
MASTER THESIS

Roman Firment

Monitoring Support for Manta Flow
Agent in Cloud-Based Architecture

Department of Distributed and Dependable Systems

Supervisor of the master thesis: doc. RNDr. Pavel Paŕızek, Ph.D.
Study programme: Computer Science

Study branch: Software Systems

Prague 2022

I hereby declare that I have authored this thesis independently, and that
all sources used are declared in accordance with the “Metodický pokyn o etické
př́ıpravě vysokoškolských závěrečných praćı”.

I acknowledge that my thesis (work) is subject to the rights and obligations
arising from Act No. 121/2000 Coll., on Copyright and Rights Related to Copy-
right and on Amendments to Certain Laws (the Copyright Act), as amended,
(hereinafter as the “Copyright Act”), in particular § 35, and § 60 of the Copy-
right Act governing the school work.

With respect to the computer programs that are part of my thesis (work) and
with respect to all documentation related to the computer programs (“software”),
I hereby grant the so-called MIT License.

The MIT License represents a license to use the software free of charge. I
grant this license to every person interested in using the software. Each person is
entitled to obtain a copy of the software (including the related documentation)
without any limitation, and may, without limitation, use, copy, modify, merge,
publish, distribute, sublicense and / or sell copies of the software, and allow any
person to whom the software is further provided to exercise the aforementioned
rights. Ways of using the software or the extent of this use are not limited in any
way.

The person interested in using the software is obliged to attach the text of
the license terms as follows:

Copyright (c) 2022 Roman Firment
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the ”Software”), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice shall
be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

In date .
Author’s signature

i

I would like to thank my family for their full support throughout my university
studies and for the encouragement, they were giving me.

A huge thanks to my thesis supervisor doc. RNDr. Pavel Paŕızek, Ph.D, for
his patience and helpful guidance during the completion of my thesis. Then I
would like to thank colleagues from the Utils Team and Manta Software, Inc., for
the opportunity to work with them.

ii

Title: Monitoring Support for Manta Flow Agent in Cloud-Based Architecture

Author: Roman Firment

Department: Department of Distributed and Dependable Systems

Supervisor: doc. RNDr. Pavel Paŕızek, Ph.D., Department of Distributed and
Dependable Systems

Abstract: Today, it is quite common to see software migrations from an on-
premises solution to a cloud solution. The product MANTA Flow Platform also
experiences this transformation. As a part of this transformation, the introduc-
tion of a new component, the MANTA Flow Agent, is necessary. MANTA Flow
Agent is a Java application supposed to run on a customer’s machine and exe-
cute received commands from a remote running on a cloud side. This yields the
natural need for the consideration of monitoring support. In this master thesis,
we describe in more detail the responsibility of the MANTA Flow Agent, the
multi-agent environment, motivation and requirements for the monitoring sup-
port for the MANTA Flow Agent. Furthermore, we provide an analysis of suitable
technologies which could be used to bring such monitoring support. Then, we
discuss different alternatives and solutions and their fit in our context. Finally,
we describe the architecture for monitoring support and the implementation of
a simple proof of concept solution based on a Java agent and the Prometheus, a
time series database.

Keywords: monitoring, Java instrumentation agent, time series database, multi-
agent environment, cloud architecture

iii

Contents

1 Introduction 3
1.1 MANTA Flow Platform . 4

1.1.1 Scanning Process and Extraction Phase 4
1.1.2 MANTA Admin GUI . 5

1.2 MANTA Flow Agent and Multi-Agent Environment 5
1.2.1 MANTA Flow Agent Properties 5
1.2.2 Multi-Agent Environment 6

1.3 Motivation For Monitoring Support 7
1.4 Goals . 8
1.5 Thesis Outline . 8

2 Requirements 10
2.1 Possible Use Cases . 10
2.2 Functional Requirements . 10
2.3 Non-Functional Requirements . 15

3 Analysis 17
3.1 Monitoring Approaches and Available Technologies 17

3.1.1 The Java Management Extensions (JMX) 17
3.1.2 Spring Boot Actuator . 18
3.1.3 Java Native Interface (JNI) and Java Native Access (JNA) 19
3.1.4 Java Virtual Machine Tool Interface (JVM TI) 19
3.1.5 Aspect-Oriented Programming (AOP) 20
3.1.6 Bytecode Instrumentation 20
3.1.7 Java Agent . 22
3.1.8 Libraries for System Metrics 23
3.1.9 SDKs and APIs for Metrics Instantiation 24

3.2 General Monitoring Solutions . 24
3.2.1 Pull and Push model . 25
3.2.2 Time Series Databases . 25
3.2.3 Monitoring Toolkits . 29
3.2.4 Online Analytical Processing (OLAP) solutions 32

3.3 Post-Processing and Integrating Metrics 32
3.3.1 Visualization tools . 33
3.3.2 Anomalies Detection and Alerting 34

3.4 Discussion and Technologies Selection 34
3.4.1 JMX and Spring Boot Actuator Usage 34
3.4.2 APM Solutions . 35
3.4.3 Time Series Databases and OLAP Solutions 35
3.4.4 Monitoring API and Metric Gathering 38
3.4.5 Visualization, Anomalies Detection and Alerting 39
3.4.6 Summary . 39

1

4 Design 41
4.1 Monitoring Java Agent . 41
4.2 Gathering Model . 43
4.3 Metrics Data Format and Transporting 49
4.4 Monitoring API . 52

4.4.1 Annotations with specific monitoring sematic 52
4.4.2 Annotation to expose custom metrics 53
4.4.3 Annotations and Interceptors 55

4.5 Metrics Data Integrations . 55

5 Implementation Details 58
5.1 Metrics Gathering . 58

5.1.1 JVM metrics . 58
5.1.2 System and Current Process Metrics 59
5.1.3 Metrics from the Monitoring API 60

5.2 Monitoring Java Agent Bootstrapping 65
5.3 MANTA Admin GUI Integrations 67

6 Evaluation 69
6.1 Usage . 69
6.2 Testing and Limitations . 71

7 Conclusion 72

Bibliography 73

List of Figures 75

A Attachments 77
A.1 Content of the attached ZIP file 77

2

1. Introduction
Today, it is very common that many companies have to deal with some sort of
data. To work with data, different technologies could take part in it. This data
could be used for different purposes and they could have different roles for such
companies. However, at some point, it could be beneficial to have better insight
into such data. What they look like, how their flow in a company system(s) or
product looks like, what their origins are, how they transform across the data
manipulation pipeline, and so on.

To resolve such issues, data lineage can be used. With data lineage, we can
see the visualization of the way data flows within the system. We can get a map
of data flows in a specific environment, a detailed description of data flows. It
can be also used to track and explore the changes over time. Other use-cases are
data auditing, data lineage as an additional element in approving the correct-
ness of important decisions, helping with migration to different data technology,
inspecting data incidents, and so on.

One of the software companies which offer a solution for generating and ma-
nipulating data lineage is Manta Software, Inc., Prague based company. Its
core product is MANTA Flow Platform, an automated data lineage platform. It
supports more than 17 databases technologies (PostgreSQL, Oracle, Google Big
Query, ..), 4 programming languages (COBOL, Java, C#, Python), more than 8
reporting and analysis technologies (SAS, Power BI, OBIEE, ..). This set is still
growing to cover the most used and popular technologies in the enterprise world
where data is an inseparable part of it.

MANTA Flow Platform software is currently implemented as an on-premises
solution. From the business perspective, it’s necessary to make MANTA Flow
Platform able to run in cloud environments. Such a cloud environment could be
also a private cloud, but the long-term goal is to offer MANTA Flow Platform as
a SaaS (Software as a service). MANTA Flow Platform in a cloud environment
could benefit from large storage, high computing capabilities on demand, smaller
maintenance costs, simplifying initial deployment, automatic updates, and from
other properties of running software in the cloud.

To become more cloud-friendly, some architectural changes are required. One
of them is splitting up some functionality into a separate component. This com-
ponent is called MANTA Flow Agent. That component has a specific role and
it is supposed to be installed within a customer’s environment and will interact
with the other core component, installed far away from the agent, in a cloud en-
vironment. As MANTA Flow Agent will be deployed outside of our environment,
it’s necessary to consider monitoring of such entities, to make their interactions
flawless.

In this thesis, we mainly analyze requirements for monitoring support for
MANTA Flow Agent, analyze existing monitoring solutions, design and provide
an implementation for such support.

In the following subsections, we describe MANTA Flow Platform and MANTA
Flow Agent in more detail, and we mention our motivation and specify the goals
of this thesis within their context. Finally, the outline of this thesis can be found
there.

3

1.1 MANTA Flow Platform
MANTA Flow Platform is a data lineage platform that can scan data environment
to build a powerful map of all data flows and deliver it through a native UI and
other channels to both technical and non-technical users.

The user just have to create a configuration to access a data source, e.g.
a JDBC (Java Database Connectivity) URL with access credentials and define
custom scanning process. The scanning process can include multiple data sources,
data technologies, and consists of multiple phases. Some phases are optional, as
we will see in the next section.

The result of such a scanning process is data lineage, data flow, which can be
visualized by its visualization component. Scanned and analyzed metadata from
data sources could be also integrated into some data catalog (a detailed inventory
of all data assets in a data environment) in the optional export phase.

1.1.1 Scanning Process and Extraction Phase
Scan of a particular technical resource (such as a single database) is a process
involving the capture, analysis, loading, and merging of lineage metadata into
the MANTA Repository, metadata storage component. Scans are typically run
against a set of connections for a given technology (such as all Oracle databases
in a data environment). It consists of three phases: extract, analyze and export
phase, as we can see in Figure 1.1.

Figure 1.1: The Phases of MANTA Flow Scanning Process

We are interested only in the extract phase because this phase will run on
the MANTA Flow Agent. During this phase, metadata is extracted from the
data environment. Where possible, this is done via direct connection to the
data source, typically to some DBMS, ETL (extract, transform and load) or
reporting tools. This ensures that the metadata being retrieved is the most
current and most relevant and reflects the truth of how the system is running
today. This is usually done by APIs, but it depends on the technology. For
most databases, this is done by directly accessing the database catalog. The
extract phase first retrieves database dictionary information (primarily tables and
columns) and then picks up assets that define lineage. These are typically views
and stored procedures for a database but might be external data access steps
and transformation modules when applied to an ETL tool. Business intelligence
(reporting) solutions deliver lineage details about their queries along with columns
in the report and their potential transformations. The extracted metadata is then
ready for analysis.

4

As said before, the extraction logic from scanning process is now moved into
the separate component, MANTA Flow Agent, where the extraction phase runs
on.

1.1.2 MANTA Admin GUI
MANTA Admin GUI is MANTA Flow Platform utility web application that acts
mainly as a graphical and a programming interface to do configuration and to
launch data environment scanning. Within this application, users can configure
data sources to be scanned and also define and execute complex workflows for
scanning, which uses those data sources.

This component is the place, where you can manage MANTA Flow Agents
such as registering them and choosing them as an executor for the extraction
phase in the scanning process for some data sources, etc.

For our purpose, this component has a key role for us as it’s the main com-
ponent with which MANTA Flow Agent interacts. In the production, this is the
remote side from the MANTA Flow Agent’s perspective. It’s also responsible for
sending control commands for MANTA Flow Agent, as MANTA Flow Agent acts
only as an executor for those commands.

1.2 MANTA Flow Agent and Multi-Agent En-
vironment

The main motivation to have MANTA Flow Agent is to provide an option to
get metadata from the data sources, which are not easily accessible from outside
of the environment where data sources live. Such environments could be setups
where access to data sources is behind the firewall or are accessible only from the
local network. To overcome this, MANTA Flow Agent is a kind of insider, which
is installed within such an environment, can access those data sources and that
access to MANTA Admin GUI is under the control.

This component also opens a door to offering MANTA Flow Platform as SaaS,
where customers can use service on demand, just by deploying MANTA Flow
Agents in their systems, which have access to their data environment. They do
not have to spend time on operational tasks related to MANTA Flow Platform.

The main role of MANTA Flow Agent is the execution of commands from
MANTA Admin GUI. Those commands handle the extraction of metadata from
data sources and also transporting extracted metadata to MANTA Admin GUI.

1.2.1 MANTA Flow Agent Properties
These are basic traits of MANTA Flow Agent which have been gathered during
our initial analysis and we want to present them here to emphasize MANTA Flow
Agent’s important properties. MANTA Flow Agent:

• is a Java application, written in Spring Boot Framework. The same holds
also for MANTA Admin GUI.

5

• its installation target platforms are Linux and Windows operating system
families.

• to communicate with the MANTA Admin GUI the messaging is used, con-
cretely the Java Message Service (JMS).

• doesn’t interact with other agents. Interactions are allowed with MANTA
Admin GUI, which serves as a control node, and with spawned extraction
processs, as we will see in the next section.

• can connect but cannot be connected.

• is a long-run process, usually started in a daemon mode, which waits for
commands from the MANTA Admin GUI.

• spawns extraction processes. Those extraction processes are again Spring
Boot Java applications, which also communicate with MANTA Admin GUI
using JMS. Those processes usually interact with data sources from which
MANTA Flow Agent wants to extract metadata.

• as it spawns extraction processes, having installed multiple MANTA Flow
Agent on the same host doesn’t make much sense.

• its basic status (running/not running) for extraction processes is already
implemented in MANTA Admin GUI.

1.2.2 Multi-Agent Environment
In the previous section, we also slightly mentioned the interactions between the
MANTA Flow Agent and the environment where the agent could be installed.

In summary, the interaction between MANTA Flow Agent and the environ-
ment depends on which extraction processes it spawns. The minimal requirement
is that MANTA Flow Agent can establish a connection to MANTA Admin GUI.
We keep in mind, that MANTA Flow Agent could run within some container
technologies, so MANTA Flow Agent or its spawn processes could observe on
runtime more drastic resources changes than running on a native platform.

In Figure 1.2, we can see a basic communication scheme in a Multi-Agent
environment. Squares A1 and A2 represent MANTA Flow Agents. In most
scenarios, they are installed on different hosts. There are 2 demilitarized zones.
There are both MANTA Flow Agents in the first zone, DMZ1. In the second
demilitarized zone, DMZ2, only one MANTA Flow Agent is in. Being in a de-
militarized zone, it makes possible for MANTA Flow Agent and its spawned
extractor processes to access data source systems. Admin GUI is the remote side
and there is communication between Admin GUI and MANTA Flow Agents and
their spawn extractor processes E1, E2 and E3 with Admin GUI. JMS messaging
is used for that communication.

6

Figure 1.2: Communication Scheme in Multi-Agent Environment

1.3 Motivation For Monitoring Support
In this section, we would like to provide our motivation for considering and im-
plementing monitoring support for MANTA Flow Agent in Cloud-Based Archi-
tecture.

The following point summaries our motivation to consider monitoring for
MANTA Flow Agent:

• to provide basic information about MANTA Flow Agent resources utiliza-
tion, runtime statistics from the current and previous workflows executions.
Such workflows describe user-defined scanning processes. Some gathered
and statistically computed metrics from monitoring components should be
faced to the user in some visual form, e.g as an extension of already planned
dashboards in Admin GUI. Those metrics could be e.g.: available proces-
sors, free/total RAM and used RAM by the agent, disk space, system and
the agent CPU load, network and filesystem activity, how much resources
were consumed by execution of one workflow, etc. The purpose is also to
inform the user about static metrics from multiple agents and based on that
the user could decide on which agent some extraction should be run. An-
other one is that this visual information can be used not only to inform the
user about the current multi-agent system state but also could help with
troubleshooting.

• to have a runtime anomalies detection mechanism. MANTA Flow Agent
and its spawned extractor processes are processes that consume and use
some resources. An anomalies detection mechanism could process output
from the monitoring and warn the user about suspicious states or when
some values overrun limits. Those deviations could be derived from the

7

historical data from previous runs and help a customer and us to identify
the roots of some performance issues, e.g. on which side (on the customer’s
or MANTA’s side) it happened. Some examples for those detections could
be: memory leaks detection (not so probable, but we never know), drastic
network and filesystem throughput changes, too many open connections,
file descriptors, slower interaction with data systems, not enough hard disk
free space for extraction, etc.

• to simplify troubleshooting and optimizations without having to request
such data from the clients.

• to produce input for other components on the remote side, e.g. compo-
nents within MANTA Admin GUI or currently non-existing components.
As usual, most of the data have some value and our case is not an ex-
ception. In the future, Process Manager, component handling scheduling
of workflows executions, could take advantage of the monitoring provided
data to make scheduling more flexible, especially when we consider the
multi-agent environment where a customer has multiple agents deployed.
Another component could be some suggestion component, which can assist
(e.g. by sorting/ranking the agents from previous runs) while the user is
manually choosing the agent on which the extraction has to be executed.

1.4 Goals
The primary goals of this thesis are:

1. Get to know the Manta Flow Platform and MANTA Flow Agent

2. Analyze functional requirements for the monitoring framework for Manta
Flow Agent

3. Analyze possible use cases of running multiple agents in the environment
of a single customer, focusing on the management of agents and their in-
teraction.

4. Propose a solution that fits into the Manta Flow Platform and reflects
also important non-functional requirements (performance overhead, secu-
rity risks).

5. Create a proof-of-concept implementation just for the scenario where the
customer uses one MANTA Flow agent

1.5 Thesis Outline
In the next chapter, Chapter 2, we list collected functional and non-functional
requirements, discuss about possible use cases in more detail. Chapter 3 mainly
analyzes technologies and approaches that we thought that they are suitable
for implementing monitoring support for MANTA Flow Agent. There is also a
discussion about the final technologies selection. In chapter 4, we describe the

8

design of the suggested solution. Technical implementation details of the final
implementation can be found in Chapter 5. There, we also describe problems
that we encountered and how we resolved them. In chapter 6, we evaluate the
final implementation, list known limits, and provide instructions for the usage.
In the last Chapter 7, we do conclusions about our work.

9

2. Requirements
After the consultations with the architects of MANTA Flow Agent and Manta
Platform we have collected functional and non-functional requirements which
our proposed monitoring support solution for MANTA Flow Agent should fulfill.
We also propose and summarize some possible use cases for introducing such
monitoring support.

2.1 Possible Use Cases
There are some potential targets to monitor. Our main targets are resources used
by MANTA Flow Agent and its spawned extraction processes in the multi-agent
environment. We are interested in the CPU load, RAM load, hard disk usage
and network related resources. We would like to also monitor developer defined
specific metrics from extraction processes, have an option to easily define custom
metrics at the source code level.

Other aspects could be also monitored. However, they are handled by their
implementation logic and also within their error states handling. They include the
basic activity status, unexpected runtime states, communication layer statuses,
automatic MANTA Flow Agent upgrade progress, etc. Monitoring for MANTA
Admin GUI is also out of the scope of this thesis.

Metrics could be used as an input to MANTA Process Manager, a component
running within MANTA Admin GUI, which plans the executions of extractions.
It could take into account the previous runs of extractions and adjust the schedul-
ing accordingly, e.g. run multiple extractions in parallel on the same host to use
effectively its resources or run extractions on different hosts, based on such infor-
mation.

Another use case is to bring some overview to the user in some visual form.
That from could be a simple table with basic information or a complex dashboard
with graphs visualizations. The chosen form could show the current load of the
system, developer-defined metrics, and historical data.

Provided output from the monitoring should simplify the troubleshooting pro-
cess and identifying hot spots. By using monitoring support, we also could be
able to better know the environments in which MANTA Flow Agent is operating
and how effectively it utilizes available resources.

2.2 Functional Requirements
Here we list collected important functional requirements (features and functions)
that the monitoring support for MANTA Flow Agent has to satisfy.

Metrics gathering

Metrics are measures of quantitative assessment commonly used for assessing,
comparing and tracking some states in a system. They capture important infor-
mation at a specific point in time about a process under the question.

10

The proposed monitoring solution for MANTA Flow Agent has to collect the
following metrics:

1. JVM metrics
JVM metrics are metrics collected from Java Virtual Machine (JVM) during
application execution. MANTA Flow Agent process and its spawn extrac-
tion processes are such processes that execute within JVM.
We are interested in JVM metrics:

(a) Heap and non-heap memory usage of JVM. If the memory available
in the JVM is insufficient, application can slow down or fail, so it’s
important track the usage of heap and non heap memory usage of JVM.
With such metrics it is also much easier to identify and fix memory
leaks.

(b) Metrics related to JVM Garbage Collector (e.g. garbage collections
count, time consumed by garbage collections). Sometimes, garbage
collection is taking too long. Tracking garbage collection activity can
help us to identify times when garbage collection is taking too long and
also help us with garbage collection settings fine-tuning.

(c) Number of running non-daemon and daemon threads. Those thread-
related metrics could be used to identify thread leaks in the JVM, sit-
uations when application does not release references to a thread object
properly.

2. Current process metrics
These metrics are for the MANTA Flow Agent process and its spawn ex-
traction processes and can be usually obtained from the operating system.
They provide us a basic view of the currently running process from the
operating system’s perspective, how such process is consuming resources
relative to the whole system. The following metrics we want to track:

(a) RAM usage of the current process (e.g virtual memory and resident
memory usage). This can be used to track how the application is
memory-greedy over time.

(b) CPU usage of the current process. A metric, which says how much time
the application actually used from the CPU’s capacity during a period,
often expressed as a percentage.

(c) Execution time spent in user space, kernel space and total elapsed time
of the current process. This can help us to see how much is the appli-
cation I/O bound, how big portion of time is used for I/O subsystems
operations like data transferring between primary memory and various
I/O peripherals (e.g. hard disk, network interface card, etc.).

(d) Filesystem activity (hard disk throughput, number of read and write
operations) of the current process. Filesystem activity shows us how
often the application does filesystem manipulations such as reading and
writing files and how such operations perform in time.

11

(e) Network activity (network throughput, number of data sends and data
receives, open connections) of the current process. Tracking this ac-
tivity helps us to see how much data have been transported using net-
work interfaces, what were the maximum and average values of network
throughput, how many endpoints have been connected by application,
if the application correctly releases opened sockets, etc.

3. System metrics
System metrics are metrics from the system where MANTA Flow Agent is
deployed and running. They track the load of the whole system. Knowing
historical overall system health has an important role when inspecting the
application failures, not necessarily fatal ones.

(a) RAM usage of the system. When the system faces memory pressure
then the swapping technique can be used. In the worst-case scenario,
on some platforms when the system is critically low on memory, the
system’s out-of-memory killer process could be employed. With that
metric, we can detect if the system is close to such states, how much
memory is used by the other processes and how much memory could
be used for MANTA Flow Agent and its extractions processes.

(b) Average CPU load of the system. It is the average number of processes
being or waiting executed over some time period. Knowing the num-
ber of logical cores is important to interpreting CPU load averages.
High load average could imply that CPU is overloaded with too many
processes.

(c) CPU usage of the system. This reflects how busy CPU is during some
time interval, typically expressed by percentage. Usually, we would like
to have the host CPU very close to 100%, especially if we rent instance
where host is running.

(d) Number of available logical CPUs in the system. Extraction configura-
tions often have an option to specify how many CPUs could be used to
introduce parallelism. This metric could be used in such configurations
or as an dynamic input for MANTA Process Manager, the execution
scheduler.

(e) Used and available hard disk space. Extraction processes could be
configured to save extracted metadata on filesystem. Those values have
an informative nature for the user.

(f) Uptime and basic operating system information (e.g. operating system
family). We would like to know how long the system is running and on
which platform MANTA Flow Agent is operating.

4. User-defined metrics
In the previous points, we mentioned mainly metrics related to the system,
own process and runtime resources consummation metrics. Monitoring sup-
port for MANTA Flow Agent has to bring an option for developers to define
custom metrics. The developer could expose user-defined metrics via some

12

programming interface in the code of MANTA Flow Agent or in the code
which is responsible for extraction (in extraction process). Such an interface
has to be general enough to be able to model user-defined metrics, ideally
not so much intrusive. E.g., such metrics in our case could be metrics re-
lated with extraction progress, extraction details (which types of entities
and how many entities were extracted, how many queries to data source
has been done and other internal statistics), etc.

Metrics inspection

Monitoring support has to ingest and collect metrics data. It has to be possible
to inspect such metrics data. This could help us with troubleshooting, identify-
ing the time points when some critical or suspicious events occurred. We could
review metrics trends and see the state of the whole system, including MANTA
Flow Agent and its extraction processes, in a big picture. The proposed metrics
inspection mechanism has to fulfill the following properties:

(a) It is possible to see metrics data in real-time. The user should see the updated
metrics values or new metric data when they are generated. Such data has
to be deliver to the user within 30 seconds.

(b) Sampling rate for metrics data has to be within the interval 1 to 30 seconds.
This value should be customizable.

(c) To inspect metrics data, a table or a graph form has to be chosen as a
visualization form. One of its dimensions has to be time.

(d) It has to be possible to inspect historical metrics data. At least, the user
should be able to inspect the metrics data from the previous MANTA Flow
Agent and its extractions processes run. Consider introducing a customizable
data retention policy for saved metrics data.

Anomalies detection

From the monitoring support, we also expect the anomalies detection mechanism.
Anomalies occur on metrics data that are different from the expected ones. They
could be compared to the historical values (statistically processed) or to some
baseline. The support has to provide at least an option to manually identify such
situations, abnormal events, but anomalies detection should be ideally triggered
automatically. The following types of problems detection have to be covered:

1. Network related problems detection
Our target monitoring applications, MANTA Flow Agent and its extrac-
tion processes, heavily use the network capabilities of the system. With-
out access to the network, it won’t be possible to use messaging between
MANTA Admin GUI and MANTA Flow Agent or its extraction processes.
Also, a scanning technology very often requires access to the network for
its metadata extraction. So, network reliability has an important role for
us. Anomalies detection mechanism has to detect the following situations:

13

(a) Network throughput between MANTA Flow Agent or the extraction
process and MANTA Admin GUI has significantly changed over time.

(b) Network throughput between the extractor process and its data source
systems has significantly changed.

2. Filesystem related problems detection
It’s pretty common that after some time, hard disk could become the bot-
tleneck of the system. This could be caused by some critical states like
reaching the end-of-life of the hard disk, corrupted filesystem, or only by
the storage characteristics. We want to detect at least the following states:

(a) Free hard disk space on the system where MANTA Flow Agent is in-
stalled reached the user set limit. This information is meaningful as
extraction processes could be configured to also save extracted meta-
data on the hard disk.

(b) Filesystem read and write operations last too long compared to previous
runs. This could indicate filesystem or hard drive problems.

3. Abnormal load detection
Sometimes, it may happen that the system is overloaded. This may be
caused when many processes want to finish their executions or many of
them are very RAM-consuming processes. The high RAM usage can lead
to swapping and in critical situations even the out-of-memory killer process
can kill some processes to lower the pressure. This detection could prevent
us from such situations or at least we could get the context if some fatal
error occurred. Also, it could happen that MANTA Flow Agent and its
extraction processes resources consumption have dramatically changed from
the previous runs. Those situations have to be detected:

(a) The high CPU load of the target system, where MANTA Flow Agent
is deployed, has to be detected.

(b) A higher usage than usual of resources (CPU usage, RAM load) of
MANTA Flow Agent and its extraction processes has to be detected.

4. Potential memory leaks detection
MANTA Flow Agent and its extraction processes run within JVM. We can
consider that MANTA Flow Agent process is a long-running job. Some
extractions could be considered also as long-running jobs, depending on the
volume of extracted data and the complexity of the extraction process. If
the application is running for a long time, memory leaks could occur and
have a bad impact on the system. A memory leak is a situation when there
is an object present on the heap and it is no longer used, but the garbage
collector is unable to remove it from memory. Monitoring support has to
actively detect such situations and warn the user about potential memory
leaks caused by MANTA Flow Agent or its extractor processes run within
JVM.

14

Programming interface for custom metrics

Our solution also has to provide a way to define custom metrics from the code and
periodically export them as it is described in Section 2.2, point 4 (User-defined
metrics). We have to design and implement a programming interface to expose
such metrics. We should consider the usage of existing industry-stabilized APIs
to model such metrics.

2.3 Non-Functional Requirements
The initial analysis also yields some non-functional requirements (system’s op-
eration capabilities and constraints). From the monitoring support for MANTA
Flow Agent, it is required to fulfill the following collected non-functional require-
ments and recommendations:

1. Multi-platform support

(a) It has to be possible to natively run components of monitoring sup-
port for MANTA Flow Agent on Linux and Windows operating system
families.

2. Network access

(a) MANTA Flow Agent and its extraction processes cannot be connected.
(b) For sending metrics data, messaging should be preferred. Currently,

messaging is used for communication between MANTA Flow Agent
and MANTA Admin GUI, and also between extraction processes and
MANTA Admin GUI.

3. Data storage, data integrity and metrics format

(a) Data storage for metrics data has to be easily replaceable on the code
and configuration level. Consider introducing some internal format, e.g.
dedicated format for transporting and manipulation of metrics data, to
minimize coupling to specific technology.

(b) The monitoring support should consider specialized well supported ex-
isting solutions for storing metrics instead of creating custom solutions
for data storing.

(c) Metrics values have to be well defined and cannot be easily spoofed.
(d) The source of metrics data has to be identifiable (multiple MANTA

Flow Agents and extraction processes scenarios).

4. Usability and performance impact

(a) The user should be able to easily configure and turn on/off the moni-
toring support for MANTA Flow Agent. Ideally, configuration should
be done within MANTA Admin GUI, avoiding doing configuration via
files.

15

(b) MANTA Flow Agent and extraction processes are not aware if moni-
toring support is enabled or disabled. When monitoring support crash
or it cannot be initialized properly, then such processes should continue
without problems.

(c) We should be able to extend provided solution to support monitoring
for multiple MANTA Flow Agents. In this initial phase, we expect that
only less than 100 MANTA Flow Agents are connecting to one MANTA
Admin GUI instance.

(d) When monitoring is enabled, no significant slowdown and increased
resources usage is observable.

16

3. Analysis
This chapter introduces existing general monitoring toolkits, their important
concepts and high-level architectural overviews. Java specific technologies and
frameworks which could be used to implement a custom monitoring framework
for MANTA Flow Agent instances can be also found here.

Most of those technologies and toolkits are pretty standard in the field of
application monitoring. We have selected the relevant ones for our use case. We
took in mind also their usability and popularity (their usage in big companies,
active development on GitHub, number of GitHub stars, etc.). Many of them
do their own comparison to alternative solutions and this led us to discover and
explore other related existing solutions, libraries.

At the end of this chapter, we discuss the cons and pros of available solutions
and frameworks. We describe what they have in common, how they principally
differ, and what we would have to do on the integration level, if we chose them.
There, we also do a selection of technologies in which the final monitoring support
for MANTA Flow Agent is implemented and explain why we chose that stack of
technologies.

3.1 Monitoring Approaches and Available Tech-
nologies

In this section, we describe technologies (libraries, frameworks, programming con-
cepts) which could be considered when implementing custom monitoring support
for Java applications.

3.1.1 The Java Management Extensions (JMX)
The Java Management Extensions (JMX1) framework is a standard part of the
Java Standard Edition platform. It provides a simple, standard way of managing
resources such as services, devices (e.g. printers), and applications. JMX is
dynamic, as it can be used to monitor and manage resources when they are
created, installed and implemented. JMX technology can be also used to monitor
and manage Java Virtual Machine (JVM).

The JMX specification [1] describes its architecture, APIs, design patterns,
and services in Java language for monitoring and management of applications
and networks. The overview of the architecture is shown in Figure 3.1.

To use JMX technology, one has to instrument a given resource by one or
more Java objects, known as Managed Beans or MBeans. MBeans have to be
registered in a managed object server (MBean Server).

The specification also defines the JMX Agents that we can use to manage
any resources that have been correctly configured for management. This agent
consists of an MBean Server, in which MBeans are registered, and a set of services

1JMX Technology Home Page: https://www.oracle.com/java/technologies/javase/
javamanagement.html

17

https://www.oracle.com/java/technologies/javase/javamanagement.html
https://www.oracle.com/java/technologies/javase/javamanagement.html

for handling the MBeans. JMX Agents then directly control resources and make
them available to remote management applications.

Other important entity is JMX Protocol Connector. It enables us to access
JMX Agents from remote management applications. JMX connectors can use
different protocols, but they have to provide the same management interface.
Then, a management application can manage resources transparently, regardless
of the communication protocol used. A similar holds for JMX Protocol Adaptor,
as it provides a management view of the JMX Agent through a given protocol.

A special type of MBean, which materializes Java Virtual Machine subsystems
like garbage collection, JIT compilation, memory pools and multi-threading, is
MXBean, alternatively called Platform MBean.

To build a solution with this technology, we should keep in mind the security
aspects, as this technology can use remote management applications to not only
observe, but also control resources.

Figure 3.1: JMX Architecture

3.1.2 Spring Boot Actuator
As MANTA Flow Agent is written in Spring Boot Framework 2, an application
framework and inversion of control container for the Java platform, we have also
considered the Spring Boot Actuator module [2], which could help us with gath-
ering metrics, understanding traffic and inspecting the state of the application.

Spring Boot Actuator is mainly used to expose operational information about
the running application such as health, metrics, beans, configuration properties,
HTTP traces, loggers, environment, etc. It uses HTTP(S) endpoints (REST) or
JMX beans to expose such data.

2Spring Boot Framework overview is available at https://spring.io/projects/
spring-boot

18

https://spring.io/projects/spring-boot
https://spring.io/projects/spring-boot

Spring Boot Actuator also provides auto-configuration for application metrics
facade Micrometer (like SLF4J 3 but for metrics, see Section 3.1.9), which sup-
ports numerous monitoring systems. More about this facade and other similar
API libraries can be found in Section 3.1.9.

3.1.3 Java Native Interface (JNI) and Java Native Access
(JNA)

Java Native Interface (JNI) [3] is a foreign function interface (FFI) mechanism,
that enables code running in a JVM to call and be called by a native application
and libraries written in other languages such as C, C++.

Another way to access native shared libraries is JNA4. A mature library,
which provides simplified access to native library methods without requiring any
additional JNI or native code. Generally, JNI is faster than JNA, but JNA is
much easier to use.

This can be used when some functionality cannot be implemented directly in
Java programming language or just to increase application performance by using
external native libraries. This include also hardware-sensitive or direct OS API
calls. It can be used when we want to reuse an existing native library instead of
rewriting it in Java programing language.

The huge downside of using this API is that it’s against the slogan ”write
once, run anywhere”. Almost certain, we would lose the cross-platform property
of Java application.

In our context, this API could be used to implement platform-specific code to
collect system metrics directly from the platform (e.g via system calls). However,
the mentioned disadvantage has to be taken into account.

3.1.4 Java Virtual Machine Tool Interface (JVM TI)
The JVM tool interface (JVM TI) [4] is a native programming interface for use
by tools such as debuggers, profilers, monitoring, thread and coverage analysis
tools. It provides both, a way to inspect the state and to control the execution
of applications running in the Java virtual machine (JVM).

JVM TI clients are called agents. Agents can be written in any native language
that supports C language calling conventions and C or C++ definitions. Agents
run in the same process as JVM, and communicate directly with JVM. This
communication is through a native interface (JVM TI). However, agents are often
controlled by a separate process.

The agent has access to the JVM state by calling JVM TI and JNI functions,
and it can register receiving of JVM TI events, using event handler functions
which are called by the JVM when such an event occurs.

This API is ideal, if we would like to have a detailed overview of what the
JVM is doing, to have JVM under more control. However, for our purpose, this

3SLF4J - Simple Logging Facade for Java serves as a simple facade or abstraction for various
logging frameworks

4More information about JNA library is available at https://github.com/
java-native-access/jna

19

https://github.com/java-native-access/jna
https://github.com/java-native-access/jna

is a very low-level API and its usage could cause a significant slowdown in our
application.

3.1.5 Aspect-Oriented Programming (AOP)
Aspect-Oriented Programming is a programming paradigm, that can be used to
add additional functionality to an existing code without modifying the code itself
directly.

The unit of modularization is an aspect. It could be a common feature that
could cover multiple methods, classes, object models, etc. Those aspects are
orthogonal to each other. As aspects, we can consider e.g.: Logging, Session
Tracing, Profiling, Logging, Authorization, Tracing, Metrics Collecting.

To use AOP in practice, we typically have to specify via pointcut specification,
the locations in the original code, where code, contributing to aspect, will be
inserted. This code is usually called advice.

In the Java world, AspectJ 5, Spring AOP6 and JBossAOP7 are widely used,
and they could use different terminology, but conceptually they give a program-
mer similar options to use AOP approach.

Another framework which is inspired by AOP, is DiSL8. It differs from the
mainstream AOP languages in the way, that user can specify any region of byte-
codes to be enhanced.

In our case, this approach could be used to insert some monitoring aspects
into our application. Such aspects could be e.g. tracing of the values of input
and output parameters on selected methods, their execution time, and so on.

3.1.6 Bytecode Instrumentation
Instrumentation is the addition of bytecodes to methods. Usually, it is used to
enhance functionality or inspect some state. Instrumentation can be used to
insert code to gather data which can be then utilized by some tools. Such tools
include monitoring agents, profilers, coverage analyzers, and event loggers.

In Java, AOP implementations usually use some form of instrumentation to
insert aspects.

Instrumentation code can be inserted in one of the three ways:

1. Static Instrumentation. A class file is instrumented before it is loaded into
the JVM.

2. Load-Time Instrumentation. The class file is instrumented when a class file
is loaded by the JVM.

3. Dynamic Instrumentation. A class is already loaded into JVM (and possibly
even running) is modified.

Instrumentation at bytecode level is usually done in one of this two ways:
5AspectJ Home Page: https://www.eclipse.org/aspectj/
6Spring AOP APIs: https://docs.spring.io/spring-framework/docs/5.3.19/

reference/html/core.html#aop-api
7JBoss AOP Home Page: https://jbossaop.jboss.org/
8The DiSL Framework Home Page:https://disl.ow2.org/

20

https://www.eclipse.org/aspectj/
https://docs.spring.io/spring-framework/docs/5.3.19/reference/html/core.html#aop-api
https://docs.spring.io/spring-framework/docs/5.3.19/reference/html/core.html#aop-api
https://jbossaop.jboss.org/
https://disl.ow2.org/

1. using a native JVM TI native agent (see Section 3.1.4)

2. using a Java Agent (see Section 3.1.7)

In our case, bytecode instrumentation could be used within the implementa-
tion of the monitoring agent. This agent could do the similar manipulations as
described in Section 3.1.5, it could add a monitoring aspect, concretely the aspect
responsible for observing the application run.

Different instrumentation frameworks can provide different levels of abstrac-
tion and different levels of usability and expressiveness. The following frameworks
could be used to do Java bytecode instrumentation:

BCEL

BCEL (The Byte Code Engineering Library) [5] is a low-level library that can
be used to decompose, modify and recompose Java classes. It can be used
in tools that do profiling, bytecode decompiling/obfuscation/refactoring, imple-
ments AOP or do a static code analysis.

ASM

ASM [6] is also as BCEL Java bytecode manipulation and analysis low-level
framework. ASM can be used to modify Java classes or to dynamically generate
classes. It provides some common bytecode transformations and analysis algo-
rithms. ASM is focused more on performance (designed and implemented to be
as small and as fast as possible).

BTrace

BTrace [7] can be used to dynamically trace a running Java program (similar to
DTrace for OpenSolaris applications and OS). BTrace dynamically instruments
the classes of the target application to inject tracing code. BTrace scripts are
written in Java and they have concepts similar to AOP. Internally, it uses ASM.

Byteman

Byteman [8] is a tool that can be used to easily monitor, trace and test the
behavior of Java programs and JDK runtime code. Byteman injects Java code
into methods or Java runtime methods. The original program does not need to
be recompiled or repackaged. This injection can be done at JVM startup or after
startup, while the target application is still running. The user has to use a simple
scripting language to specify when, where, and how the original Java code should
be transformed. Internally, it uses ASM.

Javassist

Javassist [9] is a library for bytecode manipulation which can be used to define a
new class at runtime and modify a class file when the JVM loads it. It provides
two levels of API: bytecode level and source level.

The bytecode-level API allows the user to directly modify bytecode as in ASM
or BCEL. The source-level API makes it possible to edit a class file without any

21

knowledge Java bytecode. Inserted bytecode can be in the form of Java source,
as Javassist compiles it on the fly.

Byte Buddy

Byte Buddy [10] is another bytecode manipulation library, which can be used
to do code generation and bytecode modification during the runtime of a Java
application. To use Byte Buddy, the user doesn’t have to understand the class file
format or Java bytecode. It offers a convenient API for building and modifying
classes, either manually or using a Java Agent. Internally, it uses ASM.

Java Native Instrumentation Framework (JNIF)

JNIF [11] is a C++ library which can be used for Java bytecode manipulation.
It is similar to frameworks like ASM or BCEL, but instead of being implemented
in Java, it is implemented in C++. The big advantage of JNIF is that it can be
used for implementing JVM TI agents (see Section 3.1.4). So, JNIF enables the
development of dynamic analysis tools that require full bytecode coverage and
minimal perturbation.

3.1.7 Java Agent
Java agents 9 are part of the Java Instrumentation API (java.lang.instrument [12]
package), and they can instrument programs running on the JVM. Java Agent is
a jar file, it contains premain method and has special attributes specified in its
manifest. The premain method is called after JVM has been initialized and must
return to process the startup sequence.

Instrumentation API can be used to redefine or retransform classes during
run-time. The user can change method bodies, the constant pool and attributes.
However, the retransformation or redefinition must not include removing, adding
or renaming fields or methods. It is also not permitted to do changes in the
signatures of methods or inheritance.

Java agents together with bytecode instrumentation are commonly used to
implement AOP, profiling, mutation testing, and also some form or a part of
monitoring.

Application Performance Monitoring (APM)

APM refers to the management of software application performance to ensure an
expected level of service (measured by metrics). In our context, we are interested
in APM for Java applications. Many of them also use Java Agent. Usually, its role
is instrumenting the target application, adding code to collect data, and exposing
collected data. Some of them expose such data via an embedded web application
or just send them to some remote part of APM, where they are processed.

Such agents often can instrument selected popular frameworks and libraries
like Hibernate, Spring Framework, HTTP clients, JMS, JDBC, Log4j, Kafka, etc.
If the target application uses such a framework or library, then components of

9A simple Java Agent implementation can be found at https://www.baeldung.com/
java-instrumentation

22

https://www.baeldung.com/java-instrumentation
https://www.baeldung.com/java-instrumentation

such framework are instrumented to record the usage of the framework. Some
agents can also observe application servers such as Tomcat, Wildfly, Jetty, etc.

There are many APMs for Java application that uses Java Agent. Currently,
some commercial options, such as FusionReactor, Datadog, Sematext, Dynatrace,
New Relic, Retrace from Stackify, Instana, exist. Some of them have Java Agent
implementation open-sourced.

Of course, there are also fully open-sourced and not commercial solutions.
E.g. Glowroot, Pinpoint, Scouter, Stagemonitor, inspectIT Ocelot.

It’s also common that they use Byte Buddy for the instrumentation in their
Java Agent. It’s easy to learn and use and also less complicated than ASM or
similar frameworks.

Those solutions usually differ in the level of configurability, frameworks and
libraries which they can instrument, how their Java Agent could be extended
(communication protocols, data storage technology support, own plugins support
to extend their functionality), if they can be reloaded during runtime, if they
supply some API to manually instrument the target application, etc.

3.1.8 Libraries for System Metrics
We are also interested in system metrics. System metric is a metric collected,
computed from the system, where the application is installed and run. Typi-
cally, those metrics are gained from the operating system (directly or indirectly).
Examples such metrics are memory usage, network activity, number of running
processes, etc.

To gain those metrics, we prefer to use a Java library which could handle
different platforms, as MANTA Flow Agent can run on different platforms.

One candidate for such a library is SIGAR (System Information Gatherer And
Reporter)10, which supports different operating systems. It is written in C with
bindings to JAVA. Unfortunately, this project seems to be abandoned.

Another Java library, which can be used for fetching system metrics, is OSHI
(Native Operating System and Hardware Information)11 library. It is a free JNA-
based (native) library for Java. No additional native libraries are required and
it provides a cross-platform implementation to retrieve system information, such
as OS version, memory, processes and CPU usage, etc.

Linux and Docker

We have also considered an option to get system metrics from the operating
system via reading specific files on pseudo file systems. This is also a way how
to dig some operational information about the current process or information
about the whole system from the operating system. However, this is typically
done with other libraries that also abstract system metrics, so, the user of the
library doesn’t have to deal with the target platform at all. We also considered
getting some metrics from the MANTA Flow Agent run within a container but
we didn’t find anything interesting which could be observed from the inside of
the container.

10SIGAR project can be found at: https://github.com/hyperic/sigar
11OSHI project can be found at: https://github.com/oshi/oshi

23

https://github.com/hyperic/sigar
https://github.com/oshi/oshi

3.1.9 SDKs and APIs for Metrics Instantiation
Many monitoring frameworks provide a way to define metrics within the user
code. The user usually has to use some client library for that purpose. Those
libraries usually provide some classes/interfaces or annotation based APIs. They
can be used to instrument a target application. Within this section, the word
instrumentation has a different meaning than in bytecode instrumentation. By
instrumentation, we mean taking measurements from an application.

However, there exist also a monitoring framework-agnostic metrics instantia-
tion APIs/SDKs such as OpenTelemetry or Micrometer.

OpenTelemetry

OpenTelemetry [13] is a collection of SDKs, APIs, and tools. It can be used to
instrument, collect, generate and export data such as metrics, traces and logs.
It tries to be vendor-neutral, supports many languages, and also integrates with
Spring framework. OpenTelemetry combines metrics, logging and distributed
tracing into a single set of system components and language-specific libraries. It
combines and replaces the usage of OpenTracing (APIs and instrumentation for
distributed tracing) and OpenCensus (collecting metrics and distributed trace),
which are both deprecated now.

Micrometer

Micrometer [14] is a vendor-neutral application metrics facade for Java pro-
grams. It is also integrated into Spring framework (see Section 3.1.2) and it
supports many popular monitoring systems such as Datadog, JMX, Dynatrace,
Prometheus, Graphite, Influx. It provides interfaces for counters, gauges, timers,
distribution summaries, and long task timers and supports a dimensional data
model.

Metrics Java library

Metrics [15] is another Java library for capturing application-level and JVM met-
rics. In addition to modeling metrics via gauges, counters, histograms and timers,
it supports reporting via JMX, HTTP, CSV files and also Graphite database.

Client libraries

Many existing monitoring solutions also provide their own instrumentation API
or SDK to easily instrument Java applications. Some of them also provide support
for the previously mentioned vendor-neutral API. We should consider the usage
of such client libraries if some existing monitoring solution is chosen.

3.2 General Monitoring Solutions
In the previous section, we have listed Java specific technologies which could be
used to implement monitoring support for MANTA Flow Agent. In this section
we provide existing general monitoring solutions and also introduce Time Series

24

Databases which are suitable for building a custom monitoring solution on the
top of them. We also mention Online Analytical Processing solutions as an alter-
native data technology for metrics data, as some time series implementations do a
performance comparison to some selected Online Analytical Processing solutions.

3.2.1 Pull and Push model
Monitoring solutions have to deal with metrics data. This data have to some-
how get into the monitoring system. We can distinguish two major monitoring
architectures:

1. Push model - metrics are periodically sent by each monitored component
to a central collector, usually via UDP.

2. Pull model - a central collector periodically requests metrics from each mon-
itored component, usually via HTTP.

Many monitoring solutions implement primarily one of those models. There
is no clear winner. Both have pros and cons in specific situations.

In the Pull model, it is easier to control the authenticity and amount of data
as the puller chooses the time and monitoring targets to scrape metrics data
from. However, with this approach, it’s not so straightforward to collect metrics
from the short-lived batch jobs. In the Push model, those jobs could directly
send metrics data to the collector. Although, in this model, the collector could
become the target of a denial of service attack.

The Push model makes usually the discovery of new monitoring targets easier
than the Pull model. In such a model, a new monitoring target has to just notify
the collector about its existence, e.g. it just sends the metrics data directly to it.
Such registering mechanism must be carefully analyzed and implemented, as it
could create space for security accidents.

The Pull model doesn’t fit very well for an event-based monitoring system.
The system, where each individual event should be immediately reported to a
central monitoring system. Naturally, the Push model looks like it is a better
option for such systems.

We will see that both models are popular and they have their representatives
in this chapter. Deeper discusions can be found in [16], [17], [18] and [19].

3.2.2 Time Series Databases
In general, metrics data are usually saved in some time series database. Time
series database is a database that is optimized for storing and serving time series,
timestamp associated data. More introductory text can be found in [20] and [20].

Time series databases usually support multi-dimensional data, e.g. via at-
tached tags to the inserted data, to enable fast queries over dimensions. Such
dimensions could represent e.g. a data center location of the server, the server’s
CIDR block, if the server is a production or development machine, etc.

To get data from a time series database some query language is implemented.
We will see that such query languages are based on SQL (enhanced SQL) or they
are designed from the ground to be more close to time series database’s data

25

model. Such languages are often used not only to query data but also to define
expressions that participate in alerting component, e.g. they are periodically,
on-demand or when data arrived evaluated and checked if the value is between
limits, and if they are not, then an alert is fired.

The way, how data are written into time series database depends on the
implementation.

OpenTSDB

OpenTSDB [21] is an open-source, scalable, distributed time series database writ-
ten on top of open-source HBase, Java non-relational distributed database. The
core component is Time Series Daemon (TSD). Metrics are pushed into TSD, so
the Push model is implemented, as we can see in Figure 3.2:

Figure 3.2: OpenTSDB Architecture

A time series data point consists of a metric name, a timestamp (epoch time),
a value (integer, floating-point, JSON) and optional set of tags (key-value pairs)
as it’s shown in Listing 3.1

cpu. load_1m 1647693790 2.12 dataCenter =dc1 server =web01
cpu. load_5m 1647693790 1.52 dataCenter =dc1 server =web01
cpu. load_15m 1647693790 1.40 dataCenter =dc1 server =web01
cpu. overloaded 1647693790 1 dataCenter =dc1 server =web01

Listing 3.1: Metrics written in OpenTSDB format

To communicate with the TSD, a simple telnet-style protocol, a REST API
or a simple built-in GUI can be used. To read data, e.g. to external systems such
as monitoring frameworks, dashboards, statistics packages or automation tools,
REST API is available.

QuestDB

QuestDB [22] is an open-source SQL time series database built for performance,
written in Java. It is a relational column-oriented database designed for time

26

series and event data. For inserting data one can use InfluxDB line protocol (see
Section 3.2.3), Postgres wire protocol, or Java API if it is used in embedded mode.
REST API can be used for importing data and executing an SQL statement.

QuestDB can integrate with third-party tools and utilities for collecting met-
rics and visualizing data such as Grafana (visualization, see Section 3.3.1), Kafka
(ingesting data from Kafka topics) and Telegraf (uses QuestDB as data storage).

TimescaleDB

TimescaleDB [23] is an open-source relational database for analytics and time
series. It supports full SQL and introduces new capabilities for time series data
management, new query planner and query execution optimizations, new func-
tions for data analytics. TimescaleDB is built on top of PostgreSQL and is packed
as a PostgreSQL extension as we can see in Figure 3.3.

Figure 3.3: TimescaleDB

One interesting open-source project which is built on TimescaleDB is Prom-
scale12. It is a storage system for metrics from Prometheus, the monitoring
platform. We will talk about Prometheus in this chapter too. To query data
from Promscale we can use PromQL or SQL from TimescaleDB.

12More details about Promscale project is available at: https://github.com/timescale/
promscale

27

https://github.com/timescale/promscale
https://github.com/timescale/promscale

Figure 3.4: Promscale Architecture

Graphite

Graphite [24] is an open-source time series database that stores numeric time
series data and renders graphs of this data on demand. It was initially released
in 2008 and it is an older time series database. Graphite is written in Python
2 but native Graphite on Windows is completely unsupported. It supports only
the Push model for feeding the database with metrics.

Graphite consist of 3 software components. Their roles and interactions is
shown in Figure 3.5. Those components are:

1. Carbon - a daemon which listens for time series data (an event-driven net-
working engine).

2. Whisper - a simple database library for storing time series data (allows the
insertion of multiple data points at once).

3. Graphite web app - Python (Django) web app renders graphs on-demand.

Figure 3.5: Graphite Architecture

A Graphite metric consists of a metric name, a metric (numeric) value and
a metric timestamp (epoch time). Graphite also supports tags that could be
appended to the metric name as we can see in the Listing 3.2:

28

collectd .host.load. longterm 2.3 1647699790
disk.used; datacenter =dc1; server =web01 80.2 1647693790
accounts . authentication . attempted 2 1647699790

Listing 3.2: Metrics written in Graphite format

The following three protocols could be used to encode such metrics before
sending them to Carbon:

1. The plaintext protocol.

2. The pickle protocol, Python binary object serialization and de-serialization
support - recommended method for sending large amounts of data.

3. Advanced Message Queuing Protocol (messaging middleware) - Carbon lis-
tens to a message bus.

The standard way of retrieving raw metrics data from Graphite is REST API.
The Graphite web app could be used to visualize metrics directly, or one could
use its render API to generate graphs.

There exist many tools that work with Graphite. Those tools could integrate
in different levels such as metrics data collection (Graphite as data storage),
forwarding metrics data into a different system, visualizing metrics.

3.2.3 Monitoring Toolkits
In this section, we present high-level overviews of the most popular general mon-
itoring toolkits which can be used to implement a custom monitoring platform.

All of them implement their own time series database which can be used as a
standalone component for storing metrics data.

Influx

Influx is very popular open-source time series platform [25], toolkit. The com-
mercial support is available. With the Influx toolkit, we can write metrics data,
query data, process data and visualize them. It implements Push model, but to
imitate Pull model the Telegraf 13 component can be used. We have to distin-
guish versions of Influx platforms, as version 2.0 brings important architectural
changes. One of them is introducing the new query language Flux (functional
scripting and query language optimized for monitoring, alerting, ETL) and depre-
cating InfluxQ, the old SQL-like language for time series data. The older version
of InfluxDB was the part of the TICK Stack14 (visualized in Figure 3.6) and
consists from those components:

• Telegraf - an agent which can be configured to use plugins to scrape metrics
from targets or generate metrics, and send them to InfluxDB instance.

13More details about Telegraf is at https://www.influxdata.com/time-series-platform/
telegraf/

14More information about TICK Stack (InfluxDB 1.x) can be found at https://www.
influxdata.com/time-series-platform/

29

https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/
https://www.influxdata.com/time-series-platform/

• InfluxDB - time series database.

• Chronograf - the user interface and administrative component for InfluxDB
and Kapacitor.

• Kapacitor - a real-time streaming data processing engine. It could be inte-
grated with any anomaly detection engine or alerting framework.

Figure 3.6: Deprecated TICK Stack with InfluxDB 1.x

From version 2.0, InfluxDB15 has integrated the functionality of Chronograf
and Kapacitor. InfluxDB daemon also serves web application where the user can
use such functionalities.

Data could be loaded into InfluxDB via UI of InfluxDB web app, via clients li-
braries (many languages already supported, including Java) or by Telegraf, which
pushes data into InfluxDB.

InfluxDB uses line protocol to write data points. A InfluxDB metric consists
of a metric name, an optional tag set (key-value pairs), a field set (key-value
pairs, at least one pair) and an optional metric timestamp (epoch time). Values
in fields set must have boolean, integer, unsigned integer, float or string type.
Data written in this format are shown in Listing 3.3:

cpuLoad , dataCenter =dc1 , server =web01 load1m =2.12 , load5m =1.52 ,
load15m =1.40 , overloaded =true 1647693790

memUsage , dataCenter =dc1 , server =web01 total =16106127360 , used
=2576980377 1647693790

Listing 3.3: Metrics written in InfluxDB format

InfluxDB client libraries are recommended to use to query data (using the
Flux language) and write data (line protocol or POJO). Those client libraries
just call REST API on InfluxDB.

15The current architecture of Influx platform can be found at https://www.influxdata.
com/solutions/application-performance-monitoring-apm/

30

https://www.influxdata.com/solutions/application-performance-monitoring-apm/
https://www.influxdata.com/solutions/application-performance-monitoring-apm/

Prometheus

Prometheus [26] is another open-source monitoring toolkit, time series database
with a multi-dimensional data model, own query language (PromQL) and alerting
support.

To get metrics into Prometheus, Prometheus has to be configured to scrape
metrics from the targets (jobs, exporters), so, the Pull model for data feeding is
implemented. Targets expose all their metrics via one HTTP endpoint. How-
ever, it’s possible to use the optional Prometheus component Pushgateway to
allow ephemeral and batch jobs to expose their metrics by pushing them into
Pushgateway. Prometheus is then configured to pull, scrape, such data from the
Pushgateway. Prometheus also implements alerting via the optional separate pro-
cess Alertmanager. To visualize collected metrics built-in web UI in Prometheus
can be used, but it’s more common to use other external visualization tools such
as Grafana (see Section 3.3.1).

In the next Figure 3.7 we can see the basic components of the Prometheus
toolkit, integrations to external systems and their interactions:

Figure 3.7: Prometheus Architecture

A Prometheus metric consists of a metric name, an optional set of labels, a
metric float value and a metric timestamp (epoch time) as it is shown in Listing
3.4:

cpu_load_1m { dataCenter =" dc1" server =" web01 "} 2.12 1647693790
cpu_load_5m { dataCenter =" dc1" server =" web01 "} 1.52 1647693790
cpu_load_15m { dataCenter =" dc1" server =" web01 "} 1.40 1647693790
cpu_overloaded { dataCenter =" dc1" server =" web01 "} 1 1647693790

Listing 3.4: Metrics written in Prometheus format

Prometheus provides also client libraries for many programming languages

31

which can be used for application instrumentation to collect metrics from the
application and expose them through the HTTP endpoint.

3.2.4 Online Analytical Processing (OLAP) solutions
With Online Analytical Processing tools [27] we can analyze multidimensional
data interactively from multiple perspectives. As we saw in previous subsections,
metrics data often models multidimensional data via some form of tags, labels.
We have also explored the following OLAP databases as a potential option for
storing and querying such metrics data.

ClickHouse

ClickHouse16 is an open-source column-oriented database management system
that allows generating of analytical data reports in real-time. It tries to be
the best in the industry query performance, while significantly reducing storage
requirements through. It provides SQL interface for data operation. ClickHouse
is horizontally scalable and implements fault tolerance.

Apache Pinot

Apache Pinot17 is an open-source real-time distributed OLAP datastore designed
for the execution of real-time OLAP queries with low latency on massive amounts
of data and events. It is column-oriented database which supports SQL for query-
ing.

Apache Druid

Apache Druid18, similarly as Apache Pinot, is an open-source high-performance
real-time analytics database with SQL support intended for enterprise deploy-
ment. It is more aware of high availability and multitenancy support.

3.3 Post-Processing and Integrating Metrics
As we saw in the previous section, many existing monitoring solutions not only
collect metrics but also integrate with other independent components, systems.
Such components could be external or embedded. They could provide:

• visualization of data. Provided monitoring solutions often support at least
an embedded web application in which it’s possible to visualize current or
historical data. Some of them also provide endpoints to directly gener-
ate graph images or a public API to retrieve data for other visualization
frameworks, toolkits.

16An introduction to ClickHouse is available at: https://clickhouse.com/docs/en/intro
17Apache Pinot in more details is described at https://docs.pinot.apache.org/
18When to use Apache Druid is described at https://druid.apache.org/docs/latest/

design/#when-to-use-druid

32

https://clickhouse.com/docs/en/intro
https://docs.pinot.apache.org/
https://druid.apache.org/docs/latest/design/#when-to-use-druid
https://druid.apache.org/docs/latest/design/#when-to-use-druid

• anomalies detection and alerting. Anomalies detection identifies when a
metric is behaving differently than it has in the past. Alerting is the re-
sponsive component that performs actions based on changes in metric val-
ues. It should be flexible enough to notify operators. Mentioned monitoring
tools often offer such functionality either via configuration interface or via
programing interface.

3.3.1 Visualization tools
To visualize metrics data some external tools could be used. They support the
wide range of different data sources, or one could implement some adapter if the
direct support for a data format is missing.

Grafana

Grafana [28] is one of these softwares. It is an open-source web application that is
mainly used to easily visualize and query data. Grafana supports many different
storage backends for time series data - data sources. OpenTSDB, TimescaleDB,
Graphite, InfluxDB and Prometheus are also officially supported. Each data
source can have a specific query language and that language can be used in
Grafana to query data for visualization in Grafana dashboards. Grafana is very
extensible. The user can provide their plugins to support new data sources and
they can define a new type of visualization panel.

With Grafana, it’s also possible to define alerting rules 19. Rules define eval-
uation criteria that determine whether an alert will fire and it consists of one or
more queries. When an alert is triggered, the user could be notified via different
notifiers, e.g by an email, Discord, Kafka, Pagerduty, Slack, or webhook.

In the next Figure 3.8 we can see some dashboard created in Grafana to
visualize system metrics.

Figure 3.8: Grafana dashboard
19Alerting options of Grafana can be found at: https://grafana.com/docs/grafana/v8.

4/alerting/

33

https://grafana.com/docs/grafana/v8.4/alerting/
https://grafana.com/docs/grafana/v8.4/alerting/

3.3.2 Anomalies Detection and Alerting
Modern motoring tools are able not only to collect data (e.g. for real-time data
visualization and historical inspection) but they also provide some kind of anoma-
lies detection and alerting possibilities. Solutions in Section 3.2.3 support only
static anomalies detection, where the user has to specify what is the critical
value. Dynamic anomalies detection solutions, where the monitoring system can
automatically determine the critical values, e.g. via machine learning, weren’t
analyzed.

The built-in support or an external optional dependency of such solutions
could be separately used to bring such features. Namely Alertmanager20 from
Prometheus toolkit (Section 3.2.3), Kapacitor from Influx platform (Section 3.2.3)
or we could use such functionality from visualization component (e.g. Grafana,
Section 3.3.1).

3.4 Discussion and Technologies Selection
In this section, we provide technologies selection which are finally used in our
monitoring support for MANTA Flow Agent. We compare how suitable they
are to implement such support, their cons and pros, and which difficulties we
would have to overcome if they were chosen. After analyzing the technologies,
toolkits and libraries mentioned in previous sections, we came to the conclusions
summarized in this section.

3.4.1 JMX and Spring Boot Actuator Usage
We cannot use JMX directly as-is. As we have stated in non-functional require-
ments (Section 2.3), we cannot connect to MANTA Flow Agent or its extraction
processes from the remote side. JMX also brings remote management capabil-
ities and this could be prone to security accidents. Such remote management
capabilities enable remote applications to access the MBean Server through JMX
Connectors and JMX Adaptors. To use the full capabilities of JMX in our sce-
nario, we would have to implement a custom JMX Adaptor for MBean Server
on MANTA Flow Agent side to tunnel JMX communication to the remote side
via messaging. Messaging is the preferable way to implement such communica-
tion, see non-functional requirements (Section 2.3). On the remote side, there
would be JMX Connector which could provide the standard interface for JMX
remote management and transparently tunnel queries to the adaptor. This solu-
tion seems to be over complicated and it is against the clear and recommended
architecture of JMX. It could bring problems when considering multiple MANTA
Flow Agents such as aggregation of multiple instances within JMX Connector on
the remote side. So, finally, JMX was not chosen as a technology for managing
and monitoring our applications. However, in the final solution we use MXBeans,
a special type of MBean, from the JMX ecosystem to gather metrics from JVM,
but without any JMX Connector or JMX Adapter use. With MXBeans, we can
easily access JVM metrics mentioned in the functional requirements (Section 2.2).

20Alertmanager integration with Prometheus is described at: https://prometheus.io/
docs/alerting/0.23/alertmanager/

34

https://prometheus.io/docs/alerting/0.23/alertmanager/
https://prometheus.io/docs/alerting/0.23/alertmanager/

Another interesting solution could bring us simple out-of-the-box monitoring
support is Spring Boot Actuator module from Spring framework. However, it
supports only HTTP(S) endpoints and JMX beans to expose metrics data. But,
as it was said in the previous paragraph, we do not want to use JMX and also
make it possible for MANTA Flow Agent to be connected.

3.4.2 APM Solutions
In this chapter, we also mentioned some Application Performance Monitoring
(APM) solutions specific for Java programs. We found also some open-source
implementations. Most of them cover our basic expectations for monitoring sup-
port and offer many additional features (online configuration reloading, different
storage technologies support, API for custom metrics, instrumentation for popu-
lar frameworks and application servers, etc.). They usually use Java Agent (see
Section 3.1.7) at least to gather metrics. Some of them can send metrics data
to an external system (e.g. paid metrics collection platforms). Other ones don’t
send such data, they only expose them to the user via an embedded web applica-
tion. In addition to visualization of data, within this web application, it is often
also possible to configure anomalies detection and alerting.

However, we didn’t find any suitable APM solution which could be simply
integrated and fulfill our important requirements related to the communication
constraints. Many of them are not flexible at this critical point and do not sup-
port an option to modify metrics data flow easily, e.g. via custom commutation
adaptors.

In the first case, when Java Agent does not send or communicate with external
systems, we could reuse them only for metrics gathering and disable embedded
web application. In this way, we would lose all functionality that its embedded
web application brings and we would have to implement some transport adapter
similarly to the JMX case, described in previous paragraphs. Then, those func-
tionalities would be handled by another existing component of the existing solu-
tion or it would be coded from the ground.

The same approach could be used for the second case when Java Agent sends
or communicates with an external system. In this case, Java Agent is usually
lightweight and doesn’t serve any web application, only gathers metrics and sends
them to some external system.

In both cases, it wouldn’t so straightforward to overcome such obstacles. We
also would have to be aware of licensing and maintainability of such modified
solutions. So, the reuse of a Java Agent implementation of an existing APM was
not acceptable.

3.4.3 Time Series Databases and OLAP Solutions
We considered also not Java specific monitoring solutions as well. We found out,
they internally use a specialized database, Time Series Database, optimized for
storing and serving metrics data (time series).

One of them is Graphite. This solution wasn’t chosen as it is not officially sup-
ported on Windows platform. Otherwise, we could use its component Whisper,
a simple database library for storing time series data, and probably the Graphite

35

web application could be also integrated. To get data into the Graphite database
we could directly use Whisper or run the third, the last component from the
Graphite stack, Carbon, a daemon that listens for metrics data. In the next
paragraph, we will see how such metrics data could be gathered. Then, metrics
data would be pushed into Carbon from MANTA Admin GUI. We would have
to manage to get gathered data from MANTA Flow Agent and its extraction
processes to MANTA Admin GUI. Graphite doesn’t implement any anomalies
detection or alerting functionality. It only stores numeric time-series data and
renders this data on demand. So, other functionalities would probably be sup-
plied by integrations with external components. For example, Grafana supports
Graphite as a data source and Grafana can do visualization and alert management
as well.

Next, we have OpenTSDB, distributed time series database. The situation is
similar to Graphite, as it only stores and serves massive amounts of metrics. It
consists of two components: Time Series Daemon (TSD), which can be instanti-
ated multiple times, and Hbase (non-relational distributed database). We could
run TSD on MANTA Admin GUI side and gather and tunnel metrics data from
our applications (MANTA Flow Agent and its extraction processes) similarly to
the Graphite case, and then push those metrics data from MANTA Admin GUI
to TSD. Visualization and alert management could be done within Grafana, as
Grafana supports OpenTSDB, or could be implemented by hand. We didn’t
choose OpenTSDB, as it is targeting a higher volume of data and to be run in
a distributed environment. Using distributed HBase is complex and we wouldn’t
benefit from it, as we do expect a higher volume of data.

A more advanced monitoring toolkit is the Influx platform. With this plat-
form, we have multiple options. We could use the whole stack, Telegraf (collecting
agent) and InfluxDB with its embedded web application. Within this applica-
tion, we can visualize metrics data and also use the functionality of embedded
real-time streaming data processing engine (in the older architecture known as
Kapacitor) to implement custom anomalies detection and to integrate with the
alerting frameworks (all by using internally its query language Flux). However,
Telegraf would have to be placed on MANTA Admin GUI side and we would have
to configure Telegraf to scrape metrics data from MANTA Admin GUI. This data
could get there the same way we described in the previous paragraphs. A bet-
ter option is skipping the presence of Telegraf at all. Instead of that, metrics
data could be filled into InfluxDB directly from MANTA Admin GUI. There is
an official Java client library for that purpose. Alternatively, for visualization,
anomalies detection and alerting, InfluxDB could be integrated with another ex-
ternal system (e.g. Grafana supports InfluxDB). This is the first serious candidate
which we should consider when building our monitoring support.

In the previous paragraphs, we saw that we usually cannot use the suggested
monitoring frameworks as-is and we would have to somehow customize them to
use in our environment. There is also an option to use only their time series
database in standalone mode and integrate them with other custom or existing
solutions. To build a custom lightweight solution we could use QuestDB, an SQL
time series database built for performance (written in Java, so it could be used in
embedded mode easily) or TimescaleDB time series database. Both of them use
SQL-based query language and they do not provide any additional functionalities.

36

They are only time series databases. However, they support many integrations, at
least they have Java client libraries. One interesting integration is that QuestDB
could be used as a drop-in replacement for InfluxDB. So, in the previous para-
graph, we could consider also a scenario where we could use QuestDB which could
communicate with other external solutions via InfluxDB APIs. Another interest-
ing integration option provides Promscale, which is built on TimescaleDB. With
this, we could in real-time import metrics from Prometheus and expose them to
other systems. Those systems can use SQL and PromQL (query language from
Prometheus) to quey this data. Basically, it could be used as a scalable long-term
storage system for Prometheus metrics and make them observable via SQL. Con-
clusively, we don’t see the need to use any of those time-series databases or their
adapters, especially as a starting point, over more standard and well-supported
time-series databases.

As an alternative to a time-series database, we could potentially use some
Online Analytical Processing (OLAP) solution. We find out, that this is not so
good idea and it does not provide benefits over the standard time-series database.
They are well-prepared for a huge amount of data, distributed deployment, high
dimensions and high-performance. They also do not well integrate with other
solutions and require much more resources for their run as a standard time-series
database. So, we excluded this as an option.

Another widely used monitoring toolkit is Prometheus. Its core component
is Prometheus server. Optional ones are Alertmanager and Pushgateway. As
Prometheus uses the Pull model, feeding metrics data is not so straightforward
in our scenario. We could use the standalone component Pushgateway for sending
metrics data from MANTA Admin GUI. Such metrics data could be retransferred
from MANTA Flow Agent and its extraction processes to MANTA Admin GUI.
Alternatively, we could implement our own HTTP(S) endpoint to expose such
data on MANTA Admin GUI side. Then Prometheus could be configured to
scrape data from it. To provide anomalies detection and alert management,
Alertmanager or Grafana could be used.

Finally, we were deciding between Influx platform and Prometheus. They
differ mainly in the primary supported metrics data feeding model (the Pull
model in Prometheus vs the Push model in Influx platform). Both of them are
well supported and provide a good ecosystem (integration with other systems and
tools, client libraries, clean stable API, composable architecture, etc.). InfluxDB
metrics data type spectrum is wider and better suitable for event logging, while
Prometheus metrics data has to have float value. Both support multidimensional
data. Prometheus via labels and InfluxDB via equivalent tag set. Both are pretty
standard in the world of application monitoring. After this discussion, we finally
chose Prometheus as time-series database for our monitoring support. In the
future, MANTA Platform would be more micro-services-oriented and alerting
support could be easier achieved with the Alertmanager from the Prometheus
stack. While trying to implement such functionality in Influx would require more
time and it wouldn’t be so straightforward. How Prometheus is finally integrated
into our monitoring support is described in the next chapter.

37

3.4.4 Monitoring API and Metric Gathering
One of our functional requirements is that we have to provide an API for the
user-defined metrics. This could be achieved in multiple ways. We could use
for that purpose Java client library for Prometheus. However, this client library
is designed to work in a way that it creates HTTP(s) server and expose such
metrics and this is not desired. There is an option to avoid this, but then the
usage of such API wouldn’t be so pleasant. It’s not possible to change the default
behavior.

Alternatively, we could use some other standardized API for custom metrics
instantiation. Micrometer is an example of such API. It looks promising, as it is
a metrics facade for Java applications. We prefer not to be so much coupled with
concrete data storage technology, in our case with Prometheus, and API should
be vendor-neutral. In the end, we conclude that we should design our own API as
most analyzed APIs are pretty simple, they don’t bring many benefits and they
could be easily imitated.

So, instead of the existing client library for Prometheus metrics or vendor-
neutral API, we decided to design our own API. We will see more details in the
next chapter. This gives us more freedom as we can design API more specialized
for our scenarios and context.

To implement a custom API, we decided to give bytecode instrumentation a
try. Alternatively, we could use some complex AOP framework for that purpose.
E.g. by introducing some API, like artificial classes and annotations, which could
be a part of pointcut specifications. Code doing some observations and registering
monitored entities would be in an aspect role. For us, it was easier to insert such
code manually, via a more low-level approach, via bytecode instrumentation.

To insert such code, we preferred Dynamic Instrumentation, but finally, we
ended with Load-Time Instrumentation. Many frameworks could be used for
that purpose. We exclude BCEL and ASM, as they are very low-level. In this
chapter, we also mentioned two instrumentation tools, BTrace and Byteman.
Both of them are not suitable for implementing our custom API, as they use
some scripts written in their scripting language or Java and those are not so
flexible in the sense that they are scripts. They couldn’t be easily used to bridge
or define our custom API. Then, there are other two suitable instrumentation
libraries, Javassist and Byte Buddy. Both of them highlight their useability. To
use Javassist more simply, one has to write Java code into Java String to do
instrumentation, which is not so type-friendly. In Byte Buddy, that all can be
written directly in Java. We ended with the Byte Buddy, as it is also the most
used framework used in Java Agent for APMs, and those agents also do similar
things we expect from our API.

To collect metrics from JVM we decided to use MXBeans from JMX ecosys-
tem. It seems to us that the provided level of observability of running JVM
exposed by JMX is sufficient to fulfill our requirements. If we wanted to have a
deeper insight into what the JVM is doing, the JVM TI could be used. However,
the interface is so low-level and it could significantly slow down the application
if it is used incorrectly.

For system metrics gathering, the JNI or JNA interfaces could be used to
implement platform-specific system metrics collection. To avoid this, we prefer
to use an existing library which does it for us. We selected the OSHI library (see

38

Section 3.1.8), which is capable of capturing the most important system metrics
and process metrics (see Section 2.2).

In general, to gather metrics from our applications, MANTA Flow Agent and
its extraction processes, we decided to use a custom monitoring Java Agent. It
would be responsible for collecting all types of metrics (JVM metrics, system and
process metrics, user-defined via our API) and sending them to MANTA Admin
GUI. That communication would be done with messaging.

3.4.5 Visualization, Anomalies Detection and Alerting
As we use Prometheus as a time series database, there are already some integra-
tions that could handle this for us.

To visualize metrics data to the user we could use one of the following four
options. As Prometheus also serves web application which is capable of doing
that, this is also an option. We do not recommend this option, as its visualization
capabilities are very limited and they should be used mainly for debugging. Next,
we could use Grafana as a visualization application. There, we considered two
modes. In the first case, Grafana can run as a service that is available to the
user. In the second mode, where Grafana is not available to the user directly
and it is used only as a graph engine that renders graphs. Such graphs could be
embedded in our custom front end. Lastly, we could implement a custom front
end for visualization, but to visualize metrics data some other library that can
draw graphs from Prometheus data could be used.

Anomalies Detection and Alerting management could be supplied by Alert-
manager, Prometheus optional standalone component. With Prometheus and
this application, we would be able to configure alerting rules and define alerts
consumers. Another way how we could achieve similar behavior is to use Grafana
alerting capabilities. Those are a little bit limited compared to Prometheus and
Alertmanager, but flexible enough to fulfill our requirements.

All those integrations are still open questions, as they should be more analyzed
and evaluated.

3.4.6 Summary
To summarize, we chose the following stack of technologies to implement our
monitoring support for MANTA Flow Agent:

• Java Agent - to enable monitoring capabilities (collecting and sending met-
rics data to MANTA Admin GUI) for our applications by attaching it to
them at their startup.

• MXBeans from JMX - to gather metrics from JVM.

• OSHI library - to collect system and process metrics.

• Byte Buddy - to implement custom monitoring API for defining and expos-
ing user-defined metrics.

• Prometheus - as a time-series database, primarily for storing and querying
metrics data.

39

• Spring Boot - as an application framework to build monitoring Java Agent.

• JMS - messaging for sending metrics data to MANTA Admin GUI.

The design and implementation details of our provided solution are in the
following chapters.

40

4. Design
In this chapter, we describe the final design for monitoring support for MANTA
Flow Agent, individual aspects of the architecture, what decisions had to be made
when we were considering multiple alternatives.

As we mentioned in the previous chapter, we designed and built a monitoring
solution based mainly on custom monitoring Java Agent and Prometheus, time
series database. A high-level overview of the final architecture can be seen in the
following Figure 4.1. We will discuss about its components in more detail in the
following sections.

Figure 4.1: Final Design

4.1 Monitoring Java Agent
To gather metrics data, the monitoring Java agent is used. It is also responsible
for transporting such data to MANTA Admin GUI. Our monitoring targets are
MANTA Flow Agent and its spawn extraction processes. They run in their own
JVM. We decided to use a strategy where the Java agent’s jar file is passed as
an argument when the application is starting, so the Java agent starts before
the actual application. The alternative is to start the Java agent after the ap-
plication has started. E.g. the user could somehow trigger that the monitoring

41

agent should start. But from the implementation point of view, it’s not often
possible, as in the documentation of package java.lang.instrument it is stated
that an implementation for package java.lang.instrument may provide a mecha-
nism to start the Java agent after the application. We found out, that the Java
implementation from Oracle supports that option, but in general, it’s a JVM
vendor-specific if this feature is supported and how, including such API. We de-
cided that both MANTA Flow Agent and extraction processes should be started
with enabled or disabled monitoring Java agent. For extraction processes, there
is an option within Admin GUI to toggle this functionality, for MANTA Flow
Agent, the desired startup script has to be selected to start MANTA Flow Agent
with enabled or disabled monitoring Java agent.

We will discuss, that the monitoring agent is also able to do instrumentation,
in our case to implement monitoring API. We want to use the Load-Time instru-
mentation, instrumentation when a class file is instrumented while it is loaded by
the JVM. That process is however irreversible. There are also some alternatives.
One option is, that before the instrumentation of some class, we could decide if
we want to do this specific instrumentation, e.g. via some configurations. Al-
ternatively, the class is instrumented always, if a class should be instrumented,
but inserted code could have a logic that could enable or disable inserted func-
tionality. We chose the simplest, less complex way and we do not provide any
option to enable or disable the inserted functionality on the fly. However, we
leave some space for potential implementation for enabling and disabling specific
instrumentation on the application start.

We wanted to keep the configuration as simple as possible. To use the moni-
toring agent, some necessary parameters have to be provided. Those are related
to communication, concretely the JMS broker hostname, port and an optional
keystore configuration for mTLS. All those are shared from the configuration file
for MANTA Flow Agent (application.yml). The last important shared configu-
ration value is Agent ID, which is used to identify the source of metrics data.
We provide also a configuration file only for the monitoring agent (monitoring-
agent.yml). In the initial phase, we provide only a configurable option for the
scraping interval, which determines how often metrics data should be gathered
and sent to MANTA Admin GUI.

In the next Figure 4.2, we can see what is happening within the premain
function, function responsible for initialization of monitoring Java agent. After
the premain method execution, the original application is started. Most of the
configuration loading is handled by the Spring framework. During the implemen-
tation, we encountered some problems with class loading. We resolved that by
providing only light monitoring agent which on its startup bootstraps the real
monitoring agent implementation. More details about why we had to do this and
how it is done, can be found in the next chapter.

42

Figure 4.2: Premain Sequence

4.2 Gathering Model
To implement metrics data gathering, we introduce a gatherer. It is a component
that gathers and potentially pre-computes some metrics data. Gatherers are part
of the monitoring Java agent, they are registered in gatherers registry. Different
gatherers could gather different metrics. The main purpose is to provide some
measure. In general, we can recognize two types of gatherers depending on how
they update their state:

1. A gatherer update is made asynchronous from other sources, components,
so the gatherer doesn’t know when it happens. This type of gatherer could
be used to implement some sort of accounting.

2. A gatherer actively fetches or computes metrics from some sources, e.g from
the system where the application is deployed. As this gathering consumes

43

time and it can be somehow cheaper or more expensive, we could distin-
guish between two categories: long-running gatherings and short-running
gatherings.

The first type of gatherer we will use in the implementation of monitoring
API. There, the user code updates the gatherer state with the up-to-date values.
The second type is suitable e.g. for JVM metrics, where JVM metrics are pooled
periodically from JVM. We also try to avoid long-running gatherings, while such
gatherings potentially could block gathering for a long time.

To support enabling and disabling gatherers we could consider two strategies.
One is allowing a selection of which gatherers should be in action when start-
ing the application and do not consider enabling/disabling gatherers in runtime,
or make this more flexible and allow enabling/disabling gatherers dynamically
during the whole runtime.

Alternatively, we could start MANTA Flow Agent with all suitable gatherers
enabled by default and make it possible on startup to blacklist some of them
and also provide an option for remote disabling. Some complications could arise
when considering disabling gatherers which use some sort of instrumentation as
complete rollback couldn’t be easily achievable. Turning off some gatherers could
be useful if we find out that they are so much affecting performance.

As we said in the previous section, we decided to implement the option when
all gatherers are enabled by default and make it possible to implement gatherers
disabling by blacklisting them on the application startup in the further develop-
ment iterations.

Gatherer design alternatives

The gatherer has to interact with the transport layer. There are 2 options for
how this transport component could work:

(i.) Transport component actively, periodically, reads a gatherer output and
transports it to the remote side.

(ii.) Transport component fetches values from a gatherer only on the demand
when the command for the metrics collection arrives from the remote side.

In both cases, the transport layer could also forwards data for some adapters,
to make retrieved data available by some different channels, e.g. via JMX or
simply write data into a file system.

The following three main strategies for gatherers concerning the data gather-
ing and transporting responsibility have been analyzed:

1. Gatherer prepares values for some transport component which reads those
values. There are two options:

(a) Gatherer as a self living unit. A gatherer lives as a thread and gathers
metrics and prepares metrics data for a potential read by some transport
component.

44

(b) Gatherers are in one group where one gathering control thread calls
gatherers to retrieve their values and save them, prepare them to be
read by a transport component. The whole work of gatherers is done
within such calls.

In both cases, there is a transport component, which can retrieve those
metrics data and that component must read them before forwarding them
to the remote side.
This strategy, when the gatherer prepares values for fetching, has some
decision points, such as if only the last measure should be saved or the last
n measures.

2. Gatherer directly interacts with a transport component. That means, that
a gatherer know how to e.g. send metrics data.
Similar to the previous strategy there are two options for how a gatherer
could live:

(a) Gatherer as a self living unit. A gatherer lives as a thread and a gatherer
interacts with a transport component.

(b) Gatherers are in one group where one gathering control thread calls
gatherers to retrieve their values and interacts with the transport com-
ponent within those calls.

We prefer interaction with the transport component to be asynchronous
and this transport component should send metrics data transparently.
Again, as in the previous strategy 1, both approaches i and ii for a transport
component can be used. For the ii, it is the question, what to do, if no
command for fetching data doesn’t arrive, e.g if such metrics data should
be queued and so on.

3. Transport component picks metrics from gatherers.
In this strategy, the transport component has also the role of a gathering
control thread in alternative 1b.
Both approaches (i and ii) can be used.

In all three gatherer design alternatives both alternatives i and ii for trans-
porting metrics data could be implemented.

We agreed on the use of the approach 3. The first suggestion has the disad-
vantage of creating other unnecessary communication channels between gatherers
and the communication layer, e.g. via a data queue. The second alternative makes
gatherers aware of some communication layer, so such gatherers would have to
implement what the send means and in general, we would tightly couple two in-
dependent responsibilities. The third one, the selected one, the big disadvantage
is that the main control thread could be blocked when retrieving metrics from a
gatherer for an unknown time. We do not provide any mechanism to avoid such
situations. For our gatherer implementations, this could be less probable that
this could happen, as we have the source code of such gatherer implementations

45

under control. Problematic could be the monitoring API usage, as the user could
define a gatherer which could block data metrics retrieving in an uncontrolled
manner. One simple way how to resolve such a special case is that we could
separate retrieving of the user metrics from the retrieving of metrics data from
our default gatherers.

For the transport component, the alternative i have been chosen over alterna-
tive ii. Approach i is similar to the Push model and ii is more closer to the Pull
model used in other monitoring solutions. Approach i makes getting metrics data
into the remote side simpler, as one-way messaging can be used and it can be
implemented as stateless. However, this model could bring some disadvantages
as it is generally described in the Push model, see Section 3.2.1.

The final gathering model in our monitoring Java agent looks like this: on
applications startup, all default gatherers are enabled and registered into the
gatherers registry. On runtime, some other gatherer could be dynamically reg-
istered into the gathers registry as well. This dynamically created gatherer is
created only when the monitoring API is used, more details are in Section 4.4.
We periodically iterate over all registered gatherers and retrieve their metrics
data within one control daemon thread. When we got all metrics data, we send
them in one message to the remote side. That all is repeated after the scraping
time has elapsed, after asynchronously submitting metrics data to the transport
layer. Once a gatherer is registered, then it cannot be unregistered. This whole
model is shown in Figure 4.3:

Figure 4.3: Gathering Model

46

The gatherer can be any class that implements Gatherer interface from the
Listing 4.1. Its essential method, getMetrics, is called regularly only when such
Gatherer is registered into the global gatherers registry.

pub l i c i n t e r f a c e Gatherer {

/∗
∗ @return Nul l i f no data a v a i l a b l e / provided
∗ e l s e cur rent metr i c s data .
∗/

Metr ics ge tMetr i c s () ;

}

Listing 4.1: Gatherer interface

There are two ways how gatherers can be registered. One way is the static
registration, on the monitoring agent initialization. As we use Spring, we decided
to use Spring-managed beans, which can be used to create gatherer objects via
the functional interface GathererProvider, as it is shown in Listing 4.2. In such
a way, gatherers can be collected from the enabled gatherer provider beans. The
second type is for dynamically registered gatherers, created for every user type
that use our monitoring annotation-based API, see Section 4.4. For every such
annotation an Annotation Installation object is required to create, see Listing
4.3. This object is responsible for binding interceptor implementation for specific
method annotation. All its constructor parameters are managed beans. When a
type that contains an annotated method with the target annotation is loaded for
the first time by JVM, then at that moment the interceptor object for that type
is created. This interceptor is also a Gatherer and is registered into the global
registry, more details about interceptor objects can be found in Section 4.4.

@Service
pub l i c c l a s s RandomValuesGatherer implements GathererProvider {

@Override
pub l i c Gatherer getGatherer () {

re turn () −> {
Metr ics met r i c s = new Metr ics (”random”) ;
met r i c s . s e t (Math . random () , ” va lue ”) ;
r e turn metr i c s ;

} ;
}

}

Listing 4.2: A gatherer implementation

In the next Listing 4.3, we can see the installation class for the monitoring
method annotation @TimeIt. We do not show here details for its interceptor
implementation. Interceptors are described in more detail in Section 4.4.

The relationships between @Services classes, monitoring annotations and in-
terceptors classes are shown in the diagram in Figure 4.4:

47

/∗∗
∗ I n s t a l l a t i o n f o r annotat ion TimeIt
∗/

@Service
pub l i c c l a s s T i m e I t I n s t a l l a t i o n {

pub l i c T i m e I t I n s t a l l a t i o n (Gathere r sReg i s t ryProv ider
r e g i s t r yProv id e r , Instrumentat ion ins t rumentat ion) {

. . .
}

}

Listing 4.3: An annotation installation

Figure 4.4: Relationships between @Services classes, monitoring annotations and
interceptors

Finally, in Figure 4.5 we can see what kind of metrics a gatherer implemen-
tation can collect:

48

Figure 4.5: Gatherer’s target metrics types

4.3 Metrics Data Format and Transporting
After metrics data are periodically gathered and collected from the target appli-
cation which we want to monitor, then they have to be sent to MANTA Admin
GUI. To transport metrics data from such applications, MANTA Flow Agent and
its extraction processes, we decided to use one-way messaging. Those messages
are periodically sent after the application is started. This interval is configurable
via MANTA Admin GUI for extraction processes and for MANTA Flow Agent,
the configuration file (monitoring-agent.yml) mentioned in Section 4.1 can be
used.

As the main application framework for our monitoring Java agent is the Spring
Boot framework, we prefer to use its support for JMS messaging instead of the
direct usage of the raw JMS API. JMS messaging is also used across the MANTA
Platform and MANTA provides for developers a module to make working with
JMS messaging even easier.

Our monitoring Java agent takes connection configuration from the configu-
ration for MANTA Flow Agent, from application.yml. To connect to the JMS
broker, it’s necessary to know the broker hostname, port, and optional keystore
configuration if mTLS is enforced. To identify the source of metrics message, an
Agent ID is used, which can be also found in that configuration file.

JMS supports two messaging models. One is the point-to-point model and
the second one is the publisher-subscriber model. In our case, the point-to-point
model fits better as we want to have only one component to consume metrics data,
which is placed in MANTA Admin GUI. However, switching to the publisher-
subscriber model can be done easily. JMS uses terminology JMS Topics and
JMS Queues for the publisher-subscriber model and the point-to-point model
respectively. In that terminology, we use JMS Queues and one such queue is for
us enough. It’s name is queue/MonitoringMetrics.

The data model for internal representation for metrics created from gatherers
is the following. The metric has a name, we prefer snake case, 64bit double value
and an optional set of labels. Such a label consists of a label name and label
value, both are text values. So, we stick to Prometheus data model, see Listing
3.4. As we do not want to support events logging, numeric type is sufficient for

49

our metrics. Labels could be used to add additional information for a metric,
e.g. a phase of a process in which was that metrics collected. Serialized internal
representation for metrics data can be seen in Listing 4.4.

In general, a JMS message consists of headers, properties and a body. The
body could be one of the following types: StreamMessage, MapMessage, TextMes-
sage, ObjectMessage, BytesMessage or XMLMessage type. We decided to use
TextMessage type for the body of metrics messages. Then metrics data from
the gatherer has to be serialized into text form, to be passed into TextMessage.
Information about the type of such encoding is the part of metrics message, it is
in the message header. That header is used to determine which decoder should
be used to decode, deserialize, the delivered metrics data in text form.

For metrics data transport format we chose JSON. We could use more so-
phisticated format, like Protocol Buffers, but we are not dealing with the huge
amount of data and high data throughput, so JSON parsing shouldn’t cause such
a slowdown. However, the implementation should be prepared to change the
metrics format used for serialization and deserialization. The example of metrics
data in transport format is shown in the following Listing 4.4:

[
{

”name” : ” jmx os p ro c e s s o r s ” ,
” va lue ” : 8 ,
” l a b e l s ” :{}

} ,
{

”name” : ” jmx o s i n f o ” ,
” va lue ” : 1 ,
” l a b e l s ” : {

”name” : ”Linux” ,
” arch ” : ”amd64” ,
” ve r s i on ” : ” 5.15.6 − arch2 −1”

}
} ,
{

”name” : ” n e t w o r k s e n t b y t e s t o t a l ” ,
” va lue ” :1 . 33896017E9 ,
” l a b e l s ” : {

” i n t e r f a c e ” : ” wlp1s0 ”
}

}
]

Listing 4.4: Metrics written in transport JSON format

As we said, we use the JMS header to determine which encoder should be
used to deserialized delivered metrics data. In the previous Listing 4.4 we can
see, that it doesn’t contain any timestamps for metrics data. Gatherers do not
handle timestamps for collected metrics values. The timestamp is appended to the
JMS message, as a header. This timestamp value contains the timestamp when
the message was sent, concretely when the control thread collected all metrics
from gatherers and submit that data to the transport layer. The disadvantage of
this approach is, that we do not know when exactly the metric was generated.

50

The advantage is, that gatherers do not have to deal with timestamps at all. For
monitoring purposes, the precise time of the collected metric is not needed.

We prefer the use of JMS headers instead of JMS properties, as they could
be used in the listener methods on the remote side as a selector for receiving
specific messages, which is Spring specific feature. This can be used to dis-
tinguish the different application types from which the message was delivered,
e.g if the message is from the extraction application spawned by MANTA Flow
Agent or directly from the MANTA Flow Agent application. Also, a JMS header
could be used for transporting other metadata not directly related to the met-
rics. For messages from extraction processes those metadata are: AGENT ID,
WORKFLOW EXECUTION ID, SCENARIO NAME, CONNECTION ID and
TECHNICAL CONNECTION ID. The value of AGENT ID is obtained from the
configuration file of MANTA Flow Agent and the others are obtained from the
extraction command, delivered to MANTA Flow Agent, sent by MANTA Admin
GUI. In metrics messages from MANTA Flow Agent, we require only AGENT ID
metadata header to be present. Those metadata helps us to identify the source
of metrics messages and add the context for such metrics messages. Those meta-
data can be optionally used to expand the original label sets of metrics data in
delivered metrics messages. The content of the JMS messages is described in the
schema in the following Figure 4.6:

Figure 4.6: JMS Metrics Messages

On the monitoring agent startup, it’s determined which kind of JMS metrics
messages will be used during the application execution. The specialized imple-
mentation responsible for creating the right type of messages is instantiated as a
Spring bean. This creator then fills JMS messages with the appropriate headers
for the application type. The relationships between different types of messages
and messages creators at the class level are shown in the following Figure 4.7.

51

Figure 4.7: JMS Messages Creators

4.4 Monitoring API
The part of monitoring support for MANTA Flow Agent is also the monitoring
API. With this API, the developer could instrument an application to generate
some metrics data. In our case, the target applications are MANTA Flow Agent
and its extraction processes.

This API is annotation-based and supports two categories of metrics. We have
some predefined annotations which enable collecting some specific metrics, but
we also provide a generic annotation that can be used to export any user-defined
metrics.

Those annotations are intended to be used on instance methods. To use them,
one has to annotate a class with the annotation @Monitor. Then, the annotated
methods will be enhanced with the metrics collecting functionality described in
the following paragraphs. Only one monitoring annotation can be attached to the
instance method. When they are used, the desired method call metrics will be
collected. The name of such metrics starts with the prefix annotation , followed
by the name of annotation and user-defined metric name.

4.4.1 Annotations with specific monitoring sematic
When we use this type of annotation, we are interested in some specific aspect of
the original method call. Those annotations are:

• @TimeIt - exports time-related metrics to the annotated method call, such
as how much time was spent in this function, when the last method call
started and finished, how many times it was called.

• @TrackEnumReturnValue - tracks how many times the method was called
and counts how many times and which enum value across the whole range
of enum values was returned.

• @ExceptionMetered - tracks which types of exceptions and how many ex-
ceptions the method call threw.

52

• @TrackEnumArgument - tracks how many times the method was called with
the enum value. This tracks the values only on the first argument which
matches the TrackEnumArgument argument defining in which enum type
of argument we are interested.

In the following Listing 4.5 we can see how those annotations like @TimeIt,
@ExceptionMetered and @TrackEnumArgument could be used in practice:

@Monitor
c l a s s PostgreSQLExtractor implements Extractor {

@TimeIt
@Override
pub l i c void ex t r a c t () throws Extract ionError {

. . .
ext ract Impl () ;
. . .

}

@ExceptionMetered
p r i va t e void extract Impl () throws Extract ionError {

. . .
f o r (Table t ab l e : t a b l e s)

ext ractTab le (t ab l e) ;
. . .

}

@TimeIt
p r i va t e Metadata ext ractTab le (Table t ab l e) {

. . .
f o r (DdlType ddlType : extractDdlTypes (t ab l e)) {

List <EntityEntry> e n t i t i e s = getEntit iesForDdlType (ddlType ,
schemas) ;

. . .
}
. . .

}

@TrackEnumArgument(enumToTrack = DdlType . c l a s s)
p r i va t e Lis t <EntityEntry> getEnt it iesForDdlType (DdlType ddlType ,

Co l l e c t i on <Schema> schemas) {
. . .

}

. . .
}

Listing 4.5: The use of monitoring annotations

4.4.2 Annotation to expose custom metrics
The developer can expose custom metrics from the code via method annotation
@MetricsProvider. This annotation has to be attached to the method which
returns an instance of Metrics class. Same as in the previous annotations, a

53

class containing such annotated methods has to be annotated with the class
annotation @Monitor to make method annotation effective. To register that
method into the metrics gathering mechanism, one has to instantiate the class
which contains such annotated method. Then, this method will be called regularly
(see scraping interval in Section 4.1) to collect recorded metrics. In the body of
such annotated method, it is recommended to only wrap metrics data into an
instance of the Metrics class and don’t do any time-consuming operations. It’s
up to the developer to continuously update the state of exported metrics data.

Custom metrics are recorded into an instance of the Metrics class. With this
class, it is possible to expose 64bit numeric metrics value with its name and the
set of labels. Those labels should be primarily used to define the dimension on
which the multidimensional queries could be executed, e.g. to identify the source
of metrics or differentiate request types or stages. However, the space of labels
values should be bounded and they shouldn’t be used to track some frequently
changing values. In other words, the user should avoid using labels to store
dimensions with high cardinality.

In the following Listing 4.6, we can see how such API could be used to expose
some extractions statistics while the application is running:

@Monitor
c l a s s E x t r a c t i o n S t a t i s t i c s {

@MetricsProvider
p r i va t e Metr ics exposeMetr ic s () {

Metr ics met r i c s = new Metr ics (” e x t r a c t i o n s ”) ;

met r i c s
. s e t (a s se t sExtrac ted , ” a s s e t s ” , ” ex t rac t ed ” , ” t o t a l ”)
. s e t (assetsPending , ” a s s e t s ” , ” pending ” , ” count ”)
;

f o r (Map. Entry<Str ing , Str ing > durat ions : s tage sDurat ions .
entrySet ()) {
St r ing s tage = durat ions . getKey () ;
S t r ing durat ion = durat ions . getValue () ;
met r i c s

. withLabel (” s tage ” , s tage)

. s e t (durat ion , ” s tage ” , ” durat ion ” , ” seconds ”)
;

}

metr i c s
. withLabel (” v e r s i on ” , BUILD VERSION)
. withLabel (” l i c e n s e ” , getLicenseMode ())
. s e t (1 , ” i n f o ”)
;

r e turn metr i c s ;
}

. . .
}

Listing 4.6: The use of @MetricsProvider annotation

54

4.4.3 Annotations and Interceptors
Introduced monitoring annotations are method annotations. To implement their
functionality, we use Byte Buddy, a code generation library (see Section 3.1.6).
With this library, we can modify Java classes during the runtime of a Java appli-
cation and without the help of a compiler.

A monitoring aspect is represented by some interceptor class. The instance
of an interceptor can enhance the original method functionality. In our case,
it usually does some measure on the original method call. Interceptor is also a
gatherer and it can be registered to the gatherers registry.

An interceptor object is created for every user type which uses the monitoring
annotation associated with this interceptor. To register such dynamically created
interceptor to gatherers registry, an annotation installation object is used. It is
also responsible to register a class transformation, which modifies the original
method, that all with Byte Buddy’s help.

To summarize, on the code level, for every monitoring annotation we also
have an interceptor class. There is also a dedicated installation class for such a
combination that connects those entities. The instance of such class registers the
action that creates the instance of interceptor and registers it to the gatherers
registry. This action is taken only on types that contain the monitoring annota-
tion, and when such types are loaded by JVM. All those relationships are shown
in Figure 4.8. More implementation details can be found in Section 5.1.3.

Figure 4.8: Annotation Installation

4.5 Metrics Data Integrations
In the previous sections, we talked about how metrics data are gathered and
transported from the monitoring Java agent to MANTA Admin GUI. The main
consumer of such metrics data is part of MANTA Admin GUI.

On the MANTA Admin GUI side, there are listeners for metrics messages.
Those messages are forwarded to a consumer. There are usually metrics messages
deserialized based on the encoding header value and published, e.g. into the file
system or Prometheus.

55

We have to be aware of different scenarios of how MANTA as a product could
be deployed, e.g. from a compact solution to highly scalable deployments. For
us it means, that we have to be ready to simply switch the way how and where
metrics data are stored.

As a result, we suggest using Pushgateway from the Prometheus stack (see
Figure 3.7) to propagate metrics data to Prometheus. This service listens for
metrics data. We can push metrics data from listeners directly to the Push-
gateway. Then, Prometheus can be configured to pull those metrics from such
Pushgateway instance.

For compact deployments, we suggest writing metrics data directly into the file
system. We chose CSV format as it’s in both cases, machine and human readable
enough for our needs. Metrics data in CSV format are shown in Listing 4.7. The
first column is a timestamp of gathered metrics with millisecond precision. The
timestamp column is followed by metrics columns which can optionally contain
labels set.

ts , cpu load average 1m , cpu ms [cpu=0|mode=user] , cpu f r eq hz [cpu=0]
1647434548477 ,2 .42 ,538360 ,2394947000
1647434551996 ,2 .63 ,538000 ,2531826000
1647434555635 ,2 .82 ,537390 ,2716053000
1647434559090 ,2 .63 ,536650 ,2716575000
1647434562519 ,3 .32 ,535420 ,2799157000
1647434565906 ,2 .67 ,535050 ,2806688000
1647434569307 ,3 .34 ,534780 ,2843376000
1647434572712 ,2 .81 ,534610 ,2852152000
1647434576123 ,2 .67 ,534300 ,2936554000
1647434579511 ,3 .34 ,533330 ,3003000000

Listing 4.7: Metrics data in CSV format

As we can fill metrics data transferred from the monitoring agent into the
time series database Prometheus, other advanced integrations could be easily
introduced. For simple metrics visualization, the graph plotting functionality
of the embedded web application of Prometheus could be used. Alternatively,
Grafana (see Section 3.8), a widespread and advanced visualization platform,
could be used. Similar holds for the alerting integrations, as Grafana is capable of
that, or Alertmanager from Prometheus stack could be used. The final suggested
metrics data integrations can be seen in the following Figure 4.9:

56

Figure 4.9: Metrics Data Integrations

57

5. Implementation Details
In this chapter, we provide more details about gatherers implementations and the
integrations of the output of the Java monitoring agent within MANTA Admin
GUI.

5.1 Metrics Gathering
As the result of the analysis of the functional requirements, we want to gather
metrics from the running JVM, metrics from the system where MANTA Flow
Agent is deployed, metrics related to the JVM process from the OS perspective,
and metrics exposed by the monitoring API. In the next sections we describe how
we achieved the gathering of such metrics.

5.1.1 JVM metrics
To gather metrics related mainly to the running JVM we implemented Gatherer
interface around MXBeans instances. From the following MXBeans we are able
to collect the listed metrics:

• RuntimeMXBean - JVM information like JVM vendor, name, version, up-
time and the start time of the JVM.

• OperatingSystemMXBean - operating system’s basic information like the
OS name, OS version and OS architecture. It exports also the number of
available processors to the JVM and the system load average for the last
minute.

• MemoryMXBean - heap and non-heap memory usage like the amount of
memory that is committed for the JVM to use, the maximum amount of
memory that can be used for memory management, the amount of used
memory.

• GarbageCollectorMXBean - the number of collections and the approximate
accumulated collection time for the specific types of garbage collectors.

• ClassLoadingMXBean - the total number of loaded classes into JVM, the
number of currently loaded classes in JVM, the total number of classes
unloaded since the JVM has started execution.

• ThreadMXBean - information about the thread system of the JVM like the
current thread count, the current number of the daemon threads, the peak
live thread count, and the total number of the started threads.

To implement Gatherers wrapping MXBeans, we have to be aware of the right
package for MXBeans interfaces. The JVM platform-independent interfaces are
in the package java.lang.management. We also encountered situations when the
provided value from MXBean wasn’t meaningful at all, e.g. it was always -1
on the Windows platform, as it is a valid value from unsupported platforms.

58

To partially resolve it, we use JVM vendor-specific interfaces (from the package
com.sun.management) which provide alternative functions to retrieve desired val-
ues. However, to access such interfaces in the code, we do not directly import
those interfaces from a vendor package but we use the MBeanServer ability to
dynamically call those JVM vendor-specific interfaces to retrieve desired metrics.
Metrics gathered from the JMX system have prefix jmx in their metric name.

5.1.2 System and Current Process Metrics
To get metrics from the system where MANTA Flow Agent is running and from
the current process we use the library OSHI (see Section 3.1.8). This library is
capable to retrieve the following system metrics:

• CPU metrics: the number of physical CPU packages/sockets in the system,
the number of logical and physical CPUs available for processing, the CPU
signature, the maximum frequency and the current frequency of the logical
CPU, the system load average (if available) for 1, 5, and 15 minutes. For
every logical CPU we track time spent in User, Nice, System, Idle, IOwait,
Hardware interrupts, Software interrupts/DPC and Steal state. For all
those states also a system-wide CPU spent time is provided.

• RAM metrics: the amount of actual physical memory and the amount of
currently available physical memory.

• disk metrics: the number of read and written bytes from the disk, the
number of reads and writes from the disk, the time spent reading or writing,
disk size.

• file system information: the total space and usable space for every mounted
volume.

• network metrics: received and sent bytes for every network interface, IPv4
and IPv6 addresses for every network interface.

• OS information: the OS manufacturer, family and bitness, the time of boot
and uptime, the number of currently running threads and processes, the
hostname.

With the use of the OSHI library, we also retrieve the following metrics related
to the currently running process:

• disk metrics: the number of read and written bytes.

• RAM metrics: the Resident Set Size and the Virtual Memory Size.

• file system information: the number of opened files.

• process information: the process ID, the process start time, the user time
and kernel time used by the process, the number of threads being executed
by the current process.

59

• network information: connections attributes for the current process network
connections like the local port, the foreign port, the type of connection (e.g.
TCPv4, UDPv6) and the state (for TCP only).

For every category of metrics and the source (system/the current process)
we implement the Gatherer interface to wrap method calls on OSHI objects to
retrieve those metrics. To distinguish category we use prefixes in their metrics
names such cpu, disk, fs, mem, os, network. Metrics related to the current process
contain prefix process in their metric name.

5.1.3 Metrics from the Monitoring API
We implemented the monitoring annotation-based API which can be used to track
specific aspects on the instance methods or to expose user-defined metrics. To
track a specific aspect of the method call, developer has to annotate the method
with the specific method annotation. To expose user-defined metrics, the devel-
oper has to annotate the method(s) responsible for exporting user-defined metrics
with the method annotation. In both cases, classes containing such method an-
notations have to be annotated with the class annotation Monitor. This marker
annotation serves for the user to indicate the presence of the monitoring method
annotations within the class and also to speed up and simplify inserting the mon-
itoring aspect into the target class. For inserting the monitoring aspect we use
Byte Buddy’s AgentBuilder which can be used to register class transformation.
The marker class annotation Monitor is used for filtering classes that can be
potentially modified.

As a proof of concept we implemented the following annotations to track the
specific method call metrics: TimeIt, TrackEnumReturnValue, ExceptionMetered
and TrackEnumArgument. More information about their semantics can be found
in Section 4.4.1. Metrics exported by those annotations have metric name prefix
annotation.

To export custom metrics, the user can use method annotation @Metric-
sProvider on a method returning our Metrics class. More information about the
usage can be found in Section 4.4.2. Metrics exported by this annotation have
metric name prefix custom.

For all monitoring annotations it holds, that they have the installation class,
which instance is responsible for registering their class transformation logics.
Within such transformation, which is triggered on the class loading into JVM, an
instance of the interceptor, specific for annotation, is created. This interceptor
is also Gatherer which is registered into the gatherers registry. More details are
described in Section 4.4.3.

For MetricsProvider method annotation, its interceptor’s method afterCon-
structor is called when an instance of the type, which uses MetricsProvider an-
notation, is constructed. Within this method, the reflection is used to find all
methods on the current type which return Metrics class and do not take any ar-
guments. For every such instance method a Gatherer instance is created, which
only calls such method to retrieve metrics, and this gatherer is registered to the
gatherers registry. This flow can be seen in Figure 5.1. Interactions between
gatherers registry and thus dynamically created gatherers are shown in Figure
4.3.

60

Figure 5.1: Creating an instance containing @MetricsProvider method

For other monitoring method annotations, the interceptor specific for such
annotation is instantiated for every type which uses such method annotation.
The original method is replaced with the method provided by the interceptor.
This interceptor contains a map of objects (of type for which the interceptor
was created) to method call dispatchers. Method call dispatcher has a map
of the original method names and references to their implementation. When
an intercepted (annotated) method is called, then it goes through the double
dispatch. Firstly, it’s checked if any method, with the monitoring annotation
specific to the interceptor, on the target object was ever called (via the first
map). If not, then a method call dispatcher is created. On the method call
dispatcher, it’s checked if the method in the question on the current instance
was ever called (the second map). If not, then create a method wrapper. When
such method call wrapper is instantiating, it has access to the calling object,
annotation values, and to the original method handler, so, it can customize the
final behavior of the intercepted method based on those values. If such method
call wrapper already exists, it’s called. Within its implementation, usually some
measuring logic wrapping the original method call is done. See this flow in the
following Figure 5.2:

61

Figure 5.2: Flow of an annotated method call

When the interceptor for some type is created, then it’s also registered into
the gatherers registry. Interactions between thus dynamically created gatherers
and the gatherers registry are shown in Figure 4.3. Metrics collecting is done
via iterating over both maps while method call wrappers are also gatherers. The
first map maps objects (of the type for which this interceptor was created) to
the method call dispatchers. Methods call dispatchers map method name to
method call wrappers. From this follows the need for the use of concurrent
implementations for maps, as method call wrappers are created dynamically on
the first method usage.

To implement other monitoring annotation, e.g. TrackSomeAction annotation
listed in Listing 5.1, the installation class has to be provided, as it is shown in
Listing 5.2. The interceptor class for TrackSomeAction is listed in Listing 5.3.

62

/∗∗
∗ Monitoring method annotat ion @TrackSomeAction
∗/

@Target (ElementType .METHOD)
@Retention (Retent ionPo l i cy .RUNTIME)
pub l i c @ in t e r f a c e TrackSomeAction {

. . . // some annotat ion f i e l d s
}

Listing 5.1: TrackSomeAction method annotation

/∗∗
∗ I n s t a l l a t i o n f o r the method annotat ion @TrackSomeAction
∗/

@Service
pub l i c c l a s s TrackSomeAct ionInsta l la t ion extends

Annotat ion Ins ta l l a t i onBase <TrackSomeAction> {

/∗∗
@param r e g i s t r y P r o v i d e r − ga the r e r s r e g i s t r y prov ide s ga the r e r s

r e g i s t r y where the i n t e r c e p t o r w i l l be r e g i s t e r e d a f t e r i t s
c r e a t i o n

@param inst rumentat ion − in s t rumentat ion to i n s t a l l on t h i s
i n s t a l l a t i o n

∗/
pub l i c TrackSomeAct ionInsta l la t ion (Gathere r sReg i s t ryProv ider

r e g i s t r yProv id e r , Instrumentat ion ins t rumentat ion) {
super (TrackSomeActionInterceptor : : new , TrackSomeAction . c l a s s ,

r e g i s t r y P r o v i d e r . g e tReg i s t ry () , ins t rumentat ion) ;
}

}

Listing 5.2: Installation class for @TrackSomeAction

/∗
∗ I n t e r c e p t o r f o r the method annotat ion @TrackSomeAction
∗/

pub l i c c l a s s TrackSomeActionInterceptor extends
InterceptorForAnnotat ionBase {

/∗∗
∗ @param originalTypeName name o f type on which annotat ion was

found
∗/

pub l i c TrackSomeActionInterceptor (S t r ing originalTypeName) {
super (originalTypeName) ;

}

@Override
pub l i c MethodCallWrapper createMethodCallWrapper (Object ins tance ,

Method or ig ina lMethod) {
re turn new CallWrapper (ins tance , or ig inalMethod , typeName) ;

}

63

pr i va t e s t a t i c c l a s s CallWrapper extends MethodCallWrapperBase<
TrackSomeAction> implements MethodCallWrapper {

/∗∗
∗ @param in s tance to be i n t e r c e p t e d
∗ @param method method on the in s t anc e to be i n t e r c e p t e d
∗ @param typeName type name o f i n s t anc e c l a s s
∗/
pub l i c CallWrapper (Object ins tance , Method method , S t r ing

typeName) {
super (TrackSomeAction . c l a s s , ins tance , method , typeName) ;
// Here we can c o n f i g u r e the behavior o f the ‘ c a l l ‘ method

based on the value from :
// 1 . the Method in s t ance (java . lang . r e f l e c t) o f the o r i g i n a l

method
// 2 . the in s t anc e on which the method i s i n t e r c e p t e d
// 3 . annotat ion va lue s acce s s ed v ia
// t h i s . annotat ion .$SOME ANNOTATION FIELD
. . .

}

/∗∗
∗ @param c a l l a b l e c a l l a b l e ob j e c t o f the o r i g i n a l method
∗ @param args argument o f the o r i g i n a l method
∗/
@Override
pub l i c Object c a l l (Ca l lab le <?> c a l l a b l e , Object [] a rgs) throws

Exception {
// t h i s i s c a l l e d in s t ead o f the o r i g i n a l method
. . . // do some measure , we have a l s o a c c e s s to the method c a l l

arguments
Object r e s u l t = c a l l a b l e . c a l l () ; // c a l l the o r i g i n a l method
. . . // do some measure
re turn r e s u l t ;

}

/∗∗
∗ @return metr i c s r e l a t e d to the one method , u sua l l y

accumulated during method c a l l s
∗/
@Override
pub l i c Metr ics ge tMetr i c s () {

// f i l l Metr ics ob j e c t with up−to−date metr ics , u sua l l y
c r e a t i n g the new in s t ance o f Metr ics c l a s s

. . .
r e turn metr i c s ;

}
}

}

Listing 5.3: Interceptor for @TrackSomeAction

The overview of the important interfaces and classes used to implement mon-
itoring annotations is in Figure 5.3:

64

Figure 5.3: Class hierarchy for monitoring annotations implementation

5.2 Monitoring Java Agent Bootstrapping
When we were implementing the monitoring Java agent, we encountered some
class loading problems. When we attached the monitoring Java agent to some
Spring application that uses the same logging framework Log4j as our monitoring
agent, the logging framework wasn’t correctly initialized. After the investigation,
we found out, that Java agents are loaded by the System class loader. This causes
that the Java agent could use classes and resources from the target application
and vice versa. This could cause classes clashes and bring unexpected behavior,
especially for frameworks that do complex logic on their initialization. This was
also our case. To resolve this issue, we tried to use Apache Maven Shade Plugin
to shade (rename/realocate) the packages of the used dependencies. At the first

65

sight, it looked like it works, but it wasn’t a clean solution. The annotation
support stopped working.

The problem was, that monitoring annotations and auxiliary monitoring types
used in the target application were loaded by a different class loader than moni-
toring annotations used in the code which determines if some class transformation
should be taken. The expected actions weren’t taken because the same class defi-
nition loaded by different class loaders is seen as two distinct classes by the JVM.
We use type equality tests on annotations to determine if the interceptor for that
annotation should be instantiated.

Class loaders in Java are responsible for dynamic loading Java classes to the
JVM during runtime. Those classes are loaded on demand. Class loaders in
Java form a class loader hierarchy. Class loaders use the delegation model, where
on request to find a resource or class, a class loader instance will delegate the
search of not loaded entity to the parent class load loader. Only if the parent
delegation search was unsuccessful, it tries to search an entity by itself. Standard
Java class loader hierarchy consists of the root Bootstrap class loader. Its child
is the Extension class loader and on the last level is the System class loader (see
Figure 5.4).

Figure 5.4: Standard Java class loader hierarchy

To resolve our equality and visibility problems, we implemented a very thin
Java agent, which contains two jar libraries. One is the real monitoring agent
implementation and the second one is the library jar file. The library jar file
contains interceptors and monitoring types (annotations, interfaces, classes) that
can be used in the user code, via monitoring API, and also in the monitoring agent
implementation. The monitoring agent is then responsible only to unpack those
jars and append them to the appropriate class loaders. Over the monitoring agent
implementation’s jar file we create a new URLClassLoader, a class loader capable
of loading classes and resources from the jar files, and append it under the parent
of the System class loader. The library jar file is appended to the Bootstrap
class loader search path, via the method on the instrumentation object (from
java.lang.instrument). This is illustrated in Figure 5.5.

66

Figure 5.5: Class loader hierarchy while using monitoring agent

With this approach, both the target application and monitoring agent use the
same common classes and interfaces loaded by the Bootstrap loader and they
can interact via them. Using own class loader for internal implementation and
dependencies for the monitoring agent implementation we avoid classes clashes,
as those classes and resources are not visible to each other across our class loader
and the target application class loader (usually the System class loader or a deeper
class loader, one of its descendants).

5.3 MANTA Admin GUI Integrations
On the MANTA Admin GUI side, we implemented JMS listeners to consume
metrics messages by Consumer. We implemented one consumer, which uses Pub-
lisher implementation to publish metrics data into the file system in a form of
CSV files, as described in Section 4.5. The overview of classes and interfaces of
used in implementation is in Figure 5.6.

Figure 5.6: Classes and interface used by metrics messages listeners

CSV file publisher deserializes metrics messages by a deserializer determined
by the JMS header value. We currently use JSON format as a transport format.

67

The file publisher also uses metadata from the message headers, which deter-
mines the final paths of the metrics files. The overview of metrics messages and
their headers can be found in Section 4.3. Metrics data are by default stored
in the directory ${installDir}/serviceutility/webapps/manta-admin-gui/
WEB-INF/data/agent-metrics. In the following Listing 5.4, we can see where
the metrics file could be stored in the file system. We also implemented a mecha-
nism to limit the maximum size of metrics files. If the file size achieves a defined
limit, the file is rolled out to the file with the suffix old.

agent−metr i c s
Agent [5 a670501 −72bf −4576−9d36−8c9dd94f405e] # agent ID

agent
metr i c s . csv

workflow
3 # workflow execut ion ID

postgresq lDic t ionaryMappingScenar io # s c e n a r i o name
Postgre sq l −DEV−3 # connect ion name

metr i c s . csv
Postgre sq l −DEV−1

metr i c s . csv
p o s t g r e s q l Ex t r a c t o rS c e na r i o

Postgre sq l −DEV1
metr i c s .1644505114780 . o ld
metr i c s .1644505314780 . o ld
metr i c s . csv

5
postgresq lDic t ionaryMappingScenar io # s c e n a r i o name

Postgre sq l −DEV−3
metr i c s . csv

Postgre sq l −DEV−1
metr i c s . csv

p o s t g r e s q l Ex t r a c t o rS c e na r i o
Postgre sq l −DEV1

metr i c s . csv
Agent [2 c61bef0 −6c4c−4e15−b4a0−d1417527376f]

agent
metr i c s . csv

workflow
4

postgresq lDic t ionaryMappingScenar io
Postgre sq l −DEV−3

metr i c s . csv
Postgre sq l −DEV−1

metr i c s . csv
p o s t g r e s q l Ex t r a c t o rS c e na r i o

Postgre sq l −DEV1
metr i c s . csv

Listing 5.4: Metrics files on the file system

We didn’t implement any other publishers and integrations. The most critical
integration, feeding metrics data into Prometheus has to be more analyzed, as
it would probably cause bigger changes to the current MANTA Flow Platform
deployment process. This is still an open question as MANTA currently is expe-
riencing huge architectural changes. For now, we just use a script that can fill
metrics data from the metrics files into the Prometheus database.

68

${installDir}/serviceutility/webapps/manta-admin-gui/WEB-INF/data/agent-metrics
${installDir}/serviceutility/webapps/manta-admin-gui/WEB-INF/data/agent-metrics

6. Evaluation
Within this chapter, we shortly summarize the limitations of the current imple-
mentation and how to use monitoring support for MANTA Flow Agent from the
user and develop perspective.

6.1 Usage
To use annotation-based monitoring API from the Section 4.4.1, the developer has
to import them from the module manta-flow-agent-monitoring-agent-annotations
(see Attachment A.1). They can be used to track some aspects of an instance
method. If the user wants to implement custom metrics providers (see Sec-
tion 4.4.2), the module manta-flow-agent-monitoring-agent-client (see Attach-
ment A.1) has to be used, as it contains the class Metrics which is coupled with
the custom metrics providers usage. In both cases, to activate the monitoring
method annotations functionality, the class has to be annotated with the marker
annotation @Monitor. More details about the process of implementing new an-
notations and internals can be found in Section 5.1.3.

MANTA Flow Agent (which is not shipped as a thesis attachment) currently
contains two types of startup scripts. One can be used to start MANTA Flow
Agent with enabled monitoring supported for the main MANTA Flow Agent
process and the second one without such support. On the MANTA Admin GUI
side, the user can select if the extraction processes should be monitored or not.
That global option per technology can be found in the Configuration tab, under
the CLI options. There the user can choose for which technologies the MANTA
Flow Agent can be used. Now, only four technologies (Postgresql, Oracle, Qlik
Sense, MSSQL) can run the extraction phase on MANTA Flow Agent. The
advanced configuration has to be edited to enable this, as it is shown in Figure
6.1. In this figure, we can see that we set Collect runtime data option to true and
Sampling interval to 3 (seconds) for MSSQL global configuration. Alternatively,
this can be set per connection, similar to the previous case, while defining a new
connection. More information can be found in the MANTA Admin GUI user
manual.

69

Figure 6.1: Configuring MANTA Admin GUI

Currently, only CSV File Writer for metrics data is implemented. Those met-
rics CSV files will appear under the ${installDir}/serviceutility/webapps/
manta-admin-gui/WEB-INF/data/agent-metrics. The created directory struc-
ture is described in Listing 5.4 and an example of metrics data in a CSV file can
be found in Listing 4.7 or in sample-metrics.csv file from Attachments A.1. To
export values from CSV files to the Prometheus database, one can use provided
script convert-csv-to-prometheus.py (see Attachment A.1). This process is more
described at the head of the script.

One can use the Prometheus default visualization tool to explore the gathered
data. This is shown in Figure 6.2, alternatively, Grafana could be used, see
Figure 3.8. Other data integrations (see Section 4.5 and Section 3.4.5) are not
configured/implemented as this is still an open question and out of the scope of
our Proof Of Concept implementation.

70

${installDir}/serviceutility/webapps/manta-admin-gui/WEB-INF/data/agent-metrics
${installDir}/serviceutility/webapps/manta-admin-gui/WEB-INF/data/agent-metrics

Figure 6.2: Visualized metrics data in Prometheus visualization tool

6.2 Testing and Limitations
As a result of this thesis, we provide an implementation of a Java agent, a moni-
toring agent. For this implementation, we implemented integrations tests to test
the expected functionality. In those tests, MANTA Admin GUI, monitoring agent
and MANTA Flow Agent are participating.

The current implementation has some limitations, especially for monitoring
API. One of them is that method annotation can be used only on method in-
stances (no static method support). Also, it is not possible to use them on the
interfaces. Another limitation is that at most one monitoring annotation can be
attached to the method, so they cannot be combined.

We also encountered some Byte Buddy limits which forced us to use the con-
current map for intercepted method dispatching (more details in Section 5.1.3).
This intuitively limits us to using monitoring annotation on not hot functions.
This is not so big problem, as our methods of interests usually deal with net-
work. However, no automatic performance overhead measurements weren’t im-
plemented yet, only manual ones (running full extraction with enabled/disabled
monitoring support) which showed no significant slowdowns (extractions are IO
bounded).

More attention should be given to the main gathering loop and we should im-
plement more defensive mechanisms to forbid the possibility of gathering blocking.
See Section 4.2 where we discuss the roots and the possible solutions.

71

7. Conclusion
In this thesis, we presented the basic traits of MANTA Flow Agent and its role in
MANTA Flow Platform. The most important aspects, such as interactions with
other components from MANTA Flow Platform, concretely MANTA Admin GUI,
and deployment plan were described. We discussed about the motivation and the
importance of bringing monitoring support for MANTA Flow Agent.

To design and implement such support, we collected functional and non-
functional requirements. We identified many functionalities which could the fu-
ture monitoring support for MANTA Flow Agent provide us. The most notable
are: the support for the collection of different metrics kinds (JVM metrics, sys-
tem metrics, current process metrics, user-defined metrics), metrics inspection
and anomalies detection.

Then we presented the analysis of different monitoring approaches and moni-
toring technologies suitable for our use case. Some of them were more general and
some of them were more specialized for Java program monitoring, since MANTA
Flow Agent is a Java application. None of the existing solutions could be easily
used as-is. This was usually caused by our non-functional requirements. Some
workarounds, which could be used, exist, but they usually require more non-
standard modifications to the existing solution and to the recommended usage.
Licensing could cause other problems too.

Finally, we decided to design and implement a custom solution based on the
Java agent, which is very often used for monitoring purposes. We suggested using
time series database for storing metrics. Prometheus was selected as a time series
database. There was also discussion about why this one is preferable (see Section
3.4.3). One of its advantages is the existence of integrations, which could be used
to fulfill some of our functional requirements, so we wouldn’t have to provide
custom implementations to fulfill them.

The current prototype implementation consists of the monitoring Java agent,
which is capable to gather most of the metrics mentioned in the requirements.
To collect user metrics data, we decided to implement annotation-based API
as a form of non-intrusive API (if the monitoring is disabled, then the original
code/behavior won’t change). Internally it uses byte code instrumentation. This
was the root of class loader related problems, which we struggled with. It resulted
in a special bootstrap process implementation.

Metrics data gathered by the Java agent are written on the MANTA Admin
GUI side, into CSV files only. Other integrations are not fully implemented.
To import data into Prometheus, a manual step is required. Other Prometheus
integrations have to be manually configured. The full integration requires more
analysis, especially for deployment phases.

There are many directions in which the current implementation could be im-
proved. We should investigate more the Prometheus data model and the current
metrics name/labels to utilize and not misuse labeling functionality. The wrong
usage could cause higher DB pressure. Annotation API should be revised to be
more pleasant to use, e.g. the most used cases could have their own annotations.

72

Bibliography
[1] Oracle. Java™ Management Extensions (JMX™) Specification, version

1.4. https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/
JMX_1_4_specification.pdf.

[2] Spring Boot Actuator Web API Documentation. https://docs.spring.
io/spring-boot/docs/2.6.7/actuator-api/htmlsingle.

[3] Oracle. Java Native Interface 6.0 Specification. https://docs.oracle.com/
javase/8/docs/technotes/guides/jni/spec/jniTOC.html.

[4] Oracle. JVM™ Tool Interface, Version 1.2. https://docs.oracle.com/
javase/8/docs/platform/jvmti/jvmti.html.

[5] Apache Commons BCEL™ Documentation. https://commons.apache.
org/proper/commons-bcel/.

[6] ASM - Java bytecode manipulation and analysis framework. https://asm.
ow2.io/documentation.html.

[7] BTrace - A safe, dynamic tracing tool for the Java platform. https://
github.com/btraceio/btrace/wiki.

[8] Byteman Programmer’s Guide. https://downloads.jboss.org/byteman/
4.0.18/byteman-programmers-guide.html.

[9] Javassist - Java bytecode engineering toolkit. https://www.javassist.
org/.

[10] Byte Buddy - a code generation and manipulation library. https://
bytebuddy.net/#/tutorial.

[11] JNIF - Java Native Instrumentation Framework. http://sape.inf.usi.
ch/jnif.

[12] Package java.lang.instrument. https://docs.oracle.com/javase/8/
docs/api/java/lang/instrument/package-summary.html.

[13] OpenTelemetry Concepts. https://opentelemetry.io/docs/concepts/.

[14] Micrometer facade. https://micrometer.io/docs.

[15] Java Metrics Library. https://metrics.dropwizard.io/4.2.0/manual/
index.html.

[16] Kiran Oliver. Prometheus and the Debate Over ‘Push’
Versus ‘Pull’ Monitoring. https://thenewstack.io/
exploring-prometheus-use-cases-brian-brazil/.

[17] Giedrius Statkevičius. Push Vs. Pull In Monitoring Systems. https://
giedrius.blog/2019/05/11/push-vs-pull-in-monitoring-systems/.

73

https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/JMX_1_4_specification.pdf
https://docs.oracle.com/javase/8/docs/technotes/guides/jmx/JMX_1_4_specification.pdf
https://docs.spring.io/spring-boot/docs/2.6.7/actuator-api/htmlsingle
https://docs.spring.io/spring-boot/docs/2.6.7/actuator-api/htmlsingle
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jni/spec/jniTOC.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://commons.apache.org/proper/commons-bcel/
https://commons.apache.org/proper/commons-bcel/
https://asm.ow2.io/documentation.html
https://asm.ow2.io/documentation.html
https://github.com/btraceio/btrace/wiki
https://github.com/btraceio/btrace/wiki
https://downloads.jboss.org/byteman/4.0.18/byteman-programmers-guide.html
https://downloads.jboss.org/byteman/4.0.18/byteman-programmers-guide.html
https://www.javassist.org/
https://www.javassist.org/
https://bytebuddy.net/#/tutorial
https://bytebuddy.net/#/tutorial
http://sape.inf.usi.ch/jnif
http://sape.inf.usi.ch/jnif
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://docs.oracle.com/javase/8/docs/api/java/lang/instrument/package-summary.html
https://opentelemetry.io/docs/concepts/
https://micrometer.io/docs
https://metrics.dropwizard.io/4.2.0/manual/index.html
https://metrics.dropwizard.io/4.2.0/manual/index.html
https://thenewstack.io/exploring-prometheus-use-cases-brian-brazil/
https://thenewstack.io/exploring-prometheus-use-cases-brian-brazil/
https://giedrius.blog/2019/05/11/push-vs-pull-in-monitoring-systems/
https://giedrius.blog/2019/05/11/push-vs-pull-in-monitoring-systems/

[18] Push vs Pull. https://blog.sflow.com/2012/08/push-vs-pull.html.

[19] Steve Mushero. Push vs. Pull Monitor-
ing Configs. https://steve-mushero.medium.com/
push-vs-pull-configs-for-monitoring-c541eaf9e927.

[20] Kovid Rathee. The Case for Using Time-
series Databases. https://towardsdatascience.com/
the-case-for-using-timeseries-databases-c060a8afe727.

[21] How does OpenTSDB work? http://opentsdb.net/overview.html.

[22] Introduction to QuestDB. https://questdb.io/docs/introduction.

[23] TimescaleDB Overview. https://docs.timescale.com/timescaledb/
latest/overview/.

[24] What Graphite is and is not. https://graphite.readthedocs.io/en/1.
1.8/overview.html.

[25] Get started with InfluxDB OSS 2.2. https://docs.influxdata.com/
influxdb/v2.2/.

[26] What is Prometheus? https://prometheus.io/docs/introduction/
overview/.

[27] OLAP for Multidimensional Analysis. https://olap.com/
olap-definition/.

[28] Introduction to Grafana. https://grafana.com/docs/grafana/v8.4/
introduction/.

74

https://blog.sflow.com/2012/08/push-vs-pull.html
https://steve-mushero.medium.com/push-vs-pull-configs-for-monitoring-c541eaf9e927
https://steve-mushero.medium.com/push-vs-pull-configs-for-monitoring-c541eaf9e927
https://towardsdatascience.com/the-case-for-using-timeseries-databases-c060a8afe727
https://towardsdatascience.com/the-case-for-using-timeseries-databases-c060a8afe727
http://opentsdb.net/overview.html
https://questdb.io/docs/introduction
https://docs.timescale.com/timescaledb/latest/overview/
https://docs.timescale.com/timescaledb/latest/overview/
https://graphite.readthedocs.io/en/1.1.8/overview.html
https://graphite.readthedocs.io/en/1.1.8/overview.html
https://docs.influxdata.com/influxdb/v2.2/
https://docs.influxdata.com/influxdb/v2.2/
https://prometheus.io/docs/introduction/overview/
https://prometheus.io/docs/introduction/overview/
https://olap.com/olap-definition/
https://olap.com/olap-definition/
https://grafana.com/docs/grafana/v8.4/introduction/
https://grafana.com/docs/grafana/v8.4/introduction/

List of Figures

1.1 The Phases of MANTA Flow Scanning Process 4
1.2 Communication Scheme in Multi-Agent Environment 7

3.1 JMX Architecture . 18
3.2 OpenTSDB Architecture . 26
3.3 TimescaleDB . 27
3.4 Promscale Architecture . 28
3.5 Graphite Architecture . 28
3.6 Deprecated TICK Stack with InfluxDB 1.x 30
3.7 Prometheus Architecture . 31
3.8 Grafana dashboard . 33

4.1 Final Design . 41
4.2 Premain Sequence . 43
4.3 Gathering Model . 46
4.4 Relationships between @Services classes, monitoring annotations

and interceptors . 48
4.5 Gatherer’s target metrics types 49
4.6 JMS Metrics Messages . 51
4.7 JMS Messages Creators . 52
4.8 Annotation Installation . 55
4.9 Metrics Data Integrations . 57

5.1 Creating an instance containing @MetricsProvider method 61
5.2 Flow of an annotated method call 62
5.3 Class hierarchy for monitoring annotations implementation 65
5.4 Standard Java class loader hierarchy 66
5.5 Class loader hierarchy while using monitoring agent 67
5.6 Classes and interface used by metrics messages listeners 67

6.1 Configuring MANTA Admin GUI 70
6.2 Visualized metrics data in Prometheus visualization tool 71

75

Listings
3.1 Metrics written in OpenTSDB format 26
3.2 Metrics written in Graphite format 29
3.3 Metrics written in InfluxDB format 30
3.4 Metrics written in Prometheus format 31
4.1 Gatherer interface . 47
4.2 A gatherer implementation . 47
4.3 An annotation installation . 48
4.4 Metrics written in transport JSON format 50
4.5 The use of monitoring annotations 53
4.6 The use of @MetricsProvider annotation 54
4.7 Metrics data in CSV format . 56
5.1 TrackSomeAction method annotation 63
5.2 Installation class for @TrackSomeAction 63
5.3 Interceptor for @TrackSomeAction 63
5.4 Metrics files on the file system . 68

76

A. Attachments

A.1 Content of the attached ZIP file
• README.md contains information about the content of the attached

ZIP file.

• sample-metrics.csv: a sample of metrics data in CSV format.

• src: directory containing the following files and directories

– monitoring-agent: module implementing Java monitoring agent.
– manta-admin-gui-agent-metrics-logic: module for MANTA Ad-

min GUI to integrate monitoring support.
– manta-flow-agent-integration-tests: module containing integra-

tion tests.
– convert-csv-to-prometheus.py: script which can be used to con-

vert and feed metrics data from CSV files to Prometheus time series
database.

77

	Introduction
	MANTA Flow Platform
	Scanning Process and Extraction Phase
	MANTA Admin GUI

	MANTA Flow Agent and Multi-Agent Environment
	MANTA Flow Agent Properties
	Multi-Agent Environment

	Motivation For Monitoring Support
	Goals
	Thesis Outline

	Requirements
	Possible Use Cases
	Functional Requirements
	Non-Functional Requirements

	Analysis
	Monitoring Approaches and Available Technologies
	The Java Management Extensions (JMX)
	Spring Boot Actuator
	Java Native Interface (JNI) and Java Native Access (JNA)
	Java Virtual Machine Tool Interface (JVM TI)
	Aspect-Oriented Programming (AOP)
	Bytecode Instrumentation
	Java Agent
	Libraries for System Metrics
	SDKs and APIs for Metrics Instantiation

	General Monitoring Solutions
	Pull and Push model
	Time Series Databases
	Monitoring Toolkits
	Online Analytical Processing (OLAP) solutions

	Post-Processing and Integrating Metrics
	Visualization tools
	Anomalies Detection and Alerting

	Discussion and Technologies Selection
	JMX and Spring Boot Actuator Usage
	APM Solutions
	Time Series Databases and OLAP Solutions
	Monitoring API and Metric Gathering
	Visualization, Anomalies Detection and Alerting
	Summary

	Design
	Monitoring Java Agent
	Gathering Model
	Metrics Data Format and Transporting
	Monitoring API
	Annotations with specific monitoring sematic
	Annotation to expose custom metrics
	Annotations and Interceptors

	Metrics Data Integrations

	Implementation Details
	Metrics Gathering
	JVM metrics
	System and Current Process Metrics
	Metrics from the Monitoring API

	Monitoring Java Agent Bootstrapping
	MANTA Admin GUI Integrations

	Evaluation
	Usage
	Testing and Limitations

	Conclusion
	Bibliography
	List of Figures
	Attachments
	Content of the attached ZIP file

