at-risk
indicator in the numerator is always equal to one and in the denominator it is
replaced by the sum over the sampled risk set. The nested case-control partial
likelihood may then be written as

L(β) =
∏︂

k:δk=1

⎧⎨⎩ eβ⊤Zik
(X′

k)∑︁
j∈R̃k

eβ⊤Zj(X′
k

)

⎫⎬⎭. (2.2)

It is important to realize that we can rewrite the nested case-control partial
likelihood function into the form which is very similar to the original partial
likelihood equation (1.1) in the Cox proportional hazards model. Define the
sampling indicators ηij as

ηij(t) =
∑︂
k≥1
1{j ∈ R̃k,i}1{X ′

k−1 < t ≤ X ′
k}, t ∈ [0, τ ], (2.3)

where ηij(0) = 0. This indicator expresses whether or not the j-th individual is
a selected control for a case i who failed at time X ′

k. More precisely, if the i-th
individual fails at time X ′

k for any k ≥ 1 and the j-th individual is selected as its
control, then the sampling function ηij is equal to 1 on a time interval (X ′

k−1, X ′
k]

and is equal to 0 otherwise. If the i-th individual is not a case at all during the
study then this definition still makes sense as we have not defined the set R̃k,i

only for i as a case specifically. However, we will only use the sampling functions
in situations where the i-th individual is a case in the study.

Using the sampling functions, we can write the nested case-control partial
likelihood as

L(β) =
n∏︂

i=1

∏︂
s∈[0,τ ]

⎧⎨⎩ eβ⊤Zi(s)∑︁n
j=1 ηij(s)eβ⊤Zj(s)

⎫⎬⎭
∆Ni(s)

. (2.4)

From the form (2.4) of the partial likelihood function, we can proceed in
finding the MPLE of β in a very similar way as the one that we have shown it in
Chapter 1.1. At first, define for k = 0, 1, 2, i ∈ {1, . . . , n},

S
(k)
n,i (β, t) = 1

n

n∑︂
j=1

ηij(t)Z⊗k
j (t)eβ⊤Zj(t),

where clearly
∂

∂β
S

(0)
n,i (β, t) = S

(1)
n,i (β, t),

∂

∂β⊤ S
(1)
n,i (β, t) = S(2)

n,i(β, t).

16



Now we can write the log partial likelihood as

l(β) = log L(β) =
n∑︂

i=1

∫︂ τ

0

[︂
β⊤Zi(s) − log nS

(0)
n,i (β, s)

]︂
dNi(s).

By differentiating this expression with respect to β, we obtain the score statistic

Un(β) = ∂l(β)
∂β

=
n∑︂

i=1

∫︂ τ

0

[︄
Zi(s) −

S
(1)
n,i (β, s)

S
(0)
n,i (β, s)

]︄
dNi(s). (2.5)

Then the MPLE β̂ is a solution of the system of equations

Un(β̂) = 0.

Numerically, the solution is obtained by the Newton-Raphson algorithm described
by (1.2), where the observed information matrix In may be calculated as

In(β) = − 1
n

∂Un(β)
∂β⊤

= 1
n

n∑︂
i=1

∫︂ τ

0

[︄
S(2)

n,i(β, s)
S

(0)
n,i (β, s)

−
[︃S

(1)
n,i (β, s)

S
(0)
n,i (β, s)

]︃⊗2
]︄
dNi(s). (2.6)

In further inferences, we will need to work with the score statistic and the in-
formation matrix as if they were processes. Let us take the integral in the defined
expressions (2.5) and (2.6) from 0 to t for t ∈ [0, τ ] to create such processes:

Un(β, t) =
n∑︂

i=1

∫︂ t

0

[︄
Zi(s) −

S
(1)
n,i (β, s)

S
(0)
n,i (β, s)

]︄
dNi(s),

In(β, t) = 1
n

n∑︂
i=1

∫︂ t

0

[︄
S(2)

n,i(β, s)
S

(0)
n,i (β, s)

−
[︃S

(1)
n,i (β, s)

S
(0)
n,i (β, s)

]︃⊗2
]︄
dNi(s).

The only difference in the procedure between the original Cox proportional
hazards model and the Cox model for the nested case-control data is in the
functions Sn(β, t), resp. Sn,i(β, t), i.e. in the at-risk indicator functions Yi(t) and
the sampling functions ηij(t). In the case of nested case-control data, we need
to distinguish between all people at risk and those who have been sampled as
controls for the i-th failed individual. Therefore the functions Sn,i are different
for all cases i.

We can see a similarity with the stratified Cox model, which is an alternative
to the Cox model in case that the proportional hazards assumption does not hold
for some of the covariates. In this situation, we fit different hazard functions for
different levels of that covariate, which we modify to a categorical variable V with
values 1, . . . , q, if it was previously a continuous variable. For different values of V
(strata), we introduce different baseline hazards λ0j and so the hazard functions
depending on the strata take the form

λ(t|Z, V = j) = λ0j(t)eβ⊤Z(t).

The observed data are in a form of (Nji(t), Yji(t), Zji(t)), t ∈ [0, τ ], where
j = 1, . . . , q denotes the strata and i = 1, . . . , nj denotes the subject within the
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strata, since there are nj individuals in the j-th strata. The partial likelihood is
taken as a product of partial likelihood functions for each stratum and has the
form

LS(β) =
q∏︂

j=1

nj∏︂
i=1

∏︂
s∈[0,τ ]

[︄
Yji(s)eβ⊤Zji(s)∑︁nj

k=1 Yjk(s)eβ⊤Zjk(s)

]︄∆Nji(s)

. (2.7)

We can look at the nested case-control data as ”stratified by a case” to which
the controls belong. More precisely, for each observed failed individual we select
m − 1 at-risk individuals as controls and create the sampled risk set R̃k for the
k-th observed failure time. Let us assume that there are q observed failure times
during the study. Then the nested case-control data may be viewed as being
composed of q strata of m individuals in each and the partial likelihood is also
being taken as a product of partial likelihood functions of each stratum. This is
because the sum in the denominator is, using the sampling functions, only taken
over the sampled risk set. The same happens for the stratified Cox model and its
partial likelihood (2.7). The numerator is taken for the case because ∆Nji(s) = 1
if and only if the i-th individual in the j-th strata is a case, and the denominator
is taken over the individuals who were at risk before the failure time of this case
within the same stratum j. The difference is that in the nested case-control
design, the ”strata” have been created in a way that all of the controls were at-
risk when they were selected whilst the stratified version still needs to take the
possible censored or failed individuals into account with the at-risk indicators in
the denominator. Also, the nested case-control design assumes that there is only
one case in each stratum while the stratified version has no such assumption.

By continuing with the adjustments of partial likelihood (2.7), we get a similar
form of the score statistic as in the nested case-control design as

Un(β) =
q∑︂

j=1

nj∑︂
i=1

∫︂ τ

0

[︄
Zji(t) −

S
(1)
n,ji(β, t)

S
(0)
n,ji(β, t)

]︄
dNji(t),

where for k = 0, 1, we define

S
(k)
n,ji(β, t) = 1

nj

nj∑︂
i=1

Yji(t)Z⊗k
ji (t)eβ⊤Zji(t).

2.2 Consistency of the MPLE of the regression
parameter

We will be working under assumptions which will allow us to prove asymptotic
properties of the MPLE of the regression parameter in the nested case-control
design. To the assumptions A.1 - A.4 for the Cox proportional hazards model
from Chapter 1.1, we add the following one:

A.5* Let ZY be a random vector with the same distribution as a random vector
Z conditionally on Y = 1, i.e.

P[ZY (t) ∈ B] = P[Z(t) ∈ B|Y (t) = 1]

18



for any Borel set B ∈ B(Rd). The matrix V(t) = var[ZY (t)],

V ≡
∫︂ τ

0
V(t)λ0(t)dt

is a positive definite matrix.

While the terms S(k)
n converge to deterministic functions s(k) in the analysis

of the Cox model (assumption A.5), it is not so in the case of nested case-control
design because the number of controls selected for each case is always m − 1,
hence it does not change even with a growing number of participants in the
study. Therefore, the terms S

(k)
n,i converge to zero when n → ∞, since they are

sums of m finite terms divided by n. If we were about to divide the sum by
m and not by n, we would get a mean which would not converge since m does
not change. The information matrix of the Cox model has terms which are the
limits of S(k)

n and since S
(k)
n,i all converge to zero, we need the assumption A.5* to

introduce the matrix V and assume its positive definiteness. Later in the thesis,
we will show that this assumption is sufficient to prove the positive definiteness
of another matrix Γ, which will be the inverse of the asymptotic variation of the
MPLE β̂.

The problem of S
(k)
n,i not converging is also the reason why we need to present

the following lemmas which establish the conditions for convergence of the terms
S

(k)
n,i

S
(0)
n,i

, k = 1, 2, when considered in a combination with other processes and taken
as a sum over all subjects. We will be using the results of those lemmas many
times in the upcoming theorems. We will only prove the first of the lemmas since
the other could be proven in a similar way.

Lemma 12. Let us fix an arbitrary s ∈ [0, τ ] and write Y = Y (s), Z = Z(s),
p = p(s) = P [Y (s) = 1] > 0, and let R(s) = R = {i : Yi = 1} be the risk set at
time s, Pm(R) a set of all subsets of R of size m and Pm,i(R) a set of all subsets
of R of size m which include the i-th individual. Let R̃i be independently and
uniformly chosen from Pm,i(R) and let the sampling be conditionally independent
from the covariate information given the at-risk indicators.

For any set T ∈ Pm(R), define a vector

w(T ) =
∑︁

j∈T Zje
β⊤Zj∑︁

j∈T eβ⊤Zj
,

where w(∅) = 0. Define YT = ∏︁
j∈T Yj and Bi = eβ⊤

0 Zi. Define a sequence

Sn = 1
n

n∑︂
i=1

w(R̃i)YiBi.

Then

Sn
P−−−→

n→∞
q = p · E

[︂
w(U) 1

m

∑︂
j∈U

Bj

⃓⃓⃓
YU = 1

]︂
, (2.8)

where U = {1, . . . , m}.
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Remark. The set of indexes U = {1, . . . , m} denotes the first m individuals of the
study dataset. Since the observations are independent and identically distributed,
the subjects taken as a set U could be any arbitrary m subjects from the study,
therefore there may be any number of cases in U .

Proof. Define a σ-algebra G = σ{Zi, Yi, i = 1, . . . , n}. Let us remind that
Zi is a d-dimensional vector, i.e. Zi = (Zi1, . . . , Zid)⊤. In order to prove the
convergence, it is sufficient to show that there exists a sequence Qn such that
∀k ∈ {1, . . . , d}:

a) var[Sn,k|G] P−−−→
n→∞

0,

b) E [Sn,k|G]
Qn,k

P−−−→
n→∞

1,

c) Qn
P−−−→

n→∞
q,

where Sn,k, resp. Qn,k, is the k-th component of Sn, resp. Qn. The random part
of Sn conditionaly on G is the sampling of the sets R̃i. This is why we want to
use a sequence of random vectors Qn, which will only be random in the variables
Yi and Zi.

We know that Sn is an average of n independent random vectors which are
identically distributed, because the data are identically distributed and the sam-
pling of R̃i is independent from Zi and Yi. Since Zi are bounded, E [w(R̃i)YiBi|G]
is finite for all i ∈ {1, . . . , n}. Therefore, part a) assures that all the components
of Sn converge to their conditional mean according to the law of large numbers.
In order to show that parts a)−c) are enough to prove this lemma, assume that
E [Sn,k|G] P−−−→

n→∞
sk ̸= qk, where qk is the k-th component of the vector q. Part c)

assures that Qn,k
P−−−→

n→∞
qk, so then

E [Sn,k|G]
Qn,k

P−−−→
n→∞

sk

qk

̸= 1,

which violates part b). This means that by proving a)−c), we prove the lemma.
a) Define Z(T ) = maxj∈T |Zj|, where |a| =

√
a⊤a is the Euclidean norm of any

vector a. Then 0 ≤ |w(T )| ≤ Z(T ), because clearly⃓⃓⃓⃓
⃓⃓
∑︁

j∈T Zje
β⊤Zj∑︁

j∈T eβ⊤Zj

⃓⃓⃓⃓
⃓⃓ ≤ max

j∈T
|Zj|⃓⃓⃓ ∑︂

j∈T

Zje
β⊤Zj

⃓⃓⃓
≤ max

j∈T
|Zj| ·

∑︂
j∈T

eβ⊤Zj

√︄∑︂
j∈T

Z⊤
j eβ⊤Zj ·

∑︂
j∈T

Zjeβ⊤Zj ≤ max
j∈T

√︂
Z⊤

j Zj

∑︂
j∈T

eβ⊤Zj .

Every component of Sn is an average of n independent random variables. As we
have just proven, we can restrict w⊤(R̃i)w(R̃i) from above by Z2(R̃i) and β⊤

0 Zi

by |β0|Z(R̃i). Therefore, we can restrict the conditional variance of Sn,k from
above as

var[Sn,k|G] ≤ 1
n2

n∑︂
i=1

E [Yi e2·|β0|·Z(R̃i)Z2(R̃i)|G],
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which goes to zero as n goes to infinity, because of the assumption that Z is
bounded. This proves part a).
b) We can rewrite w(R̃i) as ∑︁T ∈Pm,i(R) w(T )1{T = R̃i}, therefore

E [w(R̃i)Yie
β⊤

0 Zi |G] =
∑︂

T ∈Pm,i(R)
w(T )Yie

β⊤
0 Zi E [1{T = R̃i}|G].

Denote Y = σ{Yi, i = 1, . . . , n}. Because the sampling of the risk sets is condi-
tionally independent from the covariate information given the at-risk indicators,
we can write

E [1{T = R̃i}|G] = E [1{T = R̃i}|Y ]
= P[T = R̃i|Y ]

= 1(︂
|R|−1
m−1

)︂1{i ∈ T}YT . (2.9)

By summing the terms (2.9) over T ∈ Pm,i(R), the indicators 1{i ∈ T} and YT

are clearly equal to 1. This leads to

E [Sn|G] = 1
n

1(︂
|R|−1
m−1

)︂ n∑︂
i=1

∑︂
T ∈Pm,i(R)

w(T )eβ⊤
0 Zi

= 1
n

1(︂
|R|−1
m−1

)︂ ∑︂
|T |=m

{w(T )YT

∑︂
i∈T

eβ⊤
0 Zi}, (2.10)

where the second equality holds because the two sums over i and T may be
rewritten as a sum over all T of size m if adding the indicator YT to the sum to
make sure that all the subjects from T are at risk and then summing over those
subjects in T .

Next, define the sequence Qn as

Qn = 1
mpm−1

(︂
n
m

)︂ ∑︂
|T |=m

{w(T )YT

∑︂
i∈T

eβ⊤
0 Zi}.

The random parts of this random vector are the variables Yi and Zi. Clearly
|R|
n

P−−−→
n→∞

p, hence for any a < |R|,

n − a

|R| − a
P−−−→

n→∞

1
p

.

Then for all k = 1, . . . , d,

E [Sn,k|G]
Qn,k

= 1
n

1(︂
|R|−1
m−1

)︂mpm−1
(︄

n

m

)︄

= (n − 1)!
(m − 1)!(n − m)!

(m − 1)!(|R| − m)!
(|R| − 1)! pm−1

= (n − 1)!(|R| − m)!
(|R| − 1)!(n − m)!p

m−1

= (n − 1) . . . (n − m + 1)
(|R| − 1) . . . (|R| − m + 1)pm−1 P−−−→

n→∞

1
pm−1 pm−1 = 1.
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This proves part b).
c) First, we need to look at the variance of Qn.

var(Qn) = const · 1(︂
n
m

)︂2
∑︂

|T |=m
|S|=m

cov
{︃

w(T )YT

∑︂
i∈T

eβ⊤
0 Zi , w(S)YS

∑︂
i∈S

eβ⊤
0 Zi

}︃
.

The covariance in the sum is equal to zero if the sets T, S are disjoint because
of the assumed independence between the observations. There are

(︂
n

2m

)︂(︂
2m
m

)︂
pairs of such disjoint sets, because there are

(︂
n

2m

)︂
possibilities of choosing 2m

subjects for these two sets together and there are
(︂

2m
m

)︂
possibilities how to divide

those subjects into sets T and S. This means that the sum has at most
(︂

n
m

)︂2
−(︂

n
2m

)︂(︂
2m
m

)︂
nonzero terms, which are, nevertheless, finite, since we assume that Zi

are bounded. And since

1(︂
n
m

)︂2

[︃(︄
n

m

)︄2

−
(︄

n

2m

)︄(︄
2m

m

)︄]︃
= 1 −

(︂
n

2m

)︂(︂
2m
m

)︂
(︂

n
m

)︂2

= 1 − (n − m)!2
(n − 2m)!n!

= 1 − (n − m) . . . (n − 2m + 1)(n − 2m)!(n − m)!
(n − 2m)!n . . . (n − m + 1)(n − m)!

≈ 1 − nm

nm
−−−→
n→∞

0,

we get that var(Qn) P−−−→
n→∞

0. Therefore, Qn converges to its mean by the law of
large numbers. Since

mpm−1Qn = 1(︂
n
m

)︂ ∑︂
|T |=m

{w(T )YT

∑︂
i∈T

eβ⊤
0 Zi} (2.11)

is a form of an average and the mean of all the summands is the same, the mean
of Qn can be expressed by replacing (2.11) with a mean using the general set U
introduced in a remark earlier. And since E YU = P[YU = 1] = pm, we write

E Qn = 1
mpm−1 E

{︂
w(U)YU

∑︂
i∈U

eβ⊤
0 Zi

}︂

=
p E

{︂
w(U)YU

1
m

∑︁
i∈U eβ⊤

0 Zi

}︂
E YU

=
p E

{︂
w(U)YU

1
m

∑︁
i∈U eβ⊤

0 Zi

}︂
P[YU = 1]

= p E
{︂
w(U)YU

1
m

∑︂
i∈U

eβ⊤
0 Zi |YU = 1

}︂
= q.

This proves part c) of this lemma.
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Corollary. In the special case for β = β0,

E [Sn|G] = 1
n

n∑︂
i=1

YiZie
β⊤

0 Zi .

Proof. From the equation (2.10), we write

E [Sn|G] = 1
n

1(︂
|R|−1
m−1

)︂ ∑︂
|T |=m

{︂
w(T )YT

∑︂
i∈T

Bi

}︂

= 1
n

1(︂
|R|−1
m−1

)︂ ∑︂
T ∈Pm(R)

{︄∑︁
i∈T ZiBi∑︁

i∈T Bi

∑︂
i∈T

Bi

}︄

= 1
n

1(︂
|R|−1
m−1

)︂ ∑︂
T ∈Pm(R)

∑︂
i∈T

ZiBi

= 1
n

1(︂
|R|−1
m−1

)︂(︄|R| − 1
m − 1

)︄∑︂
i∈R

ZiBi

= 1
n

∑︂
i∈R

ZiBi

= 1
n

n∑︂
i=1

YiZie
β⊤

0 Zi .

Here, the second equation holds due to the fact that the sum is taken over all
|T | = m and the terms of the sum contain YT which ensures that all of the sub-
jects in the set T are at risk. Therefore, we may remove YT and take the sum
over all T ∈ Pm(R). The fourth equation stems from the fact that the double
sum ∑︁

T ∈Pm(R)
∑︁

i∈T may be rewritten as
(︂

|R|−1
m−1

)︂∑︁
i∈R, since by taking all i ∈ T

and all T ∈ Pm(R), every i ∈ R is used in the double sum exactly
(︂

|R|−1
m−1

)︂
times

because there are this many subsets of R of a size m including i.

We may formulate three very similar lemmas to Lemma 12 which will be just
as important and can be proven the same way.

Lemma 13. Let all assumptions of Lemma 12 hold. Let Bi = Z⊤
i eβ⊤

0 Zi. Then
(2.8) holds.

Lemma 14. Let all assumptions of Lemma 12 hold. For any set T ∈ Pm(R),
define

w(T ) =
⎡⎣∑︁j∈T Zje

β⊤Zj∑︁
j∈T eβ⊤Zj

⎤⎦⊗2

,

where w(∅) = 0. Let Bi = eβ⊤
0 Zi. Then (2.8) holds.

Lemma 15. Let all assumptions of Lemma 12 hold. For any set T ∈ Pm(R),
define

w(T ) =
∑︁

j∈T Z⊗2
j eβ⊤Zj∑︁

j∈T eβ⊤Zj
,

where w(∅) = 0. Let Bi = eβ⊤
0 Zi. Then (2.8) holds.
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Remark. It is important to realize that for (γ, ρ) ∈ {(1, 1), (1, 2), (2, 1)},

w(R̃i) =
⎡⎣S

(γ)
n,i (β, s)

S
(0)
n,i (β, s)

⎤⎦⊗ρ

,

where (γ, ρ) = (1, 1) in Lemmas 12 and 13, (γ, ρ) = (1, 2) in Lemma 14 and
(γ, ρ) = (2, 1) in Lemma 15. This is because for any k = 0, 1, 2, S

(k)
n,i is a sum

over the sampled controls for the i-th subject who is a case including the case,
therefore it is a sum over the set R̃i if this set was chosen to be the sampled risk
set for the i-th individual. We can also see that w(R̃i) for (γ, ρ) = (1, 1) is a
part of the score statistic (2.5) and w(R̃i) for (γ, ρ) = (1, 2) and (γ, ρ) = (2, 1)
are parts of the observed information matrix (2.6), which is why those lemmas
will be very useful in proving the asymptotic properties of the MPLE.

Theorem 16 (The consistency of the MPLE). The maximum partial likelihood
estimator β̂ is a consistent estimator of the regression parameter.
Proof. Define the following processes:

ln(β, t) =logL(β, t)

=
n∑︂

i=1

∫︂ t

0

[︄
β⊤Zi(s) − log nS

(0)
n,i (β, s)

]︄
dNi(s),

Hi(t) =(β − β0)⊤Zi(t) − log
S

(0)
n,i (β, t)

S
(0)
n,i (β0, t)

,

Xn(β, t) = 1
n

[︂
ln(β, t) − ln(β0, t)

]︂
= 1

n

n∑︂
i=1

∫︂ t

0
Hi(s)dNi(s),

An(β, t) = 1
n

n∑︂
i=1

∫︂ t

0
Hi(s)dAi(s).

Here, Ai(t) =
∫︁ t

0 αi(s) is the cumulative intensity of the i-th subject and we
denote it Ai as a large alpha letter. Clearly, Hi are bounded and Ft-predictable
because we assume that Zi are bounded and Ft-predictable in the assumption
A.3. According to Theorem 6, Ni−Ai = Mi is an Ft-martingale and an integral of
a predictable bounded process with respect to a martingale is also a martingale
due to Theorem 4, therefore

∫︁ t
0 Hi(s)dMi(s) is a martingale. Also, a sum of

martingales is a martingale due to Theorem 2, therefore ∀β,

Xn(β, t) − An(β, t) = 1
n

n∑︂
i=1

∫︂ t

0
Hi(s)dMi(s)

is an Ft-martingale. This means that

E [Xn(β, t) − An(β, t)] = 0

and if we prove that var[Xn(β, t)−An(β, t)] P−−−→
n→∞

0, then for a special case t = τ ,
we get that

Xn(β, τ) − An(β, τ) P−−−→
n→∞

0. (2.12)
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Let us look at the variance. For easier notation, denote Gi(t) =
∫︁ t

0 Hi(s)dMi(s).
Then

var[Xn(β, t) − An(β, t)]

= var
[︄

1
n

n∑︂
i=1

Gi(t)
]︄

= 1
n2

[︄
n∑︂

i=1
var[Gi(t)] +

∑︂
i ̸=j

cov[Gi(t), Gj(t)]
]︄
.

We can write

var[Gi(t)] = E
⟨︃ ∫︂ t

0
Hi(s)dMi(s)

⟩︃
= E

∫︂ t

0
H2

i (s)d⟨Mi, Mi⟩(s)

= E
∫︂ t

0
H2

i (s)dAi(s)

= E
∫︂ t

0
H2

i (s)Yi(s)λ0(s)eβ⊤
0 Zi(s)ds ≤ K < ∞,

where K is a constant. The second equality holds due to Theorem 10 and the
third equality holds due to Theorem 7. The estimation from above by a constant
K is possible, because Hi, Yi and Zi are bounded and we compute the mean of
an integral composed of those variables. In a similar way we may rewrite

cov[Gi(t), Gj(t)] = E
⟨︃ ∫︂ t

0
Hi(s)dMi(s),

∫︂ t

0
Hj(s)dMj(s)

⟩︃
= E

∫︂ t

0
Hi(s)Hj(s)d⟨Mi, Mj⟩(s)

= 0,

where the second equality again holds due to Theorem 10 and the third equality
holds due to Theorem 8, by which Mi, Mj, i ̸= i are orthogonal since Ni, Nj, i ̸= j
have distinct event times. Therefore, ⟨Mi, Mj⟩(s) = 0 by Definition 16. Together,
we get that

var[Xn(β, t) − An(β, t)] = 1
n2

[︄
n∑︂

i=1
var[Gi(t)] +

∑︂
i ̸=j

cov[Gi(t), Gj(t)]
]︄

≤ 1
n2

[︂
n · K + n(n − 1) · 0

]︂
= 1

n
· K

P−−−→
n→∞

0.

Therefore, (2.12) holds, hence An(β, τ) and Xn(β, τ) have the same limit.
We now need to differentiate the function An(β, τ) with respect to β to find
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the point which maximizes this function. Using the equation (2.1), we get

∂

∂β
An(β, τ) = 1

n

n∑︂
i=1

∫︂ τ

0

[︄
Zi(s) −

∑︁n
j=1 ηij(s)Zj(s)eβ⊤Zj(s)∑︁n

j=1 ηij(s)eβ⊤Zj(s)

]︄
Yi(s)eβ⊤

0 Zi(s)λ0(s)ds

= 1
n

n∑︂
i=1

∫︂ τ

0

[︄
Zi(s) −

S
(1)
n,i (β, s)

S
(0)
n,i (β, s)

]︄
Yi(s)eβ⊤

0 Zi(s)λ0(s)ds

= 1
n

n∑︂
i=1

∫︂ τ

0

[︃
Zi(s) − w(R̃i(s))

]︃
Yi(s)eβ⊤

0 Zi(s)λ0(s)ds.

Using Lemma 12, we know that the sequence Sn at a point s is

Sn(s) = 1
n

n∑︂
i=1

w(R̃i(s))Yi(s)eβ⊤
0 Zi(s) P−−−→

n→∞
q(β, s),

where

q(β, s) = p(s) · E
[︄∑︁

j∈U Zj(s)eβ⊤Zj(s)∑︁
j∈U eβ⊤Zj(s)

1
m

∑︂
j∈U

eβ⊤
0 Zj(s)

⃓⃓⃓⃓
YU = 1

]︄
.

Next, using the Corollary of Lemma 12, we get that

E[Sn(s)|G] = 1
n

n∑︂
i=1

Zi(s)Yi(s)eβ⊤
0 Zi(s) P−−−→

n→∞
q(β0, s),

where

q(β0, s) =p(s) · E
[︄∑︁

j∈U Zj(s)eβ⊤
0 Zj(s)∑︁

j∈U eβ⊤
0 Zj(s)

1
m

∑︂
j∈U

eβ⊤
0 Zj(s)

⃓⃓⃓⃓
YU = 1

]︄

=p(s) · E
[︄

1
m

∑︂
j∈U

Zj(s)eβ⊤
0 Zj(s)

⃓⃓⃓⃓
YU = 1

]︄
.

Therefore
∂

∂β
An(β, τ) P−−−→

n→∞

∫︂ τ

0
[q(β0, s) − q(β, s)]α0(s)ds.

This means that ∂
∂β

An(β, τ) converges in probability to zero for β = β0, hence
β0 maximizes An(β, τ). We know that β̂ maximizes Xn(β, τ), because β̂ max-
imizes the partial likelihood and Xn(β, τ) = 1

n

[︂
ln(β, τ) − ln(β0, τ)

]︂
. We have

already proven that Xn(β, τ) and An(β, τ) have the same limit, which means
that β̂

P−−−→
n→∞

β0.

2.3 Asymptotic normality of the MPLE of the
regression parameter

Now, having proved that the MPLE is a consistent estimator of the regression
parameter, we will concentrate on its asymptotic distribution. First, we need
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to present matrix Γ which will be shown to be the inverse of the asymptotic
variance of the MPLE. In order to do so, we use the random vector ZY defined in
assumption A.5*, which will be used in situations which need to be conditioned
on the element [Y = 1] while using the results from previous theorems to prove
new ones.

Further, denote ZY,U = (ZY,1, . . . , ZY,m), where ZY,i, i ∈ U , are independent
copies of ZY . Let

P[Z = ZY,j|ZY,U ] ≡ pj = eβ⊤ZY,j∑︁
i∈U eβ⊤ZY,i

(2.13)

be the probability of ZY,j among all the vectors in ZY,U defined as a ratio of the
hazard of the j-th individual and the sum of hazards of all the individuals in the
set U . Then

var[Z|ZY,U ] =
∑︂
j∈U

Z⊗2
Y,jpj −

[︂∑︂
j∈U

ZY,jpj

]︂⊗2

=
∑︂
j∈U

[︂
ZY,j − Z̄

]︂⊗2
pj,

where Z̄ = ∑︁
j∈U pjZY,j. Let us remind that p(t) = P[Y (t) = 1] and define

a matrix

Γ(β, t) = E
{︄∫︂ t

0
p(s) 1

m

∑︂
j∈U

eβ⊤
0 ZY,j(s) var[Z(s)|ZY,U ]λ0(s)ds

}︄
, (2.14)

and finally define the matrix Γ ≡ Γ(β0, τ).
From assumption A.5*, the matrix V =

∫︁ τ
0 var[ZY (s)]λ0(s)ds is positive def-

inite. We need to prove that this implicates that Γ is also a positive definite
matrix, because then it is invertible, which is needed when proving the asymp-
totic distribution of the MPLE.

Lemma 17. If the matrix V is positive definite, then the matrix Γ is also positive
definite.
Proof. Suppose that Γ is not positive definite, then ∃a ∈ Rd, a ̸= 0, such that
a⊤Γa = 0. Because

a⊤Γa =

E
{︄∫︂ τ

0
p(s) 1

m

∑︂
j∈U

eβ⊤
0 ZY,j(s)

[︂∑︂
i∈U

a⊤(ZY,i(s) − Z̄(s))⊗2api(s)
]︂

β=β0
λ0(s)ds

}︄
,

and for almost every s ∈ [0, τ ] we have

p(s) 1
m

∑︂
j∈U

eβ⊤
0 ZY,j(s) > 0,

then necessarily at all s ∈ [0, τ ][︂∑︂
i∈U

a⊤
(︂
ZY,i(s) − Z̄(s)

)︂⊗2
api(s)

]︂
β=β0

a.s.= 0. (2.15)
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Instead of a⊤
(︂
ZY,i(s) − Z̄(s)

)︂⊗2
a, we can write

(︂
a⊤(ZY,i(s) − Z̄(s)

)︂2
. It is clear

that
[︃
a⊤
(︂
ZY,i(s) − Z̄(s)

)︂]︃2
pi(s) are all non-negative terms and from (2.15) their

sum is almost surely equal to zero. Therefore, we get that

∀i ∈ U : a⊤
(︂
ZY,i(s) − Z̄(s)

)︂
= 0.

Hence,
a⊤ZY,j(s) a.s.= a⊤ZY,i(s), i, j ∈ U,

and therefore a⊤Va = 0, because a⊤ var[ZY (s)]a = 0 for almost all s ∈ [0, τ ].
This contradicts the assumption that V is positive definite.

Since we have showed that Γ is an invertible matrix, let us prove in the
following that its inverse is the variance of the asymptotic distribution of MPLE
β̂. For further inference, define the norm of a matrix D ∈ Rd×d as

∥D∥ = sup
|a|≤1

|Da|.

Let us remind that the observed information matrix redefined as a process is

In(β, t) = 1
n

n∑︂
i=1

∫︂ t

0

[︄
S(2)

n,i(β, s)
S

(0)
n,i (β, s)

−
[︃S

(1)
n,i (β, s)

S
(0)
n,i (β, s)

]︃⊗2
]︄
dNi(s).

This next Theorem gives us a consistent estimator of Γ.

Theorem 18. For any consistent estimator β∗ of β0,

In(β∗, τ) P−−−→
n→∞

Γ.

Proof. Denote

Di(β, t) =
S(2)

n,i(β, t)
S

(0)
n,i (β, t)

−
[︄

S
(1)
n,i (β, t)

S
(0)
n,i (β, t)

]︄⊗2

the integrands in the observed information matrix. From the assumption of
bounded vectors Zi, we know that

∥Di(β, s)∥ < ∞, s ∈ [0, τ ], i ∈ {1, . . . , n},

and since
∂

∂t
In(β, t) = 1

n

n∑︂
i=1

∫︂ t

0
Di(β, s)dNi(s),

then also ⃦⃦⃦⃦
∂

∂t
In(β, t)

⃦⃦⃦⃦
< ∞,

therefore In is Lipschitz continuous, which means that ∃K > 0 such that⃦⃦⃦⃦
In(β∗, τ) − In(β0, τ)

⃦⃦⃦⃦
≤ K|β∗ − β0|.

28



Because we assume that β∗ P−−−→
n→∞

β0, it is sufficient to show that

In(β0, τ) P−−−→
n→∞

Γ.

We know that∫︂ t

0
Di(β0, s)dNi(s) −

∫︂ t

0
Di(β0, s)dAi(s), i = 1, . . . , n,

are Ft-martingales from the Doob-Meyer decomposition theorem and because
Di(β0, s) are clearly bounded and Ft-predictable. By taking a form of an average
of these martingales

1
n

n∑︂
i=1

∫︂ t

0
Di(β0, s)dNi(s) − 1

n

n∑︂
i=1

∫︂ t

0
Di(β0, s)dAi(s),

we get that this difference converges in probability to its mean, which is zero
since it is a martingale. The first part of this difference is equal to I(β0, t), so it
is sufficient to show that

1
n

n∑︂
i=1

∫︂ t

0
Di(β0, s)dAi(s) P−−−→

n→∞
Γ.

This holds because of Lemmas 14 and 15. More specifically, we can write
1
n

n∑︂
i=1

∫︂ t

0
Di(β0, s)dAi(s)

= 1
n

n∑︂
i=1

∫︂ t

0

{︄
S(2)

n,i(β0, s)
S

(0)
n,i (β0, s)

−
[︄

S
(1)
n,i (β0, s)

S
(0)
n,i (β0, s)

]︄⊗2}︄
Yi(s)Bi(s)λ0(s)ds,

where Bi(s) = eβ⊤
0 Zi(s). Due to Lemma 15,

1
n

n∑︂
i=1

∫︂ t

0

S(2)
n,i(β0, s)

S
(0)
n,i (β0, s)

Yi(s)Bi(s)λ0(s)ds

P−−−→
n→∞

E
{︄∫︂ t

0
p(s)

∑︁
j∈U Z⊗2

j (s)eβ⊤Zj(s)∑︁
j∈U eβ⊤Zj(s)

1
m

∑︂
j∈U

Bj(s)λ0(s)ds|YU(s) = 1
}︄

,

(2.16)
and due to Lemma 14,

1
n

n∑︂
i=1

∫︂ t

0

[︄
S

(1)
n,i (β0, s)

S
(0)
n,i (β0, s)

]︄⊗2

Yi(s)Bi(s)λ0(s)ds

P−−−→
n→∞

E
{︄∫︂ t

0
p(s)

[︄∑︁
j∈U Zj(s)eβ⊤Zj(s)∑︁

j∈U eβ⊤Zj(s)

]︄⊗2 1
m

∑︂
j∈U

Bj(s)λ0(s)ds|YU(s) = 1
}︄

.

(2.17)
The difference of 2.16 and 2.17 at point t = τ gives us the matrix Γ (2.14) by
also taking the random variable ZY instead of Z and by realizing that

var[Z|ZY,U ] =
∑︂
j∈U

Z⊗2
Y,jpj −

[︂∑︂
j∈U

ZY,jpj

]︂⊗2

=
∑︁

j∈U Z⊗2
Y,je

β⊤ZY,j∑︁
j∈U eβ⊤ZY,j

−
[︄∑︁

j∈U ZY,je
β⊤ZY,j∑︁

j∈U eβ⊤ZY,j

]︄⊗2

,
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where the probabilities pj are defined in (2.13). This completes the proof.

Lemma 17 and Theorem 18 are the basics we need to prove the following
theorem about the asymptotic distribition of the MPLE.

Theorem 19 (The asymptotic normality of the MPLE). It holds for β̂, the
MPLE of β0, that √

n(β̂ − β0) D−−−→
n→∞

N (0, Γ−1).

Proof. First, let us write the Taylor expansion of Un(β̂, τ) around β0 as

Un(β̂, τ) = Un(β0, τ) + ∂Un(β∗, τ)
∂β⊤ (β̂ − β0)

Un(β̂, τ) − Un(β0, τ) = − nIn(β∗, τ)(β̂ − β0)
1√
n

Un(β0, τ) = In(β∗, τ)
√

n(β̂ − β0),

where β∗ is consistent for β0. We used the fact that Un(β̂, τ) = 0. It is sufficient
to show that

1√
n

Un(β0, τ) D−−−→
n→∞

N (0, Γ)

because we already know from Theorem 18 that In(β∗, τ) P−−−→
n→∞

Γ. Using the pos-
itive definiteness (and therefore the invertibility) of matrix Γ, proven in Lemma
17, we get the required statement. Define

Ei(t) =
S

(1)
n,i (β0, t)

S
(0)
n,i (β0, t)

=
∑︁n

j=1 ηij(t)Zj(t)eβ⊤
0 Zj(t)∑︁n

j=1 ηij(t)eβ⊤
0 Zj(t)

and
E(t) = S(1)

n (β0, t)
S

(0)
n (β0, t)

=
∑︁n

i=1 Yi(t)Zi(t)eβ⊤
0 Zi(t)∑︁n

i=1 Yi(t)eβ⊤
0 Zi(t)

.

Let us write Un(β0, t) in terms of Ei and E.

Un(β0, t) =
n∑︂

i=1

∫︂ t

0
[Zi(s) − Ei(s)]dNi(s)

=
n∑︂

i=1

{︄∫︂ t

0
[Zi(s) − E(s)]dNi(s) +

∫︂ t

0
[E(s) − Ei(s)]dNi(s)

}︄

=
n∑︂

i=1

{︄∫︂ t

0
[Zi(s) − E(s)]dMi(s) +

∫︂ t

0
[Zi(s) − E(s)]dAi(s)

+
∫︂ t

0
[E(s) − Ei(s)]dMi(s) +

∫︂ t

0
[E(s) − Ei(s)]dAi(s)

}︄
.

We used that Mi(t) = Ni(t) − Ai(t) due to the Doob-Meyer decomposition (The-
orem 5). We know that ∑︁n

i=1
∫︁ t

0 [Zi(s) − E(s)]dAi(s) = 0, because E can be
interpreted as the expectation of the covariate vector Zi(t) of the i-th individual.
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By merging together the integrals which are with respect to the martingale and
by multiplying the equality by 1√

n
, we get a sum of two processes

1√
n

Un(β0, t)

= 1√
n

n∑︂
i=1

∫︂ t

0
[Zi(s) − Ei(s)]dMi(s) + 1√

n

n∑︂
i=1

∫︂ t

0
[E(s) − Ei(s)]dAi(s)

=C(n)(t) + D(n)(t). (2.18)

(A) First let us focus on the process C(n)(t) and its convergence in probability. It
is easy to realize that this process is an Ft-martingale, because Zi are predictable
processes by the assumption A.3 and Ei are also predictable by their definition.
By Theorem 4, the integral is a martingale and due to Theorem 2, the process
C(n)(t) is a martingale. This means that the mean of C(n)(t) is zero. To determine
its predictable variation process, it is important to realize that ⟨Mi, Mj⟩(t) = 0,
because Mi(t), Mj(t), i ̸= j, are orthogonal Ft-martingales. Therefore, we can
write

⟨C(n)⟩(t) = 1
n

n∑︂
i=1

∫︂ t

0
[Zi(s) − Ei(s)]⊗2d⟨Mi, Mi⟩(s)

=
∫︂ t

0

1
n

n∑︂
i=1

[Zi(s) − Ei(s)]⊗2dAi(s)

=
∫︂ t

0

1
n

n∑︂
i=1

[Zi(s) − Ei(s)]⊗2Yi(s)eβ⊤
0 Zi(s)λ0(s)ds,

where the second equality stems from Theorem 7. We can write further that

[Zi(s) − Ei(s)]⊗2 = Z⊗2
i (s) − Zi(s)E⊤

i (s) − Ei(s)Z⊤
i (s) + E⊗2

i (s).

Now, let us determine the convergence of all the terms separately and look at
them without the baseline hazard function λ0(s) at the moment.

• The first term is 1
n

∑︁n
i=1 Z⊗2

i (s)Yi(s)eβ⊤
0 Zi(s). Let us remind that p(s) =

P[Y (s) = 1] and pi(s) = e
β⊤ZY,i(s)∑︁

j∈U
e

β⊤ZY,j (s) as it was defined in the previous

text. We can use the law of large numbers and write

1
n

n∑︂
i=1

Z⊗2
i (s)Yi(s)eβ⊤

0 Zi(s) P−−−→
n→∞

p(s) E
{︂
Z⊗2(s)eβ⊤

0 Z(s)|Y (s) = 1
}︂

= p(s) E
{︂
Z⊗2

Y (s)eβ⊤
0 ZY (s)

}︂
= p(s) E

{︃[︂∑︂
i∈U

Z⊗2
Y,i (s)pi(s)

]︂
·
[︂ 1
m

∑︂
j∈U

eβ⊤
0 ZY,j(s)

]︂}︃
.

Here we used the fact that the mean of terms containing ZY may be rewrit-
ten as a mean of the average of the terms containing ZY,i, i ∈ U .

• The second and the third term may be both written in a very similar way
as they only differ in the order. The second term

1
n

n∑︂
i=1

Zi(s)E⊤
i (s)Yi(s)eβ⊤

0 Zi(s)
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converges due to Lemma 13 with Bi(s) = Zi(s)eβ⊤
0 Zi(s) to

p(s) E
{︄

1
m

∑︂
j∈U

Bj(s)w⊤(U)|YU(s) = 1
}︄

and the third term
1
n

n∑︂
i=1

Ei(s)Z⊤
i (s)Yi(s)eβ⊤

0 Zi(s)

converges from the same reason with Bi(s) = Z⊤
i (s)eβ⊤

0 Zi(s) to

p(s) E
{︄

w(U) 1
m

∑︂
j∈U

Bj(s)|YU(s) = 1
}︄

.

As the next adjustments would be the same for both cases, let us show
them only for the third term:

p(s) E
{︄

w(U) 1
m

∑︂
j∈U

Bj(s)|YU(s) = 1
}︄

= p(s) E
{︄∑︁

j∈U ZY,j(s)eβ⊤
0 ZY,j(s)∑︁

j∈U eβ⊤
0 ZY,j(s)

1
m

∑︂
j∈U

Z⊤
Y,j(s)eβ⊤

0 ZY,j(s)
}︄

= p(s) E
{︄[︃∑︁

j∈U ZY,j(s)eβ⊤
0 ZY,j(s)∑︁

i∈U eβ⊤
0 ZY,i(s)

]︃⊗2 1
m

∑︂
j∈U

eβ⊤
0 ZY,j(s)

}︄

= p(s) E
{︄[︃∑︂

j∈U

ZY,j(s)pj(s)
]︃⊗2 1

m

∑︂
j∈U

eβ⊤
0 ZY,j(s)

}︄
.

• In the fourth term we use Lemma 14 with Bi(s) = eβ⊤
0 Zi(s):

1
n

n∑︂
i=1

E⊗2
i (s)Yi(s)eβ⊤

0 Zi(s)

P−−−→
n→∞

p(s) E
{︄[︃∑︁

j∈U Zj(s)eβ⊤
0 Zj(s)∑︁

j∈U eβ⊤
0 Zj(s)

]︃⊗2 1
m

∑︂
j∈U

eβ⊤
0 Zj(s)|YU(s) = 1

}︄

= p(s) E
{︄[︃∑︁

j∈U ZY,j(s)eβ⊤
0 ZY,j(s)∑︁

j∈U eβ⊤
0 ZY,j(s)

]︃⊗2 1
m

∑︂
j∈U

eβ⊤
0 ZY,j(s)

}︄

= p(s) E
{︄[︃∑︂

j∈U

ZY,j(s)pj(s)
]︃⊗2 1

m

∑︂
j∈U

eβ⊤
0 ZY,j(s)

}︄
,

which is the same limit as it was for the second and third term.
Now by adding those terms together, we end up with

⟨C(n)⟩(t) P−−−→
n→∞∫︂ t

0
p(s) E

{︄[︃∑︂
i∈U

Z⊗2
Y,i (s)pi(s) −

[︂∑︂
j∈U

ZY,j(s)pj(s)
]︂⊗2

]︃ 1
m

∑︂
j∈U

eβ⊤
0 ZY,j(s)

}︄
λ0(s)ds

=
∫︂ t

0
p(s) E

{︄
var[Z(s)|ZY,U ] 1

m

∑︂
j∈U

eβ⊤
0 ZY,j(s)

}︄
λ0(s)ds

= Γ(β0, t). (2.19)
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Now we would like to use Theorem 11 to determine the asymptotic distribution
of C(n). For any vector ai, denote aji its j-th component. Define

H
(n)
ji (s) = 1√

n
[Zji(s) − Eji(s)],

which is clearly a bounded Ft-predictable process. Then

C
(n)
j (t) =

∫︂ t

0

n∑︂
i=1

H
(n)
ji (s)dM

(n)
i (s),

⟨C(n)
j , C

(n)
k ⟩(t) =

∫︂ t

0

n∑︂
i=1

H
(n)
ji (s)H(n)

ki (s)dA(n)
i (s)

and for ε > 0,

⟨C(n)
j,ε , C

(n)
k,ε ⟩(t) =

∫︂ t

0

n∑︂
i=1

H
(n)
ji (s)H(n)

ki (s)1{|H(n)
ji (s)| > ε}1{|H(n)

ki (s)| > ε}dA(n)
i (s).

From (2.19), we may say that

⟨C(n)
j , C

(n)
k ⟩(t) P−−−→

n→∞

∫︂ t

0
cjk(s)ds, j, k ∈ {1, . . . , d},

where cjk(s) are some continuous functions. Therefore the first assumption of
Theorem 11 has been verified. The second assumption

⟨C(n)
j,ε , C

(n)
j,ε ⟩(t) P−−−→

n→∞
0

is easily verified since Zi are bounded Ft-predictable processes (A.3) and they
are independent (A.4), therefore for any j ∈ {1, . . . , d}, H

(n)
ji are bounded, Ft-

predictable and independent for different i = 1, . . . , n.
Taking the value t = τ , we get that

C(n)(τ) D−−−→
n→∞

N (0, Γ).

(B) We have shown the convergence in distribution of the first part of (2.18). To
complete the proof, we need to show that D(n)(τ) P−−−→

n→∞
0, where

D(n)(t) = 1√
n

n∑︂
i=1

∫︂ t

0
[E(s) − Ei(s)]dAi(s)

is the second part of (2.18). For an easier notation, we write

D(n)(t) = 1√
n

n∑︂
i=1

∫︂ t

0
di(s)ds,

where di(s) = [E(s) − Ei(s)]Yi(s)eβ⊤
0 Zi(s)λ0(s). Let us consider a σ-algebra

G = σ{Zi(s), Yi(s), Ni(s), s ∈ [0, τ ], i = 1, . . . , n},

which contains all information from the study except that of sampling. We know
that for i ̸= j, Ei and Ej are conditionally independent given G because the only
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random parts of Ei and Ej are those of sampling if conditioned on G. Then also
di and dj are conditionally independent given G and so

E [d⊤
i (s)dj(t)|G] = E [d⊤

i (s)|G] E [dj(t)|G], i ̸= j.

Using Lemma 12 and its Corollary, we may determine ∑︁n
i=1 E [di(s)|G]. Since we

can generalize the lemma in a way where w(R̃i) may be replaced by w(R̃), it
holds that according to the Corollary of Lemma 12,

E
[︃ 1
n

n∑︂
i=1

E(s)Yi(s)eβ⊤
0 Zi(s)λ0(s)|G

]︃
= 1

n

n∑︂
i=1

Yi(s)Zi(s)Bi(s)λ0(s)

and

E
[︃ 1
n

n∑︂
i=1

Ei(s)Yi(s)eβ⊤
0 Zi(s)λ0(s)|G

]︃
= 1

n

n∑︂
i=1

Yi(s)Zi(s)Bi(s)λ0(s),

and so their difference is equal to 0. Hence,
n∑︂

i=1
E [di(s)|G] = 0.

Then

E [∥D(n)(τ)∥2|G]

= 1
n

n∑︂
i=1

n∑︂
j=1

∫︂ τ

0

∫︂ τ

0
E [d⊤

i (s)dj(t)|G]ds dt

= 1
n

∫︂ τ

0

∫︂ τ

0

{︂ n∑︂
i=1

E [d⊤
i (s)di(t)|G] +

n∑︂
i=1

n∑︂
j=1

E [d⊤
i (s)|G] E [dj(t)|G]

−
n∑︂

i=1
E [d⊤

i (s)|G] E [di(t)|G]
}︂
ds dt

= 1
n

∫︂ τ

0

∫︂ τ

0

{︂ n∑︂
i=1

E [d⊤
i (s)di(t)|G] +

n∑︂
i=1

E [d⊤
i (s)|G]

n∑︂
j=1

E [dj(t)|G]

−
n∑︂

i=1
E [d⊤

i (s)|G] E [di(t)|G]
}︂
ds dt

= 1
n

∫︂ τ

0

∫︂ τ

0

{︂ n∑︂
i=1

E [d⊤
i (s)di(t)|G] + 0⊤0 −

n∑︂
i=1

E [d⊤
i (s)|G] E [di(t)|G]

}︂
ds dt

= 1
n

n∑︂
i=1

∫︂ τ

0

∫︂ τ

0

{︂
E [d⊤

i (s)di(t)|G] − E [d⊤
i (s)|G] E [di(t)|G]

}︂
ds dt. (2.20)

Now, the next step would be to estimate (2.20) from above by something
converging to zero in probability. That would ensure that

1√
n

Un(β0, τ) = C(n)(τ) + D(n)(τ) D−−−→
n→∞

N (0, Γ)

and the proof would be completed. This part of the proof will not be shown in this
thesis due to its technical difficulty. It is conducted by Goldstein and Langholz
[1992] using the large deviation argument formulated in Billingsley [1986].
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In this chapter, we proved that the MPLE β̂ in the nested case-control de-
sign has the same asymptotic properties as the estimator in the Cox PH model.
Therefore, the use of the nested case-control design is fully justified and is a good
alternative to the Cox PH model given its financial advantages. The algorithms
of estimating the regression parameters are the same for both approaches since
their likelihoods differ only in the indicators Yi and ηij.
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3. Other similar methods and
their properties
In this chapter, we will present some alternatives and extensions to the nested
case-control design described in the last chapter.

3.1 Counter-matching: a stratified nested case-
control design

In Chapter 2, we described the simple nested case-control design, which is very
popular to use when conducting studies about rare diseases. We collect detailed
covariate information only for cases and some of the controls matched to them
due to their at risk status at the moments of observed failures. Now suppose
that there is an information known about all of the individuals in the study. For
example, the exposure information could have been collected for everyone and
the aim of the study is to assess the role of potential confounders or to study
interactions of the exposure with other risk factors. These potential confounders
or risk factors will be then collected in more detail for a small sample of subjects.
Another example may be when the exposure information could only be gathered
very crudely for everyone and the researchers would like to have more exact
information about the exposure, which will be again collected for a small sample.

In this chapter, based on Borgan and Langholz [1995], we present the counter-
matching method, which is a stratified version of the simple nested case-control
design. We assume the same variables, processes and sets as defined in Chapter
2.1 and we assume Cox’s proportional hazards model, so the conditional hazard
function for the i-th subject equals

λi(t|Zi) = λ0(t)eβ⊤
0 Zi(t),

where λ0 is a baseline hazard function. Under the independent censoring condi-
tion (Definition 3), the intensity of the counting process Ni is

αi(t) ≡ αi(t|Zi) = Yi(t)λi(t|Zi). (3.1)

Let us present the procedure of creating the counter-matching design. For
every k ≥ 1, we have a risk set R(X ′

k). For each j such that X ′
j is a failure time,

we classify each subject from the risk set R(X ′
j−1) into one of L strata, where

the classification cannot be based on case-control status. To classify, we use the
additional information which is known about all of the individuals. Since this
information may be time-dependent, the strata of one individual may differ over
time. Suppose now that there are nl(X ′

j−1) subjects in the l-th stratum. For
l = 1, . . . , L, we fix integers ml > 0 and for every l we select without replacement
ml controls from the l-th stratum except for the stratum where the case at time X ′

j

was classified. We will only select ml − 1 controls from this stratum and the case
is selected automatically. Therefore, there are

(︂
nl(X′

j−1)
ml

)︂
possible combinations of

selected controls for each stratum l, except for the case’s stratum, where there
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Figure 3.1: Denotion of risk sets and the sampled risk set when sampling the counter-matching
data.

are
(︂

nl(X′
j−1)−1

ml−1

)︂
such combinations. The entire set of a case ij at time X ′

j and∑︁L
l=1 ml − 1 selected controls is called the sampled risk set at time X ′

j, denoted
as R̃j,ij

≡ R̃j. The collection of all the cases and their selected controls creates
the counter-matching data. For an easier understanding, the sampling process is
demonstrated in Figure 3.1.

The name ”counter-matching” indicates the opposite of matching. If we were
about to perform the matched case-control study, we would draw controls from
the same stratum as the case and therefore compare cases and controls within
that stratum. Since we would like to control the effect of potential confounders,
we would choose them to be the stratifying variables. Clearly, the effects of those
stratifying variables could no longer be estimated. On the other hand, when
performing the counter-matching design, the strata are determined by variables
of interest or by proxies for such variables. By sampling the controls from all the
strata, we maximize the variation of exposure in the analysis. It is also possible
to estimate the effect of the stratifying variables.

Let us present an example of counter-matching used in practice. This example
is similar to one introduced by Langholz and Clayton [1994]. Assume that we
want to assess the risk of breast cancer from using different types of hormonal
contraceptives. The women might be at first asked by a mailed questionnaire,
what type of contraceptive they were using (pill, patch, injection, intrauterine
device, vaginal ring,...). This information is likely to be accurate, however, the
women might not know the exact name of the brand and therefore the composition
of the contraceptive they were using. So at first, we stratify all the women
according to the type of the contraceptive and we sample some of them from
each stratum and personally ask them to give us more information about the
contraceptive, from which we are able to write down the exact composition and
determine what substances, hormones or what combinations of dosages increase
the risk of breast cancer.
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We will now derive the partial likelihood of counter-matching. Define Gi(t) ∈
{1, . . . , L} a process which denotes the sampling stratum for the i-th subject at
time t, i.e. Gi(X ′

j) denotes the stratum of the i-th subject when he was classified
as a part of the risk set R(X ′

j−1). For l ∈ 1, . . . , L, define a risk set

Rl(t) = {i : Yi(t+) = 1, Gi(t) = l} ⊂ R(t)

and nl(t) = |Rl(t)|. These are the risk sets for different strata, hence, they are
disjunct and clearly

L⋃︂
l=1

Rl(t) = R(t).

For i ∈ {1, . . . , n} define

Pi(t) = {r ⊂ R(t) : i ∈ r, |r ∩ Rl(t)| = ml, l = 1, . . . , L}

a set of all possible sampled risk sets which include the i-th individual and fulfill
the process of sampling the controls, i.e. from each stratum there are ml subjects
in the final sampled risk set. Let us determine how many of such sets there are
in Pi(t). Since the i-th individual has to be included in all the sampled risk sets
in Pi(t), we can write

|Pi(t)| =
(︄

n1(t)
m1

)︄
. . .

(︄
nGi(t)(t) − 1
mGi(t) − 1

)︄
. . .

(︄
nL(t)
mL

)︄

= mGi(t)

nGi(t)(t)

L∏︂
l=1

(︄
nl(t)
ml

)︄
=wi(t)−1 · C(t),

where wi(t) = nGi(t)(t)
mGi(t)

and C(t) = ∏︁L
l=1

(︂
nl(t)
ml

)︂
.

Let Ht be a filtration on a probability space (Ω, F , P) which includes the
same information as Ft and is augmented by the sampling information. For each
r ⊂ {1, . . . , n}, |r| = ∑︁L

l=1 ml, define the counting process N(i,r)(t) counting the
number of times in [0, t] when the i-th individual fails and r is chosen to be the
sampled risk set. Then we may write

P[∆N(i,r)(t) = 1|Ht] = P[∆Ni(t) = 1, R̃(t) = r|Ht]
= P[∆Ni(t) = 1|Ht] × P[R̃(t) = r|∆Ni(t) = 1, Ht]. (3.2)

We assume that the additional sampling information at any time t does not
change the intensities of failures at this time. Therefore,

P[∆Ni(t) = 1|Ht] = P[∆Ni(t) = 1|Ft].

Also, it is simple to derive the second probability in (3.2) since it equals

1
|Pi(t)|

1{r ∈ Pi(t)} = wi(t)C(t)−11{r ∈ Pi(t)}. (3.3)
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From the equations (3.1), (3.2) and (3.3), we get that the Ht-intensity process of
the counting process N(i,r) is

α(i,r)(t) ≡α(i,r)(t|Z)
=αi(t) P[R̃(t) = r|∆Ni(t) = 1, Ht]
=Yi(t)λ0(t)eβ⊤

0 Zi(t)wi(t)C(t)−11{r ∈ Pi(t)}.

Now, let us define αr(t) = ∑︁
i∈r α(i,r)(t), the intensity process associated with the

counting process counting the number of times the sampled risk set is r. Then
α(i,r)(t) = αr(t)πt(i|r), where πt(i|r) is a´the conditional probability of the i-th
individual failing at time t given Ht and given that there is a failed individual
among those in r at time t. Then

πt(i|r) =α(i,r)(t)
αr(t) = Yi(t)wi(t)eβ⊤

0 Zi(t)1{r ∈ Pi(t)}∑︁
j∈r Yj(t)wj(t)eβ⊤

0 Zj(t)1{r ∈ Pj(t)}
.

Since the partial likelihood function is a product over all cases in the study of
fractions, where the numerator is the hazard of the case and the denominator is
a sum of hazards of the case and its sampled controls, we get that the partial
likelihood for counter-matching LC(β) is a product of the probabilities πt(i|r),
where the indicators Yi and 1{r ∈ Pi(t)} are no longer relevant, since the product
is taken over the cases and the sum in the denominator can be replaced by a sum
over R̃k. Therefore

LC(β) =
∏︂

k:δk=1

{︃
wik

(X ′
k)eβ⊤Zik

(X′
k)∑︁

j∈R̃k
wj(X ′

k)eβ⊤Zj(X′
k

)

}︃

=
n∏︂

i=1

∏︂
s∈[0,τ ]

{︄
wi(s)eβ⊤Zi(s)∑︁n

j=1 ηij(s)wj(s)eβ⊤Zj(s)

}︄∆Ni(s)

, (3.4)

where ηij are sampling indicators defined in (2.3) as

ηij(t) =
∑︂
k≥1
1{j ∈ R̃k,i}1{X ′

k−1 < t ≤ X ′
k}, t ∈ [0, τ ], (3.5)

where ηij(0) = 0, X ′
k are ordered observed censored failure times and R̃k,i is

a sampled risk set at time X ′
k to which the i-th individual belongs.

The maximum partial likelihood estimator would be estimated in a similar
way to the one introduced in Chapter 1.1 using the Newton Raphson algorithm
described in (1.2). It can be proven by standard counting process and martingale
methods that the partial likelihood (3.4) has basic likelihood properties. Details
of this can be seen in Andersen and Gill [1982]. The maximum partial likelihood
estimator β̂ has asymptotically multivariate normal distribution with mean β0
and a covariate matrix, which may be estimated by the inverse of the observed
information matrix. The proof of this would be similar to the one for the nested
case-control design in Goldstein and Langholz [1992] in chapter 4 and 5.
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3.2 Pseudolikelihood approach under a nested
case-control design

Another option of dealing with nested case-control data is a pseudolikelihood
approach introduced by Samuelsen [1997]. According to his article, it appears
that we may improve the efficiency of the estimator of the regression paratemer
by applying the pseudolikelihood method on the dataset. The idea is that we
may obtain the conditional probability that an individual in the study will ever
be chosen as a control in the nested case-control design. This probability is called
the inclusion probability and it is conditioned on all the risk sets and all the cases
at the failure times. Then, we weigh the individual likelihood contributions with
the inclusion probabilities.

The main idea of this is the improvement of efficient data collection. Suppose
that the covariates are constants or known functions of time. Then it would be
efficient to use the data that we have already collected more than just once. For
rare diseases, we select every observed case to be a part of the study, hence their
inclusion probability is equal to one. Therefore, we measure all of the covariates
for each case, and so it is efficient to use the case as a control for all the cases
that were observed before its own failure time. The other controls would have
different inclusion probabilities depending on their censoring times. The greater
the censoring time, the higher probability of ever being selected as a control.
Therefore, it is more efficient to select controls with higher inclusion probabilities
and use them as controls more times. The main disadvantage of this approach is
the fact that we may only make use of this when the complete covariate histories
are known for all the cases and controls, which is not always the case when
conducting medical studies.

Let us consider the same data, selection of controls and notation as described
in Chapter 2. Assume Cox’s proportional hazards model with the conditional
hazards function presented in Definition 4.

The probability of ever being included in the nested case-control study as
a case or a control is

pj =
⎧⎨⎩1, if δj = 1,

p0j, if δj = 0,
(3.6)

where p0j is the inclusion probability. Since p0j is the probability of a subject
ever being chosen as a control, it may be derived as one minus the probability
of never being chosen. The probability of never being chosen is a product over
all cases k for which the j-th subject was at risk at their failure time, i.e. for
which X ′

k < Xj, of probabilities that the subject was not chosen as a control for
them. This probability that the j-th subject was not selected to be a control for
the case ik equals one minus the probability that it was selected, which equals

m−1
n(R(X′

k
)) , since we choose m − 1 controls for each case from n(R(X ′

k)) potential
subjects. Hence,

p0j = 1 −
∏︂
k

{︂
1 − m − 1

n(R(X ′
k))
}︂
, (3.7)

where the product is taken over all k such that ik is a case at time X ′
k and

X ′
k < Xj. Here, X ′

k are ordered observed censored failure times. Also, denote
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V0j an indicator that the j-th individual is ever selected as a control and define
Vj = max(δj, V0j) an indicator that the j-th individual is ever a case or a selected
control in the study.

According to Samuelsen [1997] and his approach, we suggest fitting model
which maximizes the pseudolikelihood. This pseudolikelihood is quite similar
to the partial likelihood of the nested case-control design in 2.4, however, the
individual contributions are weighed by the inverse of their inclusion probabilities
and the denominator of the product is the sum over all selected controls and cases
in the study. Define Ri a set of all individuals who were at risk at the event time
of the i-th individual. Then,

LP (β) =
n∏︂

i=1

∏︂
s∈[0,τ ]

{︄
eβ⊤Zi(s)∑︁

j∈Ri

Vj

pj
eβ⊤Zj(s)

}︄∆Ni(s)

=
n∏︂

i=1

∏︂
s∈[0,τ ]

{︄
eβ⊤Zi(s)∑︁n

j=1 Yj(s)Vj

pj
eβ⊤Zj(s)

}︄∆Ni(s)

. (3.8)

The inverse of the probability of being included in the study does not need to
be written in the numerator of the product, since there is always a case in the
numerator and its probability of being included and indicator Vi are both equal
to one. The sum over Ri in the denominator was replaced with the sum over all
j ∈ {1, . . . , n} and with the indicator Yj(s), which assures that the sum is taken
over the individuals who were at risk at the failure time of the i-th subject.

The maximum pseudolikelihood estimator would be estimated in a similar
way to the one introduced in Chapter 1.1 using the Newton Raphson algorithm
described in (1.2). Under certain assumptions, Samuelsen [1997] proved that the
maximum pseudolikelihood estimator is consistent and asymptotically normal.

Let us compare the likelihoods LCox in (1.1) of the Cox PH model, L in (2.4)
of the nested case-control design, LC in (3.4) of the counter-matching design and
the pseudolikelihood LP in (3.8):

LCox(β) =
n∏︂

i=1

∏︂
s∈[0,τ ]

⎧⎨⎩ eβ⊤Zi(s)∑︁n
j=1 Yj(s)eβ⊤Zj(s)

⎫⎬⎭
∆Ni(s)

L(β) =
n∏︂

i=1

∏︂
s∈[0,τ ]

⎧⎨⎩ eβ⊤Zi(s)∑︁n
j=1 ηij(s)eβ⊤Zj(s)

⎫⎬⎭
∆Ni(s)

LC(β) =
n∏︂

i=1

∏︂
s∈[0,τ ]

{︄
wi(s)eβ⊤Zi(s)∑︁n

j=1 ηij(s)wj(s)eβ⊤Zj(s)

}︄∆Ni(s)

LP (β) =
n∏︂

i=1

∏︂
s∈[0,τ ]

{︄
eβ⊤Zi(s)∑︁n

j=1 Yj(s)Vj

pj
eβ⊤Zj(s)

}︄∆Ni(s)

.

The difference between LCox and L is in the indicators Yj and ηij, where in
LCox the denominator is taken over all subjects at risk at the time of observed
failure, while the denominator in L is only taken over m − 1 sampled controls
and the observed case. The difference between L and LC is in the weights wj(s),
which compensate for the sampling. The likelihood LP differs from LC also by the
weights, which are now the inverse of the inclusion probabilites, and the indicators
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ηij(s) are replaced by Yj(s)Vj. The question whether or not these alternatives to
the nested case-control design assure more accuracy in estimating the regression
parameters will be the subject of interest for the simulation study in the next
chapter.
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4. Simulation study
In this last chapter, we conduct a simulation study which allows us to compare
the quality of estimation of the regression paratemers by the Cox proportional
hazards model described in Chapter 1.1 and the three study designs described in
Chapters 2, 3.1 and 3.2.

Let us remind that the model for all study designs is the same Cox proportional
hazards model

λi(t|Zi) = λ0(t)eβ⊤
0 Zi(t),

where λi is the conditional hazard of the i-th individual conditioned on the vector
of regressors Zi, λ0 is the baseline hazard function and β0 is a vector of regression
parameters. We may consider time-varying regressors in the model, however,
for the purpose of the simulation study, which is to compare different study
designs, we will assume that all of the regressors are time-invariant, since the
pseudolikelihood approach requires that.

4.1 Generating data for Cox PH model
First, we need to simulate time-to-event data suitable for the analysis by the
Cox proportional hazards model. Later, from these datasets, we generate smaller
datasets suitable for the other study designs.

4.1.1 Regressors
We will simulate a study investigating the effect of smoking cigarettes on the
risk of getting lung cancer. Imagine that this study is conducted with men and
women who are 60 to 70 years old at the beginning of the study which lasted 10
years and consider the following variables:

• age . . . the age at the beginning of the study,

• abstinence . . . the length in years of not smoking at the beginning of the
study,

– non-smokers . . . abstinence is equal to zero,
– smokers . . . abstinence is equal to zero,
– ex-smokers . . . abstinence equals the difference of subject’s age and the

age when the subject stopped smoking,

• cumcig . . . the cumulative number of smoked cigarettes in hundreds of thou-
sands at the beginning of the study,

• education . . . the level of education with two categories:

– 0 . . . middle school or less completed,
– 1 . . . at least high school completed.
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The variable education does not affect the risk of getting lung cancer, however, it
is correlated with smoking. We assume that individuals with lower education tend
to smoke more (for longer periods of time) than individuals with higher education.
We will use this variable to determine the strata for the counter-matching design,
as its value is very easy to obtain and we may know this information about every
individual in the study.

The other three presented variables will be the regressors of the model:

Z = (age, abstinence, cumcig)⊤.

We assume that by increasing variables age and cumcig, the risk of getting lung
cancer also increases, while by increasing abstinence this risk decreases. There-
fore, we choose the regression parameter to be β0 = (0.1, −0.1, 1.0)⊤, and then
we get that

eβ0 = (1.105, 0.905, 2.718)⊤.

This means that, for example, people who are 70 years old have 2.72 times higher
risk of getting lung cancer than 60 year old people (e10·β01 ≈ 2.718), a person
who stopped smoking 15 years ago has 77.7% lower risk than a person who is still
smoking (e15·β02 ≈ 0.223) and a person who smoked 1 package of cigarettes (20
cigarettes) per day for 40 years, i.e. has already smoked 292 000 cigarettes, has
18.5 times higher risk of lung cancer than a non-smoker (e2.92·β03 ≈ 18.541).

To simulate these regressors, we need to create the history of smoking for all
the individuals. At first, we choose piecewise constant hazard functions describing
the risk of starting smoking at a certain age for men and women separately.
We assume that most people start smoking around their adolescence and early
twenties, after which the risk of starting smoking decreases. Also, women tend to
start smoking a few years later than men. In the same way, we create piecewise
constant hazard functions for the risk of ending smoking. Here, we assume that
women tend to stop when they become pregnant, while men tend to stop much
later in life.

In addition, we need to include the effect of the variable education on the risk
of starting smoking. We assume that education has the alternative distribution
with parameter p = 1

2 and that those with a lower level of education have a higher
risk of starting smoking and a lower risk of ending smoking. Hence, we choose
the piecewise constant hazard functions for the risk of beginning smoking for men
and women with a lower level of education, which may be seen in Figure 4.1 as
the two plots on the left, and we assume that the hazard functions for the risk of
beginning smoking for subjects with a higher level of education are 30% of those
with lower education. The same principle is applied to the risk of ending smoking,
only this risk is much smaller for individuals with lower education. Therefore, the
piecewise constant hazard functions of the risk of ending smoking for the subjects
with a lower level of education, which may be seen as the two plots on the right
in Figure 4.1, are assumed to be three times smaller than the hazard functions
for subjects with a higher level of education.

We now generate the age of starting (age begin) and ending (age end) smoking
from the piecewise constant hazard functions. To ensure that age begin is always
smaller than age end, we generate age end by considering the hazard function of
ending smoking to be zero until age begin. The hazard function is non-zero from
this point and has the same chosen values as in the plots on the right in Figure 4.1
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Figure 4.1: Piecewise constant hazard functions for beginning and ending smoking for men
and women with lower level of education.

Figure 4.2: The distributions of the average of smoked cigarettes per day per men and women,
where pM , pW are the shape parameters and λM , λW are the scale parameters.
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for lower educated, resp. three times the values for higher educated individuals.
Since the hazard functions of the beginning of smoking are set to zero after the
age of 45, those who have not started smoking until then are pronounced lifetime
non-smokers.

Now, we generate the variable age from the uniform distribution Unif(60, 70)
and create the variable abstinence. This variable equals zero for non-smokers
and those who still smoke at the beginning of the study, otherwise, it equals
the difference of age and age end. Next, we create a categorical variable smoker,
which equals 0 if the individual never started smoking, it equals 1 if the individual
is still a smoker at the age he entered the study, and it equals 2 if the individual
stopped smoking before entering the study. With the chosen piecewise constant
hazard functions, we get approximately 32% of smokers, 34% of ex-smokers and
34% of lifetime non-smokers.

The last variable to simulate is cumcig. At first, we generate a variable cig,
which is an average of smoked cigarettes per day during the whole person’s life-
time. We assume that it follows the Weibull distribution with parameters different
according to sex since men tend to smoke on average slightly more cigarettes per
day than women. These two distributions are drawn in Figures 4.2. By knowing
these averages, we generate time-varying variable cigtime, where for every year
of a smoking person we generate this variable from Unif(a · cig, b · cig), where we
choose a = 0.5 and b = 1.5. Therefore, we get the averages of smoked cigarettes
per day which may differ every year while still being around the total average
amount cig. By having this information, we obtain the time-varying variable
cumcigtime as a cumulative sum of smoked cigarettes, i.e.

cumcigtime[t] =0, t = 0, 1, . . . , agebegin − 1,

cumcigtime[t] =
t∑︂

i=age begin

365 · cigtime[i], t = agebegin, . . . , ageend − 1,

cumcigtime[t] =cumcig[ageend], t = ageend, . . . age.

Because we want to compare the four designs described in all of the previous
chapters, we need to have time-invariant regressors, because the pseudolikelihood
analysis demands that. Therefore, the last regressor of the model will be cumcig,
which is equal to cumcigtime[age], where age is the age of the individual at the
beginning of the study.

4.1.2 Failure and censoring times
Let us present a method of generating the failure times. We assume that the
failure times Ti have piecewise exponential distribution with different rates on
each one year time interval [aj, bj) = [0, 1), [1, 2), [2, 3), . . . , [9, 10). Therefore, for
each i ∈ {1, . . . , n} and j ∈ {1, . . . , 10}, we generate

Tij ∼ Exp(λij) + aj,

where λij = λ0,j · eβ⊤
0 Zi . Here, λ0,j is the baseline hazard on the j-th interval and

we choose it to increase over time as λ0,j = 0.5j · q, where q is a constant. The
selection of q will be discussed later in this subchapter. Then, Ti = minj Tij such

46



Figure 4.3: Hazard and density function of W (3, 10) (Weibull distribution with shape pa-
rameter p = 3 and scale parameter λ = 10) on time interval [0, 10] along with the histogram of
generated censoring times Ci = min(Ci,0, 10), where Ci,0 ∼ W (3, 10).

that Tij ∈ [aj, bj). If none of the generated Tij falls into its correct interval, then
we set Ti = 11.

Now, we generate the censoring times Ci, which we assume to have Weibull
distribution with parameters chosen so that its hazard function is mildly increas-
ing (p > 1) and the density function is such that the probability of being censored
is the highest before the end of the study. Hence, we generate variable

Ci,0 ∼ W (3, 10),

and denote Ci = min(Ci,0, 10), since 10 is the ending time of the study. The
hazard function and density function of W (3, 10) on time interval [0, 10] may be
seen in Figure 4.3, as well as the histogram of generated censoring times Ci. This
choice of parameters assures that there will never be a situation when we run out
of controls selected for cases when conducting the nested-case control study. It
may also reduce the chance of not having enough controls in each stratum for
a late case when conducting the counter-matching design.

Lastly, let us discuss the choices of parameter q. This parameter affects the 10-
year prevalence of the disease of interest. In Table 4.1, there are different choices
of parameter q along with the prevalences, which follow from it. These prevalences
were calculated from 1 000 simulated datasets. For example, for q = 10−6, the
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expected prevalence of lung cancer in the 10-year study is around 5.8% with the
standard deviation of 0.74%.

q 10-year prevalence (sd) [%]
10−7 0.9 (0.28)

2 · 10−7 1.6 (0.38)
5 · 10−7 3.4 (0.54)

10−6 5.8 (0.74)

Table 4.1: 10-year prevalence of disease by the choice of the parameter q as a part of the
baseline hazard.

4.1.3 Visualization of simulated data
The visualization of one simulated dataset for the Cox PH model is demonstrated
in Figure 4.4. The simulated data was performed for n = 1000 individuals with
parameter q = 10−6, i.e. the mean prevalence of 5.8%.

The top left plot is a boxplot of the association of age and lung cancer. It may
be surprising that, due to this plot, there seems to be no such association between
age and lung cancer, however, it is because the effect of age is way smaller than
the effect of the other two regressors and in many cases the Cox PH model might
result in a high p-value of this regressor.

On the other hand, there is a large association between cumcig and lung
cancer as may be seen in the bottom left boxplot, as well as between abstinence
and lung cancer in the top right boxplot. The boxplot for abstinence was only
taken over the ex-smokers (those who stopped smoking before the study began)
so that the plot is not misunderstood by having abstinence equal to zero for
smokers and non-smokers.

The next plot in Figure 4.4 is the histogram of the censored failure times X.
It shows that more censoring and failure times are observed over time and that
there are many individuals censored by the ending time of the study, therefore,
we might expect to have enough controls even for a late case.

The last plot is a boxplot of the association of education and cumcig at the
bottom of Figure 4.4. We can see that more educated individuals tend to smoke
less amount of cigarettes than those less educated. We may also look at Table
4.2, from which we may say that more non-smokers are among those with higher
education and more smokers are among those with lower education. Also, more
subjects stopped smoking than those who still smoke among the higher educated
subjects, which is the opposite of the lower educated group.

smoker
education non-smoker (0) smoker (1) ex-smoker (2)
lower (0) 64 279 157
higher (1) 259 61 180

Table 4.2: Contingency table of variables smoker and education for generated data with
n = 1 000 and the 10-year prevalence of 5.8%.
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Figure 4.4: Visualization of one generated dataset of n = 1 000 subjects with the 10-year
prevalence of lung cancer of 5.8%. The boxplot of the association of abstinence and lung cancer
is only taken over the subset of the data frame for those, who are ex-smokers.

4.2 Generating data for the nested case-control
design and its alternatives

Creating a dataset for the nested case-control analysis from the dataset for the
Cox analysis is very straightforward. For every occurring case, we select m − 1
individuals who are at risk at the failure time. We then save the collection of
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cases and their controls as a new dataset.
The dataset for the pseudolikelihood analysis is the same as the dataset for the

nested case-control analysis. In addition, it contains the inclusion probabilities
defined in (3.6) and (3.7) as

pj =
⎧⎨⎩1, if δj = 1,

p0j, if δj = 0,

where p0j are calculated as

p0j = 1 −
∏︂
k

{︂
1 − m − 1

n(R(X ′
k))
}︂
,

where the product is taken over all k such that ik is a case at time X ′
k and

X ′
k < Xj and X ′

k are ordered observed censored failure times.
When creating the dataset for counter-matching analysis, we use the known

variable education according to which we determine two strata. This variable is
not the regressor of the model, since it does not affect the risk of lung cancer,
however, it was used to determine the beginning and end of smoking. Due to
this and due to the bottom boxplot in Figure 4.4, it is correlated with variable
cumcig. The sampling for the counter-matching design is then as follows. We
choose mCM = (m0, m1)⊤ and if the value of education of an observed case equals
0, we select m0 − 1 individuals from those at risk whose education equals 0 and
m1 individuals from those at risk whose education equals 1, and vice versa. All
these sampled controls along with the cases that they were sampled for create
the dataset for counter-matching design.

4.3 Results of the simulations
We programmed the simulation in the statistical computing software R. We used
function coxph from package survival (Therneau [2022]) and distinct from
package dplyr (Wickham et al. [2022]).

We ran Monte Carlo simulations, each with B = 103 repetitions. For each
simulation, we chose the parameters n (the number of subjects in the study) and
q (to determine the prevalence of the disease). The parameter n was adapted
to the parameter q so that the less percent of cases, the more subjects in the
study are needed so that we have a reasonable amount of observations for each
design. The results of the simulations may be seen in Tables 4.4 − 4.7, which are
ordered from the lowest prevalence of 1.6% to the highest of 5.8%. The expected
number of cases and the expected size of the dataset for different selections of the
parameter m are listed in Table 4.3.

Each table contains the estimated β̂ = (β̂1, β̂2, β̂3)⊤, which is the average of
the estimators of each analysis. It also contains the average standard deviation
(average sd), which is the average of the standard deviations of the estimators
of β0 from all of the analyses, and the sample standard deviation (sample sd),
which is defined as

1
B − 1

B∑︂
b=1

(β̂bj − β̂j)2, j = 1, 2, 3,
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Table 4.4 Table 4.5 Table 4.6 Table 4.7
n 10 000 15 000 5 000 5 000
mean 10-year prevalence [%] 1.6 1.6 3.4 5.8
expected number of cases 160 240 170 290
dimension of dataset, m = 2 320 480 340 580
dimension of dataset, m = 6 960 1440 1020 1740
dimension of dataset, m = 10 1600 2400 1700 2900

Table 4.3: The list of the tables with simulation results, the expected number of cases and
the expected size of the datasets for different selections of the parameter m.

where β̂bj is the estimated β0j in the b-th analysis and β̂j is the average of all of
the estimated β̂bj. Lastly, the tables contain the estimated coverage probability,
which is the number of times when the confidence interval covered the true value
of the regression parameter divided by B, for example the estimated coverage
probability of the first regression parameter is calculated as

1
B

B∑︂
b=1
1{Lb1 < β01 < Ub1},

where Lb1, resp. Ub1, is the lower bound, resp. upper bound, of the confidence
interval for the first regression parameter of the b-th analysis and β01 is the true
value of the first parameter.

Let us summarize the results of the simulations, starting with the estimators.
We can see that most of the estimators β̂ are within the range of 10% around the
true value β0. The lowest deviations from the true value of β have the estimates
in Table 4.7, where the highest deviation is 7% for CM design for m = (1, 1⊤)
(−0.107). Most of the estimates from this table have the deviation from the true
parameter lower than 4% which is a good result. Estimates β̂2 by NCC with
m = 2 and CM with m = (1, 1)⊤ in all the tables are the ones with the highest
deviation from the true value, the highest of 15% in Table 4.4 and 4.6. From
this, it seems that the simulation with the best results so far is the one with the
prevalence of 5.8%. Let us notice that this Monte Carlo simulation presented us
with the most cases. The second best simulation is the one with the prevalence
of 1.6% and n = 15 000 with the expected 240 cases.

Next, let us focus on the average and sample standard deviations. Ideally,
these two should be of the same value. The biggest differences between the
average and sample standard deviation are the ones for the pseudolikelihood
approach, especially for m = 2. The biggest differences may be observed for the
third parameter, the highest of 0.073 in Table 4.5 (0.113 and 0.040). The CM
and NCC methods for one sampled control for each case give the second biggest
differences in the standard deviations, again for the third parameter. The largest
difference for the NCC design is the one in Table 4.4 of 0.019 (0.209 and 0.190)
and for the CM it is the one in Table 4.6 of 0.017 (0.196 and 0.179). Those higher
values of average standard deviations versus the sample standard deviations mean
that the estimated variability is higher than the true variability. Summed up, the
biggest differences between the average and sample standard deviation were given
by all the designs with the lowest number of sampled controls for each case.
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Let us evaluate the differences in the standard deviations between the different
designs. It is not surprising that the lowest standard deviations were obtained
by the Cox full data design, since it uses the largest amount of data. The second
lowest standard deviations are for the pseudolikelihood method with 5 and 9
controls for each case. Next are the NCC and CM designs with 5 controls for
each case. Clearly, the largest standard deviations were obtained for the designs
using the least amount of data, i.e. NCC, CM and Pseudo with only one control
for each case. The standard deviations of NCC and CM are very similar and tend
to be slightly higher for CM design, especially for the first and second regression
parameter. The standard deviations of the third parameter do not show much
or any improvement at all for the CM approach versus the NCC method, which
is the opposite of what we have expected. We may also notice that the lowest
standard deviations from all the tables were obtained in Table 4.7 for 5.8% of
cases and the highest ones for 1.6% of cases in Table 4.4. However, the standard
deviations in Table 4.5 for 1.6% of cases were smaller than the ones in Table 4.6
for the prevalence of 3.4%. Again, it shows that the more cases we obtain in the
study, the better the results. Hence, by adjusting the number n to the expected
prevalence of the disease (by increasing n if the prevalence is low), we can get the
same good results as if the prevalence of the disease was high.

Last but not least, let us look at the coverage probabilities of each estimator.
Most of the probabilities are around 0.95 besides those of the pseudolikelihood
method. The pseudolikelihood method gives the lowest coverage probabilities, the
lowest of 0.441 in Table 4.5. The lowest probabilities are for the lowest number of
sampled controls for each case and it increases when m increases as well. This is
a poor result but it is something to be expected. If the disease of interest is rare
and we have a large dataset with fewer cases, the inclusion probabilities of the
other subjects are very low and their inversions too high, which may distort the
estimation. The second lowest coverage probabilities are given by the CM method
with m = (3, 3)⊤ and the NCC design with m = 6. The coverage probabilities of
these two analyses are the highest for the prevalce of 1.6% and are the lowest for
the prevalence of 5.8%.

Summed up, the results given in Tables 4.4 and 4.7 seem to be the most
accurate and reliable. Also, the more sampled controls for each case, the lower the
standard deviations of the estimators, and the lower the coverage probabilities.
Also, given the obtained results, we did not show that the counter-matching
design is any more efficient or accurate than the nested case-control design.

According to the simulation results, we may say that the nested case-control
design is truly a great alternative to the basic Cox model when dealing with rare
diseases as it was able to give us very accurate estimates. The results are more
accurate by the full data design, however, given how much less observations was
needed for the nested case-control design (as demonstrated in Table 4.3), there
is no doubt that it is a very useful design in practice.
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Cox NCC CM Pseudo
m 2 6 (1, 1)⊤ (3, 3)⊤ 2 6 10

β̂1 0.100 0.100 0.101 0.104 0.101 0.104 0.102 0.099
average sd 0.031 0.077 0.046 0.087 0.048 0.082 0.048 0.041
sample sd 0.029 0.076 0.044 0.081 0.045 0.031 0.030 0.029
coverage prob. 0.940 0.954 0.947 0.951 0.946 0.525 0.774 0.835

β̂2 -0.106 -0.115 -0.107 -0.114 -0.106 -0.110 -0.106 -0.107
average sd 0.031 0.058 0.036 0.053 0.036 0.056 0.037 0.035
sample sd 0.029 0.049 0.033 0.050 0.033 0.029 0.029 0.029
coverage prob. 0.953 0.945 0.950 0.964 0.948 0.726 0.906 0.919

β̂3 1.002 1.057 1.013 1.059 1.019 1.067 1.023 1.012
average sd 0.047 0.209 0.096 0.195 0.101 0.127 0.081 0.069
sample sd 0.048 0.190 0.095 0.189 0.096 0.050 0.049 0.048
coverage prob. 0.954 0.958 0.952 0.976 0.950 0.452 0.766 0.827

Table 4.4: The results of Monte Carlo simulation with B = 1 000 repetitions with 8 di-
vergences for n = 10 000 subjects with expected 1.6% of cases and with the regression
parameter β0 = (0.1, −0.1, 1.0)⊤. The expression ”Cox” means the full data analysis, ”NCC”
means the nested case-control sampling, ”CM” stands for the counter-matching sampling and
”Pseudo” is the pseudolikelihood approach. The number m stands for sampling m − 1 controls
for one case. The vector m = (m0, m1)⊤ stands for sampling m0 subjects from the first stratum
and m1 subjects from the second stratum.

Cox NCC CM Pseudo
m 2 6 (1, 1)⊤ (3, 3)⊤ 2 6 10

β̂1 0.101 0.103 0.101 0.106 0.102 0.102 0.102 0.101
average sd 0.024 0.064 0.038 0.067 0.038 0.069 0.038 0.034
sample sd 0.024 0.061 0.036 0.065 0.036 0.025 0.024 0.024
coverage prob. 0.953 0.940 0.945 0.954 0.938 0.506 0.795 0.839

β̂2 -0.104 -0.109 -0.105 -0.109 -0.105 -0.106 -0.105 -0.104
average sd 0.025 0.042 0.029 0.040 0.029 0.044 0.029 0.027
sample sd 0.023 0.038 0.027 0.039 0.027 0.023 0.023 0.023
coverage prob. 0.943 0.950 0.941 0.958 0.935 0.732 0.889 0.919

β̂3 1.001 1.034 1.012 1.043 1.013 1.049 1.015 1.007
average sd 0.039 0.155 0.081 0.159 0.082 0.113 0.070 0.058
sample sd 0.039 0.149 0.078 0.150 0.077 0.040 0.039 0.039
coverage prob. 0.946 0.955 0.944 0.960 0.936 0.441 0.717 0.789

Table 4.5: The results of Monte Carlo simulation with B = 1 000 repetitions with 5 di-
vergences for n = 15 000 subjects with expected 1.6% of cases and with the regression
parameter β0 = (0.1, −0.1, 1.0)⊤. The expression ”Cox” means the full data analysis, ”NCC”
means the nested case-control sampling, ”CM” stands for the counter-matching sampling and
”Pseudo” is the pseudolikelihood approach. The number m stands for sampling m − 1 controls
for one case. The vector m = (m0, m1)⊤ stands for sampling m0 subjects from the first stratum
and m1 subjects from the second stratum.
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Cox NCC CM Pseudo
m 2 6 (1, 1)⊤ (3, 3)⊤ 2 6 10

β̂1 0.101 0.107 0.103 0.106 0.102 0.103 0.102 0.102
average sd 0.028 0.073 0.043 0.078 0.043 0.067 0.040 0.034
sample sd 0.028 0.070 0.040 0.074 0.041 0.029 0.028 0.028
coverage prob. 0.944 0.953 0.932 0.951 0.935 0.607 0.821 0.889

β̂2 -0.105 -0.113 -0.107 -0.115 -0.107 -0.108 -0.105 -0.105
average sd 0.027 0.045 0.032 0.049 0.033 0.045 0.031 0.029
sample sd 0.026 0.044 0.030 0.045 0.029 0.026 0.026 0.026
coverage prob. 0.949 0.961 0.943 0.954 0.936 0.787 0.924 0.939

β̂3 1.006 1.053 1.019 1.069 1.020 1.042 1.016 1.013
average sd 0.049 0.188 0.090 0.196 0.094 0.110 0.067 0.059
sample sd 0.049 0.178 0.090 0.179 0.090 0.051 0.050 0.049
coverage prob. 0.953 0.968 0.954 0.966 0.942 0.591 0.848 0.896

Table 4.6: The results of Monte Carlo simulation with B = 1 000 repetitions with 12 diver-
gences for n = 5 000 subjects with expected 3.4% of cases and with the regression parameter
β0 = (0.1, −0.1, 1.0)⊤. The expression ”Cox” means the full data analysis, ”NCC” means the
nested case-control sampling, ”CM” stands for the counter-matching sampling and ”Pseudo”
is the pseudolikelihood approach. The number m stands for sampling m − 1 controls for one
case. The vector m = (m0, m1)⊤ stands for sampling m0 subjects from the first stratum and
m1 subjects from the second stratum.

Cox NCC CM Pseudo
m 2 6 (1, 1)⊤ (3, 3)⊤ 2 6 10

β̂1 0.100 0.105 0.101 0.104 0.100 0.102 0.101 0.100
average sd 0.021 0.050 0.032 0.053 0.031 0.042 0.027 0.023
sample sd 0.021 0.049 0.028 0.052 0.029 0.021 0.021 0.021
coverage prob. 0.957 0.949 0.922 0.957 0.934 0.682 0.872 0.919

β̂2 -0.102 -0.106 -0.103 -0.107 -0.103 -0.104 -0.102 -0.103
average sd 0.019 0.031 0.023 0.032 0.023 0.028 0.021 0.020
sample sd 0.018 0.030 0.020 0.030 0.020 0.018 0.018 0.018
coverage prob. 0.948 0.949 0.918 0.947 0.910 0.802 0.911 0.934

β̂3 1.002 1.026 1.007 1.026 1.005 1.018 1.006 1.004
average sd 0.039 0.139 0.070 0.131 0.070 0.075 0.049 0.044
sample sd 0.039 0.128 0.066 0.125 0.065 0.040 0.039 0.039
coverage prob. 0.949 0.948 0.937 0.954 0.937 0.695 0.880 0.920

Table 4.7: The results of Monte Carlo simulation with B = 1 000 repetitions with 3 diver-
gences for n = 5 000 subjects with expected 5.8% of cases and with the regression parameter
β0 = (0.1, −0.1, 1.0)⊤. The expression ”Cox” means the full data analysis, ”NCC” means the
nested case-control sampling, ”CM” stands for the counter-matching sampling and ”Pseudo”
is the pseudolikelihood approach. The number m stands for sampling m − 1 controls for one
case. The vector m = (m0, m1)⊤ stands for sampling m0 subjects from the first stratum and
m1 subjects from the second stratum.
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Conclusion
In this thesis, we have described in detail the nested case-control design as a useful
sampling method when dealing with rare diseases and with possibly time-varying
covariates. We have shown the procedure of creating the partial likelihood and
the Newton-Raphson algorithm for obtaining the maximum partial likelihood
estimator (MPLE). We have also proved the consistency of the MPLE and we
have almost proved its asymptotic normality. We have not finished the proof
because of its technical difficulties. Those asymptotic properties hold for n → ∞.
This is an impressive finding, because this means that the MPLE of nested case-
control design has the same asymptotic properties as the MPLE of the basic Cox
model given some assumptions.

In addition, we have extended the nested case-control design to a counter-
matching design, which uses one variable known for all subjects in the study to
stratify them into strata and adjusts the sampling process to this knowledge.
This extention allows us to maximize the variation of exposure in the analysis.
Unfortunately, we have not verified by the simulation study that this design pro-
vides more accurate results than the nested case-control design since the standard
deviations of the counter-matching design were very similar to those of nested
case-control design and the coverage probabilities were even lower in most situ-
ations. We have also tried to run a simulation with higher association between
education and the ages of beginning and ending smoking to see whether or not
the advantages of counter-matching would be more clear. We have assumed the
hazard functions for beginning of smoking for the less educated group as ten times
larger than for the higher educated, and the hazard functions for ending smok-
ing were assumed ten times lower. We have seen some improvement in decreased
standard deviations of the third estimated parameter, however, the difference still
was not great and the association between education and cumcig was too large
and definitely unreal in practice.

We have also presented another alternative to nested case-control design: the
pseudolikelihood approach. In this design, we use an additional information in the
form of the inclusion probability (the probability of being included in nested case-
control sampling). The sampled controls are used for all the cases in the study
while being weighted by the inverse of their inclusion probabilities. This design
is only profitable when the regressors are time-invariant, which is its practical
disadvantage. Unfortunately, we have not shown that this method is as good or
even better than the nested case-control design. In fact, the coverage probabilities
of the estimates were very low, especially with m = 2, and they were still under
0.95 in every simulated situation for m = 6 and m = 10.

There are many possible extensions available of this thesis. First would be to
finish the proof of the asymptotic normality of the MPLE of nested case-control
design, which was considered to be too technically demanding. Second would
be to describe and test with the simulation study other alternative methods or
extensions of nested case-control design. Also, there could be another simulation
study done comparing all the designs, except for the pseudolikelihood method,
with time-varying covariates.
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case. The vector m = (m0, m1)⊤ stands for sampling m0 subjects from the
first stratum and m1 subjects from the second stratum. . . . . . . . . . . 54
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