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Study programme: Physics

Study branch: Theoretical Physics, Astronomy
and Astrophysics

Prague 2022



I declare that I carried out this doctoral thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In Prague, April 5, 2022 Elǐska Polášková
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Abstract: In this thesis, we study a limit of the Kerr–(A)dS spacetime in a
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Introduction
Four-dimensional black holes have been widely studied for more than a hundred
years. Nowadays, they are particularly interesting from the astrophysical point
of view as several breakthrough observations were made in recent years. These
include the first detection of gravitational waves from a binary black hole merger
[1], the first image of the supermassive black hole candidate in the center of the
galaxy M87, made by the Event Horizon Telescope [2, 3], or the explanation of the
star motion near the black hole in the centre of our galaxy [4, 5]. The standard
model of the black hole used in such astrophysical situations is the Kerr solution
of the Einstein equations in four-dimensional general relativity.

From the mathematical point of view, Kerr black holes [6] are included in
a large family of solutions known as the Plebański–Demiański metric [7]. This
metric represents spacetimes of algebraic type D that solve the vacuum Einstein
equations with the cosmological constant, and it is characterized by seven arbi-
trary parameters, which can be interpreted as the cosmological constant, mass,
NUT parameter, rotation, acceleration, electric and magnetic charge. It contains
many well-known spacetimes as special cases: apart from the Kerr metric, which
describes an axially symmetric rotating black hole, it also includes for example the
Taub–NUT (Newman–Unti–Tamburino) solution [8, 9] with one NUT parameter
as well as accelerating black holes represented by the C-metric [10].

Unlike the Kerr spacetime, the Taub–NUT metric does not have a clear phys-
ical interpretation — the presence of a NUT parameter in a four-dimensional
spacetime leads to pathologies such as the existence of closed timelike curves
[11]. However, some of these pathologies can be regarded as an unphysical fea-
ture of the idealized inner solution, which disappears when a realistic matter
source for the outer solution is introduced.

In this work, we study generalization of these black holes to higher dimen-
sions. The motivation for studying higher-dimensional metrics in general is their
connection with string theory, the AdS/CFT correspondence and brane-world
models. Moreover, the perspective of a general dimension may deepen the un-
derstanding of studied solutions. Last but not least, they are interesting from
the mathematical point of view. An extensive review of higher-dimensional black
hole solutions can be found in [12].

One of the interesting higher-dimensional solutions, which generalizes the
black hole solutions known in four dimensions, is called the Kerr–NUT–(A)dS
metric [13]. It is characterized by the cosmological constant, mass, rotational and
NUT parameters, however, it does not include acceleration and electric/magnetic
charge. Therefore, a generalization of the Plebański–Demiański metric to higher
dimensions is yet to be discovered. The Kerr–NUT–(A)dS metric can describe
various geometries of both the Euclidean and the Lorentzian signature, such as
maximally symmetric spaces, so-called Euclidean instantons and black holes. It
also includes well-known higher-dimensional solutions as special cases, for exam-
ple the Myers–Perry black hole [14] (generalization of the Kerr black hole), the
Kerr–(A)dS metric [15, 16] (generally rotating black hole in an asymptotically
(anti)-de Sitter spacetime) and the higher-dimensional Taub–NUT–(A)dS metric
[17, 18].

3



Higher-dimensional rotating black holes display many similar properties to
their four-dimensional counterparts. This is caused by the fact that both types
of spacetimes admit a special geometrical object, which we refer to as the principal
tensor [19–22]. It is defined as a non-degenerate closed conformal Killing–Yano
tensor. The very existence of the principal tensor significantly restricts the geom-
etry — the most general geometry consistent with the existence of this tensor is
the off-shell Kerr–NUT–(A)dS geometry. Here, the attribute “off-shell” refers to
a general form of the metric that does not require the vacuum Einstein equations.
The principal tensor generates a rich symmetry structure called the Killing tower
[23, 24], which includes Killing vectors and Killing tensors associated with ex-
plicit and hidden symmetries of the spacetime. Moreover, it uniquely determines
canonical coordinates in which the Hamilton–Jacobi [25] and the Klein–Gordon
equations [26–28] as well as the Dirac [29–31] and the Maxwell equations [32–35]
are fully separable, and therefore the geodesic motion is completely integrable
[23, 36, 37]. Separability has been demonstrated also for higher-form fields [38].
As one can see, the principal tensor indeed plays a very important role in higher-
dimensional black hole physics. For an extensive review of the role of the principal
tensor and other properties of the Kerr–NUT–(A)dS geometry, see [39].

Apart from the Kerr–NUT–(A)dS spacetime and its properties, several limit
cases of the general metric were also studied, such as the near-horizon limits
[40–43]. Furthermore, the limit where some of the black hole’s rotations are
switched off was investigated [44]. Such a limit leads to warped spaces deformed
and twisted by the NUT parameters, which thus do not maintain their unphysical
properties when present in a space with the Euclidean signature. Another limit
case where particular roots of the metric functions degenerate was studied [45],
which results in geometries such as the Taub–NUT–(A)dS metric and the extreme
near-horizon geometry. Therefore, these papers have demonstrated that not only
can performing various limits of the general metric shed light on the role of NUT
charges, but it can also lead to new interesting geometries. Moreover, the resulting
spacetimes are expected to possess an enhanced symmetry structure after the
limit, which is manifested in the presence of additional Killing vectors and also
in the reducibility of Killing tensors that can be decomposed into Killing vectors.
Reducibility properties of Killing tensors were also studied in four dimensions for
near-horizon geometries [46, 47].

However, performing a limiting procedure is not in general a trivial task since
certain regions of the spacetime can shrink or expand during the limit and be-
come degenerate. Therefore, it is usually necessary to accompany the limiting
procedure by a suitable rescaling of coordinates and parameters.

This thesis is focused on a particular limit case of the general
Kerr–NUT–(A)dS metric that has not been thoroughly investigated yet. Namely,
we study the equal-spin limit, that is a limit where an arbitrary number of ro-
tational parameters of the spacetime coincides. As was mentioned above, the
limiting procedure also includes an appropriate parametrization and rescaling of
the parameters and the coordinates that cease to be well-defined after the limit.

The main results presented here were published in [48]. This work contains
additional details regarding the derivation of the results and we also discuss the
context of the limiting procedure more thoroughly.

The thesis is organized as follows. In Chapter 1, which is an overview of
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already known results, we introduce the Kerr–NUT–(A)dS spacetime and sum-
marize its properties. The next two chapters are dedicated to a general equal-spin
limit. Namely, in Chapter 2 we introduce the parametrization of the limit and
apply it to the metric, while Chapter 3 discusses the limit form of the principal
tensor, Killing vectors and Killing tensors. Chapter 4 presents explicit examples
of the general results obtained in Chapters 2 and 3 — it focuses on black holes
with all the rotational parameters set equal. Additional technical results and
detailed calculations are provided in the appendices. Appendix A summarizes
definitions and useful identities concerning auxiliary functions that appear in the
metric before and after performing the limit. Appendix B gives proofs of se-
lected results in the main text, which were obtained after employing the limiting
procedure.

Notation
Let us summarize the conventional notation we will be using throughout this
thesis. Notation specific to the Kerr–NUT–(A)dS spacetime and related topics is
explained in the text when it is used for the first time.

Latin letters from the beginning of the alphabet represent general spacetime
indices. In D = 2N dimensions, they go over the ranges

a, b, . . . = 1, . . . , 2N .

We do employ the Einstein summation convention for them. Indices inside round
brackets are symmetrized and square brackets denote antisymmetrization.

A dot · denotes a contraction of two tensors in adjacent indices. For example,
if X is a vector and h is a 2-form, then X · h represents a 1-form with the
components Xbhba.

The spacetime metric g is used to raise and lower indices. We do not usually
indicate explicitly whether a tensor is covariant or contravariant, however, we do
our best to make it clear from the context.

The covariant derivative is denoted by ∇. It is torsion-free and compatible
with the spacetime metric g, i.e. it satisfies

∇g = 0 .
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1. Kerr–NUT–(A)dS spacetime
This chapter introduces the general Kerr–NUT–(A)dS spacetime in higher di-
mensions and describes some of its interesting properties. Namely, we introduce
the metric in its general form and two types of coordinates it can be written in.
We also discuss parameters of the metric and their interpretation. Subsequently,
we describe geometries of both Euclidean and Lorentzian signatures that can be
obtained from the general metric as special cases, and in each case we discuss
suitable ranges of the coordinates and the parameters. Finally, the chapter is
concluded with the analysis of explicit and hidden symmetries associated with
Killing vectors and Killing tensors, and we show how these objects can be gener-
ated from the principal tensor.

The purpose of this chapter is to overview already known results regarding
the Kerr–NUT–(A)dS spacetime, and it is based mainly on the review [39]. Our
original findings are discussed in Chapters 2—4, see also [48].

For simplicity, we restrict ourselves to even dimensions D = 2N . However,
the generalization to odd dimensions is straightforward — a corresponding term
is added to the metric and other related quantities (see [39]). Otherwise, the
analysis remains the same for both cases.

1.1 Metric

1.1.1 Canonical form of the metric
A metric describing the Kerr–NUT–(A)dS geometry can be written in the form
[13]

g =
∑

µ

⎡⎣Uµ

Xµ

dx2
µ + Xµ

Uµ

(∑
k

A(k)
µ dψk

)2
⎤⎦ , (1.1)

with Greek and Latin indices from the middle of the alphabet going over slightly
different ranges

µ, ν, . . . = 1, . . . , N ,

k, l, . . . = 0, . . . , N − 1 .

The Einstein summation convention is not used for these indices. Also, we do not
indicate their ranges explicitly in sums or products, unless they differ from the
default above. Greek indices label independent 2-planes, into which the metric
(1.1) can be naturally split. Latin indices, on the other hand, indicate the powers
of x2

µ that are present in metric functions.
The functions Uµ and A(k)

µ that appear in the metric are defined as polynomials
in the coordinates xµ

Uµ =
∏
ν

ν ̸=µ

(
x2

ν − x2
µ

)
, A(k)

µ =
∑

ν1,...,νk
ν1<···<νk

νi ̸=µ

x2
ν1 . . . x

2
νk
. (1.2)

Each function Xµ = Xµ(xµ) is dependent on a single coordinate xµ. If these
functions are left unspecified, the metric is then referred to as off-shell. On the
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other hand, if the functions Xµ are also defined as polynomials, namely

Xµ = λJ (x2
µ) − 2bµxµ , (1.3)

where J (x2
µ) reads

J (x2
µ) =

∏
ν

(
a2

ν − x2
µ

)
, (1.4)

then the metric (1.1) satisfies the Einstein equations in vacuum and we refer to it
as on-shell. The complete list of metric functions as well as important relations
between them can be found in Appendix A.1.

The canonical coordinates we used are divided into two sets. In the black hole
case, which is discussed in detail in Section 1.3, the coordinates xµ represent radius
and latitudinal angles whereas the coordinates ψk represent time and longitudinal
angles. Moreover, since the metric functions are independent of ψk, they are also
the Killing coordinates.

Both types of canonical coordinates are uniquely determined by the principal
tensor h, see Section 1.4.1. Namely, xµ are its eigenvalues and ψk are associated
with Killing vectors generated by the principal tensor. Moreover, since the metric
in these coordinates is rather simple, they are suitable for constructing the Killing
tower and studying explicit and hidden symmetries as is shown later, in Section
1.4.

The inverse metric reads

g−1 =
∑

µ

⎡⎣Xµ

Uµ

(
∂

∂xµ

)2

+ Uµ

Xµ

(∑
k

(−x2
µ)N−1−k

Uµ

∂

∂ψk

)2⎤⎦ ,
which can be proved using the identities (A.7) and (A.8).

1.1.2 Alternative form of the metric
Instead of ψk, we can also use another set of angular coordinates ϕµ defined as

ϕµ = λaµ

∑
k

A(k)
µ ψk , ψk =

∑
µ

(−a2
µ)N−1−k

λaµUµ

ϕµ , (1.5)

where the functions Uµ and A(k)
µ are defined similarly to Uµ and A(k)

µ in Eq. (1.2),
only xµ are replaced with aµ (see also Eqs. (A.4) and (A.6))

Uµ =
∏
ν

ν ̸=µ

(
a2

ν − a2
µ

)
, A(k)

µ =
∑

ν1,...,νk
ν1<···<νk

νi ̸=µ

a2
ν1 . . . a

2
νk
.

The metric (1.1) then obtains the form

g =
∑

µ

⎡⎣Uµ

Xµ

dx2
µ + Xµ

Uµ

(∑
ν

Jµ(a2
ν)

λaνUν

dϕν

)2
⎤⎦ , (1.6)

where Jµ(a2
ν) read (see also (A.3))

Jµ(a2
ν) =

∏
κ

κ̸=µ

(
x2

κ − a2
ν

)
.
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Since ϕµ are simply linear combinations of ψk with constant coefficients, they
are the Killing coordinates as well. Moreover, their corresponding Killing vectors
have fixed points and thus define the axes of rotational symmetry [49]. Therefore,
the coordinates ϕµ are better suited for the physical interpretation of the metric.

1.1.3 Parameters
The on-shell metric is described by the parameters aµ, bµ and λ, but only the very
last one can be interpreted straightforwardly — it is related to the cosmological
constant Λ as

Λ = (2N − 1)(N − 1)λ .

Regarding the others, in general we can say that the parameters aµ somehow de-
scribe rotations and the parameters bµ encode mass and NUT charges. However,
their interpretation strongly depends on specific other choices that can be made.
This will be demonstrated in Sections 1.2 and 1.3 where various geometries that
can be obtained from the general metric are discussed.

It is also worth mentioning that aµ and bµ are not independent as there exists
a one-parametric gauge freedom in rescaling the coordinates, the parameters and
the metric functions, which preserves the metric. The transformation reads

xµ → sxµ , ψk → s−(2k+1)ψk , ϕµ → ϕµ ,

aµ → saµ , bµ → s2N−1bµ , λ → λ ,

Xµ → s2NXµ , Uµ → s2(N−1)Uµ , A(k)
µ → s2kA(k)

µ

(1.7)

with s being the scaling parameter. This transformation enables us to set one of
the parameters aµ to a suitable value, which will be used to our advantage in the
black hole case by imposing the condition (1.20).

Therefore, for a fixed cosmological constant the on-shell Kerr–NUT–(A)dS
metric in D = 2N dimensions contains 2N − 1 independent parameters. For a
black hole, they represent mass, N − 1 rotations and N − 1 NUT charges.

1.1.4 Orthogonal frames
It is useful to introduce the following orthogonal frames of 1-forms

eµ =
(
Uµ

Xµ

) 1
2

ϵµ =
(
Uµ

Xµ

) 1
2

dxµ ,

êµ =
(
Xµ

Uµ

) 1
2

ϵ̂µ =
(
Xµ

Uµ

) 1
2 ∑

k

A(k)
µ dψk

=
(
Xµ

Uµ

) 1
2 ∑

ν

Jµ(a2
ν)

λaνUν

dϕν ,

(1.8)

where {eµ, êµ} is normalized and {ϵµ, ϵ̂µ} is not normalized. In this chapter, we
will be mostly using the orthonormal frame {eµ, êµ}. However, when performing
the equal-spin limit in the next two chapters, it will be more convenient to use the
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orthogonal one {ϵµ, ϵ̂µ} since it has a simpler form. Similarly, dual orthogonal
frames of vectors read

eµ =
(
Xµ

Uµ

) 1
2

ϵµ =
(
Xµ

Uµ

) 1
2 ∂

∂xµ

,

êµ =
(
Uµ

Xµ

) 1
2

ϵ̂µ =
(
Uµ

Xµ

) 1
2 ∑

k

(−x2
µ)N−1−k

Uµ

∂

∂ψk

=
(
Uµ

Xµ

) 1
2 ∑

ν

λaνJν(x2
µ)

Uµ

∂

∂ϕν

,

(1.9)

where {eµ, êµ} is a normalized and {ϵµ, ϵ̂µ} is an unnormalized frame. The
duality stems from the properties of the metric functions described in Appendix
A.1, namely the identities (A.7) and (A.10).

Using these frames, the metric and its inverse can be written simply as

g =
∑

µ

(eµeµ + êµêµ) =
∑

µ

(
Uµ

Xµ

ϵµϵµ + Xµ

Uµ

ϵ̂µϵ̂µ

)
,

g−1 =
∑

µ

(eµeµ + êµêµ) =
∑

µ

(
Xµ

Uµ

ϵµϵµ + Uµ

Xµ

ϵ̂µϵ̂µ

)
.

(1.10)

Although these expressions suggest that the metric is positive definite, it is not
necessarily the case since some of the frame 1-forms (or vectors) can be imaginary.
A detailed discussion of suitable coordinate and parameter choices to obtain the
Lorentzian signature is provided in Section 1.3.

1.2 Geometries with Euclidean signature
As was indicated above, the general metric can have both the Euclidean and the
Lorentzian signature, depending on our choice of the coordinate ranges and values
of the parameters. This section focuses on the Euclidean signature, namely we
will show how to obtain the maximally symmetric geometry of a homogeneous
sphere and also a Euclidean instanton geometry as special cases. The next section
focuses on the Lorentzian signature.

1.2.1 Homogeneous sphere
In order to obtain a metric describing a spherical geometry, we assume that the
mass and the NUT charges vanish, i.e. bµ = 0, while aµ remain unrestricted and
λ > 0. Then the on-shell metric functions (1.3) simplify to

Xµ = λJ (x2
µ) , (1.11)

and using the orthogonality relations (A.12) to simplify the angular part of the
metric (1.6), it becomes

g =
∑

µ

[
Uµ

λJ (x2
µ)dx2

µ −
J(a2

µ)
λa2

µUµ

dϕ2
µ

]
. (1.12)
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The function J(a2
µ) is defined similarly to J (x2

µ) in Eq. (1.4), only with xµ and
aµ interchanged (see also (A.1))

J(a2
µ) =

∏
ν

(
x2

ν − a2
µ

)
.

We can introduce N + 1 coordinates ρµ, µ = 0, 1, . . . , N , instead of N coordi-
nates xµ employing the Jacobi transformation

λρ2
µ =

J(a2
µ)

−a2
µUµ

, λρ2
0 = J(0)

J (0) = A(N)

A(N) . (1.13)

The functions A(k) and A(k) are defined as in (A.2). It can be shown that the
new coordinates are restricted by the constraint

N∑
µ=0

ρ2
µ = 1

λ
(1.14)

and the metric (1.12) simplifies to

g = dρ2
0 +

∑
µ

(
dρ2

µ + ρ2
µdϕ2

µ

)
. (1.15)

Therefore, we obtained a 2N -dimensional sphere given by the constraint (1.14)
embedded in a (2N+1)-dimensional flat space described by the metric (1.15),
where the metric is written in the multi-cylindrical coordinates {ρ0, ρµ, ϕµ}.

It turns out that this metric (together with the constraint) describes the sphere
of the same radius regardless of the choice of the parameters aµ as it does not
depend on them. This means that aµ do not actually parametrize the sphere
itself, but rather a choice of coordinates. Namely, they characterize the freedom
in choice of the coordinates xµ in the inverse Jacobi transformation.

1.2.2 Euclidean instanton
The general metric can also have the Euclidean signature and describe a non-
trivial geometry of an instanton if we make the following assumptions for the
parameters and the coordinates. Let λ > 0 and the parameters aµ and bµ as well
as the coordinates xµ and ψk be real. Moreover, we assume that aµ are ordered
as

0 < a1 < . . . < aN−1 < aN . (1.16)
The metric (1.1) has the Euclidean signature and Uµ are non-singular if and only
if

Uµ

Xµ

> 0 ,

which determines the suitable ranges of xµ.
Let us first discuss the case of vanishing mass and NUT parameters, i.e.

bµ = 0. In this case, the functions Xµ have the form (1.11) and their roots
are precisely the parameters aµ. Therefore, each coordinate is restricted by

aµ−1 < xµ < aµ , (1.17)
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with the only exception of x1 ∈ (−a1, a1).
For non-vanishing mass and NUT charges, the coordinate ranges need to be

modified. If bµ are small, the ranges of xµ change only slightly — they become
restricted by the roots ±xµ of the functions Xµ in the form (1.3). Therefore, the
ranges in this case are

aµ−1 <
−xµ < xµ <

+xµ < aµ ,

with the only exception being −x1 since −x1 < −a1, see Figure 1.1.
Unlike for a homogeneous sphere, in the case of a Euclidean instanton both

the parameters aµ and bµ encode geometry deformations. Namely, bµ encode how
the geometry deviates from the spherical one and aµ do not parametrize only
a coordinate transformation, but they affect the geometry as well (for bµ ̸= 0).
Moreover, there is no curvature singularity in the case of non-zero bµ as it occurs
outside the coordinate ranges established above.

(a) (b)

Figure 1.1: Ranges of the coordinates xµ for (a) zero and (b) non-zero mass and
NUT parameters bµ. In the case (a), the ranges are given by the roots of the
metric function J (x2

µ), which are precisely the parameters aµ. In the case (b),
the ranges are determined by the roots ±xµ of the metric functions Xµ in the
form (1.3). In other words, ±xµ are the values at which the polynomial λJ (x2

µ)
intersects the lines 2bµxµ.

1.3 Black holes
Let us now focus on the form of the general metric that can describe spacetimes
interesting from the physical point of view. First and foremost, it is necessary
that the metric has the Lorentzian signature. In order to obtain this signature,
some of the coordinates and the parameters need to be Wick-rotated, and the
interpretation of the metric depends on their particular choice. Following [39],
we choose xN and ϕN to be imaginary and define

xN = ir , ϕN = λaN t , (1.18)

where the radial coordinate r and the temporal coordinate t acquire real values.
We also Wick-rotate the parameter bN to a real-valued mass parameter M as

bN = iM . (1.19)
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Finally, we make use of the metric invariance under the scaling transformation
(1.7) and set

a2
N = − 1

λ
, (1.20)

which guarantees that ϕN is Wick-rotated only for λ > 0.

1.3.1 Generalized Boyer–Lindquist coordinates
With the choices introduced above, the metric (1.6) can be written as

g = − ∆r

Σ

[∏
ν̄

1 + λx2
ν̄

1 + λa2
ν̄

dt−
∑

ν̄

J̄(a2
ν̄)

aν̄ (1 + λa2
ν̄) Ūν̄

dϕν̄

]2

+ Σ
∆r

dr2 +
∑

µ̄

(
r2 + x2

µ̄

)
Ūµ̄

∆µ̄

dx2
µ̄

+
∑

µ̄

∆µ̄(
r2 + x2

µ̄

)
Ūµ̄

[
1 − λr2

1 + λx2
µ̄

∏
ν̄

1 + λx2
ν̄

1 + λa2
ν̄

dt+
∑

ν̄

(r2 + a2
ν̄) J̄µ̄(a2

ν̄)
aν̄ (1 + λa2

ν̄) Ūν̄

dϕν̄

]2

,

where barred indices go over the ranges

µ̄, ν̄, . . . = 1, . . . , N̄ ,

k̄, l̄, . . . = 0, . . . , N̄ − 1 ,
N̄ = N − 1 .

This notation has been introduced in order to separate the temporal and the
radial coordinate from the angular coordinates. The metric functions are defined
as

∆r = −XN =
(
1 − λr2

)∏
ν̄

(
r2 + a2

ν̄

)
− 2Mr , Σ = UN =

∏
ν̄

(
r2 + x2

ν̄

)
,

∆µ̄ = −Xµ̄ =
(
1 + λx2

µ̄

)
J̄ (x2

µ̄) + 2bµ̄xµ̄ , Ūµ̄ =
∏
ν̄

ν̄ ̸=µ̄

(
x2

ν̄ − x2
µ̄

)
.

(1.21)
Barred functions are defined in the same way as their unbarred counterparts
in Appendix A.1, only with modified sets of coordinates and parameters
(i.e. without xN and aN), for example

J̄(a2
µ̄) =

∏
ν̄

(
x2

ν̄ − a2
µ̄

)
.

We refer to {t, r, xµ̄, ϕµ̄} as the generalized Boyer–Lindquist coordinates.
As for the coordinate ranges, the discussion is very similar to the Euclidean

case, so we will just briefly summarize the results. We assume that aµ̄ are ordered
as

0 < a1 < . . . < aN̄−1 < aN̄ .

For vanishing NUT parameters (and non-zero mass), i.e. bµ̄ = 0, the metric has
the desired signature and Uµ are non-singular if the coordinates are restricted by

aµ̄−1 < xµ̄ < aµ̄ ,
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with the same exception of x1 ∈ (−a1, a1). For non-vanishing NUT charges, the
coordinate ranges are

aµ̄−1 <
−xµ̄ < xµ̄ <

+xµ̄ < aµ̄ (1.22)

again except for −x1 (see Figure 1.1).
The horizon structure is given by the roots of the metric function ∆r defined

in Eq. (1.21). For λ ≤ 0, there exist at most two horizons: an inner and an outer
one. The two horizons can also coincide, thus forming a single extremal horizon,
or we can obtain a naked singularity in case there are no horizons. For λ > 0,
there is usually one additional cosmological horizon, see Figure 1.2.

Figure 1.2: Black hole horizons. They are given by the roots of the metric function
∆r defined in (1.21), i.e. by the condition ∆r = −λJ (−r2) − 2Mr = 0. This
condition is satisfied when the even polynomial −λJ (−r2) intersects the line
2Mr. For λ ≤ 0, there are at most two such intersections, which define an inner
horizon ri and an outer horizon ro. If the line is tangential to the polynomial,
i.e. there is only one intersection, we obtain an extremal horizon. In case the
line does not intersect the polynomial curve at all, we obtain a naked singularity
without horizons. For λ > 0, there is usually one additional intersection that
defines a cosmological horizon rc. However, for large M the outer horizon can
extend beyond the cosmological horizon, thus leaving the black hole with only an
inner horizon.

As for the interpretation of the metric parameters, for zero NUT charges
bµ̄ = 0, aµ̄ can be identified with the rotational parameters of the black hole. On
the other hand, when the NUT parameters are non-trivial, then both aµ̄ and bµ̄

deform the geometry, however, their exact role remains elusive. This is where
studying various limit cases might prove useful as they can help clarify this issue.

1.3.2 Myers–Perry coordinates
Assuming that the NUT charges vanish, i.e. bµ̄ = 0, the metric can be transformed
into another set of coordinates. The metric functions Xµ̄ then simplify to the

13



form (1.11) and XN = −∆r has an additional term proportional to mass M as
in Eq. (1.21). Using the orthogonality relations (A.12) to simplify the angular
part of the metric (1.6) in the same way as in the case of a homogeneous sphere
geometry in Section 1.2.1, we obtain

g =
∑

µ̄

Uµ̄

λJ (x2
µ̄)dx2

µ̄ + Σ
∆r

dr2 −
∑

µ̄

J(a2
µ̄)

λa2
µ̄Uµ̄

dϕ2
µ̄ − λ

J(a2
N)

UN

dt2

+ 2Mr

Σ

⎡⎣∑
µ̄

JN(a2
µ̄)

λaµ̄Uµ̄

dϕµ̄ + JN(a2
N)

UN

dt

⎤⎦2

.

(1.23)

We have also separated the temporal and the radial coordinate from the angular
coordinates, employed the Wick rotation and the gauge fixing (1.18)—(1.20) and
used the metric functions (1.21).

Similarly to the homogeneous sphere, let us introduce N̄ + 1 coordinates µν̄ ,
ν̄ = 0, 1, . . . , N̄ instead of N̄ coordinates xκ̄ using the Jacobi transformation in
the form

µ2
ν̄ = J̄(a2

ν̄)
−a2

ν̄Ūν̄

, µ2
0 = J̄(0)

J̄ (0)
= Ā(N̄)

Ā(N̄)
, (1.24)

which satisfy the following constraint
N̄∑

ν̄=0
µ2

ν̄ = 1 . (1.25)

It can be shown that the new coordinates are related to the coordinates ρµ defined
in (1.13) as

λρ2
ν̄ = r2 + a2

ν̄

a2
ν̄ − a2

N

µ2
ν̄ ,

1 − λR2 ≡ λρ2
N =

(
1 − λr2

)(
µ2

0 +
∑

ν̄

µ2
ν̄

1 + λa2
ν̄

)
.

(1.26)

We refer to {t, r, µ0, µν̄ , ϕν̄} as the Myers–Perry coordinates.
The metric (1.23) in these coordinates becomes

g = −
(
1 − λR2

)
dt2 + 2Mr

Σ

[
dt+

∑
ν̄

aν̄µ
2
ν̄

1 + λa2
ν̄

(dϕν̄ − λaν̄dt)
]2

+ Σ
∆r

dr2 + r2dµ2
0 +

∑
ν̄

r2 + a2
ν̄

1 + λa2
ν̄

(
dµ2

ν̄ + µ2
ν̄dϕ2

ν̄

)

+ λ

1 − λR2

(
r2µ0dµ0 +

∑
ν̄

r2 + a2
ν̄

1 + λa2
ν̄

µν̄dµν̄

)2

,

(1.27)

where

∆r =
(
1 − λr2

)∏
ν̄

(
r2 + a2

ν̄

)
− 2Mr ,

Σ =
(
µ2

0 +
∑

ν̄

r2µ2
ν̄

r2 + a2
ν̄

)∏
µ̄

(
r2 + a2

µ̄

)
.

(1.28)
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We have thus obtained the Kerr–(A)dS metric [15, 16].
Let us consider a vacuum subcase of the general Kerr–(A)dS solution, i.e.

λ = 0. The metric can be then expressed as

g = − dt2 + 2Mr

Σ

(
dt+

∑
ν̄

aν̄µ
2
ν̄dϕν̄

)2

+ Σ
∆r

dr2

+ r2dµ2
0 +

∑
ν̄

(
r2 + a2

ν̄

) (
dµ2

ν̄ + µ2
ν̄dϕ2

ν̄

)
,

where

∆r =
∏
ν̄

(
r2 + a2

ν̄

)
− 2Mr ,

Σ =
(
µ2

0 +
∑

ν̄

r2µ2
ν̄

r2 + a2
ν̄

)∏
µ̄

(
r2 + a2

µ̄

)
.

This solution is known as the Myers–Perry spacetime [14].

1.4 Explicit and hidden symmetries
The Kerr–NUT–(A)dS spacetime possesses symmetries of two kinds: explicit
symmetries, which are represented by well-known Killing vector fields, and hidden
symmetries, which in our case will be described by Killing tensors. Let us briefly
mention basic definitions and properties of these objects.

If the spacetime metric g is Lie-constant along a vector field ξ, i.e. it satisfies

Lξg = 0 ,

then ξ is referred to as a Killing vector of the spacetime. This condition is
equivalent to the Killing vector equation

∇(a ξ b) = 0 ,

where ∇ denotes the covariant derivative, and indices inside the round brackets
are symmetrized1. When studying particle dynamics in a curved spacetime, it
can be shown that the integrals of geodesic motion that are generated by Killing
vectors are necessarily linear in particle’s momentum [39].

Hidden symmetries, on the other hand, are associated with Killing tensors,
which generate integrals of geodesic motion that are of higher order in particle’s
momenta. A completely symmetric tensor k of rank s is a Killing tensor if it
satisfies the Killing tensor equation

∇(a0 k a1...as) = 0 .

The metric itself constitutes a trivial example of a Killing tensor that is present
in every spacetime, moreover, a Killing tensor of rank s = 1 reduces to a Killing

1Let us remind the reader that Latin letters from the beginning of the alphabet label general
spacetime indices a, b, . . . = 1, . . . , 2N , and we do employ the Einstein summation convention
for them.
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vector. Unlike Killing vectors, the action of Killing tensors of rank s ≥ 2 does
not create a spacetime diffeomorphism, therefore in that sense they represent
symmetries that are not encoded only in the spacetime manifold, hence “hidden”.
They can be “discovered”, however, when studying the particle motion in the
phase space.

There exists an object which generates a rich structure of both types of sym-
metries — the principal tensor. It is a crucial object that does not only uniquely
determine the canonical form of the metric (1.1), but it also generates a set of
Killing vectors and Killing tensors, which we refer to as the Killing tower.

1.4.1 Principal tensor
The principal tensor h is defined as a closed conformal Killing–Yano 2-form that
is also non-degenerate. A closed conformal Killing–Yano form satisfies

∇Xh = X ∧ ξ ⇔ ∇ahbc = gabξc − gacξb ,

where ξ is given by the equation

ξ = 1
D − 1∇ · h ⇔ ξa = 1

D − 1∇bh
ba , (1.29)

and X is a general vector. The non-degeneracy condition means that h has the
maximal possible matrix rank and also the maximum number of functionally in-
dependent eigenvalues. Namely, in D = 2N dimensions it possesses N eigenvalues
that are non-constant and N pairs of conjugate eigenvectors.

Using the orthonormal frame {eµ, êµ} defined in (1.8), the principal tensor
can be written in the form

h =
∑

µ

xµeµ ∧ êµ . (1.30)

If we explicitly denote the principal tensor with the first index raised by ♯h, i.e.
it is given by

(♯h)a
b = gachcb ,

then it satisfies the following eigenvalue equations

♯h · mµ = −ixµmµ ,
♯h · m̄µ = ixµm̄µ .

The eigenvalues of the principal tensor are thus ±ixµ, and its eigenvectors are
related to the orthonormal frame (1.9) as

mµ = 1√
2

(êµ + ieµ) , m̄µ = 1√
2

(êµ − ieµ) .

The non-degeneracy condition means that xµ are functionally independent. The-
refore, they can be used as canonical coordinates in the metric (1.1). As for the
eigenvectors, they are null and satisfy the null-orthonormality relations

mµ · mν = m̄µ · m̄ν = 0 , mµ · m̄ν = δµν .
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We can also apply the principal tensor to the orthonormal frame of vectors,
obtaining

♯h · eµ = −xµêµ ,
♯h · êµ = xµeµ .

Finally, it turns out that the vector ξ given by (1.29) is a Killing vector and
can be written in the canonical coordinates as

ξ = ∂

∂ψ0
.

Considering that it will be used to construct the whole tower of other Killing
vectors, we refer to it as the principal Killing vector.

1.4.2 Killing tower
As was mentioned before, the importance of the principal tensor lies, besides other
things, in its ability to generate the entire tower of Killing objects that represent
both explicit and hidden symmetries of the Kerr–NUT–(A)dS spacetime. The
Killing tower can be constructed either directly or using generating functions.

Direct method of construction

Let us first describe how to construct the Killing tower directly [23, 24, 50], using
the following steps.

(i) We define closed conformal Killing–Yano forms as wedge powers of the
principal tensor h

h(k) = 1
k!h

∧k ,

for k = 0, . . . N . The resulting forms h(k) are of increasing rank 2k and it
can be shown that

h(0) = 1 , h(N) =
√
A(N)ε ,

with ε denoting the Levi-Civita tensor.

(ii) The next step is to calculate Killing–Yano forms, which are given as the
Hodge duals of closed conformal Killing–Yano forms h(k)

f (k) = ∗h(k) .

The tensors f (k) are of rank D − 2k and we have

f (0) = ε , f (N) =
√
A(N) .

(iii) Using Killing–Yano forms f (k), we can introduce Killing tensors as partial
contractions of their squares

kab
(k) = 1

(D − 2k − 1)!f
(k)a

c1...cD−2k−1f
(k)bc1...cD−2k−1 .

The resulting tensors k(k) are of rank 2 and they satisfy

k(0) = g , k(N) = 0 .
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(iv) We can also define rank-2 conformal Killing tensors as partial contractions
of closed conformal Killing–Yano forms h(k)

Qab
(k) = 1

(2k − 1)!h
(k)a

c1...c2k−1h
(k)bc1...c2k−1 . (1.31)

We have
Q(0) = 0 , Q(N) = A(N)g ,

and it can be shown that

k(k) + Q(k) = A(k)g ,

where the symmetric polynomials A(k) are defined as in (A.2). Therefore,
conformal Killing tensors Q(k) and Killing tensors k(k) contain basically the
same information.

(v) Finally, we calculate Killing vectors as contractions of Killing tensors k(k)
with the principal Killing vector ξ

l(k) = k(k) · ξ . (1.32)

They satisfy
l(0) = ξ , l(N) = 0 . (1.33)

By this construction we have thus obtained N Killing vectors and the same num-
ber of Killing tensors. Together they generate the required number of Poisson-
bracket-commuting conserved quantities so that the geodesic motion of a particle
in the spacetime is fully integrable.

Method of generating functions

We shall now focus on the second method of constructing the Killing tower using
generating functions [39]. Namely, we introduce auxiliary β-dependent Killing
tensors and Killing vectors such that regular Killing tensors and Killing vectors
form coefficients in the β-expansion of these generating functions.

Let us first define a β-dependent conformal Killing tensor as

q(β) = g + β2Q ,

where β is a real parameter and Qab = Qab
(1) = ha

ch
bc is the first conformal Killing

tensor introduced in (1.31). We also define a scalar function

A(β) =
√

det q(β)
det g

.

Using these definitions, we can introduce generating functions for Killing tensors
and Killing vectors, respectively, in the form

k(β) = A(β)q−1(β) , l(β) = k(β) · ξ .

The β-expansion of these functions can be then written as

k(β) =
N∑

k=0
β2kk(k) , l(β) =

N∑
k=0

β2kl(k) , (1.34)
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thus generating Killing tensors k(k) and Killing vectors l(k). Similarly, the function
A(β) generates the polynomials A(k)

A(β) =
N∑

k=0
β2kA(k) .

For a fixed parameter β, k(β) is a linear combination of Killing tensors, therefore,
k(β) itself is a Killing tensor. Likewise, l(β) is a Killing vector.

Generating functions for other objects from the Killing tower can be con-
structed in a similar manner, however, we will not need them in this thesis (they
can be found in [39]).

Explicit form of the Killing tower

We shall conclude this chapter by explicitly writing Killing vectors and Killing
tensors generated from the principal tensor, using the orthogonal frame of vectors
{ϵµ, ϵ̂µ} defined in Eq. (1.9). As was mentioned earlier, this frame is more
convenient for performing the limit, especially for these objects.

Defining an alternative set of Killing vectors s(µ), which are, up to normaliza-
tion, the coordinate vectors,

s(µ) = λaµ
∂

∂ϕµ

=
∑

ν

Jν(a2
µ)

Uµ

ϵ̂ν , (1.35)

Killing vectors l(k) can be written as

l(k) =
∑

µ

A(k)
µ s(µ) =

∑
µ

A(k)
µ ϵ̂µ = ∂

∂ψk

. (1.36)

The second equality in (1.36) can be derived from the relation (1.5) between the
angular coordinates ψk and ϕµ, and the third equality stems from the definition
(1.9) of the frame vectors ϵ̂µ. As we can see, the canonical coordinates ψk are
directly associated with the Killing vectors defined in (1.32), and as was men-
tioned before, they are also the Killing coordinates. Moreover, since A(k)

µ in the
first equality are just constants (see the definition (A.4)), s(µ) are indeed Killing
vectors — and they are more suitable for the limiting procedure as is shown in
Section 3.2. The principal Killing vector acquires a simple form

ξ =
∑

µ

s(µ) =
∑

µ

ϵ̂µ = ∂

∂ψ0
. (1.37)

The corresponding generating function reads

l(β) =
∑

µ

Aµ(β)s(µ) =
∑

µ

Aµ(β)ϵ̂µ =
∑

k

β2k ∂

∂ψk

, (1.38)

where the functions Aµ(β) and Aµ(β) generate the polynomials A(k)
µ and A(k)

µ ,
respectively, and they can be expressed in several ways

Aµ(β) =
∑

k

β2kA(k)
µ =

∏
ν

ν ̸=µ

(
1 + β2x2

ν

)
= A(β)

1 + β2x2
µ

,

Aµ(β) =
∑

k

β2kA(k)
µ =

∏
ν

ν ̸=µ

(
1 + β2a2

ν

)
= A(β)

1 + β2a2
µ

.

(1.39)
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The functions A(β) and A(β) have the form

A(β) =
∏
ν

(
1 + β2x2

ν

)
, A(β) =

∏
ν

(
1 + β2a2

ν

)
. (1.40)

Motivated by the structure of Killing vectors, we also introduce a new set of
Killing tensors r(µ)

r(µ) =
∑

ν

Jν(a2
µ)

Uµ

πν , (1.41)

where πµ are defined as

πµ = Xµ

Uµ

ϵµϵµ + Uµ

Xµ

ϵ̂µϵ̂µ , (1.42)

and they denote “frame” 2-tensors appearing explicitly in the inverse metric (1.10)

g−1 =
∑

µ

πµ .

Eq. (1.41) can be proved using Eqs. (A.3) and (A.7).
Tensors r(µ) form a base of Killing tensors alternative to k(k) introduced above.

Their equivalence can be observed from the relations analogous to (1.36)

k(k) =
∑

µ

A(k)
µ r(µ) =

∑
µ

A(k)
µ πµ . (1.43)

Similarly to s(µ) being Killing vectors, r(µ) are indeed Killing tensors due to A(k)
µ

being constants — and similarly, they are better suited for performing the limit.
Finally, the generating function for Killing tensors is

k(β) =
∑

µ

Aµ(β)r(µ) =
∑

µ

Aµ(β)πµ . (1.44)
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2. Equal-spin limit of the
Kerr–(A)dS spacetime
This and the following chapter include the main results of our work. These results
have also been published in [48]. Namely, we focus on a particular limit case of
the spacetime with general spin where an arbitrary number of its rotational pa-
rameters coincides. In this chapter, we introduce an appropriate parametrization
of the limit, which also includes modifying the index notation used throughout
Chapter 1, and apply the limiting procedure to the general metric. Furthermore,
we study the cases of a homogeneous sphere and a black hole using suitable
coordinate systems.

In Chapter 1, we have introduced the Kerr–NUT–(A)dS spacetime, which is
the most general metric in higher dimensions that possesses the principal tensor.
However, we will hereafter restrict our analysis to the case of vanishing NUT
parameters and non-zero mass, i.e. bµ̄ = 0, thus studying the equal-spin limit
of the Kerr–(A)dS spacetime since it is the most relevant case from the physical
point of view. Moreover, let us remind the reader that we consider only even
dimensions D = 2N as in the previous chapter.

Let us emphasize that any limit of spacetime always strongly depends on the
choice of the limiting procedure and used parametrization; see the classical work
of Geroch [51] and an illustration in, e.g., [52]. One has to always carefully choose
a limit interesting from the physical point of view. Different choices of the lim-
iting procedure might focus on different aspects and thus would lead to different
spacetimes after the limit. For example, one can zoom in on the regions near
the black hole horizon by including a suitable rescaling during the limit, which
would result in a near-horizon limit [40–43, 45], or rescale asymptotic regions,
which could reveal the asymptotic structure of spacetime. Our limiting proce-
dure preserves (and possibly enhances) the symmetry structure of the spacetime.
Moreover, all the outer regions of the black hole remain non-degenerate after the
limit.

2.1 Preliminaries
Before performing the actual equal-spin limit, let us address several matters.
Firstly, we need to adjust the indices used to label quantities to better suit our
needs, and secondly, it is necessary to rescale the parameters and the coordinates,
which become degenerate after the limit, using a suitable parametrization.

2.1.1 Double indexing and equal-spin blocks
In order to perform the limit, it will be convenient to first modify the indexing
of parameters and coordinates to reflect the structure that will emerge after the
limit. Namely, assuming that the rotational parameters aµ are ordered as in
(1.16), we group them into Ñ “equal-spin” blocks so that within each block all
the rotations approach the same value. This means that instead of using a single
Greek index µ (or ν, κ...), it will be more natural to use two Greek indices:
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one from the beginning of the alphabet α (β, γ...)1 to label the block of equal
rotations and the second from the later parts of the alphabet ρ (σ, τ ...) to
distinguish between the rotations inside the block.

The first rotation in a block is labeled as aα,0. It will remain unchanged after
the limit and all the other rotations in the block, denoted by aα,ρ, will approach
aα,0 as shown in Figure 2.1. The indices go over the ranges

α, β, . . . = 1, . . . , Ñ ,

ρ, σ, . . . = 1, . . . , αN ,

where Ñ is the number of blocks, and therefore the number of distinct rotational
parameters remaining in the spacetime after performing the limit, while αN is the
number of parameters in the block α subjected to the limit, and thus the number
of additional rotations approaching the value aα,0. These numbers satisfy

Ñ +
∑

α

αN = N .

Moreover, in the Lorentzian case we assume

ÑN = 0 ,

which means that the last block contains only a single parameter aÑ,0 not sub-
jected to the limit. This will enable us to obtain the Lorentzian signature of the
metric in a similar way to Section 1.3, see Eqs. (2.3) and (2.4).

The ranges of the coordinates {xα,0, xα,ρ} remain as in (1.17) — or written in
our new notation

aα−1,α−1N < xα,0 < aα,0 ,

aα,ρ−1 < xα,ρ < aα,ρ ,
(2.1)

with the only exception being x1,0 ∈ (−a1,0, a1,0).
All the other quantities such as other coordinates and metric functions will

be indexed in the same way.

Figure 2.1: New indexing and grouping of the rotational parameters {aα,0, aα,ρ}
into blocks that have equal spin once the limit aα,ρ → aα,0 has been performed.
The coordinates {xα,0, xα,ρ} remain restricted by the rotational parameters as in
(2.1).

1Strictly speaking, we should be using tilded indices α̃ (β̃, γ̃...) to label the blocks of equal
rotations in order to clearly distinguish between indices and quantities before and after the
limit. However, for the sake of simplicity and better readability, we will use tildes only over the
names of the relevant quantities after the limit, e.g. x̃α, ãα.
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2.1.2 Parametrization of the limit
When performing the limit aα,ρ → aα,0, the rotational parameters aα,ρ and the
ranges of the coordinates xα,ρ degenerate. Therefore, we will rescale them using
the following parametrization

aα,0 = ãα , xα,0 = x̃α , ϕα,0 = ϕ̃α ,

aα,ρ = ãα + αaρ ε , xα,ρ = ãα + αxρ ε , ϕα,ρ = αϕρ ,
(2.2)

where ε ≪ 1 is a small parameter. We have denoted the quantities that do not
change after performing the limit using tildes and we will refer to the correspond-
ing directions as primary coordinate directions. We have also introduced new
rescaled parameters αaρ and coordinates αxρ, which remain well-defined after the
limit, and we will refer to the corresponding directions as secondary coordinate
directions. Within one block, αxρ are ordered as

0 < αx1 <
αa1 <

αx2 <
αa2 < . . . < αxαN < αaαN .

Let us note that the angular coordinates {ϕα,0, ϕα,ρ} are unambiguously re-
lated to the corresponding rotational parameter aα,0 or aα,ρ. In practice this
means that they are labeled with the same type of indices — the Greek ones.
Therefore, it is more convenient to use these coordinates in the limiting pro-
cedure instead of the coordinates ψk introduced in (1.1). The coordinates ψk

non-trivially mix different equal-spin blocks and thus are not suitable for our
limit.

As was mentioned earlier, the last block can be Wick-rotated to obtain the
Lorentzian signature in a similar way to before the limit (see Eqs. (1.18)—(1.20))

x̃Ñ = ir , ϕ̃Ñ = λãÑ t , b̃Ñ = iM , (2.3)
and we also set

ã2
Ñ = − 1

λ
. (2.4)

2.2 Limiting procedure

2.2.1 Metric
Our goal is to perform the limit of the metric. For that we need to introduce
two types of metric functions corresponding to the two sets of directions: tilded
functions include only the coordinates and the parameters in the primary direc-
tions and functions with an upper left index are constructed using only variables
in the secondary directions. They are defined in a similar manner to the metric
functions before the limit (see Appendix A.1), only the sets of coordinates and
parameters are modified, for example

J̃(ã2
α) =

∏
β

(
x̃2

β − ã2
α

)
, αJ(αaρ) = α

∏
σ

(αxσ − αaρ) ,

where we have introduced a new notation for sums and products of quantities in
the secondary directions using an upper left index

α
∑

ρ

≡
αN∑
ρ=1

.
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An important difference is that the functions in the secondary directions, i.e.
those including the rescaled variables αxρ and αaρ are not defined using squares,
but only first powers. Moreover, since we set bµ̄ = 0, the on-shell metric functions
after the limit are defined as

X̃ᾱ = λJ̃ (x̃2
ᾱ) , X̃Ñ = λJ̃ (x̃2

Ñ) − 2b̃Ñ x̃Ñ

∏
ᾱ

(
ã2

ᾱ − x̃2
Ñ

)−ᾱN
,

ᾱXρ = 2ᾱxρ
ᾱJ (ᾱxρ) ,

(2.5)

and ÑXρ does not exist in the Lorentzian case since ρ ∈ ∅ in the last block. Barred
indices are used in the same way as before, namely, to skip the Lorentzian sector
(see Section 1.3), i.e. they go over the ranges

ᾱ, β̄, . . . = 1, . . . , ˜̄N ,

˜̄N = Ñ − 1 .

Further details of the limiting procedure applied to individual functions that
appear in the metric are provided in Appendix A.2.

The first step in the limiting procedure is to rewrite the quantities using
double indices introduced in Section 2.1.1. Let us begin with the metric in the
form (1.10) using the unnormalized orthogonal frame. Applying the modified
index labeling it reads

g =
∑

α

(
Uα,0

Xα,0
ϵα,0ϵα,0 + α

∑
ρ

Uα,ρ

Xα,ρ

ϵα,ρϵα,ρ + Xα,0

Uα,0
ϵ̂α,0ϵ̂α,0 + α

∑
ρ

Xα,ρ

Uα,ρ

ϵ̂α,ρϵ̂α,ρ

)
,

where we have separated the primary directions from the secondary directions,
which are subjected to the limit. The unnormalized frame of 1-forms (1.8) can
be written as

ϵα,0 = dxα,0 , ϵ̂α,0 =
∑

β

[
Jα,0(a2

β,0)
λaβ,0Uβ,0

dϕβ,0 + β
∑

σ

Jα,0(a2
β,σ)

λaβ,σUβ,σ

dϕβ,σ

]
,

ϵα,ρ = dxα,ρ , ϵ̂α,ρ =
∑

β

[
Jα,ρ(a2

β,0)
λaβ,0Uβ,0

dϕβ,0 + β
∑

σ

Jα,ρ(a2
β,σ)

λaβ,σUβ,σ

dϕβ,σ

]
.

Now we can perform the limit by expanding the orthogonal frame in the
limiting parameter ε. Applying the parametrization (2.2), it becomes

ϵα,0 ≈ ϵ̃α , ϵ̂α,0 ≈ ˆ̃ϵα ,

ϵα,ρ ≈ ε αϵρ , ϵ̂α,ρ ≈ 1
ε

J̃(ã2
α)

2λã2
αŨα

αϵ̂ρ ,

where ≈ denotes equality in the leading-order terms in ε. The 1-forms defined
using the rescaled quantities on the right-hand sides of the equations read

ϵ̃α = dx̃α , ˆ̃ϵα =
∑

β

J̃α(ã2
β)

λãβŨβ

Φ̃β =
∑

r

Ã(r)
α Ψ̃r ,

αϵρ = dαxρ ,
αϵ̂ρ =

αJρ(0)
αJ (0) dϕ̃α − α

∑
σ

αJρ(αaσ)
αaσ

αUσ

dαϕσ .

(2.6)
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We have written ˆ̃ϵα so that they have a similar form to ϵ̂µ before the limit in
Eq. (1.8), only instead of simple gradients dϕµ we had to introduce 1-forms Φ̃α

given by
Φ̃α =

αJ(0)
αJ (0)dϕ̃α − α

∑
ρ

αJ(αaρ)
αaρ

αUρ

dαϕρ , (2.7)

and instead of dψk we have used Ψ̃r, which are related to Φ̃α as

Φ̃α = λãα

∑
r

Ã(r)
α Ψ̃r , Ψ̃r =

∑
α

(−ã2
α)Ñ−1−r

λãαŨα

Φ̃α .

The index r goes over the range

r = 0, . . . , Ñ − 1 , (2.8)

and the functions Ã(r)
α and Ã(r)

α are given by (A.13). Notice that the relations
between Φ̃α and Ψ̃r are analogous to the transformation formulae (1.5) between
the two types of angular coordinates ϕµ and ψk before the limit. Moreover, in
Section 3.1 we will show that Φ̃α are Kähler potentials.

Using the same limiting procedure for the dual unnormalized orthogonal frame
of vectors (1.9), it becomes

ϵα,0 ≈ ϵ̃α , ϵ̂α,0 ≈ ˆ̃ϵα ,

ϵα,ρ ≈ 1
ε

αϵρ , ϵ̂α,ρ ≈ ε
2λã2

αŨα

J̃(ã2
α)

αϵ̂ρ ,

where the frame vectors defined in terms of the rescaled quantities after the limit
are

ϵ̃α = ∂

∂x̃α

, ˆ̃ϵα =
∑

β

J̃β(x̃2
α)

Ũα

Φ̃β ,

αϵρ = ∂

∂αxρ

, αϵ̂ρ =
αJ (αxρ)

αUρ

∂

∂ϕ̃α

− α
∑

σ

αxρ
αJσ(αxρ)

αUρ

∂

∂αϕσ

,

(2.9)

and the vectors Φ̃α read

Φ̃α = λãα

(
∂

∂ϕ̃α

+ α
∑

ρ

∂

∂αϕρ

)
. (2.10)

It turns out that they are Killing vectors, as will be shown in Section 3.2. Notice
that ˆ̃ϵα have a similar form to ϵ̂µ in (1.9).

The orthogonal frame after the limit separates into two sets: the primary
frame directions {ϵ̃α, ˆ̃ϵα} and the secondary frame directions {αϵρ, αϵ̂ρ}2. This
separation is valid only in the sense of tangent spaces since these directions do
not correspond directly to the primary and the secondary coordinate directions

2The index notation in the secondary directions is as follows. The left index (indicating which
block a direction belongs to) is always placed at the top, whereas the position of the right index
(distinguishing between the directions inside the block) reveals in a standard manner whether
the concerned object is a form or a vector.
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— the hatted 1-forms ˆ̃ϵα and αϵ̂ρ contain angular coordinates in both primary
and secondary coordinate directions. Moreover, primary and secondary frame
directions are not integrable distributions of subspaces in the tangent spaces.

The splitting is respected by the duality relations between the frame of vectors
and the frame of 1-forms

ϵ̃α · ϵ̃β = δαβ , ˆ̃ϵα · ˆ̃ϵβ = δαβ ,

αϵρ · βϵσ = δαβδρσ ,
αϵ̂ρ · βϵ̂σ = δαβδρσ ,

(2.11)

with all the other products being zero. The frames of the primary directions
{ϵ̃α, ˆ̃ϵα} and in the individual blocks of the secondary directions {αϵρ, αϵ̂ρ} become
independent orthogonal frames.

The metric after the limit obtains the form

g ≈ g̃ −
∑

α

J̃(ã2
α)

2λã2
αŨα

αg , (2.12)

where

g̃ =
∑

α

(
Ũα

X̃α

ϵ̃αϵ̃α + X̃α

Ũα

ˆ̃ϵαˆ̃ϵα

)
, (2.13)

ᾱg = ᾱ
∑

ρ

(
ᾱUρ

ᾱXρ

ᾱϵρ ᾱϵρ +
ᾱXρ

ᾱUρ

ᾱϵ̂ρ ᾱϵ̂ρ

)
, Ñg = 0 . (2.14)

The last equality holds because in the Lorentzian case we have reserved the block
α = Ñ to be potentially Wick-rotated to the temporal and radial coordinates,
and thus did not subject it to the limit.

The inverse metric in its limit form can be written as

g−1 ≈ g̃−1 −
∑

α

2λã2
αŨα

J̃(ã2
α)

αg−1 , (2.15)

with

g̃−1 =
∑

α

(
X̃α

Ũα

ϵ̃αϵ̃α + Ũα

X̃α

ˆ̃ϵα
ˆ̃ϵα

)
, (2.16)

ᾱg−1 = ᾱ
∑

ρ

(
ᾱXρ

ᾱUρ

ᾱϵρ
ᾱϵρ +

ᾱUρ

ᾱXρ

ᾱϵ̂ρ
ᾱϵ̂ρ

)
, Ñg−1 = 0 . (2.17)

Note, that the tensors (2.16) and (2.17) are individually inverse to the metrics
(2.13) and (2.14) on the respective subspaces spanned on the primary and the
secondary frame directions, as can be seen using the duality relations (2.11).
Combined together, it gives that g−1 is indeed the inverse of g.

2.2.2 Relation to generalized Kerr–NUT–(A)dS
spacetimes

It turns out that the metric (2.12) is in the form that represents a special case of a
more general metric described by Houri et al. in [53]. In this paper, the authors

26



study the generalized Kerr–NUT–(A)dS metric, which possesses the principal
tensor h with both non-constant and constant eigenvalues, thus the tensor is not
necessarily non-degenerate.

Let us remember that in our case the principal tensor before the limit has
non-constant and functionally independent eigenvalues xµ [22] (see Section 1.4.1).
However, after employing the limiting procedure, some of these eigenvalues be-
come constant. Namely, all the eigenvalues xα,ρ from the secondary blocks de-
generate into the respective constant values ãα after the limit, while x̃α in the
primary directions remain non-constant. Therefore, the geometry we have ob-
tained by applying the equal-spin limiting procedure is indeed a subcase of the
results published in [53]. This also confirms the results of Oota and Yasui [54].

The authors of [53] write the metric in the form

g =
n∑

α=1

dx2
α

Pα(x)+
n∑

α=1
Pα(x)

[
n−1∑
r=0

σr(x̂α)θr

]2

+
n′∑

i=1

n∏
α=1

(
x2

α − ξ2
i

)
g(i)+σng(0) , (2.18)

where the functions Pα(x) are defined as

Pα(x) = Xα

xK
α

∏n′
i=1 (x2

α − ξ2
i )mi Uα

, Uα =
n∏

β=1
β ̸=α

(
x2

α − x2
β

)
,

and the functions Xα = Xα(xα) are arbitrary. The number of non-constant eigen-
values xα of the principal tensor is n, the number of constant non-zero eigenvalues
ξi is n′ and the number of zero eigenvalues is K. Each ξi has the multiplicity mi

and g(i) are the Kähler metrics on 2mi-dimensional Kähler manifolds, whereas
g(0) is in general any metric on a K-dimensional manifold.

In our case, the number of non-constant and distinct constant non-zero eigen-
values is the same and it corresponds to Ñ in our notation. Moreover, since we
have made the assumption that the rotational parameters are non-zero, K = 0
in this case, which implies that g(0) ≡ 0. The equivalence between the symbols
used in [53] and our notation can be thus summarized as follows

n = n′ ↔ Ñ , mi ↔ αN , xα ↔ x̃α , ξi ↔ ãα ,

σr(x̂α) ↔ Ã(r)
α , Pα(x) ↔ X̃α

Ũα

, Uα ↔ (−1)Ñ−1Ũα ,

θr ↔ Ψ̃r , g(i) ↔ −
αg

2λã2
αŨα

.

(2.19)

Since the form of our metrics αg in the secondary blocks differs from the authors’
g(i) only by a constant factor, we will refer to αg as Kähler metrics. Further-
more, the metric g̃ defined in Eq. (2.13) has the form of the Kerr–NUT–(A)dS
metric analogous to the metric of the entire spacetime (1.10) but for the primary
directions only. Thus we shall refer to it as the Kerr–NUT–(A)dS part.

However, we should emphasize that αg represent the Kähler metrics only for-
mally as there seems to be no decomposition of the original Kerr–NUT–(A)dS
manifold into a direct product of the Kerr–NUT–(A)dS part and the Kähler man-
ifolds. As was already mentioned, the primary and the secondary directions form
only subspaces of tangent spaces. Metrics αg act on these secondary subspaces
of the tangent space, but these subspaces are not integrable to form independent
Kähler manifolds.
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2.2.3 Homogeneous sphere
We have already set all the NUT charges to zero at the beginning of this chapter.
Let us simplify the situation even more by setting the mass parameter to zero
as well, and perform the equal-spin limit for the maximally symmetric case of a
homogeneous sphere geometry.

When applying the limiting procedure to the Jacobi transformation (1.13), it
turns out that we can define analogous transformations for the primary and the
secondary directions separately. Indeed, the limit form of (1.13) reads

λρ2
α,0 ≈ λρ̃2

α
αρ2

0 , λρ2
α,σ ≈ λρ̃2

α
αρ2

σ , λρ2
0 ≈ λρ̃2

0 , (2.20)

where we have denoted

λρ̃2
α = J̃(ã2

α)
−ã2

αŨα

, λρ̃2
0 = J̃(0)

J̃ (0)
= Ã(Ñ)

Ã(Ñ)
,

αρ2
σ =

αJ(αaσ)
−αaσ

αUσ

, αρ2
0 =

αJ(0)
αJ (0) =

αA(αN)

αA(αN) .

(2.21)

The advantage of defining the two sets of multi-cylindrical coordinates in this
way is that a constraint similar to (1.14) holds for both of them independently,
i.e. they satisfy

Ñ∑
α=0

ρ̃2
α = 1

λ
,

αN∑
σ=0

αρ2
σ = 1 . (2.22)

The limit form of the metric in these coordinates can be achieved by em-
ploying one of two methods. Using the first method, we perform the coordinate
transformation with all the quantities already in their limit form — following the
same steps as in Section 1.2.1. First, we realize that setting M = 0 implies

X̃α = λJ̃ (x̃2
α) ,

and apply orthogonality relations (tilded version of (A.12)) to simplify the angular
sector of the Kerr–NUT–(A)dS part (2.13), obtaining

g̃ =
∑

α

[
Ũα

λJ̃ (x̃2
α)

dx̃2
α − J̃(ã2

α)
λã2

αŨα

(
Φ̃α
)2
]
. (2.23)

Subsequently, we apply the Jacobi transformation (2.21), which is defined after
the limit, to the metric (2.12). This leads to

g ≈ dρ̃2
0 +

∑
α

(
dρ̃2

α + ρ̃2
α

αgEucl

)
. (2.24)

where αgEucl denote (2 αN+2)-dimensional Euclidean metrics in the multi-polar
coordinates

αgEucl = dαρ2
0 + αρ2

0dϕ̃2
α + α

∑
σ

(
dαρ2

σ + αρ2
σdαϕ2

σ

)
. (2.25)

Although the Kähler metrics αg defined in (2.14) probably cannot be simplified
using orthogonality relations in the same way as the Kerr–NUT–(A)dS part, they
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can be transformed into the multi-cylindrical coordinates directly. The proof and
further details of this coordinate transformation can be found in Appendix B.1.

Following the second method, we start with the metric (1.15) before the limit,
but already transformed into the multi-cylindrical coordinates, and apply the
limit of these coordinates (2.20) to it. This gives us an expression identical to
(2.24) above.

As one can see, the secondary blocks become spherically symmetric after the
limit. In particular, they can be viewed as (2 αN+1)-dimensional spheres, given by
the constraints (2.22), embedded in (2 αN+2)-dimensional flat spaces, described
by the metrics αgEucl (2.25). Moreover, in the full spacetime metric (2.24), each
sphere is coupled solely to the coordinate ρ̃α in the corresponding primary direc-
tion. Therefore, the full metric after the limit has a similar form to the metric
(1.15) before the limit, only simple 2-forms dϕ2

µ have been replaced with the
spheres αgEucl .

Notice that the metric in the multi-cylindrical coordinates no longer clearly
separates into the Kerr–NUT–(A)dS part g̃ and the Kähler metrics αg, but they
are rather combined together, as can be seen from the proof in Appendix B.1.

2.2.4 Black hole
When focusing on the physical interpretation of the limited metric, it is convenient
to use the Myers–Perry coordinates defined in Section 1.3.2. Further details of
the following results are provided in Appendix B.2. We shall proceed in a similar
manner to the homogeneous sphere case described in the previous section. First,
let us apply the limit to the Jacobi transformation (1.24), which gives

µ2
ᾱ,0 ≈ µ̃2

ᾱ
ᾱµ2

0 , µ2
ᾱ,ρ ≈ µ̃2

ᾱ
ᾱµ2

ρ , µ2
0 ≈ µ̃2

0 , (2.26)

having denoted

µ̃2
ᾱ =

˜̄J(ã2
ᾱ)

−ã2
ᾱ

˜̄Uᾱ

, µ̃2
0 =

˜̄J(0)
˜̄J (0)

=
˜̄A( ˜̄N)

˜̄A( ˜̄N)
,

ᾱµ2
ρ =

ᾱJ(ᾱaρ)
−ᾱaρ

ᾱUρ

, ᾱµ2
0 =

ᾱJ(0)
ᾱJ (0) =

ᾱA(ᾱN)

ᾱA(ᾱN) .

(2.27)

Functions decorated with both a bar and a tilde are defined analogously to barred
functions in Section 1.3, i.e. without x̃Ñ and ãÑ . As before, the two sets of
Myers–Perry coordinates satisfy constraints similar to (1.25) independently

˜̄N∑
ᾱ=0

µ̃2
ᾱ = 1 ,

ᾱN∑
ρ=0

ᾱµ2
ρ = 1 . (2.28)

Moreover, they are related to the multi-cylindrical coordinates analogously to
Eq. (1.26)

λρ̃2
ᾱ = r2 + ã2

ᾱ

ã2
ᾱ − ã2

Ñ

µ̃2
ᾱ ,

1 − λR̃2 ≡ λρ̃2
Ñ =

(
1 − λr2

)(
µ̃2

0 +
∑

ᾱ

µ̃2
ᾱ

1 + λã2
ᾱ

)
.

(2.29)
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Let us first follow the same steps as in Section 1.3.2, only with all the quantities
already in their limit form. To begin with, we split the sums into temporal/radial
and angular parts, employ the Wick rotation (2.3) and the gauge fixing (2.4), and
use orthogonality relations (tilded version of (A.12)) for the Kerr–NUT–(A)dS
part (2.13), which becomes

g̃ =
∑

ᾱ

Ũᾱ

λJ̃ (x̃2
ᾱ)

dx̃2
ᾱ + Σ̃

∆̃r

dr2 −
∑

ᾱ

J̃(ã2
ᾱ)

λã2
ᾱŨᾱ

(
Φ̃ᾱ
)2

− λ
J̃(ã2

Ñ
)

ŨÑ

dt2

+ 2Mr

Σ̃
∏
β̄

(
r2 + ã2

β̄

)−β̄N
[∑

ᾱ

J̃Ñ(ã2
ᾱ)

λãᾱŨᾱ

Φ̃ᾱ +
J̃Ñ(ã2

Ñ
)

ŨÑ

dt
]2

.

(2.30)

Applying (2.27) to the metric (2.12) then leads to

g ≈ −
(
1 − λR̃2

)
dt2 + 2Mr

Σ̃
∏
β̄

(
r2 + ã2

β̄

)−β̄N
[
dt+

∑
ᾱ

ãᾱµ̃
2
ᾱ

1 + λã2
ᾱ

(
Φ̃ᾱ − λãᾱdt

)]2

+ Σ̃
∆̃r

dr2 + r2dµ̃2
0 +

∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

(
dµ̃2

ᾱ + µ̃2
ᾱ

ᾱgEucl

)

+ λ

1 − λR̃2

(
r2µ̃0dµ̃0 +

∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

µ̃ᾱdµ̃ᾱ

)2

,

(2.31)

where ᾱgEucl denote (2 ᾱN+2)-dimensional Euclidean metrics, this time in the
following multi-polar coordinates

ᾱgEucl = dᾱµ2
0 + ᾱµ2

0dϕ̃2
ᾱ + ᾱ

∑
ρ

(
dᾱµ2

ρ + ᾱµ2
ρdᾱϕ2

ρ

)
, (2.32)

and the metric functions are given by

∆̃r = −X̃Ñ =
(
1 − λr2

)∏
ᾱ

(
r2 + ã2

ᾱ

)
− 2Mr

∏
ᾱ

(
r2 + ã2

ᾱ

)−ᾱN
,

Σ̃ = ŨÑ =
(
µ̃2

0 +
∑

ᾱ

r2µ̃2
ᾱ

r2 + ã2
ᾱ

)∏
β̄

(
r2 + ã2

β̄

)
.

(2.33)

Notice that these expressions are similar to Eq. (1.28) — except for the second
term of ∆̃r, which is multiplied by an additional factor emerging from applying
the limit on quantities in the secondary directions. The 1-forms Φ̃ᾱ in these
coordinates read

Φ̃ᾱ = ᾱµ2
0dϕ̃ᾱ + ᾱ

∑
ρ

ᾱµ2
ρdᾱϕρ .

Alternatively, starting with the metric (1.27) in the Myers–Perry coordinates
before the limit and employing (2.26), we obtain an expression identical to (2.31)
above.

Similarly to the homogeneous sphere case, the secondary blocks become
spherically symmetric in the black hole case as well. In particular, they can be
viewed as
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(2 ᾱN+1)-dimensional spheres given by the constraints (2.28), embedded in
(2 ᾱN+2)-dimensional flat spaces, described by the metrics ᾱgEucl (2.32). In the
full spacetime metric (2.31), each sphere is also coupled solely to the coordinate
µ̃ᾱ in the corresponding primary direction. The full metric after the limit thus
has a similar form to the metric (1.27) before the limit, but the 2-forms dϕ2

ν̄

have been replaced with the spheres ᾱgEucl . The only other occurrence of the sec-
ondary directions is in the 1-forms Φ̃ᾱ, which play the role of Kähler potentials
as is discussed in Section 3.1.

The black hole bears another similarity to the homogeneous sphere: the metric
in the Myers–Perry coordinates cannot be decomposed into the Kerr–NUT–(A)dS
part g̃ and the Kähler metrics αg, unlike the metric in the generalized Boyer–
Lindquist coordinates {t, r, x̃ᾱ, ϕ̃ᾱ, ᾱxρ, ᾱϕρ}.
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3. Reconstructing original
symmetries
This chapter focuses on explicit and hidden symmetries of the resulting spacetime
after the limit aα,ρ → aα,0 has been performed. We reconstruct the original num-
ber of Killing vectors and Killing tensors, thus showing that the symmetry group
has not been reduced during the limiting procedure. We expect the symmetry
group to be enhanced, however, this will be shown explicitly only in the case
of six dimensions discussed in Section 4.2 and is yet to be proved in a general
dimension.

3.1 Principal tensor
Let us first discuss the limit form of the principal tensor. Applying the limiting
procedure as before, the principal tensor (1.30) becomes

h ≈
∑

α

[
x̃αϵ̃α ∧ ˆ̃ϵα + J̃(ã2

α)
2λãαŨα

ωα

]
, (3.1)

where ωα are defined as

ωᾱ = ᾱ
∑

ρ

ᾱϵρ ∧ ᾱϵ̂ρ , ωÑ = 0 .

Similarly to the metric, we have obtained the principal tensor in the form that
represents a special case of the results published in [53]. The authors write the
principal tensor in the form

h =
n∑

α=1
xαdxα ∧

[
n−1∑
r=0

σr(x̂α)θr

]
+

n′∑
i=1

ξi

n∏
α=1

(
x2

α − ξ2
i

)
ω(i) ,

where ω(i) are the Kähler forms corresponding to the Kähler metrics g(i) in (2.18).
The symbols used by the authors correspond to our notation as in (2.19) and

ω(i) ↔ ωα

2λã2
αŨα

.

Our tensors ωα differ from ω(i) only by a constant factor. Therefore, ωα formally
represent the Kähler forms.

According to its general definition, a Kähler form is closed. It can be shown
that dωα = 0, thus in our case this requirement is indeed satisfied. Moreover,
there exists a Kähler potential, which is in our case represented by Φ̃α defined
earlier in (2.7). Namely, the following equality holds

ωα = dΦ̃α .
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3.2 Killing vectors
We shall now perform the limit aα,ρ → aα,0 for Killing vectors. It is shown in
Eq. (1.36) that we can define two types of Killing vectors l(k) and s(µ), associated
with two types of angular coordinates ψk and ϕµ, respectively. As was already
mentioned, our limiting procedure is better suited for the latter choice since these
coordinates are in one-to-one correspondence with the rotational parameters.

The limit of the Killing vectors s(µ) is, in the new indexing scheme,

s(α,0) ≈ s̃(α) , s(α,ρ) ≈ αs(ρ) ,

with s̃(α) and αs(ρ) defined similarly to (1.35)

s̃(α) = λãα
∂

∂ϕ̃α

, αs(ρ) = λãα
∂

∂αϕρ

.

The Killing vectors Φ̃α introduced in Eq. (2.10) can now be rewritten as

Φ̃α = s̃(α) + α
∑

ρ

αs(ρ) . (3.2)

We have thus obtained Ñ Killing vectors s̃(α) in the primary directions and ∑α
αN

Killing vectors αs(ρ) in the secondary directions, which gives in total N explicit
symmetries — the same number as before the limit.

Although the Killing vectors l(k) are not suitable for the limiting procedure
itself, it proves useful to define their equivalents after the limit. Inspired by the
first equality in (1.36), we introduce Killing vectors l̃(r) and αl(p) as linear combi-
nations of the coordinate Killing vectors s̃(α) and αs(ρ) in the Kerr–NUT–(A)dS
part g̃ and the Kähler parts αg of the metric, respectively,

l̃(r) =
∑

α

Ã(r)
α s̃(α) ,

αl(p) = α
∑

ρ

αA(p)
ρ

αs(ρ) = α
∑

ρ

αA(p)
ρ

αϵ̂ρ .

Here, the index r acquires the values as in (2.8), the index p goes over the ranges

p = 0, . . . , αN − 1 ,

and the functions Ã(r)
α , αA(p)

ρ and αA(p)
ρ are as in (A.13). Similarly to (1.33) and

(1.37), we also introduce the principal Killing vectors ξ̃ and αξ

ξ̃ = l̃(0) =
∑

α

s̃(α) ,

αξ = αl(0) = α
∑

ρ

αs(ρ) = α
∑

ρ

αϵ̂ρ .
(3.3)

Notice, that we have not listed relations between l̃(r) and ˆ̃ϵα similar to the
second equality in (1.36). Indeed, such relations do not exist. It turns out that
the Killing vectors l̃(r) and s̃(α) need to be “improved” in order to fulfill such
relations.
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To show this, let us approach the limit from a different direction. We perform
the limit of the generating function for Killing vectors (1.38), which reads

l(β) ≈
∏
γ

(
1 + β2ã2

γ

)γN
L̃(β) , (3.4)

with
L̃(β) =

∑
α

Ãα(β)Φ̃α . (3.5)

Realizing that the multiplicative prefactor ∏γ(1 + β2ã2
γ)γN in (3.4) is constant on

the manifold, we can understand L̃(β) also as a generating function for Killing
vectors. Namely, it is the generating function for new Killing vectors L̃(r) (see
(1.34))

L̃(β) =
∑

r

β2rL̃(r) . (3.6)

These new Killing vectors are actually dual to the 1-forms Ψ̃r introduced in
Eq. (2.6) as they satisfy

L̃(r) · Ψ̃s = δrs .

But most importantly, we find L̃(r) to be fully analogous to (1.36) since they are
related to the Killing vectors Φ̃α and to the frame vectors ˆ̃ϵα as

L̃(r) =
∑

α

Ã(r)
α Φ̃α =

∑
α

Ã(r)
α

ˆ̃ϵα , (3.7)

with the functions Ã(r)
α given by (A.13). The principal Killing vector Ξ̃ associated

with L̃(r) reads
Ξ̃ = L̃(0) =

∑
α

Φ̃α =
∑

α

ˆ̃ϵα . (3.8)

Detailed calculations can be found in Appendix B.3.
The generating function L̃(β) thus provides us with the Killing vectors L̃(r)

or Φ̃α, which “improve” the Killing vectors l̃(r) and s̃(α) in such a way that (3.7)
holds. Of course, any of these sets of Killing vectors can be used since they carry
the same information. Indeed, the “improved” Killing vectors are related to the
previously defined Killing vectors as

L̃(r) = l̃(r) +
∑

α

Ã(r)
α

αξ , (3.9)

Φ̃α = s̃(α) + αξ , (3.10)

and
Ξ̃ = ξ̃ +

∑
α

αξ . (3.11)

3.3 Killing tensors
To calculate the limit form of Killing tensors, we shall proceed in a similar manner
to Killing vectors and apply the limiting procedure to the Killing tensors r(µ)
(1.41) instead of k(k).

34



As a preliminary, we consider the limit of πµ. Applying the limit aα,ρ → aα,0
to their definition (1.42), one obtains

πα,0 ≈ π̃α , πα,ρ ≈ −2λã2
αŨα

J̃(ã2
α)

απρ , (3.12)

with the tensors π̃α and απρ defined as

π̃α = X̃α

Ũα

ϵ̃αϵ̃α + Ũα

X̃α

ˆ̃ϵα
ˆ̃ϵα ,

απρ =
αXρ

αUρ

αϵρ
αϵρ +

αUρ

αXρ

αϵ̂ρ
αϵ̂ρ .

It is apparent that the Kerr–NUT–(A)dS part (2.16) and the Kähler part (2.17)
of the inverse metric after the limit can be expressed in terms of these tensors as

g̃−1 =
∑

α

π̃α ,
αg−1 = α

∑
ρ

απρ . (3.13)

We also define auxiliary tensors k̃(r) and r̃(α) using relations analogous to
(1.43),

k̃(r) =
∑

α

Ã(r)
α r̃(α) =

∑
α

Ã(r)
α π̃α , (3.14)

with the corollary
k̃(0) = g̃−1 .

The tensors r̃(α) can be expressed as

r̃(α) =
∑

β

J̃β(ã2
α)

Ũα

π̃β ,

which is analogous to (1.41) before the limit. It should be emphasized that the
tensors k̃(r) and r̃(α) are not, in general, Killing tensors.

Inserting the results (3.12) along with the limit form of the metric functions
(see Appendix A.2) into Eq. (1.41), we acquire the leading term in the expansion
of the Killing tensors r(µ)

εr(α,0) ≈ −α
∑

ρ

λãα

αaρ

αr(ρ) , εr(α,ρ) ≈ λãα

αaρ

αr(ρ) , (3.15)

with αr(ρ) in the form
αr(ρ) = α

∑
σ

αJσ(αaρ)
αUρ

απσ ,

see Appendix B.3 for the proof. They are independent Killing tensors after the
limit associated with the secondary directions. Again, in analogy with (1.43) we
also introduce Killing tensors αk(p) as

αk(p) = α
∑

ρ

αA(p)
ρ

αr(ρ) = α
∑

ρ

αA(p)
ρ

απρ . (3.16)

In this case, both αk(p) and αr(ρ) are Killing tensors: αr(ρ) have been obtained
as a limit of Killing tensors and αk(p) are just linear combinations of αr(ρ) with
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constant coefficients. Moreover, they are both directly related to the Kähler parts
of the metric αg. For p = 0 we even have

αk(0) = αg−1 , (3.17)

thus the Kähler metrics are Killing tensors as well.
Inspecting the first expansion in (3.15), we see that the limiting procedure for

r(µ) extracts only the Killing tensors αr(ρ) in the secondary directions. It does
not provide any additional information about the primary directions. Therefore,
we need a different approach to obtain Killing tensors related to the primary
directions.

Similarly to Killing vectors, let us apply the limiting procedure to the gener-
ating function k(β) for Killing tensors (1.44). The proof of the following results
can be found in Appendix B.3. We obtain

k(β) ≈
∏
γ

(
1 + β2ã2

γ

)γN
K̃(β) . (3.18)

Since k(β) and K̃(β) differ only by a constant factor, K̃(β) also generates Killing
tensors. We use this generating function to generate Killing tensors associated
with the primary directions after the limit. K̃(β) can be written in the form

K̃(β) =
∑

r

β2rK̃(r) − β2Ñ
∑

α

2λã2
αŨα

1 + β2ã2
α

αg−1 ,

where we also separated the first Ñ powers of β2 from the remaining ones. Because
of the higher powers of β2 in the second sum, K̃(β) is no longer a direct analogue
of its before-the-limit counterpart k(β) in (1.34). Nevertheless, extra Killing
tensors corresponding to these higher powers of β2 are rather trivial — they are
just linear combinations of the Killing tensors αg−1 with constant coefficients.
The more interesting part of K̃(β) is given by the first Ñ powers of β2 contained
in the first sum. The coefficients define new Killing tensors K̃(r), which are given
by

K̃(r) = k̃(r) −
∑

α

B̃(r)(ã2
α)2λã2

αŨα

J̃(ã2
α)

αg−1 , (3.19)

with the functions B̃(r)(ã2
α) defined as partial sums (see Eq. (B.11))

B̃(r)(ã2
α) =

r∑
n=0

Ã(n)(−ã2
α)r−n .

Since these are non-trivial functions on spacetime, the linear combination of the
Killing tensors αg−1 in (3.19) does not have constant coefficients and, therefore,
k̃(r) cannot be expected to be Killing tensors.

For r = 0, we have
K̃(0) ≈ g−1 ,

thus the Killing tensors K̃(r) are related to the full spacetime metric g.
Finally, we can introduce another set of Killing tensors R̃(α), again using a

formula analogous to (1.43)

K̃(r) =
∑

α

Ã(r)
α R̃(α) . (3.20)
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It can be shown that R̃(α) read

R̃(α) = r̃(α) +
∑

β
β ̸=α

2λã2
β

ã2
α − ã2

β

Ũβ

Ũα

J̃(ã2
α) − J̃(ã2

β)
J̃(ã2

β)
βg−1 − 2λã2

α

∑
β

(
x̃2

β − ã2
α

)−1 αg−1 ,

(3.21)
see Appendix B.3 for the proof.

To summarize, we have obtained Ñ Killing tensors K̃(r) in the primary di-
rections and ∑α

αN Killing tensors αk(p) in the secondary directions, thus recon-
structing the original number of N hidden symmetries. Alternatively, we can use
equivalent sets of Killing tensors R̃(α) in the primary directions and αr(ρ) in the
secondary directions.

Let us conclude this chapter by showing that the relations between Killing vec-
tors, Killing tensors and the principal Killing vector are preserved in the primary
and the secondary directions separately. Indeed, it can be shown that similar
equations to (1.32) hold for the objects related to the full spacetime metric g and
the Kähler parts αg, respectively

L̃(r) = K̃(r) · Ξ̃ ,

αl(p) = αk(p) · αξ .
(3.22)

Moreover, the other set of Killing vectors and Killing tensors, labeled with Greek
indices, satisfies analogous identities

Φ̃α = R̃(α) · Ξ̃ ,

αs(ρ) = αr(ρ) · αξ .
(3.23)

Such relations are not satisfied, however, when the objects related to the
Kerr–NUT–(A)dS part g̃ of the metric are considered — an additional term is
present in this case

l̃(r) = k̃(r) · ξ̃ −
∑

α

Ã(r)
α

αξ ,

s̃(α) = r̃(α) · ξ̃ − αξ ,

(3.24)

see Appendix B.3 for the proof. This should not come as a surprise since k̃(r) and
r̃(α) are not actually Killing tensors of the full spacetime metric.
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4. Examples: Equally-spinning
black holes
This chapter includes two explicit examples of the general results obtained in
Chapters 2 and 3 that are interesting from the physical point of view. Namely,
we consider metrics with the Lorentzian signature describing higher-dimensional
black holes, and we set all their rotational parameters equal. Section 4.1 focuses
on a black hole in D = 2N and Section 4.2 describes a six-dimensional case.

4.1 D = 2N
Setting all the rotational parameters equal in the Lorentzian case means that
there are only two equal-spin blocks α ∈ {1, Ñ}, with the latter being reserved
for the Wick rotation. Therefore, only the secondary directions within the first
block are subjected to the limiting procedure, and their number is 1N = N − 2.
The limit in this case is characterized by a1,ρ → a1,0, where the index labeling
the secondary directions acquires the values

ρ = 1, . . . , N − 2 ,

unless indicated otherwise. The parametrization (2.2) thus adopts the form

a1,0 = ã1 , x1,0 = x̃1 , ϕ1,0 = ϕ̃1 ,

a1,ρ = ã1 + 1aρ ε , x1,ρ = ã1 + 1xρ ε , ϕ1,ρ = 1ϕρ ,

aÑ,0 = ãÑ , xÑ,0 = x̃Ñ , ϕÑ,0 = ϕ̃Ñ .

(4.1)

We shall proceed from the generally spinning metric after the limit and use
its form (2.31) in the Myers–Perry coordinates {t, r, µ̃0, µ̃1, ϕ̃1, 1µ0, 1µρ, 1ϕρ}.
Since the equally-spinning black hole retains a single rotational parameter after
the limit (in the leading order terms in ε), let us write

ã1 ≡ ã . (4.2)

Moreover, the second limiting block is related just to the Lorentzian sector and it
is renamed in the Wick rotation (2.3) and by imposing the gauge condition (2.4).
Thus only a single primary direction and the corresponding block of secondary
directions remain. Therefore, we shall further simplify the notation of the angular
coordinates {ϕ̃1, 1ϕρ} and the coordinates {1µ0, 1µρ} in the secondary directions
by dropping the index “1”, labeling the only limiting block

ϕ̃1 ≡ ϕ̃ , 1ϕρ ≡ ϕρ , (4.3)
1µ0 ≡ µ0 ,

1µρ ≡ µρ .

As in the general case, the coordinates {µ̃0, µ̃1} in the primary directions and
{µ0, µρ} in the secondary directions are not independent — they are constrained
by the conditions

µ̃2
0 + µ̃2

1 = 1 ,
N−2∑
ρ=0

µ2
ρ = 1 . (4.4)
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The metric of an equally-spinning black hole then becomes

g ≈ −
(
1 − λR̃2

)
dt2 + 2Mr

Σ̃
(
r2 + ã2

)2−N
[
dt+ ãµ̃2

1
1 + λã2

(
Φ̃ − λãdt

)]2

+ Σ̃
∆̃r

dr2 + r2dµ̃2
0 + r2 + ã2

1 + λã2

(
dµ̃2

1 + µ̃2
1gEucl

)

+ λ

1 − λR̃2

(
r2µ̃0dµ̃0 + r2 + ã2

1 + λã2 µ̃1dµ̃1

)2

,

(4.5)

where the 1-form Φ̃ is given by

Φ̃ ≡ Φ̃1 = µ2
0dϕ̃+

∑
ρ

µ2
ρdϕρ ,

and gEucl denotes a (2N−2)-dimensional Euclidean metric in the multi-polar co-
ordinates, which can be expressed as

gEucl = dµ2
0 + µ2

0dϕ̃2 +
∑

ρ

(
dµ2

ρ + µ2
ρdϕ2

ρ

)
. (4.6)

The metric functions adopt the form

1 − λR̃2 =
(
1 − λr2

)(
µ̃2

0 + µ̃2
1

1 + λã2

)
,

∆̃r =
(
1 − λr2

) (
r2 + ã2

)
− 2Mr

(
r2 + ã2

)2−N
,

Σ̃ = r2 + ã2µ̃2
0 .

We see that the secondary directions enter the full metric only through the terms
gEucl and Φ̃.

Remembering that the coordinates are restricted by the constraint (4.4), we
conclude that the secondary block essentially obtains the geometry of a
(2N−3)-dimensional sphere. Indeed, it can be viewed as the sphere given by
the constraint (4.4) embedded in a (2N−2)-dimensional flat space described by
the metric gEucl (4.6). Similarly to the general case, this sphere is coupled only
to the primary coordinate µ̃1.

Besides this metric piece, the secondary directions enter the full spacetime
metric also in time-related terms through the Kähler potential Φ̃. It is related to
the common rotation of the secondary directions.

4.2 Myers–Perry black hole in D = 6
In this section, we simplify the situation even more and study the equal-spin limit
of a rotating black hole in vacuum — also called a Myers–Perry black hole — in
six dimensions. This was also discussed by Ortaggio [55]. Such a simplification
proves useful as we are able to find additional Killing vectors that emerge after the
limit, thus providing evidence of an enhanced symmetry structure of the resulting
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spacetime. We expect the symmetry group to become enlarged also in the general
limit case discussed in Chapters 2 and 3.

We focus on a vacuum case, i.e. we set λ = 0. Moreover, there are only two
equal-spin blocks α ∈ {1, Ñ}, and since in six dimensions a black hole described
by the Lorentzian metric has only two rotational parameters, the first block has
1N = 1 parameter subjected to the limit. Therefore, the limiting procedure in
this case is characterized by a1,1 → a1,0. Since this is a special case of the limit
discussed in Section 4.1 with ρ = 1, we shall use the parametrization (4.1) in the
form

a1,0 = ã1 ≡ ã , x1,0 = x̃1 ≡ x̃ , ϕ1,0 = ϕ̃1 ≡ ϕ̃ ,

a1,1 = ã1 + 1a1 ε ≡ ã+ aε , x1,1 = ã1 + 1x1 ε ≡ ã+ xε , ϕ1,1 = 1ϕ1 ≡ ϕ ,

aÑ,0 = ãÑ , xÑ,0 = x̃Ñ , ϕÑ,0 = ϕ̃Ñ ,
(4.7)

where we have renamed the coordinates and the parameters similarly to (4.2) and
(4.3), and also dropped the index ρ = 1. Moreover, x̃Ñ and ϕ̃Ñ are Wick-rotated
as in (2.3), where we must perform the limit λ → 0 assuming the gauge condition
(2.4) for ãÑ .

4.2.1 Metric
Employing the parametrization (4.7), the metric (2.12) becomes

g ≈ − dt2 + 2Mr

Σ

[
dt− x̃2 − ã2

ã

(
x

a
dϕ̃− x− a

a
dϕ
)]2

+ Σ
∆r

dr2

− r2 + x̃2

x̃2 − ã2 dx̃2 + (r2 + ã2) (x̃2 − ã2)
ã2

[
dx2

4x (x− a) − x

a
dϕ̃2 + x− a

a
dϕ2

]
,

(4.8)

with the metric functions in their limit form

∆r ≈
(
r2 + ã2

)
∆̃r =

(
r2 + ã2

)2
− 2Mr ,

Σ ≈
(
r2 + ã2

)
Σ̃ =

(
r2 + ã2

) (
r2 + x̃2

)
,

and ∆̃r with Σ̃ defined as in Eq. (2.33), which confirms the results of [55]. This is
the metric expressed in the generalized Boyer–Lindquist coordinates
{t, r, x̃, ϕ̃, x, ϕ}, which are suitable for performing the limiting procedure. How-
ever, considering the physical interpretation of the resulting spacetime, another
set of coordinates proves more useful.

Spherical-like coordinates

Instead of {x̃, x} we shall introduce new angular coordinates {ϑ, χ}, which
are better suited for analysing physical properties of the black hole spacetime
obtained after the limit. Namely, let us define

x̃ = ã cosϑ ,

x = a cos2 χ .
(4.9)
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Moreover, let us rename the angular coordinates {ϕ̃, ϕ} in the following manner

ϕ̃ ≡ φ1 ,

ϕ ≡ φ2 .

Employing the coordinate transformation (4.9), the metric (4.8) then reads

g ≈ − dt2 + 2Mr

Σ
[
dt+ ã sin2 ϑ

(
cos2 χdφ1 + sin2 χdφ2

)]2
+ Σ

∆r

dr2 +
(
r2 + ã2 cos2 ϑ

)
dϑ2 +

(
r2 + ã2

)
sin2 ϑdS3 ,

(4.10)

where dS3 denotes the metric of a 3-sphere, which can be expressed as1

dS3 = dχ2 + cos2 χdφ2
1 + sin2 χdφ2

2 . (4.11)

The metric functions are

∆r ≈
(
r2 + ã2

)2
− 2Mr ,

Σ ≈
(
r2 + ã2

) (
r2 + ã2 cos2 ϑ

)
.

Notice that the metric (4.10) in these coordinates no longer contains the parame-
ter a from the secondary block. This parameter controls how fast a1,1 approaches
a1,0. However, in case the limit is applied to a single rotational parameter, such
a scale is irrelevant.

The inverse metric can be written as

g−1 ≈ −
(

∂

∂t

)2

− 2Mr

Σ
(r2 + ã2)2

∆r

[
∂

∂t
− ã

r2 + ã2

(
∂

∂φ1
+ ∂

∂φ2

)]2

+ ∆r

Σ

(
∂

∂r

)2

+ 1
r2 + ã2 cos2 ϑ

(
∂

∂ϑ

)2

+ 1
(r2 + ã2) sin2 ϑ

dS−1
3 ,

with the inverse metric of a 3-sphere given simply by

dS−1
3 =

(
∂

∂χ

)2

+ 1
cos2 χ

(
∂

∂φ1

)2

+ 1
sin2 χ

(
∂

∂φ2

)2

.

4.2.2 Killing vectors
Before the limit, the Myers–Perry black hole in six dimensions has three explicit
symmetries associated with the following Killing vectors

ξ = ∂

∂t
,

s+ = 1
2

(
∂

∂φ1
+ ∂

∂φ2

)
= 1

2λ

(
s(1)

a1
+ s(2)

a2

)
,

s− = 1
2

(
∂

∂φ1
− ∂

∂φ2

)
= 1

2λ

(
s(1)

a1
−

s(2)

a2

)
,

(4.12)

1The coordinates in which the metric of a 3-sphere has this particular form are called the
Hopf coordinates.
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where ξ denotes the principal Killing vector (1.37). Note that s+ and s− are
simply linear combinations of the vectors s(1) and s(2) defined in (1.35)2. However,
they form well-known commutation relations with new Killing vectors, which we
will identify next.

As was mentioned earlier, the most important result of this section is that
we have been able to obtain additional Killing vectors emerging after the limit.
Namely, we found two new Killing vectors, which can be written in the spherical-
like coordinates as

u = 1
2

[
cos(φ2 − φ1)

∂

∂χ
− sin(φ2 − φ1)

(
tanχ ∂

∂φ1
+ cotχ ∂

∂φ2

)]
,

v = 1
2

[
sin(φ2 − φ1)

∂

∂χ
+ cos(φ2 − φ1)

(
tanχ ∂

∂φ1
+ cotχ ∂

∂φ2

)]
.

These vectors are independent of the original Killing vectors (4.12) and they Lie-
preserve the full spacetime metric (4.10). Furthermore, it can be shown that they
are Killing vectors of a 3-sphere represented by the metric (4.11).

Let us now discuss how the symmetry group changes after applying the limit-
ing procedure. Before the limit, the spacetime symmetries form a R×U(1)×U(1)
group as there are three commuting Killing vectors ξ, s+ and s−. However, the
algebraic structure emerging after the limit indicates that the symmetry of the
resulting spacetime is indeed further enhanced. In fact, the vectors s−, u and v
generate the algebra of an SO(3) group and the vectors ξ and s+ commute with
all the other vectors as can be seen from their Lie brackets3

[s−,u] = v , [u,v] = s− , [v, s−] = u ,

[s+, s−] = 0 , [s+,u] = 0 , [s+,v] = 0 .
(4.13)

Therefore, the symmetry group of the spacetime decouples and is enhanced from
the original R × U(1) × U(1) to R × U(1) × SO(3) after the limit.

4.2.3 Killing tensors
Another proof of an enhanced symmetry structure after performing the equal-
spin limit can be found when studying the limit form of Killing tensors. In six
dimensions, the Myers–Perry black hole after the limit has three Killing tensors
defined in Eqs. (3.19) and (3.16). Let us simplify the notation used in the general
case and rename the tensors as follows

K̃(0) ≡ k(0) ,

K̃(1) ≡ k(1) ,

1k(0) ≡ k(2) .

2Let us note that the factor 1/λ in the expressions for s± in terms of s(1,2) does not present
a problem in the limit λ → 0 since it is compensated by λ in the definition (1.35).

3Commutation relations with ξ are trivial since all the other Killing vectors are time-
independent.
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In the spherical-like coordinates, they obtain the form4

k(0) ≈ g−1 ,

k(1) = −
(
ã

∂

∂t

)2

+ ã
∂

∂t
∨
(

∂

∂φ1
+ ∂

∂φ2

)

− 2Mr

Σ
[(r2 + ã2) ã cosϑ]2

∆r

[
∂

∂t
− ã

r2 + ã2

(
∂

∂φ1
+ ∂

∂φ2

)]2

+ ∆r

Σ

(
ã cosϑ ∂

∂r

)2

− 1
r2 + ã2 cos2 ϑ

(
r

∂

∂ϑ

)2

− r2 + ã2 sin2 ϑ

(r2 + ã2) sin2 ϑ
dS−1

3 ,

k(2) = 1g−1 = 1
2

⎡⎣( ∂

∂χ

)2

+
(

tanχ ∂

∂φ1
− cotχ ∂

∂φ2

)2
⎤⎦ ,

where 1g−1 is the Kähler part of the full spacetime metric g. It turns out that
k(2) decouples into a sum of direct products of Killing vectors in the following
manner

k(2) = 2 (uu + vv + s−s− − s+s+) ,

thus the Killing tensor k(2) becomes reducible. Therefore, the corresponding
hidden symmetry splits into a combination of explicit symmetries characterized
by the Killing vectors s+, s−, u and v.

4Here, α ∨ β = αβ + βα is a normalized symmetric tensor product analogous to the
antisymmetric wedge operation.
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Conclusion
This thesis is devoted to the Kerr–NUT–(A)dS spacetime and to a particular limit
case of the general metric, where an arbitrary number of its rotational parameters
coincides. The results presented here have been published in [48].

The importance of the Kerr–NUT–(A)dS spacetime lies in the fact that it is
the most general solution to the vacuum Einstein equations in higher dimensions
with the cosmological constant that also possesses the principal tensor. The
principal tensor is an important geometrical object that generates a rich symmetry
structure demonstrated by the existence of the Killing tower of Killing vectors
and Killing tensors.

The limiting spacetime inherits this symmetry structure. The symmetry is
even enhanced since some of the hidden symmetries represented by Killing tensors
factorize, which leads to a higher number of explicit symmetries represented by
Killing vectors.

While Chapter 1 is primarily introductory as it presents the Kerr–NUT–(A)dS
spacetime and its already known properties, Chapter 2 contains the main results
of our work concerning the equal-spin limit of the Kerr–(A)dS metric (we consid-
ered vanishing NUT charges since it is the most relevant case from the physical
point of view). Although the limiting procedure is not trivial since some of the
parameters and the coordinate ranges become degenerate, we managed to find a
suitable parametrization of the limit, in which the metric remains regular. We
defined primary and secondary coordinate directions, which refer to the coor-
dinates (and the parameters) that do not change after the limit and to those
subjected to the limit, respectively. We then applied the limiting procedure to
the orthogonal frame {ϵµ, ϵ̂µ} and found out that after the limit it separates into
two independent orthogonal frames {ϵ̃α, ˆ̃ϵα} and {αϵρ, αϵ̂ρ}, which we referred
to as primary and secondary frame directions, respectively. This structure cor-
responds to the expected form of the generalized Kerr–NUT–(A)dS spacetimes
[53], where spacetimes with the principal tensor that has constant eigenvalues
have been discussed. In [53], the most general metric allowing such a principal
tensor has been identified. It was shown that certain parts of the metric have
formal properties of the Kähler metrics, which we confirmed in our limit. We thus
kept the terminology of [53]. However, the orthogonal separation of the metric is
only valid on the level of tangent spaces and is not integrable. Thus the resulting
geometry cannot be understood as a product of independent manifolds and one
cannot talk about true Kähler submanifolds. The resulting geometry is rather a
certain kind of multi-warped product.

Applying the limit to the metric g, we discovered that it splits into two parts —
the primary Kerr–NUT–(A)dS part g̃ and the secondary Kähler metrics αg. The
Kerr–NUT–(A)dS part has the form analogous to the Kerr–NUT–(A)dS metric of
the entire spacetime but only in the primary directions, while the Kähler metrics
describe special parts of the geometry that emerged in the limiting procedure.
However, both pieces are interlaced together because of the fine inner structure
of the primary and secondary orthogonal frames. Thus, we repeat once more,
that the secondary metrics αg can be called Kähler metrics only formally since
they do not live on independent submanifolds.
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As a particular case we studied the limit of a homogeneous sphere geometry
with vanishing mass parameter and the limit of a black hole geometry with the
explicit Lorentzian signature. In these cases, the interlacing of the primary Kerr–
NUT–(A)dS block and the secondary Kähler blocks can be demonstrated in an
explicit form. It turns out that after the limit the secondary blocks simplify to
spatial spheres, and each sphere is coupled to the coordinate in the corresponding
primary direction. Additionally, for the Lorentzian metric, the secondary blocks
are coupled to the primary metric in the rotational term linear in dt through the
Kähler potentials.

In Chapter 3, we discussed the equal-spin limit of the Killing tower. We were
able to obtain the same number of Killing vectors and Killing tensors as before
the limit, thus having reconstructed the original explicit and hidden symmetries
associated with these objects. Moreover, we showed that Killing vectors can be
obtained as contractions of Killing tensors with the principal Killing vector in the
primary and the secondary directions separately.

It turned out that applying the equal-spin limit to the Kerr–(A)dS metric
leads to a special subclass of the generalized Kerr–NUT–(A)dS metrics studied
in [53]. In our case, the principal tensor after the limit becomes degenerate
since some of its eigenvalues reduce to constants. However, our metric represents
a particularly interesting subcase as it displays a unique property that these
metrics do not have in general. Namely, we showed that it retains the full tower
of explicit and hidden symmetries, thus inheriting the complete integrability of
the geodesic particle motion from the original geometry — unlike the generalized
Kerr–NUT–(A)dS metrics, which do not necessarily admit the full Killing tower,
and they thus possess a weaker symmetry. This makes our case suited to studying
the symmetries represented by Killing vectors and Killing tensors.

In general, we expect that the limiting metric has even enhanced symmetry
structure, i.e. that it possesses more explicit symmetries, making some of the
hidden symmetries reducible.

Two examples of the general results were presented in Chapter 4, where we
studied the metric of a black hole with all its rotational parameters set equal in a
general (even) dimension and in six dimensions. In the six-dimensional case, we
found an enhanced symmetry structure after the limit. Namely, we discovered two
additional Killing vectors that emerge after performing the limiting procedure.
These new vectors are independent of the original Killing vectors and they Lie-
preserve the full spacetime metric. Moreover, combined with the original Killing
vectors they generate the algebra of an SO(3) group. Therefore, the symmetry
group of the spacetime is enhanced from the original R × U(1) × U(1) to R ×
SO(3) × U(1) after the limit. Furthermore, it turned out that one of the Killing
tensors becomes reducible as it decouples into a sum of direct products of Killing
vectors, therefore, the associated hidden symmetry splits into a combination of
explicit symmetries.

Future work
Let us conclude with several open problems concerning the equal-spin limit of the
Kerr–NUT–(A)dS spacetime.

We expect the symmetry group to become enlarged in the general limit case.
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Namely, we expect that after the limit the symmetries of spherically symmetric
spatial parts emerge on the level of the full spacetime metric. This should be
possible to prove using a higher-dimensional generalization of the spherical-like
coordinates (4.9). While the task is rather simple when the secondary block
contains a single coordinate, with more coordinates the complexity of the ex-
pressions grows considerably, and identifying spheres in these coordinates thus
becomes non-trivial.

In this work, we mostly assumed vanishing NUT charges for simplicity. Some
of the results could be generalized to the case of non-vanishing NUT charges, but
it would require much more careful fine-tuning of the metric parameters and the
coordinate ranges and one would need to investigate the relation of the resulting
symmetry structure with the NUT-related singular structure of the axes.
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[13] W. Chen, H. Lü, and C. N. Pope. General Kerr–NUT–AdS metrics in all
dimensions. Classical and Quantum Gravity, 23(17):5323–5340, 2006.

[14] R. C. Myers and M. J. Perry. Black Holes in Higher Dimensional Space-
Times. Annals of Physics, 172(2):304–347, 1986.

47
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Dimensional Rotating Black Holes. Physical Review Letters, 98(1):011101,
2007.

[20] Tsuyoshi Houri, Takeshi Oota, and Yukinori Yasui. Closed confor-
mal Killing–Yano tensor and Kerr–NUT–de Sitter space-time uniqueness.
Physics Letters B, 656(4–5):214–216, 2007.
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Hamilton–Jacobi and Klein–Gordon equations in general Kerr–NUT–AdS
spacetimes. Journal of High Energy Physics, 02(005), 2007.

[27] Artur Sergyeyev and Pavel Krtouš. Complete set of commuting symmetry
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equations in Kerr–NUT–(A)dS spacetimes. Nuclear Physics B, 934:7–38,
2018.
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A. Metric functions

A.1 Definitions and properties
In Chapter 1 we have introduced several auxiliary functions that are then often
used to describe the spacetime metric and other quantities before the limit and
with some modifications also after the limit (see Appendix A.2). These functions
are polynomials either in the coordinates xµ (denoted by J , A, U) or in the
parameters aµ (denoted by J , A, U). They are defined as 1

J(a2) =
∏
ν

(
x2

ν − a2
)

=
N∑

k=0
A(k)(−a2)N−k ,

J (x2) =
∏
ν

(
a2

ν − x2
)

=
N∑

k=0
A(k)(−x2)N−k .

(A.1)

Considering these definitions, it follows that

A(k) =
∑

ν1,...,νk
ν1<···<νk

x2
ν1 . . . x

2
νk
,

A(k) =
∑

ν1,...,νk
ν1<···<νk

a2
ν1 . . . a

2
νk
.

(A.2)

Similarly, we define functions with the µ-th variable omitted as

Jµ(a2) =
∏
ν

ν ̸=µ

(
x2

ν − a2
)

=
∑

k

A(k)
µ (−a2)N−1−k ,

Jµ(x2) =
∏
ν

ν ̸=µ

(
a2

ν − x2
)

=
∑

k

A(k)
µ (−x2)N−1−k ,

(A.3)

where

A(k)
µ =

∑
ν1,...,νk

ν1<···<νk
νi ̸=µ

x2
ν1 . . . x

2
νk
,

A(k)
µ =

∑
ν1,...,νk

ν1<···<νk
νi ̸=µ

a2
ν1 . . . a

2
νk
.

(A.4)

We set
A(0) = A(0)

µ = 1 , A(0) = A(0)
µ = 1 (A.5)

1Let us remind the reader that indices in sums and products go over the “default” ranges
unless indicated otherwise explicitly, i.e.

∑
µ

=
N∑

µ=1
,

∑
k

=
N−1∑
k=0

.
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and we also assume that the functions A(k)
µ vanish if the index k “overflows”, e.g.

A(N)
µ = 0; the same applies to the functions A(k)

µ . Finally, we define

Uµ = Jµ(x2
µ) =

∏
ν

ν ̸=µ

(
x2

ν − x2
µ

)
,

Uµ = Jµ(a2
µ) =

∏
ν

ν ̸=µ

(
a2

ν − a2
µ

) (A.6)

as a special case of (A.3).
The functions defined above satisfy

J(x2
µ) = 0 , J (a2

µ) = 0 ,
Jµ(x2

ν) = 0 , Jµ(a2
ν) = 0 , if µ ̸= ν .

If A(k)
µ is understood as an N×N matrix, it is possible to write down its inverse

∑
k

A(k)
µ

(−x2
ν)N−1−k

Uν

= δµν , (A.7)

∑
µ

A(k)
µ

(−x2
µ)N−1−l

Uµ

= δkl . (A.8)

The following identity holds for the polynomials A(k) and A(k)
µ

∑
µ

A(k)
µ

x2
µUµ

= A(k)

A(N) . (A.9)

The functions A(k) and A(k)
µ satisfy analogous identities with xµ and Uµ replaced

by aµ and Uµ, respectively.
Finally, the following orthogonality relations are satisfied

∑
κ

Jµ(a2
κ)

Uκ

Jκ(x2
ν)

Uν

= δµν , (A.10)

∑
κ

Jµ(a2
κ)Jν(a2

κ)
J(a2

κ)Uκ

= − Uµ

J (x2
µ)δµν , (A.11)

∑
κ

Jκ(a2
µ)Jκ(a2

ν)J (x2
κ)

Uκ

= −J(a2
µ)Uµδµν . (A.12)

A.2 Equal-spin limit
When employing the limiting procedure introduced in Chapter 2, first we rewrite
the metric functions using the double indexing described in Section 2.1.1, and
then apply the parametrization (2.2). The functions J and U along with their

53



counterparts J and U can be written as 2 3

J (x2
α,0) =

∏
γ

(
a2

γ,0 − x2
α,0

)
·
∏
γ

γ
∏
τ

(
a2

γ,τ − x2
α,0

)
,

J (x2
α,ρ) =

∏
γ

(
a2

γ,0 − x2
α,ρ

)
·
∏
γ

γ
∏
τ

(
a2

γ,τ − x2
α,ρ

)
,

Jα,0(a2
β,0) =

∏
γ

γ ̸=α

(
x2

γ,0 − a2
β,0

)
·
∏
γ

γ
∏
τ

(
x2

γ,τ − a2
β,0

)
,

Jα,0(a2
β,σ) =

∏
γ

γ ̸=α

(
x2

γ,0 − a2
β,σ

)
·
∏
γ

γ
∏
τ

(
x2

γ,τ − a2
β,σ

)
,

Jα,ρ(a2
β,0) =

∏
γ

(
x2

γ,0 − a2
β,0

)
·
∏
γ

γ ̸=α

γ
∏
τ

(
x2

γ,τ − a2
β,0

)
· α

∏
τ

τ ̸=ρ

(
x2

α,τ − a2
β,0

)
,

Jα,ρ(a2
β,σ) =

∏
γ

(
x2

γ,0 − a2
β,σ

)
·
∏
γ

γ ̸=α

γ
∏
τ

(
x2

γ,τ − a2
β,σ

)
· α

∏
τ

τ ̸=ρ

(
x2

α,τ − a2
β,σ

)
,

Jβ,0(x2
α,0) =

∏
γ

γ ̸=β

(
a2

γ,0 − x2
α,0

)
·
∏
γ

γ
∏
τ

(
a2

γ,τ − x2
α,0

)
,

Jβ,σ(x2
α,0) =

∏
γ

(
a2

γ,0 − x2
α,0

)
·
∏
γ

γ ̸=β

γ
∏
τ

(
a2

γ,τ − x2
α,0

)
· β

∏
τ

τ ̸=σ

(
a2

β,τ − x2
α,0

)
,

Jβ,0(x2
α,ρ) =

∏
γ

γ ̸=β

(
a2

γ,0 − x2
α,ρ

)
·
∏
γ

γ
∏
τ

(
a2

γ,τ − x2
α,ρ

)
,

Jβ,σ(x2
α,ρ) =

∏
γ

(
a2

γ,0 − x2
α,ρ

)
·
∏
γ

γ ̸=β

γ
∏
τ

(
a2

γ,τ − x2
α,ρ

)
· β

∏
τ

τ ̸=σ

(
a2

β,τ − x2
α,ρ

)
,

Uα,0 =
∏
γ

γ ̸=α

(
x2

γ,0 − x2
α,0

)
·
∏
γ

γ
∏
τ

(
x2

γ,τ − x2
α,0

)
,

Uα,ρ =
∏
γ

(
x2

γ,0 − x2
α,ρ

)
·
∏
γ

γ ̸=α

γ
∏
τ

(
x2

γ,τ − x2
α,ρ

)
· α

∏
τ

τ ̸=ρ

(
x2

α,τ − x2
α,ρ

)
,

Uα,0 =
∏
γ

γ ̸=α

(
a2

γ,0 − a2
α,0

)
·
∏
γ

γ
∏
τ

(
a2

γ,τ − a2
α,0

)
,

Uα,ρ =
∏
γ

(
a2

γ,0 − a2
α,ρ

)
·
∏
γ

γ ̸=α

γ
∏
τ

(
a2

γ,τ − a2
α,ρ

)
· α

∏
τ

τ ̸=ρ

(
a2

α,τ − a2
α,ρ

)
.

2Let us remind the reader that indices introduced in Section 2.1.1 go over the “default”
ranges unless indicated otherwise explicitly in the sum or product, i.e.∏

α

=
Ñ∏

α=1
, α

∏
ρ

=
αN∏
ρ=1

.

3Note that the above list is not exhaustive — we calculate the limit only of those functions
that appear in the metric or in related quantities.
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After the limit, these functions become

J (x2
α,0) ≈ J̃ (x̃2

α)
∏
γ

(
ã2

γ − x̃2
α

)γN
,

J (x2
α,ρ) ≈ −Ũα

αxρ
αJ (αxρ) (2ãαε)

αN+1 ∏
γ

γ ̸=α

(
ã2

γ − ã2
α

)γN
,

Jα,0(a2
β,0) ≈ J̃α(ã2

β)βJ(0) (2ãβε)
βN
∏
γ

γ ̸=β

(
ã2

γ − ã2
β

)γN
,

Jα,0(a2
β,σ) ≈ J̃α(ã2

β)βJ(βaσ) (2ãβε)
βN
∏
γ

γ ̸=β

(
ã2

γ − ã2
β

)γN
,

Jα,ρ(a2
β,0) ≈

J̃(ã2
β)

ã2
α − ã2

β

βJ(0) (2ãβε)
βN
∏
γ

γ ̸=β

(
ã2

γ − ã2
β

)γN
, α ̸= β ,

Jα,ρ(a2
β,σ) ≈

J̃(ã2
β)

ã2
α − ã2

β

βJ(βaσ) (2ãβε)
βN
∏
γ

γ ̸=β

(
ã2

γ − ã2
β

)γN
, α ̸= β ,

Jα,ρ(a2
α,0) ≈ J̃(ã2

α)αJρ(0) (2ãαε)
αN−1 ∏

γ
γ ̸=α

(
ã2

γ − ã2
α

)γN
,

Jα,ρ(a2
α,σ) ≈ J̃(ã2

α)αJρ(αaσ) (2ãαε)
αN−1 ∏

γ
γ ̸=α

(
ã2

γ − ã2
α

)γN
,

Jβ,0(x2
α,0) ≈ J̃β(x̃2

α)
∏
γ

(
ã2

γ − x̃2
α

)γN
,

Jβ,σ(x2
α,0) ≈ J̃β(x̃2

α)
∏
γ

(
ã2

γ − x̃2
α

)γN
,

Jβ,0(x2
α,ρ) ≈ Ũα

ã2
α − ã2

β

αxρ
αJ (αxρ) (2ãαε)

αN+1 ∏
γ

γ ̸=α

(
ã2

γ − ã2
α

)γN
, α ̸= β ,

Jβ,σ(x2
α,ρ) ≈ Ũα

ã2
α − ã2

β

αxρ
αJ (αxρ) (2ãαε)

αN+1 ∏
γ

γ ̸=α

(
ã2

γ − ã2
α

)γN
, α ̸= β ,

Jα,0(x2
α,ρ) ≈ Ũα

αJ (αxρ) (2ãαε)
αN

∏
γ

γ ̸=α

(
ã2

γ − ã2
α

)γN
,

Jα,σ(x2
α,ρ) ≈ −Ũα

αxρ
αJσ(αxρ) (2ãαε)

αN
∏
γ

γ ̸=α

(
ã2

γ − ã2
α

)γN
,
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Uα,0 ≈ Ũα

∏
γ

(
ã2

γ − x̃2
α

)γN
,

Uα,ρ ≈ J̃(ã2
α)αUρ (2ãαε)

αN−1 ∏
γ

γ ̸=α

(
ã2

γ − ã2
α

)γN
,

Uα,0 ≈ Ũα
αJ (0) (2ãαε)

αN
∏
γ

γ ̸=α

(
ã2

γ − ã2
α

)γN
,

Uα,ρ ≈ −Ũα
αaρ

αUρ (2ãαε)
αN

∏
γ

γ ̸=α

(
ã2

γ − ã2
α

)γN
.

The functions after the limit, such as J̃ , Ã, Ũ and αJ , αA, αU are defined similarly
to the functions before the limit in Appendix A.1, only the sets of coordinates
and parameters they include are restricted to x̃α, ãα and αxρ, αaρ, respectively.
Moreover, the latter are defined using first powers of variables instead of their
squares. For example, the definitions (A.3) and (A.4) are modified as

J̃α(ã2) =
∏
β

β ̸=α

(
x̃2

β − ã2
)

=
∑

r

Ã(r)
α (−ã2)Ñ−1−r ,

J̃α(x̃2) =
∏
β

β ̸=α

(
ã2

β − x̃2
)

=
∑

r

Ã(r)
α (−x̃2)Ñ−1−r ,

αJρ(αa) = α
∏
σ

σ ̸=ρ

(αxσ − αa) =
∑

p

αA(p)
ρ (−αa)αN−1−p ,

αJρ(αx) = α
∏
σ

σ ̸=ρ

(αaσ − αx) =
∑

p

αA(p)
ρ (−αx)αN−1−p ,

where

Ã(r)
α =

∑
β1,...,βr

β1<···<βr
βi ̸=α

x̃2
β1 . . . x̃

2
βr
, αA(p)

ρ =
∑

σ1,...,σp
σ1<···<σp

σi ̸=ρ

αxσ1 . . .
αxσp ,

Ã(r)
α =

∑
β1,...,βr

β1<···<βr
βi ̸=α

ã2
β1 . . . ã

2
βr
, αA(p)

ρ =
∑

σ1,...,σp
σ1<···<σp

σi ̸=ρ

αaσ1 . . .
αaσp ,

(A.13)

and the Latin indices go over the ranges

r = 0, . . . , Ñ − 1 ,
p = 0, . . . , αN − 1 .

The other definitions are modified accordingly. These functions also satisfy anal-
ogous identities and orthogonality relations to (A.7)—(A.12). Furthermore, we
define αJ(αa) = 1 and αJ (αx) = 1 if αN = 0. In particular, in the Lorentzian case
we have

ÑJ(αa) = 1 , ÑJ (αx) = 1 .
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B. Proofs of selected results
The results in the main text of Chapters 2 and 3 are summarized without explicit
evidence of their validity. We provide the proofs of selected formulae in this
appendix.

B.1 Metric in multi-cylindrical coordinates
Section 2.2.3 describes the transformation of the limit form of the metric, which
represents a maximally symmetric space with the geometry of a homogeneous
sphere, into the multi-cylindrical coordinates {ρ̃0, ρ̃α, ϕ̃α, αρ0, αρσ, αϕσ}. In this
appendix, we shall provide further details of this coordinate transformation.

It is useful to formally extend the sets of rotational parameters in the primary
and the secondary directions by adding

ã0 = 0 , αa0 = 0 . (B.1)

This does not change the actual expressions, however, it enables us to write them
in a compact form and also use (modified) identities for the metric functions. Let
us also introduce the following notation for sums (and products) including the
zeroth variable

◦∑
α

≡
Ñ∑

α=0
, α

◦∑
ρ

≡
αN∑
ρ=0

. (B.2)

Similarly, the metric functions decorated with a circle include the zeroth variable,
for example

◦
Ũα =

◦∏
β

β ̸=α

(
ã2

β − ã2
α

)
, α

◦
Uρ = α

◦∏
σ

σ ̸=ρ

(αaσ − αaρ) . (B.3)

Using this notation, the Jacobi transformation (2.21) can be written com-
pactly as

λρ̃2
α = J̃(ã2

α)
◦

Ũα

, αρ2
σ =

αJ(αaσ)
α

◦
Uσ

,

where α = 0, 1, . . . , Ñ and σ = 0, 1, . . . , αN . The constraints (2.22) can be then
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verified using the following steps

◦∑
α

λρ̃2
α =

◦∑
α

◦
J̃0(ã2

α)
◦

Ũα

(A.3)
=

◦∑
α

1
◦

Ũα

◦∑
r

◦

Ã
(r)
0 (−ã2

α)
◦

Ñ−1−r

(A.5)
=

◦∑
r

◦

Ã
(r)
0

◦∑
α

◦
Ã(0)

α

(−ã2
α)

◦
Ñ−1−r

◦
Ũα

(A.8)
=

◦∑
r

◦

Ã
(r)
0 δr0 =

◦

Ã
(0)
0 = 1 ,

α
◦∑
σ

αρ2
σ = α

◦∑
σ

α
◦
J0(αaσ)

α
◦

Uσ

(A.3)
= α

◦∑
σ

1
α

◦
Uσ

α
◦∑
p

◦
αA

(p)
0 (−αaσ)α

◦
N−1−p

(A.5)
= α

◦∑
p

◦
αA

(p)
0

α
◦∑
σ

◦
αA(0)

σ

(−αaσ)α
◦

N−1−p

α
◦

Uσ

(A.8)
= α

◦∑
p

◦
αA

(p)
0 δp0 =

◦
αA

(0)
0 = 1 ,

where we have denoted

◦∑
r

≡

◦
Ñ−1∑
r=0

, α
◦∑
p

≡
α

◦
N−1∑
p=0

,

with
◦

Ñ = Ñ +1 and α
◦
N = αN +1 as they include the additional zeroth variables.

Such a notation may seem unnecessarily complicated, however, it enables us
to employ analogous definitions and identities to those listed in Appendix A.1,
adapted to our set of coordinates and parameters. For example, in the preceding
calculation we have used the identities analogous to those indicated above the
equal signs.

In order to obtain the metric (2.24) in the multi-cylindrical coordinates, let
us first calculate the following differentials

◦∑
α

dρ̃2
α =

◦∑
α

(ρ̃αdρ̃α)2 1
ρ̃2

α

=
◦∑
α

⎡⎢⎣∑
β

J̃β(ã2
α)x̃βdx̃β

λ
◦

Ũα

⎤⎥⎦
2
λ

◦
Ũα

J̃(ã2
α)

= 1
λ

∑
β

∑
γ

◦∑
α

J̃β(ã2
α)J̃γ(ã2

α)

J̃(ã2
α)

◦
Ũα

x̃βx̃γdx̃βdx̃γ

(A.11)
= − 1

λ

∑
β

∑
γ

Ũβ
◦

J̃ (x̃2
β)
δβγx̃βx̃γdx̃βdx̃γ =

∑
β

Ũβ

λJ̃ (x̃2
β)

dx̃2
β ,

(B.4)

α
◦∑
σ

dαρ2
σ = α

◦∑
σ

(αρσdαρσ)2 1
αρ2

σ

= α
◦∑
σ

⎡⎣α
∑

τ

αJτ (αaσ)dαxτ

2 α
◦

Uσ

⎤⎦2
α

◦
Uσ

αJ(αaσ)

= 1
4

α
∑

τ

α
∑
ω

α
◦∑
σ

αJτ (αaσ) αJω(αaσ)
αJ(αaσ) α

◦
Uσ

dαxτ dαxω

(A.11)
= −1

4
α
∑

τ

α
∑
ω

αUτ

α
◦

J (αxτ )
δτωdαxτ dαxω = α

∑
τ

αUτ

4αxτ
αJ (αxτ )dαx2

τ .
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Moreover, let us transform the following expression into the multi-cylindrical
coordinates

Φ̃αΦ̃α + α
∑

σ

αxσ
αJ (αxσ)
αUσ

αϵ̂σ αϵ̂σ

=
(

αρ2
0dϕ̃α + α

∑
τ

αρ2
τ dαϕτ

)(
αρ2

0dϕ̃α + α
∑
ω

αρ2
ωdαϕω

)
+ α

∑
σ

αxσ
αJ (αxσ)
αUσ

×

×
(

αρ2
0

αxσ

dϕ̃α + α
∑

τ

αρ2
τ

αxσ − αaτ

dαϕτ

)(
αρ2

0
αxσ

dϕ̃α + α
∑
ω

αρ2
ω

αxσ − αaω

dαϕω

)

=
[
1 + α

∑
σ

αJ (αxσ)
αxσ

αUσ

]
αρ4

0dϕ̃2
α

+ α
∑

τ

[
1 + α

∑
σ

αJ (αxσ)
(αxσ − αaτ ) αUσ

]
2 αρ2

0
αρ2

τ dϕ̃αdαϕτ

+ α
∑

τ

α
∑
ω

[
1 + α

∑
σ

αJ (αxσ)
αUσ

αxσ

(αxσ − αaτ ) (αxσ − αaω)

]
αρ2

τ
αρ2

ωdαϕτ dαϕω

= αρ2
0dϕ̃2

α + α
∑

τ

αρ2
τ dαϕ2

τ .

(B.5)

We started with Φ̃α and αϵ̂σ in the form (2.7) and (2.6), respectively, and substi-
tuted the expressions in the square brackets with their simplifed forms

1 + α
∑

σ

αJ (αxσ)
αxσ

αUσ

(A.1)
= 1 + α

∑
σ

1
αxσ

αUσ

α
◦∑
p

αA(p)(−αxσ)αN−p

(A.5)
= 1 − α

∑
p

αA(p) α
∑

σ

αA(0)
σ

(−αxσ)αN−1−p

αUσ

+ αA(αN) α
∑

σ

1
αxσ

αUσ

(A.8)(A.9)
= 1 − α

∑
p

αA(p)δp0 +
αA(αN)

αA(αN) =
αA(αN)

αA(αN) = 1
αρ2

0
,

1 + α
∑

σ

αJ (αxσ)
(αxσ − αaτ ) αUσ

= 1 − α
∑

σ

αJτ (αxσ)
αUσ

(A.3)(A.5)
= 1 − α

∑
p

αA(p)
τ

α
∑

σ

αA(0)
σ

(−αxσ)αN−1−p

αUσ

(A.8)
= 1 − α

∑
p

αA(p)
τ δp0 = 1 − αA(0)

τ = 0 ,

(B.6)
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1 + α
∑

σ

αJ (αxσ)
αUσ

αxσ

(αxσ − αaτ ) (αxσ − αaω)

= 1 + α
∑

σ

αJ (αxσ)
αUσ

αxσ − αaω + αaω

(αxσ − αaτ ) (αxσ − αaω)

= 1 + α
∑

σ

αJ (αxσ)
(αxσ − αaτ ) αUσ

+ α
∑

σ

αJ (αxσ)
αUσ

αaω

(αxσ − αaτ ) (αxσ − αaω)

(B.6)
=

αaω

αJ(αaτ ) αJ(αaω)
α
∑

σ

αJσ(αaτ ) αJσ(αaω)
αJ (αxσ)

αUσ

(A.12)
= −

αaω

αJ(αaτ ) αJ(αaω)
αJ(αaτ )αUτδτω = 1

αρ2
τ

δτω .

Starting with the metric g in the form (2.12), where its parts g̃ and αg are
expressed as in (2.23) and (2.14), respectively, and using the results derived above,
it becomes

g ≈
∑

α

Ũα

λJ̃ (x̃2
α)

dx̃2
α +

∑
α

J̃(ã2
α)

−λã2
αŨα

α
∑

σ

αUσ

4αxσ
αJ (αxσ)dαx2

σ

+
∑

α

J̃(ã2
α)

−λã2
αŨα

[
Φ̃αΦ̃α + α

∑
σ

αxσ
αJ (αxσ)
αUσ

αϵ̂σ αϵ̂σ

]

=
◦∑
α

dρ̃2
α +

∑
α

ρ̃2
α

α
◦∑
σ

dαρ2
σ +

∑
α

ρ̃2
α

(
αρ2

0dϕ̃2
α + α

∑
σ

αρ2
σdαϕ2

σ

)

= dρ̃2
0 +

∑
α

{
dρ̃2

α + ρ̃2
α

[
dαρ2

0 + αρ2
0dϕ̃2

α + α
∑

σ

(
dαρ2

σ + αρ2
σdαϕ2

σ

)]}
.

As one can see, the explicit separation of the Kerr–NUT–(A)dS part g̃ and the
Kähler metrics αg is not preserved after the Jacobi transformation since their
angular parts have been combined together in order to obtain the terms (B.5).

B.2 Metric in Myers–Perry coordinates
This appendix provides details of the coordinate transformation discussed in Sec-
tion 2.2.4, that is the transformation of a black hole’s metric with the Lorentzian
signature into the Myers–Perry coordinates {t, r, µ̃0, µ̃ᾱ, ϕ̃ᾱ, ᾱµ0, ᾱµρ, ᾱϕρ}.

We shall be using the notation (B.1)—(B.3) in a slightly modified form,
adapted to the set of coordinates after the separation of the temporal/radial
coordinate and the angular coordinates. We thus define

ã0 = 0 , ᾱa0 = 0 .

The sums (and products) are denoted as1

◦∑
ᾱ

≡
˜̄N∑

ᾱ=0
, ᾱ

◦∑
ρ

≡
ᾱN∑
ρ=0

,

1Let us remind the reader that ˜̄N = Ñ − 1.
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and the metric functions decorated with a circle are in this case
◦
˜̄U ᾱ =

◦∏
β̄

β̄ ̸=ᾱ

(
ã2

β̄ − ã2
ᾱ

)
, ᾱ

◦
Uρ = ᾱ

◦∏
σ

σ ̸=ρ

(
ᾱaσ − ᾱaρ

)
.

Using this notation, the Jacobi transformation (2.27) can be written com-
pactly as

µ̃2
ᾱ =

˜̄J(ã2
ᾱ)

◦
˜̄U ᾱ

, ᾱµ2
ρ =

ᾱJ(ᾱaρ)
ᾱ

◦
Uρ

,

where ᾱ = 0, 1, . . . , ˜̄N and ρ = 0, 1, . . . , ᾱN . The constraints (2.28) can be then
verified using similar steps as in Section B.1

◦∑
ᾱ

µ̃2
ᾱ =

◦∑
ᾱ

◦
˜̄J0(ã2

ᾱ)
◦
˜̄U ᾱ

(A.3)
=

◦∑
ᾱ

1
◦
˜̄U ᾱ

◦∑
r̄

◦
˜̄A(r̄)

0 (−ã2
ᾱ)

◦
˜̄N−1−r̄

(A.5)
=

◦∑
r̄

◦
˜̄A(r̄)

0

◦∑
ᾱ

◦
˜̄A(0)

ᾱ

(−ã2
ᾱ)

◦
˜̄N−1−r̄

◦
˜̄U ᾱ

(A.8)
=

◦∑
r̄

◦
˜̄A(r̄)

0 δr̄0 =
◦
˜̄A(0)

0 = 1 ,

ᾱ
◦∑
ρ

ᾱµ2
ρ = ᾱ

◦∑
ρ

ᾱ
◦
J0(ᾱaρ)

ᾱ
◦

Uρ

(A.3)
= ᾱ

◦∑
ρ

1
ᾱ

◦
Uρ

ᾱ
◦∑
p

◦
ᾱA

(p)
0 (−ᾱaρ)ᾱ

◦
N−1−p

(A.5)
= ᾱ

◦∑
p

◦
ᾱA

(p)
0

ᾱ
◦∑
ρ

◦
ᾱA(0)

ρ

(−ᾱaρ)ᾱ
◦

N−1−p

ᾱ
◦

Uρ

(A.8)
= ᾱ

◦∑
p

◦
ᾱA

(p)
0 δp0 =

◦
ᾱA

(0)
0 = 1 ,

where we have denoted

◦∑
r̄

≡

◦
˜̄N−1∑
r̄=0

, ᾱ
◦∑
p

≡
ᾱ

◦
N−1∑
p=0

,

with
◦
˜̄N = ˜̄N + 1 and ᾱ

◦
N = ᾱN + 1. As in the previous section, the identities used

in the calculations are indicated above the respective equal signs.
In order to obtain the metric (2.31) in the Myers–Perry coordinates, let us
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begin with the following differentials

◦∑
ᾱ

dµ̃2
ᾱ =

◦∑
ᾱ

(µ̃ᾱdµ̃ᾱ)2 1
µ̃2

ᾱ

=
◦∑
ᾱ

⎡⎢⎣∑
β̄

˜̄Jβ̄(ã2
ᾱ)x̃β̄dx̃β̄

◦
˜̄U ᾱ

⎤⎥⎦
2 ◦

˜̄U ᾱ

˜̄J(ã2
ᾱ)

=
∑

β̄

∑
γ̄

◦∑
ᾱ

˜̄Jβ̄(ã2
ᾱ) ˜̄Jγ̄(ã2

ᾱ)

˜̄J(ã2
ᾱ)

◦
˜̄U ᾱ

x̃β̄x̃γ̄dx̃β̄dx̃γ̄

(A.11)
= −

∑
β̄

∑
γ̄

˜̄Uβ̄
◦
˜̄J (x̃2

β̄
)
δβ̄γ̄x̃β̄x̃γ̄dx̃β̄dx̃γ̄ =

∑
β̄

˜̄Uβ̄

˜̄J (x̃2
β̄
)
dx̃2

β̄ ,

ᾱ
◦∑
ρ

dᾱµ2
ρ = ᾱ

◦∑
ρ

(
ᾱµρdᾱµρ

)2 1
ᾱµ2

ρ

= ᾱ
◦∑
ρ

⎡⎣ᾱ
∑

σ

ᾱJσ(ᾱaρ)dᾱxσ

2 ᾱ
◦

Uρ

⎤⎦2
ᾱ

◦
Uρ

ᾱJ(ᾱaρ)

= 1
4

ᾱ
∑

σ

ᾱ
∑

τ

ᾱ
◦∑
ρ

ᾱJσ(ᾱaρ) ᾱJτ (ᾱaρ)
ᾱJ(ᾱaρ) ᾱ

◦
Uρ

dᾱxσdᾱxτ

(A.11)
= −1

4
ᾱ
∑

σ

ᾱ
∑

τ

ᾱUσ

ᾱ
◦

J (ᾱxσ)
δστ dᾱxσdᾱxτ = ᾱ

∑
σ

ᾱUσ

4ᾱxσ
ᾱJ (ᾱxσ)dᾱx2

σ .

To continue, let us show how the following expressions transform from the
Myers–Perry coordinates into the generalized Boyer–Lindquist coordinates (to
prove the transformation in this direction is a simpler task than in the opposite
direction)

1 − λR̃2 =
(
1 − λr2

)(
µ̃2

0 +
∑

ᾱ

µ̃2
ᾱ

1 + λã2
ᾱ

)
=
(
1 − λr2

) ◦∑
ᾱ

µ̃2
ᾱ

1 + λã2
ᾱ

=
(
1 − λr2

) ◦∑
ᾱ

˜̄J(ã2
ᾱ)

◦
˜̄U ᾱ

◦
˜̄J ᾱ(ã2

Ñ
)

˜̄J (ã2
Ñ

)
= 1 − λr2

˜̄J (ã2
Ñ

)

◦∑
ᾱ

◦
˜̄J0(ã2

ᾱ)
◦
˜̄J ᾱ(ã2

Ñ
)

◦
˜̄U ᾱ

(A.3)
= 1 − λr2

˜̄J (ã2
Ñ

)

◦∑
r̄

◦∑
s̄

◦
˜̄A(r̄)

0 (−ã2
Ñ)

◦
˜̄N−1−s̄

◦∑
ᾱ

◦
˜̄A(s̄)

ᾱ

(−ã2
ᾱ)

◦
˜̄N−1−r̄

◦
˜̄U ᾱ

(A.8)
= 1 − λr2

˜̄J (ã2
Ñ

)

◦∑
r̄

◦
˜̄A(r̄)

0 (−ã2
Ñ)

◦
˜̄N−1−r̄ =

(
1 − λr2

) ˜̄J(ã2
Ñ

)
˜̄J (ã2

Ñ
)

=
(
1 − λr2

) J̃Ñ(ã2
Ñ

)
ŨÑ

= λ
J̃(ã2

Ñ
)

ŨÑ

,

(B.7)

1 −
∑

ᾱ

λã2
ᾱµ̃

2
ᾱ

1 + λã2
ᾱ

= µ̃2
0 +

∑
ᾱ

µ̃2
ᾱ

1 + λã2
ᾱ

(B.7)
=

J̃Ñ(ã2
Ñ

)
ŨÑ

.
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The transformation (B.8) can be proved using the multi-cylindrical coordinates.
Namely, the sum of differentials in the primary directions can be expressed in two
different forms

◦∑
α

dρ̃2
α = r2

1 − λr2

◦∑
ᾱ

µ̃2
ᾱ

r2 + ã2
ᾱ

dr2 +
◦∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

dµ̃2
ᾱ

+ λ

1 − λR̃2

( ◦∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

µ̃ᾱdµ̃ᾱ

)2

,

◦∑
α

dρ̃2
α = r2

1 − λr2

◦∑
ᾱ

µ̃2
ᾱ

r2 + ã2
ᾱ

dr2 +
∑

ᾱ

Ũᾱ

λJ̃ (x̃2
ᾱ)

dx̃2
ᾱ ,

where we have differentiated (2.29) to obtain the first form and applied several
non-trivial identities to (B.4) to obtain the second form. Comparing these for-
mulae, the transformation can be then written as

∑
ᾱ

Ũᾱ

λJ̃ (x̃2
ᾱ)

dx̃2
ᾱ =

◦∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

dµ̃2
ᾱ + λ

1 − λR̃2

( ◦∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

µ̃ᾱdµ̃ᾱ

)2

= r2dµ̃2
0 +

∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

dµ̃2
ᾱ

+ λ

1 − λR̃2

(
r2µ̃0dµ̃0 +

∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

µ̃ᾱdµ̃ᾱ

)2

.

(B.8)

Combined angular sectors of the Kerr–NUT–(A)dS part and the Kähler metrics
can be calculated using similar steps to (B.5)

Φ̃ᾱΦ̃ᾱ + ᾱ
∑

ρ

ᾱxρ
ᾱJ (ᾱxρ)
ᾱUρ

ᾱϵ̂ρ ᾱϵ̂ρ = ᾱµ2
0dϕ̃2

ᾱ + ᾱ
∑

ρ

ᾱµ2
ρdᾱϕ2

ρ . (B.9)

Starting with the metric g in the form (2.12), where its parts g̃ and αg are
expressed as in (2.30) and (2.14), respectively, and using the results derived above,
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it becomes

g ≈ − λ
J̃(ã2

Ñ
)

ŨÑ

dt2 + 2Mr

Σ̃
∏
β̄

(
r2 + ã2

β̄

)−β̄N
[∑

ᾱ

J̃Ñ(ã2
ᾱ)

λãᾱŨᾱ

Φ̃ᾱ +
J̃Ñ(ã2

Ñ
)

ŨÑ

dt
]2

+ Σ̃
∆̃r

dr2 +
∑

ᾱ

Ũᾱ

λJ̃ (x̃2
ᾱ)

dx̃2
ᾱ +

∑
ᾱ

J̃(ã2
ᾱ)

−λã2
ᾱŨᾱ

ᾱ
∑

ρ

ᾱUρ

4ᾱxρ
ᾱJ (ᾱxρ)dᾱx2

ρ

+
∑

ᾱ

J̃(ã2
ᾱ)

−λã2
ᾱŨᾱ

[
Φ̃ᾱΦ̃ᾱ + ᾱ

∑
ρ

ᾱxρ
ᾱJ (ᾱxρ)
ᾱUρ

ᾱϵ̂ρ ᾱϵ̂ρ

]

= −
(
1 − λR̃2

)
dt2 + 2Mr

Σ̃
∏
β̄

(
r2 + ã2

β̄

)−β̄N
[
dt+

∑
ᾱ

ãᾱµ̃
2
ᾱ

1 + λã2
ᾱ

(
Φ̃ᾱ − λãᾱdt

)]2

+ Σ̃
∆̃r

dr2 + r2dµ̃2
0 +

∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

dµ̃2
ᾱ +

∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

µ̃2
ᾱ

ᾱ
◦∑
ρ

dᾱµ2
ρ

+
∑

ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

µ̃2
ᾱ

(
ᾱµ2

0dϕ̃2
ᾱ + ᾱ

∑
ρ

ᾱµ2
ρdᾱϕ2

ρ

)

+ λ

1 − λR̃2

(
r2µ̃0dµ̃0 +

∑
ᾱ

r2 + ã2
ᾱ

1 + λã2
ᾱ

µ̃ᾱdµ̃ᾱ

)2

.

Similarly to the metric in the multi-cylindrical coordinates, angular sectors of
the Kerr–NUT–(A)dS part g̃ and the Kähler metrics αg together form the terms
(B.9), therefore, the explicit separation of g̃ and αg is not preserved after the
Jacobi transformation.

Finally, let us write the limit form of the metric functions ∆r and Σ defined
in (1.28). After employing the limiting procedure, they become

∆r ≈
∏
ᾱ

(
r2 + ã2

ᾱ

)ᾱN
∆̃r ,

Σ ≈
∏
ᾱ

(
r2 + ã2

ᾱ

)ᾱN
Σ̃ ,

where ∆̃r and Σ̃ are given by (2.33). While ∆̃r has the same form in both types
of coordinates, Σ̃ can be transformed using the following steps

Σ̃ =
(
µ̃2

0 +
∑

ᾱ

r2µ̃2
ᾱ

r2 + ã2
ᾱ

)∏
β̄

(
r2 + ã2

β̄

)
=

◦∑
ᾱ

µ̃2
ᾱ

r2 + ã2
ᾱ

◦∏
β̄

(
r2 + ã2

β̄

)

=
◦∑
ᾱ

˜̄J(ã2
ᾱ)

◦
˜̄U ᾱ

◦
˜̄J ᾱ(x̃2

Ñ) =
◦∑
ᾱ

◦
˜̄J0(ã2

ᾱ)
◦
˜̄U ᾱ

◦
˜̄J ᾱ(x̃2

Ñ)

(A.3)
=

◦∑
r̄

◦∑
s̄

◦
˜̄A(r̄)

0 (−x̃2
Ñ)

◦
˜̄N−1−s̄

◦∑
ᾱ

◦
˜̄A(s̄)

ᾱ

(−ã2
ᾱ)

◦
˜̄N−1−r̄

◦
˜̄U ᾱ

(A.8)
=

◦∑
r̄

◦
˜̄A(r̄)

0 (−x̃2
Ñ)

◦
˜̄N−1−r̄ =

◦
˜̄J0(x̃2

Ñ) = J̃Ñ(x̃2
Ñ)

(A.6)
= ŨÑ .
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B.3 Killing vectors and Killing tensors
Let us provide proofs of selected results from Sections 3.2 and 3.3, which focus
on Killing vectors and Killing tensors after the limit.

Starting with its form (1.38), the generating function for Killing vectors (3.4)
after the limit can be calculated as follows (≈ denotes equality in the leading-
order terms in ε)

l(β) = A(β)
∑

µ

1
1 + β2a2

µ

s(µ) =
∏
ν

(
1 + β2a2

ν

)∑
µ

1
1 + β2a2

µ

s(µ)

=
∏
γ

(
1 + β2a2

γ,0

)
·
∏
γ

γ
∏
σ

(
1 + β2a2

γ,σ

)
×

×
(∑

α

1
1 + β2a2

α,0
s(α,0) +

∑
α

α
∑

ρ

1
1 + β2a2

α,ρ

s(α,ρ)

)

≈
∏
γ

(
1 + β2ã2

γ

)
·
∏
γ

γ
∏
σ

(
1 + β2ã2

γ

)
×

×
(∑

α

1
1 + β2ã2

α

s̃(α) +
∑

α

α
∑

ρ

1
1 + β2ã2

α

αs(ρ)

)

=
∏
γ

(
1 + β2ã2

γ

)γN
Ã(β)

∑
α

1
1 + β2ã2

α

(
s̃(α) + α

∑
ρ

αs(ρ)

)

=
∏
γ

(
1 + β2ã2

γ

)γN ∑
α

Ãα(β)
(

s̃(α) + α
∑

ρ

αs(ρ)

)

=
∏
γ

(
1 + β2ã2

γ

)γN ∑
α

Ãα(β)Φ̃α =
∏
γ

(
1 + β2ã2

γ

)γN
L̃(β) ,

where

L̃(β) =
∑

α

Ãα(β)Φ̃α =
∑

r

β2r
∑

α

Ã(r)
α Φ̃α =

∑
r

β2rL̃(r) ,

and
L̃(r) =

∑
α

Ã(r)
α Φ̃α .

In these calculations, we have used properties (1.39) and (1.40) of the generating
functions for polynomials and also the expression (3.2).

We shall now focus on Killing tensors. The limit form of the Killing tensors
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(3.15) can be derived from (1.41) using the following steps

r(α,ρ) =
∑

β
β ̸=α

(
Jβ,0(a2

α,ρ)
Uα,ρ

πβ,0 + β
∑

σ

Jβ,σ(a2
α,ρ)

Uα,ρ

πβ,σ

)

+
Jα,0(a2

α,ρ)
Uα,ρ

πα,0 + α
∑

σ

Jα,σ(a2
α,ρ)

Uα,ρ

πα,σ

≈ α
∑

σ

Jα,σ(a2
α,ρ)

Uα,ρ

πα,σ ≈ −λãα

ε
α
∑

σ

αJσ(αaρ)
α

◦
Uρ

απσ ,

where ρ = 0, 1, . . . , αN and α
◦

Uρ is given by (B.3). We have also employed (3.12)
and the limit form of the metric functions from Appendix A.2. Separating the
zeroth variable from the rest, the tensors can be written as

εr(α,0) ≈ −λãα
α
∑

σ

αJσ(0)
αJ (0)

απσ = −α
∑

ρ

λãα

αaρ

αr(ρ) ,

εr(α,ρ) ≈ λãα

αaρ

α
∑

σ

αJσ(αaρ)
αUρ

απσ = λãα

αaρ

αr(ρ) .

The second equation defines the tensors αr(ρ). Moreover, to obtain the final form
of the first expression we have used the following identity

α
∑

ρ

λãα

αaρ

αr(ρ) = λãα
α
∑

ρ

αA(αN−1)
ρ

αJ (0)
α
∑

σ

αJσ(αaρ)
αUρ

απσ

(A.3)
= λãα

α
∑

σ

α
∑

p

αA(p)
σ

αJ (0)
α
∑

ρ

αA(αN−1)
ρ

(−αaρ)αN−1−p

αUρ

απσ

(A.8)
= λãα

α
∑

σ

αA(αN−1)
σ

αJ (0)
απσ = λãα

α
∑

σ

αJσ(0)
αJ (0)

απσ .

Using (1.39), (1.40) and (3.13), the generating function of Killing tensors
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(3.18) can be obtained from (1.44) as

k(β) = A(β)
∑

µ

1
1 + β2x2

µ

πµ =
∏
ν

(
1 + β2x2

ν

)∑
µ

1
1 + β2x2

µ

πµ

=
∏
γ

(
1 + β2x2

γ,0

)
·
∏
γ

γ
∏
σ

(
1 + β2x2

γ,σ

)
×

×
(∑

α

1
1 + β2x2

α,0
πα,0 +

∑
α

α
∑

ρ

1
1 + β2x2

α,ρ

πα,ρ

)

≈
∏
γ

(
1 + β2x̃2

γ

)
·
∏
γ

γ
∏
σ

(
1 + β2ã2

γ

)
×

×
(∑

α

1
1 + β2x̃2

α

π̃α −
∑

α

1
1 + β2ã2

α

2λã2
αŨα

J̃(ã2
α)

α
∑

ρ

απρ

)

=
∏
γ

(
1 + β2ã2

γ

)γN
Ã(β)

∑
α

(
1

1 + β2x̃2
α

π̃α − 1
1 + β2ã2

α

2λã2
αŨα

J̃(ã2
α)

αg−1
)

=
∏
γ

(
1 + β2ã2

γ

)γN ∑
α

(
Ãα(β)π̃α − Ã(β)

1 + β2ã2
α

2λã2
αŨα

J̃(ã2
α)

αg−1
)

=
∏
γ

(
1 + β2ã2

γ

)γN
K̃(β) ,

where

K̃(β) =
∑

α

(
Ãα(β)π̃α − Ã(β)

1 + β2ã2
α

2λã2
αŨα

J̃(ã2
α)

αg−1
)

=
∑

r

β2r
∑

α

[
Ã(r)

α π̃α − B̃(r)(ã2
α)2λã2

αŨα

J̃(ã2
α)

αg−1
]

− β2Ñ
∑

α

2λã2
αŨα

1 + β2ã2
α

αg−1

=
∑

r

β2rK̃(r) − β2Ñ
∑

α

2λã2
αŨα

1 + β2ã2
α

αg−1 ,

(B.10)

and

K̃(r) =
∑

α

[
Ã(r)

α π̃α − B̃(r)(ã2
α)2λã2

αŨα

J̃(ã2
α)

αg−1
]

= k̃(r) −
∑

α

B̃(r)(ã2
α)2λã2

αŨα

J̃(ã2
α)

αg−1 ,
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which defines the tensors k̃(r). In (B.10) we have used the following identity

Ã(β)
1 + β2ã2

α

= 1
1 + β2ã2

α

Ñ∑
r=0

β2rÃ(r)

= 1
1 + β2ã2

α

⎛⎝ Ñ∑
r=0

β2r
r∑

n=0
Ã(n)(−ã2

α)r−n −
Ñ∑

r=1
β2r

r−1∑
n=0

Ã(n)(−ã2
α)r−n

⎞⎠

= 1
1 + β2ã2

α

⎛⎝ Ñ∑
r=0

β2r
r∑

n=0
Ã(n)(−ã2

α)r−n + β2ã2
α

Ñ−1∑
r=0

β2r
r∑

n=0
Ã(n)(−ã2

α)r−n

⎞⎠

= 1
1 + β2ã2

α

⎛⎝Ñ−1∑
r=0

β2r
r∑

n=0
Ã(n)(−ã2

α)r−n + β2ã2
α

Ñ−1∑
r=0

β2r
r∑

n=0
Ã(n)(−ã2

α)r−n

+β2Ñ
Ñ∑

n=0
Ã(n)(−ã2

α)Ñ−n

⎞⎠
(A.1)
=

Ñ−1∑
r=0

β2r
r∑

n=0
Ã(n)(−ã2

α)r−n + β2Ñ

1 + β2ã2
α

J̃(ã2
α)

=
∑

r

β2rB̃(r)(ã2
α) + β2Ñ

1 + β2ã2
α

J̃(ã2
α) ,

(B.11)

where the last equality defines the functions B̃(r)(ã2
α).

The alternative set of Killing tensors (3.21) can be acquired from (3.20) in
the following manner

R̃(α)
(A.7)
=

∑
r

(−ã2
α)Ñ−1−r

Ũα

K̃(r)

=
∑

r

(−ã2
α)Ñ−1−r

Ũα

k̃(r) −
∑

r

(−ã2
α)Ñ−1−r

Ũα

∑
β

B̃(r)(ã2
β)

2λã2
βŨβ

J̃(ã2
β)

βg−1

= r̃(α) −
∑

β
β ̸=α

∑
r

(−ã2
α)Ñ−1−r

Ũα

B̃(r)(ã2
β)

2λã2
βŨβ

J̃(ã2
β)

βg−1

−
∑

r

(−ã2
α)Ñ−1−rB̃(r)(ã2

α) 2λã2
α

J̃(ã2
α)

αg−1

= r̃(α) +
∑

β
β ̸=α

2λã2
β

ã2
α − ã2

β

Ũβ

Ũα

J̃(ã2
α) − J̃(ã2

β)
J̃(ã2

β)
βg−1 − 2λã2

α

∑
β

(
x̃2

β − ã2
α

)−1 αg−1 ,
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where we have defined

r̃(α) =
∑

r

(−ã2
α)Ñ−1−r

Ũα

k̃(r) =
∑

β

1
Ũα

∑
r

Ã
(r)
β (−ã2

α)Ñ−1−rπ̃β

(A.3)
=

∑
β

J̃β(ã2
α)

Ũα

π̃β .

Moreover, we have employed the following identity

∑
r

(−ã2
α)Ñ−1−rB̃(r)(ã2

β) =
Ñ−1∑
r=0

r∑
n=0

Ã(n)(−ã2
α)Ñ−1−r(−ã2

β)r−n

=
Ñ−1∑
s=0

Ã(s)(−ã2
α)Ñ−1−s

Ñ−1∑
m=s

(
−ã2

β

−ã2
α

)m−s

=
Ñ−1∑
s=0

Ã(s)(−ã2
α)Ñ−1−s

Ñ−1−s∑
m=0

(
−ã2

β

−ã2
α

)m

,

which can be further simplified in case ãβ ̸= ãα to

∑
r

(−ã2
α)Ñ−1−rB̃(r)(ã2

β) =
Ñ−1∑
s=0

Ã(s)(−ã2
α)Ñ−1−s

Ñ−1−s∑
m=0

(
−ã2

β

−ã2
α

)m

=
Ñ−1∑
s=0

Ã(s)(−ã2
α)Ñ−1−s

1 −
(

−ã2
β

−ã2
α

)Ñ−s

1 −
(

−ã2
β

−ã2
α

)

= − 1
ã2

α − ã2
β

⎛⎝Ñ−1∑
s=0

Ã(s)(−ã2
α)Ñ−s −

Ñ−1∑
s=0

Ã(s)(−ã2
β)Ñ−s

⎞⎠

= − 1
ã2

α − ã2
β

⎛⎝ Ñ∑
s=0

Ã(s)(−ã2
α)Ñ−s −

Ñ∑
s=0

Ã(s)(−ã2
β)Ñ−s

⎞⎠
(A.1)
= −

J̃(ã2
α) − J̃(ã2

β)
ã2

α − ã2
β

,

and in case ãβ = ãα it can be written as

∑
r

(−ã2
α)Ñ−1−rB̃(r)(ã2

α) =
Ñ−1∑
s=0

Ã(s)(−ã2
α)Ñ−1−s(Ñ − s)

= d
d(−ã2

α)

⎡⎣ Ñ∑
s=0

Ã(s)(−ã2
α)Ñ−s

⎤⎦
(A.1)
= d

d(−ã2
α) J̃(ã2

α) =
∑

β

J̃β(ã2
α) .

Finally, the equations (3.22) can be proved using (3.3), (3.8) and the orthog-
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onality relations (2.11) as follows

K̃(r) · Ξ̃ =
∑

α

[
Ã(r)

α

(
ϵ̃αϵ̃α + ˆ̃ϵα

ˆ̃ϵα
)

+ B̃(r)(ã2
α) α

∑
ρ

(αϵρ
αϵρ + αϵ̂ρ

αϵ̂ρ)
]

·
∑

β

ˆ̃ϵβ

=
∑

α

Ã(r)
α

ˆ̃ϵα = L̃(r) ,

αk(p) · αξ = α
∑

ρ

αA(p)
ρ (αϵρ

αϵρ + αϵ̂ρ
αϵ̂ρ) · α

∑
σ

αϵ̂σ = α
∑

ρ

αA(p)
ρ

αϵ̂ρ = αl(p) .

Analogous steps can be followed for the equations (3.23)

R̃(α) · Ξ̃ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

β

J̃β(ã2
α)

Ũα

[
ϵ̃β ϵ̃β + ˆ̃ϵβ

ˆ̃ϵβ + α
∑

ρ

(αϵρ
αϵρ + αϵ̂ρ

αϵ̂ρ)
]

−
∑

β
β ̸=α

J̃(ã2
α) − J̃(ã2

β)(
ã2

α − ã2
β

)
Ũα

β
∑

ρ

(
βϵρ

βϵρ + βϵ̂ρ
βϵ̂ρ
)⎫⎪⎪⎪⎬⎪⎪⎪⎭ ·

∑
γ

ˆ̃ϵγ

=
∑

β

J̃β(ã2
α)

Ũα

ˆ̃ϵβ = Φ̃α ,

αr(ρ) · αξ = α
∑

σ

αJσ(αaρ)
αUρ

(αϵσ
αϵσ + αϵ̂σ

αϵ̂σ) · α
∑

τ

αϵ̂τ = α
∑

σ

αJσ(αaρ)
αUρ

αϵ̂σ = αs(ρ) .

And similarly for (3.24)

k̃(r) · ξ̃ =
∑

α

Ã(r)
α

(
ϵ̃αϵ̃α + ˆ̃ϵα

ˆ̃ϵα
)

·
∑

β

(
ˆ̃ϵβ − β

∑
ρ

βϵ̂ρ

)
=
∑

α

Ã(r)
α

ˆ̃ϵα

= L̃(r) = l̃(r) +
∑

α

Ã(r)
α

αξ ,

r̃(α) · ξ̃ =
∑

β

J̃β(ã2
α)

Ũα

(
ϵ̃β ϵ̃β + ˆ̃ϵβ

ˆ̃ϵβ
)

·
∑

γ

(
ˆ̃ϵγ − γ

∑
ρ

γϵ̂ρ

)
=
∑

β

J̃β(ã2
α)

Ũα

ˆ̃ϵβ

= Φ̃α = s̃(α) + αξ ,

where we have used also (3.11) and (3.9).
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