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Abstrakt

Stfeva obratlovcli jsou obydlena taxonomicky i funkéné riznorodym spoleCenstve m
bakterii a jnych mikroorganismii. Pokroky v sekvena¢nich technologiich odhalily vliv
sttevni mikrobioty (déle jen SM) na fyziologii, imunitu i chovani hostitele. Nase souc¢asné
védomosti jsou vSak zalozené zejména na studiu modelovych organismi, jejichz SM se od
volné¢ Zjicich obratloveli vyznamné [i§i. PiedloZzend prace je proto zaméfena na studium
SM pomoci sekvenovani druhé generace u voln¢ zjich pévcu (Passeriformes) a srovnava
jejich SM s ostatnimi obratlovci, zejména s nejvice studovanymi savci. Na vnitrodruhové 1
mezidruhové trovni se predlozena prace vénuje faktortim, které slozeni SM ovliviiuji, mezi
néZ patii napiiklad wvnitini regulacni mechanismy hostitele (napiiklad genotyp, imunitni
systtm ¢i fyziologie hostitele), socialni kontakty ¢i environmentdlni faktory (vcetné

potravy). Déle se tato prace zabyva stabilitou SM v Case a zménami SM b&hem ontogeneze.

Z vysledkli této prace vyplyva, Ze u pévcl jsou v SM dommantni bakteridlni kmeny
Proteobacteria, Firmicutes, Actinobacteria, Tenericutes, Bacteroidetes a Chlamydia, coz
naznaCuje sloZzeni SM odlisné od SM savci. Mezidruhovéa variabilita ve slozeni SM pévcii
je ovlivnéna zejména fylogenezi hostitele, efekt geografické vzdalenosti mez lokalitami
sbéru vzorkli je méné¢ vyrazny. Zatimco u savcu jsou ekologické znaky hostitele v Cele s
potravou vyznamnym faktorem ovlivityjicim sloZzeni SM, u pévcli maji ekologické faktory
spole¢né s potravou nesrovnateIné mensi vliv na mezidruhovou 1 vnitrodruhovou variabilitu
ve slozeni SM. U vlastovky obecné (Hirundo rustica) data naznacuji vliv socidlnich
kontaktl u socidlnich part ¢i velmi slaby transgenera¢ni pfenos SM od socialni matky na
mlad’ata. Zaroven jsme pozorovali rozdilnou SM mlad’at a dospéletl, ale u mlad’at v hnizdé
jsme nepozorovali dramatické zmény SM s vékem, které jsou znamé od savcl. Detekovali
jsme ovSem cast SM, ktera se zda byt stabini v Case, a tedy vhodnd pro dalsi podrobnéjsi
studium. Vysledky této prace ukazuji dileztost studia SM u dalsich skupin obratlove,
nezli jsou savci Pévei maji nejen jiné taxonomické slozeni SM, ale zda se, ze i faktory

ovliviiyjici slozeni SM jsou jiné nez u savcl.



Abstract

Vertebrate intestines are inhabited by taxonomically and functionally diverse communities
of bacteria and other microorganisms. While recent advances in sequencing technology
have revealed the influence of gut microbiota (hereinafter GM) on the physiology,
mmunity and behaviour of the host; our current knowledge is based mamly on the study
of model organisms that will have a different GM composition than that of wild vertebrates.
The work presented here focuses on the study of wild songbird (Passeriformes) GM using
next generation sequencing, and compares ther GM with that of other vertebrates,
ncluding mammals, which have been studied far more than birds. This work focuses
mainly on factors that affect GM composition at the inter- and mtra-specific levels,
including intrinsic regulatory mechanisms of the host (such as genetic, immunological
and/or physiological mechanisms), social contacts and environmental factors (including
diet). In addition, the stability of GM over time and any changes during ontogeny were also

assessed.

The results indicate that songbird GM is dominated by the bacterial phyla Proteobacteria,
Firmicutes, Actinobacteria, Tenericutes, Bacteroidetes and Chlamydia, a community that
differs from that of mammals. At the interspecies level, GM composition is mainly
mfluenced by phylogeny and less so by sampling site. While ecological factors, and
especially diet, are important GM predictors in mammals, the effect of ecological factors,
including diet, have a much smaller effect on inter- and intraspecific variability in songbird
GM composition. Our data from barn swallows (Hirundo rustica) suggest an effect of social
GM transmission among adults forming social pairs, as well as trans-generational
transmission from a social mother to her own nestlings. At the same time, we observed
differing GM in adults and nestlings, with no dramatic change in GM with nestling age, a
process previously recognised in mammals. Part of the GM detected appears to remain
stable over time, and is therefore suitable for further detailed study. To conclude, our studies
demonstrate that songbird GM differs from that of mammals and that the factors influencing
GM composition appear to differ from those n mammals, thereby highlighting the
importance of studying multiple vertebrate groups (not just mammals) when assessing the

effects on GM composition.
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1.Uvod

Spolecenstvo symbiotickych bakterii v travicim traktu mize, co do poc¢tu bunck, prevySovat
nebo byt srovnatelné s poctem bun€k svého hostitele (Sender, Fuchs & Milo, 2016).
Zaroven vsak pocet gendl, které toto spolecenstvo obsahuje, miize byt az o dva fady vyssi
neZ pocet genll v genomu hostitele (Qin ez al., 2010). Je dobfe zndmo, Ze stievni mikrobiota
(dale jen SM) a hostitel spolu vzijemné¢ mteraguji na mnoha urovnich a tyto iterakce
pinasi hostiteli celou fadu dilezitych vyhod. SM pomaha hostiteli travit pro n¢j jnak
nestraviteIné slozky potravy, jako je napiiklad rostlinnd celuldza (review v Béckhed et al.,
2005; Thursby & Juge, 2017; Valdes et al., 2018). Pomoci SM jsou rovnéz syntetizo vany
nekteré vitaminy (review v Thursby & Juge, 2017), jako naptiklad vitamin B12 (LeBlanc
et al., 2013). SM déle ovlivituje spravny vyvoj a funkci traviciho traktu (Reikvam et al.,
2011) a také pomaha s ochranou proti patogenim (Koch & Schmid-Hempel, 2011; review
v Ubeda et al, 2012). Naptiklad u lidi bylo pozorovano, ze pfitomnost bakteri rodu
Bacillus ve stievé vylouCila ptitomnost Staphylococcus aureus (Piewngam et al., 2018;
Chung & Raffatellu, 2019), coz je potencidlné nebezpecny lidsky patogen (L, 2009). SM
rovnéz stimuluje a podporuje vyvoj imunitniho systému hostitele a ovliviiuje jeho
specificitu (review v Macpherson & Harris, 2004; Wu & Wu, 2012; Ost & Round, 2018).
Nezanedbatelny je také podil SM na funkci mozku a chovani (Cryan & Dman, 2012;
Matthews & Jenks, 2013; Strandwitz, 2018). Na druhou stranu, odchyleni SM od
normalniho stavu miize byt pro hostitele Skodlivé nebo dokonce fatalni (Brucker &
Bordenstein, 2013; Wang et al., 2015; review v Das & Nair, 2019). Kuptikladu tzv. germ-
free mySi (tedy laboratorni mySi bez mikrobioty) nebo mysi oSetiené Sirokospektralnimi
antibiotiky maji porusenou morfologii a funkci stfev, ktera se opét obnovi po kolonizaci
stfev pfirozenou SM (Smith, McCoy & Macpherson, 2007; Reikkvam et al., 2011). U lidi je
popsano nékolik nemoci, které patrné souvisi s patologickymi zménami SM. V fad¢ piipadi
vSak neni jisté, zda je patologic SM disledek nebo pficina nemoci (review v DeGruttola et
al., 2016; Sarkar & Banerjee, 2019). Konkrétn¢ je patologie SM spojovana napiiklad s
obezitou, zanétlivym onemocnénim stfev, rakovinou tlustého stfeva a konecniku a také s
neurologickymi poruchami (Ley et al., 2006; Frank et al., 2007; Ahn et al., 2013; Zackular
et al.,2016; Tremlett et al., 2017). Neni proto prekvapivé, ze se v prub¢hu evoluce vyvinula
cela tada genetickych, fyziologickych, morfologickych anebo behavioralnich znakd,
kterymi hostitel miize optimalizovat slozeni SM ke svému prospéchu (Lombardo, 2008;

Benson et



al., 2010; McKnite ef al., 2012; Archie & Tung, 2015; Ohbayashi ef al., 2015, 2019; Lanan
et al., 2016; Suzuki et al., 2019). Tyto interakce mez hostitelem a jeho SM mohou hrat
rovn¢z dilezitou roli v mnoha mikroevolunich procesech, véetné evoluce vybéru partnera
(Sharon et al, 2010; Beltran-Bech & Richard, 2014), evoluce socialniho chovani
(Lombardo, 2008; Archie & Tung, 2015) a speciace (Brucker & Bordenstein, 2012; Wang
et al., 2015).

VétSina naSich poznatki o SM je zaloZzena na studiu laboratornich savct a Lidi. SM
laboratornich zvifat i zvitat Zjicich v zajeti je odlisna od volné Zjicich zvitat (Xenoulis et
al., 2010; Nelson et al., 2013; Kreisinger et al., 2014; McKenzie et al., 2017). Také byla
pozorovana zm¢na slozeni SM uvolné Zjicich zvitat drzenych néjakou dobu v zajeti (Kohl
& Dearing, 2014; Kohl, Skopec & Dearing, 2014). Proto vyzkum zaloZzeny na jedincich ze
zajeti nemusi nutné odrazet pfirozené interakce mezi SM a jejim hostitelem, které se
formovaly béhem vzijemné koevoluce. V ramci skupiny obratlovell jsou nejvice studovani
volné¢ Zyici savei, u kterych jsou Firmicutes a Bacteroidetes obvykle dominantné se
vyskytyjici kmeny (Ley et al., 2008; Nishida & Ochman, 2018), zatimco slozeni SM
ostatnich obratlovcli se zda byt daleko variabiln€j$i (Sullam et al., 2012; Waite & Taylor,
2014; Hird et al., 2015; Kohl et al., 2017), ale zdroven mén¢ prozkoumané. Mezi lety 1980
—2016 bylo publikovano zna¢né mnozstvi ¢lanka zabyvajicich se SM savct a lidi, nicméné
studi, které se zabyvaly SM u domestikovanych, ¢i dokonce volné Zjicich ptakd, je o
poznani mén¢ (Grond et al., 2018). Z ¢lanki zkoumajicich SM, publikovanych mez lety
2009 — 2016 se pouze 14,3 % zabyvalo voln¢ zjicimi Zvo€ichy ve srovnani se zvitaty
modelovymi a domacimi (37,5 % a 48,2 %; Pascoe et al., 2017). Ve stejné publikaci bylo
u volné Zzijicich zivoCichll nejvice studii SM zaméfeno na hmyz (42,5 %) a savee (30,2 %),
mén¢ pak na ostatni bezobratlé, ptaky, ryby, plazy aobojzivelniky. Vzhledem k omezenym
znalostem o SM voln¢ zjicich ptaki (tfida Aves) jsem se rozhodla zaméfit na tuto skupinu

obratloveil, a to konkrétné na fad pévct (Passeriformes).

Vsichni ptaci jsou stejné jako savci teplokrevni zivocichové. Na rozdil od vétSiny savct,
kteti jsou Zivorodi (krom podtiidy vejcorodych; Prototheria), jsou vSichni ptaci vejcorodi.
Dalsi podstatny rozdil, ktery mize ovliviiovat SM, je skuteCnost, ze vétSina savcl ma
oddélenou travici, vyluCovaci a rozmnoZovaci soustavu, ale u ptakil vSechny tyto soustavy
usti do kloaky a jsou tedy propojeny. Podstatné rozdily ale existuji i na trovni fyziolo gie

traveni potravy a vstiebavani zvin (Caviedes-Vidal et al., 2007; McWhorter,
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ktery zahrnuje okolo 6000 druhli, coz je pfiblizn¢ 60 % vSech ptacich druhi. Pévci se od
ostatnich ptakli odd¢lili piiblizné pred 47 miliony let (Oliveros et al.,2019). I ptes relativné
nedavnou diverzifikaci jsou pévci riznorodou skupinou, zejména co se tyce ekologie a
zivotnich strategii. Z téchto diivoda je lze povazovat za dllezitou modelovou skupinu v
evoluénich a ekologickych studiich. Oproti fad¢ jinych ptacich taxon se u pévell nachazi
pouze rudimentarni slepd stieva. Vyvinutd slepa stfeva maji dllezitou roli v bakteridIni
fermentaci potravy. Vzhledem k tomu, Ze se tato prace vénuje studiu voln€ Zjicich pévct,
nebyl vétSinou mozny odbér vzorkll riiznych Casti stfev, a proto jsem se zaméfila prevazné
na mikrobiotu v trusu. Sbér trusu je béZn€ vyuzivan jako neinvazivni metoda pro analyzy
SM zejména tlustého stieva (Berlow, Kohl & Derryberry, 2020; Cizkova et al., 2021). Z
mych nepublikovanych dat navic vyplyva, Ze u ptakli mikrobiota trusu pomérné veérné
odraz sttevni mikrobiotu (Schmiedova et al., nepublikované vysledky).

Tato préce je pfevazné¢ zaméfena na slozeni SM a faktory, které mohou sloZeni SM ovlivnit
u voln¢ zjicich pévcl, a to jak na mezidruhové, tak i vnitrodruhové urovni. Hlavnimi
faktory, které mohou mit vliv na SM, jsou vnitini regula¢ni mechanismy hostitele, socialni
kontakty a environmentdlni faktory. Vnitfnim regula¢nim mechanismem hostitele je
mySlena zejména geneticky podminénd variabilita v mmunitnim systému (Benson et al.,
2010; Bolnick et al., 2014). Role genotypu na SM byla studovdna zejména u mysi jako
modelového organismu, kde byl prokazan signifikantni podil geni spojenych s imunitnim
syst¢émem na slozeni SM (Benson et al., 2010; Kubinak et al., 2015; Org et al., 2015). U
voln¢ zjicich mysi (Mus musculus) bylo nedavno nalezeno 20 geni asociovanych s
imunitnim systémem a souvisejicich se SM (Suzuki et al., 2019). Dalsim faktorem
ovliviiyjicim sloZzeni SM je socidlni kontakt (Lucas & Heeb, 2005; White et al., 2010).
Konkrétné se u ptakit mohou bakterie pfenaSet béhem kopulace, pfi krmeni mlad’at rodici
nebo v ramci fyzick¢ého kontaktu mez jedinci ze stejné kolonie, populace nebo dokonce
mezi riznymi druhy (Lucas & Heeb, 2005; Kulkarni & Heeb, 2007; White et al., 2010;
Hernandez et al., 2020). Vliv socidlniho pfenosu na slozeni SM byl pozorovan u Simpanzt
a paviani (Tung et al, 2015; Moeller et al., 2016). U mysi bylo pozorovano, Ze se
socialnim kontaktem nepfena$i vSechny bakterie stejné, ale nckteré lépe a jiné hiife
(Moudra et al., 2021). V neposledni tad¢€ jsou zdrojem variability SM environmentaIni

faktory, které zahrnuji zejména potravu a obyvané prostredi (Lucas
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& Heeb, 2005; De Filippo et al., 2010). U savcii byly pozorovany signifikantni rozdily
mezi bylozravci, vSezravei a masozravci (Ley et al., 2008). Bakterie obyvajici stieva

obratlovell pomdhaji s trdvenim a ziskdvanim energie z potravy, coz mize vést k
prizptisobeni SM dané potravé. Napiiklad fermentace potravy u bylozravcu je Casto tizce
vazana na piftomnost bakterii v travicim traktu. Studie vénujici se vlivu potravy na
variabilitu v SM mez jedinci ze stejné populace jsou u volné zijicich obratlovct stale
vzacné (Baxter et al., 2015; Liet al., 2016, 2018; Phillips et al., 2017; Holmes etal., 2019).
Specifické podminky 1 specifickd potravni nabidka v mist¢ vyskytu daného
jedince/populace miize vést k piizptisobeni SM obyvanému prostiedi. Struktura obyvaného
prostiedi, napiiklad lidmi modifikovand krajina oproti nenarusené, mize ovlivnit SM, jak
bylo pozorovano u guerézy stiibiitonohé (Procolobus gordonorum; Barelli et al., 2015) a

kora $tétinat¢ho (Proechimys semispinosus; Fackelmann et al., 2021).

Stale vSak neni zcela jasné, jak moc tyto faktory ovlivituji SM volné zijicich ptakt (pevci).
Proto se v této praci snazim na mezidruhové ivnitrodruhové urovni efekt nékterych faktora
objasnit trochu vice. Na mezidruhové trovni srovnavam efekt fylogeneze, ekologickych
faktorii a geografické vzdalenosti mezi lokaltami s pouztim datového souboru
zahrujictho 51 druhi pévett z CR. Déle se vénuji rozdilim mez populacemi z tropt
(Kamerunu), kde byly navic srovnavany dvé sezony (obdobi sucha a desttl), a z mirného
pasu (CR), kde byl také testovan efekt migrace na SM. Pro tuto studii byl datovy soubor z
CR rozffen o 47 druhti z Kamerunu. Existuji sice studie zabyvajici se analyzou SM u
tropickych ptdka (Hird et al, 2015; Bodawatta et al., 2018; Capunitan et al, 2020;
Bodawatta et al., 2021b), ale nikdo se piimo nezabyval srovnanim SM mezi tropickymi a
temperatnimi druhy ptakid. Se zemépisnou Sitkou se méni podminky pro Zivot bakterii
véetné patogenlt v daném prostiedi, jako napiiklad teplota ¢i vlhkost prostiedi nebo také
mnozstvi UV zafeni. Bakterie z prostfedi mohou piimo nebo nepfimo interagovat s
mmunitnim systémem hostitele a tim ovlivnit 1 sloZzeni jeho SM. Mnoho druhli pévcii
hnizdicich v mimém pasu migruje mimo hnizdni sezonu do tropického pasu (Cepék et al.,
2008). Podminky na zimovisti ovlivityji znaky spojené s fitness, které se mohou projevit na
hnizdi§ti (Norris et al., 2004; Samo et al., 2004; Rockwell, Bocetti & Marra, 2012). Do jaké
miry podminky na zimovisti ovliviiuji sloZzeni SM je zatim nejasné. Pro porovnani vlivu
vnitinich regula¢nich mechanismid hostitele s enviromentdlnimi faktory, které v tomto

piipad€ zahrnuji i socidlni kontakt, jsem vyuzila systém hnizdniho
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parazitismu u kukacky obecné (Cuculus canorus, fad Cuculiformes). Hnizdni parazitis mus
je fenomén, kdy jedinec klade vajicka do hnizd jinych druhi nebo jinych jedincl, ktefi se
potom staraji o jejich mlad’ata (Davies, 2010). V praci konkrétn¢ srovnavam mlad’ata
kukacky obecné v hnizdech dvou rlznych druhit rdkosnik (rakosnika velkého

Acrocephalus arundinaceus a obecného A. scirpaceus) s jejich vlastnimi mlad’aty.

Na vnitrodruhové urovni u vlastovky obecné (Hirundo rustica) se zamétuji na efekt
socialniho kontaktu (pfenos v ramci hnizdnich part a z rodi€h na potomky), lokality
(hnizdni kolonie ihnizda) ¢i potravy na individudlni rovni. Mimo to testuji souvislost SM
a imunitni reakce pomoci kozniho testu, pii kterém dochaz k aplikaci fytohemaglutininu
do kiize (tzv. PHA test). PHA test se vyuziva v ekologické munologii pro detekci buitkami
zprostfedkované imunity (Vinkler, Bainova & Albrecht, 2010; Vinkler etal., 2012; Bowers
et al., 2014). Zatimco u laboratornich savcl byla pozorovana signifikantni mnterakce mezi
imunitou a SM (Clavel et al., 2017; Ost & Round, 2018), u voln¢ zjicich zvirat jsou nase

znalosti nedostate¢né.

U vlastovky obecné jsem se zamgfila na porovnani dospélelt s rizné¢ starymi mladaty v
hnizd¢ a na variabilitu v rdmci hnizdni sezony a mezi dvéma sezonami. O pta¢i SM v
pribéhu ontogeneze a jeji stabilit€¢ v dospélosti se toho mnoho nevi. I v tomto piipade je
vice prostudovana SM usavcl. Zde je potieba vyzdvihnout velky rozdil mezi ptaci a savéi
ontogenezi. Savci, s vyjimkou vejcorodych, rodi ziva mladata, kterd jsou béhem porodu v
uzkém kontaktu s mikrobiotou v porodnich cestich matky. U savch navic matka po porodu
mlad’ata na rozdil od ptakl koji a tim aktivn€ ovlivituje jejich SM. Pévei maji nidikolni
(tzv. krmivd) mlad’ata, o kterd museji rodie po vylihnuti pefovat, zejména je krmit a
zahiivat. U lidi a vétSiny ostatnich savcli zaCind kolonizace stfeva bakteriemi kratce po
porodu a moznd dokonce i béhem t¢hotenstvi/biezosti (review v Walker et al., 2017). U
lidi se SM méni nejvice béhem prvniho roku Zivota, coz je pravdépodobné spojeno s
kojenim a jeho ukonCenim. Okolo 3. roku zivota ditéte za¢ind jeho SM nabyvat na stabilité
apodobat se SM dospélého Clovéka (Koenig et al., 2011; Yatsunenko et al., 2012; Biackhed
etal.,2015; Mach et al., 2015). U dospelého Cloveka azvifat chovanych v zajeti se zd4 byt
SM pomémé stabilni v ¢ase (Benskin et al., 2010; Schloss et al., 2012; Faith et al., 2013;
Mehta et al., 2018). Oproti tomu volné¢ Zjici zvifata podobnou stabilitu v Case obvykle
nevykazuji (Baxter et al, 2015; Sun et al., 2016). Tyto nekonzistentni vysledky u savcii
me¢ vedly ke studiu stability a ontogeneze SM u volné Zijicich pévct
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1.1. Metodické pristupy

1.1.1. Sekvenacni metody

K zodpovézeni kladenych otazek bylo potfeba zvolit vhodnou metodu. Diive byl podobny
vyzkum odkazan pouze na bakterie, které bylo mozné kultivovat. Celd fada bakterii vSak
vyzaduje tak specifické podminky, ze je jejich efektivni kultivace prakticky nemozna
(Amann, Ludwig & Schleifer, 1995). I z tohoto divodu se zaCaly nasledné¢ vyuzivat
genetické metody, které odhalily, Ze v laboratofi kultivovatelné bakterie odrazi pouze
malou ¢ast skuteCné diverzity bakterii. Nejjednodussi genetické metody jsou tzv.
fingerprintové, mezi n¢ patii DGGE (z anglického Denaturing Gradient Gel
Electrophoresis) nebo ARISA (z anglického Automated rRNA Intergenic Spacer
Analysis), které vSak neumoziiyji piimou taxonomickou identifikaci bakterii. Proto se tyto
metody Casto dopliyi klonovym sekvenovanim, coz je ale pomémé pracné a drahé
(Benskin et al., 2010; van Dongen et al., 2013). Az s pfichodem paralelniho sekvenovani
druhé generace se stalo studium mikrobidlnich spolecenstev dostupnéjsi. V soucasné dobé
jsou k dispozici dva typy Siroce pouzivanych genetickych pfistupit pro studium
mikrobidlnich spoleCenstev: metagenomika a metataxonomie (nebo také metabarcoding).
Metagenomika je zalozena na sekvenovani nahodnych fragmenti vyizolované DNA ke
zj$téni taxonomické informace a genového slozeni vzorku. Naproti tomu metataxonomie
je zaloZzena na sekvenovani specifické Casti genomu, ktera je pfedem amplifikovana pomoci
PCR (z anglického polymerase chain reaction). Timto pfistupem se dd pomémné
jednoduchou a levnou cestou zjistit taxonomickd diverzita, ale nelze piimo identifikovat
funk¢ni a metabolicky potencial. Metagenomicky piistup je podstatn¢ drazsi, protoze je
zpracovani ziskanych dat. Na druhou stranu data ziskand metagenomickym zplsobem v
sob¢ nesou daleko vice informaci Limitaci metataxonomického sekvenovani je vybér
primert, které nikdy nejsou zcela univerzdlni a mohou tudiz uréité skupiny bakterii
amplifikovat pouze slabé nebo vilbec. Dalsim uskalim tohoto postupu je piedchazejici PCR
amplifikace, pii které dochazi ke vzniku chimérickych sekvenci, které uméle navysSuji
diverzitu spolecenstva, pficemz jejich identifikace a nasledné odstranéni neni dokonalé.
Pomoci paralelniho sekvenovani je v soucasné dob¢ mozné zaznamenat az tisice, miliony
a dokonce 1 biliony sekvenci najednou. V pocatcich mého doktorského studia bylo na

vrcholu pyrosekvenovani 454
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(Roche). Tato v soucasnosti jiz nedostupnd platforma produkovala ve své dobé relativné
dlouhé¢ sekvence, avSak méla problémy detekovat ptesny pocet vice po sobé jdoucich
identickych bazi (tzv. homopolymerti). DalsSim limitujicim faktorem byla i pomémné vysoka
cena. Na podobném principu fungujici sekvenacni platforma, Ion Torrent, vykazuje potize
s detekci piesného poctu stejnych, po sobé jdoucich baz. Je ale levnéjSi a produkuje ve
srovnani s 454 vice sekvenci. V soucasnosti se pro podobny typ studii, jako je tato, nejvice
vyuziva Illumina, a to z divodu produkce dosud nejptesnéjSich dlouhych sekvenci a mensi
chybovosti béhem sekvenovani, pficemz sekvenéni chyby lze pouzitim vhodnych
algoritmii efektivné odstranit. DalsSim pfiznivym faktorem je nizkd cena v pfepocCtu na
vzorek. Nevyhodou platformy Illumina je pomémé dlouhy sekvenacni proces a kratsi délka
vyslednych sekvenci. V dnesni dobé jsou rovnéz k dispozici dvé platformy sekvenovani
tieti generace: Pacific Biosciences, ktera vyuziva sekvenaci jedné molekuly DNA (SMRT
z anglického single-molecule real time) a Oxford Nanopore technologie, kterda vyuziva
mikroskopickych poérh, ve kterych se detekuji jednotlivé baze. Tyto metody produkuji
dlouhé sekvence na zaklad€ jednotlivych molekul. Hlavni nevyhodou obou metod je zatim
macnd chybovost. Prednosti Oxford Nanopore technologie je jeji mala velikost a
nenaro¢nd pifprava sekvenacnich knihoven, coz umoziuje vyuziti piimo v terénu. Pro vice
mnformaci o sekvenacnich platformach, jejich vyhodach i limitacich doporucuji napiiklad
review od Goodwin et al. (2016), Mardis (2017) nebo McCombie et al (2019). Prvni
publikace zahrnutd do této disertace je zalozena na 454 sekvenaCni platformé, protoze v té
dobé byla pro nas nejdostupnéj$i. VSechny ostatni publikace jsou zaloZzeny na sekvenovani
pomoci Illumina Miseq platformy. Pomoci Illumina Miseq sekvenujeme piedem
naamplifikovanou specifickou oblast genu pro 16S rRNA, ktera se bézné pouzivd v

obdobnych studiich zabyvajicich se SM (Hird ef al., 2015; Suzuki & Nachman, 2016).
1.1.2. Priprava sekvenaéni knihovny

VétSina vzorkli v této disertaci byla piipravena jednokrokovou PCR s naslednou ligaci
(spojeni dvou vlaken DNA) sekvenacnich adaptorti se specifickym P5/P7 koncem, které
umoznuji navazani sekvence na sekvenacni Cip (Obrazek 1). Pro PCR jsem pouzivala gen-
specificky primer (tj. ¢ast, kterd nasedne na DNA) a na forward (pfednim, zkracené

F) 1 reverse (zadnim, zkracené R) primeru byla piipojena znacka dlouha 10

oligonukleotidd. M¢la jsem k dispozici 11 rlizné znacenych F primerG a 12 R primerd,
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coz dava dohromady 132 riznych kombinaci. Téchto 132 vzorkGi bylo poté mozné
napipetovat dohromady do jedné zkumavky podle koncentrace. K vyslednému poolu se
nasledné ligaci pfipojily sekvenacni adaptory za pouziti TruSeq nano DNA library
preparation kitu (Illumina, USA). Hlavni limitaci tohoto pfistupu je skute¢nost, ze béhem
ligace adaptori miize dochdzet ke vzniku chimérickych sekvenci zahrnujicich 1
oligonukleotidové znacky jednotlivych vzorkl, coz mize nasledné wvést k chybnému
zafazeni téchto sekvenci k jnému vzorku. V soucasné dobé proto pro piipravu
sekvenacnich knihoven vyuzivame dvou po sob€ jdoucich PCR reakcei (tzv. dvoukrokova
metoda, Obrazek 1). V této praci je zahrnuta pouze jedna publikace s touto metodou pfi
amplifikaci bakteridlni DNA (oblast na 16S rRNA). Jeji varianta, tzv. tfikkrokova PCR
(Obrazek 1), byla vyuwzita k analyzam slozeni potravy hmyzozravych ptaktt pomoci
amplikonového sekvenovani oblasti na genu pro cytochrom C oxidazu 1 (COI). Béhem
prvniho kola PCR (1. PCR) se amplifikuje pouze oblast DNA, kterd nas zajima, pomoci
gen-specifického primeru a pro eliminaci amplifikace hostitelské DNA byli pouzity
blokacni primery [detail v Publikaci H a E] (Sottas et al., 2020). Tento prvni krok je zde
navic oproti dvoukrokové PCR, a to z toho diivodu, Ze bez n¢j vznikalo vetsi mnozstvi
artefaktl (zejména kratkych produktd). Pii druhé PCR (2. PCR), ktera odpovida prvni PCR
v dvoukrokovém protokolu, se vyuzivaji gen-specifické primery (stejné jako b&hem prvni
PCR) doplnéné o oligonukleotidovou znacku na F primeru (5 rliznych znacek jsem méla k
dispozici, tzv. vnitini barkdd) a sekvenacni adaptor. Behem tieti PCR (3. PCR) jsme pouzili
primery se sekvenacnim adaptorem a barcodem pro jednotlivé vzorky (az 384 rtznych,
vnejsi barkod) a specifickym P5/P7 koncem, ktery umoziiuje nasednuti sekvenci k

sekvena¢nimu cipu.
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A: PCR s naslednou ligaci adaptori

1. Ligace sekwenadni adaptor 5 barcodem
M----------------------d na R strané a PS/P7 koncovkou
1. PCR: gen-specificky primer
T —— T —— T —— 5 strané

Templatova DNA

3 5!
Amplifikovana oblast
B: Dvoukrokova PCR 2. PCR sekvenacni adaptor s barcodem
F & R strané a PS/P7 koncovko
L----------------__----_/ na F a R strane T oo
— 1. PCR gen-specificky primer
—------------------J 5 strang a sekvenadn

Templatovs DNA

3 5
Amplifikovana oblast
C: Trikrokova PCR 3. PCR sekvenaini adaptor s barcodem
na F a R strané a P5/P7 koncoviou
2. PCR gen-specificky primer
e~ L L T T T L T L T ] " strané a sekvena
e T T 0 7 ° ¥ 0 7 F 0 07 7 § [ 1. PCR gen-specificky primer

9 Termnplatovd DNA
Amplifikovana oblast

Obrazek 1: Schematické znazorneni A: PCR s naslednou ligaci adaptorii;
B: Dvoukrokovda PCRa C: Trikrokovd PCR.
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2.Clile a otazky

I.

II.

I11.

IV.

Jaké je slozeni SM u pévcii a jak se liSi od ostatnich obratlovcil (zejména

savcid)? [Publikace A-I]

Jaka je variabilita SM u pévci na mezidruhové trovni a jaké jsou hlavni
faktory, které tuto variabilitu ovliviiuji? Vyuzila jsem velky komparacni datovy
soubor (319 vzorkli, 51 druhli), abych zistila, do jaké miry ovlivituyje variabilitu
SM fylogeneze hostitele, ekologie (vCetn¢ zvotnich strategii) a lokalita sbéru
vzork(. [Publikace A] Poté jsem tento datovy soubor nasbirany v mirném pasu
(CR) rozitila o vzorky z tropické oblasti (Kamerunu, 205 vzork®, 47 druht), aby
bylo mozno porovnat SM mez druhy z tropické a temperatni klimatické zony. U
populace z mirného pasu jsem si navic kladla otazku, zda je SM ovlivnéna migraci.
Navic u dvou druhli trans-saharskych migrantii jsem piimo srovnavala jejich SM v
tropech béhem obdobi sucha (zimovisté) a v temperatu béhem hnizdni sezony
(hnizdist€). [Publikace B] U slaviki obecného atmavého (Luscinia megarhynchos
a L. luscinia) jsem testovala souvislost mezi reproduk¢ni bariérou a mezidruhovou

divergenci SM. [Publikace C]

Jaké jsou hlavni faktory ovliviiujici vnitrodruhovou variabilitu SM?
U populace vlastovky obecné jsem se zamgtila na srovnani SM mezi rliznymi
lokalitami a mezi hnizdnimi sezonami. [Publikace D] U tohoto druhu jsem také
studovala, jest je SM ovlivnéna potravou jedince. [Publikace E] Dale jsem
pomoci stimulace zanétlivé reakce u mlad’at vlastovky testovala souvislost SM s

mmunitnim systém. [Publikace F]

Jaky je potencionalni vliv socialniho prenosu na podobnost SM mezi jedinci?
Studovala jsem podobnost kloakalni mikrobioty mezi hnizdnimi pary na
vnitroduhovém datovém souboru u vlaStovky obecné. [Publikace G] Navic jsem u
vlastovky obecné také analyzovala podobnost mikrobioty v trusu mezi mladaty a
jejich socialnimi rodi¢i a také mezi mlad’aty pochazejicimi ze stejného hnizda.
[Publikace D]

Je SM stabilni v ¢ase a rezistentni vici environmentilnim zménim? U
vlastovky obecné jsem studovala zmény v Case u opakované vzorkovanych

mlad’at a dospélcti. [Publikace D] Déle jsem studovala vliv hnizdniho prostredi
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VIIL.

na slozeni SM u mlad’at kukacek obecnych vychovdvanych dvéma riznymi druhy
rakosnikli jako socidlnimi rodi¢i. [Publikace H]

Jak se méni SM béhem ontogeneze? U populace vlastovky obecné jsem
porovnavala SM mez dospé€lci a mlad’aty, jakoz i zmény SM s vékem mlad’at.
[Publikace D]

Jak se méni mikrobiota napii¢ travicim traktem? U slavikii obecného a tmavého
jsem porovnavala mikrobiotu mezi tfemi ¢astmi tenkého stfeva. [Publikace C] U
sykory konadry (Parus major) jsem srovnavala mikrobiotu proximalni (vytér
zobaku) a distalni (trus) Casti traviciho traktu. [Publikace I] U kukacky obecné
jsme srovnavali trus a zastraSujici sekret, ktery je pravdépodobné plvodem ze

slep¢ho stieva. [Publikace H]
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1 | INTRODUCTION

The digestive tracts of animals are inhabited by a taxonomically and
functionally diverse community of microorganisms, dominated by
mutualistic and commensal prokaryotes, viruses and fungi (Costelo
et al.,, 2009; Muegge et al., 2011). The cell and active gene count of
this community may equal or even exceed that of the host (Qin

Abstract

Vertebrate gut microbiota (GM) is comprised of a taxonomically diverse consortium of
symbiotic and commensal microorganisms that have a pronounced effect on host
physiology, immune system function and health status. Despite much research on
interactions betw een hosts and their GM, the factors affecting inter- and intraspeci-fic GM
variation in wild populations are still poorly know n. We analysed data on faecal microbiota
composition in 51 passerine species (319 individuals) using llu-mina MiSeq sequencing
of bacterial 16S rRNA (V3-V4 variable region). Despite pro-nounced interindividual
variation, GM composition exhibited significant differences at the interspecific level,
accounting for approximately 20%-30% of total GM varia-tion. We also observed a
significant correlation between GM composition diver-gence and host’'s phylogenetic
divergence, with strength of correlation higher than that of GM vs. ecological or life history
traits and geographic variation. The effect of host's phylogeny on GM composition was
significant, even after statistical control for these confounding factors. Hence, our data do
not support codiversification of GM and passerine phylogeny solely as a by-product of their
ecological divergence. Furthermore, our findings do not support that GM vs. host's
phylogeny codiversifi-cation is driven primarily through trans-generational GM transfer as
the GM vs. phy-logeny correlation does not increase w ith higher sequence similarity used
w hen delimiting operational taxonomic units. Instead, we hypothesize that the GM vs.
phylogeny correlation may arise as a consequence of interspecific divergence of genes

that directly or indirectly modulate composition of GM.

KEYWORDS
birds, cophylogeny, metagenomics, microbiome, neutral/adaptive evolution

et al., 2010; Sender, Fuchs, & Milo, 2016). It is w ell know n that gut
microbiota (GM) can interact w ith a broad range of host physiologi-cal
systems and provide valuable ecosystem services to their host,
ranging from increased digestion and vitamin synthesis efficiency,
protection against pathogens and immune and nervous systemregu-
lation (Cryan & Dinan, 2012; Jumpertz et al., 2011; Koch & Schmid-
Hempel, 2011), w hile GM absence or dysregulation can be
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detrimental, or even lethal, to the host (Brucker & Bordenstein,
2013; Wang etal., 2015). On the other hand, individuals, popula-
tions and species all show substantial variability in GM composition,
as do individuals over time (David etal., 2014; Kreisinger et al.,
2017). Hosts have developeda broad range of mechanismsenabling
them to fine-tune or adjust microorganism community composition.
Numerous candidate host genes and physiological, morphological
and behavioural traits that shape the composition of associated
microbial communities have now been identified (Benson etal,,
2010; Bode, 2009; Lombardo, 2008; McKnite et al., 2012; Ohbaya-
shi etal., 2015; Salminen, Gibson, McCartney, & Isolauri, 2004). At
the same time, GM have developed properties that facilitate effec-
tive proliferation within the host w hile reducing any potential
adverse effect on host fitness, as shown by differencesin the geno-
mic regions of bacterial strains colonizing animal hosts and their
environmental counterparts (Lee etal., 2013). Interactions betw een
hosts and their GM are believed to play animportant role in many
microevolutionary processes, including evolution of social behaviour
(Lombardo, 2008), mate choice and mating systems (Sharon etal.,
2010) and speciation (Brucker & Bordenstein, 2013; Wang et al.,
2015).

It is possible to distinguish tw o different modes of GM evolution,

both of w hich are linked to differing degrees of “intimacy” in the host—
GM relationship. The firstis a trans-generational mode of evo-Ilution,
involving transfer of GMfromparents, or other community members,
into progeny over many generations, including over speci-ation
events (Brucker & Bordenstein, 2013; Clark, Moran, Baumann,
& Wernegreen, 2000; Falush et al., 2003; Ochman, Bw yn, & Moran,
1999). A number of morphological and physiological adaptations
facilitating trans-generational GM transfer have been discovered n
invertebrates (Douglas, 1998). Inoculation of new born viviparous
vertebrates with maternal microbiota during delivery has been shown
to have a long-term effect on their GM(Salminen et al., 2004) and, as
such, is the most likely mechanism of trans-genera-tional transfer. h
addition, physical contact during parental care, as well as physical
contact with family members, may also represent a plausible
mechanism for GM transfer between generations in both viviparous
and nonviviparous vertebrates, including birds (Falush

et al., 2003; Kreisinger, C zkova, Kropackova, & Albrecht, 2015; Krei-
singer et al., 2017; Tung et al., 2015). It follows that trans-genera-tional
transferred GM shares its evolutionary history with the host, leading to
codiversification of the host and its GM. This codiversifi-cation can be
driven by selectively neutral processes such as random loss of microbial
taxa or a random increase in the abundance of new taxa generated by
mutation. In at least some host taxa, however, there is suggestive
evidence that GM evolve under selection (Brucker & Bordenstein, 2013).
In this case, codiversification is expected between GM and the hos
traits’geneslinked to the respective selective pressure(s). The second GM
evolution mode involves transfer of microbes from the environment; that
is, the source of microbial variability differsfrom trans-generational trans-
fer, being based on acquisition of microbeswith closerevolutionary links
to otherorganismsand/or environmental microbes. Evolution
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through environmental transfer can be selectively neutral, which
would result in a GM composition stochastically reflecting the avaik
able environmental microbial pool. Assuming microbial environmen-
pools to be spatially evolution through
environmental transfer would result in codiversification between GM

tal related, neutral
and host geography (Linnenbrink et al., 2013). On the other hand, i
selective evolution prevails, one would expect patterns simi-lar to
those for codiversification of trans-generational GMand the host; that
is, GM composition w ould reflect variability between interacting host
traits and genes. Selective GM evolution through environmental
transfer is theoretically faster than trans-generational evolution. By
acquiring novel functions fromthe environment, host GM can change
and react to sudden changes in selective pressure (Kikuchi et al.,
2012).

Thus far, more attention has been paid to codiversification of host
and GM patterns in mammals and insects. In this study, w e assess
the general validity of GM evolutionary patterns found in mammals
and insects by identifying codiversification patternsin an avian model
system, passerine birds. Phylogenetically, passerines are the most
diverse group of modern birds, harbouring more than 50% of avian
species richness (Jetz, Thomas, Joy, Hartmann, & Mooers, 2012).
Despite relatively recent diversification, passerines exhibit a broad
variation in ecology, reproductive biology, life history traits and
distribution patterns. Detailed knowledge of many aspects of
passerine biology, together w ith a robust phylogeny (Albrecht et al,
2013; Jetz et al., 2012; Kolecek & Reif, 2011; Wilman et al., 2014),
has led to this group becoming an important model for researchinto
correlated evolution in ecological and life history traits. Surprisingly,
how ever, little effort has been aimed at integrating host vs. GM
interactions into otherw ise well-established ecological and evolution-
ary research on passerines.

Most previous studies focusing on avian GM have only consid-
ered a limited number of species sparsely distributed across the avian
phylogeny (Lewis, Moore, & Wang, 2016; Waite & Taylor, 2014;
Yang, Deng, & Cao, 2016). The only exception is the study by Hird,
Sanchez, Carstens, and Brumfield (2015), w ho focused on the GM of
Neotropical birds, birds differ
considerably from their temperate counterparts in many ecological

including passerines. Tropical

traits, how ever, and there may also be pronounced divergence in the
environmental bacterial pool interacting w ith the host in tropical and
temperate biomes.

Here, w e analyse faecal microbiota structure in more than 300
temperate passerine specimens sampled across 51 species using
high-throughput sequencing of 16S rRNA amplicons, using these
data as a proxy for passerine GM. In doing so, w e assess o what
extent interspecific differences in GM contribute to overall GM vari-
ation in terms of total diversity and taxonomic and predicted func-
tional composition (e.g., Langille et al., 2013). Second, using unified
analytical toolbox, w e test for evidence of codiversification between
GM and phylogeny in the species sampled, and w hether the codiver-
gence signal is explainable either through phylogenetically fixed
divergence in host ecology or through geographic GM variation
betw een sampling sites.
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2 | METHODS

2.1 | Field sampling of GM

All faecal samples used in this study (319 samples from different
individualscovering 51 passerine species; Table S1) were obtained during

the 2014 breeding season (April-July) from sampling sites spread over

68,444 km? of the Czech Republic (Fig. A1 in Appendix S1). Species
included in our analysis represented 51% of all passerines, covering 21
familiesof the 28 breeding in the Czech Republic (Table S2). Birdswere
caught using mist nets and placed in paper bags for approx. 15-20 min,
after which they were ringed using aluminium rings following standard
Czech Bird Ringing Center regulations and released. Faecal samples
were harvested from the bag using sterile microbiological swabs (minitip
FLOQSwabs, Copan, ltaly), especial care being taken to avoid sampling
the faecal layerin direct contact with the bag and to avoid any direct
contact between the swab with the bag’s surface. Swab tips coated with
faecal mate-rial were subsequently transferred to sterile cryotubes
(Simport, Canada) and filled with DNA/RNA stabilizing solution mimickng
RNAlater (protocol available upon request). The samples were then
cooled to 80°C within5 daysand stored until furtheranalysis.

2.2 | Species ecological traits and phylogeny

Based on a literature review, w e compiled a database comprising
information on eight ecological and life history traits for the species
sampled (Table S2) that can directly or indirectly affect GM content
as explained more in depth in Supporting information, Appendix S1.
Data on diet preferences (classified on a continuous scale, ranging
from full herbivory/granivory to full insectivory/camivory) were taken
from Wilman et al. (2014). Preferred habitat was classified on a
continuous scale, ranging from[1] closed forestto [7] open habi-

tats without solitary trees or shrubs (Bohning€-Gaese & Oberrath, 2003;
Kolecek & Reif, 2011). Data on
www.euring.org. We noted a significant correlation between log-scaled

longevity were obtained from

longevity and log-scaled number of ringed individuals per spe-cies (sum
of ringing totalsfrom 15 European countriesavailable at www.euring.omg;
Pearson’s r = .3764, p = .0039). To account for this potential sampling
bias, we used residuals from a linear regression between longevity and
number of ringed individuals (both log-scaled) for all further analysis
Average clutch size, average number of breeding attempts per year,
length of breeding season and average

body w eight w ere extracted from Stastny and Hudec (2011). We
estimated migration length as the straight-line distance from the
centre of the Czech Republic to the middle of the wintering range,
using Google Earth and maps on species distribution provided in
Cramp and Perrins (1993).

For further comparative analysis, we used the phylogenetic tree
available at http://birdtree.org/ (Jetz et al., 2012). To account for
uncertainties in phylogenetic resolution, w e dow nloaded a random
subset of 1,000 Bayesian trees, corresponding to the species sam
pled. If necessary, consensus phylogeny for these alternative
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topologies w as constructed using the majority consensus method in
Dendroscope (Huson et al., 2007).

2.3 | GM analysis: wet laboratory procedures

Faecal metagenomic DNA was extracted in a laminar flow cabinet usng
the PowerSoil DNA isolation kit (MO BIO Laboratories Inc., USA). The
samples were homogenized using a MagNA Lyzer (Roche, Switzerdand)
for 30 s at 6,000 rpm to optimize DNA isolation efficiency, whereupon the
extracted DNA was eluted to 50 1l with elution buffer. Following the
recommendationsof Klindworth et al. (2013), primerscovering the V3-V4
variable region on bacterial 16S rRNA (i.e., S-D-Bact-0341-b-S-17
[CCTACGGGNGGCWGCAG] S-D-Bact-0785-a-A-21  [GAC-
TACHVGGGTATCTAATCC]) were used during the polymerase chain
reaction (PCR) step. Both forward and reverse primers were tagged with

and

10-bp barcodesdesigned by TaceD software (Costea, Lundeberg,

& Akan, 2013). For PCR, we used 8 1l of KAPA HIFI Hot Start Ready Mix
(Kapa Biosystems, USA), 0.37 Imof each primerand 7 1l of DNA template.
PCR conditions were as follows: initial denaturation at 95°C for 5 min
followed by 35 cycles each of 98°C (20 s), 61°C (15 s) and 72°C (40 s),
and a final extension at 72°C (5 min). The PCR product, together with
negative controls (PCR productsforblankDNA isolates), wasrun on 1.5%
agarose gel, the concentration of the PCR product being assessed based
on gel band intensity using cenosort software (VWR International,
Belgium). The samples were subsequently pooled at equimolar
concentrationand run on 1.5% agarose gel, withbandsof appropriate sze
excised from the gel and purified using the High Pure PCR product
Purification Kit (Roche, Switzerland), according to the manufacturers
instructions. Sequencing adaptors were ligated using TruSeq nano DNA
library preparationkits (Illumina, USA) and the resulting amplicon libraries
sequenced on a single MiSeqrun (Illumina, USA) using v3 chemistry and
2 9300 bp paired-end reads. Technical PCR duplicateswere sequenced
for individual DNA samples. As there was high consistency in both GM
composition (Procrustean correlation:

r=.97, p<.0001) and GM diversity (Pearson’s: r =.96, p < .0001)
betw een technical replicates, we merged sequences cormresponding
to individual samples for dow nstreamanalysis.

2.4 | GM analysis: bioinformatic processing of
sequencing data

Paired-end llumina reads w ere merged using PEAR (Zhang, Kobert,
Flouri, & Stamatakis, 2014) and demultiplexed using MOTHUR
(Schloss et al., 2009) and custom R/Bioconductor scripts (available
from the authors on request). We then used Lotus pipeline (Hilde-
brand, Tadeo, Voigt, Bork, & Raes, 2014) for quality filtering of
FASTQ files. Sequences were excluded if the average quality score
w as lower than 30 or if the average quality scorewithin a 50-bp sliding
window decreased below 25. UCHIME (implemented in the Lotus
pipeline; Edgar, Haas, Clemente, Quince, & Knight, 2011) w as used
alongside the gold.fna database (available at http://sourceforge.
net/projects/microbiomedutil/files) for detection and elimination of
chimeric sequences.
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For the purposes of operational taxonomic unit (OT U) definition, 16S
rRNA sequences are usually clustered at the 97% similarity threshold.
Note, however, that strength of codiversification between microbial
communitiesand host phylogeny can be directly linked with the similarity
threshold used for OTU delimitation, particularly if host vs. GM
codivergence isdriven by trans-generational transfer. In this case, the
codivergence signal is expected to increase with increasing microbiota
resolution (i.e., higher clustering similarity) due to the slow pace of
bacterial 16S rRNA gene evolution (Ochman etal., 1999; Sandersetal.,
2014). On the other hand, if codiversifi-cation is driven by different
mechanisms, such asphylogenetically nested divergence in host ecology,
no, or even a negative, associa-tion isexpected with increasing similarity
threshold for sequence clustering as divergence in ecology typically
inducesdeep taxonomic rearrangementsof GM (Ley etal., 2008). In order
to assess the effect of similarity threshold during OTU delimitation on
codiver-gence signal, 16 SrRNA readswere clustered at 91%, 93%, 97%
and 99% similarity. In addition, as the results of downstream analysis
could be partly dependent on clustering procedure, we used two clustering
algorithms, co-HiT (Li & Godzik, 2006) and uparse (Edgar, 2013).
Taxonomic assignation of representative sequencesforindi-

vidual OTUs was performed using (Wang, Garrity,

RUF CLASSIFIER

Tiedje, & Cole, 2007) and the cc_15_5 reference database (DeSantis
et al.,, 2006). Representative sequences were further aligned using
PYNAST (Caporaso et al., 2010a) and their maximum-likelihood tree
constructed using FasTTReE (Price, Dehal, & Arkin, 2009). The resulting
OTU tables, sample metadata, OTU trees and taxonomic annotation for
individual OTUswere merged into pHyLosEa objects (McMurdie & Holmes
2013) for further statistical analysis. We considered OTUs assigned as
“Chloroplast” (3.2% of read after quality filtering) and those not assigned
to any bacterial phylum (0.2% of read after qual-ity filtering) as diet
contaminants or sequencing artefacts, respec-tively, and excluded them
from all downstream analyses. The number of sequencespersample was
uneven (mean= 13,318, range = 1,259-76,404), whichmay introduce bias
to the statistical analysis. We rarefied (i.e., randomly subset)read counts
in the OTU tables, therefore, in order to achieve the same number of reads
per sample. Rarefaction has recently been criticized as this method of
normalization may decrease the statistical power of corresponding
analyses. As a result, transformation of sample-specific read counts has
been proposed as an alternative (e.g., McMurdie & Holmes, 2014).
However, this approach isnot applicable for certain stepsof our pipeline,
such as OTU presence/absence-based analyses(de-tailed below). Aswe
observed high concordance in OTU abundance analysis calculated on
rarefied OTU tables or OTU tables with counts converted to sample-
specific proportions, we argue that in the case of our data, rarefaction is

not associated with any signifi-cant decrease in statistical power.

2.5 | GM analysis: metagenomic predictions

As direct shot-gun sequencing of metagenomic DNA w as not per-
formed, w e inferred GMfunctional composition based on predictive
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modelsintegratedin PICRUST pipeline (Langille et al., 2013). In brief, this
approach utilizes 16S rRNA reads and ancestral state reconstruc-tion
algorithmsto predict the functional content of GM samplesbased on the
gene content of known bacterial genomes. First, we mapped our high-
quality sequencesagainst GreenGenesreference OTUs (DeSantisetal,
2006)using 91%, 93%, 95% and 97 % similarity thresholdsand the closed
reference algorithm implemented in QIIME (Caporaso et al., 2010b). Nex,
metagenomes were predicted using the default PICRUST setup and
classified according to the Kyoto Encyclo-pedia of Genes and Genomes
(KEGG; Kanehisa & Goto, 2000). The resulting table, including predicted
KEGG category abundances for individual samples, was used for
downstream analysis.

The proportion of sequences unassigned to a reference OTU in
GreenGenes (i.e., unusable for metagenomic prediction) w as rela-
tively high at the 97% similarity threshold (26.5%) and relatively low
at the 95—91% similarity thresholds (range = 3.6%-10.1%). Hence,
w e decided to use 95% similarity mapping for PICRUST predictions
in order to avoid potential bias associated w ith a high proportion of
unmappable reads. The “mean nearest sequenced taxon index”
(NSTI), thatis, the average branch length separating OTUs froma
reference bacterial genome, was .0755 w hen using 95% similarity
mapping. This value is low er than the NTSI for microbiomes for most
nonmodel species (Langille et al., 2013). Such low NTSI values,
together w ith the high proportion of matches against the reference
database, indicate high precision in our metagenomic predictions.
Dow nstream statistical analysis on the variation of predicted KEGG
contentw as identical w ith that for OTU data (detailed below ).

2.6 | GM analysis: statistical inference

A positive correlation between number of sequences per sample (log10-
transformed) and number of observed OTUs (Pearson’s r = .2567, p <
.001) indicated that there was insufficient sequencing depth to cover
complete microbial diversity. Unlessotherwise stated, therefore, we used
sample-specific number of observed OTUs, Chao1 estimates for total
numberof OTUsand phylogenetic diver-sity based on rarefied OTU tables

throughout the study. In addition, all alpha diversity estimateswere log10-
transformed to normalize dis-tribution prior to further analysis. Using the
approach described in Nakagawa and Schielzeth (2013), we calculated a

“conditional R” corresponding to the proportion of total variance in alpha
diversity explained by differences at the interspecific level using linear
mixed-effect models (Imer function, R package Lve4). Alpha diversity
indices were included as a response variable and species identity as
random intercept. These models did not include an explanatory variable
as they were used to estimate the overall intercept only. Next, Pagel's k
(Pagel, 1999) was calculated using Markov chain Monte Carlo gen-
Hadfield, 2010) in
orderto assess the effect of host phylogenetic relatednesson interspecific

eralized mixed-effect models (R package mcmceLMmy;

variation in GM diversity. Pagel’sk, where values~ 0 indicate phylogenetic
independence and values ~ 1 indicate com-plete phylogenetic
dependence of a given trait, isa widely used measure of phylogenetic
effect. Random structure in mcMceLMm
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accounted for both phylogenetic relatedness among the passerines
sampled and w ithin-species variation in GM diversity (see Garam-
szegi, 2014 for details). The number of iterations for these models
w as setat 5,000,000, with burn-in period and thinning interval set at
10,000 and 500 steps, respectively. mcvceLmm  convergence was
checked using standard diagnostic tools (Hadfield, 2010). Finally, we
mapped GM diversity estimates on the passerine phylogeny using the
contmap function in the pryTooLs package (Revell, 2012). As gen-eral
alpha diversity patterns did not vary markedly according to clus-tering
parameters, here w e present results based on urarse clustering and
97% sequence-similarity threshold only for brevity.

Analysis of interspecific variation in taxonomic and functional GM
composition and codivergence betw een GM composition and host
phylogeny relied on community dissimilarity betw een samples. Four
community dissimilarity types w ere applied, each capturing dif-ferent
aspects of GM divergence relevant to phylogeny vs. GM cor-relation
(Sanders et al., 2014), that is, w eighted and unw eighted UniFrac
(Lozupone & Knight, 2005), Bray—Curtis and a binary version of
Jaccard dissimilarity. Jaccard and unw eighted UniFrac dissimilarity
only account for OTU presence/absence and, therefore, are more
sensitive than Bray—Curtis and w eighted UniFrac metrics to GM
changes driven by rare OTUs. In addition, both unw eighted and
w eighted UniFrac dissimilarity take account of OTU genetic similarity
and, therefore, are more sensitive to community divergence driven by
phylogenetically distant bacterial groups. As UniFrac dissimilarities
cannot be calculated based on KEGG data, and as KEGG proportions
rather than their absence or presence are more likely to reflect func-
tional variation of GM, only Bray—Curtis dissimilarity w as used in the
case of metagenomic prediction.

We used the adonis (permutational MANOVA using distance matrices
R package vecaN) to test whether there was any difference in microbiota
composition at the interspecific level, including species identity as an
explanatory variable and the matrix of community dis-similarities among
samples as the response. In addition, the permuta-tion-based tests
described in Sanderset al. (2014) were applied to test directly whether
within-speciescommunity dissimilarity waslower than dissimilarity among
species. For statistical testing, t-statis-tics for observed difference in
within- vs. between-species dissimilar-ity was compared with the
simulated null distribution of t-statisticsobtained by random permutations
of distance among sample pairs.

The Procrustean Approach to Cophylogeny (PACo; Balbuena,
Miguez-Lozano, & Blasco-Costa, 2013), originally developed for
assessment of host vs. parasite cophylogeny, was used to test whether
divergence in GM composition was correlated with phylo-genetic
divergence between species. Procrustean analysisassesses the level of
congruence between two ordinations of multivariate data sets. We used
averagesof cophenetic phylogenetic distancescalculated across the set
of 1,000 Bayesian treesas a response and GM distance among samples
as an explanatory matrix. Both GM and phylogenetic distance were scaled
using principal coordinate analysis (PCoA) prior to PACo fitting.
Significance testing wasbased on a comparison of observed vs. permuted
Procrustean sum of squares. To account for the fact that we typically
analysed multiplesamples
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for each species, species identity w as reshuffled across blocks of
species-specific samples during the permutation routine.

The PACo approachwasalso used to assess strength of associa-tion
between GM variation and geographic distance between sam-pling sites
or ecological distance between species. In our data set, principal
coordinatesof neighbourhood matrices (PCNM; vEGaN pack-age inR) were
used to scale geographicdistance between individual samples(Borcard,
Gillet, & Legendre, 2011), the resulting matrix of PCNM scores being
included as the response variable in PACo. Simi-larly, the matrix of
ecological traitswas scaled using PCA (Figs A2 and A3 in Appendix S1)
and the resulting PCA scores were used together with the PCoA-scaled
community distancesfor PACo infer-ence described above. Asin the case
of PACo analysisof GM vs. phylogeny codivergence, speciesidentity and
sampling location iden-tity were reshuffled across the block of
corresponding samples to account for pseudoreplications. In order to
provide complementary inference tothe sample-level analysis, we merged
data correspond-ingto individual speciesand repeated the PACo analysis
OTU tableswere rarefied prior to the merging step to ensure that all
samples contributed equally to species-specific GM. We argue that this
approach may provide a more robust assessment of GM vs. phy-
logeny/ecology codivergence than sample-level analysisasabundant taxa
representing putative indigenous GM are most likely to be included in
species-specific pools. Furthermore, the effect of rare and/or putative
transient GM OTUs (Kreisinger et al., 2017) is likely to be suppressed
during construction of species-specific profiles.

Finally, we used the varpart function (vecan packagein r) to esti-mate
the proportion of microbial community variation explained uniquely by the
effect of phylogeny, host ecology or geography, as well as the
simultaneous contribution of all three effects together. Distance-based
redundancy analysis (db-RDA) and permutation-based anova.cca (both
from the veean package in rR) were used for testing the significance of
individual fractions of explained variation, as described in Borcar et al.
(2011). To prevent varpart overfilling, ordination axes that contributed
significantly to the proportion of explained variation in GM composition
were preselected using the ordiR2step function (vecan package in r) and
includedin corresponding varpart models.

All statistical analyses w ere performed in r version 3.2.2 (R Core
Team 2016). Benjamini and Yekutieli (2001) false discovery rate
method w as applied to account for potential inflation type | errors due
to multiple testing.

3 | RESULTS
3.1 | Taxonomic composition of passerine
microbiota

We detected presence of 33 Eubacterial and tw o Archeal phyla in our
data set. Passerine GM w as dominated by Proteobacteria (44.2% of
reads), Firmicutes (20.8%), Actinobacteria (15.0%), Tenericutes
(9.2%), Chlamydiae (4.0%) and Bacteroidetes (2.7%). Other
Eubacte-rial and Archebacterial phyla were only present at low
frequencies (<1%).
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At lower taxonomic lev els, Proteobacteria were represented pre-dominantly
(9.1% (5.5%),
(3.8%), (1.6%),

Enterobacteriaceae of reads),

(3.4%),

by Diplorickettsia

Escherichia/Shigella Serratia Helicobacter
Methy lobacterium (1.3%), Pseudomonas (1.2%) and Aeromonas (1.1%). The
most abundant Firmicutes members were Catellicoccus (3.1% of reads),
Enterococcus (2.6%), Lactobacillus (1.8%), Clostridium (3.4%), Lactococcus
(1.1%) (1.0%). In

and Carnobacterium the phylum Acti-nobacteria,

Cellulomonas (4.1%) and Microbacteriaceae (2.9%) domi-nated, while
Ureaplasma (5.6%) and Mycoplasma (3.1%) dominated in Tenericutes.
Taxonomic composition plots indicated pronounced GM v ariation at both the
interspecific (Figure 1) and intraspecific lev els (Figs A4 and A5 in Appendix Sf1;
for a more detailed description of GM Taxonomic composition for individual

species, see Table S3).

3.2 | Variation in GM diversity

Microbial diversity varied by two orders of magnitude betw een sam-
ples (Table S1), with the mean SE number of 97% uparse OTUs per
sample being 236.7524 8.5053 (range = 21-923) and the pre-dicted
number of all OTUs 336.0204 10.6847 (range 45.3112— 1256.5252,
summary statistics for other sequence-similarity thresh-olds and
clustering algorithms are provided in Table A1in Appendix S1).

The proportion of alpha diversity variation explained by inter-

specific difference (assessed as conditional R2) was 0.2174 for the
number of observed species, 0.2496 for Chao1 and 0.2260 for phy-
logenetic diversity. Posterior estimates of mean Pagel's k w ere mod-
erate at 0.2656 (95% credible interval: 0.0495-0.5482) for number of
observed OTUs, 0.3891 (95% credible interval: 0.0682—-0.7526) for
Chao 1 and 0.2948 (95% credible interval: 0.0695-0.5714) for
phylogenetic diversity. Projection of Chao1 values per sample onto
passerine phylogeny via contwap indicates relatively labile GM diver-
sity over evolutionary time, w ith closely related species (such as Pas-
ser domesticus and Passer montanus, Periparus ater and other
parids, or Regulus regulus and Regulus ignicapilla) tending to exhibit
marked differences in GMdiversity (Figure 2). On the other hand, the
same analysis suggested decreased GM diversity in the Sylvioidea
clade (mean SE of observed OTUs = 73.964 4.423) compared w ih
that represented predominantly by Passeroidea and Muscicapoidea
(mean SE of observed OTUs = 117.661 5.331).

3.3 | Variation in GM taxonomic composition

Adonis revealed significant interspecific differences in passerine GM
that accounted for ca. 20%—-30% of total GM variation, irrespective of
OTU definition similarity threshold, clustering algorithm or type of
distance index used (Table A2 in Appendix S1). Comparison of
intraspecific vs. interspecific GMdistance using permutation-based t-
tests also revealed significant variation in betw een-species GMcom-
position, w ith highly significant differences irrespective of distance
index or clustering algorithm used (p =.001 in all cases), although the
corresponding effect size was moderate (Fig. A6 in Appendix S1).
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Univariate PACo analysis revealed a significant correlation
betw een GM dissimilarity betw een samples and host phylogenetic
divergence. While there w as also a significant correlation between
geographic distance betw een sampling sites and GM divergence, we
found no significant effect of ecological divergence between hosts on
GM divergence (Figure 3, and Table A3 in Appendix S1).
Consequently, Procrustean correlation coefficients for GM vs. geo-
graphic divergence were ca. 25% lower and GM vs. ecological
divergence ca. 35% low er than for GM vs. phylogenetic diver-gence.
All forms of community distance resulted in comparable GM
correlation strengths to ecological variation in the species sampled.
In the case of phylogeny or geography vs. GM correla-tion, w eighted
UniFrac tended to exhibit low er correlation than other types of
dissimilarity index. In the case of GM vs. phy-logeny or GM vs.
geography, we observed no pronounced change in Procrustean
correlation coefficient due to variation in sequence-similarity threshold
or clustering algorithm. In the case of ecology vs. GM codivergence,
how ever, correlation strength tended to decrease with increasing
similarity threshold.

PACo analysis for species-specific GM (obtained by merging
sample-specific GM profiles) provided complementary evidence for
tighter correlation of GM w ith phylogenetic rather than ecological
divergence (Figure 4; Table A4 in Appendix S1). Procrustes corre-
lation coefficientsfor GMvs. phylogeny ranged betw een 0.7 and 0.8
across all parameters evaluated (except for weighted UniFrac
dissimilarity), whereas it was only 0.5-0.4 in the case of GM vs.
ecology. In addition, there was a straightforward match between
ordinations for GM vs. phylogeny based on the Procrustean super-
imposition plots for first tw o ordination axes, w hereas the pattem
follow ing superimposition of GM vs. ecology w as unclear (Figure 4).

Consistent with the results of sample-specific PACo analysis,
more complex varpart models accounting for the effect of phy-logeny,
geography and variation in ecological traits simultaneously indicated
the effect of phylogeny to be a stronger predictor of GMvariation than
that of ecology or geography. GM variation due to the simultaneous
contribution of phylogeny, geography and ecology typically varied
between 5% and 10% (Figure 3; Table A5 in Appendix S1). In
comparison, the amount of GM variation explained exclusively by the
effect of phylogeny accounted for ca. 5% of total GM variation,
w hereas that associated exclusively w ith the effect geography or
ecology w as considerably lower.

3.4 | Metagenomic predictions

The strength of interspecific variation in predicted metagenomesassessed
using adonis(R2 = .2851, p = .001) was comparable with interspedific
divergence atthe OTU level. Atthe same time, within-spe-ciesdistances
calculated using predicted metagenomes were signifi-cantly lower than
between-sample distances (p = .001) using permutation-based t-tests.
PACo analysisrevealed a significant correla-tion between divergence in
the composition of predicted metagenomesand phylogenetic divergence
(Procrusteanr = .2953,p=.0169)or
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F 1 G U RE 1 Taxonomic composition of passerine gut microbiota. Mean proportion of reads for bacterial phyla (a) and classes (b) in individual
passerine species. To achieve both good taxonomic resolution and clarity of the figure, eighteen most abundant taxa are presented. Legend

for species abbreviations is provided in Appendix S1

geographicdistancesbetweensamplingsites(Procrusteanr =.2172,p =
.0001). PACo analyses, however, showed no effect of ecological
divergence on metagenome composition (Procrusteanr = .1923,p =
.6963). According to varpart analyses, the effect of phylogeny accounted
for9.0% (p =.0001)of variationin the predicted
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metagenomes, while the effectsof ecology and geography accounted for
0.5% (F(4,300)=1.4423, p=.102) and 1.3% of variation (F(3,300)= 1.1142,
p = .394), respectively. The simultaneous contribu-tion of ecology,
phylogeny and geography explained 4.5% of total varia-tion in the

predicted metagenomes (F(11,300)=3.8718, p =.001).
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4 | DISCUSSION
Here, w e provide the first comprehensive insight into inters pecific and
interindividual gut microbiota variation in old w orld passerine birds. h
concordance w ith two recent contributions focused on Neotropical
and North American passerines (Hird etal., 2015; Lew is et al., 2016),
our data show that passerine GM is dominated by Pro-teobacteria,
Firmicutes, Actinobacteria and Tenericutes (Kreisinger et al., 2015),
thereby providing further support to the idea that passerine GM
taxonomic composition differs markedly from that of mammals, the
most intensively studied vertebrate group in this regard. Two previous
comparative studies examining interspecific variation in mammalian
GM (Ley et al., 2008; Muegge et al., 2011) found it to be dominated
by Firmicutes and Bacteroidetes, a phylum relatively rare in
passerines. Dominance of Proteobacteria, w hich is widespread in
passerines, w as only detected in a few mammalian specimens. In
consequence, we believe that most current know ledge on host/GM
interaction outcomes derived from mammalian models cannot be
simply extrapolated to passerines or other vertebrate taxa.

How ever, high interindividual variation revealed systematic dif-
ferences in GM among the passerine species sampled in terms of
alpha diversity, as well as taxonomic and predicted functional
composition, w hich accounted for 20%—30% of total GM variation. As
in previous studies on other host taxa, these interspecific
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differences were correlated with host phylogeny diversification
pattern; how ever, it provides no information on the evolutionary
processes leading to it. This is particularly so with regard to neu-tral
evolution vs. selective evolution, as the host traits linked to selection
are not independent betw een host lineages. Furthermore, such a
codiversification pattern could also arise due to both trans-
generational GM evolution and evolution through environmental
transfer.

Numerous studies have already show n that host ecological and
life history traits codiversify with GM. Muegge et al. (2011), for
example, have show n that pronounced interspecific differences in
mammalian GM composition are explained through interspecific var-
ation in preferred diet. Similarly, marked differences in the GM were
found betw een fresh vs. salt water fish species and due to their diet
preferences (Sullamet al., 2012). In order to assess the importance
of selection related to host ecology and life history traits for passer-
ine GM evolution, w e scored eight ecological and life history traits for
the species included in this study. To assess the importance of neutral
evolution through environmental transfer, we measured the spatial
distance betw een sampling sites.

We found that both taxonomic composition and functional GM
composition were correlated with geography (according to both sam-ple-
and species-centred analyses) and host ecology (but only according to
species-centred analyses). Interestingly, however, when the correlations
between GM and ecology, geography or phylogeny
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w ere compared, GM-ecology and GM—-geography had ca. 50% and
30% low er correlation coefficient values, respectively, than GM-phy-
logeny. Moreover, multivariate varpart models revealed the indepen-
dent effect of phylogeny on GM composition after statistical control
for ecological and geographic disparity.

The significant effect of geography probably reflects spatial var-
ation in environmental bacterial pools interacting w ith the host and is
consistent w ith the environmental mode of evolution for passerine
GM. This finding is consistent with previous studies in other verte-
brates, including humans, show ing a decrease in GM similarity w ith
increasing geographic distance (Linnenbrink et al., 2013; Suzuki &
Worobey, 2014).
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Consistent with Hird et al. (2015), w e observed relatively low
effect of host ecology on GM, w hich is somew hat surprising, given
that we focused on a broad spectrum of species w ith contrasting
ecological and life histories. In particular, the mostimportant gradi-ent
identified based on PCA w as associated with life history traits and
specifically with longevity and body mass. The second PCA axis
separated species according to migration behaviour and associ-ated
traits such as preferred habitat and investment in reproduc-tion.
Previous studies have demonstrated that ecological convergence
results in GM convergence in unrelated phylogenetic lineages
(Delsuc et al., 2014; Godoy-Vitorino et al., 2012). At the mechanistic
level, such a convergence may evolve due to
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evolutionary changes concerning digestive tract physiology and
anatomy, w hich may be correlated with a shift to a new ecological
niche and/or diet specialization. The anatomy of the passerine
digestive tractis constrainedto a large extent by natural selection in
order to optimize flight ability (McWhorter, Caviedes-Vidal, & Karasov,
2009; Price, Brun, Caviedes-Vidal, & Karasov, 2015). In particular,
the overall length of the gut is shorter compared to mammals
(Caviedes-Vidal et al., 2007) and, consequently, food retention time
is much shorter compared to mammals of similar
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F 1G U R E 4 Specieslevel Procrustean correlation analysis. (a)
Procrustean correlation coefficientsfor gut microbiota (GM) variation
among species, and ecological (“Traits’)and phylogenetic
(“Phylogeny”) differentiation. Two clustering algorithms (UPARSE, CD-HIT)
and four dissimilarity measures (Bray —Curtis, Jaccard, unweighted and
weighted UniFrac)were used for the calculations.

(b) Procrustean superimposition for PCoA-scaled phylogenetic vs.
GM distance and (c) ecological and GM distance. Legend for species
abbreviationsisprovided in Appendix S1 Speciescodes: 1: Acar, 2: Ac
pl, 3: Acschnb, 4: Ac scr, 5: Ag cd, 6: Crd crd, 7: Crd ch, 8: Crd fim, 9:
Crp ery, 10: Crt fm, 11: Cn cnc, 12: Cc cc, 13: Cy crl, 14: Dl ur, 15: Em
ct, 16: Em schnc, 17: Errb, 18: Fc albc, 19: Frclb, 20: Hpic, 21:

Hrrs, 22:Lncllr,23: Lcflv, 24: Lcls, 25: Ls mg, 26: Lssv, 27: Mtalba,
28: Mt cnr, 29: Ms st, 30: Prs mj, 31: Ps dm, 32: Ps mn, 33: Prp ater,
34: Phn oc, 35: Phn phn, 36: Phy clly, 37: Phy trc, 38: Pc pll, 39: Prn
md, 40: Rgig, 41: Rgrg, 42: Rm pn, 43: Sterp, 44: Sy atrc, 45: Sy br,
46: Sy cm, 47: Sy crr,48: Trg trg, 49: Trd mr, 50: Trd phl, 51: Trd vs

body size (McWhorter et al., 2009). This, together with a massive
reduction in those parts of the gut involved in bacterial fermenta-tion
(i.e., the caecumand colon), may constrain adaptation of GM based
on host ecology.

There are tw o opposing explanations for the major effects of
phylogeny on GM evolution (independent of ecology and geogra-
phy). First, it is possible that evolution of passerine GM is dominated
by selectively neutral trans-generational evolution; in other w ords, the
major portion of interspecific GM variability in passerines is not
adaptive. Alternatively, selective evolution may dominate but is oper-
ating through host traits other than those defined a priori in this w ork
At the same time, it is possible that codiversification patterns for
certain host traits are more easily traceable at the level of host genes
coding for these traits. Such a trait can be, for example, host
immunity. In mammals, most host genes show n to be responsible for
GM regulation have been involved in immune system functioning
(Benson et al., 2010; McKnite et al., 2012). Although the effect of
immune genes on GM in wild populations is still poorly understood,
coding sequence variationin MHC b has recently been show nto be
a strong predictor of GM composition in sticklebacks, explaining ca.
10% of GM variation at the w ithin-population level (Bolnick et al.,
2014). Furthermore, disruption of immune gene coadaptations in wid
hybrids of closely related house mouse (Mus musculus) sub-species
resulted in an impaired ability to manage the GM population, resulting
in an abnormal GM phenotype distinct to that in nonad-mixed
individuals (Wang et al., 2015). Finally, functional variation of some
immune genes, such as TLR4, is correlated with passerine phy-
logeny (Kralova et al. in prep.). Consequently, as a next step in
research on passerine GM, w e propose the inclusion of immune
genes, treated in a similar manner to ecology and geography in this
study.

Trans-generational evolution of bacteria, and particularly trans-fer
from parents to progeny, appears to be the main cause of codi-
versification between GM and host phylogeny in several arthropod
lineages (Brucker & Bordenstein, 2013; Sanders et al., 2014; Simon
et al., 2003). How ever, this mechanismis unlikely to explain the
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correlation betw een GMstructure and phylogeny in passerines. First,
in trans-generational evolution, concordance between GM
composition and species phylogeny should increase with increasing
sequence-similarity threshold used for bacterial OTU delimitation; the
rationale being that higher similarity thresholds are more likely to
distinguish betw een closely related microbes w ith few differ-ences in
16SrRNA, w hichwould be expected in recently diverged host species
(Ochman et al., 1999; Sanders et al., 2014). In this study, however,
w e failed to observe any consistent dependence between sequence-
similarity threshold used for OTU selection and strength of GM vs
phylogeny correlation. Similarly, ecological dis-tances accounting for
phylogenetic similarites in OTUs are expected to possess a
decreased ability to capture codiversification signals due to trans-
generational evolution compared to its phylo-genetically uncontrolied
counterparts. Again, we found no differ-ence between the
performance of phylogenetically controlled and uncontrolled
presence/absence distances (i.e., unweighted UniFrac and Jaccard).
On the other hand, w hen using distances that do account for OTU
abundance (i.e., Bray—Curtis), the phylogenetically controlled
distance (w eighted UniFrac) performed worse than the uncontrolled
distance indicating environmental transfer. Overall, these pattems
suggest that trans-generational evolution does not dominate in
passerine GM evolution and that environmental trans-fer is more
likely, at least for those microbial taxa abundant in passerine GM. It
is tempting to speculate on mechanisms explaining dominance of the
environmental transfer and codivergence of GM w ith host phylogeny
observed in our study system. A possible explanation could include
host traits, such as the above-mentioned immune genes, that coud
selectively filter microbes invading the host GM from the
environmental pool.

In conclusion, w e showed that passerine GM composition and
evolution differ to that of mammals and insects, currently the most
studied model species. Compared to mammals, w e only found a lim-
ited effect of host ecology on interspecific differences in passerine
GM. Similarly, we only found a limited effect of geography on GM
differentiation. The major effect of phylogeny on codiversification
betw een hostand GM observed in this study, w hich remained signif-
icant even after statistical control for ecology and geography, sug-
gests either unknow n selective pressures or selectively neutral GM
evolution. It is w orth noting that despite the significance of phy-logeny
and geography, most GM variation remained unexplained by these
variables. Consequently, w e speculate that factors operating at the
w ithin-species level may contribute to the observed GMvaria-tion. As
know ledge of the factors driving within-species variability in avian GM
remains low (Benskin etal., 2015; Escallon et al., 2017; Kreisinger et
al., 2017), how ever, further research in this direction is highly
desirable. Compared to insects, our data fail to provide any robust
evidence for the dominance of trans-generational evolution in
passerine GM evolution. Instead, evolution through environmental
transfer appears to prevail in the case of highly abundant microbes.
Given these substantial differences, we strongly recommend that
further GM studies are undertaken on wild nonmammalian organ-

isms in order to validate general patterns of GM evolution.
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Abstract

Decreasing biotic diversity with increasing latitude is an almost universal macroecological
pattern documented for a broad range of taxa. However, there have been few studies
focused on changes in gut microbiota (GM) across climatic zones. Using 16S rRNA
amplicone profiling, we analyse GM variation between temperate (Czech Republic) and
tropical (Cameroon) populations of 99 passerine bird species and assess GM similarity of
temperate species migrating to tropical regions with that of residents/short-distance

migrants and tropical residents.

We observed no consistent GM diversity differences between tropical and temperate

species. In the tropics, GM composition varied dramatically between dry and rainy
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seasons and only a few taxa exhibited consistent differential abundance between tropical
and temperate zones, irrespective of migration behaviour and seasonal GM changes.
During the breeding season, trans-Saharan migrant GM diverged little from species not
overwintering in the tropics and did not show higher similarity to tropical passerines than
temperate residents/short-distance migrants. Interestingly, GM of two temperate-breeding
trans-Saharan migrants sampled in the tropical zone matched that of tropical residents and
converged with other temperate species during the breeding season. Consequently, our
results demonstrate extensive passerime GM plasticity and the dommnant role of

environmental factors in its composition.

Introduction

Microbial communities associated with animal hosts have a marked effect on the host’s
physiology and immune system [1, 2]. In the context of these modulatory effects, the gut
microbiota (hereafter GM) mhabiting the lower intestine plays a preeminent role. While
GM cell counts are comparable with the number of cells in the host’s body [3], functional
variation within the GM, in terms of gene count, is much higher [4]. The GM has a crucial
effect on the development of digestive tract morphology [5], is involved in the synthesis of
essential bioactive molecules that cannot be synthesised by the host [6], stimulates the
host’s immune system [7, 8] and provides protection against pathogens [9]. Consequently,
variation in GM composition contributes to differences in health status, body condition and

other traits associated with host fitness [10—12].

Geographically segregated populations often show variations in GM [13, 14]; however, the
factors driving this variation, as well as its consequences on the host, are not fully
understood. Across the globe, both abiotic conditions and biotic mteractions change with
latitude, with potential effects on GM composition and diversity [15]. These include aerial
temperature or humidity, which vary across climatic zones and can impact environmental
bacterial sources of GM, but also the abundance and diversity of pathogens [16, 17], which
can modulate host GM through direct or indirect mnteractions with the host’s immune
system [18, 19]. Last, but not least, variation in environmental conditions between climatic
zones can impose indirect consequences on GM via selection of host phenotypic traits that
affect colonisation and proliferation of bacteria within the gut. In at least one vertebrate
host lineage, ie. birds, high temporal stability and predictability of resources in tropical

environments are associated with a comparatively
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high life expectancy and a slower pace of life compared to phylogenetically related species
inhabiting temperate climatic zones [20, 21]. This has far-reaching effects on a plethora of
ecological and life-history traits that show clear latitudinal trends across birds and may also
affect the GM, including reproductive investment, physiology and immunity [22-24].

Unfortunately, there is a general scarcity of empirical studies on GM variation between
climatic zones. To our knowledge, most of the relevant data available focused on human
GM [19, 25-27; but see 28], usually revealing marked variation in diversity and both
taxonomic and functional GM composition between tropical and temperate human
populations. However, these differences may have arisen as a consequence of contrasting
human lifestyles in tropical and temperate zone environments, including differences in the
proportion of energy-rich items in the diet [25] or the use of antibiotics and other
medicaments [29], rather than latitudinal contrast in environmental factors. Further
research on non-human models is needed, therefore, in order to understand the contribution
of environmental factors not directly linked with variation i lifestyle on GM structure

across climatic zones.

To assess how GM varies between climatic zones, we applied a comparative approach
based on 16S rRNA amplicon profiling of 99 bird species covering 37 Passerine families,
comprising species nesting in both temperate and tropical regions. Passerine birds represent
the majority of avian species diversity and are a popular model group for research mto
ecological and life-history divergence between tropical and temperate organisms [20, 22,
30-32]. There is an emerging interest in microbiota associated with avian hosts, including
its mteraction with avian ecology and physiology [10, 33—36]. Though there have been a
few studies analysing avian GM in tropical populations [37— 40], none have directly
compared tropical GM with temperate populations. In general, tropical areas are
characterised by highly stable environmental conditions; nevertheless, periods of high and
low precipitation (ie. rainy vs. dry season) determine periodicity in many biological
processes (e.g. reproductive season, migration or moulting). This contrast between the dry
and rainy seasons could also impact GM [41], though this possibility has never been
addressed in birds. To fill this gap in knowledge, we included GM samples collected during

both the dry and rainy seasons in our tropical samples.
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Importantly, many temperate passerines migrate to tropical areas during the non-breeding
season [42], whereas others spend the whole year in temperate areas. Thus, the second aim
of this study was to assess how migration behaviour affects GM variation between
passerine species. Environmental conditions at wintering grounds of long-distance
migrants have a profound carry-over effect on a range of condition traits expressed at
breeding grounds [43—45]. It is tempting to speculate that GM represents one of these carry-
over effects and that exposure to environmental bacteria along migration routes and at
wintering grounds could result in divergent GM structures between resident and migratory
species during the breeding season. Alternatively, GM variation between migrating and
resident species could be caused by ecological and physiological adaptations evolved as a
consequence of migration behaviour [46—49]. Previous studies have already shown that
avian GM can vary between breeding and wintering grounds [50], and that variation in
migration behaviour between closely related subspecies can affect GM [51]. However, our
study is the first to benefit from an extensive comparative dataset (comprising 52 species
breeding in the temperate zone) that allows to search for conserved GM patterns associated
with long-distance migration that discriminate migrating and non-migrating species at their
breeding grounds. Furthermore, a comparison of the GM profiles of two trans-Saharan
migrant species at their wintering and breeding grounds, in the context of other synoptic
passerine hosts, allowed us to assess GM turnover between temperate breeding grounds

and wintering grounds in tropical areas.

Methods

Filed sampling

In this study, we analysed faecal microbiota, which is shown to be a good proxy for avian
GM [52, 53], with sample collection and storage as described in Kropackova et al. [54].
Faecal samples of temperate passerines (405 samples from 52 species), were obtained
during the 2014 breeding season (April — July) at various sampling sites in the Czech
Republic (Table S1)[54]. Tropical species (205 samples from 47 species) were sampled in
upland forest habitats in Cameroon (Mount Cameroon; Table S1, Fig. S1). Tropical samples
were collected durmg both the ramny (September 2014) and dry seasons
(November/December 2014), the latter corresponding to the breeding season for most

tropical passerines included in our dataset. Furthermore, the migration and wintering
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period of temperate trans-Saharan migrants also largely overlaps with the dry season in
Cameroon. During the dry season, we also collected 25 samples from two temperate-
breeding trans-Saharan migrant species, the garden warbler (Sylvia borin) and willow

warbler (Phylloscopus trochilus).

Migration behaviour, diet and host phylogeny

Temperate species were categorised as trans-Saharan migrants with wintering grounds in
tropical sub-Saharan Africa (n = 148 samples and 19 species; Fig. S1) or residents/short-
distance migrants (n =257 samples and 33 species) that do not fly as far as Sahara during
therr migration [42]. Most African species are sedentary or seasonal short-distance migrants
and, while actual data on migration routes are mostly missing, it is unlkely that these
species migrate over distances of more than 500 km [55]. In this study, we also consider
the effect of diet as an important modulator of vertebrate GM [56], though its effect on
passerine GM appears to be rather limited [54]. Data on diet for each species was extracted
from the EltonTraits 1.0 database [57] and classified on a continuous scale ranging from
full herbivory/granivory to full insectivory/carnivory. No other ecological variables were
included i the statistical models as they are often unknown for tropical species;
nevertheless, our previous research suggests a very low effect of host ecology on GM

variation compared to phylogenetic relatedness and geography [54].

To account for phylogenetic co-variance, a set of 1 000 Bayesian trees with Hackett
backbone was prepared for the species sampled (obtained from http//birdtree.org/) [58].
Subsequently, a maximum clade credibility tree was constructed using the maxCladeCred

function in the R package phangorn [59].

Microbiota profiling

Metagenomic DNA from faecal samples was extracted using the PowerSoil DNA isolation
kit (MO BIO Laboratories Inc., USA). Primers covering the V3-V4 variable

region on bacterial 16S rRNA (ie. S-D-Bact-0341-b-S-17
[CCTACGGGNGGCWGCAQG] and S-D-Bact-0785-a-A-21
[GACTACHVGGGTATCTAATCC]; both tagged by 10bp barcodes) were used during the
PCR step [60]. For the polymerase chain reaction (PCR), we used 8 pl of KAPA HIFI Hot
Start Ready Mix (Kapa Biosystems, USA), 0.37 uM of each primer and 7 pl of DNA

template. PCR conditions were as follows: initial denaturation at 95°C for 5 min followed
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by 35 cycles, each of 98°C (20 sec), 61°C (15 sec) and 72°C (40 sec), and a final extension
at 72°C for 5 min. The PCR products were subsequently pooled at equimolar concentration
and purified using the High Pure PCR product Purification Kit (Roche, Switzerland).
Sequencing adaptors were ligated using TruSeq nano DNA library preparation Kkits
(Illumina, USA) and the resulting amplicon libraries sequenced on a single Miseq run
(Illumina, USA) using v3 chemistry and 2 X 300 bp paired-end reads. We also sequenced
34 blank isolates along with the GM samples and used these for the identification of
putative bacterial contaminates. A detailed description of the laboratory procedures is
provided in Kropackova et al. [54].

Bioinformatic processing of 16S rRNA data

Sample demultiplexing and detection and trimming of gene-specific primers were
undertaken using Skewer [61]. Reads of low quality, ie. hose with an expected error rate
per paired-end read > 2, were then eliminated. Dada2 [62] was used for denoising of
quality- filtered reads and subsequent quantification of 16S rRNA amplicon sequence
variants (hereafter ASVs) in each sample. Chimeric ASVs were detected and eliminated
using UCHIME [63] and gold.fna, a chimera-free reference database available at:
https//drive5S.com/uchime/gold.fa. Using the Decontam package [64], we identified and
subsequently eliminated 69 putatively contammating ASVs whose prevalence was
increased in blank isolates compared to GM samples and/or showed greater representation
m samples with a low concentration of metagenomic DNA (as assessed based on
concentration of PCR products). Furthermore, we excluded ASVs assigned as
“Chloroplast” (18.1% of reads after quality filtering), “Mitochondria” (7.2% of reads after
quality filtering), or those not assigned to any bacterial phylum (<0.01% of reads after
quality filtering) from all downstream analyses. Subsequently, we clustered all remaining
ASVs at the 97% similarity threshold using vsearch [65] and assigned taxonomy of
representative sequences for each of the 3281 resulting operational taxonomic units (OTUs)
using RDP classifier (> 0.5 posterior confidence) and the Silva reference database
(v.138)[66]. Representative OTU sequences were further aligned using DECIPHER [67],
the maximum likelihood tree being constructed using FastTree [68]. The final dataset
comprised 6.98 million high-quality sequences (median number of reads per sample = 8§
353, range =1 006 — 138 465).
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Statistical analysis

GM alpha diversity was assessed using Shannon indices, the number of observed OTUs
and phylogenetic diversity [69], the diversity indices being calculated for individual
samples after OTU table rarefaction (ie. random sub-setting of read counts per sample
corresponding to minimal sequencing depth; 1 006 sequences/sample). To assess variation
in GM composition, we calculated both Bray-Curtis and a binary version of Jaccard
dissimilarity — between samples. Jaccard dissimilarity only accounts for OTU
presence/absence and, therefore, is more sensitive than Bray-Curtis dissimilarity to GM
changes driven by rare OTUs. The resulting dissimilarity matrices were used as an input
for principal coordinate analysis (PCoA), the PCoA ordination being used for visual
mspection of variation in GM composition. Scores for the first two PCoA axes were later

used as response variables in statistical models of variation in GM composition.

We applied a bootstrap-based tests to assess differences in GM composition between the
four categories of passerine host (i.e. tropical from ramny or dry season and temperate trans-
Saharan migrants or residents/short-distance migrants). Specifically, for each pair of host
categories (e.g. dry vs. rainy season tropical hosts), we extracted two vectors of GM
dissimilarity corresponding either to different host species from the same category or to
different host species from different categories. Dissimilarities for same host species pairs
were averaged. Next, we calculated the mean difference between these two vectors and
corresponding 95% bootstrap-based confidence intervals using the two.boot() function in
the R package simpleboot (n = 1000 resampling steps)[70]. In parallel, we analysed the
effect of climatic zone, migration and diet on GM alpha diversity and composition using
generalised linear mixed models (GLMM), with phylogenetic correlations fitted using the
R package phyloglmm [71]. In the case of GM alpha diversity, diversity indices were used

as the GLMM response, with observed OTU counts logjo transformed to achieve normal

distribution of residuals. In the case of GM compositional variation, we considered either
PCoA scores for GM dissimilarity matrices or abundances (i.e. read counts) of ndividual
OTUs in each sample as response variables. The models estimated correlation due to host
phylogeny, while systematic variation among species was modelled via random effects. All
models, except those focused on OTU abundance, were assumed to have a Gaussian
distribution. Models based on OTU abundance were assumed to have a negative binomial
distribution, while the log-scaled total number of sequences per sample was considered as

an offset to account for uneven sequencing depth. To
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achieve convergence between the OTU-specific models, each model was only fitted for
OTUs detected in > 20 samples and represented by > 500 sequences i total. Significance
testing associated with GLMMSs was based on type II sum of squares, meaning that the
effect of climatic zone, migration and season was adjusted for the effect of diet and vice
versa. In the case of OTU-level analyses, false discovery rates (FDR)[72] were calculated
to account for multiple testing and only effects with an FDR < 0.05 were reported as
significant. Furthermore, we applied Tukey post-hoc tests for comparisons between the
four host species categories, ie. tropical samples from dry and rainy seasons, temperate
zone trans-Saharan migrants and residents/short-distance migrants. The effect of host
phylogeny was assessed based on a comparison of GLMMs with and without phylogenetic
correlation. Similarly, the effect of host species identity was assessed based on a
comparison of models including host species as a random effect vs. a simplified model
ignoring information on host species. All statistical analyses were undertaken using the R

statistical environment v.4.0.3 [73].

Results

Alpha diversity variation

While the number of OTUs and phylogenetic diversity were highest in tropical birds during
the rainy season, this was not true for Shannon diversity. At the same time, there was no
significant difference in alpha diversity between dry season tropical birds and trans-
Saharan migrants or residents/short-distance migrants sampled in the temperate zone (Fig.
1, Table 1, Table S2). Furthermore, all GM alpha diversity measurements, with the
exception of Shannon index, increased with the increasing proportion of insects in the diet
(Fig. S2). GLMMs on alpha diversity accounting for host phylogeny and species identity
received higher support than more simplified versions lacking phylogenetic correlations
and/or species identity random effects, suggesting that host species identity, as well as their

phylogenetic relatedness, had an impact on GM diversity (Table S3).

Whole community GM divergence

PCoAs revealed considerable overlap in GM composition between the four passerine host
groups (Fig. 2). Nevertheless, consistent with patterns in alpha diversity, subsequent
GLMMs for the first two ordination axes suggested that tropical passerines from rainy
season harbour the most distinct GM composition compared to other host groups (Table
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2, Table S4, Fig. S3). According to taxonomic barplots (Fig. 3), this difference was largely
driven by an increase in the abundance of the phylum Firmicutes during the rainy season,
which represented, on average, 49.5% of reads in tropical hosts during the rainy season,
32.4% during the dry season, 34.9% in temperate trans-Saharan migrants and 32.3% in
temperate residents/short-distance migrants. Aside from tropical samples during the rainy
season, GLMMs revealed significant variation between the other three host groups, with
the magnitude and significance of these differences being dependent on the combination of
the actual GM dissimilarity index and the PCoA axis. In addition, GLMMs also uncovered
a significant link between GM and diet composition (Fig. S4). The effect of phylogeny on
GM composition was supported in the case of GLMMs by the first PCoA axis of Bray-
Curtis dissimilarity and the second PCoA axis of Jaccard dissimilarity. Models completely
ignoring both the effects of interspecific variation and phylogeny exhibited much lower
performance than more complex GLMMs (Table S5).

Separate PCoAs and subsequent GLMMs for the temperate species subset revealed
significant variation between trans-Saharan migrants and residents/short-distance migrants
based on Jaccard, but not Bray-Curtis, dissimilarity, though the effect of diet was not
significant (Table S6). On the other hand, both GM dissimilarity indices uncovered a
significant effect of diet on the tropical passerine subset, as well as in the variation between
rainy and dry seasons (Table S6). In addition to PCoA, bootstrap analysis was applied to
elucidate the effect of climatic zone and migration on GM composition. This approach used
raw dissimilarity values between host species and not PCoA ordmation of all GM samples
and, as such, provides more straightforward isights into effect sizes of GM differences
between host categories. On the other hand, this routine does not account directly for the
effect of diet and phylogeny, and does not utilise information on intraspecific GM variation.
By using the bootstrap approach, we found that the highest differences in GM composition
were between both temperate species categories and tropical species from the rainy season.
Seasonal GM variation in the tropical zone tended to be higher than the difference between
temperate and tropical GM collected during the dry season. Temperate zone residents/short-
distance migrants did not exhibit higher dissimilarity to tropical birds than trans-Saharan
migrants. Indeed, the opposite was true in the case of Bray-Curtis dissimilarity. These
analyses also suggested low difference between trans-Saharan migrants and temperate zone

residents/short-
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distance migrants, with corresponding confidence intervals overlapping with zero (Fig.

S3).

Bacterial OTUs involved in GM divergence

Differential abundance analysis for the 121 dominant OTUs (74% of all reads) identified
40 OTUs (41.5% of all reads) whose abundances were affected by climatic zone migration
or a variation between dry vs. rainy seasons. More specifically, 19 OTUs in tropical hosts
varied between the dry and rainy seasons and the abundance of three OTUs varied between
trans-Saharan migrants and temperate zone residents/short-distance migrants. In addition,
there was pronounced variation between temperate and tropical hosts sampled both during
the dry (15 and 16 OTUs varied in trans-Saharan migrants and residents/short-distance
migrants, respectively) and ramy seasons (significant difference for 25 and 23 OTUs,
respectively; Fig. S6). Finally, two OTUs from the genus Ritkettsia and family Rhizobiales
were positively correlated with the proportion of insects in the diet. OTU-level GLMM
parameter estimates of contrasts between dry season tropical birds and trans-Saharan
migrants were strongly correlated with contrasts between dry season tropical samples and
temperate residents/short-distance migrants (Pearson correlation: r = 0.9610012, p
<0.0001), with no significant difference in their values (Paired t-test: t = -0.80223, p =
0.4273). The same held true for the comparison of rainy season tropical samples with the
two groups of temperate hosts (Pearson correlation: r= 0.8684271, p <0.0001; Paired t-
test: t= 0.80223, p = 0.4273). This suggests, that tropical environment does not directly

affect GM of trans-Saharan migrants during their breeding season.

As PCoA-based GLMMs revealed a pronounced effect of diet in a subset of tropical
passerines, but no effect of diet in the temperate zone, we conducted additional differential
abundance analyses on corresponding subsets, the results of which showed that no OTUs
were associated with diet in temperate zone passerines but five OTUs that were more

abundant in insectivorous passerines in the tropical zone (Figure S7).

GM of trans-Saharan migrants at wintering and breeding grounds

To assess GM changes between breeding and wintering grounds i trans-Saharan migrants,
we sampled the GM of garden warblers and willow warblers in the temperate zone during

their breeding season (n= 11 and 6, respectively) and in the tropical region
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during their migration and wintering period (n = 23 and 2, respectively). PCoA suggested
a dramatic effect of tropical and temperate environments on GM composition i both
species. PCoA ordination showed that, while GM samples collected at their breeding
grounds showed perfect overlap with other temperate zone passerines, their GM changed
dramatically i the tropics. The direction of this change was congruent with the overall
direction of the difference between temperate species and tropical passerines from the dry
season (Fig. 4). At the same time, tropical and temperate environments had no effect on
GM diversity of the two species (GLM with Gaussian distribution: p > 0.5 in both cases;
Fig. S8X). The negative bmnomial models implemented in the DESeq2 package (Love,
Huber and Anders 2014), which account for variation between host species, showed that
the relative abundances of 16 OTUs varied between the breeding and wintering grounds
(Fig. 5), with the most prominent changes detected i the case of Serratia and

Staphylococcus OTUs.

Discussion

GM of tropical passerines during the rainy and dry seasons

While the tropical environment is generally considered to be relatively stable and
predictable, annual fluctuations in precipitation between the dry and rainy seasons can
affect a plethora of biological processes, ncluding reproduction, migration and feather
moulting [74, 75]. These periodic changes can also impact GM, as has been shown for great
apes, where GM composition undergoes remarkable changes due to seasonal shifts in the
diet [41]. Though several studies have been undertaken on avian GM in tropical regions
[37-40], the variation between dry and rainy seasons has not yet been examined in any
detail. Our comparative dataset uncovered dramatic changes in passerime GM composition
and alpha diversity between rainy and dry seasons within the same geographic location,
with the changes being of a comparable, or even more pronounced, effect size as GM
variation between temperate and tropical host populations separated by

> 5000 km. This suggests that actual environmental conditions at a given locality have a
decisive effect on passerine GM. At the proximate level, the observed changes could be
linked with arange of different mechanisms, such as environmental sources of GM bacteria
being affected by seasonal variation in abiotic conditions. The diet consumed is also likely
to vary between the dry and rainy seasons, and thus could contribute to the differences in

GM observed. Last but not least, physiological and behavioural aspects
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associated with reproduction could also play some role in seasonal GM changes as
reproduction of most tropical passerines in our study area mainly takes place during the dry
season [76—78]. Unfortunately, we still know very little about how these factors contribute
to GM composition in birds. Likewise, the role of seasonal variation of these factors in the
tropical environment is not sufficiently understood. As such, further research is required to
uncover the mechanistic basis of temporal fluctuations i avian GM i tropical

environments.

GM variation between climatic zones

A decrease in biotic diversity with increasing latitude is a universal macroecological pattern
that has been observed across a broad range of taxa [79; but see 80], including parasites
and pathogens associated with animal hosts [16]. To date, however, the diversity of host-
associated microbial communities has rarely been mnvestigated in this context, with the
most relevant data being based on GM profiling in human populations [19, 25— 27; but see
28]. Most of these studies provided support for an increase in GM diversity in tropical
compared with temperate populations [19, 25; but see 27]. However, these differences were
probably caused by contrasting lifestyles and environments between developed and
developing countries. This is also supported by a recent observation that the GM of people
from developed countries that stay for a long period in tropical areas and adopt a local life-

style converge rapidly with those of local residents [81].

The results of our comparative study do not suggest any pronounced systematic effect of
climatic zone on passerine GM alpha diversity as tropical species exhibited significantly
increased GM diversity compared to temperate zone passerines during the rainy season
only. Despite the lack of any clear difference in GM alpha diversity, community
dissimilarity analysis revealed substantial shifts in GM composition between temperate and
tropical passerines, with GM profiles from the rainy season exhibiting greater dissimilarity
to temperate passerines than GM collected during the dry season. However, subsequent
differential abundance analysis revealed that the divergence between temperate and tropical
hosts collected during dry and rainy seasons was predominantly determined by different
sets of OTUs. At the same time, only four OTUs exhibited consistent differential
abundance between tropical species, regardless if sampled during dry or rainy season, and
temperate species, irrespective of their migration behaviour. The OTUs exhibiting
consistently higher abundance in temperate hosts comprised Rikettsiella
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and Rikettsia that represents insect pathogens [82] and insect-transmitted obligate
mtracellular parasites of vertebrate respectively [83]. The OTU from the genus
Methylobacterium—Methylorubrum, generally assumed to be of environmental origin [84],
was also more abundant in temperate passerines. A single OTU from the genus
Bradyrhizobium, comprising predominantly soil-dwelling species that are often nvolved
in mutualistic interactions with plants [85], showed a significant decrease in abundance in
temperate species (compared with tropical sp.), irrespective of the season in which samples
were collected or host migration behaviour. As all OTUs exhibiting consistent variation
between tropical and temperate species exhibited a tight association with insects or were
likely of environmental origin, we assume that GM differences between climatic zones
were mainly affected by a divergence i the bacterial pool present in the diet and other
environmental resources. Conversely, the contribution of contrasting ecology and life
history-linked phenotype traits in tropical vs. temperate passerines to GM variation
between climatic zones appears to be of relatively low importance, based on our results.
This does not mean that host ecology does not affect GM, however, nor that its contribution
to GM variation cannot vary between climatic zones. Indeed, as differential abundance
analysis detected five OTUs positively linked with the proportion of insects in diet of
tropical passerines, and no OTU affected by diet in temperate hosts, our data suggests that
diet has a greater effect onthe GM of tropical passerines. Nevertheless, these results should
be nterpreted with caution. Alternative explanations for the observed patterns may lie in
the fact that the dietary data we used do not reflect flexibility in foraging habits that can be
greater in temperate species. Indeed, temperate zone passerines frequently change their diet
opportunistically at different times of the year and according to resource availability [86].
Furthermore, the diet of temperate long-distance migrants is more dependent on insects,

which further complicates statistical separation of the effect of diet and migration.

Effect of migration

In this study, we adopted two approaches to untangle how migration behaviour affects GM
in passerines. First, we studied GM changes between the breeding and wintering grounds
of two trans-Saharan migrant species (garden warbler and willow warbler) to assess the
actual effect of climatic zone on GM. Second, we conducted a comparative analysis using

GM sampled during the breeding season for temperate passerines that
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varied in migration behaviour, allowing us to evaluate long-lasting pervasive effects of

migration behaviour on GM.

The GM of the two trans-Saharan migrants (collected at breeding grounds in the temperate
zone and at dry season wintering grounds in the tropics) exhibited substantial differences
n composition, but not in alpha diversity. According to PCoA sample ordination, these
changes corresponded with overall GM differentiation between temperate zone passerines
and tropical passerines sampled during the dry season, but not the rainy season. Moreover,
a Staphylococcus OTU, which contributed most to GM compositional change between
wintering and breeding grounds, was also more abundant in tropical species during the dry
season than during the rainy season. Altogether, our data suggest that environment is the
main driver of GM variation between wintering and breeding grounds in trans-Saharan
migrant species. Consistent with our results, several previous studies have reported
variaton in GM composition between breeding and wintering grounds, or during spring
and autumn migrations in other migratory birds [35, 50, 87, 88]. However, none of these
previous studies took the opportunity to contrast corresponding GM profiles with an
extensive comparative dataset that included other species residing at the breeding and
wintering grounds. Consequently, our study is the first to allow an assessment of whether
observed changes between breeding and wintering grounds reflect GM variation in other

co-occurring bird species at corresponding  sites.

In addition to spatially diversified pools of environmental microbes interacting with the
GM of long-distance migrants, behavioural, physiological and ecological adaptations
associated with migration [46—49] could also have specific impacts on migrant GM. It is
tempting to speculate that all these factors could have a long-lasting pervasive effect on the
GM composition of long-distance migrants, making it distinct from that of resident species

cohabiting the same geographic area.

According to our comparative analysis comprising 19 species of trans-Saharan migrants
and 33 temperate residents/short-distance migrants, however, the GM of trans-Saharan
migrant during the breeding season showed only a small, though still significant, difference
to that of other temperate species. Furthermore, our data suggest that these differences are
unlikely to be caused by bacteria incorporated into GM during overwintering and migration
as alpha diversity did not increase compared to other temperate zone passerines and GM

composition did not show a lower dissimilarity than

51



tropical hosts. Moreover, just one (genus Lactoccus) of three OTUs over-represented in the
subset of all trans-Saharan migrants attheir breeding grounds (compared to other temperate
zone species) exhibited higher abundance in tropical hosts during the dry season than in
temperate residents/short-distance migrants. Finally, two OTUs that exhibited a striking
increase in abundance in garden and willow warblers at their wintering grounds did not
vary between trans-Saharan migrants and other temperate passerines at their breeding
grounds. Altogether, the results indicate that GM acquired at wintering grounds and during
migration rapidly converge to a GM typical for the temperate zone following their spring
arrival at the breeding grounds. This is in lme with our previous study demonstrating a low
level of GM stability over time in another trans-Saharan migrant, the barn swallow
(Hirundo rustica)[34]. Similarly, Risely et al. [89, 90] showed that difference in GM
between young non-migrating individuals and adult migrants of a non-passerine bird, the
red-necked stint (Calidris ruficollis), tended to decline gradually after returning from their

wintering  grounds.

The GM of trans-Saharan migrants was characterised by an increased abundance of three
OTUs of lactic acid bacteria (LAB, genus Carnobacterium, Enterococcus and
Lactococcus) that prefer energy-rich substrates and are capable of fermenting
carbohydrates under anoxic conditions [91]. The presence of some LAB is believed to be
generally beneficial as they stimulate the host’s immune system and produce metabolites
mvolved in the maintenance of GM homeostasis [92]. Moreover, some LAB species
contribute to the host’s energy balance via improved feed conversion [93], which can be
particularly beneficial for long-distance migrants adapted for energy-demanding migration,
often associated with a considerable shortage of food. As the diet of migratory passerines
typically comprises a higher percentage of insects, we intentionally adjusted our
comparative analysis to include this confounding variable. Nevertheless, owing to the
above-mentioned issues associated with dietary data, we cannot fully guarantee that our
analysis precisely separated the effects of migration and diet. It is also worth noting that
the OTU from the genus Lactococcus over-represented in our trans-Saharan migrants was

also more abundant in insectivores from the tropical zone.

Conclusions

Our study provides the first insight into GM variation between tropical and temperate
passerines. We show that GM composition and diversity differ dramatically between the
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dry and rainy seasons in tropical hosts and, consequently, only a limited number of bacterial
OTUs exhibit consistent differential abundance between tropical and temperate zones,
irrespective of seasonal GM changes in the tropics. These OTUs correspond predominantly
to insect-borne or environmental bacteria, suggesting a predominant impact of environme nt
on GM differentiation across climatic zones. In trans-Saharan migrants, we observed a
dramatic difference in GM between wintering and breeding grounds, consistent with
overall GM differentiation of other passerines inhabiting these two regions. At the same
time, systematic differences between trans-Saharan migrants and temperate residents or
short-distance migrants at breeding grounds were relatively low and were probably not
caused by bacteria incorporated into GM at wintering grounds or during migration. Diet
had a relatively low effect and our data suggest that it has a greater effect on the GM of
tropical hosts compared to temperate hosts. Altogether, our results demonstrate extensive
passerine GM plasticity and the dominating role of environmental factors on its

composition.
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Tables

Table 1: Parameter estimates for mixed models analysing the effect of climatic zones,
season, migration and diet on GM alpha diversity. Three alpha diversity measures (Shannon
diversity, Number of observed OTUs and phylogenetic diversity) were used as a response.
Parameter estimates, standard error, z statistics and corresponding p values associated with
individual models are shown in the table. All models included species identity as a random
factors and estimated phylogenetic correlation among species.

Response Predictor Estimate  Standard Error zstatistic p values
Shannon (Intercept) 1.5683 0.2763 5.6760 0.0000
Tropical (Dry S.) -0.0740 0.1273 -0.5814 0.5609
Temperate (Transaharan) -0.3434 0.1425 -2.4089 0.0160
Temperate (Resid, Short) -0.2890 0.1429 -2.0217 0.0432
diet 0.3273 0.2013 1.6259 0.1040
Observed (Intercept) 4.2685 0.5167 8.2611 0.0000
Tropical (Dry S.) -0.2183 0.2444 -0.8933 0.3717
Temperate (Transaharan) -0.8621 0.2857 -3.0181 0.0025
Temperate (Resid, Short) -0.7914 0.2884 -2.7440 0.0061
diet 0.9590 0.4001 2.3968 0.0165
Phylog. div  (Intercept) 2.1131 0.1850 11.4198 0.0000
Tropical (Dry S.) -0.1130 0.0875 -1.2908 0.1968
Temperate (Transaharan) -0.3605 0.1016 -3.5497 0.0004
Temperate (Resid, Short) -0.2979 0.1014 -2.9390 0.0033
diet 0.3564 0.1419 2.5114 0.0120
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Table 2: Parameter estimates for mixed models testing the effect of climatic zones, season,
migration and diet on GM composition. Scores for the first and the second PCoA axis
calculated based on two dissimilarity indexes (Bray-Curtis and Jaccard) were used as
response variables. Parameter estimates, standard error, z statistics, corresponding p values
associated with individual models are shown.

Response Predictor Estimate Standard Error zstatistic p values
Bray-Curtis axis 1 (Intercept) -0.0097 0.0604 -0.1598 0.8731
Tropical (Rainy S.) 0.1319 0.0164 8.0362 0.0000
Temperate (Resid, Short) -0.0784 0.0267 -2.9383 0.0033
Temperate (Transaharan) -0.0779 0.0268 -2.9108 0.0036
diet 0.0896 0.0402 2.2270 0.0259
Jaccard axis 1 (Intercept) -0.0421 0.0172 -2.4526 0.0142
Tropical (Rainy S.) 0.1342 0.0141 9.5085 0.0000
Temperate (Resid, Short) -0.0496 0.0139 -3.5629 0.0004
Temperate (Transaharan) 0.0003 0.0156 0.0210 0.9833
diet 0.0666 0.0199 3.3468 0.0008
Bray-Curtis axis 2 (Intercept) 0.0105 0.0244 0.4320 0.6657
Tropical (Rainy S.) 0.0066 0.0204 0.3241 0.7458
Temperate (Resid, Short) 0.0534 0.0197 27112 0.0067
Temperate (Transaharan) 0.0201 0.0220 0.9146 0.3604
diet -0.0664 0.0282 -2.3564 0.0185
Jaccard axis 2 (Intercept) -0.0255 0.0420 -0.6075 0.5435
Tropical (Rainy S.) -0.0697 0.0156 -4.4699 0.0000
Temperate (Resid, Short) 0.0270 0.0201 1.3385 0.1807
Temperate (Transaharan) 0.0839 0.0201 4.1812 0.0000
diet 0.0017 0.0307 0.0541 0.9569
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Figures

Figure 1: GM alpha diversity variation for three diversity measures (Shannon diversity,
number of observed OTUs and phylogenetic diversity) in tropical passerines sampled
during the wet or rainy season, temperate trans-Saharan migrants and temperate
residents/short-distance migrants. Different letters above bars indicate significant
differences according to Tukey post-hoc tests.
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Figure 2: GM differentiation among tropical passerines collected during dry or rainy
season and trans-Saharan migrants or residents/short-distance migrants collected in
temperate zone according to PCoA ordination. PCoA was performed on two types of
community distances (Jaccard and Bray-Curtis dissimilarities).
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Figure 3: Average proportions of dommating bacterial phyla and classes m GM of
individual passerine species (‘others’ indicates taxa representing < 1% of whole
community).
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Figure 4: PCoA depicting GM changes between two trans-Saharan species (willow and
garden warbler; in opaque colours) that were collected in temperate zone during the
breeding period (blue) or tropical zone during the migration and wintering period (red).
Samples from other species are indicated by semitransparent plotting characters.
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Figure S: Heatmap for relative abundances of OTUs that exhibited significant changes
between breeding vs. wintering grounds of two temperate tran-Saharan migrants. Matrix
was clustered using Ward method.
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Supplementary tables

Table S1: Sample metadata (code = sample identity, species, category= temperate trans-
Saharan migrants [Temperate Transaharan], temperate residents/short-distance migrant
[Temperate Resid.Short], tropical rainy season [Tropical Wet] and tropical dry season
[Tropical Dry].Priloha 1

Table S2: Mixed model results testing the effect of group identity (i.e. tropical passerines
collected during dry or rainy season and trans-Saharan migrants or residents/short-distance
migrants collected in temperate zone) and diet on alpha diversity. Significance testing is
based on Type II sum of squares. Three alpha diversity measures (Shannon diversity,
Number of observed OTUs and phylogenetic diversity) were used as response. The table
shows test statistics (x2), associated degrees of freedom (Df) and probability values (P
value). All models included species identity as a random factors and estimated phylogenetic
correlation among species. Significant predictors (p value < 0.05) are bold.

Response Predictor Df %2 P value
Shannon group identity 3 7.4465 0.0589
diet 1 2.6436 0.1040
Observed group identity 3 11.9550 0.0075
diet 1 5.7445 0.0165
Phylog. div group identity 3 14.7107 0.0021
diet 1 6.3072 0.0120

Table S3: Effect of phylogeny and host species identity on alpha diversity. For each of the
alpha diversity measures, the most complex model version (including species identity and
phylogenetic correlation) were compared with simplified model versions. AIC values and
corresponding model weights are shown.

Phylogeny + Species Species No random
Response AIC weights AIC weights  AIC weights
Shannon 1491.22 0.9926  1501.00 0.0074  1522.30  0.0000
Observed 2249.18 0.9349 225451 0.0651  2283.24  0.0000
Phylog. Div. 1006.68 0.9490  1012.52 0.051C  1040.98  0.0000
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Table S4 : Mixed model results testing the effect of group identity (i.e. tropical passerines
collected during dry or rainy season and trans-Saharan migrants or residents/short-distance
migrants collected in temperate zone) and diet on GM composition (i.e. PCoA scores for
first two ordination axes). PCoA was conducted for Jaccard and Bray-Curtis dissimilarities.
Significance testing is based on Type II sum of squares. The table shows, test statistics (x2),
associated degrees of freedom (Df) and probability values (P value). All models included
species identity as a random factors and estimated phylogenetic correlation among species.
Significant predictors (p value <0.05) are in bold.

Response Predictor Df x2 P value
Bray-Curtis axis 1 group identity 3 102.3745  0.0000
diet 1 49594  0.0259
Jaccard axis 1 group identity 3 170.1837  0.0000
diet 1 11.2011  0.0008
Bray-Curtis axis 2 group identity 3 8.4490 0.0376
diet 1 5.5525  0.0185
Jaccard axis 2 group identity 3 58.8723  0.0000
diet 1 0.0029 0.956S

Table S5: Effect of phylogeny and host species identity on GM composition. GLMMs
were fitted for the first two PCoA axes of Jaccard and Bray-Curtis dissimilarities. For each
of these response variables, the most complex model version, including species identity
and phylogenetic correlation, were compared with simplified model versions. AIC values
and corresponding model weights are shown.

Phylogeny + Species Species No random
Response AIC weights AIC weights  AIC weights
Bray-Curtis axis 1 -1144.11 0.9496 -1138.24 0.0504 -973.35 0.0000
Bray-Curtis axis 2 -789.06 0.2689 -791.06 0.7311 -762.13 0.0000
Jaccard axis 1 -1257.88 0.2689 -1259.88 0.7311 -1226.97 0.0000
Jaccard axis 2 -1148.46 0.7094 -1146.67 0.2906 -1067.92 0.0000
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Table S6: Mixed model results testing differences in GM composition on the subset of
passerine samples collected in tropical or temperate region. Effect of migration behaviour,
season and diet was analysed. Response variables corresponded to PCoA scores for the first
two ordmnation axes. PCoA, calculated separately for these two subsets, was conducted for
Jaccard and Bray-Curtis dissimilarities. Significance testing is based on Type II sum of
squares. The table shows, test statistics (y2), associated degrees of freedom (Df) and
probability values (P value). All models included species identity as a random factors and
estimated phylogenetic correlation among species. Significant predictors (p < 0.05) are
bold.

Response Predictor Df 2 P value
Bray-Curtis axis 1 migration 1 0.2693  0.6038
diet 1 0.2452  0.6205
Jaccard axis 1 migration 1 5.7479 0.0165
diet 1 0.6462 04215
Bray-Curtis axis 2 migration 1 0.4857  0.4859
diet 1 1.9993  0.1574
Jaccard axis 2 migration 1 16.9627 0.0000
diet 1 1.3908  0.2383
Bray-Curtis axis 1 season 1 36.2419 0.0000
diet 1 16.5502 0.0000
Jaccard axis 1 season 1 189.8693 0.0000
diet 1 243554 0.0000
Bray-Curtis axis 2 season 1 49776 0.0257
diet 1 0.0126 09105
Jaccard axis 2 season 1 5.2300 0.0222
diet 1 3.5069  0.0611
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Supplementary figures

Figure S1: Phylogenetic tree of species included i the study. Geographic distribution
and migration behaviour is indicated by different colours.
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Figure S2: Association of GM alpha diversity with proportion of nsects mn diet. Three
alpha diversity measures were analysed, namely Shannon diversity, number of observed
OTUs and phylogenetic diversity. Probability values based in Type II sum of squares
associated with each alpha diversity measure are shown. Parameter estimates are presented
in Table S2.
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Figure S3: Variation in PCoA scores for first two ordination axes between tropical
passerines collected during dry or rainy season and trans-Saharan migrants or
residents/short-distance migrants collected in temperate zone. Different letters above bars
indicate significant differences according to Tukey post-hoc tests.
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Figure S4: Association of GM composition (i.e. scores for the first two PCoA axes) with
proportion of insects in diet. PCoA was conducted for Bray-Curtis and Jaccard
dissimilarities. Probability values based in Type II sum of squares associated with response
measure are shown. Parameter estimates are presented in Table S4X.
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Figure S5: Average difference in interspecific dissimilarities for species belonging to the
same vs. the opposite category. Error bars correspond to 95% bootstrap-based confidence
mntervals.
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Figure S6: OTUs that exhibited significant variation between four categories of passerine
hosts according to GLMMs for data with negative binomial. Only OTUs that passed
multiple testing corrections (FDR < 0.05) are shown. Different letters above bars indicate
significant differences according to Tukey post-hoc tests.
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Figure S7: OTUs that exhibited significant association with diet on a subset of tropical
samples according to GLMMs data with negative binomial distribution. Only OTUs that
passed multiple testing corrections (FDR < 0.05) are shown.
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Figure S8: Alpha diversity variation between breeding vs. wintering grounds of two
temperate trans-Saharan migrants.
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' Abstract

Background: It has been proposed that divergence in the gut microbiota composition between incipient
species could contribute to their reproductive isolation. Nevertheless, empirical evidence for the role of gut
microbiota in speciation is scarce. Moreover, it is still largely unknown to what extent closely related species in
the early stages of speciation differ in their gut microbiota composition, especially in non-mammalian taxa, and
which factors drive the divergence. Here we analysed the gut microbiota in two closely related passerine
species, the common nightingale (Luscinia megarhynchos) and the thrush nightingale (Luscinia luscinia). The
ranges of these two species overlap in a secondary contact zone, where both species occasionally hybridize
and where interspecific competition has resulted in habitat use differentiation.

Results: We analysed the gut microbiota from the proximal, middle and distal part of the small
intestine in both sympatric and allopatric populations of the two nightingale species using sequencing
of bacterial 16S rRNA. We found small but significant differences in the microbiota composition among
the three gut sections. Howewer, the gut microbiota composition in the two nightingale species did not
differ significantly between either sympatric or allopatric populations. Most of the observed variation in
the gut microbiota composition was explained by inter-individual differences.

Conclusions: To our knowledge, this is the first attempt to assess the potential role of the gut microbiota in
bird speciation. Our results suggest that neither habitat use, nor geographical distance, nor species identity
have strong influence on the nightingale gut microbiota composition. This suggests that changes in the gut
microbiota composi-tion are unlikely to contribute to reproductive isolation in these passerine birds.
Keywords: Gut microbiome, Reproductive isolation, Diet, Habitat use, Passerines, Luscinia

Background referred to as the gut microbiota [1, 2]. It has been shown
Vertebrates harbour taxonomically and function-ally  that the composition of the gut microbiota can have pro-
diverse microbial communities in their intestines, found effects on the host’s physiology and morphology, as

well as behaviour [3-8]. Moreover, between-species
: i divergence in the gut microbiota composition could play a
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in the gut microbiota composition within and between
vertebrate species [1, 11-14] the factors that generate the
gut microbial diversity are still not sufficiently under-
stood, especially in non-mammalian taxa. Additionally, it
is largelly unknown how often closely related species differ
in the gut microbiota composition and thus how
widespread the effect of the gut microbiota in speciation.

Variation in the gut microbiota composition may arise
due to multiple factors including differences in the host’s
diet [15-18], habitat [19-21] or geographical range [22—
24]. In addition, host genes involved in the manage-ment
of the gut microbiota can play important roles in
structuring gut microbial communities [25-27]. All these
factors as well as a stable and long-lasting transfer of the
gut microbiota from parents to progeny may generate
divergence in the gut microbiota composition between
species. However, the importance of specific factors in
shaping gut microbiota diversity seems to differ among
different vertebrate lineages [28].

Between-species divergence in the gut microbiota
composition can contribute to the origin of reproductive
isolation by multiple ways. First, host-associated micro-
biota may be involved in assortative mating and thus the
establishment of pre-mating reproductive barriers [6, 9].
Furthermore, interactions between the host genome and the
microbiome, between different microbes of the same
metagenome, or between different host’s genes involved in
the management ofmicrobial communities can be disrupted
in hybrids [13]. This can cause gut microbiota dysbiosis in
hybrid individuals, which can reduce their fitness and
contribute to postzygotic isolation [10, 12, 13].

Here we studied the gut microbiota variation in two
closely related passerine bird species, the com-mon
nightingale (Luscinia megarhynchos) and the thrush
nightingale (Luscinia luscinia). The two species diverged
approximately 1.8 Mya [29] and their breed-ing areas
currently overlap in a secondary contact zone spanning
across Europe [30], where they occasionally hybridize.
Both species are migratory and differ in their wintering
grounds in sub-Saharan Africa [31]. They both
preferentially occupy dense shrubby vegetation (often
close to water bodies) and feed mostly on insects [31, 32].
In allopatric regions they inhabit the same habitats, while
in the sympatric region their habitat use and diet have
partially differentiated, presumably to reduce interspecific
competition [ 32-34]. Common nightingales in sympatry
occur more frequently in dry habitats and feed mostly on
Coleoptera, whereas thrush nightingales in sympatry prefer
wet habitats and feed more often on Diptera [32]. Given
that the gut microbi-ota composition can rapidly shift
depending on habitat
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and prevailing diet [20, 35 ], the gut microbiota may have
differentiated between the two nightingale species in
sympatry.

Rarely- occurring interspecific hybrids between the
common nightingale and thrush nightingale are viable, but
their relative fitness compared to the parental spe-cies has
not yet been evaluated thoroughly. Neverthe-less, it is

known that following Haldane’s rule, F-1 hybrid females

are sterile while F-1 hybrid males are fertile [36-38]. It has
been also documented that backcross hybrids are rarely
present in the sympatric population [39] and that gene flow
can occur between the two spe-cies [29, 40].

To elucidate the factors shaping the gut microbiota
variation in nightingales, we analysed the gut micro-biota
profiles in sympatric and allopatric populations of both
species using high-throughput sequencing of bac-terial 16S
rRNA. Unlike most studies on vertebrate gut microbiota
based on the analyses of faecal samples as a proxy for
intestinal samples, we analysed the micro-biota along the
whole small intestine to obtain a more complex view of the
gut microbiota composition in the two nightingale species.
First, we tested whether the gut microbiota composition
differs between the two species and whether there are any
bacteria exhibiting host spe-cies specificity, which would
suggest that the gutmicro-biota could potentially contribute
to the reproductive isolation between the two nightingale
species. Second, we compared the level of interspecific
differences in the gut microbiota composition in sympatry
and in allopatry. A higher divergence in sympatry would
imply a strongereffect of habitatuse or diet, while a higher
divergence in allopatry would indicate a stronger effect of
geographical region on the gut microbiota divergence [41,
42]. Simi-lar levels of divergence in sympatry and allopatry
would suggest that the divergence in host genes involved in
the management of the gut microbiota and/or long-term
transfer of the gut microbiota from parents to progeny may
cause a divergence of the gut microbiota between the two
nightingale species. To ourknowledge, this study is the first
to focus on the gut microbiota composition in a pair of
closely related avian species with incomplete reproductive
isolation, and to examine its variation in sympatric and
allopatric populations. Our findings could have important
implications for understanding the fac-tors affecting
variation in the gut microbiota composition in birds and the
possible role of gut microbiota diver-gence in avian
speciation.

Results

We sequenced metagenomic DNA extracted from three
sections of the small intestine in 18 individuals of the
common nightingale (Luscinia megarhynchos, hereafter
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CN) and 18 individuals of the thrush nightingales (Lus-
cinia luscinia, hereafter TN). In both species, half of the
individuals came from the sympatric region and half from
the allopatric region. The three sections of the small
intestine were: (1) the duodenum(the proxi-mal part of the
small intestine, hereafter DU), (2) the jejunum (the middle
part of the small intestine, here-after JE), and (3) the ileum
(the distal part of the small intestine before caecal
protuberances, hereafter IL). In total, 108 samples were
sequenced (three gut samples for each of the 36
individuals).

After the filtering steps, which included (1) removing low
-quality sequences, chimeric sequences, sequences not
consistently present in both technical duplicates for
a given sample, and non-bacterial sequences (includ-ing
especially reads from coccidia parasites)and (2) excluding
samples with less than 1000 reads after all the filtering steps
above (see Material and Methods for details), we obtained
a final dataset consisting of 57 samples. These included 22
samples from CN (DU= 6, JE = 6 and IL = 10, together
representing 12 individu-als) and 35 samples from TN (DU
= 10, JE = 10 and IL = 15, together representing 16
individuals) (Addi-tional file 1: Table S1). These samples
were covered by a total of 276,676 reads. The mean
sequencing depth per sample was 4035 (range = 1036—
10,261) in CN and 5,369 (range = 1041-14,740) in TN. In
total, 272 Operational Taxonomic Units (OTUs) were
identified, and the average number of OTUs per sample was
8.33 (range: 1-46). Twelve bacteria phyla and 126 genera
were detected in the gut microbiome of the two night-ingale
species (Fig. 1).

The most common bacterial phyla were Firmicutes
(57.95% ofrelative abundance, dominated by the genera
Catellicoccus, Candidatus Arthromitus and Clostrid-ium
sensu stricto), Proteobacteria (30.49%, dominated by the
genera Escherichia/Shigellaand Rickettsiella), Tenericutes
(6.60%, dominated by the genera Myco-plasma and
Ureaplasma), Actinobacteria (1.99%, domi-nated by the
genera Actinoplanes and Kocuria) and Bacteroidetes
(1.76%, dominated by the genus Candi-datus Cardinium).
The relative abundance ofall otherbacterial phyla was less
than 1% (Fig. 1). Regarding the gut sections, Firmicutes
and Proteobacteria were the dominant bacterial phylain all
three-gut sections (Fig. 1). The presence of Tenericutes,
Bacteroidetes, Actinobacteria and Chlamydia was largely
individually specific (Fig. 1).

Differences in microbial a- diversity among gut
sections, between species and regions
As estimates of microbial a-diversity, describing the

diversity of the microbiome in each sample, we used the
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Chaol diversity index (accounting for undetected rare
OTUs), the number of observed OTUs and the Shan-non
diversity index. For all three measures of a-diversity, the
microbial diversity was highestin IL (Fig. 2, Table 1 and
Additional file 1: Table S2a). We then used linear mixed
models (LMMs) to test for the effects ofthe gut section (i.e.
DU, JE, IL), the nightingale species (ie. CN and TN),
geographical region (ie. allopatry and sympa-try) and the
species -region interaction on the respective a-diversity
indexes. The effect of individual was included as a random
effect.

LMMs revealed a significant effect of the gut sec-tion on
a-diversity for the log-transformed Chaol index (p =
0.002, Tables 1 and Additional file 1: Table S2a, Fig. 2b)
and for the log-transformed number of observed OTUs (p
=0.004, Tables 1 and Additional file 1: Table S2a, Fig. 2a),
butnot for the Shannon index (Table 1 and Additional file
1: Table S2a, Fig. 2a). Pair-wise post-hoc Tukey tests on
Chaol index and the number of observed OTUs showed
that a-diversity was significantly higher in IL compared to
the JE for the log-Chaol (p = 0.048). All other pairwise
comparisons were, however, insignificant (Fig. 2 and
Additional file 1: Table S2b).

Generally, o-diversity estimates were higher in TN
(mean = standard error (se): Chaol: 9.34 £ 0.37, Shan-non:
0.96 % 0.12, number of observed OTUs: 9.11 * 1.44) than
in CN (mean * se: Chaol: 6.41 % 0.30, Shannon: 0.73 *
0.11, observed OTUs 6.18 + 0.89). However, a-diversity
was higher in TN samples compared to CN samples only
in sympatry, not in allopatry (Fig. 3). Nev-ertheless, when
taking into account the inter-individual variability, the
effect of the species identity on a-diversity was not
significant (LMMs: p> 0.05, Table 1). The effects of the
region and the interaction between species identity were
also insignificant (LMMs: p> 0.05, Table 1).

Differences in microbial composition (- diversity)
among gut sections
As measures of microbial composition dissimilarity
between samples (B-diversity), we calculated two types of
distances:the binary Jaccard distance and the Bray—Cur-tis
distance. The binary Jaccard distance accounts for the
presence/absence of OTUs and is thus more sensitive to
gut-microbiota changes driven by rare OTUs. The Bray—
Curtis distance accounts for differences in the OTUs’ rel-
ative abundance and is thus less sensitive to rare OTUs.
We detected within-individual correlations in micro-bial
composition among the three gut sections (Man-tel test: p
< 0.05 for both distances; range of correlation coefficients
is 0.91-0.96 for Bray—Curtis distance and
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0.32—0.70 for Jaccard distance; Additional file 1: Table
S3). The db-RDA analysis revealed significant differences
in the microbiota composition among the three-gut sections
for the Jaccard distance (F-2, 54 = 0.775, p = 0.035) butnot
for the Bray—Curtis dis-tance (F2, 54 = 0.658, p = 0.13).
However, the variation in the gut microbiota composition
explained by differ-ences among gut sections was very low
both for the Jac-card distance (adjusted — RO 2= 0.028)
and Bray—Curtis distance (adjusted— RO 2= 0.024) (Fig.
4a, b).
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Differences in microbial composition between the

two species in sympatry and allopatry

The db-RDA showed no significant effect of species
identity or region on the gut microbiota composi-tion
(Table 2, model complete) although it revealed a weak but
significant interaction between species and regions for both
distance matrices (Bray—Curtis dis-tance: p = 0.034 and
Jaccard distance:p = 0.043, Table 2, model complete). This
may suggest either that the spe-cies differ in microbial
composition only in sympatry or allopatry, or that some
differences within the species may exist between allopatric
and sympatric regions. We thus tested these possibilities
using db-RDA models focusing
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separately on each of them. However, the models did not
reveal any significant differences in microbial composi-
tion between the species in sympatry (Bray—Curtis dis-
tance: p = 0.055; Jaccard distance p = 0.078; Table 2) nor
in allopatry (Bray—Curtis distance: p = 0.071, Table 2;
Jaccard distance p = 0.051; Table 2), although some sub-
tle differences may exist both in sympatry and allopatry
(Fig. 4c, d). Moreover, we found no significant differences
in microbial composition between allopatric and sympa-
tric regions of CN (Bray—Curtis distance: p = 0.098; Jac-
card distance: p = 0.096; Table 2) despite TN showing
significant differences in the gut microbiota composition
between the two regions for the Bray—Curtis distance (p =
0.014; Table 2).

The nested.anova.dbrda function indicated that the
variability in the gut microbiota composition explained by
species and region was 14% for the Bray—Curtis dis-tance
and 11% for the Jaccard distance, while individual identity
explained 79% (Bray Curtis distance)and 67%
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(Jaccard distance) of the variability in gut microbiota
composition (see Table 3).

Generalized linear mixed models (GLMMs) identified
one OTU belonging to Clostridium sensu stricto genus
(Firmicutes phylum) that was significantly differentially
represented in the two nightingale species in sympa-try
(Additional file 1: Table S4a). This OTU was more
abundant in CN samples than in TN samples. No OTU was
significantly differentially represented in the two species in
allopatry (Additional file 1 : Table S4b). The same OTU
belonging to Clostridium sensu stricto was also
differentially represented between sympatric and allopatric
regions of CN as well as TN, although in TN the difference
was no longer significant after correcting for multiple
testing (Additonal file 1: Table S5a, b). For both species,
Clostridium sensu stricto was more abun-dantin sympatry
than in allopatry (Additional file 1: Table S5).
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Table 1 Effects of the gut section (i.e. duodenum, jejunum
and ileum), species (i.e. common nightingale and thrush
nightingale), region (i.e. sympatry and allopatry) and the
interaction between species and region on a-diversity
indexes assessed bylinear mixed models

Response variable  Explanatory variable  Chisq  df  p-value
Chao1 index Gut section 12.050 2 0.002
Species 1464 1 0.226
Region 0.102 1 0.749
Species x region 1.559 1 0.212
Shannon index Gut section 3.890 2 0.143
Species 1239 1 0.265
Region 0.035 1 0.852
Species x region 1.625 1 0.202
No. of OTUs Gut section 11.093 2 0.004
Species 1512 1 0.219
Region 0.054 1 0.816
Species X region 1.545 1 0214

a-diversity was estimated by Chao1 and Shannon diversity indexes as
well as the number of observed OTUs. Individual identity was set as a
random effect. Significant p-values are marked in bold

Discussion

Microbial communities living in vertebrate gastroin-testinal
tracts may affect the fitness-related phenotypic traits of
their hosts [3, 43], which in turn may induce selection on
mechanisms that ensure the acquisition and maintenance of
beneficial microbes. This selection pressure often results in
long-lasting stable associations between the host and
particular gut microbiota species. As different host species
can be co-adapted with differ-ent gut bacteria, it is
commonly assumed that the gut microbiota can be
significantly involved in reproductive isolation between
species [13]. However, despite inten-sive research on
various aspects ofhost gut microbiota interactions over the
past decades, empirical evidence for the role of gut
microbiota in speciation is still lim-ited and comes mainly
from invertebrate taxa [14]. In this study, we examined the
gut microbiota composition of two recently diverged
songbirds, the common night-ingale and the thrush
nightingale, in their allopatric and sympatric populations.
To our knowledge, this is the first attempt to assess the
potential role of gut microbiota in bird speciation.

We found no significant differences in the gut micro-
biota composition between the two nightingale species,
with less than 14% of the total gut microbiota variation
being attributed to interspecific dissimilarities. Further-
more, differential abundance analyses identified only a
single OTU from the genus Clostridium with a signifi-
cantly different representation between the two night-
ingale species. Nevertheless, this OTU, as well as other
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highly prevalent OTUs (e.g. Candidatus Arthromitus) were
detected in both host species, meaning that none of the
OTUs exhibited species specificity. Consequently, our
results do not provide support for the existence of species-
specific gut microbiota components, and it is thus unlikely
that the gut microbiota might be involved in reproductive
isolation between the two nightingale species.

Generally, evidence for therole of the host’s micro-biota
in the origin of reproductive isolation is limited. In various
arthropod taxa, bacterial endosymbionts are involved in
cytoplasmic incompatibilities [44]. In some arthropods,
divergence in the gut microbiome between species can
contribute to the mortality of hybrid individ-uals [14]. It is,
however, unclear whether this gut micro-biota-induced
hybrid lethality arises as a consequence of host vs. gut
microbiota incompatibilities or incompat-ibilities among
individual microbial species or the host genes involved in
the management of the gut microbiota [13]. In Drosophila,
the divergence of host-associated microbiota causes
assortative mating between different Drosophila lineages
[6, 9], with observed changes in mat-ing preferences
caused by changes in levels of cuticular hydrocarbon sex
pheromones induced by symbiotic bac-teria [9]. In
vertebrates, there are a few studies showing phylogenetic
co-divergences between hosts and particu-lar bacterial
species, typically comprising just a limited fraction of their
gut microbiota [10, 12, 45]. Nonetheless, a possible
contribution of this gut microbiota divergence to the origin
of prezygotic or postzygotic reproductive isolation
between species has not yet been demonstrated.

Changes in the host’s gut microbiota can be caused by
environmental changes, for example by shifts in the host’s
diet or habitat [16, 21, 46]. Such ecological niche shifts
associated with changes in the gut microbiota could theo-
retically also strengthen the degree of reproductive isola-
tion between species. Our previous research documented
that sympatric populations of common and thrush night-
ingales in their secondary contact zone exhibited higher
divergence in habitat use [33] and bill morphology [39]
compared to allopatric populations. This was consistent
with observed interspecific differences in the consumed
diet in sympatry [32]. We expected that the greater eco-
logical niche divergence in nightingale sympatric popula-
tions would be associated with a higher dissimilarity of
their gut microbiota in sympatric compared to allopatric
populations. Nevertheless, our data did not support this
expectation, as interspecific gut microbiota differences
were comparable in both sympatric and allopatric popu-
lations. This result corresponds to previous research that
revealed a surprisingly low effect of diet and other eco-
logical traits on interspecific gut microbiota variation in a
set of bird species with much contrasting ecology than
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the nightingale species studied here [28, 47]. However, the
absence of gut microbiota divergence between the two
nightingale species in sympatry might also be a result of
interspecific gene flow, as the reproductive isolation
between the two species is still incomplete[29, 38, 40].

Previous studies have shown a decrease in gut micro-
biota similarity with increasing geographic distance in
various vertebrates [42, 48, 49], suggesting that physical
distance could produce barriers to bacterial dispersal. In
mammals, species living in allopatry have more dissimilar
gut microbiota compositions compared to sympatric spe-
cies even when controlling for the diet and phylogenetic
distance [41]. Our results, showing similar divergence in
microbial communities between sympatric and allopatric
populations of the two nightingale species, indicate that
compared to mammals, geographical distance may not have
such a strong effect on the gut microbiota composi-tion in
passerine birds. This is generally consistent with previous
studies on birds that found no or only weak associations
between the gut microbiota composition
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and geographic distance [47, 49-51]. Nevertheless, as our
study area (spanning approximately 600 km; Fig. 5) cov-
ered only a part of the two nightingale species geographic
range extents, we cannot rule out that some differences in
the gut microbiota composition in nightingales may exist
over larger geographical distances. The weak effect of
geographical distance on bird gut microbiota may be
related to the fact that many species, including both our
nightingale species, migrate for thousands ofkm each year
to their wintering grounds [31]. Such migrations may be
linked with higher dispersal in birds compared to non-
migratory vertebrates [52]. In nightingales, natal and
breeding dispersal are not known, but our unpub-lished
capture-recapture data on adult birds indicate a high level
of fidelity in both species. Males older than one year
typically hold the same territories over multiple years. One-
year-old males are more dispersive and often settle away
from the site oftheir first breeding, but their movements are
generally limited to 15 km, and we have never recorded a
translocation over 20 km. Nightingales
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also show a high degree of migration connectivity [53].
Additionally, a wide variety of habitats and foods uti-lized
during migration itself appears to influence the gut
microbiota composition [17], which may also contribute to
the weak effect of geographical distance on bird gut
microbiota.

While the species identity and geographical region
explained only a small amount of the variability of the gut
microbiota composition in nightingales (together 14%),
individual identity explained more than 79% of the
variability. This finding is congruent with otherstud-ies on
passerine birds, with the gut microbiota typically
exhibiting pronounced inter-individual variation [23, 49,
54]. The relatively high inter-individual variability in the
gut microbiota composition and the small effect of diet,
habitat and species identity on the gut microbiota
composition in birds might be related to physiological
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and morphological adaptations associated with flight, as
similar patterns in gut microbiota variation has been
observed in bats, which also exhibit reduced intestine sizes
and complexity, at least compared to other mamma-lian
clades [28].

The gut microbiota composition in both nightingale
species was dominated by the phyla Firmicutes (domi-
nated by the genera Catellicoccus, Candidatus Arthro-
mitus and Clostridium sensu stricto) and Proteobacteria
(represented by the genera Escherichia/Shigella, Rick-
ettsiella, and Pantoea) and was comparable with most
passerines studies so far [55-58]. As we analysed the
microbiota from three sections of the small intestine, our
dataset also provides insight into gut microbiota variations
along the digestive tract, which has been rarely studied in
birds [51, 55]. We found significant differences in the
microbiota composition among the three-gut
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Table2 Db-RDA analyses testing the effects of spedes
identity (common nightingale vs. thrush nightingale),
geographical region (sympatry vs. allopatry) and their
interaction on the gut microbial composition

Dataset Explanatory p-value Adjusted -0 R

variable

Bray—Curtis Complete Species 0.085 0.139
distance Region 0.087
Species x region 0.034

Sympatry Species 0.055 0.088

Allopatry Species 0.071  0.090

CN Region 0.098 0.158

N Region 0.014 0.049

Jaccard distance Complete Species 0.076 0.106
Region 0.096
Species x region 0.043

Sympatry Species 0.078 0.077

Allopatry Species 0.051 0.061

CN Region 0.096 0.101

N Region 0.069 0.056

Analy ses were performed on both Bray -Curtis and Jaccard distance
matrices, which were the response variables. We also ran the db-RDA
analy ses to test for the effect of species separately in sympatric and
allopatric regions and to test for the effect of region separately in each
species. The significance of the models was assessed by a permutation-
based ANOVA, where individual identity variation was taken into account
during the permutation procedure. Significant p-values are marked in bold.
CN stands for common nightingale and TN for thrush nightingale

sections in terms of the bacterial species’ presence/
absence, but not in terms of the relative abundances of
bacterial species. Nevertheless, the variation in the gut
microbiota composition explained by differences among
the gut sections was very low (2-3%). The three gut sec-
tions also differed in levels of microbial a-diversity, with
the ileum—the most distal part of the small intestine—
showing higher a-diversity compared to the duodenumand
jejunum. The ileum typically maintains a more neu-tral pH
and is responsible for absorption of the remaining
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products of digestion [59]. We also detected significant
within-individual correlations in microbial composition
among the three gut sections. Generally, the gut micro-biota
profile of a particular gut section was more similar to any
other gut section from the same individual than to the same
gut section from a different individual, suggest-ing a
considerable homogeneity in gut microbiota con-tents
along the nightingale small intestine.

Conclusion

Our results suggest that neither the species identity, nor
habitat, nor geographic distances have significant effects
on the gut microbiota composition in the two nightin-gale
species studied here. Instead, individual identity explains
most of the observed variation in the gut micro-biota
composition. Our results are generally consistent with
otherstudies in birds (e.g. [28]), and suggest that ecological
factors, including diet and habitat, as well as geographical
range do not have a strong influence on the avian gut
microbiota composition. Altogether, this indicates that
differences in gut microbiota in recently diverged bird
species, especially if they are still con-nected by gene flow,
might be usually too small to con-tribute to the origin of
reproductive isolation. Differences in the gut microbiota
composition between phylogeneti-cally more distant avian
species might arise at later stages of divergence, mostly as
a consequence of the long-term independent evolution of
species rather than the cause of speciation.

Methods

Study area and sampling

The sampling of common nightingales (Luscinia mega-
rhynchos) and thrush nightingales (Luscinia luscinia) was
carried out in Central Europe, in three regions (Fig. 5): an
allopatric region for CN (south-western Poland), an
allopatric region for TN (north-eastern Poland), and a
sympatric region (central Poland) where the ranges of

Table 3 Nested analysis ofvariance via distance-based redundancy

Df Sum of squares F p value V ariability
explained
(%)
Bray—Curtis distance Species/region 3 0.063 1.396 0.171 14
Individual identity 24 0.364 13.611 0.001 79
Residuals 29 0.032 7
Jaccard distance Species/region 3 0.050 1.266 0.087 11
Individual identity 24 0.316 3.641 0.001 67
Residuals 29 0.105 22

Bray—Curtis and Jaccard distance matrices were the response v ariables, while species identity, region and individual identity were explanatory v ariables.

The number of permutations was set at 1000. Significant p-values are marked in bold
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Fig.5 Map of the sampling localities of common nightingales (red dots) and thrush nightingales (blue dots) in Central Europe.
Allopatric regions for common nightingales and thrush nightingales are labelled in red and blue, respectively. The sympatric region
w here both species co-occur is indicated in purple. Species’ranges are redraw n from[39]

both species overlap and the species often locally co-occur
[33]. The allopatric region of CN was close to the
sympatric region (Fig. 5); however, according to the Pol-
ish Breeding Bird Census data analysed in [33] as well as
according to our long-term field observations, no TN
individuals were recorded breeding in this area. Moreo-ver,
as the south-western edge of TN’s breeding range moved
north-eastrecently (our unpublished observa-tions), at the
time of our sampling, CNs allopatric locali-ties were not
less than 100 km from the nearest breeding occurrence of
TN. Both nightingale species were sam-pled in May 2018
at the beginning of the breeding sea-son when territories
were already established. Only male birds were caught
using a mist net with a luring tape. We captured 9 CN and
9 TN males from allopatric regions and 9 CN and 9 TN
males from the sympatric region. A list of the sampled
birds, including their dates of sam-pling and GPS
coordinates, is provided in Additional file 1: Table S1.
The birds were euthanized by standard cervical dis-
location. Dissections started immediately; we removed the

entire gastrointestinaltract from the body cavity,
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and gently separated intestines from the stomach. The
whole guttissue was then placed in a sterilized plastic tube
(30 mL) with 99% ethanol, deep-frozen in liquid nitrogen
and stored at — 80 °C until DNA extraction. The whole
dissection procedure, starting with the euthanasia of the
bird and finishing with the guttissuebeing stored, did not
exceed 8 min. All instruments used to dissect the birds
(scissors, lancets) were repeatedly flame-ster-ilized to
prevent cross-individual bacterial contamina-tion of
samples. The work with animals was approved by the
General Directorate for Environmental Protection, Poland
(permission no. DZP-WG.6401.03.123.2017.d1.3).

DNA extraction from the gutand 16S rRNA sequencing
From each individual’s gut, we dissected three samples
(each ca. 0.5 cm long) from the small intestine using steri-
lized dissection tools. These sections were located in: (1)
the duodenum(sampled from the proximal part ofthe small
intestine), (2) the jejunum (sampled from the mid-dle part
of the small intestine) and (3) the ileum (the distal part of
the small intestine before caecal protuberances). As the
passerine colon is very short[11], we were unable
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to consistently dissect this gut part from all the intestine
samples and thus the colon was not analysed in this study.
Metagenomic DNA from each sample was extracted using
the PowerSoil DNA isolation kit (MO BIO Laboratories
Inc., USA). Both sample preparation and DNA extractions
took place in a laminar flow cabinet. Sequencing libraries
were prepared using atwo-step PCR approach. The V3— V4
hypervariable region of bacterial 16S rRNA was ampli-fied
using universal primers S-D-Bact-0341-b-S-17 (CCT
ACGGGNGGCW GCAG) and S-D-Bact-0785-a-A-21
(GACTACHVGGGTATCTAATCC, [60]). Both forward
and reverse primers were flanked by oligonucleotides
compatible with Nextera adaptors (Illumina, USA). For the
first PCR round, 5 ul of KAPA HIFI Hot Start Ready Mix
(Kapa Biosystems,USA), 0.2 uM of each primer and 4.6 pl
of DNA template were used (final reaction vol-ume = 10
pl). PCR conditions were as follows: initial dena-turation at
95 °C for 3 min followed by 30 cycles of 95 °C (30 s), 55
°C (30 s)and 72 °C (30 s), and a final extension at 72 °C (5
min). Dual-indexed Nextera sequencing adaptors were
appended to the resulting PCR products during the second
PCR. The second PCR reaction consisted of 10 pul of KAPA
HIFI Hot Start Ready Mix, 5 pl of H-20, 2 uM of each
primer and 1 pl of PCR product from the first PCR (final
reaction volume = 20 pl) and the PCR program ran for 12
cycles with conditions being the same as during the first
PCR. Products from the second PCR round were quantified
by GenoSoft software (VWR International, Bel-gium)
based on band intensities after electrophoresis on a 1.5%
agarose gel, and mixed at equimolar concentra-tion. The
final library was cleaned up using SPRIselect beads
(Beckman Coulter Life Sciences, USA). Products of
desired size (520-750 bp) were extracted by Pipin-Prep
(Sage Science Inc., USA) and sequenced on an Illu-mina
Miseq (v3 kit, 300 bp paired-end reads). Technical PCR
duplicates were sequenced forall individual DNA samples.

Bioinformatic processing of the sequence

data and identification of microbial taxa

Samples were demultiplexed and primers were trimmed by
skewer software [61]. Using dada?2 [62], we filtered out
low-quality sequences (expected number of errors per read
less than 1), denoised the quality-filtered fastq files and
constructed an abundance matrix represent-ing reads counts
for individual haplotypes (Operational Taxonomic Units,
OTUs) in each sample. Using uchime [63] and the gold.fha
database (available at https://driveS. com/uchime/gold.fa),
we identified chimeric sequences and removed them from
the abundance matrix =~ Taxo-nomic assignation of
haplotypes was conducted by the RDP classifier (80%
confidence threshold [64]) and Silva reference database (v
132 [65]).
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A large number of sequences from coccidian proto-zoa,
an intracellular parasite present in the intestinal tract of
vertebrates provoking Coccidiosis disease [66], were
identified in TN samples (43% of the totalnumber of reads)
and in CN samples (38% of the total number of reads).
These OTUs belonged to the genera Eimeria and Neospora
(phylum: Apicomplexa). We removed all coccidian and
other non-bacterial OTUs from the data-set. Furthermore,
to eliminate PCR or sequencing arte-facts that were not
corrected by dada2, we removed all OTUs that were not
consistently present in both techni-cal duplicates for a
given sample. Read counts for remain-ing OTUs were
subsequently merged for the purpose of all later analyses.
Finally, samples with less than 1,000 sequences afterall the
above filtering steps were dis-carded. In total, 19 samples
from TN and 32 samples from CN were removed.

Statistical analyses

All statistical analyses were done using packages run-ning
under R Statistical Software version 3.4.3 (R Core Team
2015). To account for uneven sequencing depth among
samples, a rarefied OTU table (n = 1,036 sequences per
sample, which corresponds to the minimal per-sample
sequencing depth) was used in all analyses, if not stated
otherwise.

Estimation and comparison of microbial a- diversity
The three o-diversity estimates, including the Chaol
diversity index, the number of observed OTUs and the
Shannon diversity index, were calculated using the phy-
loseq package [67]. LMMs testing the effects of gut sec-
tion, nightingale species and geographical region on the
respective a-diversity indexes were performed in the
package Ime4 [68]. To account for statistical non-inde-
pendence (due to sampling of three gut sections for each
individual), the effect of individual was included as a ran-
dom effect. Differences between the gut sections were
assessed based on Tukey post-hoc comparisons.

Dissimilarity of microbial composition

(B- diversity) between samples

Two types of distances, the binary Jaccard distance and the
Bray-Curtis distance, were calculated as measures of
microbial composition dissimilarity between sam-ples (B-
diversity) using the vegan package [69].We used a
Principal Coordinates Analysis (PCoA) based on the two
distance matrices to visualize the differences in microbial
composition among the three gut sections across both
species. Associations  between gut-micro-biota
composition and gut section were assessed by distance-
based redundancy analyses (db-RDAs [70]) with the
distance matrix as a response variable and
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the gut section identity (i.e. DU, JE and IL) as explan-atory
variables. The significance was assessed by a permutation-
based ANOVA, with individual identity being considered
as a block (i.e. ‘strata’) for permuta-tion. Additionally, for
individuals where all three-gut sections were available (n =
11, Additional file 1: Table S1), within-individual
correlations ofthe micro-bial composition among the three-
gut sections was evaluated using a Mantel’s test (R package
‘aded’ [71]).

The effects of species identity (i.e. CN and TN) and
region (i.e. sympatry and allopatry) on the gut-micro-biota
composition were assessed via db- RDA. The dis-tance
matrix was included as a response variable while
nightingale species identity, region and their interaction
were included as explanatory variables. The significance of
explanatory variables in db-RDAs was assessed by a
permutation-based ANOVA. In contrastto the analy-sis of
the gut section, here explanatory variables associ-ated with
each individual (i.e. region, species identity)O
were reshuffled across blocks of individual specific
samples during the permutation routine to account for the
fact that multiple samples for each individual were
analysed. To estimate the proportion of the variability
explained by each factor on the gut microbiota com-
position, we used a nested analysis of variance via dis-
tance-based redundancy analysis (nested.anova.dbda;
package BiodiversityR [72]). The distance matrices were
the response variable, while species identity, region and
individual identity were explanatory variables (1000
permutations). To avoid any potential bias due to all three
gut sections not being available for some indi-viduals, we
also ran this analysis on the subset of indi-viduals (n=11)
for which all three gutsections were available. The results
were similar for both datasets and we thus present the
results only for the whole dataset.

To identify specific OTUs whose abundances differed
between the nightingale species in allopatric and sym-
patric regions, we used generalized linear mixed models
with a negative binomial distribution [ 73]. These analy-ses
were performed on a subset of six OTUs (compris-ing 43%
of all high quality reads) that were detected in at least five
samples across both species and regions. The response
variable was entered either as (i) the read counts for OTUs
from the allopatric region or (ii) theread counts for OTUs
from the sympatric region. The explanatory variable was
the species identity, and indi-vidual identity was set as a
random factor. Log-trans-formed total number of reads per
sample was specified as the model offset. A false discovery
rate method [74] was subsequently used to account for
false discover-ies due to multiple tests conducted on the
given set of OTUs.
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Animal bodies are inhabited by a taxonomically and functionally diverse community of
symbiotic and commensal microorganisms. From an ecological and ewlutionary
perspective, inter-individual variation in host-associated microbiota contributes to
physiological and immune system variation. As such, host-associated microbiota may be
considered an integral part of the host’s phenotype, sening as a substrate for natural
selection. This assumes that host-associated microbiota exhibits high temporal stability,
however, and that its composition is shaped by trans-generational transfer or heritable
host-associated microbiota modulators encoded by the host genome. Although this
concept is widely accepted, its crucial assumptions have rarely been tested in wild
vertebrate populations. We performed 16S rRNA metabarcoding on an extensive set of
fecal microbiota (FM) samples from an insectivorous, long-distance migratory bird, the
barn swallow (Hirundo rustica). Ourdatarevealed clear differences in FM among juveniles
and adults as regards taxonomic and functional composition, diversity and co-occurrence
network complexity. Multiple FM samples from the same juvenile or adult collected within
single breeding seasons exhibited higher similarity than expected by chance, as did adult
FM samples over two consecutive years. Despite low effect sizes for FM stability over time
at the community level, we identified an adult FM subset with relative abundances
exhibiting significant temporal consistency, possibly inducing long-term effects on the host
phenotype. Our data also indicate a slight maternal (but not paternal) effect on FM
compositionin social offspring, though this is unlikely to persist into adulthood. We discuss
our findings in the context of both evolution and ecology of microbiota vs. host interactions
and barn swallow biology.

Keywords: microbiome, metagenome, symbiosis, gastrointestinal tract, barn swallow, fecal microbiota

INTRODUCTION

The bodies of animals are inhabited by taxonomically and functionally diverse communities of symbiotic
and commensal microorganisms (Qin etal., 2010; Muegge etal., 2011). Recentadvances in this field have
clearly show n that such host-associated microbiota provide important benefits to the host. In particular,
microbiota modulate development of digestive tract morphology (Reikvam et al., 2011), enable synthesis
of essential bioactive molecules that cannot be synthesized by
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the host (Backhed et al., 2005), stimulate the host's immune
system (Macpherson and Harris, 2004; Wu and Wu, 2012) and
provide protection against pathogens (Koch and Schmid-Hempel,
2011). In addition, unlike host-encoded enzymes, enzymes
encoded by the microbial metagenome enable cleavage of
complex substrates such as plant polysaccharides. Products of
these pathw ays can be further processed by the host’'s metabolism
and, consequently, microbial communities positively contribute to
the host’s energy balance (Jumpertz et al,, 2011). In addition to
these benefits, however, certain species of host-associated
microbiota can induce harmful effects, such as reduced diet
processing capacity (Smith et al., 2013), chronic inflammation
(Dapito et al., 2012), or production of toxins (Yoshimoto et al.,
2013).

In vertebrates, host-associated microbiota typically exhibit
pronounced variation at the inter-individual level (Baxter et al.,
2015; Kreisingeretal., 2015b; Yuan et al., 2015; Lewis et al.,
2016). Despite a degree of functional redundancy as regards
genes encoded byindividual host-associated microbiota taxa
(Moya and Ferrer, 2016), such variation underlines inter-
individual differences in health status and a wide range of
physiological and body-condition traits (Macpherson and
Harris, 2004; Koch and Schmid-Hempel, 2011; Smith et al.,
2013). With respect to this inter-individual variation a number
of obvious questions arise, one of the mostimportantis to what
extent does individual specificityin host-associated microbiota
composition vary over time.

Hosts may exhibit a certain degree of tolerance to newly
invading bacterial species; at the same time, the abundance of
microbiota already present may change due to switches in host
diet and physiological state (Jumpertz et al., 2011; David et al,
2014; Salonen et al., 2014; Wang et al., 2014). Such changes in
microbiota over time may increase the host’s ability to cope with
new environmental challenges. Under certain circumstances,
how ever, such changes in microbiota composition could have no
effect or induce adverse effects on the host (DiBaise et al., 2012;
Kumar et al,, 2016). As a result, multicellular organisms have
evolved a plethora of mechanisms aimed at maintenance of
beneficial microbial taxa and suppression of potentially detrimental
microbes (Salminen et al.,, 2004; Janson et al., 2008; Benson et
al., 2010; McKnite et al., 2012). Probably the best know n of these
host-intrinsic factors are those genes predominately involved in
regulation of the immune system, which have a long-standing
effect on associate microbial communities (Benson et al.,, 2010;
McKnite et al., 2012; Bolnick et al., 2014; Wang et al., 2015). Given
that immune genes typically display high allelic variation (Sommer,
2005), they could contribute to both long-term stability and inter-
individual variation of host-associate microbiota. In addition to
genetic factors, trans-generational transfer of microbiota could
have a long-standing effect on microbiota composition in the
progeny of parental generations (Salminen et al., 2004). In some
taxa, this may even result in co-divergence betw een microbiota
and host phylogenies over their evolutionary history (Sanders et
al., 2014). Both trans-generational transferand genetic regulation
of microbial communities imply some level of heritability in host-
associated microbiota. Consequently, if host-associated

microbiota exhibit both long-term stabilty and heritability, this
could be regarded as an extension of host-heritable phenotype
variation and serve as the substrate for natural selection (Zilber-
Rosenberg and Rosenberg, 2008; Bordenstein and Theis, 2015).

Current evidence for the temporal stabilty and heritability of
host-associated microbiota is still rather puzzling, how ever, and
has been addressed by a surprisingly low number of studies.
Furthermore, w hatstudies there have been have tended to focus
mainly on human populations and captive-bred model species
(Benskin et al., 2010; Schloss et al., 2012; Faith et al.,, 2013; Lim
et al., 2014; Salonen et al., 2014; Tap et al., 2015). Limited effort
has been aimed at assessing the strength of temporal stability and
mechanisms affecting host-associated microbiota establishment
during ontogeny in wild populations (Waite et al., 2014; Baxter et
al.,, 2015; Sun et al, 2016). Great care should be taken when
extrapolating results obtained in captivity or from humans to
microbiota vs. host interactions in wild populations. In the case of
human populations, long-term host-associated microbiota stability
could be affected to a large degree by long-term stability of life-
style, including diet preferences, exposure to stressors modulating
host-associated microbiota and other traits associated w ith micro-
culture variation. In the case of laboratory-reared animals, the
composition and functional properties of host-associated
microbiota are typically distinct compared to wild populations
(Xenoulis et al., 2010; Amato, 2013; Kreisinger et al., 2014).
Consequently, captivity may induce large effects on the shape of
interactions between host-associated microbiota and host
physiology (Kreisinger et al., 2015a). In addition, environmental
factors contributing to host-associated microbiota variation over
time, such as variation in diet composition and environmental
stressors, are typically homogeneous among individuals in
breeding facilities. As a consequence, factors contributing to
individual host-associated microbiota stability over time, such host
genes interacting with host-associated microbiota members
and/or vertical transfer of host-associated microbiota from parents
to progeny, may be of higher importance in breeding facilities
compared to wild populations. Last, but not least, most of our
current knowledge on host-associated microbiota vs. host
interaction relies on studies performed on mammals. Such
taxonomic bias may affect our general view of the ecological and
evolutionary factors associated with host-associated microbiota
vs. host interaction as gut morphology and factors contributing to
host-associated microbiota establishment and host-associated
microbiota composition exhibit considerable taxon specificity in
mammals. Unlike most other vertebrate taxa, mammals are
typically viviparous. Physical contact betw een new born young and
the female’s vaginal microbiota during the delivery is important for
host-associated microbiota colonization and this type of transfer
has a long-term effect on microbiota composition (Salminen et al.,
2004).

Passerines are an important model group for evolutionary, eco-
physiological, and eco-immunological research (Bennett and
Ow ens, 2002), particularly as we have a detailed know ledge on
their physiology. However, the role of microbiota is stil
understudied in this group. In addition, passerines have a clearly
distinct composition of host-associated microbial communities
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compared, to the more widely studied mammals (Hird et al., 2015;
Kreisinger et al., 2015b; Lewis et al., 2016). This makes them an
interesting and complementary model group for research on the
ecological and evolutionary consequences of host vs. microbiota
interaction. To date, the microbial community of the low er intestine,
w ith microbiota in fecal samples typically used as a proxy, has
been the most widely studied subset of animal-associated
microbiota (Ley et al., 2008; Baxter et al., 2015; Hird et al., 2015;
Lewis et al., 2016). Fecal microbiota (FM) differences betw een
passerines and mammals are putatively associated with
differences in gut anatomy and function. In particular, overall gut
length and food retention time tends to be shorter in birds
compared w ith mammals of similar body size (Caviedes-Vidal et
al., 2007; McWhorter et al., 2009). Furthermore, those gut sections
involved in bacterial fermentation, i.e., the caecum and colon, are
typically reduced in passerines (Ruiz-Rodriguez et al., 2009).
Unlke mammals, passerine FM may also be affected by direct
contact w ith uric acid as the urine is conveyed to the cloaca directly
by the kidney ureters (Braun and Campbell, 1989) and a number
of bacterial species are capable of using uric acid as a substrate
(Potrikus and Breznak, 1981; Thong-On et al., 2012). As in the
case of mammals, how ever, microbiota may also be transferred
from parents to progeny during physical contact in the course of
food provisioning (Lucas and Heeb, 2005). How ever, little is know n
about the temporal stability of FM in passerines, or about the FM
development during post-hatching ontogeny (Benskin et al., 2010;
Gonzalez-Braojos et al., 2012b).

In this contribution, we focus on temporal stability of FM in a
passerine bird, the barn swallow (Hirundo rustica). The barn
swallow is a long-distance migrant nesting in colonies with a
complex social system (Petrzelkova et al., 2015). It has been
suggested that social interaction betw een colony members affects
the structure of host-associated microbiota in this species
(Kreisinger et al., 2015b). As a species, the barn sw allow forages
exclusively on diverse groups of flying insects (Turner, 1980). Our
study benefits from this tight specialization as FM variation due to
differences in diet are likely to be relatively low compared to
omnivorous taxa (Ley et al., 2008; David et al., 2014). Despite
extensive know ledge on barn sw allow biology (Mgller, 1994), there
has been just one culture-independent study aimed at
characterization of microbial communities in this species based on
high-throughput sequencing (Kreisinger et al., 2015b).

Here, we apply extensive repeat FM sampling of adults and
juveniles from three breeding barn swallow populations.
Metataxonomic approach based on high-throughput sequencing of
16S rRNA amplicones and imputation of FM functional content via
PICRUSt (Langille et al., 2013) were used to get an insight into
developmental trajectories of FM taxonomic and functional
composition in this species. Importantly, our data set allows us to
estimate the level stability in individual FM composition over time.
In addition, w e tested if the level of temporal stability differs among
adults and juveniles and if the temporal stability is driven by
abundance invariance of FM members or by invariance of their
presence vs. absence. Finally, we use this dataset to assess
w hether social contact betw een parents and offspring shapes FM
composition.

MATERIALS AND METHODS

Field Sampling and

Parentage Assignment

Field sampling was conducted during the barn swallow breeding
season (from May to August) on three populations [Saloun farm,
Lomnice nad Luznici (49 4'7.762°N, 14 42'36.521”E), Hamr farm,
Luznice (49 3'25.288"N, 14 46'10.82"E), and Obora (48 59'06.8"N,
14 46’48.5’E)] in the Trebonsko™ Protected Landscape Area
(Czech Republic, average distance between populations D 7.9
km). Adult FM was sampled during 2013 and 2014, w hereas
juvenile FM was only sampled during 2014, at 6, 9, and 12 days
after hatching (hereafter “age-classes”). See Petrzelkova et al.
(2015) for more details on field procedures. To collect fecal
samples, adults w ere placed in a paper bag and young in a plastic
beaker filled with paper tow els, w here they w ere kept for approx.
30 min. Feces w ere harvested using a sterile microbiological swab
(Copan, ltaly), placed in sterile DNA/RNA free cryotubes (Simport,
Canada) and stored in liquid nitrogen or at 80 C for further
laboratory analysis.

Individuals in each population had their polymorphic
microsatellites genotyped, as described in Petrzelkova et al.
(2015). These data, together with direct observations of
individuallymarked adults, allowed us to determine the social
parents for individual clutches and the presence of extra-pair
(i.e., sired byanon-social male) or parasitic (i.e., laid bya non-
social female) young within individual clutches, as described
elsewhere (Petrzelkova et al., 2015).

We analyzed 448 barn swallow FM samples in total; 197
samples from juveniles (n D 99 individuals, mean no. samples
perindividual D 2.01)and 251 from adults (n D 131 individuals,
mean no. samples perindividual D 1.91; see Supplementary
Table S1). Our data set also included FM samples from 31
social mother vs. offspring pairs and from 37 social father vs.
offspring pairs sampled during 2014.

All field procedures were conducted in accordance with the
Guidelines for Animal Care and Treatment of the European
Union, and approved by the Animal Care and Use Committees
at the Czech Academy of Sciences (041/2011), and Charles
Universityin Prague (4789/2008-0).

Microbiota Genotyping

Metagenomic DNA from fecal samples w as extracted in a laminar
flow cabinet using the PowerSoil DNA isolation kit (MO BIO
Laboratories Inc., USA). To optimize the efficiency of DNA
isolation, samples were homogenized using a MagnalLyzer
(Roche, Switzerland) for 30 s at 6000 rpm and the DNA extracted
was eluted to 50 ml of elution buffer. Following the
recommendations of Klindw orth et al. (2013), primers covering the
V3-V4 variable region on bacterial 16S rRNA [i.e., S-D-Bact-0341-
b-S-17 (CCTACGGGNGGCWGCAG) and S-D-Bact-0785-a-A-21
(GACTACHVGGGTATCTAATCC)] were wused during the
polymerase chain reaction (PCR) step. Both forw ardand reverse
primers were tagged with 10 bp barcodes designed by TagGD
softw are (Costea et al., 2013). For the PCR, weused8 ml of KAPA
HIFI Hot Start Ready Mix (Kapa
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Biosystems, USA), 0.37 mM of each primer and 7 ml of DNA
template. PCR conditions were as follows: initial denaturation
at 95 C for 5 min followed by 35 cycles eachof 98 C (20 s),61
C (15s),and 72 C (40 s),and a final extension at72 C (5 min).
The PCR product, together with negative controls (PCR
products for blank DNA isolates), were run on 1.5% agarose
gel and the concentration of PCR productassessed based on
gel band intensity using GenoSoft software (VWR
International, Belgium). Samples were subsequentlypooled at
equimolar concentration, the pooled samples then being run
on 1.5% agarose gel, with bands of appropriate size excised
from the gel and purified using the High Pure PCR product
Purification Kit (Roche, Switzerland) according to the
manufacturer’sinstructions. Sequencing adaptors were ligated
using TruSeq nano DNAlibrarypreparationkits (lllumina, USA)
and the resulting amplicon libraries sequenced on a single
Miseq run (lllumina, USA) using v3 chemistryand 2 300 bp
paired-end reads.We then prepared technical PCR duplicates
for individual DNAsamples. As there was high consistency in
both FM composition (Procrustes correlation: r D 0.98, p <
0.0001) and FM diversity (Pearson’s rD 0.97, p < 0.0001)
among technical replicates, we merged the sequences
corresponding to individual samples fordownstream analysis.

Bioinformatic Processing of 16S
rRNA Data

Pair-end llumina reads were merged using PEAR (Zhang et al.,
2014) and de-mutiplexed using mothur (Schloss et al., 2009) and
custom R/Bioconductor scripts (available from the authors on
request). We then used Lotus pipeline (Hildebrand et al., 2014) for
quality filtering of FASTQ files. Sequences w ere excluded if the
average quality score w as low er than 30 or if the average quality
score within a 50 bp sliding window decreased below

25. UCHIME (implemented in the Lotus pipeline; Edgar et al,
2011) was used alongside the gold.fna database for detection and
elimination of chimeric sequences. The resulting 16S rRNA
sequences were clustered at a 97% similarity threshold using
UPARSE (Edgar, 2013) in order to define operational taxonomic
units (OTUs). Taxonomic assignation of representative sequences
for each OTU w as performed using RDP classifier (Wang et al.,
2007) and the GreenGenes reference database, versiongg_13_5
(DeSantis et al., 2006). Representative sequences w ere further
aligned using PyNAST (Caporaso et al., 2010a), the maximum
likelihood tree being constructed using FastTree (Price et al.,
2009). We considered OTUs assigned as “Chloroplast” (6.2% of
read after quality filtering), or those not assigned to any bacterial
phylum (0.6% of read after quality filtering), as diet contaminants
or sequencing artifacts, respectively, and excluded them from all
dow nstream analyses. The resuling OTU tables, sample
metadata, OTU tree and taxonomic annotations for individual
OTUs w ere merged into a phyloseq object (McMurdie and Holmes,
2013) for statistical analysis in R version 3.2.3 (R Core Team,
2015).

Metagenomic Predictions

Functional composition of the FM w as inferred based on predictive
models integrated into the PICRUSt pipeline (Langille et al., 2013).
In brief, this approach utilizes 16s rRNA reads and ancestral state
reconstruction algorithms to predict the functional content of FM
samples based on the gene content of know n bacterial genomes.
First, w e mapped our high-quality sequences against GreenGenes
reference OTUs (DeSantis et al., 2006) using 91, 93, 95, and 97%
similarity ~ thresholds and the closed reference algorithm
implemented in QIME (Caporaso et al, 2010b). Next,
metagenomes w ere predicted using the default PICRUSt setup
and classified according to the Kyoto Encyclopedia of Genes and
Genomes (KEGG; Kanehisa and Goto, 2000). The resulting table,
along with the predicted abundance of KEGG categories in
individual samples, w as used for dow nstream analysis.

The proportion of sequences unassigned to a reference OTU in
GreenGenes (i.e., unusable for metagenomic prediction) was
relatively high at the 97% similarity threshold (24.3%) and relatively
low at the 95-91% similarity thresholds (range D 7.9— 1.3%). Hence,
w e decided to use 95% similarity mapping for PICRUSt predictions in
order to avoid potential bias associated with a high proportion of
unmappable reads. Althougth 95% similarity mapping may
compromise PICRUSt precission, the “mean nearest sequenced taxon
index” (NSTI), i.e., the average branch length separating OTUs froma
reference bacterialgenome, w as only 0.065. This value is low er than
the NTSI for the microbiomes of most non-model species (Langille et
al., 2013).

Statistical Analysis

Using phyloseq (McMurdie and Holmes, 2013), we calculated
sample-specific alpha diversity indices (number of OTUs
observed, Chao1, Shannon index) and, using linear mixed effect
models (LME) contained in the R package Ime4 (Bates et al,
2015), tested w hether there w as any difference in alpha diversity
among juveniles and adults and whether FM diversity varied
among different juvenile age-classes. Individual identity was
considered as a random effect and the effect of breeding colony
w as included as a covariate. The significance of the main effects
w as assessed based on deviance ratio tests.

Community-wide divergence in OTU and predicted KEGG
composition w as assessed using multivariate techniques based
on community dissimilarity among samples. Four ecological
dissimilarity types w ere applied, each capturing different aspects
of FM divergence: w eighted and unw eighted UniFrac (Lozupone
and Knight, 2005), Bray—Curtis and a binary version of Jaccard
dissimilarity. Jaccard and unw eighted UniFrac dissimilarity only
account for OTU presence vs. absence; hence, they are more
sensitive than Bray—Curtis and w eighted UniFrac dissimilarity to
FM changes driven by rare OTUs. In addition, both unw eighted
and w eighted UniFrac dissimilarity take account of OTU genetic
similarity and, therefore, are more sensitive to community
divergence driven by phylogenetically distant bacterial groups.
Only Bray—Curtis dissimilarity was used in the case of

metagenomic  prediction. In order to account for uneven
1 http://sourceforge.net/projects/microbiomeutil/files sequencing depth among sarr‘ples (mean per sample
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coverage SE D 15773 487, range D 1112-102922), OTU and
predicted KEGG counts were converted to sample-specific
proportion (as recommended by McMurdie and Holmes, 2014)
prior to calculation of weighted UniFrac and Bray— Curtis
dissimilarity. As this form of data normalization w as not applicable
for the purposes of OTU absence vs. presence analysis, we
rarefied the OTU data in order to achieve the same sequence
coverage per sample (i.e., corresponding to minimal sequencing
depth) prior to calculation of Jaccard and unw eighted UniFrac
dissimilarity. Principal coordinate analysis (PCoA) and distance-
based MANOVA (adonis function, vegan R package) w ere applied
to assess w hether there was any difference in FM composition
betw een adult vs. juveniles and w hether FM composition changed
w ith juvenile age-class. We used betadisper (vegan R package) to
test w hether interindividual variation in FM composition differed
betw een adults and juveniles. Those OTUs and KEGGs driving FM
differences among adults vs. juveniles and among juvenile age-
classes through changes in abundance were identified using
DESeqg2 (Love et al., 2014). As adonis, betadisper, and DESeq2
are unable to effectively account for pseudo replication due to
repeat sampling of the same individual through random effects, we
selected a single sample per adult and juvenile collected in 2014
at random for the purpose of these analyzes. This form of data
reduction produced no hint of systematic bias or any significant
decrease in statistical pow er; adonis and betadisper giving the
same results for the complete and reduced datasets, with a high

degree of correlation between the DESeq2-based log2 fold
changes in the reduced and full datasets (Pearson’s r D 0.751 for
OTU abundance and 0.879 for predicted KEGG abundance, p <
0.0001 in both cases).

We also explored co-occurrence patterns between OTUs in
adults and those in individual juvenile age-classes using a
recently developed version of the checkerboard score index,
the nc.score (Schwageret al., 2014), on individual OTU pairs.
Assaociation between OTUs was considered significant if the
corresponding g value (Storey and Tibshirani, 2003) was
<0.05. Significantassociations were used for construction ofa
co-occurrence network, as implemented in ggraph (Epskamp
et al., 2012). Poisson generalized linear mixed effect models
(GLMM;  fitted using Ime4), with number of significant
associations per OTU as the response variable and OTU
taxonomic assignationto class level as random intercept, were
used to identifytaxa that were more orlesslikelyto be involved
in co-occurrence or co-avoidance associations when
compared to the whole FM baseline. To account for
overdispersion, individual-level (i.e., OTU-specific) random
effects were alsoincluded into these models. In orderto meet
the requirements of computational resources (24G RAM) and
maintain areasonable number of multiple tests, we filtered out

those OTUs whose log10 scale variance for relative

abundance among samples was > 8 prior to calculaton
(Bourgonetal., 2010).
A series of permutation-based tests w ere runto assess w hether

dissimilarity among samples corresponding to the same adult or
young individual, the same nest, breeding colony or breeding
season w as low er than that among samples that

did not match these categories. First, the average difference in
ecological dissimilarity between corresponding groups (e.g,
dissimilarity for the same individual vs. a different individual)
was calculated and the non-parametric Cliff 's d index was
used to estimate the effect size. By reshuffling dissimilarity
values between sample pairs, we determined the distribution
of differences expected under null hypothesis validity. The null
distribution was then used for calculation of p-values. The
subset of dissimilarities irrelevant for a given comparison
and/or capable of biasing any observed difference was
excluded prior to calculation. We also carefully specified
blocking variables that define permutation constrains (a.ka.
strata) in order to obtain an unbiased null distribution (see
details in Data Sheet 1). The same principle was used to test
whether there was a higher similarity than expected among
offspring vs. social parents.

To assess the contribution of individual OTUs to temporal
stabilityat the community-wide level, we repeated the previous
analysis for Bray—Curtis dissimilarity calculated for each of the
FM OTUs. This dissimilaritymetric was selected as proportion-
based dissimilarities exhibit higher discriminatory power in
whole-community analyses (see below). Furthermore, it is
technically not possible to calculate UniFrac dissimilarity for
individual OTUs. Each OTU was assumed to contribute
significantly to FM stability at a g value threshold of 0.05.
Following the procedures described in Bourgon etal. (2010),
OTUs exhibiting low variation in abundance among samples
were excluded from the dataset prior to multiple testing
correction.

RESULTS

General Description of Barn Swallow FM
Sequencing data comprised 7.8 million high quality paired-end
reads, with reads clustered in 6222 OTUs, of which 71.4%
(represented by 87.5% high quality reads) were classified to
family and 45.9% (represented by 66.7% high quality reads)
up to genus level. Coverage indices calculated for individual
samples indicated that our data captured the vast majority of
FM diversity (mean Good’s coverage SE D 0.994 0.0003,
range D 0.950-0.999).

The dataset included 36 Eubacterial phyla and one Archaeal
phylum (Euryarchaeota). Barn swallow FM was dominated by
Proteobacteria (mean SE of reads D 39.6 1.4% reads, range D
45.5-98%), Firmicutes (34.7 1.4%, range D 13.2— 99.1%),
Tenericutes (12.7 1.1%, range D 0-96.0%), Bacteroidetes (6.3
0.7%, range D 0-92.2%), and Actinobacteria (4.4 0.4%, range D
0-48.7%), with other phyla present at much low er frequencies (at
average <1% reads). At low er taxonomic levels, Proteobacteria

were predominantly represented by unclassified
Enterobacteriaceae (10.7% of all high quality reads), Serratia
(5.1%), Pantoea (3.3%), Aeromonas (2.4%), Pseudomonas

(1.1%), and Rickettsia (1.4%). The most abundant Firmicutes
genera were Enterococcus (7.7% of all high quality reads),
Catellicoccus (5.8%), Lactobacillus (4.3%), and Lactococcus
(1.3%). Dysgonomonas (4.2% of reads) w as the dominant genus
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FIGURE 1 | Barplotsindicating barn swallow fecal microbiota (FM) taxonomic composition. Mean proportion of reads for the 15 dominant bacterial phyla and classes
detected in juvenie and adult barn swallow samples. Samples are organized according to age category (in the case of juveniles) and year of sampling (in the case of
adults). Sample order withinfacetes correspond to scores for the first principal coordinate analysis (PCoA) axis calculated based on weighted UniFrac.
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from the phylum Bacteroidetes, while the phylum Tenericutes
was predominantly represented by Mycoplasma (9.6% of
reads) and Ureaplasma (1.6%). The plot for taxonomic
assignmentof FM indicated pronounced variation at the inter-
individual level (Figure 1) as well as consistent differences
among adult and juveniles (detailed in the next section). A
more comprehensive description of FM taxonomic contentis
provided in Supplementary Table S2.

FM Changes during Ontogeny

Fecal microbiota alpha diversity in terms of observed OTUs was
nearly tw o-times higher in adults (mean SE of observed OTUs prior
to rarefaction; adults D 222 11.4, young D 140 5.4). The contrast
in alpha diversity betw een adults and young w as significant for all
alpha diversity indices calculated following rarefaction-based

normalization of the OTU table (LME 1DF D 1, $2 D 21.832, p <
0.0001 for number of observed OTU; 1DF D 1, $2 D 29.85, p <

0.0001 for Chao1 estimate; 1DF D 1, $2 D 6.944, p D 0.008 for
Shannon diversity; Figure 2).

PCoA and adonis revealed consistent differences in FM
composition among adults vs. young (Figure 3). Betadisper
revealed lowerinter-individual FM variation in juveniles for all

Erontiers in Micrabiology | www frontiersin aorg

dissimilarityindextypes. This difference was more pronounced
in OTU presence vs. absence based methods (Jaccard and
unweighted UniFrac; Table 1) than those based on relative
abundance (Table 1). PCoA for predicted metagenomes
indicated only slightdifferentiation among adults and juveniles
(Data Sheet 1), though the differentiation was significant in
adonis (Table 1). As in the OTU-based analyses, inter-
individual variation in predicted metagenomes was higher in
adults (Table 1).

DESeq2 analysis identified 213 OTUs (represented by 69.5% high
quality reads) in w hich abundance varied betw een adults vs. juveniles,
with 81 OTUs overrepresented in juveniles and 132 in adults (Figure
4). OTUs corresponding to the phyla Acidobacteria (genera Gp16,
Gp4, and Terriglobus), Tenericutes (genera Mycoplasma and
Ureaplasma), Verrucomicrobia, Parcubacteria, Deinococcus-Thermus
(genus Truepera), Chloroflexi (genus Litorilinea), and Euryarchaeota
(genus Methanosaeta) w ere more abundant in adults. The same was
true for most Bacteroidetes OTUs (genera Hymenobacter, Cloaci-
bacterium, Flavobacterium, Chryseobacterium, and Pedobacter) as
well as most Actinobacteria OTUs (corresponding to the genera
Nocardioides, lamia, llumatobacter, Ornithinicoccus,
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FIGURE 3 | Difference in FM composition among adult and juvenile
barn swallows. Principle coordinate analysis for ecological dissimilarity
among FM samples of juvenile (blue) and adult (red) barn swallows, with
proportion of FM variation associated withindividual axes indicated.

Actinomycetospora, Nakamurella, and  Corynebacterium).
Juvenile FM w as characterized by an increase in the abundance
of Chlamydiae (genus Neochlamydia) and several OTUs
corresponding to genus Dysgonomonas (phylum Bacteroidetes)
and Olsenella, Rothia, and Blastococcus (all belonging to the
phylum Actinobacteria). The tw o dominant barn swallow FM phyla,
Proteobacteria and Firmicutes, harbored a mix of OTUs that w ere
overrepresented in either adults or juveniles. In the case of
Proteobacteria, Pseudoxanthomonas, Porphyrobacter,
Luteimonas, or Thauera exhibited a considerable increase in

abundance in adults (log2 fold change > 5), w hile Campylobacter,
Orbus, Helicobacter, Lonsdalea, or Providencia w ere more

abundant in young. In the case of Firmicutes,
Sedimentibacter, Proteiniclasticum, Guggenheimella, or
Catellicoccus were owerrepresented in adults, while
abundance of Weissella, Sarcina, Fructobacillus, and most
Lactobacillus OTUs increased in young.

Consistent with the pronounced differences observed at the
OTU level, the abundance of 150 KEGG categories (DESeq2) also
varied significantly between adults and juveniles, though the
effect-size of these changes was low in most cases. For a
summary of 34 KEGGs for w hich abundance varied considerably

betw een adults vs. juveniles (absolute value of log2 fold change >
1), see Data Sheet 1. FM diversity tended to increase wit
increasing juvenile age [LME  observed OTUs (log10
transformed): slope D 1.140e 02 6.629¢e 03,

1DF D 1, $2 D 3.877, p < 0.05; Chao1 (log10 transformed):
slope D 0.057 0.0188, 1DF D 1, $2 D 20.492, p D 0.0876;

Shannon diversity: slope D 1.295 0.05692, 1DF D 1, $2 D
8.946, p D 0.0028]. On the other hand, age-dependent
changes in juvenile FM composition were not significant for
weighted and unweighted UniFrac according to adonis (p >

0.1, R2 < 0.02), while only slight age-dependent differences
were observed if using Jaccard and Bray—Curtis dissimilarity

(p<0.05,R2D 0.014 and p< 0.01, RZD 0.013, respectively).
Inter-individual variation in FM did notchange with juvenile age
(betadisper: p > 0.7 in all cases) and no change in OTU
abundance with juvenile age was detected using DESeq2
analysis. Similarly, no significant differences were obserwed
among predicted metagenomes in juvenile age-classes (p >
0.2 for both adonis and betadisper).

As there w as significant excess of positive nc.scores for adults
and all juvenile age-classes (Wilcoxon one sample test: p < 0.001
in all cases), FM structure appeared to be driven predominantly by
co-occurrence  rather  than co-avoidance interactions.
Furthermore, nc.score values exhibited highly significant
correlations across all juvenile age-classes and adults (Mantel’s
test: correlation coefficient range D 0.338— 0.391, p < 0.0001 in all
cases)and in adults sampled in 2013 vs. 2014 (Mantel's rD 0.481,
p < 0.0001), suggesting that among-OTU co-occurrence/co-
avoidance interactions varied
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TABLE 1 | Divergence between adult vs. juvenile barn swallow fecal microbiota (FM).

Adonis Betadisper

Inputdata Effect Df ss MSS F R P ss MSS F p

OTUs: weighted UniFrac Adults vs. young 1 0:331 0.331 11:603 0.067 0.001 0.012 0.012 5:204 0.024
Residuals 161 4:596 0.029 0.933 0.359 0.002

OTUs: unweighted UniFrac Adults vs. young 1 2:575 2.575 11:253 0.065 0.001 0.147 0.147 29:346  <0.001
Residuals 161 36:835 0.229 0.935 0.804 0.005

OTUs: Bray—Curtis Adults vs. young 1 4:015 4.015 10:250 0.060 0.001 0.030 0.030 7:346 0.007
Residuals 161 63:065 0.392 0.940 0.654 0.004

OTUs: Jaccard Adults vs. young 1 3:142 3.142 8:527 0.050 0.001 0.058 0.058 33:110 <0.001
Residuals 161 59:331 0.369 0.950 0.282 0.002

KEGGs: Bray—Curtis Adults vs. young 1 0:070 0.070 5:949 0.036 0.003 0.015 0.015 6:166 0.014
Residuals 161 1:902 0.012 0.964 0.401 0.002

ANOVA tables for adonis and betadisper models testing diff erences in FM composition and inter-individual v ariation among adults and juv eniles. Models were fitted
for four ecological distance ty pes (weighted and unweighted UniFrac, Bray —Curtis and Jaccard) for the OTU dataset. Shown are treatment and residual degrees of

freedom (Df), sum of squares (SS), mean sum of squares (MSS), F-statistic values (F), probability values (p) and proportion of explained v ariance (RZ).

little over time and were independentofhostage. After filtering
out non-significant nc.scores, average number of co-
occurrence or co-avoidance links per OTU was 0.137, 0.207,
and 0.237 for six day-, nine day- and 12 day-old juveniles,
respectively, and 3.437 and 5.242 for adults sampled in 2013
and 2014, respectively (Figure 5). The number of interactions
per OTU was positivelycorrelated with relative log-transformed
OTU abundance (p > 0.0001 in all cases). After statistical
control for this confounding effect, GLMM-based random effect
estimates indicated that the number of significant per-OTU
interactions was increased in Actinobacteria and
Alphaproteobacteria bacteria consistently across all juvenile
age-classes. The same also held true for Clostridia, with the
exception of co-occurrence analysis on adults sampled in 2013
(see Data Sheet 1).

Temporal Invariance of FM and
Divergence among Nests and Breeding

Colonies

Bray—Curtis and weighted UniFrac similarityamong samples
from the same adults collected within individual breeding
seasons was higher than that among samples from different
adults (Table 2; Figure 6; Data Sheet 1), providing evidence
for temporal stability in adult FM composition. When using
unweighted UniFrac or Jaccard dissimilarityfor the same test,
however, we found no support for within-individual FM
composition stability (Table 2; Data Sheet 1). Dissimilarity at
within-individual and within-season time-scales tended to
increase with increasing time-lag between collection of the
corresponding samples (average time-lag SE D 34.6 1.7 days)

in the case ofunweighted UniFrac (LME: 1DF D 1, $2 D 4.526,
p D 0.0334), Jaccard (LME: 1DF D 1, $2 D 7.731, p D 0.0054)

and Bray—Curtis dissimilarity(LME: 1DF D 1, $2 D 4.560,p D

0.0327), after box—cox transformation of the response variable.
This relationship was not significant for weighted UniFrac

(LME: 1DF D 1, $2 D 0.404, p D 0.5253). At the between-
season level, FM profiles corresponding to

the same adult only exhibited higher similarity than expected
by chance based on Bray-Curtis dissimilarity (Table 2).
Temporal stabilityof predicted adultmetagenome content was
significant at the within-season time-scale, but not at the
between-season time-scale (Table 2). Higher similarity
between adults within breeding colonies than that between
breeding colonies was associated with a very low effect size,
despite being significant for all community distances types.
Similarly, between-year variation in FM was associated with a
considerable effect size in the case of Jaccard dissimilarity
only (Table 2).

We identified 63 OTUs in the adult FM for within-season
analysis and 118 OTUs for betw een-season analysis (represented
by 30 and 20% of high-quality reads, respectively) w here
abundance exhibited significantly low er variation w ithin individuals
than betw een individuals. Atthe FM community level, signatures
of temporal stability increased after exclusion of all but these OTUs
from the dataset (mean difference betw een within- vs. betw een-
individual dissimilarites D 0.125 and 0.010, Cliff 's d D 0.282 for
within-season and 0.275 for between-season time-scales, p <
0.001 in both cases; Data Sheet 1). Seventeen OTUs, assigned
to  Enterobacteriaceae, Acinetobacter, Corynebacterium,
Dysgonomonas, Tsukamurella, Dietzia, Mycoplasma,
Streptococcus, Catellicoccus, and Lactobacillus, exhibited
significant temporal consistency both within and between
seasons.

Community-wide juvenile FM temporal consistency was
significant based on weighted UniFrac and Bray—Curtis
dissimilarity calculated for OTU; how ever, there was no hint of
temporal consistency based on absence vs. presence
dissimilarites and KEGG predictions (Table 3; Figure 7). In
addition, OTU-centered analysis identified only 16 low -abundance
OTUs (represented by 1.4% high quality reads) that contributed to
FM stability in juveniles. Differences in Bray— Curtis dissimilarity
for sample pairs corresponding to the same vs. different juvenile
w ere comparable w hen calculated for either the w hole FM (Table
3) or for the FM subset comprising the 16 OTUs exhibiting signs
of temporal stability (mean difference
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FIGURE 4 | Differential abundance analysis for FM OTUs of adult vs.
juvenile barn swallows. Only those OTUs whose abundance v aried
significantly among adults and juv eniles according to DESeq2 analy ses

are shown. Position on the horizontal axis corresponds to its log2 fold
change. Negativ e (blue) and positive values (red) indicate a higher OTU
abundance in juveniles and adults, respectiv ely . Genus identity is
determined by labels on the left side of the plot. OTUs are sorted
according to their Phy lum assignment. ( g.i.s. D genera incertae sedis).

between within- vs. between-individual dissimilarity D 0.0765,
Cliff's d D 0.125, p < 0.01; Data Sheet 1). FM similarity for
juveniles ofthe same age at the within-clutch level was higher

than that of juveniles raised in different clutches, both for
OTU and predicted KEGG data and irrespective of
dissimilarity index used (Table 3; Figure 7). The within-
clutch similarity effect-size decreased considerably when
running this analysis on FM samples from individuals of
different age (Cliff 's d < 0.05 in all cases). We also
observed higher FM similarity within breeding colonies than
between breeding colonies (Table 3; Figure 7), though the
effect-size was low in all cases (Cliff's d < 0.1).

FM Similarity between Offspring
and Their Parents

While juvenile FM show ed greater similarity to social mothers than
random adult females when using weighted UniFrac or Bray—
Curtis as a measure of FM divergence, w e observed no such effect
when using absence vs. presence dissimilarites. We also
observed no effect of social father on the FM composition of its
offspring (Table 4; Figure 8; Data Sheet 1). These results
remained unchanged after exclusion of extra-pair (n D 9) young
from social father vs. offspring and parasitic young (n D 3) from
social mother vs. offspring comparisons. Offspring vs. mother or
father dissimilarity did not vary with juvenile age (LME: p > 0.2 in
all cases). There was also no association between time lag in
social mother vs. offspring FM sampling and FM similarity betw een
mother and offspring (LME, p > 0.1 in all cases). On the other
hand, social father vs. offspring Bray— Curtis and w eighted
UniFrac dissimilarity tended to increase with increasing time-lag

between the two samples (LME, Bray— Curtis: 1DF D 1, $2 D

6.136, p D 0.0133; weighted UniFrac: 1DF D 1, $2 D 3.5994, p D
0.0570), though this effect was non-significant when using
unw eighted UniFrac and Jaccard dissimilarity (p < 0.1 in both
cases). Similarity in the composition of predicted metagenomes
among juveniles and social mothers or fathers w as not higher than
expected by chance (Table 4).

DISCUSSION

Age-Dependent Variation in FM Structure
Our data revealed pronounced differences in FM structure
between adult and juvenile barn swallows. Adult FM alpha
diversity w as nearly tw o-times higher than that of juveniles, w hich,
together with a slight increase in alpha diversity with juvenile age,
implies that FM is gradually colonized by bacteria from external
sources during the nestling period. On the other hand, six day-old
juveniles had already been colonized by a rich FM consortia and
the FM taxonomic composition in juveniles did not show any great
variation with age. Hence, initial establishment of juvenile-specific
FM appears to take place very soon after hatching and there is no
evidence for a gradual succession tow ard adult-like microbiota
due to newly invading FM species over the nestling period. In
humans and other mammalian taxa, dramatic shifts in FM
composition coincide with the transition between the pre- and
post-weaning period due to associated nutritional changes
(Schloss et al., 2012; Backhed et al., 2015; Mach et al., 2015). The
effect of diet on mammalian host FM has also been demonstrated
in numerous
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FIGURE 5 | Operational taxonomic unitco-occurrence network for adultand juvenile barn swallow FM. OTU co-occurrence network based on nc.scores for
individual age-classes and for adults. Only those nc.scores passing multiple testing corrections (q < 0.05) are shown. Green and red lines indicate positive and negative
co-associations, respectively. Class-level taxonomic assignations of individual OTUs included in the analysis are highlighted in different colors.

TABLE 2 | Effect of individual identity, breeding colony, and year on the divergence of adult barn swallow FM.

Within vs. among individuals (within years) Within vs. among individuals (among years)

Observed diff. 95% Clrange p Cliffs d Observed diff. 95% Clrange p Cliffs d
OTUs: weighted UniFrac 0.024 0.015 0.013 0.001 0.138 0.011 0.016 0.016 0.118 0.046
OTUs: unweighted UniFrac 0.004 0.015 0.011 0.591 0.018 0.003 0.014 0.015 0.42 0.001
OTUs: Bray—Curtis 0.079 0.022 0.027 <0.001 0.194 0.056 0.028 0.028 0.001 0.195
OTUs: Jaccard 0.002 0.007 0.008 0.692 0.011 0.007 0.009 0.009 0.077 0.061
KEGGs: Bray —Curtis 0.015 0.014 0.011 0.015 0.101 0.018 0.014 0.015 0.026 0.157

Within vs. among colonies Within vs. among years

Observed diff. 96% Clrange P Cliffs d Observed diff. 96% Clrange P Cliffs d
OTUs: weighted UniFrac 0.008 0.002 0.002 <0.001 0.013 0.008 0.002 0.002 <0.001 0.061
OTUs: unweighted UniFrac 0.012 0.002 0.002 <0.001 0.049 0012 0.002 0.002 <0.001 0.093
OTUs: Bray—Curtis 0.008 0.004 0.004 <0.001 0.029 0.008 0.003 0.003 <0.001 0.051
OTUs: Jaccard 0.01 0.001 0.001 <0.001 0.072 0.01 0.001 0.001 <0.001 0.127
KEGGs: Bray—Curtis 0.003 0.002 0.002 <0.001 0.009 0.003 0.002 0.002 <0.001 0.028

Results of permutation-based tests on adult FM samples comparing dissimilarity among samples from (A) the same v s. different individuals sampled during the same
breeding season and the same colony, (B) the same vs. different individuals sampled during dif f erent breeding seasons and in the same breeding colony, (C) dif ferent
individuals sampled in the same vs. different breeding colony during the same breeding season, and (D) different individuals sampled in the same breeding colony
during the same vs. different breeding season. For OTU data, analy ses were run on four dissimilarity index ty pes (weighted and unweighted UniFrac, Bray—Curtis
and Jaccard). Shown are observed dissimilarity difference values, 95% confidence interv als of the corresponding permutation-based null distribution, permutation-
based probability values and effect size estimates (Cliff’s d). Significant results are in boldface.
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FIGURE 6 | Fecal microbiota differentiation in adult barn swallows. Box plots for Bray—Curtis dissimilarity among FM samples from the same vs. different individuals
sampled during (A) the same breeding seasonand (B) different breeding seasons, (C) dissimilarities among FM samples from differentindividuals sampled during the
same breeding season in the same vs. different colony, and (D) dissimilarities among FM samples from non-dentical individuals sampled in the same breeding colony
during the same vs. different breeding season. Comparisons based on other types of ecological dissimilarity are available in the DataSheet1.

TABLE 3 | Effect of individual identity, clutch identity, and breeding colony on FMdivergence in juvenile barn swallows.

Within vs. among individuals Within vs. among nests
Observed diff. 95% Clrange P Cliffs d Observed diff. 95% Clrange P Cliffs d
OTUs: weighted UniFrac 0.027 0.002 0.025 0.023 0.159 0.022 0.007 0.012 0.001 0.142
OTUs: unweighted UniFrac 0.005 0.013 0.015 0.323 0.011 0.022 0.015 0.007 <0.001 0.144
OTUs: Bray—Curtis 0.07 0.004 0.057 0.006 0.236 0.064 0.015 0.02 <0.001 0.22
OTUs: Jaccard 0.003 0.008 0.011 0.37 0.018 0.03 0.008 0.006 <0.001 0.237
KEGGs: Bray—Curtis 0.004 0.002 0.014 0.684 0.042 0.016 0.003 0.009 0.001 0.184
Within vs. among localities
Observed diff. 96% Cl range p Cliffs d
OTUs: weighted UniFrac 0.002 0.004 0.003 0.101 0.017
OTUs: unweighted UniFrac 0.013 0.004 0.004 <0.001 0.083
OTUs: Bray—Curtis 0.026 0.006 0.006 <0.001 0.084
OTUs: Jaccard 0.009 0.002 0.003 <0.001 0.094
KEGGs: Bray—Curtis 0.003 0.002 0.002 0.977 0.028

Results of permutation-based tests comparing dissimilarity among juvenile FM samples collected from (A) the same vs. different individuals in the same nest, (B)

different individuals from the same v s. different nests located in the same breeding

colony, and (C) individuals from different nests in the same vs. different breeding

colony . For OTU data, analy ses were run on four dissimilarity index types (weighted and unweighted UniFrac, Bray —Curtis and Jaccard). Only Bray—Curtis dissimilarty
was used for predicted KEGG categories. Shown are observed dissimilarity difference values, 95% confidence intervals of permutation-based null distribution,
permutation-based probability values and effect size estimates (Cliff's d). Significant results are in boldf ace.

experimental and comparative studies (Ley et al., 2008; David et
al., 2014). We propose, how ever, that diet only has a limited effect
on the differences in FM between adult and juvenile in barn
sw allow . While slight differences in adult vs.juvenile barn sw alow
diet have previously been reported, both these cohorts forage
exclusively on taxonomically similar groups of flying insects
(Turner, 1980). As a result, the potential effect of diet composition
on FM is much more restricted in our study compared to research
focused on omnivorous hosts. Moreover, our data on more than
50 passerine species w ith contrasting

foraging specializations indicates that diet only has a negligible
effect on interspecific variation in FM composition in this group
(Kropackova™ et al., unpublished data). Age-specific differences in
gut physiology, morphology and diet digestion could also affect FM
variation betw een adults vs. juveniles, especially as these undergo
dramatic development after hatching in passerines and other bird
taxa. Such changes include agradual increase in relative gut mass
and surface area, proliferation of enterocytes and mucous-
secreting goblet cells (review edin Perry, 2006) and an increase in
production of digestive enzymes (Caviedes-Vidal
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FIGURE 7 | Fecal microbiota differentiation in juvenile barn swallows. Box plots for Bray —Curtis dissimilarity among FM samples from (A) identical vs.
different individuals from the same nest corresponding to different age-classes, (B) diff erent individuals from identical vs. different nests placed in the same
breeding colony and corresponding to the same age-classes, and (C) individuals from different nests that were placed in the same vs. different breeding
colony. Comparisons based on other ty pes of ecological dissimilarity are av ailable in the Data Sheet 1.

TABLE 4 | Barn swallow parent vs. offspring similarity.

Father vs. offspring similarity

Mother vs. offspring similarity

Observed diff. 95% Cl range P Cliffs d Observed diff. 95% Cl range P Cliffs d
OTUs: weighted UniFrac 0.004 0.017 0.017 0.631 0.016 0.026 0.022 0.022 0.031 0.148
OTUs: unweighted UniFrac 0.01 0.016 0.016 0.188 0.074 0.005 0.024 0.024 0.616 0.038
OTUs: Bray—Curtis 0.005 0.016 0.018 0.639 0.022 0.052 0.028 0.034 0.013 0.171
OTUs: Jaccard 0.006 0.01 0.01 0.194 0.079 0.002 0.013 0.013 0.4 0.035
KEGGs: Bray —Curtis 0.005 0.019 0.018 0.328 0.003 0.007 0.017 0.017 0.724 0.104

Results of permutation-based tests comparing dissimilarity among parental vs. of fspring FM composition. Analy ses were run separately for of f spring vs. mother and
offspring vs. father pairs. For OTU data, analy ses were run on four dissimilarity index ty pes (weighted and unweighted UniFrac, Bray—Curtis and Jaccard). Only
Bray— Curtis dissimilarity was used for predicted KEGG categories. Shown are observed value dissimilarity differences, 95% confidence intervals of permutation-
based null distribution, permutation-based probability values and estimates of effect size (Cliff’'s d). Significant results are in boldface.

and Karasov, 2001), all of w hich increase digestion efficiency w ith
host age (Karasov, 1990). Similarly, adaptive immunity and some
components of innate immunity, are not fully developed in juveniles
(Killpack et al, 2013), implying a reduced capability for
management of associated microbiota in juveniles. Alternatively,
FM variation between adults vs. juveniles could also be partly
affected by age-dependent differences in the sources of bacteria
invading the host's body. While the most likely source for juvenile
FM are bacteria in the nest material or those acquired via parental
transfer (Gonzalez-Braojos et al., 2012a), adults are exposed to a
much more diverse pool of environmental bacteria, both at the
breeding ground and during the migration.

Taxonomic differences between adult and juvenile FM may provide
a more mechanistic insight into those processes shaping FM
differences betw een the tw o cohorts. Juvenile FM, for example, s
characterized by an increase in the abundance of OTUs corresponding
to lactic acid bacteria (LAB; genera Lactobacillus, Leuconostoc,
Lactococcus, Carnobacterium, Enterococcus, Vagococcus, Weissella,
and Olsenella) and family Enterobacteriaceae (genera Serratia,
Lonsdalea, and Providencia). LAB, and many Enterobacteriaceae,
prefer energy-rich substrates and are capable of fermenting
carbohydrates under anoxic

Erontiers-in Minrr\hinlng\/ I v frontiersin org

conditions (Kandler, 1983). Their presence in juveniles, therefore, may
reflect reduced production of digestive enzymes specific for this
substrate (Caviedes-Vidal and Karasov, 2001). Presence of sone LAB
is believed to be generally beneficial as they stimulate the hosts
immune systemand produce metabolites involved in the maintenance
of gut microbiota homeostasis (Ljungh and Wadstrom, 2006). Further,
some LAB species have been reported as contributing to the host's
energy balance via improved feed conversion (Abe et al., 1995). On
the other hand, whie the specific effects of LAB and
Enterobacteriaceae on passerine hosts are still poorly understood, it
is thought that some may trigger negative consequences, including
reduced growth rates and competition with the host for energy
resources (Gonzalez-Braojos et al., 2012b). Unlike juvenile FM, adult
FM w as enriched with bacteria utilizing relatively complex substrates,
e.g., Sedimentibacter, Clostridium cluster XIVa, and Proteiniclasticum
(family Clostridiaceae) or Flavobacterium and Chryseobacterum
(family Flavobacteriaceae). In juveniles, w e also observed an increase
in the abundance of OTUs corresponding to taxa that may be
associated with pathogenic or other detrimental effects on avian hosts.
These include genera Helicobacter (Harbour and Sutton, 2008),
Campylobacter (Benskin etal., 2015), Rickettsia
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FIGURE 8 | Fecal microbiota similarity between young barn swallows
and their social parents. Box plots for Bray —Curtis dissimilarity among
juveniles and (A) their social fathers vs. non-social adult males and (B)
social mothers vs. non-social adult females. Comparisons based on other
ty pes of ecological dissimilarity are available in the Data Sheet 1.

and Diplorickettsia (Ritchie et al., 1994), or Suttonella (Kirkw ood et al,
2006), w hich may be associated with low ered capacity of the juvenile’s
immune systemto cope w ith detrimental bacterial invaders (Killpack et
al., 2013). Potential pathogens that w ere more abundant in adult FM
included genera Mycoplasma and Ureaplasma (Sumithra et al., 2013).
These bacteria often invade the urogenital tract of birds; hence, we
speculate that their presence is associated w ith changes occurring in
the urogenital tract during the breeding season or w ith sexual contact
betw een colony members (Kreisinger et al., 2015b). We also detected
an increase in OTUs of the family Xanthomonadaceae (genera
Wohlfahrtiimonas, Lysobacter, Luteimonas, Pseudoxanthomonas,
Dokdonella, and Ignatzschineria) in adult FM, as well as severa
Alphaproteobacterial OTUs (for example genera Devosia,
Hyphomicrobium, Porphyrobacter, Loktanella) that are likely to be of
environmental origin, suggesting a larger effect on adult FM of bacteria
from environmental pools. How ever, as these taxa include both
opportunistic pathogens and species harboring potentially important
functions for vertebrate hosts, including defense against pathogens
(Boutin et al., 2012), w e cannot exclude their functional significance in
barn sw allow microbiota.

According to PICRUSt, the adult FM was enriched with a
number of KEGGs that may be involved in interactions with the
host's immunity system or with other FM members. Bacterial
production of melanin, for example, can be associated with
scavenging of superoxide radicals, w hich probably makes bacteria
more resistant to the oxygen burst induced by the host's immune
system (Plonka and Grabacka, 2006). Similarly, KEGG categories
involved in the synthesis of metabolites that have putatively
antibacterial and antifungal properties, such

as sesquiterpenoid and macrolides, may promote competitive
interactions w ith other FMmembers, thereby contributing to increased
adult FM complexity, as discussed below. PICRUSt analysis also
indicated that the adult FM may have a larger effect on host energy
balance than that of juveniles as the abundance of those KEGGs
associated w ith protein and carbohydrate digestion and absorption is
increased. Bacterial fermentation of these substrates produces short-
chain fatty acids that can be utilized as an energy source by the
vertebrate host. Moreover, short-chain fatty acids are directly involved
in the regulation of gut physiology and attenuate inflammatory
responses (den Besten etal., 2013). The adult FM w as also enriched
with several KEGGs associated with ion balance (particularly:
“Calcium signaling pathw ays” and “Endocrine and other factor-
regulated calcium reabsorption”) and pathw ays regulated by ion
concentration (e.g., “Vasopressin-regulated w ater reabsorption” or
“Gastric acid secretion”). Overall, FM predictions indicate higher
interaction complexity betw een the host and gut microbiota and
betw een individual members of the gut microbiota community in
adults. On the other hand, several KEGGs found at higher levels in the
adult FM are not directly associated w ith animal hosts (e.g., Isoflavim
or Betalain biosynthesis), suggesting a greater importance of
environmental bacteria in the adult FM.

Interestingly, differences in FM structure betw een adults and
juveniles were observed not only in terms of richness and
composition but also at the level of OTU co-occurrence pattern,
w ith co-occurrence netw orks being more complex in adults. There
was a significant correlation betw een co-occurrence coefficients
calculated for adults and for different juvenile age-classes, with
Alphaproteobacteria, Actinobacteria, and Clostridia being the main
drivers of co-occurrence interaction, irrespective of host age.
While this suggests that the overall shape of co-occurrence
interactions remains invariant in relaton to host age, co-
occurrence strength increased w ith the end of the nestling period.
Significant links in co-concurrence netw orks are often interpreted
as direct interactive associations between two bacterial taxa
(Faust etal., 2012). The abundance of two OTUs may be positively
correlated, for example, if one utilizes the product of the other as
a metabolic substrate (reviewed in Morris et al., 2013). On the
other hand, secondary metabolites in certain species may
suppress proliferaton of other FM members, resulting in
negatively correlated abundances (Ruiz et al., 2009). Alternatively,
heterogeneity in  environmental factors modulating FM
composition may affect inter-individual variaton in the FM
community. Consequently, abundance correlations among OTUs
may be driven by these extrinsic sources of FM variation rather
than by direct mutual OTU interaction. In line with this explanation,
inter-individual variation in adult FM was higher, implying an
increased potential for detection of apparent interactive links
betw een OTUs. At the same time, Alphaproteobacteria harboring
OTUs of putatively environmental origin, w ere identified as one of
the main drivers of co-occurrence interactions. On the other hand,
Actinobacterial OTUs, which commonly produce secondary
metabolites involved in interactions w ith other gut bacteria (Riley
and Wertz, 2002), and Clostridia, w hich have been identified as
important co-occurrence drivers in human gut microbiota (Faust et
al., 2012),
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were both inwlved in co-occurrence interactions in barn
swallow FM more than expected by chance. This suggests
that the patterns observed were at least partly driven by
direct OTU vs. OTU interactions.

Temporal Stability of FM

Fecal microbiota is shaped by a wide variety of factors, some of
w hich presumably have a stabilizing effect on the temporal
consistency of its composition (Benson et al., 2010; McKnite et al,,
2012) while others contribute to rapid turnover of FM members,
introducing instability into the FM community over time (Amato et
al.,, 2013; Wang et al., 2014). Our data on a free-living passerine
bird population has extended current understanding of FM stability
over time, with only one other study addressing this topic in this
vertebrate group, how ever, using a captive population (Benskin et
al., 2010). We show that, for both juveniles and adults, temporal
consistency in taxonomic and functional profiles at the whole FM
community level exhibited a rather low effect-size, despite its
statistical significance. The most striking evidence for FM temporal
stabilty has been provided for human populations, w here
individual-specific FM signatures persist for several years (Faith et
al., 2013; Lim et al., 2014; Salonen et al., 2014, but see David et
al., 2014). A high degree of temporal invariance in human FM may
be maintained partly through long-term consistency in the social
micro-culture environment and associated temporal stability of
biotic and abiotic factors shaping FM (Mulder et al., 1998; Edstrom
and Devine, 2001; Borland et al., 2007). In comparison, the few
studies focused on FM temporal stabilty in other mammalian
species typically show rapid within-individual FM composition
fluctuations (Schloss et al., 2012; Becker et al., 2015; Hoy et al.,
2015; but see Stevenson et al., 2014). Current knowledge on
individual FM composition over time in wild populations is very
limted (Waite et al., 2014; Baxter et al., 2015; Sun et al., 2016).
Nevertheless, previous studies on free-living vertebrates have
revealed pronounced population-wide changes in FM due to
switches in diet composition, physiological state or health and
infection status (Amato et al., 2013; Kreisinger et al., 2015a;
Maurice et al.,, 2015; Sommer et al., 2016). Hence, the relatively
low temporal stability in barn swallow FM detected in our study is
in general agreement w ith the vast majority of current studies on
vertebrates. As we controlled our analysis for systematic FM
variation among breeding colonies, w e can assume that the slight
yet significant FM consistency observed was not caused by
environmental heterogeneity within the populations sampled. In
addition, given the small area of the breeding colonies (several
hundreds of square meters), the high environmental homogeneity
w ithin colonies and low FM differentiation betw een colonies, it is
unlikely that any environmental variation operating at the within-
colony level could contribute to temporally consistent differences
in FM betw een individuals.

It has recently been proposed that the temporal stability in

significant role of conditionally rare taxa as regards FM stability as
signatures of FM consistency over time were consistently more
pronounced in analyses utilizing OTU abundance compared w ith those
based solely on OTU presence vs. absence. We conclude, therefore,
that FM stability is driven by abundance invariance of relatively
common OTUs and that a large proportion of OTUs that typically occur
at low abundances are likely to persistfor a limited period only in bam
swallow FM. [t could be argued that w e were not able to detect any
significant effect of conditionally rare taxa as these were below or at
the detection threshold of our sequencing experiment. Althoughwe
cannot reject this possibility, w e believe that any potential bias due to
under-sequencing is unlikely to have affected the sensitivity of our
analysis as high coverage index values indicate almost complete
representation of FM diversity by sequencing data.

Temporal consistency effect sizes for juvenile FM sampled over
several days w ere comparable w ith those observed in adults w here
the time-lag betw een samplings of the same individual was much
longer, indicating a low er level of temporal FM invariance in young.
This could theoretically be attributed to gradual FM succession
associated w ith gradual changes in gut physiology and morphology
and immune systemduring the early post-hatching period (Caviedes-
Vidal and Karasov, 2001; Killpack et al., 2013). How ever, as our data
do not provide evidence for successive changes in FM, w e suggest
that stochastic turnover of FM species is more rapid in juveniles.
Know ledge regarding changes in FM stability in different ontogenetic
stages remains relatively poor; how ever, our results are consistent
w ith data fromcaptive mice, w here juveniles exhibited more rapid FM
changes at the individual level compared w ith adults (Schloss et al.,
2012). In addition, high stochasticity of microbial communities in early
life stages is implied by numerous studies show ing their dramatic
changes during postnatal development (Schloss et al., 2012; Backhed
etal., 2015; Mach et al., 2015).

Further evidence for increased stochasticity in the FM
composition of juveniles w as provided by our OTU-level analysis,
which showed that only OTUs represented by a very low
proportion of 16S rRNA reads, exhibited signs of temporal stability
in juveniles, whereas both the number of OTUs with stable
abundance over time and their relative representation in FM was
much higher in the case of adults. Seventeen OTUs contributed
significantly to FM stability in adults, both at the within- and
betw een-season time-scale, and these represent potential
candidates for involvement in long-term modulation of the host
phenotype. Further correlative and experimental research,
therefore, should focus on the relevance of these 17 OTUs as
regards host traits involved in fithness pay-offs and mechanisms
maintaining their temporal stability. At present, the role of
individual FM species on host fitness in passerines is little
understood (Gonzalez-Braojos et al., 2012b; Benskin et al., 2015);
nevertheless, the relevance of OTUs exhibiting consistent signs of
temporal stability is indicated by numerous studies suggesting

microbial communities is maintained by a subset of “conditionally  both beneficial and harmful effects in humans and other
rare taxa” (Shade and Gibert, 2015) that exhibit temporal organisms. In barn swallow, several of these OTUs were
persistence and typically occur at low abundance, though Actinobacteria (genus Dietzia, Corynebacterium and
populatons may exhibit an abrupt increase under certain  Tsukamurella), i.e., they belong to a bacterial clade characterized
circumstances. Our results, how ever, do not support any by production of bacteriocins
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and other secondary metabolites involved in interactions w ith other
microbiota members (Riley and Wertz, 2002), implying their
importance for FM structure. Acinetobacter genus (phylum
Proteobacteria) are able to degrade chitin (Askarian et al., 2012),
w hichmay be of substantial importance forthe barn swallow given
its dependence on a chitin-rich diet. Genus Mycoplasma (phylum
Tenericutes) include several potentially pathogenic species for
birds (Sumithra et al., 2013). These bacteria support mechanis ms
enabling adherence to epithelial cells, implying a tight interaction
with the host's immune system (Chu et al,, 2003). Notably, the
Lactobacillus OTU (corresponding to L. reuteri by blast search;
100% identity), know n for its probiotic properties in poultry (Liu et
al., 2007), exhibits a substantial level of temporal stability in barn
swallow FM, as did Streptococcus OTU populations
(corresponding to S. thermophilus by blast search; 100% identity),
w hich also have a putative probiotic effect (Correa et al., 2005).
Importantly, other abundant taxa of putatively environmental
origin, such as Xantomonadaceae and Alphaproteobacteria, w ere
not present in the OTU subset exhibiting signs of temporal stability,
suggesting transient colonization of the gut by bacteria from the
environmental pool as an important source of FM temporal
variation at the w ithin-individual level in barn-sw allow s. Although
further research is needed to distinguish transient vs. resident
members in passerine FM, a large proportion of putatively transient
bacteria are probably associated with rapid passage of food
through the digestive tract (Caviedes-Vidal et al., 2007; McWhorter
et al, 2009), which may preclude their effective elimination or
overgrow th by resident bacteria. Aside from the effect of transient
bacteria, within-individual variation could theoretically be explained
by a wide range of factors, including temporal changes in hormonal
profiles or immune parameters (Koren et al., 2012; Org et al.,
2016). Our own unpublished data suggest a tight association
betw een cell-mediated immune response and FM composition in
barn swallow, which is consistent with the latter explanation
(Kreisinger et al., unpublished data). On the other hand, w hile
there are contrasting differences in male and female hormonal
profiles during the breeding season (Garamszegi et al., 2005), sex
has been shownto have a negligible effect on FM composition in
barn swallow (Kreisinger et al., 2015b). We therefore speculate
that physiological changes modulated by variation in hormonal
levels are unlikely to explain temporal variaton in FM at the
individual level.

FM Similarity between Offspring

and Their Parents

Strict vertical transmission of FM from parents to progeny plays an
important role in host vs. host-associated microbiota co-
adaptations in several arthropod taxa, including the evolution of
obligatory  symbiotic interactions between host-associated
microbiota members and their host. This results in a tight
phylogenetic co-divergence betw een host-associated microbiota
and their host (Janson et al., 2008), and perhaps in Dobzhansky —
Muller type incompatibilities due to host-associated microbiota
admixture in hybrids (Brucker and Bordenstein, 2012). In

vertebrates, host-associated microbiota vs. host associations
mediated by trans-generational transfer are probably not so tight;
nevertheless, this mechanism still plays a significant role in
genome evolution in some host-associated microbiota species
(Falush et al., 2003). In mammals, initial inoculation of new bom
young by vaginal microbiota during the delivery has a long-term
effect on their FM composition (Salminen et al., 2004), w hile
prebiotic compounds included in breast milk facilitate proliferation
of beneficial microbes in the gut (Bode, 2012). The role of such
parental effects on the FM of progeny has generally been poorly
explored in non-viviparous vertebrate taxa (Lucas and Heeb,
2005). Where post-natal parental care exists in non-viviparous
species, how ever, bacteria are likely to be transferred during food
provisioning or other types of physical contact betw een parents
and offspring (Lucas and Heeb, 2005). In barn swallow, we
observed significantly higher similarity in FM composition betw een
social mothers and their offspring but not in the case of FM
comparisons betw een offspring and social fathers. The lower
effect of social fathers on FM composition in progeny can be
explained by the lower contribution of male barn swallows to
parental care (Smith and Montgomerie, 1992; Mgller, 1994). This
results in a low er rate of social contact, w hich has previously been
show n to shape microbial communities in birds (White et al., 2010;
Kreisinger et al., 2015b). Although direct FM transfer during food
provisioning is the most parsimonious explanation for mother vs.
offspring similarity, we cannot exclude the possibility that it is
mediated by in ovo maternal deposition of bioactive compounds
that have the potential to modulate FM (Yurkovetskiy et al., 2013).
On the other hand, w e believe that mother vs. offspring similarity
is unlikely to be caused by vertical inheritance of genes interacting
with FM as a paternal effect on offspring FM w as of a much low er
effect-size and did not increase after expulsion of extra-pair (i.e.,
non-genetic) offspring, and mitochondria and heterogametic sex
chromosomes are the only parts of the genome inherited
exclusively maternally, and these are unlikely to have any
considerable effect on FM structure (Benson et al., 2010; McKnite
et al, 2012). Finally, there is some evidence for egg (and
consequently embryo) inoculation by bacterial populations in the
uterus (Funkhouser and Bordenstein, 2013). How often this
occurs, how ever, and how this mechanism contributes to FM after
hatching, remains unclear.

Conclusions

The aim of this study was to assess the strength of FM
composition temporal consistency and the level of parental
effect on juvenile FM composition. Both these factors are
important from an ecological and evolutionary perspective as
they help promote within individual and trans-generational
consistency of phenotype traits linked with FM. Our data,
however, revealed a limited role for these two factors.

At the w hole community level, FM exhibited significant temporal
consistency, both in adults and juveniles, though corresponding effect
sizes w ere low. Nevertheless, we identified a subset of bacteria whose
relative abundances exhibited pronounced levels of temporal
consistency in adults, both at the within- and betw een-year time-
scales. Consequently, these OTUs
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may be inwlved in long-term modulation of the host
phenotype. This possibility, along with identification of the
mechanisms underlining stability of these OTUs over time,
should be the subject of further empirical evaluation.

Our data also indicate a slight maternal, but not paternal,
effect on FM composition in social offspring. This pattern may
be explained by direct social transfer of FM, which has been
proposed as a mechanism underlining gut microbiota
heritability. Our data, however, are not fully consistentwith this
idea. The observed effect size of mother vs. offspring similarity
was low and did notincreasewith offspring age. Consequently,
pronounced differences between juvenile and adult microbiota
are unlikelyto be compensated forby a maternal effect during
the nestling stage. Thus, the switch between juvenile-specific
and adult-specific FM likely takes place after nest
abandonment, when any parental effect is presumablyto be
limited. In addition, juvenile FM composition was highly
variable during the nestling stage and, consequently, matemal
effect on offspring FM is likely to persistfor a limited period
only.
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ABSTRACT

Quality and quantity of food items consumed has a crucial effect on phenotypes. In addition
to direct effects mediated by nutrient resources, an individual’s diet can also affect the
phenotype indirectly by altering its gut microbiota, a potent modulator of physiological,
mmunity and cognitive functions. However, little is still known about the effect of diet on
gut microbiota i non-mammalian vertebrate hosts and in free-living populations. We
developed a metabarcoding procedure based on cytochrome c oxidase I high-throughput
amplicon sequencing and applied it to describe diet composition in a breeding colonies of
an insectivorous bird, the barn swallow (Hirundo rustica). To identify putative diet-
microbiota associations, we integrated the resulting diet profiles with an existing dataset
for faecal microbiota in the same individual. Consistent with previous studies based on
macroscopic analysis of diet composition, we found that Diptera, Hemiptera, Coleoptera
and Hymenoptera were the dominant dietary components in our population. We revealed
pronounced variation in diet consumed during the breeding season, along with significant
differences between nearby breeding colonies. In addition, we found no difference i diet
composition between adults and juveniles. Finally, our data revealed a correlation between
diet and faecal microbiota composition, even after statistical control for environmental
covariates affecting both diet and microbiota variation. While the strength of the diet-
microbiota correlation was relatively low, our study suggests that variation in diet can
induce significant microbiota changes n a non-mammalian host relying on a narrow

spectrum of items consumed.

KEYWORDS: fecal microbiome, symbiosis, gastromtestinal tract, metabarcoding,

mnsectivor

INTRODUCTION

Nutrient intake and energy metabolism are inherent properties of all cellular life forms. It
is well established that nutrient composition and quantity obtained through diet has a

decisive effect on traits tightly linked with fitness, including growthl, reproductionz,
immunity3 and various aspects of physiolo gy4. At the same time, an animal’s condition

and/or health can have a causal effect on the composition of the diet consumed’. As an

example, the preferred diet may vary with age due to differing nutritional demands related

to specific ontogenetic stages6.
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In addition to the direct consequences of nutrient compounds on fitness-related traits, diet
variation may also impose indirect effects by modulating populations of microbial
symbionts hosted in the digestive tract of a given individual. This gut microbiota represents

the largest fraction of microbial symbionts associated with animal hosts in terms of both

cell count and encoded genes7’8. Notably, the gut microbiota is a potent modulator of host
physiology and health status, with strong effects on the immune system, digestive tract
morphology and digestion efficiency. At the same time, disruptions to the normal gut

microbiota have been associated with a number ofadverse consequences to host health®>10.

Diet composition has been identified as one of the main drivers of gut microbiota variation

n mammals. At larger phylogenetic scales, for example, repeated transitions between

carnivory and herbivory were followed by consistent changes in gut microbiota content! 1~

13 In omnivorous species, including humans, both long-term and short-term dietary habits
impose gut microbiota changes that partly recapitulate transitions observed at the herbivore-
carnivore continuum!#~1®. On the other hand, the effect of diet on gut microbiota has also

been observed in species relying on a relatively narrow diet spectrum. For example,
significant gut microbiota differences have been detected between folivore and frugivore

17 18

lemurs®’, in bison fed on pasture or a grain diet'® and even between strictly nsectivorous

bat species exploiting different prey spectra19.

In non-mammalian taxa, the evidence for a dietary effect on gut microbiota is scarce and
inconclusive. In comparison with mammals, bird diet appears to be a less important factor
modulating gut microbiota”’. Most studies undertaken on birds have found some support for

21-24 However, many of

the effect of diet on interspecific variation, particularly in passerines
these studies had limitations related to the use of indirect dietary data and dietary data based
on literature searches®> PUt56¢2627 Consequently, the rather high within-species variation in

dietary items consumed in some cases could mean that an important source of variation was
omitted from these analyses. Moreover, little is known about the effect of diet on intraspecific

gut microbiota variation. There has been just one experimental study showing that diet
intervention induced changes in gut microbiota composition in an omnivorous passerine bird”®.

To our knowledge, there has been no study exploring the effect of natural within-species diet
variation on gut microbiota content. Alongside the effect of diet, most studies focused on avian

gut microbiota in wild populations have
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usually only identified a weak or moderate effect size of ecological gut microbiota predictors,

with a large fraction of gut microbiota variation remaining unexplained22’29’3o. As relatively

small dietary changes can induce pronounced microbiota changes in mammals, it is tempting
to speculate that a detailed knowledge of avian diet composition could help elucidate

mechanisms driving their gut microbiota variation.

The use of traditional diet analysis methodologies for wild populations is challenging.
Macroscopic examination of faecal samples or undigested food remains have commonly

been applied3 1,32,

however, this approach is time consuming and demanding as regards
expertise. Moreover, there may be a non-negligible risk of limited taxonomic resolution or
other specific biases>3-3%. DNA-based methodologies such as metabarcoding, which rely
on deep sequencing of DNA markers bearing taxonomic information, represent a promising
alternative that could partly overcome such challenges

35-37,

In this study, we developed procedures for metabarcoding-based diet profiling in
msectivorous birds and applied this approach in studying dietary variation i breeding
colonies of a migratory passerine bird, the barn swallow (Hirundo rustica). The barn
swallow is a model free-living species widely used for research into reproductive biology

and evolutionary ecology, including studies of sexual selection and sperm competition38’

40 Importantly, the species’ gut microbiota has recently been studied by a number of

authors*I™*. As such, this species represents a suitable non-mammalian model for

research into interactions between diet and gut microbiota. Studies on diet-microbiota
interactions in wild populations are still rare and, to our knowledge, our contribution
represents the first attempt to integrate individual-based data on metabarcoding-based diet
and gut microbiota composition in an insectivorous bird. Specifically, we used
metabarcoding data to identify drivers of diet variation i the barn swallow and, in doing
so, ask whether barn swallow diet varied temporally during the course of the breeding
season or spatially between breeding colonies and whether adults and their nestlings rely
on different spectrum of items consumed. As a further step, we combined existing data on

42

barn swallow faecal microbiota™ with diet profiles for the same individuals to test whether

mterindividual variation in diet was a predictor of gut microbiota composition.
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MATERIAL AND METHODS

Sample collection

Collection of faecal samples from both adults and nestlings (6-12 days after hatching) was
conducted from two populations (Saloun farm, Lomnice nad Lwmici [49° 4’ 7.762" N, 14°
42'36.521" E]; Hamr farm, Luznice [49° 3’ 25.288" N, 14°46' 10.82" E]) in the Trebonsko
Protected Landscape Area (Czech Republic; distance between populations = 4.5 km)
during the barn swallow breeding season from May to August 2014. For details on field

procedures and faecal sample collection see Kreisinger et al.*? and Petrzelkova et al®.

All field procedures were conducted in accordance with European Union Guidelines for
Animal Care and Treatment and approved by the Animal Care and Use Committees at the

Czech Academy of Sciences (041/2011) and Charles University in Prague (4789/2008-0).
Laboratory analysis

Metagenomic DNA from faecal samples was extracted using commercial PowerSoil kits
(MoBio), with faecal microbiota subsequently profiled through high-throughput
sequencing of 16S rRNA amplicons, as described in our previous studies*2*3. In brief, the

V3-V4 variable regions of 16S rRNA were amplified through a polymerase chain reaction
(PCR) using universal primers. Next, sequencing libraries were prepared using TruSeq
nano kits (Illumina) and sequenced on [llumina Miseq using the v3 kit (300bp paired-end
reads) at Montpellier-SupAgro (France).

For the purpose of diet profiling, we used universal Cytochrome c oxidase subunit I
(CO)) primers (BF2-GCHCCHGAYATRGCHTTYCC and BR2-
TCDGGRTGNCCRAARAAYCA) targeting a broad range of invertebrate taxa*®. We

selected these primers as in vitro and in silico tests indicate that they exhibit a lower level

of PCR bias compared to existing alternatives.

To reduce problems associated with the formation of primer-dimers, sequencing libraries

were prepared in three PCR steps:

1) COI pre-amplification by gene-specific primers, using a PCR mixture consisting of 5 pl
of PCR mastermix, 0.6 uM of forward and reverse COI-specific primer and 3.8 pl of
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metagenomic DNA. Our pilot PCR analysis revealed that the primers showed a strong
affinity to the host DNA. To avoid amplification of host COI, 6 uM of a custom blocking
primer containing C3 spacer modification on the 3' end and exhibiting a perfect match to
the host COI (ACCGAAGAACCAGAATAGGTGTTGGTAAAGTAC) was added to the
PCR reaction. To evaluate potential biases associated with this technique, a subset of
samples (n =23) was also amplified without the blocking primer. PCR cycling conditions
consisted of an mitial denaturation step (95°C, 5 minutes) followed by 22 cycles of
denaturation (98°C, 20 seconds), blocking primer annealing (53°C, 15s), COI-specific
primer annealing (47°C, 15s) and extension (72°C, 40s), followed by a final extension at
72°C for 5 min.

2) Amplification by primers including tails compatible with sequencing adaptors, using a
PCR mixture comprising 5 ul of PCR mastermix, 2.8 yl of ddH20, 0.6 M of forward
and reverse COI primers flanked by tails complementary to Access Array sequencing
adaptors (Fluidigm Corporation, USA) and 1 ul of PCR product from the 1st PCR round.
PCR cycling conditions comprised an initial denaturation step (95°C, 5 minutes) folowed
by 15 cycles of denaturation (98°C, 20 seconds), primer annealing (50.5°C, 15s) and
extension (72°C, 40s), followed by a final extension at 72°C for 5 min.

3) PCR-based ligation of sequencing adaptors, using areaction mixture comprising Access
Array sequencing adaptors (4 pl) along with PCR mastermix (10 pl), 4 Wl of ddH20 and
2ul of 25x diluted PCR product from the 2nd PCR round. PCR cycling consisted of an
mitial denaturation step (95°C, 5 minutes) followed by 16 cycles of denaturation (98°C, 20
seconds), primer annealing (55.5°C, 20s), and extension (72°C, 40s), followed by a final

extension at 72°C for 5 min.

Kappa HIFI HotStart polymerase mastermix (Kapa Biosystems, USA) was used in all PCR
reactions. Technical PCR duplicates were prepared for all samples. Products from the 3rd
PCR round were quantified by GenoSoft software (VWR International, Belgium) based on
band mtensities after electrophoresis on 1.5% agarose gel and mixed at equimolar
concentration. The final library was purified using Agencourt AmpureXP beads (Beckman
Coulter Life Sciences). Products of the desired size were extracted by PipinPrep (Sage
Science Inc., USA) and sequenced on Illumina Miseq (v3 kit, 300bp paired-end reads) at
the Central European Institute of Technology (CEITEC, Masaryk University, Brno, Czech
Republic).
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Bioinformatic and statistical analysis

Bacterial 16S rRNA reads were processed using LOTUS pipeline47 as detailed 1n

142

Kreisinger ef al.”™*, the resulting operational taxonomic unit (OTU) table (ie. abundance

matrix for read counts of individuals in individual samples), OTU taxonomic annotations

along with therr representative sequences, and sample metadata were merged into a

phyloseq database 48 for later analysis.

In the case of the COI dataset, regions corresponding to gene-specific primers were

removed from fastq files using skewer®. Subsequently, the fastq files were quality-filtered
(< 1 expected error per read) and denoised using R version 3.4.4°0 with the dada2

package5 I used to define reliable COI haplotypes. Technical duplicates showed significant
consistency in Shannon diversities (Pearson correlation: r = 0.982, p < 0.0001) and
composition of COI profiles (Procrustean analysis: r= 0.996, p < 0.0001). Consequently,
we merged COI profiles for sample duplicates to obtain sample-specific COI profiles. To
suppress any effect of PCR and sequencing artefacts, haplotypes that were not consistently
present in both technical duplicates were eliminated from the dataset® & 32 For a limited

number of samples, we failed to sequence both duplicates (n = 3). In these cases, we
eliminated all haplotypes whose presence was not confrmed in samples for which both

duplicates were available.

For the purpose of taxonomic classification, 200 top blastn hits for each COI haplotype
were downloaded from the NCBI nt database and used for the construction of a reference
database. Dada2 implementation of RDP classifier’>  was subsequently applied for
taxonomic assignment of COI haplotypes at an 80% posterior confidence threshold.

Abundances matrix, representing read counts for individual haplotypes in each sample,

along with sample metadata, taxonomic annotations and haplotype sequences were merged

mto a phyloseq database™S.

Krona pie-charts54 were used to visualise the taxonomic content of the whole dataset. Next,

all non-insect haplotypes (i.e. not corresponding to putative dietary items) were eliminated.
Congruence in Shannon diversities (calculated after the exclusion ofnon-insect haplotypes;
heremnafter termed dietary profile) between sample pairs amplified either with or without

the blocking primer were assessed as intra-class correlations calculated using the rptR

finction in the R statistical environment®>. We also evaluated
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congruence in the composition of insect dietary profiles using Procrustean analysis, with
Hellinger dissimilarity matrices scaled by Principal Coordinate Analysis (PCoA) used as

mputs.

Analysis of covariance (ANCOVA) was used to test whether Shannon diversity (square-
root-transformed) of dietary profiles was affected by locality, Julian date of sample

collection, age class (ie. adult vs. young) and by two-way interactions between these

variables. Julian date was centred>®, both in this statistical model and all later analyses. We
also checked whether diversity varied with sequencing depth (log-scaled). Significant
predictors of dietary diversity were identified via step-wise backward elimination of
nonsignificant variables from the initial full model (ie. contaning all the above-mentioned
predictors). After visual exploration of divergence in dietary profile composition by
Principal Coordinate Analysis (PCoA), variation in dietary composition due to the effect of

locality, age class and Julian date of sample collection was analysed by distance-based

redundancy analysis (db-RDA)57 running on Hellinger and bmary Jaccard dissimilarities
among samples. We considered linear, quadratic and cubic effect of Julian date to account
for potentially non-monotonic abundance changes in dietary items during the breeding
season. Hellinger dissimilarities automatically account for the different number of
sequences between samples. Jaccard dissimilarities were calculated after rarefaction of the
abundance matrix (n = 536 sequences per sample, ie. the minimum sequencing depth
achieved). To demonstrate that rarefaction has a negligible effect on overall beta diversity,
we calculated Jaccard dissimilarities for a subset of samples with > 5000 sequences (n =
47), which were rarefied to either 500 or 5000 seqs./sample. The resulting strength of
correlation between these two distance matrices was high (Procrustean analysis: r=0.934,

p = 0.0001). The db-RDA model selection strategy was based on the forward step-wise

approach implemented in the ordiR2step function (vegan package in R)5 8. The abundances
of dietary taxa that varied due to the effects of predictors suggested by db-RDA were
identified using generalised lnear models with negative bmomial distribution i the
DESeq2 packagesg. Benjamini & Hochberg60 false discovery rates were used for multip le

testing corrections.

Procrustean analysis was applied to test for any correlation between interindividual
divergence in diet and faecal microbiota profile. Furthermore, we employed db-RDA and

variation partitioning analysis (varpart function in the R package vegan) to account for
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direct and indirect effects of environmental factors, where the matrix of Hellinger or
Jaccard dissimilarity in gut microbiota was considered as a response and matrices of
explanatory variables (including linear, quadratic and cubic effects of Julian date, locality
and age class) and divergence in diet composition (ie. PCoA axis scores for Hellinger
divergences in diet profiles) were included as explanatory and/or conditional variables. To
prevent db-RDA model overfitting, we only considered PCoA axes for diet that exhibited
a significant correlation with microbiota composition (n= 10 for Hellinger and n= 11 for
Jaccard dissimilarities), selected using a forward selection approach (ordiR2step function
from R package vegan). Finally, we applied the joint species distribution model (JSDM)
from the boral package61 to estimate pair-wise residual correlations between taxa
abundances in the community matrix after accounting for the effects of environmental
variables on taxa abundances and their mutual covariance. A similar approach was
previously applied to search for cross-domain correlations between gut microbiota and the
mntestinal helminth cornmunity62. To run JSDM, we merged community matrices for insect
genera and 16S rRNA OTUs, using a model offset corresponding to the log-transformed
number of sequences for a given sample and given marker gene to account for uneven
sequencing depth. Dietary genera and bacterial OTUs detected in < 10 samples were
excluded. Locality, age class and Julian date of sample collection were considered as
environmental covariates. We considered three JSDM versions, with the effect of Julian
date modelled as either [i] alinear term only, [2] a lmear and quadratic term, or [3] a linear,
quadratic and cubic term. Later, we used the JDSM with Julian date modelled as a linear

and quadratic effect only, as this exhibited the lowest deviance information criterion

Compared to the alternative fits (ADIC(quadratic VS. ﬁnear) = 77.17 and ADIC(quadratic VS.

cubic) = 186.3). The model was fitted using default priors (described in boral

documentation) and assuming negative binomial distribution of read counts for bacterial
and dietary taxa. Diet vs. microbiota taxa correlations were estimated based on a Markov
Chain Monte Carlo simulation consisting of 50 000 iterations. The thinning mterval was
set to 40 iterations, with the first 1000 iterations discharged as burn-in. Support for

estimated parameters was assessed based on 95% posterior credible intervals.
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RESULTS

Effect of blocking primers on COI amplification

While we collected 141 faecal samples, PCR amplification failed in 35 samples; hence, we
only sequenced 106 samples for the COI profile. We obtaned 2 369 181 high-quality reads
that were grouped into 1 591 COI haplotypes. Median sequencing depth corresponded to
13 258 sequences per sample (range =536 — 60 484). Later, we examined the sources of
this relatively high frequency of PCR failure, as their non-random distribution could
potentially affect interpretations of later analyses. We found that PCR failure was more
common in adults than juveniles (Probability of success = 48.9% vs. 89.2%, chi-squared

test: d.f =1, XZ = 27.591, p < 0.0001). Based on electrophoresis gel band mtensity, we

observed lower PCR outputs for bacterial 16S rRNA amplicons in adults than juveniles
(Welsh ttest: d.f = 124.44, = -3.458, p = 0.001; amplicons prepared in parallel for the
same samples). Hence, we suggest that the lower PCR success in adults was caused by an

overall lower quantity and quality of DNA template. On the other hand, we did not detect

any effect of sample location (chi-squared test: d.f = 1, x* = 0.037, p = 0.848) or Julian
date (Welsh ttest: d.f. =45.882,t=0.315, p=10.755) on the probability of PCR failure. In
addition, we found no difference in microbiota composition between samples that failed vs.
those that passed the PCR step with diet primers (PERMANOVA for Hellinger distances:

pseudo-F(1,137) = 1.001, R? = 0.06, p = 0.459) after statistical control for the effect of age

and locality (ie. predictors that impacted microbiota composition in our population)42.

Insects representing putative dietary components represented the dominant fraction of COI
profiles (47% of all reads, 961 haplotypes). Non-target taxa were represented by avian
haplotypes (18% of reads), plants (10% of reads), fungi (namely Oomycetes, 3% of reads)
and putative symbiotic Arachnida (Trombidiformes and Dermanyssidae, 6% reads; Supporting
information Fig. Al). The relative abundance of avian haplotypes was significantly higher
when blocking primer was not included in the first PCR reaction (62% of reads per sample
vs. 1.3% of reads; Wilcoxon rank sum test: W =11, p <0.0001). After the exclusion ofall
non-target haplotypes, sample pairs that were amplified both with and without blocking
primers (n = 23 pairs) exhibited high consistency in Shannon diversities (Intra-class
correlation =0.961, 95% bootstrap confidence intervals =0.908 —0.983, permutation-based
p=0.0001) and relative abundance of individual haplotypes
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(Procrustean analysis: r=0.989, p<0.0001; Fig. 1). Consequently, diet profiles for sample
duplicates generated with and without blocking primes were merged. We then excluded 24
samples (out of 106 sequenced samples) that included low numbers of target msect reads
(< 500). Consequently, the final dataset included 82 samples (17 adults and 68 juveniles;
Supporting information Table Al ). Frequency of samples with a low vs. sufficient number of nsect

reads (ie. < 500 insect sequences) did not vary between adults and juveniles (chi-squared
test: d.f=1, Xz =0.199, p = 0.656) or Julian date (Welsh t test: d.f.

=24.088, t =-0.550, p = 0.588). However, there was a higher percentage of samples with
a low number of insect reads at Saloun farm (40%) than Hamr farm (4%; chi-squared test:

df =1, Xz =19.666, p < 0.0001), which was paralleled by a higher fraction of no-target

reads at Saloun farm (58.8%) than Hamr farm (31.3%) across all sequenced samples
(Welsh ttest: d.f. =103.75, t=3.904, p =0.0002). This difference was mainly associated
with increased percentage of symbiotic Arachnida (36.9% vs. 4.3% of reads) at the former
location, suggesting that higher abundance of these nontarget taxa could compromise
efficient amplification of msect DNA. Alternatively, there could have been higher
incidence of insect taxa at Saloun farm locality that were poorly recovered by our wetlab
protocol. Given the high dominance of insect genera within individual samples (Fig. 2),
this should also result in different frequency of PCR failures between the two locations.
However, as already mentioned above, we did not detect such an effect. Variation i hardly
recoverable insect taxa between the two locations may lead to differences in PCR products
concentrations. Nevertheless, contrary to this prediction, gel band intensities for diet
amplicons after the second PCR step were the same for both localities (Welsh t test: d.f. =
103.57, t = -0.446, p = 0.656). We also did not detect any difference in microbiota
composition between samples with low vs. sufficient number of insect reads, while

accounting for locality-specific variation i microbiota content (PERMANOVA for
Hellinger distances: pseudo-F(1,103)= 0.900, R2 = 0.009, p = 0.580).

Diet profile variation

Haplotype-specific read counts were grouped into genus-level bins for all later analyses if not
stated otherwise. We detected 171 insect genera or higher insect taxa (in the case of insufficient
support for genus-level delimitation). In terms of reads counts, the most abundant insect order
was Diptera (61% of reads per sample on average, dominated by the genera Chironomus and

Nephrotoma). A considerable proportion of the dietary profile
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comprised Hemiptera (17% of reads, dominated by the genus Lygus), Coleoptera (14% of
reads, dominated by the genera Aphodius and Psylliodes) and Hymenoptera (6% of reads,
dommated by ants of the genus Lasius; Supporting information Fig. A2). Other taxa were
represented by < 1% reads per sample on average. The number of insect genera per sample
ranged between one and 18 (median = 4). Individual samples were mostly dominated by a
single msect genus (Fig. 2). Subsequently, rarefaction analysis for 1 — 5001 randomly
selected reads per sample revealed that sequencing coverage corresponding to ~500
sequences per sample was sufficient to capture the majority of genus-level diversity

(Support ing information Flg A3)

Using ANCOVA, we found that the Shannon diversity of dietary profiles differed between
localities (F(1,79) = 4.352, p = 0.040). However, there was no difference i diversity

between adults and juveniles (F(1,80)= 3.289, p = 0.074, mean Shannon diversity [+ S.E]

=0.428 £ 0.096 for adults and 0.667 &+ 0.065 for juveniles) and we found no support for
any other predictor of diet diversity (p > 0.05 m all cases).

Explorative msights provided by PCoA for Jaccard and Hellinger dissimilarities suggested
an effect of both locality and Julian date on variation in dietary composition (Fig. 3).
Specifically, scores for the second PCoA axis separated samples from different localities
(Wilcoxon test: W = 862, p < 0.0001 for Jaccard and W = 514, p = 0.005 for Hellinger
dissimilarities) and were correlated with Julian date of sample collection (Spearman
correlation, rho = 0.248, p = 0.025 for Jaccard and rho = 0.413, p= 0.0001 for Hellinger
dissimilarities). Constramed db-RDA models running on Hellinger and Jaccard
dissimilarities provided comparable results (Table 1). However, neither PCoA nor db-RDA
supported a difference in dietary composition between adults and juveniles. Inclusion of
polynomial terms into the final db-RDA models suggested non-monotonic variation in
dietary items during the breeding season. Subsequently, DESeq2 analysis aimed at
identifying particular insect genera involved m this variation included both the effect of
locality and Julian date. In the case of Julan date, we tested for the effect of cubic and
quadratic polynomes via likelihood ratio tests. While no msect genera exhibited cubic
association with Julian date of sample collection, the abundance of 14 insect genera
exhibited quadratic correlation with sampling date (Supportinginformation Fig. A4). For example,
flies from the genera Pollenia and Hybomitra and from the family Tabaninae, as well as

crane flies (genus Nephrotoma)and ants (genus Lasius), were most commonly
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detected in the middle of'the breeding season. Conversely, beetles from the genus Aphodius
were more common at the beginning of the breeding season, while mosquitoes from the
genera Culiseta and Ochlerotatus, as well as Hemiptera from the genus Lygus, were more
prevalent late in the breeding season. No insect genus exhibited significant variation
between localities after statistical control for within-season variation (i.e. quadratic effect

of sample collection date) and multiple testing corrections.
Association between diet variation and faecal microbiota composition

Bivariate Procrustean analysis suggested significant congruence between faecal microbiota and
dietary profile composition (Sum of squared differences = 0.358, Procrustes correlation =

0.801, p = 0.001 for Jaccard and Sum of squared differences = 0.589, Procrustes correlation =
0.641, p= 0.001 for Hellinger diSSiIl’lilaI‘itieS; Supportinginformation Fig. AS) Furthermore, db-RDA

and subsequent variation partition analyses indicated that diet had a low, though significant,
effect on faecal microbiota, independent of environmental covariates (Rzadjusted = 0.058,
F(116,65) = 1.468, p=0.001 for Jaccard and Rzadjusted =0.063, F(10,66) = 1.571, p=10.001 for
Hellinger dissimilarities). At the same time, faecal microbiota was also significantly affected
by an independent effect of environmental covariates (Rzadjusted =0.081, F5.65) = 1.921, p=
0.001 for Jaccard and RzadjustedZ 0.064, F(5.66) =2.074, p=10.001 for Hellinger dissimilarities).
Finally, variation partitioning revealed a fraction of gut microbiota variation explained by both

diet and environment (Rzadjusted = 0.037 for Jaccard Rzadjusted = 0.032 for Hellinger

dissimilarities). JSDM indicated 85 highly supported (posterior confidence < 0.95) residual
correlations between bacterial OTUs and insect genera present in the dietary profile (Fig. 4).

DISCUSSION

Variation in barn swallow diet

COI metabarcoding of faecal samples enabled us to recover a large number of insect taxa,
corresponding to putative components of barn swallow diet. The taxonomic content of

these dietary profiles was comparable with those from previous studies relying on
undigested prey or faecal samples32’63_67. In particular, Diptera represented the largest

fraction of reads in our study, followed by Coleoptera, Hemiptera and Hymenoptera. The

dommance of mdividual msect groups tends to differ between previously published
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studies, presumably because of dietary variation in space and throughout the breeding

season’2:63:60.67 e explicitly addressed this possibility by field sampling within two
months of the breeding season at two ca. 4.5 km distant breeding colonies, and were able
to show that both spatial variation and collection date affected diet spectra. This illustrates
the high spatio-temporal variability of dietary items consumed and shows that the dietary
patterns observed during short sampling periods cannot be easily generalised, even in aerial
msectivores. In our study, potential prey availability was not quantified as we believe that
obtaining such data can be problematic as regards aerial foragers, particularly as their
hunting strategy, including intensity of hunting, height of hunting trips and their distance
from the nest site, may vary dramatically with actual environmental conditions®3:68:69.

Offspring can be very demanding as regards the quality and quantity of nutrients required
during the early post-hatching phases of development; hence, parents of many animal

70,71

species supplement the offspring’s diet with specific dietary items or select

microhabitats that satisfy their dietary requirements72’73. Furthermore, adults may switch

their typical foraging preferences during the breeding season n order to provide their

progeny with a high-quality diet. Previous studies on the barn swallow suggest that parents
feed themselves with smaller dietary items than those they provide to nest]ings63’74. In the

present study, however, both dietary composition and diet alpha diversity failed to provide
support for the idea that food composition differs between adults and juveniles. In fact,
nestlings at our localities generally exhibited high fledging success and suffered no
apparent signs of deprivation during the nestling period. This, together with the overall
high quantity of flying insects at our field sites (located close (<1 km) to highly eutrophic
human-made water reservoirs), indicates that food was not a limiting resource and that
adults did not need to allocate the best food to nestlings.

Correlation between diet and faecal microbiota

While knowledge of gut microbiota in free-living vertebrates is gradually increasing, the
extent to which their gut microbiota is affected by variation in diet is still not sufficiently
understood. Most studies on wild vertebrate species have applied a comparative approach

13,20,21,30

aimed at detection of microbiota variation between animal species or

populations18’75. However, to our knowledge, there have been just a few studies attempting

to directly integrate metabarcoding data on dietary composition and
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microbiota profiles on an individual basis!%-76-79.

In comparison with more widely studied mammals, passerine birds have a clearly distinct

11,22,30

composition of host-associated microbial communities The microbiota in such

communities is characterised by rapid temporal changes at the intra-individual level42, with
just a few bacteria exhibiting some level of stability over time. Based on current knowledge,
interspecific differences in passerine gut microbiota composition appear to be rather low?%30.
Furthermore, it has been shown that passerine gut microbiota structure canbe affected by social
contacts, age, sex, host immunity or blood concentrations of steroid hormones*:#3:43:80 A

the above-mentioned factors, however, usually explain just

a limited fraction of total gastrointestinal microbiota variation. As such, we hypothesised
whether the unexplained variation in gut microbiota may be related to actual diet
composition. While bivariate Procrustean analysis indicated a significant correlation
between gut microbiota and diet profile composition, use of this approach is problematic
as bivariate approaches fail to distinguish direct links from indirect effects mediated by
shared correlation of taxa abundance with environmental variables. To address this, we
applied db-RDA modelling followed by variance partitioning, which indicated

a significant, though relatively low, fraction of gut microbiota variation explained by
variation i diet, independent of the effect of environmental covariates modulating gut
microbiota and/or diet consumed. In addition, approximately 3.5% of gut microbiota
variation was explained by the joint effect of diet and environmental covariates. Though
we were unable to untangle causality in this particular case, we propose that variation in
diet induced by spatio-temporal factors could be an important force behind the effect.
JDSM identified 85 links between prey genera and bacterial OTUs and, in some cases,
bacterial OTUs corresponded to putative insect symbionts (e.g. a positive link between
Lygus and Rikettsia OTU 19), suggesting that gut microbiota can be at least partly affected
by bacteria present in the diet. At the same time, however, variation in dietary items was
also associated with abundance changes in several bacteria that are widespread residents of
vertebrate guts (e.g. Lacobacillacea, Enterobacteriaceae, Clostidiales), suggesting that diet
can also modulate proliferation of bacteria already residing in the barn swallow gut. Despite
being significant, the overall effect of diet on the gut microbiota of barn swallows, and in

1520

birds in general, appears to be of lower importance than in mammals<”, providing further

evidence for clear differences in host-microbiota interactions in these two vertebrate clades.

Deducing mechanisms behind these

128



differences is rather challenging, given the current state of knowledge. Nevertheless, we
speculate that the explanation involves differences in digestion physiology between the two
groups. In particular, diet passage thought the gut is much faster in passerines than in

mammals and, therefore, does not depend largely on bacterial fermentation®!-82.

Consequently, there would be a limited opportunity for bacterial populations within the gut
to be affected by the diet consumed.

Methodical considerations

In our study, we used recently designed universal COI primers that are comparable with

existing primers for ribosomal genes in terms of their capability to target a wide range of
arthropod taxa*®. The broad taxonomic coverage achieved by our protocol was also evident

based on our sequencing data, where several plant and fungal taxa were effectively
amplified alongside barn swallow COI, resulting in a large proportion of non-target
sequences in our dataset. Consequently, researchers intending to adopt these primers should
account for this and adjust target sequencing depth accordingly. Further, to uncovering
potential biases in biological mnterpretations, researchers should also consider an mn-depth
missing values analysis, to identify sources of commonly occurring PCR failures and low

numbers of target sequences.

To partly overcome the problem with non-target reads, primers blocking passerine COI
amplification were added to the PCR reaction. Though this procedure is commonly used in

metabarcoding-based diet analyses, it has been noted that blocking primers may
systematically bias abundances of taxa in resulting proﬁlesg3’84. However, our data were

unlkely to be affected as there was a high consistency in diversity and msect COI profile
composition for sample duplicates that were prepared with and without blocking primers.

Conclusions

Using COI profiling of faccal samples, we described diet variation in a breeding barn
swallow population and demonstrated that diet metabarcoding is a promising non-invasive
alternative to traditional diet analysis approaches in nsectivorous birds. We also showed
that use of blocking primers does not bias the content of diet profiles, probably due to
phylogenetic disparity between passerines and therr isect prey. Barn swallow diet
exhibited high between-sample variation, which was partly explamed by differences

between breeding colonies and abundance variation of prey taxa during the season.
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Finally, our data provides correlative support for the effect of diet consumed on faecal

microbiota composition, independent of environmental factors affecting both diet and

faecal microbiota.
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FIGURE LEGENDS

Figure 1: Consistence between diet profiles generated with or without blocking

primer, assessed based on A) Shannon diversity correlations
superimposition for Hellinger dissimilarities in diet profiles.
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Figure 2: Insect genera detected by diet profiling of barn swallow faecal samples. The
average proportion of reads is shown. Taxa present at low abundances (< 1% of all reads)
are indicated as "others".
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Figure 3: Variation in diet profile composition based on PCoA running on A) Hellinger
and B) Jaccard dissimilarities. Samples from adult vs. young are indicated by different
plotting characters. Samples taken during the breeding season are indicated with different
shades of grey. Data for different localities are in different facets.
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Figure 4: Residual correlations between bacterial OTUs and insect genera detected
in faecal samples based on JSDM. Shown are correlations with posterior support > 0.95.
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TABLES

Table 1: ANOVA table for db-RDA models testing the effect of Julian date, locality
and age class on variation in the composition of insect profiles. The matrix of A)
Hellinger or B) Jaccard dissimilarity in insect profile composition was used as a response.
Models were constructed using the forward selection process (ordiR2step function from the
R package vegan)

Dissimilarity Predictor Df Variance F P

Hellinger (Julian date)? 1 0.018 1.853 0.028
(Julian date)? 1 0.020 2029 0010
(Julian date)? 1 0.033 3297  0.002
Locality 1 0.020 2066 0018
Residual 77 0.763

Jaccard (Julian date)? 1 0.012 2527  0.001
(Julian date)? 1 0.010 2083  0.003
(Julian date)® 1 0.010 2037  0.001
Locality 1 0.012 2440 0001
Residual 77 0.375
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SUPPORTING INFORMATION

Table Al: Sample metadata and accession numbers for sequencing files. Priloha 2
Supporting information Appendix 1: Additional figures Al- AS.

Figure Al: Taxa detected in barn swallow COl profiles for samples amplified using A)
both gene specific and blocking primers or B) gene specific primers only.

A) both gene specific and blocking primers

B) gene specific primers only
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Figure A2: Insect taxa detected in barn swallow diet profiles.
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Figure A3: Rarefaction curves for number of observed insect genera within individual barn
swallow samples. Curves were generated by 200 rounds of random subsampling of the
origin community matrix. Lines indicate average values for given sequencing depths.
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Figure A4: Temporal variation in the abundance of insect genera (expressed as read
proportions). Shown are genera that exhibited significant abundance changes during
the breeding season based on DESeq?2 analysis. Regression curves correspond to local
polynomial regression fits.
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Figure AS: Procrustean superimposition for faecal microbiota vs. insect genera profiles.
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1 | INTRODUCTION

Vertebrates harbor diverse microbial communities in their guts (Ley
etal., 2008; Qin etal., 2010) and these so--called gut microbiota (GM)
are involved in many interactions with the host. In addition to its effect
on gut function (Jumpertz et al., 2011; Sekirov, Russell,

Lucie Schmiedova
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1 | Jean-Francgois Martin® | Tomas Albrecht’3
Abstract

The vertebrate gastrointestinal tract is inhabited by a diverse community of bacteria, the
so--called gut microbiota (GM). Research on captive mammalian models has re-vealed
tight mutual interactions betw een immune functions and GM. How ever, our know ledge of
GM versus immune system interactions in wild populations and non-mammalian species
remains poor. Here, we focus on the association between GM community structure and
immune response measured via the phytohaemagglutinin (PHA) skin swelling test in 12-
-day--old nestlings of a passerine bird, the barn swallow (Hirundo rustica). The PHA test,
a widely used method in field ecoimmunology, as-sesses cell--mediated immunity. GM
structure was inferred based on high--throughput 16S rRNA sequencing of microbial
communities in fecalsamples. We did not find any association betw een PHA response and
GM diversity; how ever, our data revealed that the intensity of PHA response w as correlated
with differences in GM composi-tion at the whole--community level. Ten bacterial
operational taxonomic units corre-sponding to both putative commensal and pathogens
w ere identified as drivers of the compositional variation. In conclusion, our study suggests
existence of GM -versus immune system interactions in a free--living nonmammalian

species, w hich -corresponds w ith previous research on captive vertebrates.

KEYWORDS
fitness, immunity, inflammation, metabarcoding, microbiome, symbiosis

Antunes, & Finlay, 2010), interactionswith the host’simmune system have
important consequences for the host’'s health and fitness. The different
species comprising the GM regulate the hostimmune sys-tem contribute
to itsdevelopmentduring early ontogenetic stages (Belkaid & Hand, 2014;
Kim, Park, & Kim, 2014; Sjogrenetal., 2009; Wu & Wu, 2012) and affect

the host’s capacity to resistinvading

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
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pathogens (lvanov et al., 2009). Simultaneously, the host supports a
w ide range of mechanisms, usually linked with the immune genes,
that regulate GM content (Benson et al., 2010; Bolnick et al., 2014).

Most current research focussed on interactions between GM, and
the hostimmune systemhas used captive--bred animals as a model.
How ever, both taxonomic and functional composition var-ies
considerably between wild and captive populations (Kreisinger,
Cizkova, Vohanka, & Pialek, 2014; McKenzie et al., 2017). Similarly,
both immune parameters and their interindividual variation differ
betw een wild and captive populations due to the altered genetic
background of laboratory strains, a low er prevalence of para-sites and
pathogens and less variation in biotic and abiotic factors involved in
immune trait modulation under captive conditions (Boysen, Eide, &
Storset, 2011; Flies, Mansfield, Grant, Weldele, & Holekamp, 2015).
Hence, results for GM versus immune systemin-teractions obtained
from captive populations do not necessarily re-flect the selective
forces that shape the host’s immune systemover GM--associated
coevolutionary history (Maizels & Nussey, 2013). Moreover, our
know ledge on hostimmune systemversus GMin-teractions is largely
based on mammalian species hosting different GM and having
distinct immune system than other vertebrate taxa. Specifically,
bacteria from the Firmicutes and Bacteroidetes phyla typically
dominate in the mammalian GM (Ley et al., 2008), w hereas
nonmammalian vertebrate GM may comprise taxonomically more
diverse bacterial consortia (Kropackova, TéSicky, etal., 2017; Sullam
et al., 2012). Consequently, further studies dealing w ith free--living,
nonmammalian species are essential for a deeper understanding of
the evolutionary forces shaping interactions betw een GM and the
host’s immune system.

Here, w e study the associations between GM structure and im-
mune response in nestlings of a free--living passerine bird, the bam
swallow (Hirundo rustica). The barn sw allow is a migratory, insectiv-
orous species w ith complex social system that breeds in colonies
(Cramp & Perrins, 1993; Petrzelkova et al., 2015). The GM of bam
swallows and other birds differs fromthat of conventional mamma-
lian models (Hird, Carstens, Cardiff, Dittmann, & Bruntfield, 2014;
Kropackova, TéSicky, et al., 2017; Waite & Taylor, 2014), w hich
makes birds a valuable model group for gaining a deeper insight into
GM versus immune system interactions. Various aspects of immune
system function have previously been studied in barn swallows and
other free--living birds, predominantly related to reproductive behav-
ior and sexual selection (Maller, 2001; Saino, Ambrosini, Martinelli,

& Mealler, 2002; Saino, Ferrari, Romano, Martinelli, & Mgller, 2003).
How ever, there have been few studies aimed at testing the associa-
tion betw een immunity and associated microbial communities (Ruiz--
Rodriguez et al., 2009).

We analyzed fecal microbiota profiles using high-throughput
sequencing of 16 SrRNA ampliconsasa proxy for GM. Immune re-sponse
was assessed via the phytohaemagglutinin (PHA) skin swelling test, which
isthe most widely used method for assessment of cell--mediated response
in field ecoimmunology (Mgller, 2001; Saino et al., 2002, 2003; Tella,
Lemus, Carrete, & Blanco, 2008). The PHA assay is traditionally believed
to reflect adaptive immune response mediated
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predominantly by T cells(Goto, Kodama, Okada, & Fujimoto, 1978; Tella
et al.,, 2008). However, recent research suggests that immune
mechanisms involved in PHA-induced swelling are more complex,
comprising a strong component of innate immunity (Vinkier, Bainova,

& Albrecht, 2010; VinKer, Schnitzer, Munclinger, & Albrecht, 2012). A
stronger PHA response is typically interpreted as beneficial due to its
positive association with fitness—-and condition--related traits (Bowers et
al., 2014). Given the complex immunological background of PHA swelling,
however, this may not hold universally. There are numer-ous examples
showing no, or even a negative, relationship between PHA
responsiveness and body condition, physiological stress, or health status
(Mgller & Petrie, 2002; Saks, Karu, Ots, & Horak, 2006;

Vinkler et al., 2012). Despite these complexities, it is w orth explor-ing
the potential correlations betw een GMand PHA responsiveness as
PHA--induced sw elling is the most widely studied trait in ecoim-
munological literature. In addition, previous research supports both
positive (Saks et al., 2006) and negative (Merlo, Cutrera, & Zenuto,
2016) association betw een gut infection by eukaryotic parasites and
PHA responsiveness, suggesting that extending such research on
prokaryotic communities inhabiting the gut could be potentially fruit-
ful. We therefore combine data on GM profiles w ith measures of PHA
sw elling in order to test w hetherthere is any association between GM
diversity and immune response in barn swallows. We also assess
w hether interindividual variation in PHA response is correlated wih
differences in GM composition and w hich specific bacterial taxa de-

termine any such variationin PHA response.

2 | METHODS

21 | Field data acquisition

Data on fecal microbiota and PHA response w ere collected during
2014 (late April —late June) frombarn sw allow nestlings (n =58) dis-
tributed in 32 clutches (Czech Republic, 49° 4' 7.762" N, 14° 42'
36.521" E, Supporting Information Table S1).

Tissue thickness of the left wing web (patagium) of 12--day--old bam
swallow nestlings was measured using a standard thickness gauge
(Mitutoyo, Japan). Subsequently, the PHA solution (0.10 mg of PHA-P
dissolved in 20 ul of DPBS)wasinjected and the magnitude of the swelling
reaction was measured after 24 hr. Both pre--and post-treatment tissue
thickness measurementswere performed threetimesby the same person
(A.P., accuracy ~0.01 mm). Repeatability of these measurements was
high (intraclass correlation coeffi-cient = 0.973 and 0.967 for pre—- and
posttreatment measurements, respectively). Consequently, the average
tissue thickness increment between pre- and posttreatment
measurements was used as an index of PHA-induced swelling in
subsequentanalyses.

Fecal samples of 12--day--old barn swallow nestlings were co-
lected prior PHA injection, placed in sterile cryotubes (Simport,
Canada), and stored in liquid nitrogen during field w orks. After the fied
w orks, samples w ere preserved under —80°C until DNA ex-tractions.

Further details on fecal sample collection and storage,
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together with a description of breeding site, are provided elsew here
(Kreisinger etal., 2017).

All field procedures were conducted in accordance with the
Guidelines for Animal Care and Treatment of the European Union and
approved by the Animal Care and Use Committees of the Czech
Academy of Sciences (041/2011) and Charles University (4789/2008-
0).

2.2 | Microbiome profiling and
bioinformatic processing of 16S rRNA data

Metagenomic DNA w as isolated fromfecal samples using Pow erSoi
Mo Bio kits (Qiagen). The V3--V4 region of 16S rRNA w as ampli-fied
using S-D-Bact-0341-b-S-17 (CCTACGGGNGGCWGCAG) and S-D-
Bact-0785-a-A-21  (GACTACHVGGGTATCTAATCC) primers
(Klindw orth et al., 2013), tagged with 10 bp oligonucleotide indi-ces
for demultiplexing. Technical PCR duplicates w ere prepared for al
samples in order to check for microbial profile consistency.
Sequencing libraries w ere prepared using TruSeq Nano Kits and se-
quenced on llumina Miseq using v3 chemistry.

The resulting 300 bp long paired--end reads w ere merged using
Pear (Zhang, Kobert, Flouri, & Stamatakis, 2014) and demultiplexed
using Mothur (Schloss et al., 2009). Lotus pipeline (Hildebrand,
Tadeo, Voigt, Bork, & Raes, 2014) w as used for quality filtering

Ecology and Evolution

(elimination of sequences, if average Q <30 and if average Q within 50 bp
sliding dropped below 25) and elimination of chimeric se-quences
Subsequently, UPARSE algorithm (Edgar, 2013) imple-mented in Lotus
was used for clustering of resulting high--quality reads at 97% similarity
threshold to operational taxonomic units (OTUs). Taxonomic assignment
of representative sequences for each OTU was performed using RDP
classifierand Green Genes database (v. 13_5, DeSantisetal., 2006) as
a reference. Representative se-quences were aligned using PyNAST
(Caporaso et al., 2010) and a phylogenetic tree constructed using
FastTree (Price, Dehal, & Arkin, 2010). The OTU table, sample metadata,
taxonomic annotations, and phylogenetic tree were stored as a phyloseq
object (McMurdie

& Holmes, 2013)for furtheranalysis. OT Usnot assigned to phylum level,
or those classified as chloroplasts (1% and 8.2% reads, respec-tively),
were considered as sequencing artefacts and diet contam-inants
respectively, and eliminated from all downstream analyses. Details on
laboratory procedures associated with microbiome profil-ing and
bioinformatic processing of sequencingdata were provided in a previous

study on thisspecies (Kreisingeretal., 2017).

2.3 | Statistical analysis

Barn sw allow GMtaxonomic contentw as visually summarized using

Krona tools (Ondov, Bergman, & Phillippy, 2011). All the statistical
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FIG URE1 Bar plots indicating proportions of dominant bacterial phyla and classes in barn sw allow fecal microbiota samples
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analyseswere conducted using packagesrunning under R 3.4.3 soft-ware
(R Core Team, 2016). Aswe detected significant correlation betweenPHA
response and Julian date of fecal sample collection (Pearson r=0.324, p
< 0.01), we controlled all subsequent statistical analyses for effect of
sampling date. Association between microbiota diversity (i.e., number of
observed OTUs, Chao1 diversity estimatesand Shannon diversities) and
PHA response orJulian date of sample collection wastested using linear
mixed-—-effect models (LME, R pack-age Ime4; Bates, Machler, Bolker, &
Walker, 2015) with Gaussian dis-tribution of errors. Nest identity was
included as a random intercept. Next, weighted UniFrac (Lozupone &
Knight, 2005) and Bray—Curtis community dissimilarity between samples
were calculated based on sample-specific OTU proportions. The effect of
PHA-induced

2
3
g
4

o

response and Julian date was assessed using distance--based re-
dundancy analysis (db--RDA, Legendre & Anderson, 1999), with the
matrix of between-sample dissimilarities included as a response.
Permutation--based ANOVA (anova.cca function from R package vegan,
Oksanen et al., 2013) was then used to test for significance of the
constrained db--RDA axes. According to these analyses, only the first
constrained db-—-RDA axiswas significant(p <0.001 forboth UniFrac and
Bray—Curtis dissimilarity), and the effect of the second constrained db-
-RDA axis was nonsignificant (p > 0.3 in both cases). We then extracted
the scores for the first db--RDA axis and tested whether they were
significantly associated with PHA response and/ or Juliandate using LME.
We argue that thisanalysismethodispref-erable to the default anova.cca,

as this function cannot effectively

FIGURE 2 Summary of barn swallow GM taxonomic content. Rare taxa (represented by <2% reads) are labeled as“others’
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account for pseudoreplications induced by sampling multiple indi-
viduals fromthe same nest.

Associations between abundance of OTUs and PHA response were
tested using generalized LMEs from R package BhGLM for data with
negative binomial distribution of errors(Zhang et al.,2017). OT U--spedific
read countswithin individual sampleswere included asa response, while
Julian date of sample collection and PHA response were included as
explanatory variables. Log--transformed total num-ber of reads per
sample wasspecified asmodel offset (i.e., assuming number of reads per
given OTU to be proportional to total number of reads per individual
sample)and clutch identity asrandom effect. The gvalue method (Storey
& Tibshirani, 2003) wassubsequently used to account for false discoveries
due to multiple testing. To op-timize sensitivity of OT U--level analyses we
applied‘independent filtering” procedure (Bourgon, Gentleman, & Huber,
2010) using DESeq2 R package (Love, Huber, & Anders, 2014) and
considered only OTUsthat passed thisstep (n =196 OTUs, representing
96% of all high--quality reads). Procrustean analysisrevealed high congru-
ence between original and subsetted microbial profiles (Procrustean r =
0.9974, Procrustean sum of squares = 0.0052, p < 0.0001), sug-gesting
that resulting OTU subset covered representative variation in the GM
content.

3 | RESULTS AND DISCUSSION

After all filtering steps, w e obtained 947,675 high--quality reads w ith
a median sequencing depth per sample of 13,798 (range = 1,112—
44,777) and an average number of 97% UPARSE OTUs per sample
of 153.6 (range = 67—443). In line w ith our pre-vious study on bam
sw allow nestlings fromthe same population (Kreisinger et al., 2017),
the most abundant bacterial phyla w ere Proteobacteria (dominated by
Serratia, Pantoea, Providencia, and Diplorickettsia) Firmicutes
(dominated by genera Enterococcus, Lactococcus, Lactobacillus, and
unassigned Clostridia), Bacteriodetes (dominated by the genus
Dysgonomonas), and Actinobacteria. All Actinobacterial genera were
represented by low percentage of reads (<1%), w ith Rhodococcus
(0.58% of all read), Rothia (0.56% of

TA B LE 1 Effect of PHA response and
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reads), and Corynebacterium(0.55% of reads) being the most abun-

dant (Figures 1 and 2).

We did not observe any association betw een PHA response and
GM diversity (LME: p> 0.2for all alpha diversity measures; Table 1).
In theory, a correlation betw een immune functions and GM diver-siy
might be expected as mutual interactions betw een immune gene
allelic diversity (Bolnick et al., 2014), intensity of immune response
(Haw ley, Sydenstricker, Kollias, & Dhondt, 2005), parasite load (Kurz
et al., 2004; Madsen & Ujvari, 2006; Sommer, 2005), and overall GM
diversity have repeatedly been reported in previous studies. How ever,
consistent w ith our data, number of previous studies did not find any
straightforward correlation between GM richness and immune
phenotype (Chang, Hao, Offermanns, & Medzhitov, 2014; Jones et
al., 2013; Vatanenetal., 2016).

Despite the lack of any relationship betw een GM diversity and
PHA response, we observed significant correlation between
magnitude of PHA sw elling and variation in GM composition at the
w hole--community level, suggesting that individuals w ith sim-ilar GM
composition had a similar PHA response. This association was
specifically implied based on db--RDA ordination (Figure 3). In
addition, LMEs running on scores for the first db--RDA axis (using
both Bray—Curtis and w eighted UniFrac distance) revealed a sig-
nificant effect of PHA response after statistical control for Julian date
of sample collection, while the effect of Julian date itsef was
significant only in the case of db--RDA for Bray—Curtis dissimilarity
(Table 2).

According to OTU--centered negative binomial LMEs, ten OTUs
represented by relatively low number of reads (~2.2% in total) ex-
hibited significant association with the intensity of PHA response
(Table 3 and Supporting Information File S1). Tw o of these OTUs,
belonging to Lactic Acid Bacteria from genus Enterococcus and
Lactococcus, w ere negatively related to PHA sw elling. Intensity of
PHA--induced swelling seems to strongly reflect general proin-
flammatory potential of given individual (Vinkler et al., 2010).
Consequently, observed negative correlation betw een Lactococcus
abundances and PHA response can be related to anti--inflammatory
effect that w as previously described for some probiotic species from
this genus (Han, Lee, Park, & Paik, 2015; Luerce etal., 2014).

Julian dateon GM alphadiversity Response Explanatoryvar. Estimate SE X df p
(assessed as numberof observed OTUSs, Chao Intercept 1.897 0.079
Chao1 predictionsof total GM diversity and . _
Shannon index). Shown are LME estimates Julian 0.001 0.001 3.364 ! 0.067
(Estimate)and corresponding standard PHA 0.028 0.024 1.388 1 0.239
errors (SE), deviance changesdue to Observed Intercept 1.780 0.096
elimination of a given term from the model Julian ~0.001 0.001 0.933 1 0.334
(;(2) and associated degreesof freedom ( PHA 0.026 0.030 1.149 1 0.284
df), and probability values
N P y ) Shannon Intercept 0.600 0.685
Julian 0.000 0.005 0.002 1 0.968
PHA 0.152 0.208 0.645 1 0.422

Note. GM: gut microbiota; LME: linear mixed--effect model; OTUs: operational taxonomic units; PHA:

phytohaemagglutinin.
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FIG UR E3 Db--RDA ordination of GM in barn sw allow nestlings.
Tw o dissimilarity types betw een samples were used as aresponse
(Bray—Curtis and w eighted UniFrac), w hile PHA sw elling and Julian
date of sampling w ere included as explanatory variables. Variation
along the first tw o constrained axesis shown. Strength of PHA
response (in millimeters) is indicated by color intensity of plotting
characters

Response Explanatoryvar. Estimate SE 12
Bray—Curtis Intercept -5.053 0.953

Julian 0.024 0.006

PHA 0.911 0.294 8.724
UniFrac Intercept -2.074 1.262

Julian 0.007 0.008 0.871

PHA 0.769 0.366

13.479

4.523

There are several plausible explanations for the negative correla-tion
betw een abundances of Enterococcus OTU and PHA response.
Similarly, as in the case of Lactococcus, some Enterococcus species
exhibit probiotic properties. How ever, Enterococcus genus includes
also several pathogenic strains, w hose infection can directly af-fect
host’s immunity (Fisher & Phillips, 2009). Unfortunately, w e are not
able to distinguish betw een these two alternatives as 16S rRNA region
used in our study does not allow reliable species--level assignment of
this particular OTU. Interestingly, association of Enterococcus loads
and phenotype w as observed in another study on passerine juveniles
(Gonzalez--Braojos, Vela, Ruiz--de-- Castafieda, Briones, & Moreno,
2012). In particular, Enterococcus loads w ere negatively correlated
w ith growth rates, that is, the phenotype trait that can covary with PHA
response (Lifjeld, Dunn,

& Whittingham, 2002) and other immune parameters as w ell (van der
Most, de Jong, Parmentier, & Verhulst, 2011). Reduced PHA
response was also associated higher abundances of OTUfromgenus
Rickettsia, an insect--bome intracellular pathogen (Parola &

Didier, 2001) commonly detected bird GM (Kropackova, TéSicky, et
al., 2017).

On the contrary, intensity of PHA response tended to in-crease

with increasing abundance of OTUs from genus Bacillus,
Staphylococcus (putatively Staphylococcus saprophyticus;, 100%
identity according to blastn searches), Dysgonomonas and
Streptococcus. Bacteria from genus Bacillus include many common
gut symbionts of vertebrates. On the other hand, S. saprophyticusis
opportunistic pathogen causing inflammatory diseases of urinary tract
in humans (Hovelius & Mardh, 1984) and Dysgonomonas can cause
gut inflammation in  immunocompromised human subjects
(Bangsborg, Frederiksen, & Bruun, 1990). Both these OTUs were
previously detected in bird GM (Kropackova, Pechmanova, et al,,
2017; Kropackova, Tésicky, etal., 2017; Xenoulis et al., 2010).
How ever, their effect on physiology and health of avian are still
unknow n. Many Streptococcus species are vertebrate commensal,
but some represent opportunistic pathogens of various vertebrate
taxa including birds (Benskin, Wilson, Jones, & Hartley, 2009).
Unfortunately, our data did not allow reliable species--level assigna-
tion of this particular OTU.

The contrasting effect of Rickettsia and Staphylococcus OTUs on
PHA response suggests that putative bacterial pathogens can be
associated both w ith attenuation and enhancement of PHA response.
A similar contradictory pattern has been observed

TAB LE2 Effectof PHA response and

df p Julian date on GM composition

(corresponding to the first db--RDA axis

1 <0.001 for w eighted UniFrac and Bray—Curtis
dissimilarity). Show n are LME estimates

1 0.003 (Estimate) and corresponding standard
errors (SE), deviance changes due to

1 0.351 elimination of a given term fromthe

1 0.033 model (Xz) and associated degrees of

freedom( df), and probability values (p)

Note. GM: gut microbiota; LME: linear mixed--effect model; PHA: phytohaemagglutinin.
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TABLE3 OTUs associated w ith PHA response according to generalized LMEs for data w ith negative binomial errors. Show n are
taxonomic assignation of individual OTUs, LME--based estimates, and corresponding standard errors (SE) for OTU abundance versus
PHA response association, together with their probability (p) and q values

OTU name Estimate SE p Value q Value
OTU_105 -5.7648 1.0746 <0.001 0.0005
OTU_446 -5.5817 1.2421 0.0001 0.0035
oTU_77 -3.774 0.9505 0.0005 0.0111
OTU_155 -3.5573 0.989 0.0013 0.0207
OTU_50 -2.6995 0.7293 0.001 0.0186
OTU_280 2.7659 0.8043 0.002 0.0218
OTU_45 2.9869 0.8524 0.0017 0.0207
OTU_235 5.7617 1.6456 0.0017 0.0207
OTU_104 7.9446 1.4446 <0.001 0.0005
OTU_119 24.4801 0.2463 <0.001 <0.001

Class Family Genus
Lactobacillales Streptococcaceae Lactococcus
Clostridiales Unassigned Unassigned
Lactobacillales Enterococcaceae Enterococcus
Pseudomonadales Pseudomonadaceae Unassigned
Rickettsiales Rickettsiaceae Rickettsia
Lactobacillales Streptococcaceae Streptococcus
Bacillales Staphylococcaceae Staphylococcus
Bacillales Bacillaceae Bacillus
Flavobacteriales Flavobacteriaceae Unassigned
Bacteroidales Porphyromonadaceae Dysgonomonas

Note. LME: linear mixed--effect model; OTUs: operational taxonomic units; PHA: phytohaemagglutinin.

in the case of putative commensal or beneficial bacteria, wih
Lactococcus OTU abundance, in particular, being negatively re-lated
to PHA sw elling and Bacillus sp. being positively related. We propose
that these seemingly contrasting results are related to both interacton
complexity betw een bacteria and the verte-brateimmune systemand
to the complex immunological back-ground of the PHA swelling
response. Further studies targeting specific components of the bird
immune system are required, therefore, in order to obtain a better
understanding of how (a) hostimmune systeminteracts with GMand
(b) how the overall pattern of such interactions differ from w el-
-established mam-malian models.
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Abstract

Effects of vertebrate-associated microbiota on physiology and health are of significant
inter-est in current biological research. Most previous studies have focused on host-
microbiota interactions in captive-bred mammalian models. These interactions and their
outcomes are still relatively understudied, however, in wild populations and non-
mammalian taxa. Using deep pyrosequencing, we described the cloacal microbiome
(CM) composition in free living barn swallows Hirundo rustica, a long-distance migratory
passerine bird. Barn swallow CM was dominated by bacteria of the Actinobacteria,
Proteobacteria and Firmicutes phyla. Bacteroidetes, which represent an important
proportion of the digestive tract microbiome in many vertebrate species, was relatively
rare in barn swallow CM (< 5%). CM composition did not differ between males and
females. A significant correlation of CM within breeding pair members is consistent with
the hypothesis that cloacal contact during within-pair copu-lation may promote transfer of
bacterial assemblages. This effect on CM composition had a relatively low effect size,
however, possibly due to the species’ high level of sexual promiscuity.

Introduction

Vertebrate digestivetracts are inhabited by a taxonomically and functionally diverse commu-
nity of bacteria, usually dominated by obligatory anaerobes [1,2]. Indeed, the cell and active
gene count of this community may exceed that of the host genome by at least one order of
mag-nitude [3]. Hence, it is no surprise that gastrointestinaltract microbiota (GTM) interact
with a broad range of host physiological systems and provide ecosystemservices of
considerable value. In particular, GTM affect metabolism efficiency [4,5], modulate the
host’s immune sys-tem [6], play a significant role in defence against pathogens [7,8] and
enable synthesis of sub-stances that cannot be synthesised by enzymes encoded by the host’s
genome [9,10]. GTM dysbiosis is often associated with metabolic [11,12], autoimmune [13]
and neurological disor-ders [10,14] and can also increase therisk of pathogen invasion [7,8].
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Recent advances in parallel high-throughput sequencing have enabled detailed insights into
the complex interplay between GTM and vertebrate physiological status [5,11]. To date, most
of'this research has been focused on biomedical aspects ofhost/GTM interactions in humans
and captive-bred mammalian model species [3,4,11,15]. The effect of GTM on host physiology
also has relevance to ecological and evolutionary studies of wild populations. GTM composi-
tion has been shownto be associated with mate choice [16], for example, including propensity
for within- and extra-pair copulations [17,18]. There is also evidence that social contactmedi-
ates horizontal transfer of GTM from parents to progeny [19-21], between sexual partners
[22,23] or between members ofa social community [7,24]. This transfercan havea long-lasting
effect on fitness-related traits such as metabolism efficiency or pathogenesis susceptibility.
Despite its potential importance, the current low knowledge level on GTM composition in
free-living non-mammalian vertebrates and on factors shaping intra- and inter-specific varia-
tion, but see[21,25,26] precludes any general conclusions.

In this study, we focus on cloacal microbiome (CM) composition in a free-living
population of barn swallows (Hirundo rustica), an insectivorous long-distance migratory
passerine bird. The barn swallow is a traditional model species for research into reproductive
biology and evo-lutionary ecology, and especially for studies of sexual selection and sperm
competition [27-29]. To date, there has been no attempt to extend this research by including
information on GTM composition, despite it having particular relevance in these fields.

Biogeographically, e.g. [1], CM is a subset of GTM colonising the distal part of the gut
com-municating directly with the urogenital tract and the external environment. Factors
associated with inter-individual CM variation in wild bird populations have already received
some atten-tion, particularly as regards to horizontal transfer of CM from parents to progeny
[21] or between sexual partners during copulation [25,30,31]. Many of these studies used
cultivation based methods that only capture a low proportion of total CM, e.g. [32]. A few
studies have used culture independent methods, such as Automated rRNA Intergenic Spacer
Analysis (ARISA), Denaturing Gradient Gel Electrophoresis (DGGE) or cloning and clone
sequencing of 16s rRNA amplicons [25,33] however, these approaches are also likely to
suffer from com-promised CM coverage and taxonomic resolution.

In order to analyse barmn swallow CM composition, we applied 454 pyrosequencing of
16s rRNA amplicons. The resulting data were used to assess whethersex, breeding pair
identity or colony identity influenced inter-individual variation in microbiota composition
during the breeding season.

Methods
Field sampling

We sampled CM from seven barn swallow breeding pairs (i.e. seven males and seven females)
from two colonies, each around 4.5 km fromthe village of LuZnice in the Czech Republic (49°
3'56.90"N, 14°45'20.38"E). Both colonies (ca.40 breeding pairs at each locality, hereafter’-
Kotrb{” and “Saloun”) were located in small livestock farms. The composition of livestock dif-
fered between these two localities. Cattle and pigs dominated in KotrbQ, whereas sheep and goats
were more common in Saloun. CM sampling was performed during the nestling period (second
breeding attempt, late June). We assume thatthe last within-pair copulations occurred approx. 2—3
weeks before the data collection—given that within-pair copulations occur mostly during or
before egg laying and the length ofincubation period is 12—18 days in this species [34]. The CM
was collected usingsterile DNA -free microbiologicalnylon swabs (minitip FLOQSwabs, Copan,
Italy) inserted ca. 10mm inside the cloaca forapprox. 20 seconds and gently twisted by approx.
360 degrees. These samples were thenstored in 2ml DNA-free
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microcentrifuge tubes (Simport, Canada) at -80°C until sample processing, which was per-
formed within one month of sample collection. The samples were collected over three
consecu-tive days in order to minimize the probability that observed inter-individual variation
was biased by temporal fluctuations in CM composition.

All field procedures were approved by the Animal Care and Use Committees at the Czech
Academy of Sciences (041/2011), and Charles University in Prague (4789/2008-30). Owners
of farms, where we collected samples, gave us the permission to conduct this work.

Pyrosequencing

DNA was extracted in a sterile laminar flow cabinet using the Qiagen Stool kit (Qiagen, Ger-
many). Bacterial barcoding was performed using the universal primers MPRK341F
(CCTAYGGGRBGCASCA G) and MPRK806R (GGACTACNNGGGTATCTAAT) that
amplify the~466 bp fragment, including the V3 and V4 regions of Escherichia coli 16S
rDNA [35]. Sequences of these primers were included in fusion primers used to perform
polymerase chain reactions (PCR). Forward fusion primers, represented by adaptor B
sequence (Lib A), the unique tag sequence from the Roche MID library and the MPRK341F
primer sequence,dif-fered between individuals sequenced. The reverse fusion primer
consisted ofthe Titanium adaptor A sequence (Lib A) and the MPRK806R primer sequence.

PCR was performed usinga 30 pl solution consisting of 1x Qiagen Multiplex PCR Master
Mix (Qiagen, Germany), forward and reverse fusion primers at final concentration 0.5 UM,
and 8 Pl of DNA solution. PCR conditions were as follows: initial denaturation at 95°C for
15 min; followed by 35 cycles of 94°C (30 sec), 56°C (90 sec), 72°C (60 sec); and a final
extension at 72°C (20 min). PCR products were incubated at 70°C for three minutes and then
stored on ice. The samples were then run on 1% agarose gel and bands of appropriate size
were excised from the gel and purified using the QIAquick gel extraction kit (Qiagen,
Germany) according to the manufacturer’s instructions using 30 pl of buffer in the elution
step. Concentration of the purified PCR product was measured using a Qubit fluorometer
(Invitrogen, USA) and nor-malised. Pyrosequencing was performed via a single run on a GS
Junior sequencer (ROCHE, Switzerland) using Titanium chemistry according to the
manufacturer’s instructions. Demulti-plexed sff files have been deposited in the European
Nucleotide Archive: http://www.ebi.ac.uk/ ena/data/view/PRIEB7057.

Analysis of 454 data

Sequences with low quality scores (average quality score < 0.25), thatincluded more than
three ambiguously determined nucleotides, that were shorterthan 200bp, or thatdid not per-
fectly match forward primer sequences ortags were excluded from further analysis. Mid-
and primer regions were trimmed using QIIME 1.8.0 [36] and the resulting fasta file was
denoised using the Acacia software [37], while chimeric sequences were identified and
filtered outusing USEARCH [38]. Asrecommended by May et al. [39], the TBC algorithm
[40] was used to clus-ter the resulting high quality sequences into operational taxonomic
units (OTUs) with a 97% similarity threshold. TBC output was subsequently parsed using
customR [41] and UNIX scripts to produce a QIIME formatted OTU table (presenting the
sequence count for OTUs in individual samples).

Taxonomy of representative sequence for OTUs was assignedusing RDP classifier[42], with
a posterior confidence level of > 0.80. Representative sequences were aligned using PyNast and
Greengenes Core Set Alignment [43] and a minimum evolution phylogenetic tree was
constructed based onthe procedure implemented in FastTree [44]. Hellinger distances between
samples were calculated based on OTU abundance data. In addition, the phylogenetic
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tree, together with data on OTU abundances, was used to calculate both unweighted and weighted
UniFrac distances [45] between samples. To avoid potential bias associated with unequal
sequencing depth, distances were calculated based on a randomsubsample corre-sponding to 1600
reads (i.e. approximate minimum achieved sequencing depth) perindividual.

The Chaol index [46], phylogenetic diversity index (computed as total branch length), and
number of OTUs detected in individual samples were calculated to provide further
information on CM alpha diversity. In addition, total OTU richness for individual samples
was estimated based on best-fitting parametric model implemented in CatchAll [47].
Coverage of CM diver-sity by our sequencing data was assessed based on rarefaction analysis
and Goods coverage index [48]. Paired t-tests were used to test whether alpha diversity
differed between males and females. Distances between samples were visualised using non-
metric multidimensional scaling (NMDS) and distance-based redundancy analysis (db-RDA),
implemented in the vegan pack-age [49], was used to test whether CM composition differed
systematically between males and females and between breeding colonies. The betadisper
function (analogous to Levene’s test of equality of variance), was used as a next step to assess
whether inter-individual variation in Hellinger and UniFrac distance differed between males
and females. Finally, we applied the Wilcoxon signed rank testto detect differences in
proportional composition of individual bac-terial phyla and families between males and
females. The same approach was used to compare the proportion of individual OTUs (i.e.
number of reads for a given OTU in a given sample divided by total number of reads for a
given sample) that were represented by < 0.1% reads (number of OTUs = 123, see S2 Table
for more detail). The g-value method was applied to account for false discoveries when using
multiple comparisons [50] (q-value threshold was setto 0.05). In addition, corrected moment
estimates of k parameter of the negative binomial dis-tribution was calculated for these
OTUs. This index is widely used in parasitology to quantify the level of parasite aggregation
among hosts. Low values of this index imply highly aggregated distribution, whereas high
values (k > 20) indicate near-Poisson distribution of infection intensities [51].

Two analytical approaches were applied to test whether individuals fromthe same breeding
pair exhibited a higherlevel of similarity than expected by chance. First, we compared the
observed mean of within-pair distances (Hellinger and both weighted and unweighted Uni-Frac)
with the null distribution of mean distances forrandomly paired males and females
(n =1000 randomly generated pairs). This individual-centred approach s highly conservative due
to the relatively low sample size of ourstudy. Second, an OTU-centred resampling approach was
used to assess whether relative abundances of individual OTUs were non-ran-domly correlated
between males and females within individual breeding pairs. This analysis was run on a subset of
153 OTUs occurring in 4 individuals and including 77% ofthe origi-nal high quality reads.
Within-pair correlation ofeach OTU proportion was assessed using Spearman’s correlation
coefficient (Spearman’s r); the Fisher’s z-transformed mean being used as the within-pair
similarity index. In the next step, randomized matrices (n = 1000) were con-structed by
reshuffling the individualidentity in the original matrix of OTU proportions for individual
samples which at the same time accounted for sexidentity (i.e. randomly selected males was
paired with randomly selected females). Mean Fisher’s z-transformed Spearman’s r was computed
for each randomised matrix, as describedabove, and the resulting null distribu-tion was used to
assess statistical significance of within-pair community correlation. The out-come ofthese
analyses were also expressed as community-specific standardised effect sizes (SES) using the
formula (CORor—-mean CORsim)/sdCORsim [52], where CORor is the mean of Fisher’s z
transformed correlations within actual pairs, mean CORsim is the mean Fisher’s ztrans formed
Spearman’s r for randomised matrices, and SACORsim s its standard deviation. We tested this
approach usingdifferent OTU filtering criteria, Pearson correlations and raw
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instead of Fisher's z-transformation correlation coefficients, and found that the results of
these analyses remained unchanged.

All statistical analyses were performed in R 3.1.0 [53], the statistical significance for all
tests being two-tailed. The ‘phyloseq package in R [41] was used for filtering and
manipulating com-munity data.

Results

We analysed 71,100 sequences that passed quality filtering and were not chimeric, with the
number of high quality sequences ranging between 1,656 and 8,110 (mean = 5,078) per
sample. Sequences were clustered in 981 OTUs (754 non-singleton; details in S1 Table). The
Goods coverage index ranged between 0.975 and 0.998 (mean = 0.992). This, along with the
results of rarefaction analysis (presented in S1 Fig), suggest that the sequencing depth in our
study was sufficient to capture the majority of CM alpha diversity. Based on taxonomic
assignation, bac-teria from the phyla Proteobacteria, Firmucutes and Actinobacteria
dominated the CM. We further recorded members of 17 otherbacterial phylaand two
archaebacterial phyla (Crenarch-aeota in one OTU and Euryarchaeota in two OTUs) at
low frequencies (Fig 1; see S2 Fig for more details on taxonomic classification). The level of
inter-individual variation in CM compo-sition was pronounced as just four OTUs were
detected in all samples and only 52 OTUs in more than 50% of individuals.

The mean OTU number per sample, as predicted using the Chaol index, was 179
(range = 107—424). CatchAll predictions of OTU richness were comparable with Chaol esti-
mates (range = 112-570 OTUs per sample, see S1 Table). The number of observed OTUs
showed no variation betweenmales vs. females (Paired t-test: t(d.f. =6)=0.375, p= 0.721). Non-
significant difference between males and females was revealed also based on other alpha-
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Fig 1. Taxonomic composition of barn sw allow cloacal microbiome. Bar heights correspond to the
proportion of sequences assigned to individual bacterial phyla. Numbers above the bars indicate
number of 97% TBC OTUs corresponding to a given phylum.

doi:10.1371/journal.pone.0137401.g001
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Fig 2. Betadiversity of barn swallow cloacal microbiome. Non-metric multidimensional scaling, based on
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brow n symbols indicate males and females, respectively. Circles and triangles correspond to the tw o
localities sampled (Kotrb(iand Saloun, respectively). Individuals belonging to the same breeding pair are
indicated by the same plotting character and connected by a dashed line.

doi:10.1371/journal.pone.0137401.g002

diversity indexes (p > 0.2 in all cases). Db-RDA suggested no difference in CM composition between
males and females (Hellinger distances: F(q.f = 1,12)= 0.769, RZ= 0.055, p = 0.906, weighted UniFrac:
F.f=1.12)= 0.671,R>=<0.01, p = 0.672 and unweighted UniFrac: F( - 1,12= 0.977, R < 0.01,p
=0.520; Fig 2). Similarly, betadisper provided no support for differences in inter-indi-vidual CM
variation between males and females (Hellinger: F(q.f = 1,12)= 0.017,p =0.8977,
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weighted UniFrac: F(d.f. =1,12)=0.176, p = 0.682 and unweighted UNIFRAC: Fd.f. =1,12)=
0.219, p=0.648, respectively). We found no difference in proportion ofindividual bacterial phyla
and families between males and females (Wilcoxon signed ranktest:p > 0.1 and q > 0.1 in all
cases). Furthermore, out 0f 123 OTUs with at least 0.1% high quality reads (see S2 Table), none
showed any variation in relative abundance between males and females (Wilcoxon signed rank p >
0.03 and q> 0.05 in all cases). These OTUs exhibited highly aggregated distributionamong
sampled individuals (median value ofk parameter= 0.172, inter-quartile
range = 0.057-0.337, S2 Table). Db-RDAs models, based on unweighted UniFrac and Hellinger
distances, suggested that individuals from different breeding colonies tended to be colonised by different
bacterial OTUs (F(d.f = 1,12)= 1.357, R? = 0.102, p = 0.010 and Fg = 1,12 = 1.618, R> =0.131, p =
0.019, respectively); however, this was largely influenced by individuals from a single breeding pair.
When performing the same analysis using weighted UniFrac distances, between colony differences were
not significant (F(q.f = 1,12)= 1.009, RZ= 0.080, p = 0.380; Fig 2).

Sample-centred permutations did not suggest a higher within-pair correlation than that
expected by chance (Hellinger distances:p = 0.108, weighted UniFrac distances:p = 838
and unweighted UniFrac p = 0.220). An OTU-centred permutation model, however,
indicated higher relative OTU abundance correlations between individuals in the same
breeding pair than expected by chance (p =0.002; Fig 3; standardised effect size = 2.910;
untransformed mean Spearman’s r = 0.101). The result remained significant after exclusion
of Cyanobacteria OTUs and OTUs most likely corresponding with arthropod-associated
bacteria (see Discus-sion); i.e. not an integral part of Barn Swallow microbiota (p = 0.004,
SES = 2.490, untrans-formed mean Spearman’s r = 0.089).

p = 0.002
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Fig 3. Correlation of OTU abundance betw een males and females w ithin individual breeding pairs.
Histogram show ing the distribution of simulated means of Fisher’s z transformed Spearman’s correlation
coefficient computed based on the correlation of relative abundance of individual OTUs betw een males
and females belonging to the same breeding pair. The grey area indicates the 95% confidence interval
for the simulated means. The black arrow corresponds to the mean Fisher’s z transformed Spearman’s
correlation coefficient calculated based on the original community table. Permutation-based significance
is indicated above the arrow .

doi:10.1371/journal.pone.0137401.g003
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Discussion

Barn swallow CM was dominated by species of the phyla Proteobacteria, Firmucutes and
Acti-nobacteria, with a further 17 bacterial and two archaebacterial phyla recorded at low
relative abundances (< 5% ofhigh quality reads). Despite such high CM phylogenetic
diversity, the community exhibited only moderate diversity at the OTU level. We detected
less than 1,000 OTUs (754 non-singleton), with the number of OTUs per individual
predicted using the Chaol index ranging between 107 and 424.

To date, most research on animal-associated microbiomes has beendedicated to bacteria
colonising mammalian hosts [3-5,11,15,54]. Compared to the typical GTM of most mamma-lian
species studied thus far, barn swallow CM taxonomic composition appears to be rather distinct.
The phylumBacteriodetes (along with Firmicutes), for example, usually dominates the GTM of
most mammalian species [2,11,15,55,56], but was represented by less than 5% ofhigh quality
reads in the barn swallow. On the otherhand, the Phyla Proteobacteria and Actinobac-teria,
which were abundant in barn swallow CM, are usually under-represented in the GTM of
mammalian species [55], but see [54]. Differences between mammalian GTM and barn swal-low
CM could conceivably be due, at least in part, to the distal positionofthe cloaca in the digestive
tract and its intermittent connection with the urogenital tract and the external envi-ronment. Our
recent data, however, have shown no pronounced difference between CM and GTM community
structure in passerine birds (Kropackova, unpublished results). Furthermore, a number ofrecent
high-throughput sequencing studies have also shown bird GTM to be dom-inated by
Proteobacteria, Actinobacteria and Firmicutes [57—-61].

Ata lower taxonomic level, many genera dominatingin CM, such as Enterobacter, Strepto-
coccus, Enterococcus, Clostridium, Lactobacillus, Lactococcus, Turicibacter and members
of'the Ruminococcaceae family, are facultative symbionts or commensals inhabiting the
digestive tracts of many vertebrate species [2,56,62]. We also detectedseveral OTUs, such as
Staphylo-coccus, Janthinobacterium, Corynebacterium, Aerococcus and Brevibacterium,
that commonly colonisethe skin’s surface [63]and OTUs associated with other parts ofthe
animal’'s body, suchas Rothia, Porphyromonas Enhydrobacter and Actinobacillus, see for
example [64]. Finally, barn swallow CM composition may also partly reflect the bird’s diet, which
is com-posedofflying insects and other arthropods present in aerial plankton. Several abundant
OTUs, including Hamiltonella, Rickettsiella and Wohlfahrtiimonas, correspond to symbiotic or
pathogenic bacteria ofarthropods [65—67]. Their widespread presence in barn swallow CM,
therefore, is most probably a consequenceof’its foraging specialisation.

High inter-individual variation appears to be a general feature ofthe core mammalian GTM
microbiome [12,19,68,69], butsee [70]. This also appears to be true for barmn swallow CM, with
most OTUs detectedin a single individual only and a relatively low proportion detected in more
than 50% of individuals. Rarefaction analysis suggests this level of inter-individual het-erogeneity
is unlikely to be an artefact caused by insufficient sequencing depth. High interindi-vidual
variation in OTU presence vs. absence was furtherunderscored by low values ofk parameter,
indicating highly aggregated OTU distribution among sampled hosts. This is com-parable with the
aggregation pattern observed in vertebrate macroparasites [51].The barn swal-lowis a trans-
Saharan migrant spending more than half-a-year outside its breeding locality [71]; hence we
speculatethathigh inter-individual CM variation may be shaped, to some extent, by the
heterogeneity ofbiotic and abiotic factors over the migration and wintering peri-ods. Iftso, the
CM could be viewed as a'carry-over' effect that might contribute to variation in reproductive
output over the breeding season [72]. Interestingly, NMDS and db-RDA indi-cated no pronounced
difference in CM in individuals from different breeding colonies. Although a larger sample size
would be desirable fora more robust conclusion, this result
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suggests that variation in environmental conditions operating at small spatial scales during
the breeding season has alimited effect on CM composition.

It has previously been shown that animal-associated microbiome compositionis correlated
with physiological stress [73], hormonalstatus [74], reproduction[75] and metabolic rate [4]. In
barn swallows, there is a pronounced sexual difference in parental care investment[76], along
with overall physiologicaland hormonalstatus [77,78], overthe breeding season. Never-theless,
our data suggest that these aspects are not associated with systematic differences in CM between
males and females, with neither dominant OTU abundance nor CM taxonomic com-position
exhibiting any apparent sex-dependent variation. Furthermore, both CM alpha (i.e. OTU richness)
and beta diversity (i.e. level of inter-individual variation) were comparable between males and
females, which is consistentwith recent work on New World vultures [79]

Previous experimental and correlative studies have demonstrated cloacal contact during
within-pair copulation to be an important factor shaping CM composition and contributing to
CM similarity between individuals ofthe same breeding pair [25,30,31]. At the same time,
CM composition has been suggested to have an important influence on within- and extra-pair
mate choice and propensity to copulation in general, as both beneficial and potentially
pathogenic bacteria may be transmitted during copulation [17,18,22,23,31]. Indeed,
permutation-based analysis of barn swallow CM suggests that OTU abundance is correlated
between individuals of the same breeding pair. The effect-size of this pattern is rather small,
however, which is con-sistent with NMDS ordination and, more explicitly, with resampling
tests based on between-sample distances, which showthat CM similarities within breeding
pairs were not lower than expected by chance. It is possible that within-pair similarities in
CM may be, at least partly, jammed by CM transfer during extra-pair copulations, which
occur frequently in the study populations [29]. In addition, it is worth mentioning that
samples were collected approx. 2-3 weeks after egg fetilization. Recent manipulative study
of White et al. [25] showed that similar-ity of CM community between social partners in
kittiwakes (Rissa tridactyla) decreaserapidly after experimental prevention of copulations.
Consistent with this observation, our data indi-cate that the potential for sexually transmitted
bacteria to result in a major long-term CM shift in barn swallow is rather low.

Supporting Information

S1 Fig. Rarefaction analysis. Rarefaction curves for the number of 97% OTUs detected in
indi-vidual samples according to sequencing depth. Calculations were based on 10 sub-
sampled data-sets for each sequencing depth (0-3000 randomly selected sequences). Colours
correspond to individual breeding pairs. Males and females are indicated by triangles and
circles, respectively. (JPG)

S2 Fig. Taxonomic classification of barn swallow cloacal microbiota. Barplots showing taxo-
nomic assignment (based on RDP classifier; 80% confidence threshold) 0£454 sequences to A)
Phylum and B) Class level for sequences corresponding to the five most abundantphyla (repre-
sented by Proteobacteria, Firmicutes, Actinobacteria, Tenericutes and Bacteroidetes). This sub-
setaccounts for ca. 87% of high quality sequences generated during this study. Facets (A-H)
correspond to individual breeding pairs. Samples within facets are sorted according to sexual
identity (F = females, M = males). Detailed taxonomic classification of the dominant OTUs is
provided in S2 Table.

(JPG)
S1 Table. Details onsamples used in this study.
(XLS)
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S2 Table. List of dominant OTUs detected in the barn swallow cloacal microbiome. Shown
are OTUs represented by > 0.1% sequences and detected in at least two individuals. The
Table includes information on taxonomic classification to genus level, proportion ofhigh qual-
ity reads represented by a given OTU (Prop. Segs.), the proportion of individuals for which a
given OTU was detected (Prop. Individual) and the corrected moment estimate ofk ofthe neg-
ative binomial distribution (k param.).

(XLS)
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ABSTRACT

An animal’s gut microbiota (GM) is shaped by a range of environmental factors affecting the bacterial sources invading thehost. At the sametime,
animal hosts are equipped with intrinsic mechanisms enabling regulation of GM. However, there is limited knowledge on the relative importance of
these forces. T o assess thesignificance ofhost-intrinsic vs environmental factors, we studied GM in nestlings of an obligatebrood parasite, the
common cuckoo (Cuculus canorus),raised by two foster species, great reed warblers (A4 crocephalus arundinaceus) and Eurasian reed warblers (4.
scirpaceus), and compared these with GM of the fosterers’ own nestlings. We showthat fecal GM varied between cuckoo and warbler nestlings when
accounting for the effect of foster/parent species, highlighting theimportance of host-intrinsic regulatory mechanisms. In addition to feces, cuckoos
also expel a deterrent secretion, which provides protection against olfactory predators. We observed an increased abundance ofbacterial genera
capable of producing repulsive volatile molecules in the deterrent secretion. Consequently, our results support the hypothesis that microbiotaplay a
role in this antipredator mechanism. Interestingly, fosterer/parent identity affected only cuckoo deterrent secretion and warbler feces microbiota, but
not that of cuckoo feces, suggesting a strong selection of bacterial strains in the GM by cuckoo nestlings.

Keywords: metabarcoding; bacteria; feces; deterrent secretion; great reed warbler; Eurasian reed warbler

INTRODUCTION and provide benefits to the host via increased digestion and vitamin synthesis
efficiency, protection against pathogens and stimulation of the immune and
nervous systems (Jumpertz et al. 2011; Koch and Schmid-Hempel 2011; Cryan
and Dinan

Vertebrate gastrointestinal tracts are colonized by taxonom-ically and
fanctionally diverse bacterial communities that interact with a broad range of
host physiological processes
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2012). Gut microbiota (GM) exhibits pronounced variation at the
interindividual and interspecific levels (Baxter ef al. 2015; Yuan et al. 2015;
Lewis, Moore and Wang 2016; Kreisinger et al. 2017; Kropa'ckov™a et al.
2017), which can modulate host phenotype (Claus ez al. 2008; Han et al. 2016).
Understanding the factors behind GM variation is considered a crucial
endeavor in current ecological research as it improves our understanding of
the mechanisms involved in three-way interactions between GM, host and its
environment.

There are two basic sources of variation affecting GM com-munities, i.e
host-intrinsic and environmental factors. Host-intrinsic factors may be
triggered by dozens of genes, being related, for example, to immune functions
and facilitating selec-tion of appropriate microbes ffom the environment or
regulation of microbial populations already present in the host’s gut (Ben-son
et al. 2010; McKnite et al. 2012; Bolnick et al. 2014; Kropa'ckov'a’ et al
2017). Environmental factors include a range of biotic and abiotic agents that
affect the composition and spatiotempo-ral variation of environmental
bacterial sources colonizing the gut. Physical contact with conspecifics and
associated intraspe-cific microbiota transfer are other important sources of
envi-ronmental variation shaping symbiotic bacterial communities (Lucas and
Heeb 2005; Kreisinger ef al. 2017; Ambrosini et al. 2019). There are also a
plethora of factors linked to the exter-nal environment, including diet
composition (Bodawatta er al. 2018; Loo et al. 2019b; Teyssier et al. 2020)
and eukaryotic gut parasites that can directly affect
environment, thereby shaping associated microbial communities (Kreisinger
et al. 2015; Newbold et al. 2017; Aivelo and Norberg 2018). Last but not the
least, efects induced by environmental factors may vary depending on host-
intrinsic regulatory mechanisms. For exam-ple, pronounced variation in GM

the within-gut

changes has been observed following the introduction of wild-living species
into captivity (McKenzie et al. 2017). Host-specific GM changes have also
been recorded following infection by intestinal helminths, which can be
explained by variation in host genetic factors interacting with both GM and
the parasite (Reynolds et al. 2014). While the relative efect of environmental
vs host-intrinsic factors on GM variation has been intensively studied in
mammals (Benson et al. 2010; Campbell et al. 2012; Nelson et al. 2013;
Menke et al. 2017), it has been somewhat neglected in non-mammalian
vertebrate taxa, which can harbor strikingly distinct GM (Lucas and Heeb
2005; Ruiz-Rodriguez” et al. 2009a; Hird et al. 2014; Kreisinger et al. 2017,
Loo et al. 2019b).

Obligate avian brood parasitism represents a reproductive strategy
whereby species lay eggs in the nests of other species that then foster the
parasitic ofSpring (Davies 2000). Brood parasites utilizing multiple foster
species represent aunique type of natural experiment allowing the role of host-
intrinsic vs environmental factors to be disentangled, with parasitic progeny
from the same genetic background being exposed to diferent environmental
conditions, i.e. foster species. Surpris-ingly, GM variation in brood parasites
has received relatively little attention. T o our knowledge, there have been only
four studies focused on GM variation in avian brood parasites and/or their
fosterers (Ruiz-Rodriguez” et al. 2009a,b, 2018; Hird et al. 2014), three of
which compared GM between parasitic chicks and the fosterers’ own chicks
(Ruiz-Rodriguez” et al. 2009a,b, 2018). As these studies always comprised
only one foster species of brood parasite system, they say little about the
relative effects of host-intrinsic vs environmental factors on GM. In our study,
we address for the first time the role of environmental vs host-intrinsic factors
on GM of brood parasites raised by two
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different foster species and compare it with the GM of the fosterers’ genetic
ofSpring.

We focus on GM variation in an obligate brood parasite, the common
cuckoo (Cuculus canorus), which exploits a range of passerine bird species as
(Moksnes and Reskaft 1995; Stokke et al. 2018).
Approximately 40 h affer hatch-ing, a common cuckoo chick evicts its nest

potential fosterers

mates, thereby reduc-ing all potential bacterial interactions with the fosterer’s
oftspring (Honza, Voslajerov™a” and Moskat” 2007). We analyzed the GM of
cuckoo chicks raised by two foster species, the great reed warbler
(Acrocephalus arundinaceus) and the Eurasian reed war-bler (4. scirpaceus),
and contrasted it with the GM of the genetic progeny of both foster parent
species. This allows us to test whether host-intrinsic mechanisms shape GM
structure. Great reed warblers are around three times larger than Eurasian reed
warblers (Cramp 1992) and, consequently, cuckoos raised by the former
species grow faster and have higher body mass at fledg-ing than cuckoos raised
by the latter species (Kleven er al. 1999). While the breeding habitats of the
two fosterer species are com-parable, with minor differences in microhabitat
structure (Dyrcz 1981; Leisler 1981; Saino 1989), the two species differ in the
diet provided to the parasitic and own chicks (Dyrcz 1979; Grim and Honza
1996, 1997), which ensures sufficient variation in envi-ronmental component
of so-called nidobiome, i.e. a complex of processes shaping microbial
colonization in neonates (Campos-Cerda and Bohannan 2020). Consequently,
we asked if such a sort of environmental variation affects GM of warbler’s own
and adoptive ofSpring. As in many previous studies (Hird ez al. 2015; Lewis,
Moore and Wang 2016; Kropa'ckov a” et al. 2017; Grond et al. 2019; Loo et
al. 2019a), we used fecal microbiota analyzed by high-throughput sequencing
of 16S rRNA amplicons as a GM proxy for both cuckoo and warbler ofSpring.
Furthermore, by adopting the metabarcoding approach, we were able to
replicate previous research on warbler and cuckoo nestling diet (Grim and
Honza 1997), i.e. one of the main sources of vertebrate GM vari-ation (Ley et
al. 2008; Zhu et al. 2017; Youngblut ef al. 2019). The main aim ofdiet profiling
was to confirm that (i) nestling diet differs according to foster/parent species
and (ii) individual fos-ter/parent species provisions their genetic progeny and
cuckoo nestlings with a comparable diet. In addition to fecal samples, we also
analyzed the microbial content of a dark secretion of putative cecal origin
(Roder” et al. 2014) produced by cuckoos but not warbler nestlings. This
secretion repels nest predators owing to its high concentration of volatile
compounds, many of which are putative by-products of bacterial metabolism
(e.g. butyric acid, acetic acid and indoles; Roder™ et al. 2016). It has been
suggested that symbiotic microbes also contribute to the secre-tion’s repulsive
properties (Roder” et al. 2016). Consequently, the secretion may represent a
further example of microbiota facili-tating chemical communication in
vertebrates (Theis er al. 2013; Lam et al. 2018), thus extending the host’s
phenotype beyond a capacity inherent to its genome. Surprisingly, there are no
stud-ies aimed at profiling the secretion microbial community.

METHODS
Field sampling

Samples were obtained ffom a fishpond system situated between Hodonin”

(48° 51N, 17° 07 E) and Mutenice” (48° 54 N, 17° 02 E) in South Moravia,
Czech Republic. All samples were col-lected during the breeding season
between 30 May and 10 July 2015. Around 46% of great reed warbler nests
were parasitized by



common cuckoos in the population, while the cuckoo parasitism rate in
Eurasian reed warbler nests was around 10% (Jelinek” e al. 2016). Warbler
nestlings were sampled 6-10 days affer hatch-ing and cuckoos 7-17 days affer
hatching. We collected fecal samples from 20 common cuckoo, 16 great reed
warbler and 9 Eurasian reed warbler nestlings, along with 15 samples of com-
(Table S1, Support-ing
Information). Only one nestling was sampled ffom each fos-ter brood. Day of
year of sampling did not differ between sam-ples collected from great reed
warbler and Eurasian reed warbler nests (s-test: # = 0.351, P = 0.727) or
between cuckoo and warbler samples (#-test: ¢ = 0.265, P= 0.792).

mon cuckoo nestlings’ deterrent secretions

Nestlings were temporarily removed fiom the nest and both fecal (in
warblers and cuckoos) and deterrent secretion (in cuck-00s) samples were
collected directly into sterile DNA/RNA fiee cryotubes (Simport, Beloeil,
Canada) filled with a selfmade DNA/RNA-stabilizing buffer based on
RNAlater (protocol avail-able upon request) and kept at =20° C until the end
of the field work. Then, they were transferred into the laboratory and kept at

-80° C.

All field procedures were approved by the ethical committee of the Czech
Academy of Sciences (Animal Care Protocol num-bers 173/2008 and
128/2010) and by the relevant conservation authorities (permits

v

JMK20189/2010 and MUHO 2680/2014 OZP) .

Microbiota profilingand bioinformatic processing of 16S
rRNA data

We isolated metagenomic DNA using PowerSoil kits (Mo Bio Laboratories
Inc., Carlsbad, USA) and subsequently ampli-fied the V3—V4 region of 16S
rRNA using S-D-Bact-0341-b-S-17 (CCTACGGGNGGCW GCAG) and S-D-
Bact-0785-a-A-21 (GAC-TACHVGGGTATCTAATCC) primers
(Klindworth ez al. 2013) and tagged both of them with 10 bp oligonucleotides
for multi-plexing. Technical PCR duplicates were prepared for all sam-ples in
order to check the consistency of microbial profiles. PCR yields were low in
the case of two fecal samples. Thus, we did not use them for preparation of
sequencing libraries. Sequencing libraries were prepared using TruSeq nano
kits and sequenced on Illumina MiSeq using v3 chemistry (300 bp paired-end
reads). Further details on laboratory procedures associated with microbiota
profiling and subsequent bioinformatic pro-cessing of sequencing data are
provided by Kreisinger et al. (2017).

Diet metabarcoding

To gain an insight into the diet of cuckoo and warbler nestlings, metabarcoding
analysis was applied using the same fecal metagenomic DNA samples as for
bacterial 16S rRNA profil-ing. Previously published universal cytochrome ¢
oxidase sub-unit I (COI) primers targeting a broad range of invertebrate taxa
(Elbrecht and Leese 2017) were employed for this purpose. Details on
laboratory procedures and data processing associated with the metabarcoding
experiment are available in Supporting Information Al.

Bioinformatic and statistical analysis

Fastq files were demultiplexed and primers trimmed using skewer (Jiang et al
2014). Next, we trimmed low-quality 3 ends (250 base pairs ffom forward and
220 base pairs from reverse reads being retained), eliminated low-quality
sequences (maximum expected error per sequence < 1) and denoised
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quality-filtered files using DADA2 (Callahan et al. 2016). After the denoising,
forward and reverse files were merged using DADA2 and chimeric 16S rRNA
variants were identified and eliminated using UCHIME (Edgar et al. 2011)
and the GOLD database (Mukherjee et al. 2017).

The taxonomy of the resulting unclustered 16S rRNA variants (hereaffer
operational taxonomic units, i.e. OT Us) was assigned using RDP classifier and
the Greengenes reference database (v. 13.8.; DeSantis ef al. 2006). PyNAST
(Caporaso et al. 2010) was employed for sequence alignment and an OTU
phylogenic tree was subsequently constructed using FastTree (Price, Dehal
and Arkin 2010). The resulting OT U table, sample metadata and phy-logenetic
tree were merged into a phyloseq database (McMurdie and Holmes 2013) for
the purposes of further statistical analysis.

In our study, we provide separate analyses regarding GM between (i)
cuckoo and warbler fecal samples and (ii) between cuckoo deterrent secretion
and cuckoo feces. Shannon diver-sity indices were calculated for alpha
diversity analysis using rarefaction-based normalized OTU tables (random
subsetting of read counts per sample corresponding to 1268 sequences, i.e
minimal sequencing depth). Shannon diversity was sub-sequently used as a
response variable in analysis of vari-ance (ANOVA) to test whether microbial
diversity varied due to explanatory variables that included the effect of
foster/parent species (Eurasian reed warbler vs great reed warbler) and the
effect of sample type (cuckoo vs warbler nestling feces or cuckoo feces vs
cuckoo deterrent secretion). Variation in microbial com-position between
samples was assessed using two types of ecological dissimilarity, each
capturing diferent aspects of GM divergence, i.e. Bray—Curtis, which
accounts for OTU abundance (Bray and Curtis 1957), and a binary version of
Jaccard dissim-ilarity, which accounts for OT U absence or presence only (Jac-
card 1901). Furthermore, to check if bacterial phylogeny affects GM variation
pattern, UniFrac dissimilarities were calculated (Lozupone and Knight 2005;
Supporting Information Al). In order to account for uneven sequencing depth
between samples, we rarefied the OTU table to achieve the same sequence
coverage per sample prior to calculation (n = 1268 sequences per sample, i.e
minimal sequencing depth).

Between-sample variation in GM composition was visualized using non-
metric multidimensional scaling (NMDS) considering two axes. As stress
values were relatively high (~0.2 in some cases, specified below), we also
provided NMDS solutions for three axes (Supporting Information Al). Using
PERMANOVA (adonis function ffom the vegan package in R; Oksanen et al
2013), we tested whether there was any divergence in microbial composition
between cuckoo and warbler nestling feces and whether composition varied
according to foster/parent identity. Next, we tested using
PERMANOVA whether there was any diference in diversity and composition
between cuckoo feces and deterrent secretion in the microbial profiles. Finally,

species

generalized linear models with negative binomial error distribu-tion, obtained
from the DESeq2 package (Love, Huber and Anders 2014), were employed for
diferential abundance analyses. Read counts for individual bacterial genera
were used as response, and explanatory variables included the efect of
foster/parent species and the efect of sample type (cuckoo vs warbler nestling
feces or cuckoo feces vs cuckoo deterrent secretion). Significance of the
explanatory variables was tested using like-lihood ratio tests. Model fitting and
statistical testing included all default steps implemented in the DESeq2
pipeline. All statis-tical analyses and their visualizations were conducted using
R v.3.4.4 (R Core Team 2018) and the R-based packages mentioned above.
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RESULTS
Characteristics of cuckoo and warbler microbial profiles

After all filtering steps, our final dataset comprised 475 604 sequences
assigned to 1651 OTUs (mean number of sequences per sample = 8200).
According to phylum-level classification, Fir-micutes bacteria were the
dominant component of both warbler and cuckoo microbiota (average
proportion of reads 55% for war-bler feces, 51% for cuckoo secretion and 56%
for cuckoo feces). Substantial variations in abundance patterns were observed
in other bacterial phyla. Proteobacteria, for example, tended to be more
abundant in warbler feces (26% of reads) compared to cuckoo secretion
samples (15% of reads) and cuckoo feces (11% of reads), and while
Bacteroidetes abundance was relatively high in some cuckoo samples (25% of
reads in secretion and 8% in feces), it was low in warbler feces (2% of reads).
Tenericutes, Actinobacteria, Fusobacteria and Chlamydia all occurred at rela-
tively high levels in some samples (Fig. 1); however, their uneven distribution
prevented us ffom drawing any general conclusions as to systematic variation
due to theefect of ofSpring or fos-ter/parent species identity. A more detailed
overview of the taxa in our dataset is provided in Figure S1 and Table S2
(Supporting Information).

Variation in fecal microbiota with respect to nestling and
foster/parent species

Foster/parent species had no effect on Shannon diversity esti-mates (ANOVA,
F(1,41)=0.004, P=0.953, Fig. 2); however, fcal microbiota exhibited higher
richness in cuckoo nestlings com-pared with warbler nestlings (ANOVA,

F(1,41)=5.867, P =0.020, Fig. 2). We found significant differences between
cuckoo and warbler nestling fecal microbiota composition, and a signifi-cant
effect of foster/parent species for all GM dissimilarities but weighted UniFrac
(Table 1; Fig. 3; Supporting Information Al). DESeq2 analysis further
identified six bacterial genera that were more abundant in warbler fces
(Rhodobacter, Sodalis, * Candida-tus Arthromitus’ and Lactobacillus, along
with Legionellaceac and Mycoplasmataceae, which were not classified to
genus level; Table S3, Supporting Information), and five genera that were more
abundant in cuckoo fecal samples (Escherichia, Methylobac-terium,
Ruminococcus, Cetobacterium and Clostridium; Table S3, Supporting
Information).

Separate PERMANOVA analyses found no efect of foster species on
cuckoo fecal microbiota composition (Table 2). On the other hand, separate
PERMANOVA of warbler samples revealed a significant difference in
composition between the two species (Table 2). Furthermore, DESeq2
identified four bacterial gen-era whose relative abundances varied between the
two war-bler nestling species (Sodalis, Marinomonas, Carnobacterium and an
unclassified Mycoplasmataceae; Table S3, Supporting Infor-mation).

Differences in GM between cuckoo feces and deterrent
secretion

We collected both feces and deterrent secretions for 10 cuckoos (five raised by
great reed warblers and five by Eurasian reed warblers). Interindividual
differences between fecal and secre-tion microbiota profiles were not
intercorrelated (Mantel test, P> 0.2, range of correlation coefficients: 0.145 to
—0.168 for all dissimilarity types). Consequently, we did not account for
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within-individual covariation in microbiota structure between fecal and
deterrent secretions in subsequent analyses.

While we observed a marginally non-significantly higher bacterial
diversity in cuckoo deterrent secretion compared with cuckoo feces (ANOVA,

F(1,33) = 4.087, P = 0.051; Fig. 2), PER-MANOVA revealed pronounced
diferences in the composition of cuckoo fecal microbiota vs deterrent
secretion (PERMANOVA, p < 0.002 for all GM dissimilarity types but
weighted UniFrac; Table 3; Supporting Information Al). In addition, deterrent
secretion microbial profiles were also distinct ffom those of both war-bler and
cuckoo nestling fecal microbiota according to NMDS (Fig. 3). DESeq2
identified 43 bacterial genera differentiating cuckoo secretion profiles from
those of cuckoo fecal micro-biota (e.g. Methylobacterium, Marinomonas,
Streptococcus, Sedimini-bacterium, Anaerofilum, Fusobacterium; Table S3,
Supporting Infor-mation). As in the case of the cuckoo fecal microbiota,
cuckoo deterrent secretion microbial diversity was unafected by fos-ter
species (ANOVA, F(1,33)=0.713, P=0.405; Fig. 2). Unlike fecal microbiota,
however, deterrent secretion composition var-ied significantly between
cuckoos raised by different warbler species (Table 2). Despite the significant
diference, the effect size of deterrent secretion composition variation due to
foster species was low, DESeq2 only identified the genus Clostridium as more
abundant in the deterrent secretions of cuckoos raised by great reed warbler
compared with cuckoos raised by Eurasian reed warbler (log2fold change =
—8.224, adjusted P <0.001; Table S3, Supporting Information).

Diet variation

Using COI metabarcoding, we were only able to retrieve useful data on diet
composition for 49% of fecal samples. This was mainly due to poor PCR
amplification of the COI and a high rep-resentation of reads corresponding to
taxa that could not be con-sidered as diet components within the resulting COI
profiles. Assuch, just 21 samples yielded diet profiles useful for quan-titative
analyses. Consistent with the basic assumptions of our study, statistical
analysis of this subset revealed that parents of the same species provided a
comparable diet to both genetic progeny and cuckoo parasites, though the diet
fed by the two parent species was different. Specifically, Eurasian reed warbler
brought a more diverse diet that included a higher percentage of true bugs,
while beetles tended to predominate in the diet pro-visioned by great reed
warbler parents. For more details on the diet profile analyses, see Supporting
Information Al.

DISCUSSION

Weasked to what extent environmental and host-intrinsic fac-tors affect the
GM structure during early stages of the post-natal development. To achieve
this goal, we studied brood parasite’s GM exposed to two distinct
environmental contexts represented by two different foster species and
compared it with GM of fos-terer’s genetic progeny. Despite the two
environmental contexts that were characterized by distinct diet composition,
one of the main forces shaping GM in vertebrates (Ley et al. 2008; Zhu et al.
2017; Youngblut ez al. 2019), we showed in our study system that host-
intrinsic factors dominated over environmental fac-tors. At the same time,
however, variation explained by both host-intrinsic and environmental
effects was rather low. This is consistent with most studies on free-living
birds, where GM exhibit pronounced interindividual variation and rapid
tempo-ral changes (Kreisinger et al. 2017; Escallon et al. 2019; Grond et al.
2019). Consequently, variables predicting systematic avian GM
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Figure 1. Proportion of dominant bacterial phyla and classes with relative abundance > 1% in feces and deterrent secretion of common cuckoo (CC feces and CC secretion) and feces of warbler nestlings

(RW feces) raised by great reed warblers (GRW) or Eurasian reed warblers (ERW).

Table 1. Compositional differences in fecal microbiota between cuckoo and warbler nestlings (ofspring) raised by two foster/parent species, Eurasian and great reed warblers.
Calculations were based on PERMANOVA and two types of community dissimilarity. Significant predictors are in bold.

Dissimilarities Variables Df F R P

Bray—Curtis Foster/parent species 1,40 1.752 0.040 0.001
Offspring 1,40 1.679 0.039 0.001

Jaccard Foster/parent species 1,40 1.493 0.034 0.003
Ofspring 1,40 2427 0.055 0.001

changes at both interpsecific and interindividual levels are typ-ically of low
effect size.

Our conclusion that host-intrinsic factors have more deci-sive effect on
GM than environmental factors is based on sys-tematic differences in the
composition and diversity of fecal microbiota between cuckoo and warbler
nestlings, irrespective of foster/parent species. GM differences between brood
parasite

young and genetic progeny were already reported by previous studies on the
great spotted cuckoo (Clamator glandarius) fos-tered by magpies (Pica pica;
Ruiz-Rodnguez” et al. 2009a, 2018). In addition, Ruiz-Rodnguez” et al
(2018) noted that the GM of great spotted cuckoo nestlings fostered by
magpies was a mix-ture of GM fiom magpie nestlings and the great spotted
cuckoo adults. However, these results do not allow direct comparison of
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Table 2. Separate PERMANOVA analyses testing for the effect of foster/parent species (Eurasian or great reed warbler) on microbiota composition in (A) warbler nestling
feces, (B) cuckoo nestling feces and (C) cuckoo nestling deterrent secretion. Calculations were based on two types ofcommunity dissimilarity. Significant predictors are in

bold.

A: Warbler feces

2
Dissimilarities Variables Df F R P
Bray—Curtis Parent species 1,21 1978 0.086 0.001
Jaccard Parent species 1,21 1.590 0.070 0.002
B: Cuckoo feces
Dissimilarities Variables Df F R P
Bray—Curtis Foster species 1,18 1.129 0.059 0.241
Jaccard Foster species 1,18 0.891 0.047 0.703
C: Cuckoo deterrent secretion

Dissimilarities Variables Df F R2 P
Bray—Curtis Foster species 1,13 1.607 0.110 0.023
Jaccard Foster species 1,13 1.924 0.129 0.003

Table 3. Composition of cuckoo fecal vs cuckoo deterrent secretion microbiota (sample type) between individuals raised by two foster species, Eurasian and great reed

warblers. Calculations were based on PERMANOVA and two types of community dissimilarity. Significant predictors are in bold.

Dissimilarities Variables Df F R’ P
Bray—Curtis Foster species 1,32 1.624 0.046 0.003
Sample type 1,32 1.667 0.047 0.002
Jaccard Foster species 1,32 1.655 0.045 0.012
Sample type 1,32 2998 0.082 0.001
ERW and warbler nestlings. We assume that lack of host-specific sig-nal in the case
B A B B of weighted UniFrac was caused by relatively low phylogenetic divergence of
e T . bacterial taxa that, according to DESeq?2 analyses, varied between cuckoo and
3 .. 0 warbler nestlings.
§ . *. Unfortunately, our data cannot provide direct insights into the mechanisms
5 . .o causing the diferentiation in fecal microbiota between warbler and cuckoo
& nestlings. Nevertheless, variation in gut anatomy and function between
% ) cuckoos and passerines is the most likely source of the observed divergence.
. The most striking difierence in the lower digestive tract of these two avian
. | groups is probably the considerable reduction in passerine ceca, which are
0 3 otherwise well developed in cuckoos (Clench and Mathias 1995; Ruiz-
;§ g _S ;§ g _S Rodriguez” ef al. 2009a) and typically host an abundant bacterial community
£ 0 k] 2 £ k] involved in food decompo-sition (White 2005; Skadhauge 2012). Based on
= Q 3 = Q ] our data, we propose that migration of bacteria ffom cecal content to fecal
@ © o i © o . . . . . i
8 8 material may have contributed to compositional differences in fecal microbiota

Figure 2. Boxplots for Shannon diversity of microbiota associated with feces and deterrent
secretion of cuckoo nestlings (CC feces and CC secretion) and feces of warbler nestlings (RW
feces) raised by great reed warblers (GRW) or Eurasian reed warblers (ERW). Groups A and B
are significantly different (P = 0.020).

environmental vs host-intrinsic factors as they were based on uniform
environmental context represented by a single foster species. In addition,
unlike the common cuckoo, the great spot-ted cuckoo does not evict its nest
mates, which increases the complexity of this model system due to social GM
transmission among individuals sharing the same nest (see also Kreisinger et
al. 2017; Ambrosini et al. 2019). Interestingly, all dissimilar-ity measures,
with the exception of weighted UniFrac, provided congruent support for
microbiota divergence between cuckoo

between cuckoo and warbler nestlings. Consis-tent with this possibility,
deterrent secretion composition (puta-tively produced in ceca; Roder” et al
2016) was more dissimi-lar to warbler fecal microbial samples than to those
of cuck-oos. In addition, most bacterial genera that were more abundant in
cuckoo  feces Clostridium and Cetobacterium)
corresponded to obligatory anaerobes predisposed to coloniza-tion of cecal
content (Julliand et al. 1999; Zhu et al. 2002; Tsuchiya, Sakata and Sugita
2008; Suzuki and Nachman 2016). At the same time, however, we cannot
exclude contributions of other factors, e.g. differences between passerine and

cuckoo immune systems.

(e.g. Ruminococcus,

The deterrent secretion produced by the cuckoo chick is a rare example of
a chemical anti-predation defense in birds (Canestrari et al. 2014; Roder” et al.
2014; Trmka et al. 2016). The
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Figure 3. NMDS considering two axes for fecal and deterrent secretion microbiota of cuckoo (CC feces and CC secretion) and fecal microbiota of warbler nestlings (RW feces). Species identty of

fosterers/parents (great reed warbler (GRW) or Eurasian reed warbler (ERW)) is indicated by different plotting characters as detailed in the figure legend. Two types of dissimilarity were used for NMDS

ordination: Bray—Curtis (stress = 0.22) and Jaccard (stress = 0.20).

secretion is believed to be of cecal origin (Roder” et al. 2016). Though this
view requires direct verification, a similar type of secretion, so-called ‘cecal
feces’, is known to be produced in ceca of various avian lineages (Clarke 1979;
Villanua’ et al. 2006). More-over, there is also indication that the cecal feces,
similarly to cuckoo’s deterrent secretion, provide protection against preda-tors
(Swennen 1968). The cuckoo’s secretion contains high con-centrations of
volatile molecules directly linked with its repul-sive properties. Several of the
bacterial genera over-represented in the cuckoo deterrent secretion (compared
to cuckoo feces), i.e. Ruminococcus, Bacteroides and Parabacteroides, are
known to pro-duce short-chain fatty acids and other volatile molecules, pre-
viously detected in the deterrent secretion at high concentra-tions (Stack,
Hungate and Opsahl 1983; Koh et al. 2016). Further-more, the deterrent
secretion was also enriched by the genus Fusobacterium, whose volatiles
cause oral malodor in humans (Sterer and Rosenberg 2011) and form a
component of scent gland microbiota, important for chemical signaling, in
mam-malian carivores (Theis ef al. 2013). As such, our data sug-gest that
symbiotic microbiota contributes to the expression of antipredatory chemical
signaling in the common cuckoo. Nev-ertheless, further research should
employ functional metage-nomic and proteomic tools in order to link GM
changes observed at the taxonomic level with fanctional pathways responsible
for production of deterrent volatiles.

Compared to the deterrent secretion, cuckoo fecal microbiota was enriched
with several genera corresponding to lactic acid bacteria (i.e. Carnobacterium,
Vagococcus, Lactobacillus, Lactococcus and Streptococcus), which are
common inhabitants of avian GM (Kropa'ckov“a’ ef al. 2017; Bodawatta et al.
2018; Grond et al. 2019). Members of this bacterial clade rely on anoxic
decomposition of monosaccharides, prefer energy-rich substrates and exhibit
tolerance to high acidity levels (Hijum et al. 2006; Nazef et al. 2008).
Consequently, we speculate that a higher proportion of lactic acid bacteria in
feces may reflect avian GM functional variation in diferent gut compartments
and spatial variation of

biotic and abiotic conditions within the gut. Fecal microbiota is also more
likely to be affected by bacteria from external envi-ronmental pools than
secretion microbiota. This is supported by the fact that plenty of aerobic
bacteria, and/or bacteria that are regularly detected in environmental sources
(e.g. Sphingomonas, Photobacterium, Marinomonas, Sediminibacterium and
Phycicoccus), were more abundant in cuckoo feces than in cuckoo deterrent
secretion.

Our data provide ambiguous support for the efiect of fos-ter/parent species
on GM structure in nestlings. While we observed significant differences in
fecal microbiota composition between great reed warbler and Eurasian reed
warbler juveniles, we were unable to distinguish the extent to which this
variation was afected by environmental or host-intrinsic factors, given the
correlative nature of the data used. Nevertheless, consistent with the findings
of the previous studies, nest environment has already been shown to be an
important predictor of GM at the intraspecific level in passerines (Kreisinger
et al. 2017; Teyssier et al. 2018; Ambrosini ef al. 2019). Moreover, a study by
Grond et al. (2017) reported that shorebird hatchling’s GM exhibited com-
parable composition with microbiota ffom environmental sam-ples, which
supports theeffect of environmental bacterial pools onavian GM. In the case
of cuckoo GM samples, the efiect of nest environment and diet was confirmed
for microbiota associated with the deterrent secretion, but not for fecal
samples. How-ever, just one bacterial genus (Clostridium) at moderate abun-
dance was associated with these changes, suggesting a limited effect ofrearing
conditions on cuckoo GM content.

We conclude that interspecific variation in host-intrinsic reg-ulatory
factors and gut compartment variation were the most probable sources of the
observed changes in GM, the effect of environmental variation apparently
being of lower importance in our model system. Moreover, our results also
imply that symbiotic GM may have played an important role in the evo-lution
of the cuckoo nestling’s unique chemical antipredatory defense.
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Abstract

The gastrointestinal tract of vertebrates is inhabited by diverse bacterial communities that
induce marked effects on the hostphysiologyand health status. The composition ofthe gas-
trointestinal microbiota is characterized by pronounced taxonomic and functional variability
among differentregions ofthe vertebrate gastrointestinal tract. Despite the relatively solid
knowledge on the among-region variations of the gastrointestinal microbiotain model mam-
malian species, there are only a few studies concerning among-region variations ofthe gas-
trointestinal microbiota in free-living non-mammalian vertebrate taxa. We used lllumina MiSeq
sequencing ofbacterial 16S rRNA amplicons to compare the diversityas well as taxo-nomic
composition of bacterial communities in proximal vs. distal parts of the gastrointestinal tract
(represented byoral swabs and faecal samples, respectively)in a wild passerine bird, the
great tit (Parus major). The diversity of the oral microbiota was significantlyhigher com-pared
to the faecal microbiota, whereas interindividual variation was higherin faecal than in oral
samples. We also observed a pronounced difference in taxonomic contentbetween the oral
and faecal microbiota. Bacteria belonging to the phyla Proteobacteria, Firmicutes and
Actinobacteria typically dominated in both oral and faecal samples. A high abundance ofbac-
teria belonging to Tenericutes was observed onlyin faecal samples. Surprisingly, we found
only a slightcorrelation between the faecal and oral microbiota atthe within-individual level,
suggesting thatthe microbial composition in these bodysites is shaped byindependentregu-
latory processes. Given the independence ofthese two communities atthe individual level, we
propose thatsimultaneous sampling ofthe faecal and oral microbiota will extend our
understanding ofhostvs. microbiotainteractions in wild populations.

Introduction

Animal bodies are inhabited by taxonomically and functionally diverse communities of bacte-
ria [1-3] that modulate theirhost's physiologyand health status [4,5]. The modulations medi-
ated by microbial communities are believed to be beneficial in mostcases. However, adverse
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effects can be elicited by obligatory pathogenic bacterial species invading host
bodies or facul-tative pathogens dwelling in immunocompromised hosts [6-8].

The host-associated microbiota exhibits pronounced spatial variation among different
parts of the animal body [1,9—11]. Out of this complex system of host-associated
microbial consor-tia, the microbiota of the gastrointestinal tract (hereafter GIT) has
attracted considerable research attention during the past two decades. The GIT
microbiota provides important bene-fits to the host, including increased efficiency of food
digestion [12—14], stimulation of the immune system [15,16], defence against pathogens
[17,18] and beneficial effects on the devel-opment and functioning of the gut and central
nervous system [19,20]. Atthe same time, GIT microbiota dysbiosis is associated with
metabolic, autoimmune and neurological disorders [21-24]. Last but not least, many
bacterial pathogens invade animal bodies through the GIT [25-27], providing a further
argument for the importance of the GIT microbiota on animal fitness.

Most current studies focusing on the GIT microbiota, use the microbiota offaecal samples,
putatively representing the GIT microbiota ofthe lowerintestine, as a proxy [3,28-30]. How-
ever, there is compelling evidence thatmicrobial composition exhibits marked variation
between differentcompartments ofthe GIT [9,31-33]. Such variation occurs due to spatial
changes in bioticand abioticfactors among differentGIT regions, including aciditylevels,
concentrations ofoxygen, cholicacids and nutrients as well as changes in the host's immunity
[34—-36]. As the relative contributions ofthese mechanisms to microbial structure maybe in-
dependentboth at the between-GIT region level and the interindividual level, the resulting
within-individual correlation ofthe microbial contentamong different GIT regions can be of
rather low effect size (Kreisingeretal., in prep, [37]). At the same time, the microbiota in dif-
ferent GIT regions can be associated with distincteffects on the hosts’ phenotype [33,38].
Con-sequently, studies relying on samples from single GIT regions, orthose based solelyon
faecal samples, can provide only a limited view on the outcome ofinteractions between the
GIT microbiota and the host.

A few studies have analysed host vs. microbiota interactions using microbiota samples from
multiple GIT regions [9,33,37]. How ever, as acquiring the corresponding samples w as typically
performed in a destructive w ay, this approach does not enable assessments of tempo-ral variation
of the GIT microbiota based on longitudinal sampling of the same individual. Furthermore,
destructive sampling might be ethically questionable in the case of research
on protected wild species. Although biopsies taken from different GIT regions offer a
non-destructive alternative [39—41], such an approach is methodically challenging, which
limits its broader applicability. Therefore, an application of alternative sampling protocols
that are non-destructive but allow sampling of multiple GIT regions is desirable.

Moreover, mostcurrentknowledge on microbial variation along the GIT relies on data from
mammalian captive-bred models and humans [40—42]. Patterns of spatial variation of the
microbiota along the GIT in wild populations and in non-mammalian taxa are still under-
studied, however[9,31,32,43]. This sort of knowledge is crucial forunderstanding hostvs.
microbiota interactions, since previous studies, mostlybased on samples from single GIT
regions, have revealed that the taxonomic and functional contentof the GIT microbiota varies
considerablybetween captive-bred and wild populations ofthe same species [44—47],as well
as between mammals vs. other vertebrates [28,30,48,49]. Consequently, approaches based
on sampling of multiple GIT regions are essential forunderstanding hostvs. microbiota
interac-tions in wild populations, including resulting effects on the host’s fithess.

Here we applied high-throughputamplicon sequencing ofbacterial 16S rRNAto study the
variation in microbiota among samples of proximal and distal parts ofthe GIT (repre-sented by
oral swabs and faecal samples) noninvasivelycollected in a free-living passerine bird.

PLOS ONE | https://doi.org/10.1371/journal.pone.0179945 June 29,2017 2/18

191


https://doi.org/10.1371/journal.pone.0179945

©'PLOS | oxe

Variation betw een oral and faecal microbiota in great tit

According to research on mammals, microbial communities of both the proximal and distal
GIT are shaped to a large extent by host-intrinsic regulatorymechanisms, while the effect of
environmental bacteria on the composition ofthese communities is usuallylimited [43,50]. At
the same time, however, host-specific factors affecting microbial populations differ between
the proximal and distal GIT in mammals. Dietcomposition, infection by intestinal parasites
and geneticfactors are crucial factors leading to lower GIT microbiota variation [51-53].On
the other hand, specific properties ofthe saliva and gingival crevicular fluid,and to a lesser
extent diet, have importanteffects onthe proximal GIT microbiota [54]. Importantly, how-ever,
distinctmechanisms seem to drive the variation of host-associated microbiota in mam-mals
vs. non-mammalian vertebrates [28,30,48,55].

In this study, greattit (Parus major)was selected as a model species. The greattit is an
emi-nentmodel species for the functionally and evolutionary oriented branches of ecological
research [56,57]. Despite the currentinterestin the emerging topicofhostvs. GIT microbiota
interactions [58—-61], there is still rather limited knowledge on these interactions in the great tit
[62]. Importantly, no previous studies on the great tit have used culture-independenthigh-
throughputsequencing to characterize the microbial communities associated with this host. In
addition, to our knowledge, variation in the microbiota colonizing different parts of body of this
species as well as other passerines has notyet been addressed. We compared the diversity,
interindividual variation and taxonomic composition ofthe microbiota from the proximal vs.
distal parts of the GIT. Finally, we tested if there was any correlation between the proximal
and distal GIT microbiota atthe within-individual level.

Materials and methods
Field sampling

Faecal and oral samples used in this studywere collected from putatively unrelated adultindi-

viduals (n = 29) of the great tit population breeding in artificial nest boxes in the
Dablicky haj forest (50°08°12.4"N, 14°27'57.2"E, Prague, Czech Republic). The
sampling locality is covered by secondary deciduous forest with a minor admixture
of coniferous trees. All samples were obtained within one week in mid-May 2014.

Collection of microbial samples w as performed as follow s: adult individuals w ere captured in
mist nets and placed in clean paper bags for approx. 15-20 minutes. Samples of faeces were
subsequently collected from the paper surface. The oral microbiota w as sampled using sterile
microbiological nylon sw abs (minitip FLOQSw abs, Copan, ltaly) by w iping the oral cavity and upper
side of the beak. Both faecal and oral samples w ereimmediately placed in sterile DNA/ RNA free
cryotubes (Simport, Canada) filled with a self-made DNA/RNA-stabilising buffer on the basis of
RNA later (protocol available upon request) and transferred to -80°C w ithin tw o days. The sex of
sampled individuals w as determined by external phenotypic traits (e.g. [63]). Data on the body
mass and tarsus length w ere used for calculation of the scaled body mass index follow ing Peig and
Green [64]. Birds w ere then individually marked using aluminium rings follow ing the regulations of
the Czech Bird Ringing Centre and released.

All field procedures were approved by the ethical committee of the Czech
Academy of Sci-ences (107/2009).

Microbial genotyping

Metagenomic DNA from faecal and oral samples was extracted in a laminar flow cabinetusing
the PowerSoil DNA isolation kit (MO BIO Laboratories Inc., USA). To optimise the efficiency of
DNA isolation, samples were homogenised using a MagnalLyzer (Roche, Switzerland) for 30s

at 6000rpm and extracted DNA was eluted in 50 ul of elution buffer. From 29 sampled
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individuals, DNA isolated from oral and faecal samples was not of sufficient quantity in 9
and 12 cases, respectively, and therefore these samples were not included in further
analyses. The final dataset thus included 17 faecal and 20 oral samples (S1 Table).

Follow ing the recommendations of Klindw orth et al., [65], primers covering the V3-V4 var-iable
region of bacterial 16S rRNA (i.e. S-D-Bact-0341-b-S-17 [CCTACGGGNGGCWGCAG]and S-D-Bact-
0785-a-A-21 [GACTACHVGGGTATCTAATCC]) were used during the PCR step. Both forward and
reverse primers w ere tagged with 10bp barcodes designed by TagGD softw are [66]. For the
polymerase chain reaction (PCR) weused 8 pl of KAPA HIFI Hot Start Ready Mix (Kapa
Biosystems, USA), 0.37 uM of each primer and 7 pl of DNA template. PCR condi-tions w ere as
follow s: initial denaturation at 95°C for 5 min, follow ed by 35 cycles each of 98°C (20 sec), 61°C (15
sec) and 72°C (40 sec), and a final extension at 72°C (5 min). For individual samples, w e prepared
technical PCR duplicates. The PCR products, together with negative controls (PCR products of
blank DNA isolates), wererun on a 1.5% agarose gel and concentra-tion of the PCR product w as
assessed based on gel band intensity using GenoSoft softw are (VWR International, Belgium).
Samples w ere subsequently pooled at equimolar concentra-tion. As w e did not observe any visible
PCR products in negative controls, therefore this type of samples w as not included into the final
pool. The pooled samples then w ererun on another 1.5% agarose gel, with bands of appropriate
size excised from the gel and purified using the High Pure PCR product Purification Kit (Roche,
Sw itzerland) according to the manufacturer’s instructions. Sequencing adaptors w ere ligated using
TruSeq nano DNA library preparation kits (llumina, USA) and the resulting amplicon libraries
sequenced on a single Miseq run (llumina, USA) using v3 chemistry and 2 x 300 bp paired-end
reads. Raw sequencing data are avialable at http://ww w.ebi.ac.uk/ena/data/view /PRIEB19204 and
sample metadata in S1 Table.

Bioinformatic processing of 16S rRNA data

Paired-end lllumina reads were merged using PEAR [67], and de-mutiplexed using mothur
[68] and custom R/Bioconductor scripts (available from the authors on request). We then used
the Lotus pipeline [69]for quality filtering of the FASTQ files. Sequences were excluded ifthe
average quality score was lower than 30 or if the average quality score within a 50 bp sliding
window decreased below 25. UCHIME (implemented in the Lotus pipeline) [70] was used
alongside the gold.fna database (available athttp://sourceforge.net/projects/microbiomeutil/
files) for the detection and elimination of chimeric sequences. The resulting 16S rRNA
sequences were clustered ata 97% similaritythreshold using UPARSE [71] in order to define
Operational Taxonomic Units (OTU). Taxonomic assignation ofrepresentative sequences for
each OTU was performed using the RDP classifier [72] and the GreenGenes reference data-
base, (versiongg_13_5)[73]. Representative sequences were further aligned using PyNAST
[74], the maximum likelihood tree being constructed using FastTree [75]. We observed a con-
siderable excess of chloroplastsequencesin ourdataset(17.7%). Chloroplast OTUs together
with OTUs that were not assigned to any bacterial phylum were considered as dietcontami-
nants or sequencing artefacts, respectively, and w e excluded them from all dow nstream analy-
ses. Theresulting OTU tables, sample metadata, OTU tree and taxonomic annotations for
individual OTUs were merged into a phyloseq object[76] for statistical analysisin R version
3.2.3 [77].

Statistical analyses

In order to account for uneven sequencing depth among samples, statistical analyses were cal-
culated based on the rarefied OTU table unless otherw ise stated. The number of observed OTUs,
Shannon diversity and Chao1 based predictions of total microbial diversity for
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individual samples were calculated using phyloseq [76]. Linear Mixed Effect models
(LME, package Ime4) [78] were used to test differences in diversity between faecal vs.
oral microbiota. To account for statistical nonindependence, the effects of an individual
were included as a ran-dom intercept. In addition, analysis of variance (ANOVA), running
separately on samples from each GIT region, was applied to test differences in microbial
alpha diversity between males vs. females and due to scaled body mass index.

We further used Principal Coordinate Analysis (PCoA) based on Bray-Curtis, Jaccard, w eighted
and unw eighted UniFrac [79] distances betw een samples to visualize the contrast in the
composition betw een faecal and oral microbiota. Adonis (i.e. analysis of variance based on
distance matrices) w as applied to assess the statistical significance and proportion of variance
explained by the contrast in microbial composition betw een faecal and oral samples. Individ-ual
identity w as included as a constraint for permutations (i.e. “strata”) in adonis models to account for
data nonindependence. Betadisper w as further applied to test for the difference in interindividual
variation of microbial composition betw een the two GIT regions. The effects of sex and scaled body
mass index w ere assessed via adonis analyses running separately on fae-cal and oral samples.
For individuals w here both oral and faecal microbiota w ere analysed

(n = 8), we used Pearson correlations to assess if there was any interrelationship in
microbial alpha diversity between the two GIT regions. Next, within-individual
correlations of the microbial composition between oral vs. faecal samples was
assessed via Mantel’s test. Finally, using Spearman’s correlations, we tested if
relative abundances of OTUs were correlated between the two GIT regions. This
analysis was run on a subset of 216 OTUs that were present both in the oral and
faecal microbiota of those individuals for which both these samples were available.
The LME-based approach w as further used to identify OTUs w hose abundances differed
betw een oral and faecal samples. These analyses w ere performed on a subset of 240 OTUs
(comprising 90.5% of all high-quality reads) that w ere detected in at least five samples. For each
OTU-specific LME, Box-Cox transformed read counts w ere used as a response, w hereas the effect
of GIT regions and individual identity wereincluded as the explanatory variable and random
intercept, respectively. In addition, Box-Cox transformed total number of reads per individual
samples was included as an offsetin LMEs (i.e. assuming its direct relationship with the number of
reads per tested OTUs in individual samples). To account for deviance from a Gaussian error
distribution, the significance of the GIT region effectw as assessed based on permutations. In
particular, observed deviance changes due to the elimination of the GIT re-gion effectfor the initial
model w ere compared w ith the null distribution of deviance changes extracted from LMEs, w here
both the number of total and OTU-specific read counts w ere ran-domly resampled (10 000
permutations). The Qvalue method [80] w as used to account for false discoveries due to multiple
testing. The effectof a given OTU w as considered to be signif-icant if the permutation-based p
value and associated qvalue w ere low er than 0.05. The abun-dance pattern of OTUs that were
overrepresented in the oral cavity or faecal samples w as visualized using a heatmap (function
aheatmap fromR package NMF).

Results

Our dataset included 207 497 high-quality reads that w ere clustered into 1127 non-chloroplast
OTUs. There w as asignificant decrease of alpha diversity in faecal compared to oral micro-biota
according to the observed number of OTUs and Shannon index, as wellas according to Chao1 (Fig
1, Table 1). Only 384 (34%) OTUs w eredetected in both the oral and faecal micro-biota, w hereas
541 (48%) and 202 (18%) OTUs w ere detected exclusively in oral and faecal samples,

respectively. Clear differences in the composition of oral vs. faecal microbiota w ere
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Fig 1. Diversity of the faecal and oral microbiota of the greattit. Alpha diversity was measured as
Chao1, number of observed OTUs and Shannon diversity. To account for uneven sequencing depths,
alpha diversities w ere calculated based on rarefied OTU tables.
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also revealed based on PCoA (Fig 2) and the associated adonis analyses (Table 2). In addition,
the interindividual variation in the microbial composition, as assessed by betadisper analyses, was
low er in oral compared to faecal samples for all types of community dissimilarities, but no
significant difference w as foundin the unw eighted UniFrac (Table 2). In line with these results,
plots visualising the taxonomic composition on the Phylum and Class levels indicated
differentiation in the microbial composition betw een faecal and oral samples as w ell as a higher
interindividual variation of faecal microbiota (Fig 3, S2 Table). Gammaproteobacteria (genera
Diplorickettsia, Pseudomonas, Erwinia, Escherichia/Shigella, Serratia and Acinetobac-ter),
Alphaproteobacteria (genera Methylobacterium, Rickettsiaand Sphingomonas) and Acti-
nobacteria (genera Corynebacterium and Pseudonocardia) w ere the dominating bacterial

Table 1. Diversity of the faecal and oralmicrobiota of the great tit.

Oralmean * SE Fecalmean *SE X2 P
Chao1 119.0186 + 10.0396 78.4456 +9.1118 8.21050 0.00416
Observed 92.2500 +6.6153 62.2353 +8.1274 7.93768 0.00484
Shannon 3.0168 +0.1724 2.0839 £0.3136 7.05950 0.00788

Alpha diversity w as measured as Chao1, number of observed OTUs and Shannon diversity. Significance was assessed based on LME. Mean +
SE for individual sample groups, LME based likelihood-ratio statistic associated probability values are shown.

https://doi.org/10.1371/journal.pone.0179945.t001
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Fig 2. Differences in the composition betweenthe oral and faecal microbiota of the great tit. PCoA w as
performed for four dissimilarity indexes. Sex is indicated by different plotting symbols.
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classes of both the oral and faecal microbiota. How ever, the abundance of Bacilli (represented by
genera Staphylococcus and Lactobacillus) and Betaproteobacteria (represented by genera

Methylobacillus, Comamonas and Herbaspirillum)w as increased in oral compared to faecal

samples. Atthe same time, several faecal samples exhibited high abundances of Mollicutes
(represented by genera Ureaplasma and Mycoplasma), Clostridia and Chlamydia, i.e. bacterial
classes that w ere detected in very low abundances in oral samples.
OTU-level analyses identified 33 OTUs (represented by 35.8% reads) w hoserelative abun-
dances differed betw een oral and faecal samples (Fig 4). OTUs corresponding to the genera

Ureaplasma (phylum Tenericutes), Delftia (phylum Proteobacteria), Carnobacterium (phylum
Firmicutes), Deinococcus (phylum Deinococcus-Thermus), Chryseobacterium and Elizabeth-kingia
(both phylum Bacteroidetes) w ere more abundant in faecal samples. On the other hand, OTUs

w here the most striking relative abundance increase in oral compared to faecal samples
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Table 2. Differences in the composition betweenthe oral and faecal microbiota of the great tit.

composition interindividual variation
Df | Mean Sum Sq. F R? p Mean Sum Sq. F p
Weighted UniFrac GIT region 1 0.47575 4.09496 0.10474 0.00781 0.24614 20.64496 0.00006
Residuals 35 0.11618 0.01192
Unweighed UniFrac | GIT region 1 0.78810 3.58368 0.09288 0.00781 0.00204 0.92960  0.34158
Residuals1 35 0.21991 0.00220
Bray Curtis GIT region 1 1.51171 4.31907 0.10985 0.00391 0.09235 14.12805 0.00062
Residuals2 35 0.35001 0.00654
Jaccard GIT region 1 0.92409 2.56352 0.06825 0.00391 0.00884 9.14144  0.00465
Residuals3 35 0.36048 0.00097

Differences in composition w ere analysed using adonis, whereas differences in interindividual variation w ere assessed using betadisper. Both
analyses w ere performed on four types of dissimilarity indexes.

https://doi.org/10.1371/journal.pone.0179945.t002
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Fig 3. Barplots indicating oral and faecal microbiota composition of the greattit. Proportions of bacterial (a) phylaand (b)
classes are shown.
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Fig 4. Heatmap for OTUs, whose abundance varied between the oral and faecal microbiota of the great tit. OTUs were identified according to
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ANCOVA analyses did notreveal any effect of sex orscaled bodymass indexon the diver-
sity of microbial communities associated with these two GIT regions (p < 0.3 in all cases).In
addition, according to adonis analyses, there was no effectof these two variables on the com-

position of oral or faecal microbiota (p > 0.2, RZ <0.02in all cases).

Analyses on the subsetofindividuals with both oral and faecal microbiota sampled did not
reveal any correlation ofthe microbial structure between these two GIT regions atthe within-
individual level. First, alpha diversity estimates forthese two GIT regions were notcorrelated
(range of Pearson’sr=-0.22 ~ -0.26, p > 0.5 for all types of diversity indexes). Furthermore,
we did not detect any within-individual correlation in microbial composition between faecal
and oral samples (Mantel test: p > 0.4, range of cor. coefs.=-0.25 ~ 0.19 for all four commu-
nity dissimilarityindexes). Finally, the correlation of relative abundances ofindividual OTUs
between oral swabs and faeces was negligible (mean of Spearman correlation coefficient=
0.05185, interquartile range = -0.21600 ~ 0.32870).

Discussion

Many previous studies that focused predominantly on captive bred mammals and humans have
found pronounced differences in microbial structure betw een body sites as well as among different
GIT compartments [37,81,82]. Our aim w as to extend current know ledge on micro-bial divergence
betw een GIT regions with data from the free-living population of a passerine bird, i.e. a taxonomic
group that, to our know ledge, has not been studied in this context before. Consistent w ith previous
research, wefound pronounced differences betw een the proximal vs. distal GIT microbiota.
According to our data, less than 30% of all OTUs w ere shared betw een
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these two GIT compartments in the great tit. Differences in terms of OTU absence
vs. presence reflected pronounced variation in the relative abundances of bacterial
taxa that were detected in oral vs. faecal microbiota. Compared to faecal microbiota,
oral samples were characterized by a higher proportion of the classes Bacilli (phylum
Firmicutes) and Betaproteobacteria (phy-lum Proteobacteria). In addition, bacteria
from the phyla Chlamydiae and Tenericutes as well as from the class Clostridia
(phylum Firmicutes) were nearly absent in the great tit oral microbiota.

Altogether, the composition of the great tit faecal microbiota w as comparable w ith previous
studies on other passerine birds [29,30,60,83—-86], where OTUs from the phyla Proteobacteria,
Firmicutes and Actinobacteria represented the dominant components. On the other hand,
know ledge on the taxonomic content of the oral microbiota in birds is currently very limited.

How ever, our data indicate that there is pronounced variation betw een the great tit and other avian
hosts. For example, a dominance of Lactobacilliw as detected in a recent study on the quail
(Coturnix japonica) [87], w hile this bacterial genus constituted only a low proportion of the oral
microbiota in our population. Similarly, abundances of Haemophilus and Streptococcus that
dominated the oral microbiota of the kakapo (Strigops habroptilus) [88] w ere low in the great tit.
Compared to mammalian oral microbiota, w here bacteria fromthe phyla Bacteroi-detes, Firmicutes
and Proteobacteria typically dominate, the oral microbiota in our population w as characterized by a
low proportion of Bacteroidetes and increased abundances of Actino-bacteria [40,43,82,89]. In
addition, the diversity of the oral microbiota w as significantly increased compared to the faecal
microbiota in our population. As studies on other vertebrate species commonly report both higher
[1,40,43,90] and low er[82,91] values of alpha diversity in oral vs. faecal microbiota, further research
should focus on factors driving this variation.

Atthe OTU level, the faecal microbiota w as characterized by increased abundances of Urea-
plasma, Deinococcus, Carnobacterium, Chryseobacterium, Delftia and Elizabethkingia OTUs.
Ureaplasma together w ith another Tenericutes OTU corresponding to the genus Mycoplasma that
tended to be increased in the faecal microbiota as well (qvalue ~ 0.08), are common inhab-itants of
vertebrate gastrointestinal and urogenital tracts. Although these taxa are often asymp-tomatically
present in birds, some of these species are involved in severe pathogenesis [92]. The Deinococcus
OTU (phylum Deinococcus-Thermus) has previously been detected in sev-eral vertebrate species
[85,93]; how ever,its effecton the host physiology is poorly know n. The Carnobacterium OTU
(phylum Firmicutes) is a lactic acid bacterium w ith putative probiotic properties providing protection
against various bacterial pathogens [94,95]. On the other hand, Chryseobacterium and
Elizabethkingia OTUs (both from the family Flavobacteriaceae) are related to several pathogenic
species of human and other vertebrate taxa [96-98].

According to the OTU-level analyses, the oral microbiota w as characterized by increased
abundance of OTUs fromgenera that commonly colonize the oral cavity, skin or intestine of
various vertebrate taxa (for example Staphylococcus, Acinetobacter, Sphingomonas, Brevundi-
monas, Dysgonomonas, Hymenobacter, Sphingobium). Many OTUs exhibiting higher abun-dances
in the oral cavity compared to faeces can be involved in interactions w ith their host's immune
system and physiology, or can shape the community composition via interactions w ith other
members of the oral microbiota. This applies, for example, to four Actinobacterial OTUs (fromthe
genus Arthrobacter, Brevibacterium and the family Intrasporangiaceae, Nocardioidaceae).
Actinobacteria produce a wide variety of bacteriocines and other com-pounds suppressing the
proliferation of bacterial competitors. Therefore, their presence in the oral cavity could be crucial for
the defence against bacterial pathogens as w ell as for the main-tenance of overall microbial
structure [99]. In line withthis possibility, Arthrobacter abun-dances in the low er intestine w ere
positively associated w ith survival rates of passerine species closely related to the great tit [59].
Other bacteria associated w ith the oral cavity that may be
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involved in interactions withinvading pathogens and other community members included Lyso-
bacter, Pseudomonas and Herbaspirillum. Lysobacter can shape microbial community through the
production of bacteriocines and the active predation of other bacteria [100,101]. Pseudomo-nas and
Herbaspirillum produce extracellular siderophores, i.e. iron chelating compounds, w hich provide
them a competitive advantage over other bacteria by reducing the availability of iron in the
environment [102]. In addition, Pseudomonas cells secrete exopolysaccharides that make them a
difficult target for the host immune system [103], and some Pseudomonas species can be
pathogenic for birds [104—106]. It is also w orth noting the abundance increase of tw olactic acid
bacteria in the oral cavity, Catellicoccus and Lactococcus, w hich can shape the oral community
structure by the modulation of abiotic environmental conditions or by direct inter-actions w ith host
immune system or other community members [107,108].

Even though the sample size w as limited, w e did not observe any correlation betw een oral vs.
faecal microbiota at the w ithin-individual level. Consequently, w e propose that microbial com-
munities associated w ith the proximal and distal GIT are shaped by independent mechanisms.
These can theoretically include (1) host-intrinsic mechanisms such as effects of the immune sys-
tem and other biotic and abiotic factors operating w ithin the GIT, or (2) extrinsic sources of variation
including pools of bacteria present in the diet and other environmental sources.

Relatively low interindividual variation of oral microbiota suggests eitherthatenvironmen-tal
bacterial pools colonizing the oral cavity exhibit high homogeneityin space and time, or that
there is low interindividual variation in host-s pecific mechanisms regulating oral micro-biota.
As previous research has found only limited effects of environmental bacteria on oral
microbiota in non-avian vertebrates [43,50], and as environmental microbial consortia typi-
cally exhibit high variation [109—-111], we favor the latter explanation. High interindividual
variation of faecal microbiota suggests thathost-intrinsic factors driving its composition differ
markedlyamong hosts. However, as the passage offood through the passerine gutis
extremelyfast[112,113]and thus the decomposition of bacteria from the external environment
is pro-bablynot as effective as in mammals, we cannotexclude the possibilitythat the
variation of faecal microbiota is also driven to certain extent by bacteria that getinto the GIT
with food. As knowledge ofthe factors driving within-species variabilityin the avian GIT
microbiota remains limited [59,61,85], further research and specificallydesigned experiments
are required to untangle the relative contribution of transientenvironmental bacteria to
microbial compo-sition in different GIT regions of passerines and other vertebrate taxa.

In conclusion, ourstudyis the first to characterize the oral microbial structure and com-
pared it with the faecal microbiota in a free-living bird population. Ourresults show thatthe
oral and faecal microbiota of passerines representtwo distinctbacterial consortia thatexhibit
marked differences atall levels of communitystructure, and that the interindividual variation of
these communitiesis likelyto be shaped byindependentmechanisms. We propose thataside
from the effect of environmental bacteria, the structure of both the faecal and oral micro-biota
is driven to a large extent by mutual interactions among communitymembers or by the host
vs. microbiota interactions including immunity. Consequently, given the putative effects of
these two microbial communities on the host's heath status, further research focusing on the
microbiota in wild vertebrate populations maybenefitfrom simultaneous sampling ofthese two
communities.

Supporting information

S1 Table. Detail listing of great tit samples including the GIT region (faecal or
oral), indi-vidual identity (ID), accession number, sex and body weight.
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4.Vysledky a Diskuze

4.1. Taxonomické slozeni SM

U pévcll v SM dominuji bakteridlni kmeny Proteobacteria, Firmicutes, Actnobacteria,
Tenericutes, Bacteroidetes a Chlamydia [Publikace A]. Podobné vysledky byly ziskany ve
veétSiné mych publikaci [Publikace A-I]. Nicméné u mldd’at kukacky obecné bylo sloZzeni
SM mirn€¢ odlisné zejména kvili vétSimu vyskytu kmene Bacteroidetes [Publikace H].
Kukacka obecna patii do fadu kukacek (Cuculiformes), ma dobfe vyvinuté slepé stievo a
je jedinym druhem zahrnutym v této praci, ktery nepatii mezi pévce. Obecné jsou vysledky
slozeni SM u pévcil a kukacky v souladu 1is ostatnimi publikacemi, které studovaly SM u
ptakt (Hird et al., 2015; Bodawatta et al., 2018; Grond et al., 2018,2019). Potvrzuje se, Ze
pevéi SM je velmi odlisnd ve srovnani s daleko vice studovanymi savci Savci maji sice
nejvice zastoupeny kmen Firmicutes, ktery je také hojny 1 u pévcl, ale 1 Bacteroidetes,
ktery se u pével vyskytuje v daleko mensi mife. Na druhou stranu u pévct hojny kmen
Proteobacteria je usavci reprezentovan méné (Obrazek 2; Ley et al., 2008) [Publikace A].
Tyto tii bakteridlni kmeny Firmicutes, Proteobacteria a Bacteroidetes jsou v rizné mife
zastoupené 1 u ostatnich skupin obratlovel, napt. u plazii (Arizza et al., 2019; Qmn et al.,
2019; Tang etal., 2019), obojzivenikt (Shu et al., 2019; Zhang et al.,2019; Xu et al., 2020)
iuryb (Singh et al., 2019; Dulski, Kozlowski & Ciesielski, 2020; Gao et al., 2020).
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Obrazek 2. Primérné podily dominantnich bakteridlnich kmenii (ukdzdny kmeny
zastoupené vic jak v 1 % u dané skupiny) u savcii (Ley et al., 2008), pévciiz CR [Publikace
A], pévcii z Kamerunu behem obdobi destit [Publikace B] a kukacky obecné [Publikace
Hj.
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4.2. Srovnani mikrobioty napri¢ travicim traktem

U pévceti se zda, Ze nejsou tak velké rozdily mez jednotlivymi Castmi stfeva (Bodawatta et
al., 2018, 2020) jako u jinych druhti ptakd (Grond, Guilani & Hird, 2020b) ¢isavet (Suzuki
& Nachman, 2016; Bendova et al., 2020), coz by mohlo byt vysvétleno napiiklad absenci
dobfe vyvinut¢ho slepého stifeva u pévcl. U slavika obecného a tmavého jsme detekovali
signifikantni rozdily mez jednotlivymi ¢astmi tenkého stieva, ale tyto rozdily vysvétlovaly
pouze malou Cast variability mezi vzorky [Publikace C], coz je v souladu s vysledky
predeslych studii (Bodawatta et al., 2018, 2020). Mé doposud nepublikované vysledky u
papouskt (fad Psittaciformes), kteii maji, obdobn¢ jako pévci, pouze rudimentarni slepa
stteva, ukazuji nejen malé rozdily mez jednotlivymi c¢astmi stieva, ale také velmi
podobnou mikrobiotu mez vzorky zejména tlustého stfeva a trusu, zatimco kloakalni
vytéry se od vzorkill strev liSily podstatné vice nez trus (Schmiedova et al., nepubliko vané
vysledky, Obrazek 3). Tyto vysledky ukazuji, Zze trus Kpe odraz sloZzeni mikrobioty ve
sttevech nez kloakalni vytéry a je tedy lepSim materidlem vyuzitelnym pii neinvazivnich
metodach studia SM u voln¢ zjicich ptak. U kukacky obecné jsme pozorovali odlisnou
mikrobiotu mezi trusem a zastrasujicim sekretem, ktery pravdépodobné pochaz ze slepého
stteva [Publikace H], coz je konzistentni s vysledky u jinych druh@i ptakt s vyvinutym
slepym sttevem (Grond et al., 2020b). Déle jsme nalezli rozdily ve sloZzeni mikrobioty mezi
proximalni (vytéry zobdku) a distdlni (vzorky trusu) casti travictho traktu sykory komadry
[Publikace I]. OdlSnosti mezi proximalni a distdlni ¢asti travictho traktu nejsou
prekvapivé vzhledem k rozdinym podminkdm pro Zivot bakteri v téchto Castech. Velké
rozdily ve slozeni mikrobioty mezi proximalni a distdlni C¢asti traviciho traktu byly
detekovany 1u jinych druhli ptakl (Grond et al., 2020b; Schmiedova ef al., nepubliko vané
vysledky, Obrazek 3). V ramci tenkého stfeva slavikii byla pozorovana korelace mezi
vzorky z riznych jeho ¢asti od stejného jedince [Publikace C], coz naznacuje homogenitu
SM napfi¢ tenkym stfevem. Prekvapivé u kukacky nebyla mezi vzorky trusu a zastraSyjic im
sekretem nalezena korelace ve slozeni mikrobioty [Publikace H]. Zatimco u sykory
konadry jsme nalezli pouze velmi slabou korelaci mezi mikrobiotou z vytéru zobdku a
mikrobiotou v trusu v ramci jedince [Publikace I]. To ukazuje, ze v riznych c¢astech
travictho traktu se podminky pro Zivot bakteri 1iSi, coz zplsobuyje rozdilné sloZeni

mikrobioty napfi¢ travicim traktem a variabilitu mikrobioty v ramci jedince.
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Obrazek 3. A) Prumérné podily dominantnich bakteridalnich kmenui (,, ostatni* jsou kmeny
s abundanci mensinez 1 %). B) Heatmapa pdrovych Prokrustovychkorelaci klastrovanych
podle algoritmu ,,average linkage*, ktery pocita priimérné vzdalenosti mezi klastry. V
obrazcich je deveét ruznych typii vzorkii od andulky vinkované (Melopsittacus undulatus):
vytér zobdaku (zobdk), jicen, Zlaznaty Zaludek (provenmtriculus), svalnaty Zaludek
(ventriculus), dvé casti tenkého stieva dvanactnik (duodeum) a kycelnik (ileum), tlusté
strevo (tlusté s.), kloakalni vyter (kloaka) a trus. (Schmiedova et al., nepublikované
vysledky)

4.3.  Vliv klimatické zony na SM

Napfic¢ Sirokou Skalou taxonti byl popsan pokles diverzity s rostouci zemépisnou Sitkou
(McCoy & Connor, 1980, ale Owen & Owen, 1974), vCetné paraziti a patogend
asociovanych se zvitecimi hostiteli (Guernier, Hochberg & Guégan, 2004). Diverzita SM
byla dosud studovand pouze velmi malo, pfi¢emz relevantni data jsou jenom z vyzkumu
lidské populace (De Filippo et al., 2010; Lee et al., 2014; Suzuki & Worobey, 2014;
Yatsunenko ef al., 2012; but Suzuki et al., 2020). Zatimco u lidi byla pozorovana vetsi
alfa diverzita SM v tropech (De Filippo ef al., 2010; Lee et al., 2014), tak u pévct jsme
nenasli podporu pro vétsi alfa diverzitu v tropech ve srovnani s temperatem [Publikace
B]. U pévet v tropech jsme pozorovali vysokou variabilitu ve sloZzeni SM mezi obdobim
sucha a obdobim dest. Jedinci z temperatu se vice IiSili ve slozeni SM od jedinct
odebfranych béhem tropického obdobi destt nez od jedinci odebiranych béhem
tropického obdobi sucha. Naptiklad kmen Firmicutes byl vice zastoupeny v tropech
pouze béhem obdobi destli, zatimco v obdobi sucha byl jeho podil srovnatelny s mirnym
pasem [Publikace B]. V lidské populaci byla pozorovana pozitivni korelace kmene
Firmicutes se zemépisnou Sitkou (Suzuki & Worobey, 2014) a podobny trend, i kdyz
nesignifikantni, byl pozorovan i u volné¢ Zjicich mysi (Suzuki et al, 2020). U lidi a
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laboratornich mySi byl nartst Firmicutes a odpovidajici pokles Bacteroidetes spojovan se
zvySenou tvorbou kratkych mastnych kyselin (short chain fatty acids, SCFA) a potazmo i
energetickymi zdroji, které je hostitel schopny vyuzivat (Turnbaugh et al., 2006; Jumpertz
et al., 2011). U Ldi se zda, ze za zménami v alfa diverzit¢ i ve slozeni SM stoji rozdilny
zivotni styl mezi rozvojovymi a vyspelymi zemémi. Konkrétné védci z vyspélych zemi,
kteti po dobu 3—6 mésicti zli ve Stredoafrické republice a ptizplisobili svij zivotni styl
tradicnim zemédélcim, m¢li pot¢ SM vice podobnou mistnim populacim tradiCnich

zeméde€let 1 loveim a sbérac¢tim nez lidem z USA (Gomez et al., 2019).
4.4.  Vliv migrace na slozeni SM

Migra¢ni chovani souvisi u ptakti s komplexnimi zménami ekologickych a fyziologickych
znakl. Napiiklad béhem migrace dochazi ke zménam ve velikosti n€kterych organt a svali
(Piersma, Gudmundsson & Lilliendahl, 1999; Schwilch et al., 2002). Také béhem migrace
dochazi ke zhorSeni imunity a kondice, coz mize vést k vétSi nachylnosti wii€i nemocem a
parazitirnim infekcim (Owen & Moore, 2008). S ohledem na plasticitu SM a jeji tendenci
se piizptisobit novym ekologickym nikdm a fyziologickym staviim hostitele (Suzuki &
Worobey, 2014; Gomez et al., 2019; Suzuki et al., 2020) lze ocekavat vliv migrace na jeji
slozeni. Konkrétné¢ bylo pozorovano u dvou poddruhti viaStovky obecné, které se lisi
migracnim chovanim (jeden poddruh je rezident H. r. transitiva, druhy poddruh je migrant
H. 7. rustica a vyskytuji se na stejném Uzemi ve stejny Cas), odlisné slozeni SM (Turjeman
et al., 2020). Také u jespaka rudokrkého (Calidris ruficollis) byly pozorovany rozdily mezi
migrujicimi jedinci a rezidenty (Risely et al., 2017, 2018) atento rozdil se snizoval s dobou
stravenou na hnizdiSti (Risely et al, 2018). U n€kolika druhti ptaki byly pozorovéany
nejenom zmény SM béhem migrace, ale také promény SM mez jarni a podzimni migraci
¢i zimovistém (Lewis, Moore & Wang, 2016a, 2016b; Wu et al., 2018; Zhang et al., 2020).
Vsechny tyto vysledky potvrzuji fluktuaci SM v souvislosti s migraci a zd4 se tedy, Ze je
SM v kratkodobém ¢asovém horizontu ovlivnéna prostredim, ve kterém se jedinec aktudlné
vyskytuje.

U pévcll z mimého pasu jsme se zajimali o rozdil SM mez druhy migrujicimi béhem
zimniho obdobi do tropickych oblasti Afriky (trans-saharsky migrant) arezidentnimi druhy
(zbstavajicimi po cely rok na jednom misté) nebo témi, ktefi migruji pouze na kratkou
vzdélenost (maximdln¢ do Stredomofi). Kvili vystaveni riznému prostiedi béhem migrace

jsem ocekavala vyssi alfa diverzitu u trans-saharskych migranli nez
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u ostatnich temperatnich druhii. Tato predikce se vSak nepotvrdila, protoZze jsme pozorovali
podobnou alfa diverzitu u vSech temperatnich druhti [Publikace B]. Vzhledem k
piredchozim studiim jsme ocekavali, Zze béhem hnizdniho obdobi se trans-saharSti migranti
nebudou ve slozeni SM [LiSit od rezidentdi a nebo migranti na kratkou vzdalenost. Na
ziskanych datech jsme pozorovali rozdily ve slozeni SM mez trans-saharskymi migranty
a rezidenty spole¢né s migranty do Stfedomofi. Zaroven se vSak slozeni SM trans-

saharskych migrantii liSilo 1 od tropickych druhi z obou sezon [Publikace B].

Navic u dvou druhl trans-saharskych migrantli, pénice slavikové (Sylvia borin) a budniCka
vétStho (Phylloscopus trochilus), se slozeni SM signifikantné LSilo mezi hnizdiSt¢m a
zimoviStém, piiCemz tyto zmény viceméné odrdzely zmény ve slozeni SM pozorované i
mezi ostatnimi temperatnimi druhy pévci a tropickymi pévei z obdobi sucha [Publikace
B]. Tyto vysledky jsou v souladu se studii sledujici zmény SM u védct z vyspélych zemi
pobyvajicich dlouhodobé v Africe (Gomez et al, 2019). Stejné jako nase vysledky i
pfedchozi studie detekovaly fluktuaci SM v souvislosti s migraci (Lewis ef al., 2016a,
2016b; Wu et al., 2018; Zhang et al., 2020). Tyto pozorované zmény by mohly byt
zpusobeny osidlenim stfeva bakteriemi z prostiedi, ve kterém se jedinec aktudln¢ vyskytuje.
K takovému osidleni mize dochazet béhem migrace ¢i kratce po piiletu na zimovisté ci

hnizd i§té.
4.5. Vliv geografické vzdalenosti na SM

Nase vysledky na datovém souboru pévct z mirného pésu ukazuji na jistou miru korelace
mezi rozdily ve slozeni SM a geografickou vzddlenosti mez lokalitami [Publikace A].
Podobn¢ i na wvnitrodruhové trovni mezi populacemi vlastovky obecné jsme zjistili
signifikantni, avSak slabé rozdily mez vzorkovanymi lokaltami [Publikace D]. I na
zaklad¢ dalSich studii se ukazuje, Ze prostorova segregace hraje u ptaktl urcitou roli,
nicméné jeji vyznam se liSi mez jednotlivymi studiemi. Zatimco naSe publikace
zaznamenaly pouze menSi vyznam prostorové segregace, coz je v souladu s vysledky
dasich studii (Hird et al., 2015; Loo et al., 2019a; Capunitan et al., 2020; Bodawatta et al.,
2021b), vysledky jinych publikaci pokladaji prostorovou segregaci za nejvyznamnéjsi
testovany faktor (Hird ef al., 2014; Gillingham et al., 2019; Grond et al., 2019). Podobné
rozporuplné vysledky byly zaznamenany iu savel. Ve vétSiné publikaci byla prostorova
segregace dulezitym faktorem (Grieneisen et al., 2019; Gaona et al., 2020; Grond et al.,

2020a), ale v jiné publikaci nebyl efekt prostorové segregace pozorovan (Baxter ef al.,
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2015). Rozdiné vysledky mohou byt disledkem odlisného geografického méfitka, na
kterém vyzkum probihal V nékterych studiich byly sledované lokality od sebe vzdalené
jen n€kolik kilometri a v jinych se tato vzdalenost pohybovala v fadech stovek az tisicti
kilometr. Rozdilné métitko na geografické skale mize hrat roli napiiklad v tom, zda se
studované populace/jedinci mohou potkavat ¢i jsou izolované, a tedy si nemohou SM
predavat. Neni také jasné, do jaké miry hraje roli samotnd prostorova izolovanost ado jaké
miry jsou pozorované efekty spojené s dalsSimi faktory, které se v prostou méni jako napf.
rozdilnost obyvaného prostiedi. Napiiklad u pévell byl pozorovan rozdil ve SM mezi
jedinci z mésta a venkova (Phillips, Berlow & Derryberry, 2018; Teyssier et al., 2018b).
Nase vysledky ukazuji, Ze ipfi pomémé velké vzdalenosti mezi studovanymi populacemi
z tropu a temperatu (okolo 5000 km) se miize SM do urCit¢ miry piekryvat [Publikace B],
a proto pravdépodobné geografickd vzdalenost neni nejdillezitéj$im

faktorem.
4.6.  Vliv ekologickych faktorii na SM

U pévcti jsme na mezidruhové trovni nepozorovali signifikantni vliv ekologickych znakt
a zivotnich strategii na sloZzeni SM, které zahrnovaly 1 sloZeni potravy [Publikace A]. V
jiné¢ studii provedené na ptacich pozorovali rovnéz pouze slaby efekt nékterych
ekologickych faktord (Hird er al, 2015). Zajimavé je, ze u tropickych pévcii byla
pozorovana korelace mezi potravou a SM, kterd ale nebyla pozorovana u temperatnich
druhti [Publikace B]. Tento rozdil mezi pévci z tropu a z temperatu by mohl byt disledkem
Vetsi potravni specializace tropickych péveti (Wheelwright, 1988). Na rozdil od ptacich
studii je u savcl ekologie hostitele, a zejména pak sloZeni potravy, naprosto klicova (Ley
et al., 2008; Muegge et al., 2011; Youngblut et al., 2019). I u ptadkd byl pozorovan vliv
potravni strategie na SM (Bodawatta et al., 2018; Loo et al., 2019a, 2019b; Capunitan et
al., 2020; Murray et al., 2020), i kdyz v nékterych publikacich neni tato souvislost zcela
jednozna¢na (Michel et al., 2018). Vliv potravy na slozeni SM byl také detekovan u
jednotlivet pomoci metody stabilnich izotopli, kterda odrazi zdroje uhliku a trofickou
uroven potravy, a tedy udava vyzivovou hodnotu potravy (Loo et al., 2019a, 2019b; Murray
et al., 2020). Experimentalné¢ bylo pozorovano, ze se liSi slozeni SM u vrabce domaciho
(Passer domesticus) podle toho, jestli byl krmen méstskym, nebo venkovskym typem
potravy (Teyssier et al., 2020). Navic experimentdIlné byly pozorovany zmény SM se
zménou potravy u sykory konladry (Davidson et al., 2020;
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Bodawatta et al., 2021a). Z tohoto divodu jsme se rozhodli zaméfit na potravu v ramci
vnitrodruhové urovné u vlastovky obecné, kde jsme pozorovali signifikantni, i kdyz pouze
slabou korelaci mezi slozenim SM a potravou [Publikace E]. V souhrnu tyto vysledky
naznaCuji, ze potrava vysvétluje urCitou, i kdyz relativné omezenou Cast variability slozeni
SM u pével. Narozdil od ptakii byla u savci potrava Casto hlavnim faktorem vysvétlujicim
variabilitu SM (Ley et al., 2008; Muegge et al., 2011; Gomez et al., 2019). Ve srovnani se
savcl, kde byla pozorovana korelace potravy a SM, u ptaki tato korelace signifikantni
nebyla (Song et al., 2020).

4.7.  Vliv fylogenetické pribuznosti a prisluSnosti k druhu

na SM

Z nasich vysledkli vyplyva, Ze podstatné vetsi vliv nez ekologie a geografie ma na sloZeni
SM u temperatnich pévei jejich fylogenetickd pibuznost [Publikace A]. Efekt fylogeneze
se potvrdil i v datovém souboru rozsiteném o tropické pévce [Publikace B]. Signifikantni
vliv fylogeneze by teoreticky mohl byt disledkem transgenera¢niho pifenosu SM mezi
rodi¢i a dalsimi Cleny komunity na potomky po mnoho generaci, vCetné speciacnich
udalosti. Ten mize vést ke korelované evoluci a fylogenezi mezi SM a jejich hostitelem.
Nase vysledky adalsi doposud nepublikované analyzy na tomto datasetu (Kubovciak et al.,
v recenznim fizeni) vSak naznacuji, Ze spie neZ transgeneraCnim pienosem SM byl dany
jev zpusobeny znaky hostitele, které koreluji s jeho fylogenezi, avSak nemohly byt do
analyz zahrmut¢ v disledku absence relevantnich dat. Jednim z téchto kandidatnich znakii,
na které by se m¢l vyzkum v budoucnu vice zaméfit, mize byt napiklad variabilita v
mmunitnich genech, které reguluji slozeni SM. Jako prvni jsme se také pokusili posoudit
potencidlni roli SM pii speciaci u ptakil. Konkrétné jsme srovnavali SM ze sympatric a
alopatric u dvou blizce pibuznych druhi slaviki (slavika tmavého a obecného), kteti
ptilezitostné¢ v sekundarni kontaktni zon€ hybridizuji. Souvislost SM pfi tvorbé reproduk Eni
bariéry zde nebyla prokézana [Publikace C]. Pouze slabou korelaci mezi slozenim SM a
fylogenetickou vzdalenosti mez hostiteli (tzv. efekt fylosymbidzy) pozorovali u 15 druhil
jetabl chovanych ve stejnych podminkach a krmenych stejnou potravou (Trevelline et al.,
2020). U tropickych pévcl z Nové Gumey nebyl prokazan efekt fylosymbidzy, ale byl zde
prokazan vliv piisluSnosti k druhu (Bodawatta ef al., 2021b). Ve vétSin¢ ostatnich publikaci
netestovali piimo efekt fylogeneze, ale pouze pfisluSnost k druhu (jeho taxonomickou

identitu), ktera Casto
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ovliviiovala slozeni SM (Hird et al., 2015; Garcia-Amado et al., 2018; Laviad-Shitrit et al.,
2019), zatimco v nékolika dalSich publikacich nebyla piisluSnost k druhu signifikantni nebo
byl tento efekt mén¢ podstatny nez napiiklad lokalita ¢i potrava (Hird et al., 2014; Michel et
al.,2018; Grond et al.,2019; Loo et al., 2019b). Pti analyzdch SM napfi¢ obratlovci je potrava
dulezitd spolecné s fylogenezi (Youngblut et al., 2019; Song et al., 2020). Efekt fylogeneze byl

ale slabsi u ptakll ve srovnani se savci (Song et al., 2020).

4.8. Srovnani vlivu vnitinich regula¢nich mechanismii,

environmentalnich faktoru a socialnich kontaktu na SM

Zde jsme si kladli otdzku, jaky je relativni efekt wnitfnich regulacnich mechanismut
specifickych pro dany druh hostitele v porovnani s vlivem environmentalnich faktort. V
tomto konkrétnim pifpadé jsme porovnavali SM mldd’at dvou druhii rdkosnikli se SM
mladat kukacky obecné, kterd byla vychovavana stejnymi rodiCovskymi druhy. Efekt
regulacnich mechanismii bylo tudiz mozné vysledovat na zakladé porovnani riznych druht
mlad’at vystavenych stejnému prostiedi. Efekt prostiedi, zahrnujici mimo jiné i odliSnosti
v potravé a socialni pfenos SM od rodict na potomky, jsme zjistili na zakladé¢ porovnani
SM u stejného druhu vychovdvaného riznymi druhy péstounskych rodich. Mlad’ata
kukacek a rakosniki chovand v hnizdech dvou druhii rdkosnikd se signifikantn¢ LSila ve
slozeni SM, piestoze byla vychovavana stejnym druhem rakosnika [Publikace H].
Podobn¢ u mlad’at kukacky chocholaté¢ (Clamator glandarius) v hnizdé obyvaném
spole¢n¢ s mlad’aty straky obecné (Pica pica) bylo pozorovano rozdilné slozeni SM mezi
mladaty zminénych druhi (Ruiz-Rodriguez et al., 2009a, 2009b, 2018; Lee et al., 2020).
Na zaklad¢ téchto publikaci se zda, ze v ramci studovaného modelového systému je SM
vice ovlivnéna vnitinimi regulaénimi mechanismy hostitele nez environmentalnimi
faktory. Jednim z vysvétlyjicich faktorti u hostitele by mohla byt odlisna stavba traviciho
traktu kukacek a pévct.

U zastraSujiciho sekretu kukacky a u trusu rdkosniki byla mikrobiota ovlivnéna druhem
socialntho rodi¢e (rdkosnika velkého ¢i obecného), coz ale neplatilo pro trus kukacky
[Publikace H]. Tato skute¢nost naznacuje, Ze vliv socidlnich rodict spolu s variabilitou
hnizdniho prostfedi mize mit rizny efekt na mikrobiotu v jednotlivych castech traviciho
traktu. Vysledky cross-fostering experimentli u sykory konadry a modiinky (Cyanistes
caeruleus) naznacuji efekt identity hnizda, ve kterém mladé vyristalo, na slozeni SM, coz
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by mohlo naopak podporovat vyznam environmentdlnich faktort (Lucas & Heeb, 2005;
Teyssier et al., 2018a). Podobné na vnitrodruhové urovni u vlaStovky obecné si jsou
mlad’ata z jednoho hnizda ve slozeni SM podobnéjsi v porovnani s ostatnimi mlad’aty
[Publikace D] (také Ambrosini et al., 2019), ale zde nelze jednozna¢né bez dalSich

cilenych experimenti konstatovat, zda je rozhodujici vliv genotypu nebo prostiedi hnizda.

U Idi byl zaznamenan ptenos bakterii od matky na potomka b&hem porodu a kojeni
(Béckhed et al., 2015). Umysi byl také pozorovan transgeneratni pienos SM (Rosshart et
al., 2017). U savci, ktefi jsou vétSinou zivorodi a sva mlad’ata koji, jsou lepsi podminky
pro transgeneracni prenos od matky na potomky nez u vejcorodych ptakl. Proto neni
prekvapivé, Ze v nasi studované populaci vlaStovky obecné byla detekovana pouze slaba
korelace mezi sloZzenim SM socialni matky a mlad’at. SouCasné¢ s tim ale nebyl nalezen
zadny efekt otce [Publikace D]. V piipadé obdobné studie zaméfené na variabilitu
kloakalni mikrobioty u italské populace vlastovek nebyl detekovan paterndlni ani
maternalni vliv na kloakalni mikrobiotu mlad’at v hnizdé¢ (Ambrosini et al., 2019). Z téchto
vysledkl Ize usuzovat, Ze transgeneracni pfenos SM zrodict na potomky vysledné slozeni
SM u ptakt piili§ neovlivituje. U vlaStovky obecné byla pozorovana podobnéjsi SM u
socidlnich pari v porovnani s ostatnimi jedinci, a to nejenom v na$i studované populaci
[Publikace GJ, ale iv jiz zminéné italské populaci (Ambrosini et al., 2019). Tyto vysledky
naznaCuji vliv socidlnich kontaktl a kopulaci v ramci paru na SM u ptakd. I u savel byl
detekovan socidlni pienos SM (Tung et al., 2015; Moeller et al., 2016), ale tento pfenos
nebyl stejny pro vSechny druhy bakterii (Moudra et al., 2021). Zda se tedy, ze socialni

kontakt ovlivityje slozeni SM u saveil i u ptaka.
4.9. Zmény SM béhem ontogeneze a stabilita SM v Case

U lidi probihaji dynamické¢ zmény SM béhem ontogeneze, které jsou spojené zejména s
kojenim a jeho ukoncenim (Béckhed et al., 2015; Stewart ef al., 2018). Piekvapivé jsme u
vlastovky obecné nenalezli vyznamné zmény SM asociované se staiim mlad’at [Publikace
D]. Byl zde pozorovan slaby nartst alfa diverzity se stafim mlad’at, ale taxonomické slozeni
se signifikantn€ neménilo. V italské populaci nebyly zistény zadné signifikantni zmény
kloakalni mikrobioty spojené s vékem mlad’at, a to ani na trovni alfa diverzity (Ambrosini
et al., 2019). Nekonzstentni vysledky u alfa diverzity by mohly byt zpisobeny jinym
typem vzorku (kloakalni wvytér vs. trus). U sykory komadry byly zistény rozdily SM u
mlad’at mezi 8 a 15 dnem od vylihnuti (Teyssier et al., 2018a) a u vrabce
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domactho byly nalezeny margindlné nesignifikantni zmény SM v souvislosti s vékem
mlad’at (Kohl et al., 2019). Co stoji za riznymi vysledky mezi zminénymi publikace mi
neni jasné. Na druhou stranu jsme objevili signifikantné rozdiné slozeni SM mezi mlad’aty
a dospélci [Publikace D], které nemohou byt vysvétleny rozdily v potraveé, kterd je v nasi
populaci u mlad’at arodict stejna [Publikace E]. Rozdily u vlastovky obecné mezi mlad’aty
v hnizd¢ a dospélci byly pozorovany také v italské populaci (Ambrosini et al.,2019), avsak
SM mlad’at vylétlych z hnizda se jiz neliSila od SM dospélcti (Musitelli ez al., 2018). Tyto
vysledky naznacuji, ze SM mladat se pravdépodobné méni s vylétnutim mlad’at z hnizda a
poté se vice podobd SM dospélcti. Vzhledem k vysledkiim z italské populace (Musitelli et
al., 2018) se nezdd byt pravdépodobné alternativni vysvétleni rozdili mezi dospélci a
mlad’aty, které predpokladd, ze dosp€lci maji SM ovlivinénou zimoviStém a migracni
cestou, zatimco u mlad’at je SM definovana pfedevSim hnizdnim materidlem a kontaktem
s rodi¢i v pribéhu krmeni. Toto alternativni vysvétleni se nezdd byt pravdépodobné i s
ohledem na vysledky nasi studie zahrujici dva druhy trans-saharskych migrantii, kteii méli
odlisné slozeni SM na zimovisti a na hnizdiSti [Publikace B]. I zde by mohly byt
pozorovan¢ rozdily v dynamice SM béhem ontogeneze u savct a ptakd vysvétleny

zivorodosti vs. vejcorodosti a s tim spojenou naslednou péci, jako je kojeni u savci.

Dale jsme u mlad’at i dospélcii vlastovky obecné objevili sice signifikantni, i1 kdyz s velmi
malym efektem, stabilitu slozeni SM v ¢ase v ramci jedince [Publikace D]. Na rozdil od
pévct je SMu lidi v dospélosti stabini i v horizontu nékolika let (Faith ez al., 2013). Naproti
tomu u volné¢ Zjicich savcl je podobné jako u pévcli u dospélcti obvykle pozorovano
kolisani SM v ¢ase (Baxter ef al., 2015; Aivelo, Laakkonen & Jernvall, 2016; Ren et al.,
2016), 1 kdyz existyji ivyjimky (Stevenson, Buck & Duddleston, 2014). Vyrazna variabilita
SM v ¢ase by mohla znamenat, Ze vliv SM na fenotyp hostitele v dlouhodob¢j$im casovém
horizontu je pouze omezeny, nebo dokonce zadny. Zde bych vyzdvihla, ze v piipadé
dospélctt vlastovky obecné je sice celkové slozeni SM v Case malo stabilni, nicméné c¢ast
SM se vyznacuje zna¢nou stabilitou. Konkrétn¢ se jednd o 17 taxonomickych jednotek,
které by fenotyp hostitele mohly ovliviiovat a byt tak zajimavé iz hlediska dalsiho vyzkumu
[Publikace D]. U ptakii 1 savct byly pozorovany signifikantni zmény SM béhem sezony
(Sommer et al., 2016; Xiao et al., 2019; Zhang et al., 2020). Také u tropickych ptakl se
zda, 7e je slozeni SM sezonné¢ proménlivé, protoze v obdobi dest’d bylo slozeni SM u pévecl

signifikantn¢ odlisné od slozeni SM béhem
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obdobi sucha [Publikace B].

4.10. Souvislost SM s imunitnim systémem a role SM pri

obrané proti predatorim

Vliv SM na fenotyp hostitele jsme zkoumali u mladat vlaStovky obecné. Testovali jsme
asociaci SM s itenzitou reakce imunitniho systému na PHA (fytohemaglutinin) otokovy
kozni test. PHA test detekuje bunkami zprostfedkovanou munitu pomoci velikosti otoku
(Goto et al., 1978; Tella et al, 2008; Vinkler et al, 2010, 2012). Na urovni celkového
slozeni SM jsme pozorovali souvislost s intenzitou reakce na indikaci PHA a dale jsme
nalezli 10 konkrétnich taxonomickych jednotek souvisejicich s touto reakci [Publikace F].
Také u kukacky chocholaté (Clamator glandarius) a straky obecné (Pica pica) bylo
pozorovano propojeni mezi SM a imunitni odpovédi (Ruiz-Rodriguez et al, 2009b). U
kachen (rodu Amnas) byla pozorovana souvislost mez slozenim SM a piitomnosti ¢i
nepittomnosti viru chiipky (influenza A virus; Ganz etal., 2017; Hird et al., 2018). Bohuzel
se ze zisténych vysledkli nedd jednoznacné fict, zda je SM ovlivnéna piitomnosti viru
chiipky, ¢1 SM ovlivituje nachylnost na nakaZzeni virem chiipky, nebo zda plati oboje. Pro
rozklicovani tohoto stavu by byl idedlni odbér vzorkd od stejnych jedinch v del§im
Casovém horizontu ¢i experimentalni infekce virem chiipky, na coz by se mohl dalsi
vyzkum zaméfit. Navic slozeni kloakalni mikrobioty u vlastovky obecné mélo vliv na
prezivani do dalsi sezony (Ambrosini ef al., 2019). Z téchto vysledk se da usuzovat, ze

slozeni SM by mohlo hrat roli pii reakci imunitniho systému a ptfezivani hostitele.

V zastraSujicim sekretu kukacky obecné, ktery miize poskytnout ochranu proti ¢ichem se
orientyjicim predatorim, jsme pozorovali vysSi podil bakterialnich rodii spojovanych s
produkci volatilnich (t€kavych) molekul [Publikace H], které byly jiz difve v zastrasyjicim
sekretu detekovany (Roder et al., 2016). Tyto vysledky ukazuji na piispévek mikrobioty v
ramci evoluce chemickych antipreda¢nich mechanismti u mlad’at kukacky. Také u pévci v
sekretu z uropygidlni Zlazy byly pozorovany bakterie produkujici volatilni latky souvisejici
s chemickou signalizaci (Whittaker & Theis, 2016; Whittaker et al., 2019). Pfispévek
mikrobioty k tvorbé chemickych signalti byl také zjiStén u hyeny zhané a skvrnité (Hyaena
hyaena a Crocuta crocuta; Theis et al., 2013), surikat (Suricata suricatta; Leclaire et al.,

2017) a bengalské kocky (Felis catus %
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Prionailurus bengalensis; Yamaguchi et al., 2019). U obratlovct se zda, Ze symbiotické
bakterie napomahaji tvorbé chemickych signali, nicméné i zde je mnoho prostoru pro dalsi

vyzkum.
5.7Zavér

VétSina variability SMu péveil ziistava stale nevysvétlena 1 pies celou fadu vyse popsanych
atestovanych parametrii [Publikace A—I]. Stejné tak tomu je iv pfipade ostatnich publikaci
uskutecnénych na ptacich (Ambrosini ef al., 2019; Grond et al., 2019; Laviad-Shitrit et al.,
2019). Podle komparativni studie, kterd zahrnuje savce i ptaky, fylogeneze u ptaki
vysvétluje méné variability nez fylogeneze u savcl a zaroven je variabilita slozeni SM u
ptakt vySSi nez u savell (Song ef al., 2020). Zajimavé je pozorovani konvergence mezi
ptaci a netopyii SM (Song et al., 2020), ktera by mohla byt spojena s adaptacemi k letu.
Létajici ptaci 1 savei maji napiiklad redukovanou délku stieva, kratSi retencni dobu, po
kterou prochazi potrava travicim traktem a maji lepsi stfevni paracelularni absorpci (coz
znamend, 7ze vice zivin je vstiebavano hostitelem, a tedy to mlize snizovat dllezitost
symbiotickych bakteri, Caviedes-Vidal ef al.,2007). Toto je jen ¢ast z moznych vysvétleni
této konvergence a dalsi vyzkum je Zzadouci Velkd variabilita ve slozeni SM ptakd v
porovnani se savci je pozorovatelnd 1 v naSich publikacich, kde doSlo ke stejnému nebo
velmi podobnému laboratornimu zpracovani vzorkli [Publikace A-I] (savci viz Bendova
et al., 2020; Matéjkova et al., 2020; Moudra et al., 2021; Cizkova et al., 2021). Velké
mnozstvi nevysvétlené variability spolecné s velkou variabilitou mezi jedinci a pomérné
slabou stabilitou SM u ptakii by mohlo byt zptisobeno vyraznou fluktuaci mikrobioty, ktera
travicim traktem pouze prochdzi pravdépodobné spolecné s potravou, ale travici trakt trvale
neosidluje, coz potvrzuje i piitomnost symbiotickych bakterii hmyzu detekovanych ve SM
riznych pévcl [Publikace A-I]. Mezi detekované symbionty hmyzu patii napiiklad
Arsenophonus, Buchnera, Pseudonocardia, Rickettsia, Rickettsiella, Serratia ¢i
Spiroplasma (Baumann, 2005; Moran et al., 2005; Braig, Turner & Perotti, 2008;
Novéakova, Hypsa & Moran, 2009; Anbutsu & Fukatsu, 2011). Konkrétné byla naptiklad
nalezena pozitivni korelace mez klopuskou (Lygus) v potravé vlastovek a bakterii z rodu
Rikettsia [Publikace E]. Zda bakterie travicim traktem pouze prochdzi nebo jsou-li v ném
aktivni, nelze pouzivanymi metodami zatim odliSit. Z naSich dat se zda, Ze v travicim traktu
je ¢ast SM stabilni, a proto by se m¢l dalsi vyzkum zaméfit na studium souvislosti mezi

fenotypem
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hostitele a t€émito konkrétnimi bakteridlnimi taxony. Zaroven je tieba se zaméfit na stabilitu
SM iu dalSich skupin ptakt, aby se potvrdilo, zda ndmi pozorované bakteridlni taxony jsou
stabiini napfi¢ ptaky/péveci. Kazdopadné lze konstatovat, ze vysledky studii realizovanych
na savcich nejsou obecné aplikovatelné na ptaky a pravdépodobné ani ostatni obratlovce a
je tedy dualezit¢ veénovat se také studiu slozeni SM u dalSich skupin obratlovc. Navic by
se krom¢ studia bakterii mohl budouci vyzkum vénovat vice i jinym sloZkdm mikrobioty

jako jsou houby a viry a jejich vzajemnym interakcim.
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Table S1: Sample metadata (code = sample identity, species, category= temperate trans-
Saharan migrants [Temperate Transaharan], temperate residents/short-distance migrant
[Temperate Resid.Short], tropical rainy season [Tropical Wet] and tropical dry season

[Tropical Dry].

code species category diet
ZA24483 Acrocephalus_arundinaceus Temperate_Transaharan 0.9
ZA35700 Acrocephalus_arundinaceus Temperate_Transaharan 0.9
ZA50401 Acrocephalus_arundinaceus Temperate_Transaharan 0.9
ZA58051 Acrocephalus_arundinaceus Temperate_Transaharan 0.9
ZA58058 Acrocephalus_arundinaceus Temperate_Transaharan 0.9
CZ-14-311 Acrocephalus_palustris Temperate_Transaharan 0.8
CZ-14-432 Acrocephalus_palustris Temperate_Transaharan 0.8
CZ-14-433 Acrocephalus_palustris Temperate _Transaharan 0.8
CZ-14-436 Acrocephalus_palustris Temperate _Transaharan 0.8
CZ-14-441 Acrocephalus_palustris Temperate_Transaharan 0.8
TP61366 Acrocephalus_palustris Temperate_Transaharan 0.8
TP61487 Acrocephalus_palustris Temperate_Transaharan 0.8
TP61494 Acrocephalus_palustris Temperate_Transaharan 0.8
TR27144 Acrocephalus_palustris Temperate_Transaharan 0.8
S640540 Acrocephalus_schoenobaenus Temperate_Transaharan 0.7
TP52638 Acrocephalus_schoenobaenus Temperate_Transaharan 0.7
TP52640 Acrocephalus_schoenobaenus Temperate _Transaharan 0.7
TP52648 Acrocephalus_schoenobaenus Temperate_Transaharan 0.7
TP52650 Acrocephalus_schoenobaenus Temperate_Transaharan 0.7
TP67321 Acrocephalus_schoenobaenus Temperate_Transaharan 0.7
TP46133 Acrocephalus_scirpaceus Temperate_Transaharan 0.7
TP52626 Acrocephalus_scirpaceus Temperate_Transaharan 0.7
TP52649 Acrocephalus_scirpaceus Temperate_Transaharan 0.7
TP61499 Acrocephalus_scirpaceus Temperate_Transaharan 0.7
TP61500 Acrocephalus_scirpaceus Temperate Transaharan 0.7
TP67323 Acrocephalus_scirpaceus Temperate_Transaharan 0.7
TR27097 Acrocephalus_scirpaceus Temperate_Transaharan 0.7
TR67328 Acrocephalus_scirpaceus Temperate_Transaharan 0.7
F157035 Aegithalos_caudatus Temperate_Resid.Short 0.6
F157036 Aegithalos_caudatus Temperate_Resid.Short 0.6
F157902 Aegithalos_caudatus Temperate_Resid.Short 0.6
F160964 Aegithalos_caudatus Temperate_Resid.Short 0.6
F160965 Aegithalos_caudatus Temperate Resid.Short 0.6
F160985 Aegithalos_caudatus Temperate_Resid.Short 0.6
CAM-14-015 Alethe_diademata Tropical_Wet 1
CAM-14-016 Alethe_diademata Tropical_Wet 1
CAM-14-025 Alethe_diademata Tropical_Wet 1
CAM-14-064 Alethe_diademata Tropical_Wet 1
CAM-14-155 Alethe_diademata Tropical_Wet 1
CAM-14-031 Alethe_poliocephala Tropical_Wet 1
CAM-14-082 Alethe_poliocephala Tropical_Wet 1
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