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Introduction

Theoretical automata models and grammars are nowadays commonly ac-
cepted terms helping in wide range of problems and challenges from guess-
ing the upper bounds of some computation problems to grammar checking
of complicated languages like Czech. Most of the current automata and
grammars are working with the basic one-dimensional object — string. We
can see many reasons for that. The historical one, as first computers were
solving problems like cryptography where string is the basic object. The rea-
son of complexity, as handling one-dimensional objects is far easier than two
(or more)-dimensional. And the “necessity” one, as the need for using the
two-dimensional objects — pictures has risen a few decades after the need for
handling strings.

Today the one-dimensional language hierarchy is quite rich with many
known relations among the contained classes. We have Chomsky hierarchy
for the one-dimensional grammars and all grammar classes there have their
respective automata. There are still some open questions remaining, but it is
safe to say that the space of one-dimensional languages is mapped.

When we switch into the two dimensions the situation changes dramati-
cally. Despite the fact that first two-dimensional automaton was defined by
M. Blum and C. Hewitt back in 1967 there is still no consensus about ground
class (like regular languages in one-dimensional case), there is no known
hierarchy and we can find only several results that are being slowly linked
together. This is especially unfortunate as the computer processed images
can be seen virtually everywhere these days.

Lately there have been some attempts to establish the ground class for
two-dimensional languages by A. Restivo and D. Giammarresi and although
it is probably too soon to decide whether their proposal will be accepted or
not, they deserve much credit for advancing the research concerning two-
dimensional languages and their hierarchy.

To help in those efforts we decided to try to bring the successful model of
restarting automaton into two-dimensions and define an automaton that will
be a new interesting member of the two-dimensional language hierarchy or



automaton counterpart to some already known concept like tiling systems.

The thesis itself is divided into four chapters. The first chapter contains
short introduction into two-dimensional languages theory as well as presen-
tation of some not well-known models and concepts. In second chapter is the
definition of restarting automaton with short discussion of how the definition
emerged. In the third chapter are the theoretical results concerning the class of
languages restarting automaton accepts, like closure properties and position
in two-dimensional language hierarchy. The last (fourth) chapter contains
the “practical” results of how the restarting automaton handles some basic
two-dimensional objects like lines, crosses and trees.



Chapter 1

Introduction to Two-dimensional
languages

The goal of this chapter is to give an insight into a part of the theory of
two-dimensional languages needed to understand this thesis. The chapter
is divided into two sections. In the first section you can find fundamental
definitions of pictures, picture languages and basic operations on them. The
second section covers some advanced or not that well-known topics of the
given theory.

1.1 Basic definitions

You can find most of this chapter in almost every book about two-dimensional
language theory (for example [4]).

1.1.1 Pictures and picture languages

First we define a basic two-dimensional element called picture. We can see
pictures in the same way as computers do in case of bitmap graphics. This
creates close resemblance to one-dimensional (string) languages and even
equality in case of pictures of size 1 X k. On the other hand this approach
causes problems with graphical objects which are “un-squarable” by their
nature (such as circles).

Definition 1.1 A picture over an alphabet T is a two-dimensional rectangular array
(matrix) of elements of L. The set of pictures of size (m, n) is denoted by X"". All
pictures over X are denoted by X**. Picture language L is subset of 2"



Let P € " be a picture. Then, rows(P), resp. cols(P) denotes the number
of rows, resp. columns of P. Usually the measures are called height and
width respectively of the picture. The pair rows(P) X cols(P) is called the size
of P. We say that P is a square picture of size n if rows(P) = cols(P) = n.

For theoretical purposes it is sometimes useful to define an empty picture.
We denote empty picture by A symbol (same as in one-dimensional case). It
is the only picture of size 0 X 0. Note that there are no pictures of size 0 X k or
k x 0 for any k > 0.

Furthermore sometimes we need to refer to a specific symbol in the picture.
For that purpose we define the following abbreviation. Let i, j be integers
such that 1 < i < rows(P),1 < j < cols(P), P(i, j) denotes the symbol in P at
coordinates (i, j). Picture of size 1 X 1 has exactly one symbol at coordinates
(1,1).

Example 1.1 To give an example of a picture language, let ©. = {0,1}, L be the set
consisting exactly of all square pictures P € =", where

P, i) = 0if i + jis an odd number
D)= 1 otherwise

Our language is the language of all “chessboard” like pictures. Pictures in L of sizes
1, 2 and 3 follow.

H‘QH
Q‘HQ
H‘QH

110
0|1

To prevent automata to “fall off the picture” during computation and to
relieve ourselves from constantly speaking about borders of pictures we de-
tine boundary picture. The original picture is surrounded by a special symbol,
so automaton working on the tape is informed when it is about to step out
of the boundaries. Usually it is required that after automaton steps on the
boundary symbol the next action must be the reverse step “back”.

Definition 1.2 For every picture P € " we define boundary picture P of size
(m+2,n+2)e XU {# where # ¢ X:

PG, i) = Pi-1,j-1)for2 <i<rows(P),2 < j< cols(P)
)= # otherwise



Example 1.2 Boundary pictures of the pictures from Example 1.1 then look like:

#H H#|H#H|H#
## | # i ? 3 i #1101 |#
#|1|# E011 % #1010 |#
##|# T #1101 |#
#H H#H|H#H|H

Unless specified otherwise, we always use boundary pictures for compu-
tations instead of “normal” ones.

1.1.2 Operations on pictures

We define a set of basic operations allowing us to work effectively with pic-
tures and picture languages in the same manner as in the case of strings
and string languages. Some operations are almost the same as in the one-
dimensional case, others split to two cases (horizontal and vertical). Concate-
nation operation is an example of the latter.

Definition 1.3 The column concatenation of two pictures P and Q (denoted by
P © Q) is a partial operation, defined only if rows(P) = rows(Q), and it is given by

Py ... Py, Qi ... Quw
p= : .. Q=| : :
Pui ... Pyn Qmi - Quuw
Pip oo Py Qi1 oo Qi
roQ=| : . : f
Pu1 oo Puw Qui oo Quw

Similarly, the row concatenation of two pictures P and Q (denoted by P© Q) is
a partial operation, defined only if cols(P) = cols(Q), and it is given by

Pl,l o Pl,n Ql,l o Ql,n
P=| + . i | Q=] 1
Pm,l e Pm,n Qm’,l cee Qm’,n
P1,1 . Pl,n
P.i1 ... Puu
PeQ=| ;" '
< Qi1 - Qua
Qm’,l R Qm’,n




Moreover, the column and the row concatenation of P and the empty picture A is
always defined and A is the neutral element for both these operations.

Besides the concatenations, we define an unary operation called rotation.

Definition 1.4 Let P be a picture. The (clockwise) rotation of P, indicated as PX,
is defined by

P1,1 Pl,n
P = PR =
Pm,l Pm,n

Ppui ... Pis

Pyunw ... Piy

Please note that although we denote rotation in the same way as “reverse”
in case of the one-dimensional languages, the resulting picture significantly
differs from the “mirror image” we would expect to get. Only in case of pic-
tures of size (1, k) the PRt produces the “mirror image” as we are accustomed.

To fill the missing option of creating the “mirror image” of some pictures
we define the following operation:

Definition 1.5 Let P be a picture. The vertical mirroring of P, indicated as P,
is defined by

Prq Py, Py Pry
P=| : : plo-mirr) _ | - :
Pm,l Pm,n Pm,n Pm,l
the horizontal mirroring indicated as P""')  is defined by
Pl,l Pl,n Pm,l Pm,n
P=| : : phomirr) — | :
Pm,l Pm,n Pl,l Pl,n

Remark 1.1 Notice that vertical mirroring can be acquired as combination of hori-
zontal mirroring and rotation (and vice-versa). PO = ((((PR)¢-mir))R)yR)R

We now define a projection of a picture. Aside from the fact that such
transformations are often seen in “real” world of pictures, projection is a key
element of a later defined tiling systems.

Definition 1.6 Let P € I be a picture and 7t be a function 7 : I' — X. The

projection by mapping 7 of picture P is the picture P’ € " such that P'(i, j) =
7(P(i, ), for all 1 < i < rows(P),1 < j < cols(P).

7



Where there is no danger of ambiguity we will use 7(P) to indicate the
projection of picture P by mapping 7. The definition of projection of a picture
can be extended in a natural way to sets of pictures.

Definition 1.7 Let L C I be a picture language and 7 be a function m : I’ — L.
The projection by mapping 7 of L is the language L’ = { P’ | VP € L : P’ =
n(P)} € I

We have defined all basic operations that will be used in this thesis. The
following section deals with main computation models working with the
picture languages.

1.2 Advanced topics

In the second section of this introduction we cover some more advanced and
specific topics used further in the thesis. Mainly several automata and other
classification concepts which form together the core of the two-dimensional
language hierarchy.

Remark 1.2 Because two-dimensional theory is a fast growing field nowadays, this
part of the thesis is probably most likely to evolve. We strongly recommend checking
the latest articles and books for the newest results.

1.2.1 Basic families of picture languages

In case the of one-dimensional languages we are in a situation of already
mapped hierarchy of languages and known relations among them. Above
that, most of the ground languages have “nice” properties like closures
on almost all operations. When we move to two-dimensions the situation
changes dramatically. So far, there is no consensus about the ground class
(which are the regular languages in one-dimension), most of the proposed
two-dimensional automata have different strength in their deterministic and
non-deterministic versions and although there are many separate results on
several automata there is no “unified” theory equivalent to the Chomsky
hierarchy in one-dimension. And this is despite the fact that the first defini-
tion of the two-dimensional finite automaton was published by M. Blum and
C. Hewitt back in 1967 [1].

To give some insight into the situation on the field we present several
definitions of automata models and mention their properties.

One of the most straightforward generalization of the string automata is
the four-way finite automaton defined by M. Blum and C. Hewitt in 1967 [1].

8



It can be imagined as a simple finite state automaton capable of moving on
the tape in four directions: Left, Right, Up, Down.
4-way finite automaton

Definition 1.8 A non-deterministic (deterministic) four-way finite automaton,
referred to as 4NFA (4DFA), is a 7-touple A = (£, Q, A, 9o, qa, 4+, 0) where:

e X is the input alphabet;

Q is a finite set of states;

A ={R,L, U, D} is the set of “directions”;

qo € Q is the “initial” state;

Ja, qr € Q are the “accepting” and the “rejecting” states, respectively;

6 : Q\{ga, g} X Z — 294 (0r 6 : Q\{qa, 9/} X T — Q X A in the deterministic
case, respectively) is the transition function.

When there is no need to specify whether we are speaking about determin-
istic or non-deterministic version of the automaton, we refer to a four-way
automaton as 4FA.

4FA recognizes a picture P € X if, starting from the position (1, 1) in the
initial state, it possibly moves around and eventually halts in an accepting
state g,. Notice that during the recognition process the 4FA is not required
to read all the positions of the input picture; moreover the finite control can
come back to a given position as many times as needed. Let us give an
example of a picture language recognized by a 4FA:

Example 1.3 Let © = {0,1} be an alphabet and let L C X" be the language of
pictures which first column is equal to the last one. Then L is recognized by a 4DFA
that operates as follows. It scans a picture P € L row by row from left to right,
proceeding from top to bottom, and by checking at the same time that all positions
contain letters in . and that the leftmost letter in a row is equal to the rightmost one.

Although 4FA is a quite simple model it has some inconvenient proper-
ties which discredit it from the position of ground class automaton in two-
dimensions. More specifically.

Theorem 1.1 ([12]) L(4DFA) and L(4NFA) are NOT closed under row and column
concatenation.



Regarding the boolean operations between languages, the following the-
orem holds.

Theorem 1.2 ([7]) L(4DFA) and L(4NFA) are closed under boolean union and
intersection operations. Moreover L(4DFA) is closed under complement.

Note that the question of whether the family £(4NFA) is closed under
complement is still open.

The probably most inconvenient property is that family £(4DFA) is strictly
included in L(4NFA) (both theorem and proof regarding that can be found
in [4]).

As we will see the property that deterministic version of some automaton
has lesser strength than its non-deterministic version is so common in two-
dimensions that one may even ask whether it is a necessary property in
recognition of two-dimensional languages in general or we just have been so
far unsuccessful in finding the “right” concept.

On-line tessellation automaton

Completely different approach to the two-dimensional automaton was intro-
duced by K. Inoue and A. Nakamura in [6]. They defined two-dimensional
on-line tessellation automaton (20TA), which is an example of a cellular au-
tomaton (i.e. automaton that operates on the entire tape simultaneously).
Informally we can imagine 20TA as an array of simple computation units
that cover the whole input picture. Every unit is capable of changing its
internal state depending on the state of its neighbors and the symbol on the
tape. Whole computation of 20TA then resembles a “wave” which starts in
the upper left corner and ends in the lower right corner.

Formal definition given here is taken from [4] and is slightly different from
the original one given by Inoue et al.

Definition 1.9 A non-deterministic (deterministic) two-dimensional on-line tes-
sellation automaton, referred as to 20TA (2DOTA), is completely defined by
A = (%, Q,1F ) where:

L is the input alphabet;

Q is a finite set of states;

I € Q (or I ={i} € Q in the deterministic case, respectively) is the set of
“initial” states;

F C Qs the set of “final” (or “accepting”) states;

10



e 0 :0OXOXYL > 2%2(0rd: Qx QXX — Q in the deterministic case,
respectively) is the transition function.

A run of A on a picture P € Z** consists of associating a state (from the set
Q) to each position (i, j) of P. Such state is given by transition function 6 and
depends on the states already associated to positions (i — 1,j), (i,j — 1) and
on the symbol P(i, j). All positions are initialized with one of initial states
and when the coordinates of the position are not valid (like in case of border
positions) we assume the invalid position is in one of the initial states as well.

A 20TA A recognizes a picture P if there exists a run of A on P such that
the state associated to position (rows(P), cols(P)) is a final state.

We give an example of a language recognized by 20TA.

Example 1.4 Let X = {a} and let L C X" be the language of all squares over . A
20TA recognizes pictures of L by associating state “1"” to positions in the main diag-
onal and states “2” and “3” to positions above and below such diagonal, respectively.
A picture will be accepted if the position of the bottom-right corner contains state
“1”. Formally, L is recognized by the following 20TA A = (X, Q, I, EF, 6) defined as
follows:

e 0=1{0,1,2,3};
o [={0};
e F={1};

e 6(0,0,a) =6(2,3,a) =1;
0(0,1,a) = 6(0,2,a) = 6(2,1,a) = 6(2,2,a) = 2;
0(1,0,a) = 6(3,0,a) = 6(1,3,a) = 6(3,3,a) = 3.

The families of two-dimensional languages recognized by a 20TA and
a 2DOTA are denoted by L(20TA) and L(2DOTA), respectively. We now
present some results on those language families.

Theorem 1.3 ([6]) L(20TA) is closed under row and column concatenation.
Theorem 1.4 ([6]) L(20TA) is closed under projection.
Theorem 1.5 ([6]) The family L(2DOTA) is strictly included in L(20TA).

Theorem 1.6 ([6]) L(4NFA) c L(20TA).

11



L(2DOTA) and L(4DFA) are not related by any inclusion relations. There
are examples of picture languages recognized by 4DFA and not recognized
by any 2DOTA and vice versa.

Notice that a 20TA reduces to a standard finite automaton on words
when restricted to operate on one-row pictures only. This becomes even more
interesting when we realize that 20TA is stronger than 2NFA — which, when
restricted to operate on one-row pictures, resembles standard automaton far
more.

This is another example of the fact that the transition to two dimensions
is neither easy nor intuitive.

Tiling Systems

We now define language family of tiling systems which has a close connection
to on-line tessellation automata although this is not clear at first glimpse. This
family of languages was first introduced by D. Giammarresi and A. Restivo
in [5] and proposed as a ground class for two-dimensional languages. Since
then, several new results regarding properties of this class have been pub-
lished. They follow after the main definition and listing of the properties.
Tiling systems will also have close relation to two-dimensional restarting
automaton.

Tiling systems take as starting point a characterization of recognizable
string languages in terms of local languages and projections. Namely, any
recognizable (by means of finite automata) string language can be obtained
as projection of a local string language over a larger alphabet (cf. Theorem 6.1
in [3]). This notion is then extended to the two-dimensional case: precisely,
we define local picture languages by means of a set of square arrays of side-
length two, here called “tiles”, which represent the only allowed blocks of
that size in the pictures of the language. Then we say that a two-dimensional
language is “tiling recognizable” if it could be obtained as a projection of a
local picture language.

Local two-dimensional languages

Definition 1.10 Given a picture P of size (m,n), let h < m,k < n: we denote by
By, x(P) the set of all blocks (or sub-pictures) of P of size (h, k). We call tile a square
picture of size (2, 2).

We now define local and domino-local languages which are core elements
of tiling systems.

12



Definition 1.11 Let I' be a finite alphabet. A two-dimensional language L C I™*
is local if there exists a finite set © of tiles over the alphabet T U {#} such that
L= {P S F*’*lBg,z(P) - @}

O represents the set of allowed blocks for pictures belonging to the local
language L. Given a language L, we can consider the set © as the set of
all possible blocks of size (2,2) of pictures that belong to L (note that we are
considering boundary pictures). The language L is local if, given such a set
O, we can exactly retrieve the language L. We will assume implicitly that the
empty picture A belongs to L if and only if © contains the tile with four #
symbols. The family of local picture languages will be denoted by LOC.

Example 1.5 Let I' = {0, 1} be an alphabet and © be the following set of tiles over I'.

11000 0|1 010 |#|1 #1000
0|1 110, (0[0||0|0] |#[|0]| |#|0]| |# | #
o= 011 O #| |0 | # | |#|#| |# | #]| |# # |# | #
Sl ##|T|#|[O|#] |00 110 [#]|1 0|#
#10 1\|#
#H#| | H#|#

The language L = L(®) is the language of square pictures in which all main
diagonal positions carry symbol “1”, whereas the remaining positions carry symbol
1/0//'

Notice that the language of squares over a one-letter alphabet is not a local
language because there is no “local strategy” to compare the number of rows and
columns using only one symbol.

In [4] (page 242) hv-local picture languages are defined, where the square
tiles of side 2 are replaced by “dominoes” that correspond to two kinds of
tiles: horizontal dominoes of size (1,2) and vertical dominoes of size (2,1).
As those “domino-languages” are used for example in family of languages
called SDREC we give formal definition (calling them “domino-local” instead
of “hv-local”).

Definition 1.12 Let I be a finite alphabet. Then two-dimensional language L C I'™*

is domino-local if there exists a finite set A of dominoes over the alphabet T U {#}
such that language L = {P € T**|(B12(P) U Bo1(P)) € A}.

13



It is easy to understand the following remark so we include it without the
proof.

Remark 1.3 If L C I is a domino-local two-dimensional language then L will be
a local language. Opposite is not true, that is there are languages that are local but
not domino-local. This can be easily seen on the language of squares over X. = {0, 1}
filled with 0’s with exception of main diagonal which is filled with 1’s.

With the definition of two-dimensional local languages, we have all the
tools necessary to define the tiling systems.

Definition 1.13 A tiling system (TS) is 4-tuple T = (X, T, ®, ) where ¥ and T
are two finite alphabets, © is finite set of tiles over the alphabet T U {#}and i : T — X
is a projection.

The tiling system T recognizes a language L over the alphabet X as follows:
L = (L") where L’ = L(©) is the local language over I' corresponding to the
set of tiles ®. We write L = L(T) and we say that L is the language recognized
by T. We say that a language L C X" is recognizable by tiling systems (or tiling
recognizable) if there exists a tiling system T = (X,I',©, 1) such that L = L(T).
We denote by £(TS) the family of all two-dimensional languages recognizable
by tiling systems. In other words L € L(TS) if it is a projection of some local
language.

Example 1.6 Let X. = {a} be a one-letter alphabet and let L be the language of squares
over ¥, that is L = {P|cols(P) = rows(P)} € X**. Language L is recognizable by
tiling systems. We can take as underlying local language L', the one from Example
1.5, i.e. the language of squares over the alphabet T = {0, 1} with 1’s in the main
diagonal and 0’s in the other positions. The applied projection 7t : I — L is then
defined in a way 7(0) = (1) = a. It is easy to see that L = w(L").

The projection defined in tiling systems can be seen as a way to “hide”
some auxiliary symbols used in generation of the result picture. In the exam-
ple mentioned above we used auxiliary diagonal to assure that the picture is
square. This diagonal was later “overwritten” by the projection.

Remark 1.4 It is interesting that despite the fact that L(domino-local) C LOC, when
we create domino-systems in the same manner, as tiling systems are defined (with
domino-local languages instead of local), those two family classes are equivalent. The
proof (found in [4] page 243-245) is based on the idea that we can express property
of “being an allowed sub-picture of size (2,2) of picture in L” by means of dominoes
over a larger alphabet T'. Projection then takes care of the rest.

14



We mention following properties of tiling systems.

Theorem 1.7 ([4]) The family L(TS) is closed under projection.
The family L(TS) is closed under row and column concatenation.
The family L(TS) is closed under union and intersection.

The family L(TS) is NOT closed under complement.

D. Giammarresi and A. Restivo further proved the equivalence between
on-line tessellation automata and tiling systems. This connection (aside from
some other properties of tiling systems) gives them a strong ground to de-
tine class REC (recognizable languages). REC class contains 4 equivalent
language families, namely languages recognized by on-line tessellation au-
tomata L(20TA), languages recognized by finite tiling systems L(TS), lan-
guages defined by existential monadic second order formulas L(EMSO) and
languages defined by a complementation-free regular expressions with pro-
jection L(PCFRE). As mentioned earlier, REC class was proposed by D. Gi-
ammarresi and A. Restivo as ground class for two-dimensional languages.
Regardless whether we agree with such proposal or not, REC represents a
robust class and therefore a good choice for comparison with our new model
of two-dimensional restarting automaton.

We can see the connections between all mentioned classes in following
tigure.

Deterministic REC

Because of the use of projection in tiling systems (and because of their equiva-
lence with 20TA) there is an implanted non-determinism in class REC. There-
fore there have been several attempts to define a class of languages which
could be called “deterministically recognizable”. The first such attempt was
made by authors of original REC class D.Giammarresi et al. in article [13,
From Determinism to Non-determinism in Recognizable Two-Dimensional
Languages]. Several classes were defined there, but we mention only two of
them. The first one is called UREC which stands for “unambiguous REC”.
Informally, it contains languages where every picture has a unique counter-
image in its corresponding local language (in “orientation free notion”). Exact
definition can be found in [5].

For a better idea we can imagine that every successful finding of some pre-
image of picture in UREC must end up with the same picture. Please note
that this does not rule out possible backtracking during the computation.

In the case we wanted to remove such backtracking possibility, our goal
would be to have each tile of the final picture corresponding to a single tile
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REC

L(20TA) = L(TS)

N\

£(2DOTA) L(4NFA)

£(4DFA)

Figure 1.1: Inclusions among the classes mentioned above. Line between two
classes means that the lower class is included in the higher. This inclusion
need not to be strict.

in the underlying local language. This is indeed how DREC class is defined.
Definition can be found in [13] but because it contains some ideas used later
in the thesis we present it here as well.

At first, imagine that when we would like to determine the original pre-
image of some picture P, the result could depend on where we start the
transformation. That is because after we have determined the first symbol,
the surrounding tiles are forced to bind to this choice and therefore have
reduced number of possible pre-image tiles. In ideal situation this number
is reduced to a single tile and we can continue in the process. As in two-
dimensional case we have four corners where to begin (each time we end
in the opposite corner) there are four processing directions (called corner-to-
corner directions) defined: t12br, tr2bl, bi2tr and br2tl; t12br stands for top left
to bottom right etc. . DREC class is then defined in following way.

Definition 1.14 A tiling system (X,T’, 0, n) is tI2br-deterministic if for any y;,
V1| V2

V3| Va
Similarly we define d-deterministic tiling systems for any corner-to-corner direction.

V2, vs € TU{#} and o € L there exists at most one tile € O, withn(y,) = o.
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Recognizable two-dimensional language L will be deterministic, if it ad-
mits a d-deterministic tiling system for some corner-to-corner direction d.
Moreover, we denote by DREC the class of Deterministic Recognizable Two-
dimensional Languages.

There is one interesting property considering the class DREC.

Theorem 1.8 ([13]) The class DREC is equal to the closure by rotation of L(DOTA).

Considering the inclusions among the classes mentioned above following
theorem holds.

Theorem 1.9 ([13]) UREC is properly included in REC. DREC is properly included
in UREC.

Therefore we get DREC ¢ UREC C REC.

Sudoku-Deterministic REC

Last class we mention here is the class of Sudoku-deterministically recog-
nizable picture languages (SDREC) defined by B. Borchert and K. Reinhardt
in [2]. SDREC class takes slightly different approach to the notion of deter-
minism in recognizable languages than the class DREC. Instead of guessing
the original tile on position x, y in one shot, it keeps the set of possible pre-
image possibilities and reduce them iteratively in the very same manner the
Sudoku-puzzle is solved.

For easier definition of the class, domino-systems are used instead of tiling-
system (but we know from Remark 1.4 that they are equivalent). Formally:

Let T = (X,I,A, ) be a domino tiling system. Given a picture P over
the alphabet X we define a picture sp of the same size in which we initialize
every position (i, j) by the set sp(i, j) := 7 '(P(i, j)) € 2" of possible pre-image
symbols. In one step of the sudoku-deterministic process we discard all the
possibilities that does not conform with the set of allowed dominoes A (on
the processed picture at the moment). Formally:

For s,s" € (2') (of the same size) we allow a step § =y § if for all
positions (i, j) in s we have that the set 5'(i, j) consists of the elements in the
set 5(i, j) which have in each of the four neighboring sets a respective element
such that the respective domino tile is in A. Even more formally:

s'(i,7) = {x € s(i,7) | Ay1, ¥2, y3, ya € I' U {#} such that y; € (i +1,)),
X Y4

7 7

Y3 X

Y €8(i—1,7),y3€58(,j+1), ya€8G, j—1Dand| x| 11 |,| y2 | x

€ AL

4
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Note that only elements from s’(i, j) are dropped which will never be
the symbol of a valid pre-image at this position. In other words: one step
excludes one or more possibilities for which one can be sure about that it will
not be a solution, and after this step new opportunities for excluding more
possibilities may show up — this is how usually a Sudoku puzzle is solved.

For a given domino tiling system T = (X, I', A, ) let the accepted language
L:4(T) be defined as the set of pictures P for which there exists a way to
transform the initialized picture 3p in finitely many steps into a picture in
which every position consists of exactly one element and which cannot be
transformed further. Formally :

L(T) := {P € £ | AP € L(T) such that § =7, {P'}).

The {P’} stands for the picture which is of the same size as P’ and has
instead of a letter P'(i, j) the singleton set {P’(i, j)} as a letter at position (i, j).

The class of the Sudoku-deterministically recognizable picture languages
SDREC is defined as the languages L for which there is a domino tiling system
T recognizing L in that way i.e.

Definition 1.15 SDREC := {L C X** | thereisa T = (X,I', A, 1) such that L =
Lsd(T)}

Following theorems concerning SDREC class holds. 4AFA stands for 4-
way alternating finite automaton which we mention here only because of the
following theorem and its significance. More about 4AFA can be found in [8].

Theorem 1.10 ([2]) L(4AFA) € SDREC
Theorem 1.11 ([2]) DREC € SDREC

The second theorem is not very surprising seeing how SDREC class works.
What is interesting on the first theorem is its combination with the result from
[8] where it was proven that 4AFA contains some non-recognizable picture
languages and therefore SDREC does not belong to REC. We can see the
update figure with newly added classes and connections between them on
Figure 1.2.

Following questions concerning the subject are still open:

e is DREC or even SDREC contained in 4AFA ?

e is there some computational model capturing exactly REC N co-REC ?
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REC
L(20TA) = L(TS) co-REC

UREC L{4AFA)

DREC L(4NFA)

L(2DOTA) L(4DFA)

Figure 1.2: Inclusions among all mentioned classes

e author is also unaware of any known relation between UREC and
SDREC classes.

Remark 1.5 Just to imagine how complex the problems become when switching from
one into two dimensions, note that all the classes mentioned above when taken into
single dimension, collapse to the class of regular languages.

We have defined several automata for recognition of two-dimensional
languages and mentioned their properties. Special concern was given to class
of REC and its subclasses, namely the deterministic ones. This approach has
two justifications. Firstly we will use some of the ideas and results in the
definition of two-dimensional restarting automaton and it is required that
the reader is familiar with them. Secondly REC class is very robust and with
attention given to it nowadays it is the best choice for feasible comparison
with two-dimensional restarting automaton.

This chapter cannot be in any way taken as satisfactory introduction to
theory of two-dimensional languages. For better understanding of the subject
we strongly recommend checking on the latest articles, mainly from D. Gi-
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ammarresi or K. Inoue and searching their respective bibliographies. Several
key articles can be found in this thesis bibliography as well.

20



Chapter 2

Defining Two-dimensional
Restarting automata

In the following chapter we go through several proposals of two-dimensional
restarting automaton definitions and after taking all pros and cons into ac-
count we come out with two definitions for both deterministic and non-
deterministic version).

2.1 Definition discussion

2.1.1 Idea behind restarting automata

The concept of restarting automata was first introduced by P. Jancar, F. Mraz,
M. Platek and J. Vogel in [9] but perhaps better (and more recent) summary on
the subject can be found in [14]. This concept allowed authors elegant charac-
terization of deterministic context-free languages and helped in attempts of
solving the grammar checking problem for Czech language. Restarting au-
tomata are of several types, but the general idea can be described as follows.

Restarting automaton has a finite control unit, a head with a read/write
window attached to a tape, and it works in certain cycles. In a cycle, it starts
in the initial state and it moves the head from left to right along the word on
the tape; according to its instructions, it can at some point rewrite the content
of its read/write window by shorter string and “restart” —i.e. reset the control
unit to the initial state and place the head on the left end of the (shorter) word.
The computation halts in an accepting or a rejecting state and an input word
is accepted if there exists a computation ending in an accepting state. As
usual, both non-deterministic and deterministic versions of the automaton
are defined. A natural property of monotonicity is also considered (during
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any computation, “the places of rewriting do not increase their distances from
the right end”) and shows that deterministic monotonic restarting automata
nicely characterize the class of deterministic context-free languages (DCFL)
[10].

The property of “restarting itself” is quite useful when used in proofs as
an “error preserving property”. Imagine the restarting automaton used for
grammar checking. Every rewriting is constructed in a way leaving out some
parts not affecting the (non)correctness of the sentence. On the input sentence

“The little boys I mentioned runs very quickly”
we get consequently

“The boys I mentioned runs very quickly”
“boys 1 mentioned runs very quickly”
“boys runs very quickly”

“boys runs quickly”

and finally we obtain the “error core”
“boys runs”

The second property which we will use is the fact that every rewriting
instruction somehow “lowers the weight” of the input tape. In one dimension,
thisis done by length-reducing rewriting steps or weight-reducing rewritings
used for shrinking restarting automaton [11]. Because in two dimensions it
would be complicated to reduce the dimensions of the tape (what becomes
of a picture when we remove some inner positions ?) our approach will be
to assign unique weight to each symbol in the input alphabet ¥ (and the
optional working alphabet I') and force every rewriting instruction to lower
the overall weight of the input picture.

Remark 2.1 It can be easily seen, that for every finite input, the “weight reducing”
property necessarily leads to finite computation sequence.

2.1.2 Definition proposals for 2DRA

Our goal is to define an automaton which will be easy to handle, both in
real computations and proofs. Moreover we require that the automaton is
“weak” in terms of language class it accepts. We take from one-dimensional
shrinking restarting automaton the property of “lowering the weight” of the
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tape and the property of “restart” after every rewriting instruction. In case of
rewriting we also require the change of the tape is “local” in some sense.
We divide the following discussion of the definition into three sections:

e How does the automaton read the tape ?
e How the rewriting instructions are defined ?

e When does the automaton accept the input ?

We propose several solutions for each aspect of our automaton, but we
choose the best combination at the end rather then in the process. This
is because some reading strategies are better when combined with certain
rewriting strategies etc.

Reading

There are two main approaches we can take when deciding how the automa-
ton will read the input.

e Automaton does not read input in a common sense but rather finds first
available rewriting position and performs the rewriting.

e Automaton is capable of reading input and storing information about
it in its internal states. Then it performs rewriting on the position it
decides.

In both cases we have to define in which direction is the input read. In the
second case the only difference would be in time complexity of the algorithms
as automaton can always read the whole input and then decide where to
perform the rewriting. In the first case however, the decision could affect the
automaton strength as the “first” rewriting position would change depending
on the direction input is read.

Technically we can allow automaton to move freely in all four directions
acting in a same way as 4-way finite automaton. Such approach can be
applied though in the second case only.

Rewriting

Rewriting poses probably the greatest challenge as it can be performed in
many different ways. In case of one-dimensional restarting automaton we
find the strategy of “meta-instructions” which consists of rewritten core sym-
bols and a surrounding defined by some regular expression. This approach
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allows single rewriting instruction to capture variety of real situations. In two
dimensions we lack the elegance of the one-dimensional regular expressions.
Therefore we try to use local languages and tiles instead. Especially local
languages allow us to capture the variety of surroundings, yet are both easy
to define and easy to handle. Tiles on the other hand allow defining fixed
surrounding of some “pixel”.

Following options are therefore proposed for rewriting:

e Automaton rewrites fixed tile of size n X n to another fixed tile of the
same size. n should be in any case finite, but we consider only n = 1,
n =2and n = 3 as larger “tiles” would be hard to handle.

1. Size of 1 X 1 (single pixel is rewritten at a time).
2. Size of 2 X 2 (classic “tile” — at most 4 pixels are rewritten).

3. Size 3 X 3 (i.e. at most 9 pixels at a time ).

e Automaton rewrites fixed tile as above, but takes into consideration the
tile surroundings. This is more like the one-dimensional case where
automaton rewrites fixed word to fixed word, but takes regular expres-
sion around rewritten word into consideration. In two dimensions we
will use tiles of size 2 X 2 which are used in tiling systems. Size of
surroundings taken into account in rewriting has to be also specified.
We suggest surrounding of the size 4 X 4, making it the rewritten tile
center of the area.

Last thing regarding the rewriting is whether automaton should use work-
ing alphabet or not. By working alphabet we mean set of symbols which can-
not be present in input picture and but can be used during the computation.

Accepting

Again several approaches are possible.

e Automaton accepts when the whole image contains only tiles from
given (acceptance) set. And (optionally) no rewriting instruction can be
used.

e Automaton can “read” the input image in the same way as a 4-way
Turing machine and accepts when it reaches acceptance state (with
transitions defined as in Turing machine). In other words, automaton
accepts when picture belongs to some pre-defined local language.
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e Combination of both approaches mentioned above. Automaton ac-
cepts when there are no rewriting instructions available, all tiles of the
whole image are in acceptance tile set AND automaton reaches accep-
tance state after reading the whole image. This approach allows us to
recognize languages containing n dots (single black pixels) where 7 is
fixed or generally count occurrences of lines/squares/anything within
the picture.

Two viable definition drafts emerged from the proposals mentioned above.
First would work as Turing machine with three major exceptions. It would
be bounded by the size of input picture, it would have to “restart” after every
rewriting performed on the input tape and all rewritings would have to be
performed in a way to lower the overall “weight” of the picture. Our second
option is an automaton working with tiles. It rewrites tile to another tile (still
reducing the overall weight of the picture) and accepts when picture belongs
to some local language. We dismissed the option to allow the automaton us-
ing tiles to rewrite the tile if its surrounding belongs to some local language
as too complicated to handle.

After several discussions and first attempts to prove some of the automa-
ton properties we decided to continue with the proposal of automaton using
tiles and created following definition.

Definition 2.1 Two-dimensional restarting automaton, referred to as 2RA, is
a 5-touple A = (L, T, Oy, 6, u) where L is finite input alphabet, T is finite working
alphabet, ©f C (L UT U {#})>? is set of accepting tiles, ;1 : LUT — N is a weight
function and 6 : (ZUT U {#})>? — (ZUT U {#})>? is set of rewriting rules satisfying
condition that in every rule only single pixel on the tile is changed and all rewritings
a — b conform with u(a) > u(b).

Note that by working alphabet I' we understand set of symbols disjoint
with input alphabet Y. Automaton then works in a following way. Starting
in an upper left corner of an input picture P € X** automaton reads the input
from left to right and from up to down ending in a lower right corner (in the
same manner as westerners do read books). When it founds a tile for which
rewriting rule is defined it performs the rewriting and restarts (i.e. goes to
upper left corner again). When no rewriting rule can be executed for the
whole picture, automaton verifies whether the picture belongs to the local
language defined by O and if so it accepts. Formally:

Let A = (X, I,0©y,06,u) be a two-dimensional restarting automaton and
Py, P, be two pictures over the alphabet X U T of the same size. We say
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that the picture P; can be directly reduced to the picture P,, denoted by
Py +4 P, if there exists two integers i, j, 1 < i < rows(P1), 1 < j < cols(P,) such
that P;(k,I) = Py(k, ) for all pairs of the indices k, where 1 < k < rows(P;),
1 < I < cols(P,) except the pairs (i, j), (i, j +1), (i +1,j),(i+1,j + 1) and there

Pi(i, j) Pi(i,j+1) . Py(i, j) Py, j+1)
Pi(i+1,j) | Pi(i+1,j+1) Py(i+1,7) | Po(i+1,j+1)
Moreover there is no rule in 6 that could be applied to any tile on the po-

(m, n) (m,n +1)
m+1,n) | (m+1,n+1)

exists a rule

sitions , where 1 < m < i,1 < n < cols(P;) or

m=11<n<j.

We say that Py can be reduced to P, (denoted by P; v, P») if there exist a
sequence of reductions Q1 k4 Q2, Q2 k4 Q3, ..., Q-1 +a Q, wheren > 1, Q; = P4
and Q, = P,. Obviously, the relation +, is the reflexive and transitive closure
of the relation 4.

Definition 2.2 Let A = (%, T, 0Oy, 6, u) be a 2RA. The language accepted by A is the
set
L(A)={PeX|AQ e (X UD)" : P+, Qand Q € L(Oy)}

In preliminary discussions automaton with internal states that would
be allowed to “count” the occurrences of some tiles was proposed but we
abandoned that direction.

Careful reader probably noticed, that automaton is by definition non-
deterministic as for one “working” tile several rewriting rules can be de-
fined. We define deterministic version of two-dimensional restarting au-
tomata (2DRA) by restricting set of rewriting rules for single “working” tile
to at most one rule. Formally:

Definition 2.3 Deterministic two-dimensional restarting automaton, referred
to as 2DRA, is a 5-touple A = (X, T, Oy, 6, u) where L is finite input alphabet, T is
finite working alphabet, ®y C (ZUT U {#})*? is set of accepting tiles, i : TUT — N
is a weight function and 6 : (ZUT U {#})>* — (X UT U {#})*? is set of rewriting
rules satisfying following conditions:

o [n every rule only single pixel on the tile is changed
o Rule changing pixel a — b conform with u(a) > u(b)

e For every tile T = (X U T U {#})>? there exists at most one rule in 0.
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We can see two-dimensional restarting automaton as an integration of
thoughts from two original concepts. From the one-dimensional restarting
automaton (namely shrinking restarting automaton) we took the idea of per-
forming single rewriting operations at a time and bounding the possible
rewritings by forced lowering of the picture weight. From the tiling systems
and local languages we took the idea of using tiles as a basic two-dimensional
objects.

To give an example of language recognized by two-dimensional restarting
automaton and to show how such automaton could be defined in “practice”
we use the language of squares over one-letter alphabet from Example 1.4.

Example 2.1 Let ¥ = {a} and let L C X" be the language of all squares over L.
Deterministic two-dimensional restarting automaton A recognizing L is be defined
as follows. A = (%,T, Oy, 6, u) where

o ¥ ={a}
o I'={1}

y:(la/_)z;lll_)l)

oo [[FIF|_[#]#] [1]a]_[1]a

T # | a #11\| |ala all

@_### #| | # | # a|# al# 1| #
STV HE[TI [T al [alal [al#) [al#) [1[#] [#]#]
a|l ala #1la #la #11 a al|l
# I H#H| |(#|#| | H |\ #| |(#lal| |#|a|’ 11" |alal’
ala ala

Ilal” |ala

Automaton uses one-letter working alphabet from which it creates artificial di-
agonal to ensure the input is a square picture. The weight function p is defined in
a way that the only rewritings allowed are from ‘a’ to “1’. We can notice that the
weight function is interesting only up to the point of its existence. The most complex
part of this automaton is the definition of the accepted local language. This is mainly
because the input picture was simpler then the accepted one. In case of the reverse
(i.e. complicated input picture and simple accepting local language) we would prob-
ably get far more rewriting rules then the number of the tiles in the accepted local
language.
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With the definitions done we will now focus on the closure properties of
2(D)RA and make an attempt to set it up to the current hierarchy of two-
dimensional languages.
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Chapter 3

Two-dimensional Restarting
automata properties

This chapter contains results regarding properties of two-dimensional restart-
ing automata like closures on operations defined in Chapter 1 and attempts
to position the class of languages accepted by 2RA into existing hierarchy of
two-dimensional languages. Our first guess that the 2RA accepts the same
class as the tiling systems (because what it does is something like “reverse
projection”) can run into trouble because both tiling systems (TS) and the
on-line tessellation automata (20TA) only READ the input picture. 2RA on
the other hand rewrites the input and therefore it is likely to be “stronger”.
We show at the end of this chapter that we directly proved only the inclusion
TS C 2RA and failed to decide whether it is strict or not.

Before we start working on closure properties of two-dimensional restart-
ing automaton we first set up alemma that will ease our future work. We have
isolated a technique that will allow us to create from two general restarting
automata, two restarting automata which accepts same languages but have
disjoint working alphabets and disjoint symbols in acceptance set ©;. The
property that those sets are disjoint will be crucial in several proofs.

Lemma 3.1 Let A1 = (21,1"1,®f1,(51,y1) and A2 = (ZQ,FQ,@fz,(Sz,[Jz) be two
two-dimensional restarting automata. Then there exist two-dimensional restart-

ing automata Az and As with disjoint working alphabets and disjoint symbols in
acceptance sets such that L(Az) = L(A1) and L(As) = L(A»).

Proof: Note that if acceptance sets of both automata A3, A4 use only sym-
bols from working alphabets they are disjoint (as their working alphabets are
disjoint).

To create automata with disjoint working alphabets it is sufficient to simply
add new index ; to all working symbols from one of the automata and replace
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all occurrences of those symbols in rewriting rules and acceptance set in the
respective automaton with their indexed counterparts.

More formally, let A3 = A; and Ay = (X4,T4, Oy, 04, s) where Xy = X,
Ls—work = {gl |g € F2} ®f4—work = ®f2 and Os—work = 02 where in both ®f4—work and
O4—work €Very occurrence of symbol from I'; has been replaced with respective
symbol from I'y_yos. In case the input alphabets Z; and X, were disjoint we
could simply set I'y = I'y_york, @4 = Opy_york and 04 = deltay ok pt4 would be
defined in a same way as p, with all the symbols from T, replaced by their
respective indexed counterparts from I';.

In the case the input alphabets Z; and X, are overlapping we add all
symbols from input alphabet X, to working alphabet I'; (again with the new
index ;) and create new set of rewriting rules which at the beginning of
the computation transform all the symbols from the input alphabet to their
respective symbols in working alphabet. We then replace the symbols in
acceptance set in the same manner.

Again more formally. Xy o = {s1ls € L4}, I'y = Tywork U Zywork- Ops =
Of4-work Where every occurrence of symbol from X, has been replaced with
respective symbol from Xy york. At last 64 = O4—work U Osinputtowork, Where in
Os—work €Very occurrence of symbol from X, has been replaced with respective
symbol from Xy and 84— iupusrowork contains for every s € L4 the following 4
rules:

S | * S1 | * * | 8 * | 81 * | % * | * * | % ‘ * | *
- - - -
* | % * | % * | % * | ok S | * S1 | * * | S ‘

* Sl

where ’+" stands for any symbol. The computation of the automaton A4
then looks like following. Before using any rewriting rule from the actual
“computation” set it first uses the new rewriting rules that just change sym-
bols on the tape from the input to the working alphabet (this is because there
are no other rewriting rules handling the input symbols). Then it continues
with the original computation. u4 is defined in a way allowing all the rewrit-
ings in 8, — for example in a same way as 1, with following exceptions: All
the “indexed” input symbols from I'y take place of the original input sym-
bols from X, and the original symbols have assigned weight far greater then
any other symbol from I'y. Then every input symbol can be rewritten to its
“indexed” counterpart and all the rewrites from the original automaton are
allowed as well. Thus L(A;) € L(A4). The inverse inclusion comes from the
fact that A, at first rewrites the input symbols to their respective counterparts
in the working alphabet (and we have shown that those are the rewriting that
need to be done first) and then it simulates the automaton A,. Therefore any
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computation of A4 stripped of the first rewriting of the input symbols can be
performed by A, as well.

Note that if A, is deterministic then A, is deterministic as well (same holds
for A; and Aj).

g.e.d.

3.0.3 Closure properties of 2RA

We now mention all closure properties of 2RA we were able to prove.
Lemma 3.2 The family L(2RA) is closed under projection.

Proof: Let X, I, be two finite alphabetsand let ¢ : £; — X, bea projection.
We will prove that if picture language L; C X} is recognizable by 2RA then
L, = ¢(L,) is recognizable by 2RA, too.

Let A; = (4,141,001, 41) be a two-dimensional restarting automaton
recognizing L;. We create two-dimensional restarting automaton A, recog-
nizing L, in the following manner.

A2 = (Zz, rz, ®f1,62, ‘Uz) where rz = Tl U Zl. 62 = (31 U 62—work where 62—work
contains rewriting rules creating an inverse transformation to ¢.

* S | *

Formally, 62-work = {d Vs e X1d = () - } where ‘+” stands

* * * *

for any symbol from X, U T’,.

The computation is then very similar to the computation of automaton in
the proof of Lemma 3.1. Before automaton does any “computational” rewrit-
ings it first “reverses” the projection applied to input alphabet and then
continues with the computation of A;. Therefore we can see that if A, accepts
input picture P, then there exists P; accepted by A; such that P = ¢(P;). Note
that for single picture P there could be multiple possibilities of “pre-images”
P;. A; has to non-deterministically choose one of them. It is also clear that A,
cannot accept any pictures outside the ¢(L(A1)) as it actually “simulates” A;
in its own computation.

g.e.d.
We now prove that the family of languages recognized by 2RA is closed
under row and column concatenation. As proofs for the row and column cases

would be almost the same, we formally prove only the column concatenation
closure. We do so in the following way. First we non-deterministically mark
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the parts of the concatenated picture with separated indices. Then we use the
rewriting rules of the left picture automaton on the left part and the rewriting
rules of the right picture automaton on the right part.

Lemma 3.3 The family L(2RA) is closed under row and column concatenation.

Proof: As stated above we will prove only the column concatenation, as the
proof for the row concatenation is similar.

Let L; and L, be two picture languages recognized by two-dimensional
restarting automata A; = (X,T', Oy, 01, p1) and Ay = (X, 12, Op, 62, i) respec-
tively (we assume w.l.o.g. that the input alphabets are the same). Our goal
is to construct two-dimensional restarting automaton recognizing language
L = L; © L, containing all pictures P, such that P = P; ® P, where P; € L; and
P, € L,.

We can assume w.L.o.g. (as a result of the Lemma 3.1) that both working
alphabets and symbols in acceptance sets are disjoint.

The proof is based on the idea that we are able to non-deterministically
mark both original parts of the concatenated picture and then simulate the
computation of the automaton A; on the left part while simulating the au-
tomaton A on the right part. The resulting automaton will accept if both A,
and A, accepts.

Imagine marking by adding new index to all symbols on the tape that
belong to P; (P, respectively). In this way we do not destroy any information
about the input picture.

More formally we will use following rewriting rules:

#|# #|# #|# # | # # | # # | # #|#

- , — , — , —
# s # S1 *1 | S *1 | 51 *1 | S *1 | Sp * | S
# | # | % u ! | % | % 2 | % 2 | %

4 - 7 - 7 - 7

*y | Sp S * S1 * S * S1 * S * So *
*2 # *2 # #|# # | # *1 # *1 #

— , — , -
s | # Sy | # #1|s #1s, s | # s1 | #

We are using two indices: ; for the left part of the picture and , for the
right part. s stands for a specific symbol from the input alphabet and s; (resp.
sy) for its respective indexed counterpart. * stands for any symbol from the
input alphabet and *; (resp. *,) for any symbol with respective index added.
You can notice that the rewriting rules are defined in a way to allow indexing
of whole picture with the same index (be it ; or ;). This is because either
language L, or language L, could contain an empty picture A.

Assume that we are concatenating picture languages L(H_LINES), L(V_LINES)
where V_LINES contains all pictures with vertical lines and H_LINES contains
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all pictures with horizontal lines. After the transformation, the picture could
be:

# | # | # | # | #H | #
01 |11 |1; |02 |02 | O2
01 1010102 15]0
01 {00,010
0, |1 | 0,
01 [0 |07 [0 | 1y | 02
01 01 01 02 02 02
# | # | # | # | # | #

| | | | | FH FH|HF

S| FHe| He| | | | FH| =
=
—
—_
e

We then define A = (X,T’,©¢, 6, u) as follows. TakeI' =T'; UT, U Xy U Xpp
where X1; contains all elements from X; with the new index ; and X, contains
all elements from X, with the new index ,. Set of rewriting rules 6 contains
all elements from 64, all elements from 6, and the “transformation rules”
mentioned above with the following modifications: All occurrences of the
symbols from X; in §; are replaced with their “indexed” counterparts from I
same goes for the symbols from X, in 0,.

Moreover because we possibly have no right border of the picture P; and
no left border of the picture P,, we need to modify the rewriting instructions
further (in case either L; or L, contains an empty picture A this modification
is not needed for the rules from 6; or 6, or both). The rules from set 6,
containing the right border symbols are replaced with tiles where the right
side of the tile has been replaced with all the possible symbols from I', U X,.
Technically we can replace every tile with |[I'; U Yool tiles, standing for all
possible “neighbors” from the picture P,. Because of the disjoint alphabets
this poses no problem in the recognition. The same modification is done with
the set 6, (in this case we consider the left border and alphabet I'1 UZ4;). More
formally, we define the following sets of rules.

ai #)
C1#

01, = For every rule containing tile with right border (i.e. tile

we create set of rules where the right border symbols are replaced with all
possible pairs from ¥, UT,. Note that in the case of upper right corner and
lower right corner tiles, we replace only the lower right (upper right symbol)

(i.e. in tiles L;: iy only the #, symbol is replaced).
05, = For every rule containing tile with left border (i.e. tile z iz ) we
2
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create set of rules where the left border symbols are replaced with all possible
pairs from X; UT;. Note that in the case of upper right corner and lower right
corner tiles, we replace only the lower right (upper right symbol) (i.e. in tiles
#r [75)
# | #

0 is then defined as 6 = 611 U 67, U 622 U &}, where 611 stands for set 6; with
replaced symbols from X as stated above. Note that if L, does not contain an
empty picture A, then all rewriting rules from 6; containing the border symbol
# in the right column will be removed from 6. Same goes for the picture L,
and rewriting rules from 6,. Accepting set @y = O U Op, is modified
in the same manner as rewriting rules (with the same note about empty
pictures). Moreover all symbols from X in Oy, are replaced with their indexed
counterparts from X;; and all symbols from X in @y, are replaced with their
indexed counterparts from X,,. Last thing remaining is to show that there
exists the “weight function” y which conforms with all rewritings mentioned
above. If wejoin the functions 14, 1> and replace all the occurrences of symbols
from X with their respective indexed counterparts (from X;; in case of y; and
from X, in case of u;) we allow all rewritings of the original automata. The
“transformation” rewritings taking care of the indexing of the picture can be
allowed for example by assigning higher then current maximal weight to all
symbols from the input alphabet X .

It is easy to show that if A; can accept P; and A, can accept P,, then there
exists an accepting computation of A on P; ® P,. Hence, L(A;) © L(Az) C
L(A). To show the opposite inclusion we must consider all the accepting
computations of A.

As automaton is not forced to prefer some rewriting instructions over
others we need to take a look how the successful computation will look like
(and if the automaton does not accept some pictures it should rather reject).
First we make an observation that if automaton uses some “transformation”
instructions (i.e. the ones that change symbols from X to their indexed coun-
terparts) it necessarily transforms whole “left part” rectangle. So situations
like the following one are impossible:

only the #, symbol is replaced).

#|# | #

>(-1 *1 *

>(-1 *1 *

*1 *1 *

* * *

| | | H| | H*

F| F| | | FH| H*
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This is because once an input symbol is indexed with either ; or , there are
no instructions to transform it back. And there are no accepting tiles of the
former automaton A; with indexed symbols (+;) on the top and other than
indexed *; or # symbols on the bottom.

Therefore we have guaranteed that the transformed symbols form a rect-
angle that starts at the top of the picture, ends at the bottom and bounds to the
left side. On the left part marked by the index ;, only the instructions working
with the symbols from I'; can be used (those are the rewriting instructions
from A;). On the right part marked by the index , on the other hand only
instructions from A, can be used.

When automaton accepts the picture it must be in a state where left part
can be recognized by acceptance set of Oy and right part by ©, (either left
or right part can be empty!). The picture P therefore had to be concatenation
of some P; ©® P, where P; € L(A;) and P, € L(A)).

Proof can be easily modified to work for the row concatenation.

g.e.d.

Lemma 3.4 The family L(2RA) is closed under union and intersection.

Proof: Let L; and L, be two picture languages and let A; = (X1, 'y, Oy, 61, 1)
and A; = (2,12, @p, 62, u2) be two two-dimensional restarting automata that
recognize L, and L, respectively.

We assume w.lo.g. that both the working alphabets I'1 and I'; and the
symbols in both accepting sets ©¢; and ©¢, are disjoint. Moreover we assume
w.lo.g. that the input alphabets ¥; and ¥, are the same.

A restarting automaton A, for the “union language” L = L; U L, is quite
easy to construct. We will use the same indexing “trick” we used in the
proof of the previous lemma. Let X1; be an alphabet same as X; where every
symbol had been attributed a new index ; and X, be an alphabet same as X,
where every symbol had been attributed a new index ,. We also define 6y,
which contains all the rules from 6; with the exception that every occurrence
of symbol from X; is replaced with the respective symbol from X;;. Same
holds for ®f11/ (322 and @fzz.

We then define A, = (X,,T, Oy, 64, pty) where L, = L, UL, I, = T U
211 U FQ U 222, ®fu = ®f11 U ®f22- (Su = 611 U (522 U 6work/ where 6work contains
rewriting rules that index the whole input picture with the either index ;
or , by non-deterministically choosing the tile in the upper left corner and
expanding the chosen index to the whole picture. yu, is defined in a way, to
allow all the rewriting rules defined in 67,. The automaton A, then at the
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beginning of the computation non-deterministically chooses which set of the
rewriting rules will be used (by choosing the first index), indexes the whole
picture (as there are no other rewriting rules working with the input alphabet)
and then follows the computation of either A; or A;. Hence, L; U L, C L(A,).
The opposite inclusion follows from the fact that the first rewriting of an
accepting computation of the automaton A, inserts a symbol indexed by x,
x € {1,2} into the picture. After that it can work only using the rewritings
from Oyx U Owork Which allow only symbols indexed by x in the rewritings.
Hence the last picture which is accepted by A, corresponds to a picture from
L(®,). Hence the input word belongs to L,.

We will now construct the two-dimensional restarting automaton A; ac-
cepting the “intersection language” L; N L,. The idea is to simulate runs
of both restarting automata A;, A, on the input picture and accept only if
both automata would accept. We define two intermediate working alphabets
[ =T1 UXq, o =T U Xpp.

We define A= (Zi, I; ®fi/ 0;, [,ll) where Y =2X1UX,, I'; = I'1y XTIy, Rewrit-
ing rules Oy; are defined so that every input symbol is firstly rewritten into the
working alphabet in a way that every a € X is replaced with pair (a1, a,) where
a; stands for symbol a from I'y,, with index 1 and the same holds for a,. Other
rewriting rules are defined so that every rewriting simulates either rewriting
instruction of A; or rewriting instruction of A,. Formally for every instruction

2 Zi - 2 Zi in 6; we add rewriting instruction set 22123 EZ; Zi; —
(e1,a2) | (b1,b2)
(c1,02) | (d1,d2)

structions are created for all rewriting instructions in 6,. This way with every
rewriting instruction of automaton A we simulate single rewriting instruction
of either A; or A,.

The accepting set Oy; is then defined as something like “@f; X Of,” in a
a1 b1 ar bz
C1 dl Cr dz

(a1,42) | (b1,b2)
(c1,€2) | (d1,d2)

for all possible combinations of a,, by, ¢, d; € I'y,. Similar in-

sense that for every tile in Oy and every tile in ©y, we add

to Oy; the tile . In the case of border tiles we do so only

#
with tiles of the “same type”, i.e. tiles i Zl are combined only with tiles
1
#|Db
m dz . We can see that in this way picture is accepted if only if it is accepted
2

by both A; and A,.
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g.e.d.

Lemma 3.5 The family L(2RA) is closed under rotation.

Proof: We prove closure under rotation by showing how a 2RA A’ with the
input picture PR can simulate given 2RA A working on the input picture P.
We can easily see that by simply rotating all tiles in both rewriting rules and
accepting set we get automaton that will “almost” work. The only remaining
issue to solve is the fact that our “new” automaton reads the original picture
in the direction from the lower left corner to the upper right instead of the
original direction from the upper left corner to the lower right. Because the
automaton A’ performs the first rewriting available in its reading direction it
could perform some rewriting not available for the original automaton A and
therefore accept (reject) picture it should rather reject (accept).
To solve this issue we first need to make an observation.

Observation 1: When instruction rewrites a pixel in the picture there is no
need to check all the tiles up from the beginning. It is enough to check just the tiles
surrounding the rewritten pixel.

Because each 2RA performs the FIRST rewriting available, when it passes
some parts of the picture without rewriting we can be sure, there are no
rewritings possible at the moment. Imagine for example, how would space
bounded 4-way Turing machine simulate the restarting automaton. We can
safely assume that the machine reads a complete tile instead of one pixel.
Starting in the upper left corner the machine reads the input picture line by
line and when it finds possible the rewriting position it performs the rewriting.
After the rewriting the machine needs to check the positions surrounding the
rewritten pixel because this change could allow some rewritings on “checked
before” positions (i.e. positions above and left from the rewritten one). For
example if there is a rewriting at the position (3,5) we can be sure there can
be no rewriting at the position (1,1) at the moment.

When speaking about the rotated picture PX, if pixel
ten, only pixels with "* have to be checked.

“_ 1
r

has been rewrit-
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#OH#H | H#H | H#H | H#H|H | #H H#
# #
# #
# * | % | % #
# ro|o* #
# ® | % #
# #
#OH#H | H#H | H# | H#H|H | H# #

We can mark the pixels surrounding the rewritten one and then check
only those. If there is another rewriting on those marked pixels we mark
some more and so on and so forth.

At this point we can make another observation. Let C = [T + |Z]

Observation 2: Turing machine simulating restarting automata will rewrite
each pixel at most 10 » C + 3 times

Every pixel can be rewritten at most C times (because of the weight func-
tion u), moreover each pixel can be marked at most 8 = C - each time when
one of its neighbors is rewritten. Because the number of maximum rewritings
depends only on the size of the original working alphabet it gives us a good
hope for simulating one restarting automaton with another.

More specifically we will simulate the run of the original restarting au-
tomaton on the rotated picture with restarting automaton with larger working
alphabet.

First imagine that instead of the original working alphabet symbol “a” we
get the set of symbols

-/r 1-(10+=C+3)
-/2/2t a -/tw/rw-t
-/1/1-t -/c/c-t/cc

" 1
r

where upper left index has values “-” (as nothing) or (as read) sym-
bolizing whether this pixel was read before. Lower left index with values
“ 71" and “1-t” marks the last field read. The middle left index is used
for backward marking and will be explained later. The lower right index
with values “-”, “c”, “c-t” and “cc” marks the changed pixels and is used
for marking the surrounding of rewritten pixel. The upper right index has
values from 1 to 10 * C + 3. For every symbol in original alphabet we create
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all possible combinations of those indices so the new automaton has working
alphabet of size 2+ 3 # 3+ [['| + (10 * C + 3) * 3 * 4.

The rewriting rules of the original automaton A are modified in the fol-
lowing way. We modify all rules of A” so they work only when their lower left
corner symbol contains the index “1” (as actual pixel). The only exceptions
are the tiles where lower left symbol is “#”. In those cases we require that
lower right pixel has the index. If it also contains the symbol “#” then the
upper left pixel has the index and finally in case of lower left corner tile we
require that the index “1” is in the upper right pixel.

A’ then works as follows. First it marks the upper right corner with the
“actual pixel” symbol “1” and then transports it in direction top to bottom
right to left to bottom left corner (this is the read direction of the original
automaton). Because the only rewriting rules we allow contain the actual
pixel symbol “1” we can be sure that all rewritings are done in the right
direction.

The transportation of the symbol has to be done in two stages. Because
we are allowed to rewrite only one pixel at a time, we first have to mark
the field below the symbol “1” and then unmark the original position. So
we have rules like: acl Z - Zi Z and 2 Z - (?1 Z (a, stands for
symbol a with lower left index “1”). In this way when we move the index
“1” we do so in direction top to bottom and can be therefore sure that we did
not skip any possible rewriting before (because else it would be performed).
Moreover when we are moving the actual index “1” we ensure that at first
the index is copied on pixel below and in the following cycle the upper index
is deleted. The only problem arises when we reach the bottom part of the
picture P® because we need to somehow transport the index “1” back to the
top of next column to the left, but cannot do it in the same way as we did on
the way down (it would lead to whole column having the index “1”).

This is what we have the index “2” for. We create the rules

. a| b R ay | by
# | # # | #
. ay | by R ax | b
# | # # | #
. Aoy b R ar b
# | # # | #
. al|b N ar b
Co d Cy d
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# | # #|#
azd Elld

Those rules will allow us to transport the index “1” back to the top of
the next column. The use of temporary index “2t” is necessary because
otherwise the index “1” would be left on the bottom of the original column
(as automaton would first find the rewriting position for transportation of
the index “2” to the top). We presume that the symbols 4, b, ¢, d stand for
all possible choices from working alphabet as well as the symbol # in some
cases. As a part of the index “1” movement we also mark the visited pixels
with the “r” index (for example when we visit the position first time we can
add both indices — “1” and “r”). This mark will be used later. For the lack
of space we do not put here the whole set of the rules but rather present the
idea.

When the rewriting occurs (i.e. the original automaton uses rewriting
rule) we need to perform three steps to get the correct indexing. First, we
rewrite the original symbol as the rewriting instruction does and mark it with
“rw-t” (rewritten-temporary) index. Second, we “stop” the movement of the
current index “1” as we rewrite it to index “1-t” (1-temporary). Third, we
replace the “rw-t” index with “rw” index and continue with checking the
surrounding of the rewriting.

The “rechecking” of the previously visited pixels is done in the follow-
ing way. We can make an observation that the only pixels needed to be
“rechecked” are the surrounding pixels that were already read (those we
have not visited yet have no sense of rechecking). Moreover, we mark only
the upper left pixels of the tiles that may contain the rewritten pixel (the same
place where the pixel with index “1” is).

We need to mark the following pixels around the rewritten one (“rw” is
the rewritten pixel and pixels containing “*” will be marked).

## | H#| # | #H|H#H | #
# #
# #
# * * #
# * | T #
# #
# #
## | H#| # | #H|H#H | #

Note that the marking of the pixels on the left may not be necessary as
they may be unread yet. This marking will be done by the following rules
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. b |2 b
C drw—c Cc drw—c
. a b N At b
Cc drw—c Cc drw—c
° Act b N Act bct
Cc drw—c Ce di’w—C
° Act bct N ac bct
Ce | drw—c Ce | drwc
° ac bct N ac bct
Cc drw—c Cc dc
° ac bct - ac bc
c | de Cc | dc

Careful reader probably noticed that we needed the temporary index “ct”
again. This is because we will behave to the index “c” in the same way as to
the index “1” in the sense that we allow rewritings when the lower left pixel
of the rewritten tile contains the index “c” (and no other pixel on the tile has
that index). In this way the pixels are checked in the original direction. When
there was no rewriting rule for the checked tile in the original automaton A,
we change the index “c” to “cc”. If there are some rewritings we mark more
pixels and continue until we check all the pixels and remove all the marks
“cc”. Because we also remove the “rw” indices in the process, the last index
left will be the “1-t”. When it is alone (i.e. there are no “c”, “rw” or “cc”
indices around) we rewrite it back to “1” and continue with the reading. To
make this part a bit clearer we present the example of the rewriting rules of
situation when there were no rewritings defined for the tiles in question in
the original automaton A.

Rules taking care of unmarking the surroundings of the rewriting

o L% b [ e b
¢ | d c. | d

o | b | e b
c. | d Cee | d

o | b | b
c |d cl|d
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And we are allowing following combination of indices for the original
rewriting rules of the automaton A to work:

o 2 b
C1 d
o L1 b
¢ | d
o | e b
c. | d

In this way the automaton A’ does the rewriting of the original symbols
(not the indices) in exactly same order as the original automaton A.

To summarize the simulation, automaton A’ uses several auxiliary indices
around the original symbols to ensure the original automaton A reading
(and rewriting) direction. The index “1” is used to represent the head of the
automaton and moves in the original reading direction. All rewriting rules
are modified to work only with certain combination of indices. In case A’
simulates a rewriting by A, indices of the surrounding symbols are marked
in a way that the automaton A’ is forced to check the same tile the original
automaton would. At the end of the simulation there will be some indices
“2” left on the picture and lower left corner will contain index “1”. All other
indices are removed in the process of the simulation. The accepting set will
be modified to work with those indices.

The last thing we need to check is the number of rewrites we will need for
each pixel (including the marking!) as there must exist the weight function y
and therefore we can rewrite each pixel at most |[Z" U I”| times (where L’ and
I are the working and input alphabets of the automaton A’ respectively).
Let C = [I' U Z|. The original automaton A could rewrite each pixel at most
C times. We do 2 rewrites in the process of adding and removing the index
“1” and one more when we use the index “2” for transportation of index
“1”. Moreover every pixel can be marked by rewritings of its neighbors. We
mark 4 surrounding neighbors (at most), use temporary indices in the process
and remove them in the end which counts up to at most 4 + C * 5 rewrites.
Summarizing, every pixel can be rewritten at most C+3 +4+C+5=10C + 3
times. We construct the weight function 1 in a way to allow all the rewritings
needed. The last index we have not used yet is the “counter” index in the
upper right corner of the working alphabet of A’. It is used for example when
we need to “mark” and “unmark” the index “c” but leave all other indices
(and the original symbol) intact. We do so by decreasing the counter index
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by 1. For example when we have a pixel with counter index 134 we can add
an index “c” but when we want to remove it we need to decrease the counter
index to 133 (as weight function does not allow us to return to the same
symbol we used once). When we create the counter index sufficiently large
(from one up to 10+C+3) we can even lower it each time some rewriting occurs.

g.e.d.

We now show that the language family 2RA is also closed under mirroring.
We choose to prove only closure under vertical mirroring as horizontal can
be obtained as a combination of vertical mirroring and rotation.

Lemma 3.6 The family L(2RA) is closed under mirroring.

Proof: As stated above we will prove only closure under vertical mirroring.
For the purpose of this proof we can see mirroring as a special type of rotation
because our approach from the proof of closure under rotation (lemma 3.5)
will work here as well. The only modifications needed are those dealing
with the direction of readings/rewritings. As modification of the whole proof
would be long and tiring we just show how to modify the movement of the
actual pixel index “1”.

The index “1” starts again in the upper right corner but this time moves
from right to left and from top to bottom. The movement from right to left is
done with following rules.

b al|b
C dl C1 dl

alb alb
Cldl C1C1

For the vertical movement from top to bottom we again use auxiliary
index “2” and the following set of rules.

#a1 #a1
#1D #| b

# a, #| a
#| by #| by

a|b al|b
Czd Czdz
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al|b al|b
Czdz Cdz

02# 511#
b | # b | #

We can see that this time, thanks to the reading direction of the new
automaton the index “2” will even be removed in the process (aside from the
last pixel where it will remain).

All other rewrites will be modified in the same way.

g.e.d.

In [4] D. Giammarresi and A. Restivo showed that £(TS) is not closed
under complement. We conjecture that L(2RA) is also not closed under
complement.

Conjecture 3.1 The family L(2RA) is NOT closed under complement.

Idea of the proof: We will use the idea and the language that was intro-
duced by D. Giammarresi and A. Restivo in [4] when showing that L(TS)
is not closed under complement. Let ¥ = {a,b} be an alphabet and let
L = {P € X*|P = s ©s where s is a square}. That is, language L contains
pictures of size (2n,n) for every n € N such that the top and the bottom
square halves are identical. The proof of the conjecture could be given by
showing that L ¢ L(2RA) while its complement L = {a,b}\L € L(2RA).

We presume that checking whether the two squares one above the next are
exactly the same cannot be done in linear O(n) (where n = cols(P) * rows(P) is
the size of the input picture) time yet we were unable to prove it formally. If
this is the case, then two-dimensional restarting automaton would be unable
to recognize such language as Turing machine simulating the 2RA is running
in linear complexity and it would lead to contradiction. The result of Turing
machine simulation could be obtained by slight modification of the proof of
the closure by rotation.

The fact that L € £(2RA) can be shown in exactly the same way as in the
original proof in [4].

We decompose L =L, UL, where:

Ly = {P € Z**|rows(P) # 2 * cols(P)}
L, = {P € X**|rows(P) = 2 * cols(P) and top and bottom halves are different}.

Itis quite easy to show that L, is recognizable, using a restarting automaton
which builds up a line, within a rectangle, that declines stepwise two squares
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by one, starting at the top left corner and missing the bottom right corner. On
the other hand, L, can be written as:

Ly=LsN (2" 0 (LN (2" O Ls ® 7)) © T°)

where:
Lz = {P € Z**|rows(P) = 2 * cols(P)}
Ly = {P € Z**|rows(P) = cols(P) + 1}
Ls = {P € Z**|cols(P) = 1 and P(1,1) # P(1, rows(P))}

Languages L3 and L4 can be recognized by the techniques similar to the
one for L; described above. To see that Ls is recognizable by the restarting
automaton, we can imagine sending “index wave” from the first symbol to
the last (where the index will be the actual symbol on the first position of the
picture). This shows that the language L, € L(2RA) and because of closure
properties of L(2RA) L € L(2RA)

We summarize all two dimensional restarting automaton closure proper-
ties in following theorem.

Theorem 3.1 The family L(2RA) is closed under
e both row and column concatenation
e union and intersection
e rotation

e both horizontal and vertical mirroring

3.0.4 Inserting 2RA into hierarchy of two dimensional lan-
guages
Lemma 3.7 SDREC C L(2DRA).

Proof: The class of sudoku-deterministically recognizable languages was in-
troduced in Chapter 1. Given a domino-tiling system T = (XL, I, A, ) and
a picture Pin alphabet ¥ our goal is to find the pre-image P, in alphabet
I' for which holds P = 7t(Pg) and B1(Pg) U B1»(B,) € A. In case of sudoku-
deterministic languages we do so by initializing all positions with all possible
pre-image symbols and then by iteratively removing the implausible possi-
bilities (in the same manner as sudoku-puzzle is solved).

We define the two dimensional restarting automaton A = (X,T'4, ©, 6, 1)
where input alphabet X is same as in T. I'y consists of all nonempty subsets
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of I'. O is created to capture the exactly same set as A, which is possible due
to the fact that domino-local languages are subset of local languages (Remark
1.3). Rewriting rules 6 are created in order to remove one or more impossible
choices for a pre-image symbol on a position (x,y). This can be done for
example by taking all the possible tiles created from I'y and then checking
if we could exclude some pre-image options on one or more positions by
comparing the tile with the set A. In case there are more options how to
“reduce” the tile we pick one randomly. B. Borchert and K. Reinhardt prove
in [2] that the sudoku-deterministic process is successful regardless of which
or how many possibilities are excluded in one step (which allows us to check
the picture tile by tile as restarting automaton does).

g.e.d.

Theorem 3.2 L(2DRA) C L(2RA).

Proof: The statement follows directly from the definitions of 2DRA and 2RA.

g.e.d.

Lemma 3.8 REC C L(2RA).

Proof: We can view this lemma from two perspectives. Probably the shortest
proof is based on the closure on projection. Tiling systems are based upon
local language and some projection. Local language is easily recognized by
restarting automaton without any rewriting instructions and therefore any
projection of such language is recognized by restarting automaton as well.

Second possible way to prove this lemma is directly from properties of
restarting automaton.

Two-dimensional restarting automaton work as a reverse TS transforma-
tion. TS starts with local image and transforms it into generally non-local
picture. 2RA on the other hand starts with general image and transforms it
into some local picture.

Let T = (£, I,0,n) be a Tiling system. We will construct 2RA A that
accepts exactly L(T).

Accepted local language is ®. Rewriting instructions are generated in the
following way. For every tile t € © we generate tile ttrans = 7n(t) and add
rewriting instruction ttrans — t. As m is generally not invertible, created
2RA is generally not deterministic as for single tile there could be multiple
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rewriting instructions and automaton has to non-deterministically choose be-
tween them. Moreover, we generate the rewriting instructions for partially
inverted tiles, where for example the left part of the tile is already inverted
into alphabet I' but the right part is still in X.. Those rules will be created by
simply not projecting some parts of the original tiles.

g.e.d.

Theorem 3.3 SDREC € REC = REC c L(2RA).

Proof: Follows from the Lemma 3.7 and the Lemma 3.8.
g.e.d.

The fact that SDREC ¢ REC was proven in [2]. Positioning of two-
dimensional restarting automaton in hierarchy of two-dimensional languages
that comes from results mentioned above is shown on following Figure 3.1.

Conjecture 3.2 The class of L(2RA) when considered in 1-dimensional space equals
to the class of reqular languages.

Idea of the proof: We can easily see that the reg C 2RA (as 2RA can for
example simulate the run of finite state automaton). On the other hand the
simulation of restarting automaton by Turing machine which was used in
proof of Lemma 3.5 gives us a result that two-dimensional restarting automa-
ton is capable of recognizing only problems of linear time complexity (recall
that each symbol of a picture can be rewritten at most k times, where k is the
number of input and working symbols of the automaton). This combined
with the result that palindromes are an example of context-free languages
which cannot be recognized in better time than O(n?) ([15]) gives us 2RA C
context-free. We think that there is a way to prove that automaton created
as one-dimensional version of two-dimensional restarting automaton (using
for example only the horizontal dominoes instead of tiles) captures the class
of regular languages yet we were unable to find such proof.

The result of this chapter leads us to the statement that languages rec-
ognized by two-dimensional restarting automata are an interesting class of
languages as they have interesting closure properties, are stronger than the
class of recognizable languages yet still collapse to the class of regular lan-
guages when taken into one dimension. The only inconvenient fact is that
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£(2RA)

RN

REC L(2DRA)

L(20TA) = L(TS) \ co-REC

UREC L(4AFA)

e

DREC L(4NFA)

£(2DOTA) L{4DFA)

Figure 3.1: Two-dimensional restarting automata in the hierarchy of two-
dimensional languages.Line between two classes means that the lower class
is included in the higher. This inclusion need not to be strict. For example in
the case of the classes DREC,UREC and REC the inclusions are strict, whereas
in the case of 4ATA and SDREC we do not know yet.

the result REC C 2RA heavily relies on the technical report [2] which was not
published in any reliable source at the time of the publication of this thesis.
The author was also unable to confirm the fact that SDREC class is outside
REC from other sources. In the case this result turns out to be false we can as-
sume that it is likely that two-dimensional restarting automata coincide with
the class of recognizable languages (which would be an astonishing result as
well).
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Chapter 4

Usage of Two-dimensional
Restarting automata

The last chapter concerns the practical usage of two-dimensional restarting
automata. In previous chapter we have proved that the model we defined
is successful when speaking about its properties. Here we would like to
study how the model handles some basic two-dimensional objects both in a
sense of capability to recognize them as well as complexity of creating such
automaton for recognition. Chapter itself is divided in two sections. In the
first one you can find recognition of some basic two-dimensional objects like
line or cross. In the second section are presented 2RA accepting some more
theoretical picture languages like palindromes, pictures with the same first
and last column etc.

4.1 Basic pictures

In all following basic examples we assume two-letter input alphabet © = {0, 1}.

4.1.1 Line

Goal: Recognize picture containing only 0’s with horizontal or vertical lines
of 1’s that do not cross or touch. We define line as a set of pixels that are next
to each other all adjacent in the same direction.
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Example 4.1 Example of a line:

Example of a non-line:

3| FE| | | FE| | H| FH

H OO OO HF

FH O == O FHF

H OO OO O HF
FH| OO OO OO FH
H OO OO OO FH*
H OO OO O HF
HH| | | | HF HE HEH®

H| F| H| | FH| H| H| F

H OO OO OO H*

FH O == O]

H OO OO H*
FH OO DD H*
FH OO DD H*
HFH OO OO OO H*
He| He| | | | H| H|

As picture language L(LINES) is local, recognition is quite easy. Set of
rewriting instruction is empty and set of accepting tiles corresponds to tiles

of L(LINES) which are:

#|# #|# #|# #|# 0|# 1| # #10 #11
#1017 |#]1 0|# 1 # |7 | # | #\| | # | #| |#|#H| | # | #
#10 #11 #10 #11 0| # 1| # 1| # 0|#
#10|” |[#1]0 #1 #1117 (0| # | |O[#|" |1 #]| |1]|#]|
#|# # | # #|# #|# 00 10 1]1 01
00" |10 1)1 O| 1| [#|# | |(#|#| | # | #| |# #
00 110 01 00 00 1|1 01 00
00" ]0/0 00 o1} (1({0( |0|O|”" O[T} |1]1
10

10

Please note, that both the languages L(H_LINES) (containing only the
pictures with horizontal lines) and L(V_LINES) (containing only the pictures
with vertical lines) are local as well.
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4.1.2 Multiple objects detection

A problem of different complexity would be to recognize picture containing
SINGLE line (vertical or horizontal) in general position. Such language is not
local and therefore rewriting instructions would be needed (to “count” the
occurrences of lines in the image). Our goal would be to somehow “pass the
information” about found line in some row/column. Because the problem
is general (count number of occurrences of object XY) we show it here as a
complete technique.

Let us assume w.l.0.g that we are trying to recognize language H_LINES1
containing only single horizontal line. Our goal is not to count the number of
lines, but to simply check whether there is only single one. Therefore we can
send information about the first line we find to whole image and mark every
other line there.

Our automaton will have three-symbol working alphabet I' = {04, 0,, 03}
and p is defined in a way allowing rewritings 0 — 0; — 0, — 03 — 1.
Rewriting instructions are defined to rewrite every 0 to 0; from left to right
and from top to bottom until the first 1 is found. Let us assume the following
situation:

HIH#H|H#|H#|#|# | # #
#/0{0[0|0|0|0|#
#/0[{0[0|0|0|0|#
#/0[{0[0|0|0|0|#
#/0/0(1|1|1|0 #
#/0{0[0|0|0|0|#
#/0[{0[0|0|0|0|#
#/0{0[0|0|0|0|#
#/0[{0[0|0|0|0|#
HIH#|H#|#|#|# | # | #
Our rewriting instructions are defined in a following way:

#|# #|# # | # # | # #10q #1 0 0, | Oy

#10 #10,]” [0 - #0 | [#]0,” [0,]0

0; | O 1]0 1|0 0, [0 0; | 0 0; | 0 0; |0
0, [0, {010 0[0|"]0]O0 0/0("]0]O0 0, |0V

0, | # 0, | #
-

0| # 0, | #

In our situation, this set leads to following picture which is local and

)

(@)
o

=)
o
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therefore acceptable by 2RA.

HH# | # | H | H# | #|HH#
#1000, |00 |00 (0; | #
#1010 [00]00]00]00]00 | #
#1010 [00]00]00]00]00 | #
#1010, 1|1 | 1|0 |#
#1010, 0|0 |0 |0y |#
#1010, 0|0 |0 |0y |#
#1010, 0|0 |0 |0 |#
#1000, 000 |0 | #
HH# | # | H | H# | #|HH#

We now add rewriting instructions to “inform” rest of the picture of the
occurrence of the first line. We do not have to deal with the lines below
the first found, as the 0’s there would never again be rewritten to any 0,
symbol and therefore no line lying there would be accepted. The added set
of instructions is:

0; | 1 N 0, |1 0 | 04 . 0| 04 0y | Oy 0y | 0y 0y | 0y
010 0101 |07]0; 0, | 0y 0|0 0,0 0,0
. 0, | 0y # | # . # | # # | # N # | # #10, #10,
0, | 0y 0; | 1 O, |11 10710, 0, | 0y # 0 #10,

1|0 . 1|0, 0, | 04 . 0, | 04 0, | # . 0, | #
010 0|0 | |0, 04 0y | Oy 0 | # 0, | #
the result then looks like:

#H | H | H#H | H | H | H#H|H#

# 01 01 01 01 Ol O1 #

# 01 01 01 01 Ol 01 #

# 01 01 01 01 O1 01 #

#[0, (0, 1| 1|10, #

#1010, 010100, | #

#10,[10,| 0] 01| 0|0, | #

#10,[{0,| 0] 01| 0|0, | #

#10,[0,| 0] 01| 0|0, |#

#H | H | H | H|HH|H#

which can be accepted by set of tiles that do not contain the tiles with unin-
dexed 0’s above 1’s or 0,’s above 1’s. In case there would be two lines present,
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result would be:

#H# | # | H | H#H | #|HH#
#1010 ]0, |07 |00(0; | #
#1010 [00]00]00]00]00 | #
#1010 [00]00]00]00]00 | #
#1010 1|1 | 1|0, |#
#1100 |0 |0, |#
#1010 ] 0|0 |0 |0 #
#1010 ] 0|0 |0 |0, #
#1100 0]0]0 |0 |#
HH# | # | H | H# | #|HH#

this picture will not be accepted as we would not allow

acceptance set (+ stands for any symbol).
Careful reader probably noticed, that we still have one unused symbol
in our working alphabet and that the solution mentioned above would not
work for situation with two lines in one row (we would not be able to get the
0,’s “above” the second line found.
For this case we add/change the following instructions:

02*

11 tiles in

1[0 ] _[1]0s] [0s]0i] [0s][0s] [0s]#]_[05][#] [05]05
010 010 010 010”0 # 0, #1” [0 0
05 | O3
0, 0

05 [ 1

and we refuse to accept any picture containing tile

*

*

It is easy to

see that all pictures with two (or more) lines fall into one of the following
categories:

e Lines are below each other — we do not accept the picture because 0’s
above the second line are not rewritten to 0;’s.

e Lines are in the same row — we do not accept the picture because the

second line contains 03 symbol on its left end.

e Lines in any other position — we do not accept the picture because the

second line found will have 0,’s above itself.

Note: Please note, that this approach can be extended to count any fixed
number of occurrences of lines (or generally any other symbol).
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4.1.3 Tree

Goal: Recognize the picture containing series of curves forming a tree (i.e.
curves that potentially cross, but does not form a closed curve). Furthermore
we would like to recognize single tree (not forest). With closed curve we
understand series of adjacent pixels that are connected either side by side or
diagonally, where choosing a moving direction one can come a full circle.

Example of tree:

#H# | H#H # |\ # | #H H#
#/0/0(0|0|0|0|#
#/0/0(1|0|0|0|#
#(0/1/0/1/0|0|#
#(1/1/0/0/0|0|#
#/0[1(0|1|1|0|#
#/0(1|1|0|0|1]#
#/0/0(0|1]|0|0|#
#/0/0(0|1]|0|0|#
## | H#H H# | H# | # H|#
Example of not a tree:
# | # | H# H# | H# | # | H#H|#
#/0[0(0|0|0|0|#
#/0[0(1|/0|0|0|#
#/0(1]0|1|0|0#
#/1]1|0|0|1]0#
#/0|1|0|1|1]|0#
#(0/1/1/0/0|1|#
#/0[0(0|1]0|0|#
#/0[0(0|1]0|0|#
## | H H#H |\ H# | H H#

We split the recognition process in the two separate tasks. First is the
closed curve detection and second the single tree detection. Rather then
trying to detect the closed curve by marking the 1’s in the image we “flood”
the 0’s in the picture with special index (let it be 0;). If there is a closed
curve present than there will be some 0’s left unmarked. Detecting whether
we have only single tree in the picture can be done with slightly modified
approach from Subsection 4.1.2. We will index the first 1 we find with index ;
and all others with index ,. Moreover we allow rewriting 1, to 1; when those
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two indices meet. In this way if there is more then one tree present in the
picture it will be completely marked with 1,.

More specifically automaton recognizing single tree in the picture is de-
fined as follows.

e > ={0,1}

F = {01/ 02/ 03/ 11/ 12}

u=0-30-20-10-11-31—-21 -1

0 = instructions are formed in a way to flood the 0’s with index ; hor-
izontally and vertically from all sides (diagonal flooding is forbidden).
Symbols 0, and 0; are used in the first row we find 1 - otherwise we
would not be able to detect two (or more) 1’s in single row. Concerning
the 1’s, first 1 found in a picture is marked with index ; all others are
marked with index ,. We then allow to rewrite the symbols 1, to 1; in
case they appear on adjacent pixels (and therefore in the same tree).

e O = accepting set is defined to accept only the picture where all 0’s are
marked with some index (be it 1, ; or 3) and the only 1’s appearing there
are marked with the index 1;.

Rejected picture with one tree structure and one structure with closed
curve then looks like (you can notice one 0 that was not indexed and structure
of 1’s that has index ;) :

# K| # | # | H# | # #H
02 |11 |02 | 020, | 1p] 03503
0 1: (110210 |1,]|0,
02 |11 [0 |02 02| 1|10,
1; |02 [ 02 |02 |02 0] 0y |0
02 11 02 11 11 02 02 02
02 11 11 02 02 11 02 02
021020217 02[02(0,(0,
020202 17]{0,|02]02]0,
#\# | H#H | H | #|H#|H#HH

| He| He| H| | FHE| FHE| FH| H| H*
| He| He| H| F| FE| I FHF| | H*

41.4 Cross

Goal: Recognize the picture containing only 0’s with cross made of 1’s. We
define cross as two lines of the same length (one horizontal and one vertical)
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that crosses in the middle. Note that the lines must have odd length.

F| | FH| | | | | | H =
H* oo oo~ oo ol #
* olooomo ool ®
H| oloolomoo o #
H| Ol R = | = ] = =
H* oloooro ool ®
H oloolomoo o
olo|looor o oo #
B R HE HE HE HE HEHE:

We assume that the picture contains two lines, one horizontal one vertical
which crosses somewhere (we can check this easily on accepting set). Our
approach is then to check if all arms of the cross are of equal length. We do
so in a manner where we mark all 1’s alternatively 1; and 1, in a way that if
there is arm of the cross which is longer then the rest, then there will be 1's
which will not be marked. On the other hand if there are arms of the cross
which are shorter then the others, then there will be 0’s marked as 0; or 0,
outside the cross area.

In successful case, the picture will look like:

#\H | H | # | #|#
0/0(0 (1,010
0/0(0(12(0,]0
010102110204

11 12 11 12

01 [ 0213|020
010,]1,/0,] O
0/1,{0 |0
0[0(0[|0]0O0
## | # | # | # | #H

We do not write the whole instruction set, but you can probably imagine
how it would look like. Its also easy to see that the final picture is local. We
did not solve the case when there are more crosses in the picture, but as we
already know the technique it would be easy to adapt it to this situation.

| | k| | | | 3| 3|

—

—

[uy

N
ololooF oo ol
He| | H| H| H| H| HF|HFH

[es) Neo] Nan) Neaw]
(@)

HH
HH
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4.2 Basic theoretical languages

This section deals with recognition of more theoretical languages usually
used in either examples or proofs that certain model is unable to recognize
such language. We will deal with following languages:

e The first and the last column are the same

e The first and another column are the same

e Square picture with the same first row and column
e Any two columns are the same

e Palindromes

In all cases we assume rich input alphabet without further specification.

4.2.1 The first and the last column are the same

Goal: Recognize picture where first and last column are same.

We create working alphabet of the size ¥ X ¥ where every symbol will
have added an index of another symbol so in case of = = {a,b} we get I' =
{aq,ap,b,,bp}. We index each pixel of the first column with same index as
symbol present on that pixel. Then we pass those indices from left to right
on the last column.

The accepting set is then define to accept only if last column contains only
pixels where the symbol and its index match. All other pixels can contain all
possible combinations.

With this approach we did not destroy any information from the input
picture. In case we do not care for this it would be satisfying to have working
alphabet of exact same size as input alphabet and simply rewrite every row
with a symbol found in the first column. Only the symbol in the last column
would get rewritten if it matches the “send” symbol from the first column.

The only check we do with acceptance set is whether the symbols in the
last column got rewritten.

4.2.2 The first and another column are the same

Goal: Check whether there is another column of the picture matching the
first one.
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This is slightly more complicated situation as the one before. We can still
use the “indexing” trick to find the matching column, but that would not
be enough. The problem is, that the accepting set cannot capture situation
where “some” column is formed out of some special symbol (especially when
all other are general). Therefore we will need to mark some special place (a
corner for example) where we can easily check whether it contains some
symbol or not.

We will use the automaton reading direction to our advantage and modify
the solution from previous example in following way.

We send the “indexing wave” throughout the first row and mark all pixels
that match the index with their symbol (we can for example rewrite them to
some special symbol). In next row we send the “indexing wave” again but
this time mark only the pixels that match the index and have the special
symbol in pixel above them (i.e. we are selecting the columns that appeared
to be the same as first one but differs on the present row). If we reach the last
row with special symbol (somewhere) we send it (in a same way as we do in
case of indices) to the right corner.

The accepting set then requires the right corner to contain the special
symbol and the rest of the picture may be general.

4.2.3 Picture with the same first row and column

Goal: Check whether in the input square picture, first row matches its first
column.

This task is easy as it is only combination of the previously used “indexing
waves” and approach we used in case of measuring the arms of the cross.
More specifically we send the indexing waves diagonally from the first row
to the first column and check whether the in the first column all symbols
matches their index.

4.2.4 Any two columns are the same

Goal: Check whether any two columns in the input picture match.

This is an example of a picture two-dimensional restarting automaton
is probably unable to recognize. The problem is, that we need to check n
columns each to each and to pass some information between the columns the
only tool we have are the rewritings. But each pixel can be rewritten at most |I'|
times therefore when we have fixed automaton (with fixed working alphabet)
the number of rewritings needed for each pixel (to pass the information
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about surrounding columns) will necessary overgrow the size of the working
alphabet.

4.2.5 Palindromes:

Goal: Recognize two-dimensional palindrome (i.e. picture P ® P@). We
can define vertical palindromes (containing languages P ® P“"™) or hori-
zontal palindromes (containing languages P© P"-") but since 2RA is closed
under rotation it is not important which case we choose.

Let us first look on the vertical palindromes which resemble the string
palindromes and on the picture of size 1 X 2n are even equal.

Our first observation is that the picture language of all the palindromes
L(PALI) is not local, therefore we will need some rewriting instructions (there
is no local strategy of comparing the symbols on the opposite sides of the
picture).

Assume we have the language L(PALI_N) of all palindromes with pictures
of the size k X 2N (i.e. palindromes of fixed width).

We can the proof the following lemma:

Lemma 4.1 L(PALI_N) is recognizable by 2DRA.

Proof: We will verify the palindrome row by row from up to down. W.l.o.g.
assume that we have palindrome of size 1 X 2N. We verify that the most
left symbol matches the most right by sending a “wave” of rewritings from
the left to the right, rewriting every symbol with its own representation with
the index representing the symbol send through the “wave”. Let us have an
example:

Y. ={A,B,C},T ={Ax,Ba, Ca,Ba,Bg,Bc,Ca, Cg, Cc}

Input image A =

I H | # # | H#H #H#|#
#  A|C|B|/B|C|A|#
I #H | #  # | # ##|#

In this case we send the wave of A’s from the left to the right. Our rewriting
rules would look like:

#|# #| # # | # # | # # | # # | #
#| A #1Ax | |Aa | C Ar | Ca|” | C4 | B Ca | Ba

... and so on for all the possible combinations. After we reach the end of the
line we verify whether the input symbol matches the one send through the
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wave. That is easily done by the rewriting rule

# | # # | #
H

Ce | # V| #

where “V” is a special symbol standing for “verified”. We now send a “wave”
back from the right to the left with information about successful verification.
The firstletter on the left is then rewritten with the “V” symbol and verification
follows with the next pair.

We will need working alphabet of size |Z|* * 2 * N + 1 where N stands for
half the width of the palindrome. That is, because for each pair of the letters
we verify we are sending two “waves” - that is two rewritings of all the letters
between them. As we need to verify N pairs we are going to send 2+ N waves.
Moreover we cannot rewrite the symbols from one to another and then back,
because of the u function. Therefore we need 2+ N of representations of all the
possibilities of (original letter on the tape)*(letter passed in the wave). The
last “+1” is for the special “V” letter.

It is easy to see that in successful case whole picture consists of “V” letter
only (which is local language).

g.e.d.

Careful reader probably noticed, that our strategy works only because we
know in advance the “size” of the palindrome and can prepare the working
alphabet. For any algorithm imaginable we need to make N verifications of
symbol “pairs”. We certainly cannot make those verifications in the verifi-
cation phase of 2DRA computing, because those verifications are not local —
they are even very much everything else then local. The only option how to
help ourselves is to make some kind of the rewriting rules that would allow
us to finally verify the palindrome. Butbecause the rewriting rules are limited
by the u function we can perform only limited number of rewritings on each
position of the tape (specifically at most |Z| + [I']) and this number is fixed for
a fixed automaton. We feel that the number of rewritings needed on one field
to pass the information about the palindrome is growing with the size of the
palindrome and therefore would eventually overcome the possibilities of our
automaton. Following lemma proves this hypothesis.

Lemma 4.2 Language of palindromes of any size L(PALI) cannot be recognized by
2RA.

Proof: The proof is based on the result from [15, page 41-47] where Priisa
proves that the language of palindromes in two-dimensions cannot be recog-

nized in better time that O( l:g2n ). Prti3a is speaking about the one-dimensional
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palindromes recognized by the two-dimensional Turing machine, therefore
n is the size of the one-dimensional palindrome in this case. Therefore we
w.l.o.g. assume that we are working with the palindromes of size 1 x n.

The two-dimensional restarting automaton has, due to its limitation of
rewriting on the tape, an upper bound for the number of “actions” it can
make. We counted them in proof of Lemma 3.5 and the result was that it is
less then 10 # I + | + 3. This means that even the slowest algorithm working
with two-dimensional restarting automaton is linear in time (as the number
of actions for each position is fixed). If 2RA could recognize L(PALI) it would
be in direct contradiction with the result from Prisa’s PhD thesis.

4.3 Recognition with no working alphabet

In all of our examples we used working alphabet to recognize the picture.
Working alphabet gives our automaton quite a strength — it allows to count
occurrences, to measure whether two lines are of the “same length”. It is
natural to ask, what would not use any working alphabet at all. Right at the
first glimpse we realize that the automaton instantly becomes weaker (for
example it is unable to recognize the cross in two-letter alphabet or a square
of in one-letter alphabet).

With two-letter alphabet we can easily show how weak the automaton
becomes. The only rewrites automaton can perform are from one letter to
another (w.l.o.g let us assume it to be 1 to 0). But at the moment of the
rewriting, automaton restarts and therefore looses the information about
previous state of the picture and pictures are rewritten from one possible
input to another possible input. Therefore all of our rewritings MUST be error
preserving, because if on is not, we are unable to decide whether our image
is results of some rewriting or it is an input image and therefore potentially
reject image which should be accepted (and vice-versa).

It is clear that we are unable to decide neither “single line” nor “cross”
problem as we are unable to count the occurrences nor “measure” the equality
of cross arms.

What problems are we then able to decide ? Local languages for example,
because for those we do not need rewritings at all. In this thesis we did not
study the recognition with no working alphabet any further but it would
be interesting to find which class of languages is 2RA capable to recognize
without the working alphabet.
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Conclusion

We have successfully transformed the restarting automaton concept from one
dimension into two dimensions. The resulting class of languages recognized
by the two-dimensional restarting automaton proved to be closed under row
and column concatenations, union, intersection, rotation, projection and both
horizontal and vertical mirroring. Moreover we conjecture that despite the
fact that the two-dimensional restarting automaton is likely stronger than
the tiling systems, when restricted to one dimension it captures exactly class
of regular languages. All those properties qualify the class of languages
accepted by two-dimensional restarting automaton as an interesting member
of two-dimensional languages hierarchy.

As a first work in this field we can say that this thesis was successful. Yet
there is still much work that needs to be done both in exploring the power of
two-dimensional restarting automaton itself as well as exploring the whole
two-dimensional language hierarchy.

We would like to point out several questions which remain opened:

o Is the L(2RA) really not closed under complement ?

e Does the L(2RA) collapse to the class of regular languages when re-
stricted to one dimension ?

e What are the properties of two-dimensional deterministic restarting
automata ?

e Is the inclusion L(2DRA) C L(2RA) strict ?
e Does the class L£(2RA) contain class co-REC ?

e Are we able to confirm the strict inclusion REC ¢ L(2RA) ?
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