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Abstrakt 

V eukaryotických organismech je známo více než 200 interních posttranskripčních 

modifikací RNA. Nejběžnější modifikací v mRNA je N6-methyladenosin (m6A). V 

rostlinách m6A ovlivňuje mnoho aspektů procesování mRNA, jako je její stabilita, 

sestřih, alternativní polyadenylace či export z jádra a translace. Za zápis, odstranění 

a percepci m6A jsou zodpovědné proteinové komplexy obsahující methyltransferázy 

(tzv. writery), demethylázy (erasery) a proteiny obecně vázající m6A (readery). 

Dynamické regulace pomocí m6A mají významný vliv na vývoj rostlin. m6A také hraje 

roli v reakci na abiotický stres a virovou infekci. Tato práce shrnuje současné znalosti 

o m6A v rostlinách a také s přihlédnutím k nejnovějším poznatkům z živočišných 

experimentálních modelů. 
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Abstract 

In eukaryotic organisms, there are known more than 200 internal post-transcriptional 

modifications of RNA. N6-methyladenosine (m6A) is the most common modification in 

mRNA. In plants, m6A affects many aspects of mRNA processing, such as mRNA 

splicing, alternative polyadenylation, export from the nucleus, its overall stability or 

translation. Adding, removing, and perceiving of m6A are handled by protein 

complexes containing methyltransferases (writers), demethylases (erasers), and 

m6A-binding proteins (readers), respectively. Dynamic regulations of m6A have a 

significant effect on plant development. Also, m6A exerts its role in response to abiotic 

stress and viral infection. This thesis summarizes current knowledge on m6A in plants 

in light of the latest advances in animal experimental models. 
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Introduction 

In the eukaryotic organisms, there are more than 200 internal post-transcriptional 

modifications of mRNA known, among them N1-methyladenosine (m1A), 

pseudouridine (Ψ), N6-methyladenosine (m6A), 5-methylcytidine (m5C) and others 

(Figure 1) (Boccaletto et al., 2022). The compilation of all the biochemical 

modifications of the RNA species in the cell is called epitranscriptome. In mRNA, the 

most common modification is N6-adenosine, or m6A (Parker et al., 2020; Wan et al., 

2015). This modification occurs by the addition of the methyl (CH3) group to the N6 

position of adenosines present in the mRNA (Shi et al., 2019). This modification is 

found in numerous eukaryotes, such as mammals, insects, yeast, and plants. In 

plants, m6A was first identified in 1976 in maize and later in many other model 

organisms, including Arabidopsis thaliana (Nichols, 1979; Zhong et al., 2008). m6A 

was found to be unevenly distributed along the mRNA, being predominantly localized 

near the stop codons, within 3’-UTRs, and near the start codon (Figure 2) (Bodi et al., 

2012; Dominissini et al., 2012; G. Z. Luo et al., 2014; Meyer et al., 2012). 

The processes accompanying the m6A modification involve numerous protein factors. 

They include protein complexes containing methyltransferases, demethylases, and 

m6A-recognizing proteins, commonly called m6A writers, erasers, and readers, 

respectively (Figure 3) (Reichel et al., 2019; Shi et al., 2019). m6A writers form a 

complex that is responsible for the addition of the methyl group to the N6 position of 

adenosine in mRNA. The m6A erasers are able to enzymatically remove the methyl 

groups from RNA, making the m6A modification reversible. Finally, the m6A readers 

can recognize and bind m6A marks on mRNA.  

 
Figure 1 Chemical structure of the mRNA modification (Mauer et al., 2016; Shen et al., 2019) 
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A large number of studies demonstrated that m6A plays a vital role in many aspects of 

mRNA processing, such as splicing, alternative polyadenylation, regulation by 

microRNAs, general stabilization of mRNA, export mRNA from nucleus or 

translatability (reviewed Reichel et al., 2019; S. Wang et al., 2022). This was 

underlined by the severe phenotypic defects associated with the deficiency in m6A 

(reviewed Jiang et al., 2021; Shao et al., 2021). It is also worth noting that m6A plays 

an important role in stress and viral infection response (Martínez-Pérez et al., 2017; 

Wan et al., 2015). These findings underline that m6A is the most studied RNA 

modification in recent years.  

This thesis aims to review the latest research on the role of m6A in plants, including 

the effects of m6A on mRNA processing or maturation, and highlights the role of m6A 

in plant development, response to abiotic stress and plant viral infections. Moreover, 

the status of knowledge about m6A-dependent processes in plants was compared to 

the information from animals’ systems where relevant. 

Table 1: m6A writers, erasers, and readers in Arabidopsis thaliana, in mammals and 
in Drosophila melanogaster, if relevant. 

 Arabidopsis Homologs in mammals (Drosophila) 
Writer 

complex 
MTA (Zhong et al., 2008) METTL3 (J. Liu et al., 2013) 

MTB (Růžička et al., 2017) METTL14 (J. Liu et al., 2013) 
FIP37 (Shen et al., 2016; Zhong et al., 2008) WTAP (fl(2)d) (Ping et al., 2014) 

VIRILIZER (VIR) (Růžička et al., 2017) VIRMA (vir) (J. Liu et al., 2018) 
FPA (Parker et al., 2021) RBM15/15B (nito) (Patil et al., 2016) 

HAKAI (Růžička et al., 2017) HAKAI (Hakai) (J. Liu et al., 2018) 

HIZ1 (M. Zhang et al., 2022) Information about (possible) 
homologs missing 

HIZ2 (M. Zhang et al., 2022) Zc3h13 (Flacc) (Knuckles et al., 2018) 
  

Figure 2 Comparison of the 

m6A distribution in mRNA of 

Arabidopsis, rice, and mouse, 

based on several m6A-seq 

studies (Shen et al., 2019). 
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Information about (possible) homologs 
missing Zfp217 (Aguilo et al., 2015) 

Erasers ALKBH9B (Duan et al., 2018) ALKBH5 (Zheng et al., 2013a) 
ALKBH10B (Duan et al., 2018) ALKBH5 

  
no homolog present (Mielecki et al., 2012) FTO (Jia et al., 2011) 

Readers ECT2 (Arribas-Hernández et al., 2018) YTHDF1/2/3 (Dominissini et al., 2012) 
ECT3 (Arribas-Hernández et al., 2018) YTHDF1/2/3 
ECT4 (Arribas-Hernández et al., 2018) YTHDF1/2/3 

CPSF30 (P. Song et al., 2021) YTHDC1/2 
  

Information about (possible) homologs 
missing IGF2BPs (Huang et al., 2018) 

Information about (possible) homologs 
missing Prrc2a (R. Wu et al., 2018) 

 

Proteins directly associated with the m6A modification 

m6A writers 

The methyltransferase complex responsible for adding the m6A marks on mRNA is 

commonly called m6A writer complex. Since its components are evolutionarily 

conserved, most m6A writers show orthologs across the main eukaryotic lineages. 

Particularly human, Drosophila melanogaster and Arabidopsis thaliana model systems 

proved to be instrumental in uncovering their identity. Mammalian m6A writer complex 

includes methyltransferase-like proteins 3 and 14 (METTL3 and METTL14) (J. Liu et 

al., 2013), Wilms tumor 1 associated protein (WTAP) (Ping et al., 2014), virilizer 

(VIRMA, also known as KIAA1429) (J. Liu et al., 2018), RNA-binding motif protein 15 

(RBM15/15B) (Patil et al., 2016), HAKAI (J. Liu et al., 2018) and Zinc finger CCCH 

domain-containing protein 13 (Zc3h13) (Figure 3) (Knuckles et al., 2018). Plants writer 

complex consists of the mRNA ADENOSINE METHYLASE A (MTA; orthologue of 

METTL3) (Zhong et al., 2008) and B (MTB; orthologue of mammalian METTL14), 

VIRILIZER (VIR; orthologue of VIRMA/KIAA1429), FKBP12 INTERACTING PROTEIN 

37 KD (FIP37; orthologue of WTAP), HAKAI (Růžička et al., 2017), Flowering time 

control protein FPA (Parker et al., 2021) and HAKAI-interacting zinc finger proteins 

(HIZ2) (M. Zhang et al., 2022). m6A writers are localized in the nuclear domains called 
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nuclear, or splicing, speckles. They contain the proteins that regulate several stages 

of RNA processing, from the site of transcription to the nuclear export (Galganski et 

al., 2017; Ping et al., 2014; Růžička et al., 2017). 

The first component of the writer complex identified in mammals was METTL3 (Bokar 

et al., 1997). Later, the METTL3 ortholog, METTL14, was revealed, as interacting with 

METTL3 to form a stable METTL3-METTL14 dimer (Schöller et al., 2018; P. Wang et 

al., 2016). It was shown that only METTL3 is active as methyltransferase, while 

METTL14 likely functions in the dimer as an essential component facilitating the RNA 

binding. Both METTL3 and METTL14 have the methyltransferase catalytic domains 

and bind S-adenosyl methionine (SAM) (Bokar et al., 1997; P. Wang et al., 2016; X. 

Wang et al., 2016). SAM is a product of the methionine cycle of one-carbon 

metabolism, and a universal methyl donor in the cellular methylation processes. After 

the m6A methylation, SAM turns into S-adenosyl homocysteine (SAH) that can 

allosterically inhibit methyltransferase activity of METTL3 (Kim & Lee, 2021).  

In addition, a few other factors have been found as parts of the writer complex. WTAP 

associates with METTL3 and is required for the m6A writer complex assembly and 

binding to RNA. Firstly, this association was seen in Arabidopsis thaliana by Zhong et 

al. (2008) and only later was it shown in mammals (Ping et al., 2014; Zhong et al., 

2008). Another protein of the m6A writer complex is VIRMA. VIRMA knockdown 

Figure 3 Schematic illustration of the m6A machinery in plants and animals, highlighting 

the aspects of mRNA processing in which m6A is involved (Reichel et al., 2019). 
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displays loss of m6A enrichment in 3′UTR and near the stop codon and to the 

extension of 3′-UTRs for certain groups of transcripts (J. Liu et al., 2018).  

HAKAI protein was first described as a component of the m6A writer complex in the 

model organism Arabidopsis thaliana (Růžička et al., 2017). Further studies on human 

Studies on HeLa and U2OS cells and Drosophila melanogaster revealed that 

disrupting the HAKAI expression causes an overall destabilization of the WTAP and 

VIRMA proteins (Bawankar et al., 2021). Additionally, Patil et al. (2016) found that the 

mammalian RNA-binding motif protein 15 (RBM15) and related RBM15B 

(respectively, the Drosophila homolog called Nito) interact with the WTAP and 

METTL3 proteins (Lence et al., 2016; Patil et al., 2016). Originally, it was known that 

RBM15 and RBM15B bind the U-rich regions in mRNA (Patil et al., 2016). However, 

since the knockdowns of RBM15/15B and Nito show the reduced levels of m6A of 

numerous transcripts, it was concluded that these proteins indeed participate in the 

mRNA methylation, too (Lence et al., 2016; Patil et al., 2016).  

The next component of the mammalian writer complex is the zinc finger CCCH 

domain-containing protein (Zc3h13), respectively its Drosophila homolog Flacc 

(Knuckles et al., 2018), later described in Arabidopsis as HIZ2. Zc3h13 interacts with 

WTAP, VIR and HAKAI and appears to be required for the nuclear localization of 

Zc3h13-WTAP-VIR-Hakai complex (Wen et al., 2018). Moreover, Zc3h13 (Flacc) 

contributes to the stabilization of interaction between WTAP and RBM15, which 

increases the efficiency of the m6A writing (Knuckles et al., 2018). Some data also 

suggest that Zc3h13 (Flacc) could contribute via m6A to the regulation of alternative 

polyadenylation (Knuckles et al., 2018; Wen et al., 2018).  

Similar to the animal proteins, MTA and MTB appear to form a heterodimer and 

interact with FIP37 (Růžička et al., 2017; Zhong et al., 2008), as a part of the molecular 

complex containing MTA, MTB, FIP37, VIR, HAKAI (Růžička et al., 2017). It was also 

found that the FLOWERING TIME CONTROL PROTEIN FPA co-purifies with MTA, 

MTB, FIP37 and VIR, and although FPA not affect global m6A levels, it perhaps plays 

direct role in m6A (Parker et al., 2021). There are also two HAKAI-INTERACTING 

ZINC FINGER PROTEINS (HIZ1 and HIZ2). HAKAI is required for interaction between 
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HIZ1 and MTA, while HIZ2 can interact with MTA even in absence of HAKAI. 

Disrupting the expression of HIZ1 protein has almost no effect on the plant growth and 

development, while the knockout of HIZ2 (homolog of the Zc3h13 (Flacc) protein) led 

to decrease in the m6A levels and plant developmental defects (M. Zhang et al., 2022). 

In sum, the quantification of the total m6A levels along with the phenotypic assays 

indicates that MTA, MTB, FIP37 and VIR are the core m6A components required for 

the full methylation levels. In contrast, HAKAI and HIZ2 seem to have rather auxiliary 

role and FPA, and HIZ1 has no significant effect on the total m6A pools (Růžička et 

al., 2017; M. Zhang et al., 2022). 

m6A erasers 

The organisms can enzymatically remove the methyl groups from mRNA using m6A 

demethylases, making the m6A modification reversible. The m6A demethylases 

identified in mammals are the Fat mass and obesity-associated protein (FTO) and 

AlkB homolog 5 (ALKBH5) (Jia et al., 2011; Zheng et al., 2013a). FTO was the first 

found mammal m6A demethylase which was also shown to demethylate N6,2′-O-

dimethyladenosine (m6Am; Figure 1), the mRNA modification located near the 5’-cap 

of mRNA (Jia et al., 2011; Mauer et al., 2016). FTO is localized in the nucleoplasm, 

particularly in nuclear speckles, however, unlike ALKBH5, it was also found in the 

cytoplasm of some cell lines (Gulati et al., 2014; Jia et al., 2011) In contrast to 

ALKBH5, there were no closer homologs of FTO found in plants (Mielecki et al., 2012). 

ALKBH5, as m6A demethylase, was found when Zheng et al. (2013a) biochemically 

tested human FTO paralogs for the m6A demethylation activity. Influence of ALKBH5 

on mammalian organisms was also studied through the changes in the ALKBH5 

expression in mice mutant lines. In HeLa cells, ALKBH5 knockdowns show increase 

in the m6A levels in total mRNA. Similar to the proteins of the m6A writer complex, 

ALKBH5 is localized in the nucleoplasm, particularly in the nuclear speckles (Zheng 

et al., 2013a). 

A protein called ZFP217 is a negative regulator of mRNA methylation in mammals. It 

is involved with the m6A eraser Fat mass and obesity-associated protein (FTO) that is 

a target transcript of the ZFP217 protein. ZFP217 activates transcription of genes 
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related to pluripotency in embryonic stem cells and regulates m6A deposition on the 

corresponding transcripts by interaction with METTL3 by the activation of expression 

the m6A demethylase FTO. As a result, the degradation of these transcripts is 

observed, which prevents differentiation of the embryonic stem cells (Aguilo et al., 

2015; T. Song et al., 2019). Also, activity of FTO can be inhibited by m6A reader 

YTHDF2 activity. And to maintain the demethylase activity of FTO, ZFP217 interacts 

with the YTHDF2 (T. Song et al., 2019). 

Plant demethylases identified so far belong to the AlkB family. 13 members of the AlkB 

family were found in Arabidopsis thaliana (Mielecki et al., 2012). Duan et al. (2018) 

identified five orthologs of ALKBH5 in Arabidopsis: AtALKBH9A, AtALKBH9B, 

AtALKBH9C, AtALKBH10A, and AtALKBH10B, and demonstrated that the 

Arabidopsis alkbh9b and alkbh9c mutants did not show significant changes in m6A 

levels. However, the alkbh10b mutants had increased m6A levels (Duan et al., 2018). 

It shows that the functions of AtALKBH9B and AtALKBH9C proteins compared to 

AtALKBH10B may differ. In particular, the change in AtALKBH9B expression was 

shown to play an important role in protecting plant organisms from viral infections, 

such as alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV) (Martínez-

Pérez et al., 2017). 

m6A readers 

Eukaryotic organisms are able to specifically perceive m6A marks with the proteins 

called m6A readers. The canonical m6A readers have been identified with RNA affinity 

chromatography and are characterized by the presence of domain YTH (YT512-B 

homology) (Dominissini et al., 2012; Stoilov et al., 2002). YTH domain binds single- 

mRNA motif consisting of six nucleotides, with the hydrophobic contacts to the sugar 

and base moieties as well as salt bridges to the phosphate oxygens of the RNA back-

bone. YTH domain can specifically bind the GA-containing RNA sequences even in 

absence of N6-adenosine methylation but shows an increased affinity for the m6A-

containing RNA. YTH domain recognizes N6-methyladenine using the binding pocket 

that consists of two or three conserved aromatic side chains. After the recognition, the 

N6-methyl group is located inside the hydrophobic pocket (Theler et al., 2014).  
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There are two families of mammalian proteins with RNA-binding YTH domains, 

including five proteins that bind m6A: YTHDC protein family, which includes the 

YTHDC1 and YTHDC2 proteins, and YTHDF protein family, which consists of 3 

members (YTHDF1-3) (Dominissini et al., 2012; Z. Zhang et al., 2010). The YTHDC 

and YTHDF protein families show no sequence homology besides their YTH domain 

(Stoilov et al., 2002). The YTH-containing protein first found in vertebrates was YT512-

B (YTHDC1) (Stoilov et al., 2002; Z. Zhang et al., 2010). YTHDC1 is a nuclear m6A 

reader that binds m6A and regulates pre-mRNA splicing and alternative 

polyadenylation (Kasowitz et al., 2018; Xiao et al., 2016). YTHDC2 influences mRNA 

translation efficiency and provides mRNA stability (Hsu et al., 2017). YTHDF are 

predominantly cytoplasmic proteins that contribute to mRNA decay (Patil et al., 2018). 

The proteins of YTHDF family were also found to contain the YTH domain in the C-

terminal (Patil et al., 2018). 

Apart from the proteins containing YTH domain, also other m6A readers were found in 

human cancer cells. They include the insulin-like growth factor 2 mRNA-binding 

proteins (IGF2BPs; including IGF2BP1/2/3). Similar to the proteins containing YTH 

domain, the binding sites of IGF2BP are the sequences rich in GA-containing m6A 

motif. IGF2BPs are proteins whose function is to provide mRNA stability and promote 

mRNA translation in stress response (Huang et al., 2018). Another mammalian m6A 

binding protein is Proline rich coiled-coil 2 A (Prrc2a), that was first found in mouse 

neural cells and shown to regulate brain development and functions. Prrc2a localizes 

to cytoplasm (R. Wu et al., 2018). Unfortunately, the information about possible 

homologs of IGF2BPs and Prrc2a in plants is missing. 

13 proteins with the YTH RNA-binding domain were found in Arabidopsis thaliana 

(Stoilov et al., 2002). In eleven plant m6A readers, the YTH domain is located near 

the C-terminus, in contrast to the two remaining proteins with the YTH domain located 

in the internal regions (D. Li et al., 2014). The members of the former group are the 

EVOLUTIONARILY COSERVED C-TERMINAL REGION 1-11 proteins (ECT1-11) in 

Arabidopsis (Arribas-Hernández et al., 2018) and belong to the YTHDF family. The 

other two proteins are members of the YTHDC family (ECT12 and CLEAVAGE AND 

POLYADENYLATION SPECIFICITY FACTOR30 - CPSF30) (Figure 4) (Scutenaire et 
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al., 2018; P. Song et al., 2021). ECT1 and ECT2 proteins predominantly localize in 

nucleus (Ok et al., 2005). The ECT2, ECT3 and ECT4 are localized to cytosol, similar 

to the animal YTHDF proteins (Arribas-Hernández et al., 2018, 2020). Moreover, they 

can form cytoplasmic aggregates in certain conditions, for example, upon osmotic 

stress (Arribas-Hernández et al., 2018). 

Another plant m6A reader, CPSF30 (specifically, the longer of its two splice isoforms 

called CPSF30-L, which contains the m6A binding YTH domain near the C-terminus), 

is an RNA-binding zinc-finger protein (Barabino et al., 1997; Delaney et al., 2006). It 

was earlier found to play a role in the regulation of alternative polyadenylation and 

gene expression (Addepalli & Hunt, 2007). RNA-binding ability of CPSF30 protein can 

be inhibited by the interaction with the calcium sensor calmodulin in the presence of 

calcium (Delaney et al., 2006). Based on this and the fact that in plants calcium 

operates as secondary messenger in cellular signaling cascades, Chakrabarti & Hunt 

(2015) in their review suggest that CPSF30 is associated with calmodulin-mediated 

cellular signaling (Chakrabarti & Hunt, 2015; J. Zhang et al., 2008). AtCPSF30 is 

known to localize in the cytoplasm in Arabidopsis cells, but it can also have nuclear 

localization where it interacts with itself and other polyadenylation factors, such as 

AtCSP160 and AtCSP73 (Rao et al., 2009). Song et al., 2021 revealed that binding 

sites of CPSF30 predominantly are located within the 3’-untranslated regions (3’ UTR) 

of mRNA. Moreover, cpsf30-1 mutants show extension of the transcript 3’-UTR 

regions, which causes the faster degradation of the transcripts. It was also shown that 

the m6A binding ability of CPSF30-L, with participation of other polyadenylation 

factors, contributes to the formation of unspecific aggregates inside the nuclei (P. Song 

et al., 2021).  

Figure 4 Phylogenetic relationship of 

Arabidopsis YTH domain proteins 

(green) (Arribas-Hernández et al., 

2018) 
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m6A in mRNA processing 

Role of m6A in animals 

In animals, N6-adenosine methylation affects stability and structure of mRNA as well 

as many other steps of mRNA processing and maturation, including splicing of mRNA, 

alternative polyadenylation, nuclear processing and export, translation, and 

degradation (N. Liu et al., 2015; X. Wang et al., 2014). m6A can influence both increase 

of mRNA stability and destabilization of mRNA: for example, the activity of m6A 

readers IGF2BPs is known to increase mRNA stability, while the activity of YTHDF2 

and YTHDC2 has been shown to contribute to destabilization of m6A-containing 

transcripts and their subsequent degradation (Hsu et al., 2017; Huang et al., 2018; X. 

Wang et al., 2014). m6A has been found to change the local structure of mRNA, thus 

helping some RNA-binding proteins to access their target motifs (N. Liu et al., 2015). 

In mammals, m6A modification and m6A-related proteins are capable of regulating the 

alternative splicing (Gulati et al., 2014; Ping et al., 2014; Zheng et al., 2013a). Geula 

et al. (2015) have shown that the disruption of the METTL3 gene in mouse embryonic 

stem cells can lead to exon skipping and intron retention in mRNA (Geula et al., 2015). 

Activity of m6A eraser, ALKBH5, is necessary for correct alternative splicing in the 

nuclei of spermatocytes in mouse (Tang et al., 2017). Also, m6A reader YTHDC1 was 

shown to interact with the pre-mRNA splicing factor SRSF3 to regulate splicing (Xiao 

et al., 2016).  

m6A density peaks early in the 3′ UTR, and also in the last exons. In knockdowns of 

m6A writer complex components were found some transcripts with altered APA use. 

All these show that m6A can affect the choice of alternative polyadenylation (APA) 

sites (Ke et al., 2015). VIRMA binds not only the core writer catalytic components 

METTL3/METTL14/WTAP by directing m6A methylation in the 3′UTR, but it is able to 

interact with the polyadenylation cleavage factors CPSF5 and CPSF6, connecting the 

writer complex with the polyadenylation process (J. Liu et al., 2018). Further, YTHDC1 

is able to interact with CPSF6 as well, and YTHDC1 knockdown was shown to 

increase APA rates (Kasowitz et al., 2018).  
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m6A was also shown to regulate the nuclear export of mRNA. The knockdowns of m6A 

writers, such as METTL3, WTAP and VIRMA display the delay in the mRNA export 

from the nucleus and accumulation of methylated mRNA transcripts. Similar has been 

shown for the knockouts of YTHDC1 (Fustin et al., 2013; Lesbirel et al., 2018; 

Roundtree et al., 2017). The knockdowns RBM15 show decreased nuclear export of 

mRNA as well (Zolotukhin et al., 2009), and, in accord, the disruption of ALKBH5 leads 

to the accumulation of mRNA in cytoplasm (Zheng et al., 2013a). 

It was shown that the presence of m6A residues within 5′UTR can promote the cap-

independent translation (Meyer et al., 2015). Knockdowns of m6A eraser FTO in axons 

lead to increase in m6A levels and decreased local translation of axonal target 

transcripts, which points out that m6A can negatively regulate mRNA translation (Yu 

et al., 2018). Further studies have shown that activity of m6A readers YTHDC2 and 

YTHDF1 promotes the translation of methylated mRNAs (Hsu et al., 2017; X. Wang 

et al., 2015). However, the influence of YTHDF1 on translation remains controversial, 

as other studies have shown that the activity of YTHDF family proteins does not induce 

translation in HeLa cells (Zaccara & Jaffrey, 2020). On the other hand, there is a strong 

possibility that results of Zaccara & Jaffrey (2020) studies are right since they are 

based on multiple analyses of YTHDF1 influence on translation also inspecting theory 

of X. Wang et al. (2015). 

Role of m6A in plants 

The impact of m6A on plant mRNA processing is less known up to now. Numerous 

studies examined the effects of m6A on the stability of plant mRNA. Similar to the 

animal model systems, it was concluded that m6A can promote both stabilization and 

degradation of mRNA under given conditions. Thus, studies in Arabidopsis thaliana 

have shown that m6A inhibits the local ribonucleolytic cleavage, and the absence of 

the m6A mark leads to the transcript destabilization, but also m6A can destabilize some 

specific target mRNAs. It was shown that the knockdowns of MTA lead to the 

transcripts’ destabilization (Anderson et al., 2018; Duan et al., 2018). Further studies 

have shown that the knockouts of m6A readers ECT2 and CPSF30 accelerated the 

degradation of target transcripts, which indicates the positive role of these proteins in 
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the mRNA stabilization (P. Song et al., 2021; Wei et al., 2018). In contrast, the activity 

of m6A writer FIP37 decreases the stability of transcripts of the key shoot meristem 

genes (Shen et al., 2016), and demethylation caused by ALKBH10B can increase the 

stability of its target mRNAs (Duan et al., 2018). Also, m6A was shown to affect the 

plant mRNA structure under certain conditions, for example during the salt stress. The 

m6A increase in mRNA stability leads to a subsequent decrease in mRNA complexity 

(secondary structures of mRNA) and following response to salt stress (Kramer et al., 

2020). 

The regulatory role of m6A modification in splicing in plants has not yet been fully 

studied, although several studies have shown that mutants with defects in m6A writers 

FIP37, VIR in Arabidopsis and rice did not display remarkable changes in splicing 

(Růžička et al., 2017; Shen et al., 2016; F. Zhang et al., 2019). m6A modification can 

be related to decision on poly(A) site choice in Zea mays, which points to a role of m6A 

modification in APA (J. H. Luo et al., 2020). Further, in Arabidopsis, the reduced VIR 

expression led to the defects in the mRNA 3’ end formation, resulting in the preferential 

proximal poly(A) sites selection  (Parker et al., 2020). Moreover, the CPSF30 reader 

itself regulates the alternative polyadenylation and controls poly(A) site choice as well 

(Hou et al., 2021; P. Song et al., 2021). Also, studies of FIP37 activity by of Pontier et 

al. (2019) have shown the importance of m6A in targeting APA pathway. Also was 

shown that CPSF30-L are required for the optimal APA process (Pontier et al., 2019). 

It was shown effect of MTA on microRNAs (miRNAs). MTA is capable of methylating 

pri-miRNA and effects miRNA processing. This has demonstrated by decrease in 

levels of miRNAs and accumulation pri-miRNAs in MTA knockdowns (mta mutants). 

And also, was shown decrease in secondary structure within stem–loop regions of pri-

miRNA transcripts (Bhat et al., 2020). 

It was shown that m6A modification correlates with the translational status in different 

manners and that correlation varies in the context of m6A strength and genic location 

(J. H. Luo et al., 2020; Murik et al., 2020). In Zea mays, m6A levels show negative 

correlation with the translational status at the global scale, but when m6A modifications 

are located near the start codon, this correlation is reversed (J. H. Luo et al., 2020). 



   
 

 
   

 

- 13 - 

Physiological role of m6A in plants  

m6A in plant development 

m6A plays an important role in various stages of plant development and the disruption 

of the m6A-related genes leads to various pleiotropic phenotypes (Figure 5) (Arribas-

Hernández et al., 2020; Růžička et al., 2017; Shen et al., 2016; Zhong et al., 2008). 

m6A participates in the plant development as early as at the embryo development 

stage. The knockouts of the Arabidopsis core m6A writer genes MTA, MTB, FIP37 and 

VIR display embryo-lethal phenotype and did not pass the globular stage of embryo 

development in Arabidopsis and rice (Růžička et al., 2017; Vespa et al., 2004; Zhong 

et al., 2008). 

Shen et al. (2016) have shown that the reduced expression of m6A writer FIP37 leads 

to the increased proliferation of shoot apical meristem and the delayed leaf production. 

FIP37 expression was found to be elevated in actively proliferating tissues such as 

shoot apices, young leaves, and developing floral organs and seeds. This protein has 

been found to destabilize the expression levels of the two key shoot apical meristem 

regulators, WUSCHEL (WUS) and SHOOT MERISTEMLESS (STM). MTA can in a 

similar way regulate the shoot apical meristem proliferation. Thus, it was proposed 

that FIP37 and MTA are required for the prevention of the excessive shoot apical 

meristem proliferation (Bodi et al., 2012; Shen et al., 2016). 

m6A has a role in the development of trichomes and leaves as well. Bodi et al. (2012) 

have shown that the reduction in m6A levels in MTA knockdown mutants leads to the 

abnormality in trichome branching (Bodi et al., 2012). Plants overexpressing FIP37 

show phenotypes with a high number of highly branched trichomes as well (Vespa et 

al., 2004). Later studies have shown that the plants with reduced expression of HIZ2 

also have phenotypes with abnormal branched trichomes (M. Zhang et al., 2022). 

Further, m6A readers ECT2, ECT3 and ECT4 also participate in the regulation of 

trichome branching and cellular proliferation of leaves. ECT2 was shown to regulate 

the trichome development by binding the transcripts related to the trichome 

morphogenesis and stabilizing them. The disruption of ECT2 leads to the phenotypes 
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Figure 5 Role m6A modification and m6A-related proteins in various process of plant 

development. Please expand the legend a bit (Shao et al., 2021) 
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with abnormal trichome branching (Wei et al., 2018). ect2 ect3 ect4 triple mutant 

shows the defective leaf growth, including deformed leaf blades (Arribas-Hernández 

et al., 2020). J. Wu et al. (2020) have also shown that the plants with overexpressed 

ECT2 protein have smaller leaves compared to WT (J. Wu et al., 2020). Finally, the 

ALKBH10B knockout shows the reduction of leaf growth rate (Duan et al., 2018).  The 

phenotypes of the ect2 ect3 ect4 and alkbh10b mutants can be related to the fact that 

functions of ECT2 and ECT3 in leaves depend on intact m6A binding sites and 

therefore control the timing of leaf emergence and contribute to normal leaf 

development (Arribas-Hernández et al., 2018).  

The root and vascular development are also dependent on m6A. The knockdowns of 

MTA, MTB, FIP37 and VIR display developmental defects in overall root growth and 

root vasculature (Růžička et al., 2017). ECT2, ECT3 and ECT4 were shown to 

enhance cell division rate of provascular stem cells. The hypomorphic mta, mtb, fip37 

and vir mutants, as well as ect2 ect3 ect4 knockouts, also show a reduced formation 

of lateral roots (Arribas-Hernández et al., 2020).  

m6A proteins also affect plant reproduction and regulate flowering time. AtALKBH9B, 

AtALKBH9C and AtALKBH10B are known to have pronounced expression in flowers 

(Duan et al., 2018). alkbh10b mutants show late flowering, while the lines 

overexpressing ALKBH10B flowered sooner compared to WT. Moreover, ALKBH10B 

demethylates the transcripts encoding the key flowering time regulators FLOWERING 

LOCUS T (FT), SQUAMOUSA PROMOTER BINDING PROTEIN-LIKE (SPL) 3 and 9 

and stabilize their expression (Duan et al., 2018). The reduced expression of CPSF30-

L also leads to the delay in flowering, consistent with the results seen on erasers lines. 

Moreover, by recognizing the m6A marks, CPSF30-L can control the choice of 

polyadenylation site of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 

(SOC1) transcript. As a result, short 3’UTRs are formed on SOC1, contributing to 

stabilization of the SOC1 mRNA, thus regulating normal floral transition (P. Song et 

al., 2021). Studies in rice have shown that m6A is instrumental in early sporogenesis 

and revealed that OsFIP37 has a role in rice male gametogenesis. Hence, the Osfip37 

and Osmta knockouts are sterile and exhibit degradation of microspores at the 

vacuolated pollen stage (F. Zhang et al., 2019). 
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Role of m6A in stress response 

Several studies have reported significant changes in the expression of the m6A-related 

genes in response to various kinds of stress in Arabidopsis (Bodi et al., 2012; Wan et 

al., 2015). Under stress conditions, so-called stress granules (SGs) are formed. SGs 

are cytoplasmic non-membranous granules consisting of RNA and proteins (Ivanov et 

al., 2019). ECT2 and ECT4 were shown to localize to the SGs upon osmotic and heat 

stress. Ok et al. (2005) have found that ECT1 and ECT2 interact with CALCINEURIN 

B-LIKE-INTERACTING PROTEIN KINASE 1 (CIPK1). CIPK1 is a target of 

CALCINEURIN B-LIKE PROTEIN 1 (CBL1), playing an important role in reaction to 

various external environmental stimuli, such as cold, drought and high salt stress or 

wounding (Ok et al., 2005). 

The Arabidopsis oxidative stress-tolerant mutant (oxt6) with the defective CPSF30 

gene is tolerant to the oxidative stress. J. Zhang et al. (2008) suggested that 

accumulation of Ca2+ in cells following the oxidative stress leads to the inhibition of 

RNA-binding activity of CPSF30. This, according to the proposed model, activates the 

expression of genes regulated by the reactive oxygen species (ROS), which leads to 

the subsequent tolerance to the oxidative stress (J. Zhang et al., 2008).  

Recent studies indeed demonstrated that changes in m6A epitranscriptome play role 

in salt and osmotic stress. Following the stress stimulus, the methylation levels of the 

respective abiotic stress response-related transcripts tend to increase, which leads to 

stabilization of the transcripts, reflected also by the decrease in the mRNA complexity. 

It was proposed that this leads to the increased expression levels particularly of 

proteins required for the response to salt and osmotic stress (Anderson et al., 2018; 

Kramer et al., 2020). Additionally, Hu et al. (2021) shown that knockdown mutants of 

MTA, MTB, FIP37 and VIRILIZER (VIR) and HAKAI, show sensitivity to salt stress that 

is connected to the decrease in m6A levels of their mRNAs; among them, the vir-1 

knockdowns exhibit phenotype hypersensitive to salt stress. The loss of m6A in 3’UTR 

all over the transcriptome can stabilize transcripts of some negative regulators of the 

salt response. Eventually, this leads to the accumulation of ROS in plants and 
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subsequent hypersensitivity to salt stress. Results of these studies indicate the 

connection between m6A levels, length of 3’UTR and stress response (Hu et al., 2021). 

m6A participates in the abiotic stress response in many other plant species. For 

example, in Populus trichocarpa, the plants overexpressing PtrMTA are more tolerant 

to the drought stress (Lu et al., 2020). In Triticum aestivum L., most of the TaYTH 

genes show altered expression upon the abiotic stresses, such as phosphorus 

starvation, cold stresses, and heat stress that can suggest on possible functions of 

TaYTH proteins in stress response (Sun et al., 2020). 

Role of m6A in plant interaction with viruses  

m6A modification can be found not only on eukaryotic mRNA but also on viral RNA 

(Beemon & Keith, 1977; Brocard et al., 2017). Several studies have shown that m6A 

and m6A-related proteins can impact the processes of viral infection and replication 

(Martínez-Pérez et al., 2017; K. Zhang et al., 2021). In case of plant viruses, during 

the Tobacco mosaic virus (TMV) infection, the presence of the virus led to the 

increased expression levels of Nicotiana tabacum m6A-demethylases, and, as a 

result, the plant m6A levels were reduced (Z. Li et al., 2018). Similarly, in Arabidopsis, 

the total m6A levels increased after the infection with Alfalfa mosaic virus (AMV) 

(Martínez-Pérez et al., 2021). 

Martínez-Pérez et al. (2017) studied the ALKBH9B demethylase and its effect on the 

interaction of the host plant with two m6A-containing viruses, AMV and Cucumber 

mosaic virus (CMV). Indeed, the activity of ALKBH9B affected the virulence of AMV 

but not CMV. Moreover, ALKBH9B directly interacts with the coat proteins of AMV, but 

not those of CMV. Consistently, the reduced ALKBH9B levels in Arabidopsis mutant 

infected by AMV were shown to increase the methylation levels in the virus genome 

and decrease the virus infectivity; these changes were not observed in the mutant line 

infected by CMV (Martínez-Pérez et al., 2017). These observations are closely linked 

solely with the activity of ALKBH9B, as the other ALKBH9B paralogs show no impact 

on the AMV infection (Martínez-Pérez et al., 2021). 
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Summary and discussion 

In recent years, the research of m6A started to belong to the hottest topics in RNA 

biology. Significant progress has been made in studying the epitranscriptomic 

changes and accompanying molecular factors and processes. m6A is predominantly 

eukaryotic mRNA modification but was also found in bacterial mRNA and viral RNA. 

m6A-related proteins are evolutionary conserved, as well as their overall distribution 

over the transcript primary sequence (Deng et al., 2015; Dominissini et al., 2012; Krug 

et al., 1976; G. Z. Luo et al., 2014). 

Several enzymes classified as m6A writers, erasers, and readers have been 

experimentally characterized (reviewed Reichel et al., 2019). But it is still possible to 

discover new m6A-related proteins, as exemplified recently on mammalian writers 

Zfp217 and readers IGF2BPs and Prrc2a. It should also be noted that at the present 

time, there is insufficient information about the regulation of m6A processing and 

evolutionary relationship between proteins related to m6A. Therefore, it will be an 

interesting and important theme for the future research. 

In mammals, m6A plays a role in almost all aspects of mRNA processing. It affects 

mRNA stability, splicing, alternative polyadenylation, export from nucleus and 

translation. In contrast, in plants, the overall functional knowledge is more fragmentary 

(reviewed Shao et al., 2021). The most studied is the effect of m6A on mRNA stability. 

However, the data regarding the influence of m6A on mRNA stability are contradictory. 

Mainly, studies have shown the mRNA-stabilizing effect of m6A (Anderson et al., 2018; 

P. Song et al., 2021; Wei et al., 2018). But it was also shown that in some cases m6A 

can destabilize transcripts (Duan et al., 2018; Shen et al., 2016). Regrettably, we know 

little about exact mechanisms connected with these relatively contradictory 

observations. Considering the evolutionary conservation of well-known m6A-related 

proteins, perhaps plant m6A proteins have similar mechanisms and that will help in 

their future study. 

The disruption of m6A-related genes has demonstrated their significant role in different 

processes such as formation of embryos, apical meristems, trichomes, vasculature 

and reproductive organs (reviewed Shao et al., 2021). Also, m6A plays its role in 
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abiotic stress and viral infection response (reviewed Shao et al., 2021). However, 

despite an immense effort, the exact molecular mechanisms underlying these 

processes are still largely unknown and represent thereby a highly promising and 

attractive research topics for the future.  
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