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Introduction
Gauge symmetry is a concept at the very heart of contemporary fundamental
physics and provides language for some of the most illuminating ideas and math-
ematical models. Becchi et al. [1976], Batalin and Vilkovisky [1981] have shown
that such symmetries extend and unfurl into a much richer geometric world of
graded symplectic geometry. But why would we embark on such a journey in
the first place? The answer, precisely formulated by Costello [2007], is that the
BV-BRST formalism provides a gateway for quantization of gauge theories.

Even though we start with bosonic gauge fields, the BRST formalism leads us
to a theory on a space of bosonic and fermionic fields. Moreover, we will see that
on top of the Z2 even/odd grading, auxiliary fields within the BV framework may
in general acquire a Z-grading in the form of the so called ghost degree. These
fields are purely auxiliary; the so called ghosts.

bosonic
gauge
fields

Aµ Aµ, c
gauge fields,
bosonic or
fermionic

ghosts

This, however, is not the whole story. BV formalism relies on the extension of
this field-ghost configuration “along cotangent directions”. We may introduce
fields formally conjugate to gauge fields and ghosts, the antifields.

bosonic
gauge
fields

Aµ Aµ, c, (A∗)µ , c∗
gauge fields,

ghosts,
antifields,
antighosts

This may remind us of the famous solution to the Zeno’s paradox within
classical mechanics. Zeno wonders:

“What is movement, if at every instant, an arrow is motionless?”

In other words; we may wonder where the information about movement along
a path x(t) is lost if we restrict ourselves to a single instant t = t0. The answer
seems easy from today’s viewpoint: we need to include the whole phase space
into our model.

position
coordinates x

i xi, pi
position &
momentum
coordinates

Movement does not reside in the instant t = t0 but in its microscopic neighbour-
hood. To talk about movement at t = t0, we have to keep the information about
some kind of a germ of movement, a Taylor expansion of the x(t) path around
the x(t0) point. The tiniest non-trivial information about such germ — its linear
part — is precisely what we call the momentum pi. The phase space can thus be
thought of as a minimal (linear) model of:

a space M and the the germs of movement R→M

Similarly, we might wonder:
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“What is (BRST) gauge symmetry, if for every physical field con-
figuration, the gauge is fixed?”

This phrasing may seem rather paradoxical, but remember that this is pre-
cisely the case of Zeno’s paradox as well. We may, once again, try to consider
germs of movement, but this times, what moves is the gauge itself.

a field configuration and the the germs of gauge change

These germs are the antifields (and antighosts).

We witness graded manifolds arising from gauge theoretic reasoning as infinite-
dimensional “ghost-enriched manifolds”. Within the AKSZ framework due to
Alexandrov et al. [1997], however, one constructs the relevant geometric struc-
tures on two finite-dimensional manifolds and then lifts them onto a naturally
defined infinite-dimensional manifold of maps betwen them. To follow the AKSZ
philosophy of quantization of field theories thus means to study the geometry of
the source and the target finite-dimensional graded manifolds.

In the presence of fermionic (and ghost) degrees of freedom, we adapt differ-
ential geometry using the simple concept of a sheaf : a functorial assingment of
an algebra (of fields, ghosts, ...) to every open set of a space.

graded algebra graded algebra

open set open set

restriction

inclusion

The particularly well-behaved class of non-negatively graded manifolds will
translate the geometric data familiar from gauge theories to graded symplectic
language. The central example is the classical master equation encoding gauge
symmetry of the dynamics given by the actional S (action functional).

{S, S} = 0

Here, the Poisson bracket refers to the precisely the bracket whose conjugate co-
ordinate pairs are fields and antifields, it is the result of our “gauge phase space”
extension.

In particular, the low degree cases will provide fruitful examples; the degree 2
case has been found to coincide with Courant algebroids known from generalized
geometry. We will follow the reasoning of Roytenberg [2002], who shows that
in this case, the “cotangent extension” takes the form of a minimal symplectic
realization.

Courant
algebroid E E minimal

symplectic
realization

To extend this correspondence to a proper categorial equivalence, we follow
the construction of Lagrangian correspondences in the spirit of Weinstein [2010]
and Wehrheim and Woodward [2007]. The idea is to consider a morphism not as
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an element-wise assignment x ↦−→ f(x) subject to algebraic rules, but as a subset
L of the cartesian product of the target and source spaces M , N endowed with
geometric properties.

L ⊆M ×N

We can, for example, represent smooth maps as smooth submanifolds.

L ↪→M ×N

We will use the results of Vysoky [2020], who gives a precise description of corre-
spondences of Courant algebroids using Dirac structures, the natural “substruc-
tures of Courant algebroids”. Constructing the appropriate “cotangent exten-
sion”, we will rely on results of Grützmann [2010]; in particular they will take
the form of conormal subbundles.

Dirac
structure L N ∗L conormal

subbundle

Finally, we will mention how the resulting categorial framework fits into the idea
of functorial quantization of odd symplectic manifolds put forth by Severa [2002],
which will be the end of our journey.

We presuppose basic knowledge of differential geometry, theory of fibre and
principal bundles and elementary knowledge of category theory. A familiarity
with gauge theories provides an excellent motivation for the topics at hand, but
is not needed.
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1. Ghosts & Graded Manifolds
Gauge-theoretic structures of quantum field theories1 may be extended into a
larger and richer graded-commutative geometric world, built above the original
concept of a Lie group G-action and a connection 1-form Aµ(x) corresponding to
a bosonic gauge field.

Firstly, in section 1.1, we will briefly recall elements of bosonic gauge theories
and the geometric objects arising in the Batalin-Vilkovisky (BV) quantization
formalism, refering to Becchi et al. [1976], Batalin and Vilkovisky [1981]. More-
over, we will mention the AKSZ framework originally due to Alexandrov et al.
[1997] which allows one to talk about the geometry of the BV field theories in
terms of finite-dimensional manifolds. We will focus precisely on (the category of)
those finite dimensional manifolds equipped with bosonic, fermionic and general
auxiliary “ghost coordinates”.

A large part of this chapter, sections 1.2, 1.3, 1.4, is devoted to the basics of
the theory of non-negatively graded manifolds (N-manifolds) endowed with geo-
metric structures mirrored in the BV formalism. In section 1.5, we will provide a
treatment of “the first non-trivial class” of examples of N-manifolds, the special
“deg = 2” case, which is known to correspond to familiar structures from gener-
alized geometry. We follow mainly Roytenberg [2002] and Cattaneo and Schaetz
[2011].

1.1 Gauge Fields & the AKSZ Philosophy
The BRST supersymmetry of a theory, due to Becchi et al. [1976] is one of the
first to stand witness to an extension of a gauge theory by enlarging the field
space. It will be our first example: let us briefly sketch the relevant ideas as
a motivation for the following study of graded manifolds. This chapter may
also be seen as the one that sets one of the main goals of this thesis: to review a
rigorous geometric framework that embodies the structures found in this chapter.

For further reading, we refer to the extensive textbooks of Weinberg [2013] and
Henneaux and Teitelboim [2020] . This section is strongly inspired by lectures on
gauge theory led by Jǐŕı Novotný at Charles University in Prague in the winter
semester of 2020.

1.1.1 Becchi-Rouet-Stora-Tyutin Cohomology
Let us start with the example of Yang-Mills theories. Gauge symmetry endows
a Yang-Mills theory with a set of contraints onto which we may “reduce” the
dynamics. To ensure compatibility of the dynamics given by an actional S0
with the gauge symmetry, it is desirable to find a “pull-back” of the constrained

1Or more precisely; a classical field theory we aim to quantize.
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generating functional Zred of the form

Zred[J ] =
∫︂
Dϕ eiS0[J ]+iJ ·ϕ

along the reduction, into “a general coordinate system”, so to speak. Here, we
may understand Dϕ as a formal path integration of fields that may have values
in (a representation of) a Lie algebra g.

The solution is the Faddeev formula. We simply multiply the integrand by
appropriate formal Dirac δ-functionals and certain volume corrections.

We are, however, not quite done yet. To obtain a manifestly Lorentz invariant
(ie. “covariant”) generating functional, we may construct the following extension
of the field space:

We smear the delta functionals by introducing the bosonic Nakanishi-Lautrup
fields η and construct the volume corrections from Berezinian2 integration of a
new set of fermionic fields; the Faddeev-Popov ghosts b(x), c(x). The resulting
generating functional is described by the Faddeev-Popov formula.

Z[J ] =
∫︂
DADηDbDc eiS[J ]+iJ ·ϕ

The new extended actional S now exhibits an extended version of the gauge
symmetry given by the gauge field Aµ(x), the BRST symmetry given by a δBRST

operator.

Remark 1 (BRST Symmetry). On Aµ(x) and c(x), in particular (and with
explicit Lie algebra indeces), the BRST (Becchi-Rouet-Stora-Tyutin) symmetry
transformation reads as follows.3

δBRSTA
a
µ = (Dµc)a

δBRST c
c = 1

2eC
c

ab c
acb

where Dµ is the covariant derivative associated to the connection Aaµ, e is a
coupling constant and C c

ab the structure constants of g. Note that this is a “su-
persymmetry” as it switches between bosonic and fermionic fields. Moreover, it
is important that this is an affine transformation.

The integral representation of the BRST operator is the Slavnov operator.
Let us write out its form for the restriction on Aaµ, c fields and by δ

δϕ
denote a

formal functional derivative.

δBRST =
∫︂
DADc

(︃
(Dµc)a

δ

δAaµ
+ 1

2eC
c

ab c
acb

δ

δcc

)︃
2The natural notion of integration on supermanifolds, we refer eg. to Caston and Fioresi

[2011].
3Here, latin indeces enumerate Lie algebra components, greek indeces enumerate spacetime

coordinates. Note that the (x)-dependence is implicit and so is the “(x)-contraction” within
the action of the operator Dµ ↔Da

µb. To be a bit more precise about the contraction, we may
think of it as of “integrating over a derivative of a delta function”.
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The remaining fields η and b serve to define the gauge fixing fermion F
terms in the actional. It should not be surprising that its purpose is to effectively
fix the gauge upon integration.

It turns out that δ2
BRST = 0, ie. the BRST differential defines a chain complex

on the space of fields. Eg. its cohomology classes in degree 0 coincide precisely
with gauge invariant functionals depending only on the Aµ gauge fields, indepen-
dent of the auxiliary fields. In other words:

“gauge symmetry ↦−→ zeroth δBRST -cohomology”

Note that other cohomology groups do also have physical interpretations, we refer
to Jurčo et al. [2019].

Remark 2 (Ward identities). Within the BRST framework, we can construct a
mean value a functional G roughly via path integration over the space of fields.
Given a theory with a gauge fixing fermion F , we denote the mean value by:

⟨G⟩F

One of the results that goes by the name of Ward identities states that the
mean value is invariant wrt. a deformation of the gauge fixing fermion by an
infinitesimal transformation δ, provided it is a symmetry of the actional.

⟨G⟩F+δF = ⟨G⟩F
We will not specify this statement here. Let us just remark that the deformation
of F may be understood in the sense of remark 58, which closes this thesis.

1.1.2 Batalin-Vilkovisky Formalism
Staying with the example of a Yang-Mills theory, one may think of the BV method
as an extension of the BRST framework “along cotangent directions”. Given a
set of fields (including the auxiliary ghosts), for each ϕ we introduce an antifield
ϕ∗. We extend the BRST actional S by adding terms of the form:

ϕ∗
a (δBRSTϕ)a

In other words, the antifields play the role of the “sources of the BRST transfor-
mation”. We define a graded version of a Poisson bracket, the antibracket st.
(ϕa, . . . , ϕ∗

b , . . .) forms its (formal) Darboux chart.

{ϕa, ϕ∗
b} = δab

We will give a precise definition later, within the language of non-negatively
graded manifolds.

This construction further intertwines the actional and its gauge symmetry.
Now, by construction, the extended actional S is a “Hamiltonian generator” of
the BRST transformation on ϕ fields.

δBRSTϕ = {S, ϕ}
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A natural generalization of the transformation is to simply let {S, •} act on the
antifields as well. We will denote it by Q.

Q = {S, •}

Since Q(S) = {S, S}, the extended gauge invariance of the actional now takes
on a new form:

{S, S} = 0
This is the classical master equation, its solution S is said to be a classical
master actional.

Definition 1 (Heuristic). A classical BV-BRST theory defined for an actional
S0 with a given symmetry is a field-antifield configuration with a ghost field for
every dimension of the symmetry action equipped with the following structure.

• A graded Poisson structure (“antibracket”) {•, •}.

• An odd differential Q st. Q2 = 0.

• A classical master actional S st. S
⃓⃓
ϕ∗=0 = S0.

Note that given the actional and one of the other objects, we can define the
remaining one.

Remark 3 (Gauge fixing). We may define a gauge fixing fermion for general BV
theories in analogy with the F field of the Faddeev-Popov actional. The gauge
fixing is a restriction on a subspace defined by:

Sfixed := S
⃓⃓
ϕ∗

a= δF
δϕa

In the general case of “gauge symmetries having their own symmetries”, we
may introduce higher ghosts with each next level fixing the lower ones. The ghost
degree |ϕ| is an integer asigned to each field ϕ that labels these levels of gauge
fixing. The operator Q is of ghost degree 1. The antighosts acquire negative
ghost degrees: |ϕ∗| = − |ϕ|−1. We refer to Jurčo et al. [2019] for a contemporary
summary in the language of L∞-algebras and higher algebraic structures. For an
introduction to higher gauge theory, we refer to Baez and Huerta [2011].

One of our main tasks will be to describe the structures appearing in the
“heuristic prescription” 1 in the language of non-negatively graded manifolds (and
Courant algebroids) without a priori bounding the ghost degree (from above).

In what follows, we will have good reasons to choose a different grading while
the cohomological data of the Q operator stays the same. We refer to Royten-
berg [2002], who mentions a theorem clarifying this statement, due to Kostant
and Sternberg [1987].

To quantize a BV field theory with a classical master action and the Q differ-
ential, we must take one last step and add the differential operator ∆BV to the
mix. This is the so called BV Laplacian and it is a shadow of the calculations
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of mean values in terms of path integrals weighted by the BV action. It is de-
sirable to obtain a theory with a gauge symmetry compatible with both S and
∆BV. This is what we need to start the general renormalization procedure of a
gauge-fixed BV action; we refer to Costello [2007]. We will touch on quantization
again in section 2.2.4.

1.1.3 Alexandrov, Kontsevich, Schwarz & Zaboronsky
Finally, let us mention the core philosophy of the AKSZ method originally due
to Alexandrov et al. [1997], refering to Cattaneo and Schaetz [2011] for a an in-
troductory text in a formalism similar to ours.

Roughly, one models the classical fields as maps between graded manifolds and
lifts the symplectic and Q structure from the source and target to Map(M,N)
by means of (Berezinian) integration. Here, M and N are graded manifolds
and Map(M,N) is an appropriate notion of a space of maps between the two
manifolds.

differential
graded

manifold

symplectic
differential

graded
manifold

fields

Here, “differential” refers to the structure of a Q operator. We will provide the
precise defintions in the next chapter.

Remark 4 (DeWitt notation). On the target graded manifold, in the case its
coordinates are at most of degree 2, we will usually choose the following notation
for a local chart: (︁

xi, pj, ξ
µ, eν

)︁
These correspond to the following field-antifield configuration: bosonic (gauge)
fields Aaµ(x), their antifields (A∗)νa (x), fermionic ghosts ca(x) and their antighosts
c∗
b(x). (︁

Aaµ(x), (A∗)νb (x), ca(x), c∗
b(x)

)︁
In terms of indeces, we have the following assignment:

latin,
spacetime

fields
(a, (x)), (b, (x)), . . . ↦−→

greek,
graded

coordinates
µ, ν, . . .

greek &
latin,

spacetime
fields

(µ, a, (x)), (ν, b, (x)), . . . ↦−→
latin,

graded
coordinates

i, j, . . .

Thus the “structure constants” (obviously not constant in general) Da
µb will cor-

respond to graded structure constants of the form ϱiµ, the “structure constants”
C c
ab to C ρ

µν .
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1.2 Sheaves & the Three Magic Theorems of
Differential Geometry

Our task is now to introduce a theory of graded geometry that may serve as a
source or target manifold of an AKSZ model. In particular, we have the heuristic
prescription of definition 1 in mind; the geometric contents of a BV-BRST theory.

We start with bosonic fields Aaµ(x) — those simply correspond to smooth
functions xi on the target manifold, see remark 4. We may, however, shift the
attention to the sheaf of functions. This provides us with a perspective which
can be adapted to fermionic supercommutative “coordinates”. Similarly, we will
introduce ghosts as graded-commutative coordinates. For a comprehensive treat-
ment of sheaves on manifolds, we refer to Kashiwara and Schapira [1990].

Let us remark that the most important algebraic properties that provide the
right framework for generalizations of “commutative” smooth manifolds are the
famous “three magic theorems of differential geometry.”

1.2.1 I: Manifolds as Locally Ringed Spaces
We denote by OpenM the category consisting of open sets of M with arrows given
by the natural subset inclusion ⊆ relations.

U ↪→ V

A presheaf on M is a (contravariant) functor F : OpenM → C op, where we will
restrict ourselves to C being a category of locally free modules or (commutative
or graded-commutative) associative algebras4. The most common example will
be:

F : OpenM −→ Algop

In other words, here, F(U) for U ∈ OpenM is an associative algebra and the
morphisms induced by inclusions are called restriction maps.

U ↪→ V

F(U)← F(V )

Since we choose target categories where object admit elements, we may talk about
them as of local sections of a presheaf. We denote the restriction by:

f ↦→ f
⃓⃓
U

Given the objects of OpenM are sets consisting of points on the manifold M ,
we can localize this notion of a “neighbourhood algebra” F(U) even furher; look
at the “microscopic” behaviour around x ∈M . We denote by∐︂

U∋x

F (U)

all open sets containing the point x ∈ M . Note that the inclusions induce a
partial order on

∐︁
F (U). For every pair of open sets U, V , there is another one,

W , such that:
4By “algebra” we implicitely mean R-algebra, unless we say otherwise.
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U V

W

eg. W = U ∩ V . Correspondingly, a presheaf F yields:

F (U) F (V )

F (W )

Considering this whole partially ordered set as a diagram, we can take its
colimit, which usually goes by the name “stalk of F at x”. Compatibility of the
canonical projections πU , πV , . . . with the restriction maps

F (U)

F (W )

colimxF

πU

πW

implies that in colimxF , we have forgotten all the data outside of any intersection
of sets containing x. If there existed a set Ux, “the smallest open set containing
x”, then colimxF would be precisely F (Ux). That is not the case on a manifold,
but given we work with a well-behaved target category Alg, we can define the
stalk explicitely as follows.

Definition 2 (Stalk). For a presheaf F on M we define the stalk at x ∈M as:

F
⃓⃓
x

:=
(︄ ∐︂

U∋x

F (U)
)︄
/ ∼

where two sections f, g ∈
∐︁
F (U) are glued together, f ∼ g, if their restrictions

coincide on some neigbourhood of x. Such an equivalence class [f ] ∈ F
⃓⃓
x

is called
a germ at x.

It is easy to show that a stalk inherits the mutliplication on F (U) and thus
forms a ring.

Example. Considering the basic example of a presheaf on a manifold, C∞(M),
its stalk at x ∈M consists of Taylor expansions of smooth functions. Ie. a germ
of a smooth function at x is its Taylor expansion around x, its jet.

Definition 3 (Sheaf). We say a presheaf F on M is a sheaf if the following
axioms hold for any U ∈ OpenM and its arbitrary open cover U.

• the uniqueness axiom: If the restrictions of two sections of F(U) coincide
at any elements of the open cover U, they are the same.
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• the gluing axiom: If there is a family of sections defined on the whole open
cover U such that their restrictions onto intersections coincide, there is a
section of F(U) that produces them as its restrictions.

Definition 4 (Locally ringed space). A pair M = (M,OM) with OM being a
presheaf on M is said to be a locally ringed space if the following axioms hold:

• OM is a sheaf.

• Every stalk OM
⃓⃓
x

is a local ring; it contains a unique maximal ideal.

The manifold M is said to be the body of M and OM the structure sheaf.

Example. The sheaf of smooth functions on a manifold C∞(M) is a locally ringed
space, the maximal ideal at a point x ∈M is mx the germ of functions vanishing
at x. Similarly for the sheaf of differential forms Ω(M).

Specifying a local model of (M,OM) amounts to prescribing what the struc-
ture (pre)sheaf locally looks like; OM (U) ≃ AU , for any U ∈ OpenM .

(U,AU)

The first magic theorem of differential geometry states that it is natural to think
of manifolds as locally ringed spaces with the local model

(U, C∞(U))

For a proof, we refer to Kolář et al. [1993].

Theorem 5 (Milnor’s Exercise). The smooth function functor

C∞(•) : Man −→ Algop

is fully faithful.

More specifically, it states that the morphisms of manifolds are completely
described by the morphisms of their smooth function algebras.

HomMan(M,N) ≃ HomAlg(C∞(N) , C∞(M))

This is an essential observation as it will guide us when defining a category
of manifolds with supercommutative fermionic coordinates: Talk in language of
the “local function algebras” !

There is, however, one thing we must be careful about if we are to intro-
duce generalizations of manifolds. The statement of the first magic theorem of
differential geometry non-trivially depends on the structure of the very specific
smooth function algebra functor C∞(•). If we are to introduce its generalizations,
we shall consider the morphisms of the structure sheaves as such. That is, mor-
phisms of the families of local sections, not just the global ones over M . This
way, we know we are staying in whatever “category of generalized manifolds” we
have constructed if we talk about local sections, their derivations etc.

In other words, we will talk in the language of locally ringed spaces.
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1.2.2 II: C∞(M)-Modules as Vector Bundles
It is becoming clear that the central object of our interest will be sheaves of alge-
bras on a manifold. They will be naturally accompanied by locally free modules
over the ring C∞(M). The second magic theorem of differential geometry states
that we can always think of them as modules of sections of some vector bundle.

Let VectBM denote the category of smooth vector bundles over M of
finite rank and ProjMod A the category of locally free (ie. projective) finitely
generated modules over the algebraA. For a proof, we refer to Nestruev [2003].

Theorem 6 (Smooth Serre-Swan). Let M be a connected smooth manifold. Then
the category VectBM is equivalent to ProjMod C∞(M). More precisely, smooth sec-
tion functor

Γ(•) : VectBM −→ ProjMod C∞(M)

that produces locally free finitely generated modules as the modules of smooth
sections Γ(M) over the algebra of smooth functions C∞(M) is fully faithful and
essentially surjective.

The theorem gives rise to a heuristic; if we specify a locally free C∞(U)-module
E we will identify the local generators of E with some local coordinates in the
fibre of a vector bundle E. This is the basic ingredient we need to introduce the
notion of a Courant algebroid.

Moreover, it inspires the definition of a vector bundle over locally ringed
spaces. We will just replace the ring defined by the algebra C∞(U) by the ring
defined by the local model OM.

Note that by a “sheaf of OM-modules”, we mean that we have a sheaf F
locally given by a module F(U) over the OM(U) ring. By definition, the local
models are isomorphic for any U ∈ OpenM .

1.2.3 III: Tangent Fields are OM-Derivations
The third magic theorem of differential geometry is perhaps the most well-known.
It states that the natural map

direction ↦−→ directional derivative

is an isomorphism. More precisely, if we denote Der (C∞(M)) the (finitely gen-
erated projective) C∞(M)-module of derivations of the algebra C∞(M), the fol-
lowing theorem instantiates the isomorphism in the category PrMod C∞(M).

Theorem 7. Tangent fields are the derivations of smooth functions.

Γ(TM) ≃ Der (C∞(M))

Once again, this property of ordinary manifolds provides a natural way to
define a familiar object in a generalized setting given by a local model; local
tangent fields should be derivations of the local algebras OM(U).

13



1.3 Fermionic Sheaves are Supermanifolds
The next task is to describe fermionic “anticommuting functions” on a smooth
manifold in terms of local algebras.

ψϕ = −ϕψ

Recall that the auxiliary ghosts (already in the BRST framework) can in gen-
eral be fermionic even though the “physical” content is just a set of bosonic fields.

Anticommuting algebras are precisely Z2-graded supercommutative algebras
and supergeometry is just what we are looking for. We will present only the
most elementary definitions, for a comprehensive treatment we refer to Caston
and Fioresi [2011].

1.3.1 Basics of Supergeometry
A super vector space V is a Z2-graded vector space.

V = V0 ⊕ V1

V0 is said to be the even part and V1 the odd part. It is equipped with the
parity; the map that assigns the numbers 0 or 1 to homogeneous elements.

|v| := 0 if v ∈ V0

|v| := 1 if v ∈ V1

Morphisms of super-vector spaces are linear and preserve parity, the category of
super vector spaces is denoted by VectS . The parity shift functor

VectS

Π

merely switches the parity of homogeneous elements. If we embed the category of
ordinary vector spaces into super vector spaces Vect ↪→ VectS as the purely even
ones, the parity functor restricted to Vect sends vector spaces to purely odd super
vector spaces Π

⃓⃓
Vect : Vect → VectS .

Definition 5. A superalgebra is a Z2-graded (associative) algebra A = A0⊕A1
equipped with the parity map, st. for all homogeneous elements f, g ∈ A:

fg = (−1)|f ||g|gf

|fg| = |f |+ |g|

The morphisms of superalgebras are morphisms of algebras respecting the parity,
the category of superalgebras is denoted by AlgS .
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Any super vector space V can be made into a superalgebra by taking the
quotient of its tensor algebra by the ideal consisting of elements of the form:

v ⊗ w − (−1)|v||w|v ⊗ w for homogeneous v, w ∈ V

Considering a super vector space consisting only of odd elements (ie. one that
can be thought of as a shifted ordinary vector space ΠW ) the ideal reduces to
the symmetric ideal generated by:

v ⊗ w + w ⊗ v for θ ∈ ΠW

The resulting superalgebra is the well-known Grassmann algebra ∧(W ).

Definition 6. A supermanifold of dimension m|n is a locally ringed space
M = (M,OM) with a local model of the form

(U, C∞(U)⊗∧ (W ))

where dimM = m and ΠW = Span (θ1, . . . , θn). It is equipped with an atlas
composed of charts of the form (U,φ,Φ), where U ∈ OpenM , φ is a coordinate
map of the body M and Φ is an isomorphism of superalgebras which preserves
maximal ideals of the stalks in U .

C∞(U)⊗∧ (W ) OM(U)Φ

Definition 7 (Morphisms of supermanifolds). LetM,N be supermanifolds. We
denote the category of supermanifolds ManS , where the morphisms of M,N are
defined to be the natural transformations of the structure sheaves of superalge-
bras, ie .

HomManS
(M,N) ≃ [ON,OM]

Remark 8. Vector bundles on supermanifolds are sheaves E of OM-modules,
their duals are sheaves of graded (ie. degree shifting) natural transformations into
the structure sheaf E =⇒ OM, tensor products and pullbacks are defined stalk-
wise.

1.4 Sheaves of Ghosts & NQP-Manifolds
Now, we will extend the Z2 grading to a general integer degree. Let us recall and
look what structures (in def. 1 ) we aim to describe and what we know about
them (eg. from remark 1 and 4).

• Graded-commutative “ghost” coordinates, subject to affine transformations.

• An odd differential operator Q with a non-trivial chomology.

• A graded Poisson structure (“antibracket”) {•, •}.

• A Hamiltonian generator Θ of Q. In other words, a solution of the classical
master equation.

{Θ,Θ} = 0
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Note that here, Θ, the analogue of the BV actional S, will be constructed
simply as a section of (pre)sheaf, a C∞(U)-linear combination of local generators
of a given local model. It is no longer a functional — an integral operator —
investigating only the target space of an AKSZ model instead of the whole “space
of fields” reduces the reasoning to finite dimension.

We will mention general Z-grading and some of its sheaf-theoretic issues and
then move on to a review of non-negative grading. It will provide us with a
sheaf-theoretic description of all the objects mentioned above. At the end of
this chapter, we will turn out attention to the degree 2 case, ie. the geometry
of non-negatively graded manifolds with local coordinates of degree at most 2.
We will follow mainly Roytenberg [2002], Cattaneo and Schaetz [2011]. We also
often refer to Vysoky [2021], who recently developped a precise theory of general
Z-graded manifolds.

1.4.1 Z-Grading
A graded vector space is a vector space decomposing into

V =
⨁︂
i∈Z

Vi

equipped with the degree map that assigns an integer to every homogeneous
element.

|v| := i for v ∈ Vi
The dual of a graded vector space is the graded vector space with

(V ∗)i = (V−i)∗ .

The k-shifted graded vector space is defined by shifting the degree of homoge-
neous elements k steps down.

V [k] :=
⨁︂
i−k∈Z

Vi

This way, the linear functions on V [k] are shifted k steps up:

((V [k])∗)i = (V ∗)i+k

Remark 9. All the definitions can be repeated for a vector bundle E (over an
ordinary manifold); fibre-wise. We use the same notation for a shifted vector
bundle, E[k]. In the case of the tangent bundle, we denote the shifted bundle
T [k]M . We can think of the k-shift as of a functor in the category of graded
vector bundles and define the k-shifted tangent functor.

T [k] := [k] ◦ T

The same can be repeated for the cotangent functor. We will use these [k]-shifted
(co)tangent bundles to construct a “total space model” of graded manifolds in
what follows.
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Definition 8. A graded algebra is a Z-graded associative algebra A =
⨁︁

i∈ZAi
equipped with the degree map, st. for all homogeneous elements f, g ∈ A:

fg = (−1)|f ||g|gf

|fg| = |f |+ |g|

The morphisms of graded algebras are morphisms of algebras respecting the de-
gree. The category of graded algebras is denoted by GrAlg.

Given a graded vector space V , we obtain a graded algebra by defining the
suitable factoralgebra of the tensor algebra.

Definition 9. The graded-symmetric algebra Sg(V ) of polynomials on V is
the tensor algebra factored by the ideal composed of:

v ⊗ w − (−1)|f ||g|w ⊗ v for homogeneous v, w ∈ V

Now we may try to define the appropriate notion of a graded manifold with
the structure sheaf of graded “ghost algebras” following Cattaneo and Schaetz
[2011] by a local model given as:

(U, C∞(U)⊗ Sg(V ))

Example 10 (BV Ghost-Grading). First, we refer to the “translation chart” be-
tween BV-BRST fields and the graded coordinates on a low degree graded manifold
in remark 4.

In the context of the BV formalism without higher ghosts, we would have just
the bosonic body coordinates xi, their antifields pj of degree −1, ghosts ξµ of degree
1 and antighosts eµ of degree −2. The antibracket has degree 1.

There are, however, sheaf-theoretic problems with general Z-graded manifolds
defined naively. Let us mention just two of them: one of a global nature and one
on the microscopic level of stalks.

1. The gluability condition is problematic for an infinite cover U, as we may
need a global section with unbounded powers of even coordinates. But
there is simply no such a global polynomial section; its powers must vanish
at some points.

2. The rings given by local models fail to be local.

The solution of Vysoky [2021] is to consider formal power series instead of
polynomial sections. Then one may define the proper graded incarnations of vec-
tor spaces, algebras, sheaves and locally ringed spaces; eg. by requiring them to
satisfy familiar categorial properties.

We will not need the general theory, we will use instead restrict ourselves to
non-negative grading. That will be just enough to talk about Courant algebroids
and the structures familiar from BV-BRST theories from definition 1 and the
beginning of this section 1.4 (up to a degree shift). For those, the sheaf theoretic
problems are just minor.
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1.4.2 N-Manifolds
We will now restrict ourselves to non-negative grading in the local model of
our graded manifolds. As a shorthand, we will use the letter N to stand for
“non-negatively graded”. Here, we follow mainly Roytenberg [2002].

Note that a presheaf F with values inN-algebras defines a family of presheaves
of vector spaces:

(Fi)i∈{0,1,2,...}

The restriction maps of Fi are well defined since F preserves the degree thanks
to its functoriality.

Definition 10. We say a pair (M,OM) is a locally ringed N-space if the
presheaf OM is a presheaf of N-alebras st. in each degree i ∈ {0, 1, 2, . . .}, (OM)i
is a sheaf and the stalks of OM are local rings. We may call such a “degree-wise
sheaf” OM a N-sheaf. In the case of the “structure presheaf” here, we will refer
to OM as to the structure N-sheaf ofM.

Definition 11. A N-manifold is a locally ringed N-space M = (M,OM) with
the local model:

(U, C∞(U)⊗ Sg(Ξ))
where Ξ = Span (ξ1, . . . , ξn) is a N-vector space with |ξµ| ≥ 1 for all µ. It is
equipped with an atlas composed of charts of the form (U, ϕ,Φ), where U ∈
OpenM , ϕ is a coordinate map of the body M and Φ is an isomorphism of N-
algebras which preserves maximal ideals of the stalks in U .

We defer the question of consistency and sheaf-theoretic rigor to later, to the
discussion of the Batchelor’s theorem 14.

Definition 12 (Morphisms of N-manifolds). Let M,N be N-manifolds. We
denote the category of N-manifolds ManN, where the morphisms of M,N are
defined to be the morphisms of the structure N-sheaves of N-algebras.

HomManN
(M,N) := [ON,OM]

φ−1U U OM (φ−1(U)) ON(U)

φ−1V V OM (φ−1(V )) ON(V )

φ

restriction restriction

φ

The local coordinates of an N-manifold are the local coordinates of the
body together with a homogeneous basis of the N-vector space Ξ generating the
local N-algebra. (︁

x1, . . . , xm, ξ1, . . . , ξn
)︁

Remark 11. The degree of M defines the highest degree of a local coordinate
degM. A N-manifold is a tower of affine fibrations.

M0 M1 M2 · · · MdegM =M
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The arrows in ManN simply denote the morphisms of structure presheaves and
the tower translates to a filtration

OM0 OM1 OM2 · · · OMdegM = OM

consisting of inclusions of structure sheaves. Here,Mk is a N-manifold of degree
k and the M0 ←−M1 can be thought of as a vector bundle projection.

Let us clarify that “affine fibration” refers to the fact that the maps coincide
with vector bundle projections, only the structure group is affine. If by ξ(k) we de-
note a local coordinate of degree k, then a local coordinate change has the following
diagrammatic form:

... ...

ξ(1) ⊗ ξ(1) ⊗ ξ(1) ξ(1) ⊗ ξ(2) ξ(3) ξ̃
(3)

ξ(1) ⊗ ξ(1) ξ(2) ξ̃
(2)

ξ(1) ξ̃
(1)

Here, a full line stands for a Gl(k) transformation, which can be thought of as a
bundle isomorphism of a vector bundle corresponding to M0 ←−M1. A dashed
line stands for an affine contribution proportional to a (graded-symmetric) tensor
product of lower degree coordinates to the new ξ̃ coordinate. Degree 2 is thus the
“lowest non-trivially affine degree”.

Definition 13. A graded derivation of degree k ≡ |D| ∈ Z of a graded
algebra A is a linear map D st.

D(fg) = D(f)g − (−1)k|f |fD(g) for all f, g ∈ A

A graded derivation of A is a OM-linear combination of homogeneous graded
derivations.

A local tangent field at U on a N-manifold M is a graded derivation of
the local N-algebra OM(U) in the structure presheaf. Globally, a tangent field
is a family of local tangent fields compatible with the restrictions; they form a
(co)presheaf we will denote as XM.

Similarly to the case of ordinary manifolds (or supermanifolds), every tangent
field is uniquely specified by its action on the local coordinates.

X i := X
(︁
xi
)︁
, Xµ := X (ξµ)

This is captured by the lemma proved in greater generality by Vysoky [2021],
Prop 4.14.
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Lemma 12. Local tangent fields are free OM-modules generated by:{︃
∂

∂xi

}︃m
i=1

and
{︃

∂

∂ξµ

}︃n
µ=1

Here, the partial derivative operators ∂
∂xi are defined in the usual way and ∂

∂ξµ

analogously.

Every N-manifold comes equipped with the following tangent field.

Definition 14. The Euler field ε is locally defined to be:

ε :=
n∑︂
µ=1

|ξµ| ξµ ∂

∂ξµ

The important property of the Euler field is that the homogeneous elements
of the local N-algebras of the structure presheaf are precisely its eigenvectors.

ε (f) = kf ⇔ |f | = k

Thus if we denote the local C∞(U)-module of k-eigenvectors of order k by Ak(U),
the definition of a N-manifold ensures it defines a sheaf Ak and we recover the
local N-algebra model as

OM(U) =
∞⨁︂
i=0

Ai(U)

equipped with the original multiplication of sections. Let us stress that while the
N-algebras do not form a sheaf, the definition of a N-manifold ensures each Ak
does; this is precisely what we will need when

Remark 13. Severa [2001] noted that a N-manifold can be seen as a superman-
ifold with additional structure in the local model. Taking the odd generators ξµ as
the generators of the local Grassmann algebra, we have a local model consisting
of C∞(U) and ∧(ξodd) which is now mixed with ξeven by means of the graded-
symmetric algebra.

In the language of the Euler field, extending a supermanifold to a N-manifold
amounts to introducing the action of the the multiplicative semigroup (R,×) by
means of the Euler field;

f ↦−→ λε(f)f, λ ∈ R,

st. for λ = −1 it coincides with the parity shift

Π = (−1)ε.

Essential examples of N-manifolds are shifted vector bundles with the fibre
coordinates viewed as a homogeneous basis of the N-space Ξ generating the local
graded-symmetric algebra. More precisely, given a shifted vector bundle

E[k] −→M,

we think of Γ(∧E∗) as of the structure N-sheaf of a N-manifold over the body
M .
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Definition 15. We say (M, E[•]) is a split N-manifold if the collection of vector
bundles E[•] = (Ei)i∈N0

is such that:

E[•] ≡
⨁︂
i

Ei[i] =M

The structure sheaf is given by exterior powers of the dual bundles. We refer to
Bonavolontà and Poncin [2013] for more details and for the proof of the following
theorem, which is central to the theory of N-manifolds.

Theorem 14 (Batchelor’s theorem for N-manifolds). Every N-manifold is (non-
canonically) isomorhpic to a N-manifold associated to graded vector bundle E[•].

Remark 15 (Are N-manifolds well defined N-sheaves?). In an arbitrary split-
ting, we can see that the sheaf conditions are given by the Serre-Swan theorem 6.

Let us sketch the proof of locality of the stalk rings, which was brought to our
attention at the Prague Mathematical Physics seminar in 2021 by Jan Vysoký.

The locality of the rings defined by the local models can be seen by inspecting
the set of invertible germs U in a stalk in x ∈ M . This encodes the potential
non-locality of the ring. Since there are no coordinates of negative degrees, graded
sections have no inversions and the set U reduces to the set of germs of C∞(U)
functions non-zero at x. One then constructs the Jacobson radical J composed
of OM

⃓⃓
x

excluding the set U. In other words, J consists of sections either van-
ishing at x or of degree ≥ 1.

Now, we may use an essential observation: the ring OM
⃓⃓
x

is local iff J is
an ideal. Clearly, for N-manifolds, this is an ideal: multiplying sections either
vanishing at x or of degree ≥ 1 by any section gives a section vanishing at x of
degree ≥ 1. From this we see that any N-manifold is automatically locally ringed.
We refer to Vysoky [2021] for more5 details.

5A lot more.
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1.4.3 The Antitangent N-Manifold
To talk about differential forms on N-manifolds, we let the mechanisms of or-
dinary manifolds chart the course. Locally, we have a free OM(U)-module of
tangent fields XM(U). The idea is to consider its dual, denoting the dual local
frame by: (︁

dx1, . . . , dxm, dξ1, . . . , dξn
)︁

X2
M A2

X1
M A1

X0
M C∞(M)

X−1
M 0

X−2
M 0

We need to be careful about what we mean by
“the dual” in the graded case. To be able to assign
non-trivial grading of the dξ coordinates (now not
in the sense of p in p-forms, but in the sense of grad-
ing of graded modules), we need to consider maps
that change the degree. In other words, we will con-
sider k-shifting morphisms, ie. morphisms of graded
modules:

XM(U)[k] −→ OM(U)
A single differential 1-form decomposes into a col-

lection
(︁
α(i)
)︁
i∈Z of maps upon restriction onto Xi

M,
tangent fields of degree i. In the diagrammatic ex-
ample, the full lines symbolize a 0-shifting differen-
tial form, the dashed lines a 1-shifting form and the
dotted lines a 2-shifting form. Notice that since we
exclude negative degrees in the structure N-sheaf,
the only way to make a differential form of degree k
“structure-preserving” — in the category Mod OM —
is to let it vanish on all tangent fields of degree i st. i+ k < 0.

Notice, however, that this is not a special property of differential forms — by
definition, a local partial derivative field ∂

∂ξµ is (− |ξµ|)-shifting.

Definition 16. We define a k-shifting differential 1-form on M to be a
morphism of functors OpenM −→ GrProjMod OM st.

α ∈ [XM[k],OM]

More concretely; it sends a local homogeneous tangent field X of degree |X| to
a section of OM(U) of degree |X| + k for some integer k ∈ Z independent of
U ∈ OpenM .

Xi
M −→ Ai+k

Naturally (or naively), for each coordinate ξ we might be tempted to define
a |ξ|-shifting 1-form. Then the naive local duality condition is well-defined.

dξµ
(︃

∂

∂ξν

)︃
= δνµ

That is; since the degree of ∂
∂ξµ is − |ξµ| and dξµ is |ξµ|-shifting and thus eg.

dξ1
(︂

∂
∂ξ1

)︂
really yields a degree 0 function in C∞(M).

Now, we can define dξ’s as local coordinates of a new N-manifold. For TM ,
we have C∞(TU) = C∞(U) ⊗ Span (dx, . . .); we consider T [1]M ∈ ManN such
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that for M = M an ordinary smooth manifold, they coincide.

To get the most out of this idea, we should ensure compatibility of the natural
grading of the exterior algebra of local differential forms and the degree we are
adding “artificially” in the context ofN-manifolds. The natural notion of a degree
of a differential k-shifting 1-form is k (see the naive duality condition). Then,
the degrees of (dx1, . . . , dxm, dξ1, . . . , dξn) are opposite to the degrees of:(︃

∂

∂x1 , . . . ,
∂

∂xm
,
∂

∂ξ1 , . . . ,
∂

∂ξm

)︃
Those, in turn, are defined to have the degree opposite to the degrees of the
original coordinates (x1, . . . , xm, ξ1, . . . , ξn). In other words, we have:⃓⃓

dxi
⃓⃓

=
⃓⃓
xi
⃓⃓
, |dξµ| = |ξµ|

This way, we get |dxi| = 0 for all the differentials of the base coordinates. This is
clearly not compatible with the exterior algebra grading: in the local N-algebra,
we have dxi dxj = dxj dxi, while the exterior product differs by a minus sign:
dxi ∧ dxj = − dxj ∧ dxi.

The two products coincide if we shift the degree by 1. Therefore, we can
capture the idea of differential forms by associating the following N-manifold to
a given N-manifold.

Definition 17. The antitangent N-manifold T [1]M of a N-manifold M is
defined over the same body M , by associating to each set of local coordinates of
M; (x1, . . . , xm, ξ1, . . . , ξn), the local coordinates:(︁

x1, . . . , xm, ξ1, . . . , ξn, dx1, . . . , dxm, dξ1, . . . , dξn
)︁

where we define the degrees as⃓⃓
dxi
⃓⃓

:= 1, |dξµ| := |ξµ|+ 1

and the atlas is such that in the case of T [1]M ∈ManN the coincides with.

By differential p-forms we refer to sections of T [1]M from the p-th sym-
metric power.

Notice, however, that the “naive local duality condition” cannot be satisfied
now: the differentials of coordinates always shift the corresponding partial deriva-
tive tangent fields into A1 instead of A0, where the constant function 1 hidden
in δij resides. This is a small price to pay for the model that unifies the graded-
symmetric algebra with the “Cartan algebra”. The solution is simple: We define
the contraction ι ∂

∂ξµ
to be a derivation of OT [1]M of degree (ξµ − 1) st:

ι ∂
∂ξµ

dξν = δµν

We may call this relation the shifted local duality condition.
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Every antitangent N-manifold T [1]M is equipped with the de Rham tan-
gent field d ∈ XT [1]M defined locally as:

d := dxi ∂
∂xi

+ dξµ ∂

∂ξµ

The graded commutator of homogeneous tangent fields X, Y is defined as:

[X, Y ] := X ◦ Y − (−1)|X||Y |Y ◦X

Now, we can define the Lie derivative LX of a differential form.

LX := [ιX , d] ≡ ιX ◦ d +(−1)|X| d ◦ιX

This way, we can easily recover the following identity of Cartan calculus; the Lie
derivative is a de Rham chain map.

[LX , d] = 0

Now, we can see that the ε-eigenvalues of coordinate 1-forms:

Lε (dξµ) = dLεξ
µ = |ξµ| dξµ

Now it makes sense to define the degree k of a differential p-form such that it
coincides with both the ε-eigenvalue and the original “naive” intuition for the
grading of the coordinate 1-forms.

Definition 18. The degree of a differential p-form α ∈ ΩM := OT [1]M is
defined to be

k := |α| − p,
where |α| is computed in the sense of degrees of sections of OT [1]M.

1.4.4 NQ-Manifolds are Lie n-Algebroids
We have built the theory of N-manifolds as such, now we can start to construct
additional structure. First, let us turn our attention to BRST-like differentials:
we require Q to be odd, to square to zero and define an a priori non-trivial
cohomology.

Remark 16 (Graded Frobenius Theorem). Let us first remark on the notion of
integrability on N-manifolds. Let X ∈ XM be an odd tangent field. Then

[X,X] = 0

if and only if X integrates into a “graded curve” with a graded “time parameter”.
For more details, we refer to Cattaneo and Schaetz [2011].

Definition 19. A tangent field Q on a N-manifold is said to be cohomological
if it satisfies the following axioms:

• integrability: [Q,Q] = 0

• degree(Q) is 1: [ε,Q] = Q
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Note that since in degree 1 Q is odd, a cohomological tangent field is always
nilpotent:

0 = [Q,Q] = Q ◦ Q− (−1)1Q ◦ Q = 2Q ◦ Q.
We conclude that any NQ-manifold defines a cochain complex

(︁
Ak,Q

)︁
.

A0 A1 A2 · · ·Q Q Q

Definition 20. Morphisms of NQ-manifolds are defined as morphisms of N-
manifolds which are also chain maps.

A0 A1 A2 · · ·

B0 B1 B2 · · ·

Q Q Q

Q Q Q

Example 17. (T [1]M, d ) has local coordinates (x1, . . . , xn, dx1, . . . , dxn) and the
canonical de Rham field d = dxi ∂

∂xi has degree 1 and is integrable:

d2 = 0

Its cohomology coincides with the ordinary de Rham cohomology of M . NQ-maps
T [1]M → T [1]N are such that they induce 0 maps in de Rham cohomology. These
are the “small transformations”.

There is a generalization of the canonical NQ-structure on TM given as:

(TM, d and [•, •]Lie)

Namely, we consider a sheaf of Lie algebras L together with structure that models
the “de Rham-closure / Lie-involutiveness” on M.

(L,models of integrability)

A Lie algebroid is a vector bundle L → M equipped with a sheaf of Lie
algebras L ≡ Γ(L) equipped with the anchor map ϱ (•) : L −→ Γ(TM) st.

• the anchor is a Lie algebra homomorphism

ϱ ([X, Y ]) = [ϱ (X) ,ϱ (X)] ,

• the anchor extends the action of [L, •] onto C∞(M)⊗ L.

[X, fY ] = f [X, Y ] + (ϱ (X) f)Y

The Frobenius’s theorem in the relates Lie algebroid structures on a manifold
and (generalized) foliations into which they integrate. We could say that Lie
algebroids, since they turn out to be “tangent-like” sheaves that disjoint the un-
deryling manifold into leaves of a (generalized) foliation, are “systems of local
models of integrability”. Here, “systems” simply refers to sheaves.

Now we will sketch the construction of a one-to-one correspondence between
(isomorphism classes of) Lie algebroids and (isomorphism classes of) NQ-
manifolds of degree 1. The theorem is the following one, we follow the proof
sketched by Roytenberg [2002].
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Theorem 18. A split N-Manifold of degree 1 defines a Lie algebroid iff it is an
NQ-manifold.

Proof (Sketch). For degM = 1, local homogeneous coordinates are of the form:(︁
x1, . . . , xn, ξ1, . . . , ξm

)︁
The complete tower of fibrations truncates after 2-terms.

M0 M1

In the “odd fibre” the transformations are just a Gl(n)-action on the fibre coor-
dinates (see remark 11). Therefore a splitting that the Batchelor’s theorem 14
provides is of the form M = E[1] and we recover a vector bundle over the body
M =M0.

M E[1]

Note that OM coincides with the sheaf of “Grassman algebras of odd functionals”
on E, ie.

OM
splitting= ∧(E[1]∗)

Now, we can write down a general form of Q ∈ X1
M in the chosen homogeneous

coordinates:
Q = ϱiµξ

µ ∂

∂xi
+C σ

µν ξ
µξν

∂

∂ξσ

Q2 = 0 implies that for (ϱ (eµ)xi) := ϱiµ and [eµ, eν ]C := C σ
µν eσ we have a Lie

algebra on A1 and the anchor ϱ (•) : A1 −→ Γ(TM) satisfies the Lie algebroid
axioms.

Conversely; given a Lie algebroid, we construct the N-manifold L[−1] ∈
ManN. The structure constants ϱiµ and C σ

µν define Q uniquely (in a chosen
chart) by the non-degeneracy of the Poisson bracket. 6

Remark 19. Compare Q to the Slavnov operator in remark 1, see remark 4
for a “translation” between the BV-BRST indeces and the N-indeces. Note that
the structure constants satisfy the axioms of a NQ manifold of degree 1 iff they
define a principal action of a Lie group with C being the structure constants of
the corresponding Lie algebra g.

Remark 20. NQ-manifolds over a single point body

{∗} M1

reduce to L∞ algebras. Thus NQ-manifolds are really to L∞-algebras what Lie
algebroids are to Lie algebras, which corresponds to the case degM = 1. This
demonstrates that “Lie n-algebroids” is indeed a pretty good name for NQ-
manifolds. We refer to Bonavolontà and Poncin [2013] for more details.

6Note that the anchor ϱ (•) extends the new Lie bracket
[︁
A1, •

]︁
C

from A1 to A0⊗A1. But
this space contains the whole homogeneous basis of OM, thus the tangent field Q is specified
uniquely.
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1.4.5 NQP-Manifolds are Poisson-Lie n-Algebroids
Now we aim to introduce the antibracket or equivalently a graded symplectic
structure. Morevoer, we will arrive at the notion of antighost and the Hamiltonian
generator Θ (corresponding to the BV actional S) satisfying the classical master
equation.

{Θ,Θ} = 0
A (homogeneous) symplectic structure of degree k is a 2-form Ω ∈ OT [1]M

of degree k, non-degenerate with respect to the contraction7.

Darboux charts exist via Batchelor’s theorem. In a Darboux chart,

Ω = dpi dxi + deµ dξµ,

where the degrees of the conjugate coordinates add up precisely to |Ω| in each
term.

Lemma 21. The degree of an NP-manifold cannot exceed the degree of Ω.

Proof. In a Darboux chart, it is clear from non-degeneracy.

Recall that a Darboux chart is defined precisely so that the data of a Poisson
structure reduce to the following relations.{︁

xi, pj
}︁

= δij

We define the graded Poisson bracket folowing Cattaneo and Schaetz [2011].

{A,B} := (−1)|A|+1XA(B)

Here, XA is the unique tangent fields st. ιXA
Ω = dA holds, we say A is a

Hamiltonian function of XA. A symplectic structure of degree k defines a
Poisson structure {•, •} of degree −k. This means that {f, •} is a derivation of
OM of degree |f | − k. In a Darboux chart (xi, pj, ξµ, eν), we have:{︁

xi, pj
}︁

= δij

{ξµ, eν} = δµν

Those relations are extended by definition above onto polynomial sections of OM
by a graded Leibniz rule. It is straightforward to show that the graded Poisson
bracket of degree −k satisfies graded analogues of the properties of ordinary
Poisson algebras.

Lemma 22 (Properties of a graded Poisson bracket).

{A,BC} = {A,B}C + (−1)|A|(|B|−k)B {A,C}
{A,B} = −(−1)(|A|−k)(|B|−k) {B,A}

0 = (−1)(|A|−k)(|B|−k) {A, {B,C}}+ c.p.
7Contraction with a tangent section X ∈ XM, ie. non-degeneracy wrt. the map ιX ∈ XT [1]M.
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Example 23. For T ∗[1]M with a Darboux chart (xi, Xj), the properties of the
antibracket define precisely the Schouten bracket on tangent multivector fields.

Theorem 24. A N-manifold equipped with a symplectic form of degree 1 is sym-
plectomorphic to T ∗[1]M with the canonical Schouten bracket on OT ∗[1]M .

Proof. By lemma 21, the manifold is at most of degree 1. We decompose the
action of the Poisson bracket on the N-sheaf of N-algebras OM = A0 ⊕A1.

• {A0,A0} = 0, on A0 the Poisson structure coincides with the zero map.

• {A1,A1} ⊂ A1, on A1 the Poisson structure defines a Lie algebra structure.

• {A1,A0} ⊂ A0 provides an action of the A1 on A0 = C∞(M). Since {A1, •}
is a derivation, it gives rise to a map A1 −→ Γ(TM). Non-degeneracy and
the properties of the Poisson bracket ensure it is an isomorphism of (sheaves
of) Lie algebras.

Now for T ∗[1]M ∈ ManN we have A1 ≃ Γ(TM) and the Schouten bracket is the
unique extension of the canonical Lie bracket on Γ(TM) to OT ∗[1]M .

Definition 21. A NQP-manifold of degree k is a N-manifold equipped with a
symplectic structure Ω of degree k and a cohomological field Q st. LQΩ = 0.

We present the following calculations of Cattaneo and Schaetz [2011].

Lemma 25. A symplectic 2-form Ω homogeneous of degree k ≥ 1 is exact.

Proof. The statement follows from the following usage of the Cartan identity.

kΩ = LεΩ = dιεΩ

Now we see that Ω = d
(︁ 1
k
ιεΩ
)︁
.

Lemma 26. On a NQP-manifold, Q is Hamiltonian.

Proof. Define a candidate for a Hamiltonian as H := ιειQΩ. Now:

dH = dιειQΩ = LειQΩ− ιε dιQΩ = LειQΩ− ιεLQΩ = LειQΩ = (k + |Q|)ιQΩ

Thus the function 1
k+1H is a Hamiltonian function of Q.

This lemma provides us with a “Hamiltonian generator” Θ of the transforma-
tion given by the Q-structure, analogously to the case of ordinary Hamiltonian
geometry.

Q(A) = {Θ, A}
In other words, we have a candidate for the finite-dimensional analogue of the
classical master actional.

Lemma 27. The integrability condition of Q translates to the classical master
equation for Θ.

[Q,Q] = 0 ⇐⇒ {Θ,Θ} = 0
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Proof. We have seen earlier that

[Q,Q] (f) = 2Q2(f),

while the graded Jacobi identity gives

Q2(f) = {Θ, {Θ, f}} = ±{f, {Θ,Θ}} − {Θ, {Θ, f}} ,

thus we have [Q,Q] (f) = ±{f, {Θ,Θ}} and the statement follows.

For the next theorem, we refer to theorem 4.11. of Cattaneo and Schaetz
[2011], originally due to A. Schwartz.

Theorem 28. Isomorphism classes of NQP-Manifolds of degree 1 are in a 1-to-1
correspondence with isomorphism classes of Poisson Manifolds.

Proof. The Hamiltonian is of the form Π = 1
2Πij(x)XiXj, the master equation

on OM ≃ OT ∗[1]M (see theorem 30).

{Π,Π} = [Π,Π]Schouten = 0

ensures Πij(x) defines a Poisson tensor on M .

1.5 Degree 2
In degree 2, N-manifolds start to transform under affine transformations; they
thus present, in some sense, the first non-trivial class of examples of N-manifolds
(see remark 11). We will show how the additional BV-like structure corresponds
to pseudo-Euclidean vector bundles and Courant algebroids.

1.5.1 Pseudo-Euclidean Vector Bundles & ghosts⊕antighosts
Locally, in a chosen chart of an NP-manifold, a Poisson structure of degree −2
defines a non-degenerate symmetric matrix of OM functions by its restriction on
A1.

g
µν(x) := {ξµ, ξν}

We may call it the ghost matrix. The matrix has degree 2− k, thus for k = 2,
g
µν(x) is a matrix of C∞(U) functions.

Note that if we consider the inverse matrix and denote it by gµν(x) we have
an “index-lifting mechanism” on the non-trivially graded variables. We may call
the local sections eν := gνµξ

µ the “antighosts”. Note that in the following, we
will find it useful to consider the following scaling of antighosts: θν := 1

2gνµξ
µ.

We may call gµν(x) the antighost matrix.

Remark 29 (Minimal Symplectic Realization). Let us consider a ghost matrix
on a split NP-manifold E[1] (of degree 1) equipped with a symplectic structure of
degree 2.
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Firstly, note that on (E ⊕ E∗) [1], a ghost-antighost8 coordinate system de-
fines a presymplectic9 structure of degree 2.

1
2gµν dξν dξµ

The embedding E[1] ↪→ (E ⊕ E∗) [1] by ξ ↦−→ ξ ⊕ 1
2g(ξ) is an isometry wrt. the

natural pairing ⟨ξ ⊕ θ, η ⊕ ϕ⟩ = ξ(ϕ) + η(θ) on (E ⊕ E∗) [1].

Furthermore, we can see that for gµν(x) constant wrt. every chart {xi}i, the
“ghost-antighost generating set” extends into a Darboux chart on T ∗[2]E[1].

Ω = dpi dxj + dθµ dξµ,

which than reduces to:

Ω = dpi dxj + 1
2gµν dξν dξµ

The Darboux chart then comprises only of the three types of variables —
(xi, pj, ξµ) — since θµ’s (or e’s) can be obtained from ξµ’s. Given xi and ξµ come
from E[1], the coordinates can only have the following degrees so that T ∗[2]E[1]
is a NP-manifold: |xi| = 0, |pj| = 2, |ξµ| = 1, |eµ| = |θµ| = 1. The nonzero
brackets are: {︁

xi, pj
}︁

= δij

{eµ, eν} = gµν {ξµ, eν} = δµν {ξµ, ξν} = g
µν

It is an important observation that T ∗[2]E[1] defines a minimal symplectic
realization of the Poisson manifold (E ⊕ E∗) [1]. That is, it is a symplectic
manifold with a Poisson map into (E ⊕ E∗) [1] with the minimal possible dimen-
sion.

We say a vector bundle is pseudo-Euclidean if it is equipped with a non-
degenerate fibre-wise pairing ⟨•, •⟩. We will sketch the proof of the following
theorem due to Roytenberg [2002].

Theorem 30. A split N-manifold of degree 2 defines a unique pseudo-Euclidean
vector bundle iff it is a NP-manifold.

Proof. First, assume we are given a split NP-manifold M.
By lemma 21, the degree of M is at most 2. We decompose the action of the
Poisson bracket on the N-sheaf of N-algebras OM = A0 ⊕A1 ⊕A2.

• {A0,A0} = 0.

• {A1,A0} = 0.
8We can think of E ⊕ E∗ as a ghosts⊕ antighosts bundle, more in example 38.
9A presymplectic structure is a degenerate symplectic structure — we revoke the non-

degeneracy axiom.
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• {A1,A1} ⊂ A0, on A1 the Poisson bracket locally defines the ghost matrix
g
µν ≡ {ξµ, ξν}. This corresponds to a pseudo-Euclidean structure on E

for a splitting of M st. A1 = Γ(E[1]∗). M2 → M1 is a morphism of
N-manifolds, it is degree preserving and it defines a Poisson map from a
symplectic manifold (M2, {•, •}) to a Poisson manifold (M1, {•, •}

⃓⃓
OM1

).
By dimensionality, it is a minimal symplectic realization.

• {A2,A0} ⊂ A0 provides an action of A2 on A0. Note that by the Leibniz
rule, {ξµξν , f} = 0 + 0 = 0. Ie.{︁

A1A1,A0}︁ = 0.

So the action of A2 on A0 is given completely by the canonical relations
{xi, pj} = δij. We get this exact sequence of N-sheaves of graded modules.

0 A1A1 A2 Γ(TM) 0

• {A2,A1} ⊂ A1 provides a Hamiltonian action of A2 on A1.

• {A2,A2} ⊂ A2 defines a Lie algebra structure on A2.

Now, the Serre-Swan theorem provides a vector bundle A st. Γ(A) = A2. The
map A → TM is a morphism of Lie algebroids. By the above, A fits into the
following exact sequence; the Atiyah exact sequence of (E, ⟨•, •⟩).

0 ∧2 (E∗) A TM 0

A can be thought of as the bundle of symmetries of (E, ⟨•, •⟩) with ∧2 (E∗) acting
trivially on the base manifold. Thus all the structure of M corresponds to the
structure of a pseudo-Euclidean vector bundle and its natural symmetries.

(M,E,A)

Now, conversely, assume we are given a pseudo-Euclidean vector bundle E →M .
We define M1 := E[1] and the pairing defines a graded Poisson bracket on its
sections. Now we just define M2 = M = E[•], as a minimal symplectic real-
ization by pulling back the minimal symplectic realization along the isometric
embedding from remark 29.

E[•] T ∗[2]E[1]

E[1] (E ⊕ E∗) [1]

We have the split NP-manifold:

M E[1] E[•]
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Remark 31 (Affine transformations of the momenta). On a N-manifold, coor-
dinates of degree 2 transform non-linearly, see remark 11. In the case of NP-
manifolds of degree 2, the p coordinates acquire an affine transformation term.
We refer to Roytenberg [2002], specifically the text after example 3.4. Consider a
canonical transformation of the form f+{H, f}, where H ∈ A2 can be thought of
as a section of the Atiyah bundle A, see proof of theorem 30. Is is straightforward
to show that for

H = vi(x)pi + 1
2ξ

µhµνξ
ν ,

a general canonical transformation reads:

qi = qi(q′)
ξµ = T µµ′(q′)ξµ′

pj = ∂qi
′

∂qi
pi′ + 1

2ξ
µ′ ∂T

µ
µ′

∂xi
gµνT

ν
ν′ξν

Note that for gµν = const., we have gµ′ν′ = const.

1.5.2 Poisson-Lie 2-Algebroids are Courant-Lie 2-Algebroids
It is time to add the differential structure and move to NQP-manifolds of degree
2, ie. Poisson-Lie 2-algebroids. In degree 2, the Hamiltonian generator Θ is
necessarily of degree 3. Locally, it has the following form.

Θ = ϱiµξ
µpi −

1
6Cµνσξ

µξνξσ

The −1
6 coefficient is an arbitrary choice which will be useful later. Notice the

analogy with the structure constants of a deg = 1 NQP-manifold and. With the
structure constants of a BRST operator, see remark 1 and 4.

Now, we follow Roytenberg [1999] and introduce the derived brackets.

Definition 22. Given a Θ and {, }, the derived bracket [[, ]] is defined as follows.

[[f, g]] := {{f,Θ} , g}

Derived brackets satisfy some very useful properties, namely a version of a
graded Leibniz-Jacobi identity and their graded-symmetric part is “infinitesimal”.
See lemma 3.5.1. of Roytenberg [1999]. These properties resemble some of the
properties of Courant algebroids, which we will find useful in the next section.

Remark 32. Note that in degree 1, the derived bracket

[[f, g]]Π = {{f,Π} , g}

on T ∗M defines precisely the Poisson bracket associated to the canonical symplec-
tic structure on T ∗M .
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Definition 23. A Courant algebroid is given by the data

(E, ⟨•, •⟩, [[•, •]] ,ϱ (•))

Here, E → M is vector bundle, ⟨•, •⟩ is a non-degenerate fibre-wise pairing on
E, [[•, •]] is a linear bracket on the sections of E, ϱ (•) is a bundle map E → TM .
They are required to satisfy the following axioms for ∀e, e1, e2 ∈ Γ(E).

1. [[e, [[e1, e2]]]] = [[[[e, e1]] , e2]] + [[e1, [[e, e2]]]]

2. ϱ ([[e1, e2]]) = [ϱ (e1) ,ϱ (e2)]

3. [[e1, fe2]] = f [[e1, e2]] + (ϱ (e1) · f) e2

4. ⟨e, [[e1, e2]] + [[e2, e1]]⟩ = ϱ (e) · ⟨e1, e2⟩

5. ϱ (e) · ⟨e1, e2⟩ = ⟨[[e, e1]] , e2⟩+ ⟨e1, [[e, e2]]⟩
Remark 33. Note that we can define the coanchor ϱ∗ : T ∗M −→ E st.

ϱ (eµ) · xi =
⟨︁
eµ,ϱ

∗ (︁dxi)︁⟩︁
It can easily be shown that ϱ ◦ ϱ∗ = 0. Note that this makes a Courant algebroid
into a chain complex:

0 T ∗M E TM 0ϱ∗ ϱ

If the chain reduces to an exact sequence, the Courant algebroid E is said to be
exact.
Example 34. Given a smooth manifold M ∈ Man, one defines the standard
Courant algebroid as the vector bundle given by TM ⊕T ∗M equipped with the
natural fibre-wise pairing of split signature;

⟨X ⊕ α, Y ⊕ β⟩ := α(Y ) + β(X),

an anchor given by the canonical projection TM ⊕ T ∗M −→ TM and the Dorf-
mann bracket defined as:

[[X ⊕ α, Y ⊕ β]] := [X, Y ]⊕ (LXβ − ιY (dα))

It can be checked this satisfied the axioms of a Courant algebroid. Moreover, it is
an exact Courant algebroid.

A Courant-Lie 2-algebroid is a N-manifold of degree 2 equipped with the
maps

⟨•, •⟩ : A1 ×A1 −→ A0

[[•, •]] : A1 ×A1 −→ A1

ϱ (•) : A1 ×A0 −→ A0

defined on local sections of the structure sheaf, satisfying the same axioms as the
operations of a Courant algebroid above. We fix this terminology to make it clear
we are formally always working within the N-world in the following calculations.
We state the following lemma due to Roytenberg [2002] and sketch its proof10

to give at least a rough idea of how the structure constants recombine into the
Courant algebroid axioms.

10We have found no detailed proof in the literature.
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Lemma 35. Let (M,Θ, {•, •}) be a split Poisson-Lie 2-algebroid and [[•, •]],
ϱ (•) · • the derived brackets associated restricted onto A1 × A1 and A1 × A0

respectively. Then:

{Θ,Θ} =
(︁(︁
ϱ ◦ ϱ∗ dxj

)︁
· xi
)︁
pipj

+ ([ϱ (eµ) ,ϱ (eν)]− ϱ ([[eµ, eν ]])) · xipiξµξν

+ 1
12 ⟨[[[[eµ, eν ]] , eρ]] + [[eν , [[eµ, eρ]]]]− [[eµ, [[eν , eρ]]]] , eσ⟩ ξµξνξρξσ

Proof (Sketch). Locally, the master equation (which takes place in A4) decom-
poses into three independent equations proportionate to either pp, pξξ or ξξξξ;
the three ways one can construct a term of degree 4 in the given chart.

{Θ,Θ} = {Θ,Θ}
⃓⃓
pp

+ {Θ,Θ}
⃓⃓
pξξ

+ {Θ,Θ}
⃓⃓
ξξξξ

The {Θ,Θ} expression reads:

{Θ,Θ} =
{︃
ϱiµξ

µpi −
1
6Cµνσξ

µξνξσ,ϱjαξ
αpj −

1
6Cαβγξ

αξβξγ
}︃

=

=
{︁
ϱiµξ

µpi,ϱ
j
αξ

αpj
}︁
− 1

6
{︁
ϱiµξ

µpi,Cαβγξ
αξβξγ

}︁
− 1

6
{︁
Cµνσξ

µξνξσ,ϱjαξ
αpj
}︁

+ 1
36
{︁
Cµνσξ

µξνξσ,Cαβγξ
αξβξγ

}︁
• The pp term

Only the term with two anchors which contains two p’s contributes. From
it, the graded Leibniz rule then picks out only the single term containing
the bracket {ξµ, ξα}.

{Θ,Θ}
⃓⃓
pp

= {ξµ, ξα}ϱiµpiϱjαpj

The term can easily be seen to equal to ((ϱ ◦ ϱ∗ dxj) · xi) pipj.

• The pξξ term
This terms is linear in p, therefore the only the following terms contribute.

{Θ,Θ}
⃓⃓
pξξ

= ϱiµ
{︁
pi,ϱ

j
α

}︁
ξµξαpj + ϱjα

{︁
ϱiµ, pj

}︁
ξµξαpi

− 1
6ϱ

i
µpi
{︁
ξµ, ξαξβξγ

}︁
Cαβγ −

1
6Cµνρ {ξµξνξρ, ξα}ϱiαpj

The first two terms give a Lie derivative of tangent fields, each one given
by a single ϱ symbol, this gives [ϱ (eµ) ,ϱ (eν)] · xipiξµξν . The rest gives a
term with the anchor of a Courant bracket; it corresponds to −ϱ ([[eµ, eν ]]) ·
xipiξ

µξν .

• The ξξξξ term
Here, we get contributions of terms where p’s are either absent or “con-
sumed” by the Poisson bracket.

{Θ,Θ}
⃓⃓
ξξξξ

= −1
6ϱ

i
µ {pi,Cαβγ} ξµξαξβξγ −

1
6 {Cµνρ, pj}ϱjαξµξνξρξα

+ 1
36CµνρCαβγ

{︁
ξµξνξρ, ξαξβξγ

}︁
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The last term breaks into a combination of the structure constants C cor-
responding precisely to the Leibniz-Jacobi identity as it is familiar from the
case of a Lie algebra. The first two terms correspond to the action of the
derived bracket on the structure constants, which is implicitely present in
terms like this one: [[[[eµ, eν ]] , eρ]].

We continue with Roytenberg [2002], stating the central theorem of this chap-
ter.
Theorem 36. A split NQP-manifold of degree 2 is a Poisson-Lie 2-algebroid iff
it is a Courant-Lie 2-algebroid.
Proof. Given either Θ = ϱiµξ

µpi − 1
6Cµνσξ

µξνξσ or the derived brackets [[•, •]],
ϱ (•) · •, we require:

[[eµ, eν ]]
!= C ρ

µν eρ

ϱ (eµ) · xi != ϱiµ

• Poisson-Lie ⇒ Courant-Lie
We define the Courant bracket to be the derived bracket wrt. Θ restricted
on A1×A1 and the anchor to be the derived bracket restricted onto A1×A0.
We refer to calculations carried out explicitely by Roytenberg [1999]: Ax-
ioms 1. and 4. of a Courant Algebroid (see definition 23) are provided by
the general properties of derived brackets in lemma 3.7.1. Proof of theorem
3.7.3. contains the derivation of axioms 2., 3. and 5. from the classical
master equation.

• Courant-Lie ⇒ Poisson-Lie
By the non-degeneracy of the Poisson bracket, locally, the relations defin-
ing the derived brackets fix Θ uniquely st. ϱ (eµ) · xi = ϱiµ and Cµνρ =
⟨[[eµ, eν ]] , eρ⟩. It can be directly checked that Θ is defined globally using
canonical transformations from remark 31. Note that the affine term van-
ishes thanks to the fact that gµν = const.⇒ gµ′ν′ = const., using the chain
rule. The classical master equation is satisfied by lemma 35 and remark 33.

Corollary 37. Isomorphism classes of Poisson-Lie 2-algebroids are in a 1-to-1
correspondence with isomorphism classes of Courant algebroids.
Example 38 (BRST Charge). Following example 4.9 of Roytenberg [2002], we
recover a BV-BRST model (see definition 1) given by a Lie algebra g ≡ ghost
acting on a manifold M . Consider the following trivial bundle:

E[•] = (ghost⊕ ghost∗) [1]× T ∗[2]M
We have the following “BRST charge”

Θ = ξµϱiµpi −
1
2ξ

µξνC σ
µν θσ

where ϱµ = ϱiµ(x) ∂
∂xi is a generator of the Lie algebra ghost-action and C its

structure constants.
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2. Gauge Fixing &
The Wehrheim-Woodward
Category
It was noted by Weinstein [1971] that the rather restrictive class of “the obvious
morphisms” of symplectic manifolds — symplectomorphisms — can be extended
by introducing the so called Lagrangian relations. A symplectomorphism is a
smooth map that preserves the non-degenerate symplectic form and thus must
be non-degenerate itself. There are, however, relevant relationships between sym-
plectic manifolds that cannot be described by diffeomorphisms. Those include
symplectic reductions, originally described by Marsden and Weinstein [1974].

This construction has been adapted to the case of Courant algebroids, in most
detail by Vysoky [2020]. We will introduce the appropriate notion of relations of
NP and NQP-manifolds that coincides with relations of Courant algebroids in
degree 2, following the ideas sketched by Severa [2001]. Furthermore, to obtain
a proper categorial picture, we will extend relations into generalized correspon-
dences following the ideas of Wehrheim and Woodward [2007] summarized by
Weinstein [2010].

Example 39 (Gauge fixing). First, let us mention a motivating example of a
Lagrangian relation. The equation

∂F
∂ϕ

= ϕ∗

familiar from the BV formalism, see reamrk 3, fixes a submanifold that is clearly
Lagrangian. We may thus view the choice of a Lagrangian submanifold as a
generalization of the gauge fixing process.

2.1 The Courant Algebroid Category
We will follow Vysoky [2020], who provides a very precise treatment of relations
of Courant algebroids. Let us recall the data of a Courant algebroid;

(E, ⟨•, •⟩, [[•, •]] ,ϱ (•))

a vector bundle E −→ M , a non-degenerate pairing ⟨•, •⟩ of arbitrary signature
and the anchor defining a “bracket homomorphism” from E to TM satisfying the
Lie algebroid anchor axioms. We fix the following terminology.

A subbundle L ⊆ E is a subbundle of E supported on a submanifold
S ⊆M if L is a vector subbundle of the restricted vector bundle E

⃓⃓
S
. We denote

the ⟨•, •⟩-orthogonal complement by L⊥. We say L is isotropic if for any two
sections f, g ∈ Γ(E) the pairing vanishes, ⟨ψ, ϕ⟩ = 0. A subbundle L is compat-
ible with the anchor if ϱ (L) ⊆ TS.

36



Lemma 40. Let a subbundle L ⊆ E supported on S ↪→ M satisfy L ̸= E
⃓⃓
S

and
L ̸= 0. Then L and L⊥ are compatible with the anchor.

To talk about “subbundles over a submanifold”, we denote the submodule of
sections that restrict to L over S.

Γ(E;L) :=
{︁
A ∈ Γ(E) | A

⃓⃓
e
S ∈ Γ(L)

}︁
A subbundle L is involutive if

[[Γ(E;L) ,Γ(E;L)]] ⊆ Γ(E;L) .

It is a very pleasant fact1 that L is involutive iff it is locally involutive on every
element of an arbitrary open cover. This means we need only to check involutivity
locally.

Definition 24. A Dirac structure of a Courant algebroid E →M supported
on S ↪→M is a subbundle L st:

• L is isotropic,

• L is involutive,

• L⊥ is compatible with the anchor.

Example 41. We refer to Gualtieri [2004] for examples of Dirac structures on the
standard courant algebroid TM ⊕ T ∗M which correspond to symplectic, Poisson
or complex structures on M as well as their generalizatins and interpolations.

2.1.1 Dirac Relations
Remark 42. In the rest of this text, we will adapt the convention suggested eg.
by Baez and Huerta [2011]. In diagrams, we will draw arrows from the right
to the left. Now the composition notation f ◦ g has the same order of f and g
as the diagram.

• • •
f g

Moreover, we denote:
HomC(A,A′) ≡ C(A′, A)

We follow Vysoky [2020].

Remark 43. Take a pair of Courant algebroids, E →M and E ′ →M ′. Now, if
L ⊆ E and L′ ⊆ E ′ are involutive structures over S and S ′ respectively,

L′ × L ⊆ E ′ × E

is an involutive structure supported on S ′ × S. This is the content of proposition
XXX of Vysoky [2020].

The prove this, we only need to check that the Dirac structure naturally con-
structed “pair-wise” truly defines a Dirac structure. Note that this is generally
not true for maximally isotropic subbundles usually considered in the literature.

1See Vysoky [2020].
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Definition 25 (Dirac Relations). Let E → M and E ′ → M ′ be Courant alge-
broids. A Dirac relation from E to E ′ denoted

E ′ E
R

is a Dirac structure R ⊆ E ′ × E supported on S ⊆M ′ ×M .

Remark 44. The diagonal relation ∆E ⊆ E × E is defined by the diagonal
embedding of E into the Cartesian product. It is easy to check that it is indeed a
Dirac structure: the sign flip in E provides isotropy, compatibility with the anchor
can be seen eg. by from the fact that ∆• and ϱ (•) “commute” and involutivity is,
similarly, inherited pair-wise.

The composition R′ ◦R of Dirac relations R′ : E ′′ ⬅‧‧ E ′ and R : E ′ ⬅‧‧ E
is defined as the set:

R′ ◦R :=
{︁

(e′′, e) ∈ E ′′ × E | (e′′, e′) ∈ R′, (e′, e) ∈ R for some e′ ∈ E ′}︁
Clearly, R′ ◦R ∈ Rel (E ′′, E) The hard question reads:

“Is a composition of Dirac relations a Dirac relation?”

E ′′ E ′ ER′

R′◦R

R

The question is adressed in great detail by Vysoky [2020]. In general, the
answer is no, the resulting set might even fail to have the structure of a smooth
submanifold.

To find the right “composability conditions”, it is useful to decompose the
definition of composition into two sequential geometric constructions.

1. We define the diagonal concatenation of relations.

R′ ⋄R = (R′ ×R) ∩
(︁
E ′′ ×∆E′ × E

)︁
Ie. we take the fibre product R′ ⋄ R = R′ ×∆E′ R It consists of the data of
R′ and R in the form of the pairs of pairs:

((e′′, e′) , (e′, e))

E ′′ E ′ E ′ E

encoded as a composition of morphisms all the way from E to E ′′, glued
along E ′ by the diagonal relation (the identity).

E ′′ × E ′ E ′ × E

E ′′ R′ E ′ E ′ R E

πE′πE′′ πEπE′

R′ R
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2. A composition is then defined to be the projection of a diagonal concate-
nation forgetting the gluing data (the choice of the element e2 = e′

2).

R′ ◦R = p⋄→◦ (R′ ⋄R)

where p⋄→◦ is the projection onto the first and the fourth element of the
quadruples in

(︁
E ′′ ×∆E′ × E

)︁
.

E3 E2 E2 E1

R′◦R

This setting provides one with geometric objects to carry the right kind of “com-
posability conditions”. Similarly to the original works of Weinstein [1971], these
will be some incarnation of the transversality conditions.

Definition 26. Let S, S ′ ⊆ M be submanifolds. We say S and S ′ intersect
cleanly in M and write

S ′ ∗
∩ S

if, for ∀x ∈ S ∩ S ′, we have:

Tx (S ′ ∩ S) = TxS
′ ∩ TxS

In other words, the two submanifolds locally look like intersecting vector
spaces.

Definition 27. We say R′ and R

E ′′ E ′ E
R′ R

compose cleanly and write

R′ ◦R = R′ ⊛R

if the following conditions are satisfied.

1. (R′ ×R)
∗
∩
(︁
E ′′ ×∆E′ × E

)︁
2. p⋄→◦ is a surjective submersion.

Remark 45. Let us say a bit more on those two conditions.

• Condition 1. ensures that the diagonal concatenation of R′ and R — the
fibred product R′⋄R = (R′ ×R)∩

(︁
E ′′ ×∆E′ × E

)︁
— forms a vector bundle.

• Provided condition 1. holds, condition 2. ensures that R′ ◦R ⊆ R′ ⋄R is a
vector subbundle.

Again, for more details, one may consult Vysoky [2020].
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The conditions are thus purely on the level of vector bundles. We need not
mention the Courant algebroid structure; neither the pairing, nor the bracket and
the anchor. The following theorem due to Vysoky [2020], however, shows that
no other obstructions arise if we are asking the “composition vector bundle” to
carry induced “Dirac data”.

Theorem 46. If two Dirac relations compose cleanly, their composition defines
a Dirac relation.

E3 E2 E1
R′ R

R′ ⊛ R

The diagonal relation can be shown to compose cleanly with every Dirac relation
and to act like an identity morphism:

R⊛ ∆• = R

∆• ⊛R = R

Note that the ⊛ operation is also associative whenever a double clean composi-
tion is defined.

We have thus arrived at a “category” with a weakened composition axiom:
not all morphisms (going into and out of the same object, respectively) can be
composed. We have a “category” of Courant algebroids with morphisms being
Dirac relations which compose into another Dirac relation if they compose cleanly.
We will denote this collection of objects and morphisms as:

CourAlgRel

Example 47 (Dirac points). Note that every Dirac structure L ⊆ E supported
on S ⊆M defines a Dirac correspondence from the singleton.

E {∗}
L

We may borrow the terminology from supergeometry (and algebraic geometry),
Caston and Fioresi [2011] and call such relation a Dirac point.

Remark 48. The most natural class of Dirac relations is given by graphs of bun-
dle maps. Restricting the “Hom sets” to graphs of bundle maps, we force the
cleannes conditions of definition and obtain a well-defined category CourAlgGr. 2

An elementary example of a functor with values in CourAlgGr is the Dorf-
mann functor. It takes an ordinary manifold M into the category of vector
bundles by the tangent functor T : M ↦→ TM and then to the standard Courant
algebroid TM ⊕ T ∗M .

2Note that what we denote by CourAlgRel is by Vysoky [2020] denoted by CAlg, the category
given by graphs of bundle maps CourAlgGr is denoted by CAlg.
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Example 49. Let us mention only in a diagrammatic manner the example of a
Dirac relation given by the so called Poisson-Lie T-duality, we refer to Bugden
[2019] for a thorough treatment. In the diagram, we have the following special
case.

E ′ N ′ ×M N E

N ′ Ẽ N

M

Dirac relation

N and N ′ are total spaces of principal bundles with M being a quotient they share,
the bundle maps to Ẽ are given by pullbacks. If we are able to lift the Lie group
action to Courant algebroids, given appropriate technical conditions, E ′ and E
can be seen to be non-trivially Dirac-related. This relation cannot be described by
a bundle map.

2.1.2 Generalized Dirac Correspondences
We follow Weinstein [2010] inspired by Wehrheim and Woodward [2007].

(Rr, . . . , R1)

Definition 28. A (generalized) Dirac correspondence is an equivalence class
of sequences of Dirac relations of the form

(Rr, . . . , R1)

composable in Rel wrt. the equivalence relation ∗∼. We will denote such sequences
by a full line.

• • · · · • •Rr Rr−1 R1 R0

(Rr,...,R1)

∃Rr◦···◦R1

The equivalence ∗∼ is defined as follows.

(R′, R) ∗∼ R′ ◦R iff R′ ◦R = R′ ⊛R.

• • •R′ R

∃R′⊛R

(R′,R) ∗∼R′⊛R
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That is, a 2-term sequence (R′, R) is identified with the 1-term sequence (R′ ⊛R).

The composition of correspondences is defined by formal concatenation:

(Rs, . . . , Rr+1) (Rr, . . . , R1) := (Rs, . . . , R1)

The empty sequence ( ) is equivalent to the identity relation ∆•. We call the
resulting category the Wehrheim-Woodward category of Courant Alge-
broids.

CourAlgCorr

Remark 50 (Universal property of CourAlgCorr). By construction, the CourAlgCorr
is the minimal one with the given objects such that for any functor ϕ defined on
all correspondences st.

ϕ (R′ ⊛R) = ϕ(R′) ◦ ϕ(R)

factors uniquely through CourAlgCorr. In other words, we have the following dia-
gram in the (quasi)category of categories Cat.

Corr C

CourAlgCorr

ϕ

∃!

Here, Corr denotes the Wehrheim-Woodward category built (over the same class of
objects) from the relations in Rel (here without taking any equivalence classes).

2.2 The NQP-Category
Again, the obvious morphisms of NQP-manifolds being diffeomorphisms are too
restrictive; the do not desribe Courant algebroid relations or quasi-isomorphisms
(isomorphisms on cohomology) of the NQ-chain complexes. We will adapt the
constructions of Weinstein [2010] and Vysoky [2020] to the case of NP-manifolds.
Furthermore, we will show that in degree 2, we can define appropriate relations
that extend the relationship of Courant algebroids and Poisson-Lie 2-Algebroids
into a categorial equivalence.

2.2.1 Lagrangian N-Relations
A N-submanifold of M is a N-manifold L equipped with a monomorphism i
embedding L into M.

(i : L ↪→M) ∈ManN (L,M)

In a splitting, a N-submanifold is given by a subbundle L ⊆ E supported on a
submanifold S ↪→M st. the inclusion map L ↪→ E is a degree preserving map.

We consider the product in ManN over the product manifold body M ′ ×M .
OM′×M is a N-sheaf over C∞(M ′)⊗ C∞(M), the needed products of sheaves Ai
are defined stalk-wise. It satisfies the usual universal property described by a
diagram in ManN.
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•

M′ ×M

M′ M

∃!

πMπM′

Note that here, the canonical projection maps (such as all the others) are degree
preserving. The existence of a product of graded manifolds was proved by Vysoky
[2021].

A Lagrangian N-submanifold of aNP-manifold (M,Ω) is aN-submanifold
j : L ↪→M st.

Ω
⃓⃓
L = 0

with the maximal dimension st. this condition might be satisfied.

Here, the restriction is to be understood as the pull-back j∗(Ω). Moreover, we
fix the following notation for a “symplectic sign flip”:(︁

M , Ω
)︁

:= ( M , −Ω )

Definition 29. Let M = (M,Ω) and M′ = (M ′,Ω′) be two NP-manifolds. A
(Lagrangian) N-relation from M to M′ is a (Lagrangian) N-submanifold

R ↪→M′ ×M

over a body S ↪→ M ′ ×M . We denote Lagrangian N-relations by “squiggly ”
lines.

M′ MR

The diagonal concatenation R′ ⋄ R of N-relations is defined as a fibre
productM′′×M′M in a setting analoguous to the constuction of Dirac relations.

M′′ ×M′ M′ ×M

M′′ R′ M′ M′ R M
πM′πM′′ πMπM′

R′ R

The projection p⋄→◦ is precisely the map in ManN that makes the maps going
from R′ ⋄ R to M′′ and M in the following diagram commute.
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M′′ ×M

M′′ ×M′ M′ ×M

M′′ R′ M′ R M

R′ ⋄ R

R′ ◦ R

πMπM′′

πM′πM′′ πM′ πM

p⋄→◦

Note that the “inner butterfly” subdiagram commutes automatically from defi-
nition of R ⋄ R. The conditions of clean composition R′ ⊛R of N-relations
can always be checked in a chosen splitting E[•] =

⨁︁
iEi[i] of the correspon-

dence space. The task reduces to defining a composition of a collection of the
Ei[i] shifted bundles st. the resulting relations are degree-preserving (here, in the
sense of graded vector bundles). Ie. we translate the problem to the language of
graded components of the relation, Lk For Lk, we may repeat the construction of
Dirac relations. (Recall that we only needed to view the Dirac structure as a vec-
tor subbundle, forgetting about the extra structure.) Moreover, the Lagrangian
property is completely independent of the grading and works just as in the case
of ordinary symplectic manifolds, see Weinstein [2010]. Therefore, we may use
theorem 46 for Lk’s and obtain its analogue for NP-manifolds.

Theorem 51. A clean composition of Lagrangian N-relations is a Lagrangian
N-relation.

M′′ M′ M
R′ R

R′ ⊛ R

We denote the collection of N-manifolds together with N-relations ManNRel
and the collection of NP-manifolds together with Lagrangian N-relations by
ManNPRel .

2.2.2 Λ-Relations of NQP-Manifolds
In this chapter, we elaborate on som ideas of Severa [2001]. The following defini-
tion and this entire section is inspired by Grützmann [2010].

Definition 30. A Λ-structure of a NQP-manifold3 (M,Θ) is a Lagrangian
N-submanifold L ↪→M st.

Θ
⃓⃓
L = 0

3Here, we will not write out the symbols for the symplectic structures explicitely.
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Remark 52 (Degree 1 & Coisotropic Submanifolds). A submanifold S ↪→ M
of a Poisson manifold (M, {•, •}Π) is coisotropic if the ideal of functions
vanishing on S denoted by I(S) forms a Lie subalgebra:

{I(S), I(S)}Π ⊆ I(S)

following Severa [2001], we find that Λ-structures in NQP-manifolds of de-
gree 1 (which can be split as M = T ∗[1]M) correspond to conormal bundles
of coisotropic submanifolds S ↪→ M . For more on such structures, we refer to
Schätz [2009]. In what follows, will use the same strategy in degree 2.

For a submanifold ι : S ↪→M , we define the conormal bundle N ∗S ⊆ T ∗M
of a submanifold to be the (fibre-wise) dual space to:

Nι(x)S :=
Tι(x)M

TxS

In other words, it is a submanifold locally generated by the coordinates of L and
the normal momenta, which do not vanish under the quotient.

For a split NQP-manifold of degree 2, ie. a Courant-Lie 2-algebroid (see
theorem 36), we define the conormal N-submanifold N∗L associated to a sub-
bundle L ⊆ E over S ↪→M by:

N∗L := N ∗[2]L[1]

(L ⊆ E) (N∗L ⊆M)

Generally, in ManN, (fibre-wise) quotient bundles translate to (stalk-wise) quo-
tient structure N-sheaves.

Theorem 53 (Grützmann [2010]). L is a Dirac structure iff N∗(L) is a Λ-
structure.

Proof. We need to show N∗L is Lagrangian and that Θ
⃓⃓
N∗L

= 0.

• Locally, we can choose a trivialization st:

N∗L = L[1]⊕N ∗
base[2]S ⊕N ∗

fibre[2]L[1]

N ∗
base[2]S and N ∗

fibre[2]L[1] are by construction Lagrangian in T ∗[2]M and
in a fibre of T ∗[2]L[1] respectively. Now since all the “momenta” in the N ∗

subspaces are are normal to L and the dimensions are just right, the triple
sum N∗L is then Lagrangian iff L is isotropic.

• To show that

[[Γ(E;L) ,Γ(E;L)]] ⊆ Γ(E;L) ⇔ Θ
⃓⃓
N∗L

= 0,

one turns sections of E
⃓⃓
S

into functions in E[•] by “lifting the index” by the
pairing ψ ↦→ g(ψ) and understanding the resulting sections as functions on
E[•] by pulling back from E[1]. Then, we may prove and use the following
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equivalence.

ψ ∈ Γ(E;L)⇔ Xg(ψ) is tangent to N∗L.

We will not repeat the details, let us just mention that we may the fact that
the construction of the Hamiltonian field is a Lie algebra homomorphism;

X{f,g} = ± [Xf , Xg] ,

and tranlates the derived (Courant) bracket to a nested graded commutator
of tangent fields.

X{{f,Θ},g} = ± [[Xf ,Q] , Xg]
For more details, see proof of theorem 2.62. of Grützmann [2010].

Now it is easy to

Lemma 54. Let (M,E[•]) be a split Poisson-Lie 2-algebroid, where E[•] fits into
the following pull-back square (see theorem 30).

E[•] T ∗[2]E[1]

E[1] (E ⊕ E∗) [1]

Then the construction of a conormal N-submanifold

{Dirac structures in E} −→ {Λ−structures in M = E[•]}
L ↦−→N∗L

is a bijection.

Proof. Injectivity is trivial, thoerem 53 ensures that N∗ indeed takes values in
the set of Λ-structures. As to surjectivity: for a given Λ-structure L, we can
construct a subbundle L ⊆ E by taking the image of the composition

L E[•]

E[1]

and identifying the functions of the graded bundle f ∈ OE[1] with sections of L
via the inner product:

ψ ←→ g(ψ)
Now consider a local trivialization such that L is defined by setting a certain
subset of the local N-algebra generators to zero. Let us collectively denote by
(x, x̂) the base coordinates, by (η, η̂) the degree 1 coordinates and by (p, p̂) the
degree 2 coordinates. Locally, L is defined by fixing:

x̂ = 0, η̂ = 0, p̂ = 0
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In other words, L is locally spanned by x,η,p. Now L is an isotropic subbundle
defined by the set of x variables and a set of ξ ←→ g(ψ) “ghost” coordinates by
setting

x̂ = 0, ξ̂ = 0
in E[1]. Here, ξ’s are a subset of η’s; η = (ξ, e), η̂ = (ξ̂, ê). Note that the
“antighosts” e, ê are absent in E[1], just as the momenta (p, p̂).

Now since L is Lagrangian, it does not contain any pair of conjugate coordi-
nates. Moreover, by maximality, those coordinates contained in L while missing
in L, that is e and p, constitute a maximal set of momenta that are not conjugate
to any of the coordinates x, ξ in L. These are precisely the “normal momenta”; p
and e. If we take take the conormal N-manifold N∗L, it can be locally generated
by the same coordinates as L. Note that the local reasoning was based solely on
degree-wise dimension counting and it is thus justified since coordinate changes
preserve the degrees.

This shows that every Lagrangian N-submanifold of E[•] can be constructed
as a conormal submanifold of an isotropic subbundle. Then, theorem 53 ensures
that if we start with L being Lagrangian, the isotropic subbundle is also a Dirac
structure. This concludes the proof of surjectivity.

Definition 31. Let M′,M be NQP-manifolds. A Λ-relation from M to M′

is a Λ-structure R ∈M′ ×M.

Now for R ∈ CourAlgRel (E ′, E), the associated conormal N-manifold defines a
N-relation.

CourAlgRel (E ′, E ′) ManNRel (M′,M)

(︁
R ⊆ E ′ × E

)︁ (︁
R ≡N∗L ⊆M′ ×M

)︁
N∗

Note that for Λ(R) ↪→M′×M, the proof of lemma 54 carries over, since we
can always take the natural induced splitting on M′ ×M given splittings of M
and M′. That means the target category is, in fact, ManNQPRel .

CourAlgRel (E ′, E) ManNQPRel (M′,M)N∗

By lemma 54, we obtain the following corollary.

Corollary 55. Let M,M′ ∈ ManNQPRel be split NQP-manifolds of degree 2
given as minimal symplectic realizations of Courant algebroids E,E ′ ∈ CourAlgRel .

CourAlgRel (E ′, E) ≃Bij ManNQPRel (M′,M)

Example 56 (Λ points). Repeating the terminology of example 47, we may call
a correspondence from a point to M a Λ-point, or a “gauge fixing”.

M {∗}L
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2.2.3 Generalized Λ-Correspondences
Here, we repeat the construction of the Wehrheim-Woodward category for La-
grangian N-relations and finally arrive at a categorification of the relationship:

Courant algebroids NQP−manifolds of degree 2

Definition 32. A (generalized) Lagrangian N-correspondence is an equiv-
alence class of sequences of Lagrangian N-relations of the form

• • · · · • •Rr Rr−1 R1 R1

(Rr,...,R1)

wrt. the equivalence relation ∗∼, which is defined once again by:
(R′,R) ∗∼ R′ ◦ R iff R′ ◦ R = R′ ⊛R.

• • •R′ R

∃R′⊛R

(R′,R) ∗∼R′⊛R

The composition of correspondences is, again, defined by formal concate-
nation.

(Rs, . . . ,Rr+1) (Rr, . . . ,R1) := (Rs, . . . ,R1)
We denote the resulting Wehrheim-Woodward NP-category ManNPCorr. Note
that MannNPCorr, the category consisting only of N-manifolds of degree n, is a full
subcategory of ManNPCorr.

In the same fashion, we may define (generalized) Λ-correspondences of
NQP-manifolds. The complication is that in general, we do not know4 whether
R′⊛R defines a Λ-relation. We leave this question to further endeavours; at this
point, we may only conjecture that the above construction defines a Wehrheim-
Woodward NQP-category ManNQPCorr under the same conditions as in the
case of ManNPCorr.

However, in the case n = 2, lemma 54 enables one to think of any Λ-
correspondence in Man2

NQPRel in the form N∗R for some Dirac relation R. But for
Courant relations, theorem 46 states that a clean composition R′ ⊛R indeed de-
fines a Dirac relation. Then, lemma 54 provides N∗(R′ ⊛R) with a Λ-structure.

Since this can be done for each element of the sequence (Rr, . . . ,R1) of any
Λ-correspondence, the Werheim-Woodward NQP-category in degree 2 is
a well-defined category.

Man2
NQPCorr

We can summarize the results in the following theorem. Recall that two
categories A,B are said to be equivalent if there is a functor A −→ B which is
fully faithfull (a bijection on morphisms between any two given objects) and
essentially surjective (every object in the target category B is isomorphic to
an object in the image of the functor).

4At least we have not found a proof in the literature.
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Theorem 57. The category Man2
NQPCorr is equivalent to the category CourAlgCorr.

Proof. The equivalence is given by functor defined on objects of CourAlgCorr by
constructing the minimal symplectic realization.

CourAlgCorr ∋ (M ← E) ↦−→ (M ← E[1]← E[•]) ∈Man2
NQPCorr

Batchelor’s theorem 14 states that the functor is essentially surjective, since any
NQP-manifold of degree 2 is isomorphic to a split N-manifold of the formM =
(M ← E[1]← E[•]).

On morphisms, corollary 55 of lemma 54 states that the construction of a
conormal N-submanifold

CourAlgCorr(E ′, E) ∋ R ↦−→ N∗R ∈Man2
NQPCorr(M′,M)

is a bijection. In other words, it extends the map on objects into a fully faithfull
functor.

More loosely, we might say something along the lines:

Poisson-Lie 2-algebroids are essentially minimal symplectic re-
alizations of Courant algebroids and their Λ-correspondences are
“conormal Lagrangian realizations” of Dirac correspondences.

2.2.4 Quantization of Odd NP-Manifolds
As a final remark, we show how the idea of functorial quantization of odd NP-
manifolds put forth by Severa [2002] fits into Weinstein’s constructions. We
consider the odd symplectic category

OSC := ManOddNP Rel

consisting of NP-manifolds in odd degrees (a full sub“category” of ManNPRel ).
Those are precisely the NP-manifolds equipped with odd symplectic structures.

Let us introduce the necessary ingredients, following Severa [2002]. Let L ↪→
M ∈ OSC be a LagrangianN-submanifold. Locally (around L) there exists a Dar-
boux chart (q1, . . . , qn, η1, . . . , ηn) with q’s even and η’s odd, st. L is described
by setting the η coordinates to 0.

We will consider formal Dirac δ-distributions supported on a Lagrangian
N-submanifold L. For more details, we refer to Khudaverdian [2004]. In the
Darboux chart above, we can write:

δL = δη1 ⊗ · · · ⊗ δηn

Here, the tensor product is over the ring R, in the sense of linear functionals on
suitable test functions. We will, further, require δL to behave like a semi-density
under the coordinate transformations ϕ on M.

ϕ∗δL = (det Jϕ)1/2 δL
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This ensures the following product of semidensities given by formal integration
(over a N-submanifold) is chart independent5.∫︂

α⊗ β

We denote the vector space of semidensities onM by Dens
1
2 (M). Note that this

space inherits grading as well and thus we have the odd-even decomposition:

Dens
1
2 (M) = Dens

1
2
Even(M)⊕Dens

1
2
Odd(M)

Definition 33. We define the quantum6 odd symplectic category QOSC
to have the same objects as OSC and the morphisms given by semidensities on
correspondence spaces:

HomQOSC(M′,M) := Dens
1
2 (M′ ×M)

The composition of morphisms

M′′ M′ M
δR′ δR

is defined by “integration of δR′ ⊗ δR ∈ Dens
1
2 (R′ ×R) over ∆M′”.

δR′ ◦ δR :=
∫︂

∆M′

δR′ ⊗ δR

Let us specify this prescription a bit further: given δR and δR′ , we define an
induced δ-semidensity on R′ ⋄ R. Then, we integrate the coordinates in R′ ⋄ R
originating from ∆M′ .

The composition is not always defined. However, for R′ ⊛R, we have a good
chance that the integral makes sense. That is:

1. The first condition of clean composition provides R′ ⋄ R with a structure
of a smooth (N-)manifold — now it makes sense to define semidensities on
R′ ⋄ R in the first place. Moreover, cleanness

“T after ∩ = ∩ after T ′′

ensures we do not lose any tangent directions in R′ and R provided they
coincide on the diagonal ∆M′ . We can thus take the pullback of the semi-
density on R′ × R onto R′ ⋄ R (which corresponds to integration of δ-
functionals).

2. The second condition says that the projection p⋄→◦ is a surjective sub-
mersion (we may understand this in terms of an arbitrary splitting). The
implicit function theorem states that locally, there exists such a chart in
R′ ⋄R such that R′ ◦R = p⋄→◦ (R′ ⋄ R) is be defined by fixing some of the
coordinates on R′ ⋄ R to be zero. Now (up to a canonical transformation)

5Provided the integral is well-defined in the first place.
6We will clarify why it is reasonable to use the word “quantum” a little later.

50



integration over ∆M′ does precisely that. This means that for R′ ⊛R, we
indeed have ∫︂

∆M′

δR′ ⊗ δR ∈ Dens
1
2 (M′′ ×M)

In other words:
δR′ ◦ δR ∈ QOSC (M′′,M)

Of course, the integrals might still be ill-defined; the argumentation above merely
suggests that composition of relations is not be to blamed. Provided the integra-
tion indeed makes sense, Weinstein [2010] shows that the resulting semidensity
onM′′×M coincides with the δ-distribution supported on R′⊛R defined above.

δR′ ◦ δR = δR′⊛R

Ie. the assignment L ↦→ δL satisfies the condition of remark 50 and it always
factors through the Wehrheim-Woodward category OSCorr := ManOdd

NPCorr.

Corr QOSCorr

OSCorr

Q

∃!

Therefore we may define the Wehrheim-Woodward quantum odd sym-
plectic category QOSCorr by considering sequences of δL relations and the quan-
tization functor Q : OSCorr −→ QOSCorr as an identity on objects and by the
following assignment on relations

Q : (R ↪→M′ ×M) ↦−→
(︂
δR ∈ Dens

1
2 (M′ ×M)

)︂
and the induced element-wise assignment of sequences of relations. Using the
terminology of Weinstein [2010], QOSCorr can be said to be the “universal quan-
tization category” defined for the proper class of odd NP-manifolds.

Thus, with the help of the Wehrheim-Woodward categories, we have arrived
to a notion of functorial quantization of odd NP-manifolds but we have yet to
clarify its “quantum” nature. We will only provide a very brief remark following
Severa [2002] and refer to the works of Costello [2007] and Khudaverdian [2004].

Remark 58 (The BV Laplacian). The classical master equation describes an
incarnation of gauge symmetry of the BV action functional. However, to en-
sure that quantum mean values calculated in terms of path integrals stay gauge
invariant, one has to introduce the so called BV Laplacian ∆BV and replace the
classical master equation with the quantum master equation.

{Θ,Θ}+ ℏ∆BV(Θ) = 0

It is thus desirable to translate our “graded symplectic system” into a “system
compatible with the BV Laplacian”. The statement of Severa [2002] is that the
quantization functor provides such translation from the world of odd NP-manifolds.
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Definition 34. The BV Laplacian is defined in a Darboux chart(︁
q1, . . . , qn, η1, . . . , ηn

)︁
of M∈ OSCorr as a differential operator on semidensities.

∆BV := ∂2

∂qa∂ηa

Let us summarize some of its properties mentioned by Severa [2002].

Lemma 59 (Properties of ∆BV).

1. ∆BV is odd

2. ∆2
BV = 0

3.
[︁
LXf

,∆BV
]︁

= 0, ie. ∆BV is invariant under Hamiltonian diffeomorphisms.

The property 3. ensures ∆BV is independent of the choice of a Darboux chart.
Properties 1. and 2. say that ∆BV can be understood as the differential of a
Z2-graded chain complex defined on Dens

1
2 (M).

Dens
1
2
Even(M) Dens

1
2
Odd(M)

∆BV

∆BV

Now this is, according to Severa [2002], a suitable kind of “quantum system” in the
context of Batalin-Vilkovisky quantization. We repeat his remark on the following
symmetry: If we denote by ϕ(L) a deformation of a Lagrangian N-submanifold L
by a Hamiltonian diffeomorphism (ie. a change of gauge fixing), it can be shown
that for α ∈ Dens

1
2 (M) being ∆BV-closed, we have the following kind of gauge

invariance: ∫︂
δϕ(L) ⊗ α =

∫︂
δL ⊗ α

Notice the analogy with the Ward identities in remark 2.

Finally, just as a Lagrangian N-submanifold L can be seen as a choice of
gauge fixing (as in example 39 and remark 3) or a Λ-point (example 56), the set
of QOSCorr-points

{ M {∗} }

can be interpreted as the quantization of M.

QOSCorr(M, {∗})
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Conclusion
Let us summarize our journey.

First, in section 1.1 we recalled the geometric objects arising in BV-BRST the-
ories as a motivation for studying graded symplectic geometry, mentioning the
elementary example of the Yang-Mills theories, refering to Becchi et al. [1976],
Batalin and Vilkovisky [1981], Weinberg [2013], Henneaux and Teitelboim [2020]
and Jurčo et al. [2019]. In particular, we saw the AKSZ framework mentioned
in 1.1.3 due to Alexandrov et al. [1997] enables us to forge the needed geometric
structures on finite-dimensional differential graded symplectic manifolds instead
of the infinite-dimensional field configurations.

In sections 1.2, 1.3, 1.4, 1.5, we reviewed the basics of the theory of NQP-
manifolds following mainly Roytenberg [2002] including the example deg = 2
corresponding to Courant algebroids known from generalized geometry. We saw
that the sheaf-theoretic language naturally extends from supermanifolds to N-
manifolds degree-wise. It may be an interesting question whether the differential
symplectic structure translates into the general theory of graded manifolds in the
spirit of Vysoky [2021].

In the second chapter, we introduced Lagrangian N-submanifolds as a gen-
eralization of the concept of gauge fixing following the philosophy of Weinstein
[2010]. In section 2.2.1, we extended the notion of Lagrangian relations to NP-
manifolds using the known results for Courant algebroid relations seen in section
2.1 due to Vysoky [2020]. Furthermore, in sections 2.2.2 and 2.2.3 we showed
that the 1-to-1 correspondence between isomorphism classes of Poisson-Lie 2-
algebroids and Courant algebroids seen in theorem 36 can be extended into an
equvialence of Wehrheim-Woodward categories (introduced by Wehrheim and
Woodward [2007]) . We relied on the results of Grützmann [2010].

The following question is left open: Is the NQP-Wehrheim-Woodward cate-
gory well-defined under the same cleannes conditions for general degrees of N-
manifolds? What about the Z-graded setting?

Finally, in section 2.2.4, we mentioned the idea of functorial quantization of
odd symplectic manifolds due to Severa [2002] as an application of the Wehrheim-
Woodward construction for NP-manifolds.
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Giuseppe Bonavolontà and Norbert Poncin. On the category of lie n-algebroids.
Journal of Geometry and Physics, 73:70–90, Nov 2013. ISSN 0393-0440.
doi: 10.1016/j.geomphys.2013.05.004. URL http://dx.doi.org/10.1016/j.
geomphys.2013.05.004.

Mark Bugden. A tour of t-duality: Geometric and topological aspects of t-
dualities, 2019.

L. Caston and R. Fioresi. Mathematical foundations of supersymmetry. arXiv:
Rings and Algebras, 2011.

Alberto S. Cattaneo and Florian Schaetz. Introduction to supergeometry. Rev.
Math. Phys., 23:669–690, 2011. doi: 10.1142/S0129055X11004400.

Kevin J. Costello. Renormalisation and the Batalin-Vilkovisky formalism. 6 2007.
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Ivan Kolář, Jan Slovák, and Peter W. Michor. Natural Operations in Differential
Geometry. Springer Berlin Heidelberg, 1993. doi: 10.1007/978-3-662-02950-3.
URL https://doi.org/10.1007/978-3-662-02950-3.

Bertram Kostant and Shlomo Sternberg. Symplectic reduction, brs cohomol-
ogy, and infinite-dimensional clifford algebras. Annals of Physics, 176(1):
49–113, 1987. ISSN 0003-4916. doi: https://doi.org/10.1016/0003-4916(87)
90178-3. URL https://www.sciencedirect.com/science/article/pii/
0003491687901783.

Jerrold Marsden and Alan Weinstein. Reduction of symplectic manifolds
with symmetry. Reports on Mathematical Physics, 5(1):121–130, February
1974. doi: 10.1016/0034-4877(74)90021-4. URL https://doi.org/10.1016/
0034-4877(74)90021-4.

Nestruev. Smooth Manifolds and Observables. Springer-Verlag, 2003. doi: 10.
1007/b98871. URL https://doi.org/10.1007/b98871.

Dmitry Roytenberg. Courant algebroids, derived brackets and even symplectic
supermanifolds. arXiv: Differential Geometry, 1999.

Dmitry Roytenberg. On the structure of graded symplectic supermanifolds and
Courant algebroids. In Workshop on Quantization, Deformations, and New
Homological and Categorical Methods in Mathematical Physics, 3 2002.

F Schätz. Coisotropic submanifolds and the bfv-complex. 01 2009. doi: 10.5167/
uzh-30756.

Pavol Severa. Some title containing the words “homotopy” and “symplectic”, e.g.
this one. 06 2001.

Pavol Severa. Quantization of the odd symplectic category. 10 2002.

Jan Vysoky. Hitchhiker’s guide to Courant algebroid relations. J. Geom. Phys.,
151:103635, 2020. doi: 10.1016/j.geomphys.2020.103635.

Jan Vysoky. Global theory of graded manifolds. arXiv preprint arXiv:2105.02534,
2021.

Katrin Wehrheim and Chris Woodward. Functoriality for lagrangian correspon-
dences in floer theory. Quantum Topology, 1, 08 2007. doi: 10.4171/QT/4.

Steven Weinberg. The quantum theory of fields. Vol. 2: Modern applications.
Cambridge University Press, 8 2013. ISBN 978-1-139-63247-8, 978-0-521-67054-
8, 978-0-521-55002-4.

55

https://doi.org/10.1007/s00220-004-1083-x
https://doi.org/10.1007/s00220-004-1083-x
https://doi.org/10.1007/978-3-662-02950-3
https://www.sciencedirect.com/science/article/pii/0003491687901783
https://www.sciencedirect.com/science/article/pii/0003491687901783
https://doi.org/10.1016/0034-4877(74)90021-4
https://doi.org/10.1016/0034-4877(74)90021-4
https://doi.org/10.1007/b98871


Alan Weinstein. Symplectic manifolds and their lagrangian submanifolds. Ad-
vances in Mathematics, 6(3):329–346, 1971. ISSN 0001-8708. doi: https://
doi.org/10.1016/0001-8708(71)90020-X. URL https://www.sciencedirect.
com/science/article/pii/000187087190020X.

Alan Weinstein. Symplectic categories. Portugaliae Mathematica, 67(2):261–278,
2010.

56

https://www.sciencedirect.com/science/article/pii/000187087190020X
https://www.sciencedirect.com/science/article/pii/000187087190020X

	Introduction
	Ghosts & Graded Manifolds
	Gauge Fields & the AKSZ Philosophy
	Becchi-Rouet-Stora-Tyutin Cohomology
	Batalin-Vilkovisky Formalism
	Alexandrov, Kontsevich, Schwarz & Zaboronsky

	Sheaves & the Three Magic Theorems of Differential Geometry
	I: Manifolds as Locally Ringed Spaces
	II: Smooth Function-Modules as Vector Bundles
	III: Tangent Fields are Structure Sheaf-Derivations

	Fermionic Sheaves are Supermanifolds
	Basics of Supergeometry

	Sheaves of Ghosts & NQP-Manifolds
	Integer-Grading 
	N-Manifolds
	The Antitangent N-Manifold
	NQ-Manifolds are Lie n-Algebroids
	Poisson Differential Non-Negatively Graded-Manifolds are Poisson-Lie n-Algebroids

	Degree 2
	Pseudo-Euclidean Vector Bundles & Ghosts+Antighosts
	Poisson-Lie 2-Algebroids are Courant-Lie 2-Algebroids


	Gauge Fixing &  The Wehrheim-Woodward Category
	The Courant Algebroid Category
	Dirac Relations
	Generalized Dirac Correspondences

	The NQP-Category
	Lagrangian N-Relations 
	Lambda-Relations of NPQ-Manifolds
	Generalized Lambda-Correspondences
	Quantization of Odd NP-Manifolds


	Conclusion
	Bibliography

