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Stronerová for the peace and support she provided me at the time of writing.
In conclusion, I thank my colleagues Marcel Štolc and Michal Kyjovský for their
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Abstract: The cosmological constant Λ was first added to the gravitational field
equations in 1917 by Albert Einstein. Einstein preferred the static universe,
whereas field equations without the cosmological constant did not allow for such
a scenario. A series of later observations mainly by Slipher, Lemâıtre and Hubble
showed the universe to be dynamic, which led to the cosmological constant being
neglected from Einstein’s field equations. In the early 1990s, it became clear that
the expansion of the universe accelerates and the cosmological constant emerged
in the field equations again, as an explanatory element. Based on a study by
Perlmutter and Riess who observed distant type Ia supernovae, the cosmological
constant is positive with a value of 10−56 cm−2. The 2011 Nobel Prize was
awarded for this discovery. Within the limit of weak gravitational fields and
low velocities, Einstein’s theory of gravitation must be reduced into Newtonian
theory of gravity, the so-called Newtonian limit of Einstein equations. The full
Einstein equations of the gravitational field, in the Newtonian limit, are not
reduced exactly to Poisson’s equation of Newtonian theory of the gravitational
field. The Newtonian limit contains two additional terms with the cosmological
constant, which the classical theory of gravity does not account for. The potential
difference between the Poisson equation and the Newtonian limit must be at
non-cosmological distances (typical distances of the solar system) negligible. The
numerical solution of the given potentials shows changes in the differences with
respect to the choice of density profiles.
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Autor: Andrej Lǐska

Department: Astronomický ústav Univerzity Karlovy v Praze
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Abstrakt: Kosmologická konstanta Λ byla poprvé přidána do rovnic gravitačńıho
pole v roce 1917 Albertem Einsteinem. Einstein preferoval statický vesmı́r, což
polńı rovnice bez kosmologické konstanty neumožňovaly. Série pozděǰśıch po-
zorováńı hlavně Sliphera, Lemâıtre a Hubblea ukázala dynamičnost vesmı́ru,
což vedlo od upuštěńı kosmologické konstanty z Einsteinových polńıch rovnic.
Začátkem 90. let se ukázalo, že rozṕınáńı vesmı́ru akceleruje, č́ımž byla kos-
mologická konstanta opět dosazena do polńıch rovnic jako vysvětluj́ıćı element.
Na základně studie Perlmuttera a Riessa, kteř́ı pozorovali vzdálené supernovy
typu Ia, je kosmologická konstanta kladná z hodnotou 10−56 cm−2. Za tento
objev byla udělena v roce 2011 Nobelova cena. V limitě pro slabé gravitačńı pole
a malé rychlosti se muśı einsteinova teorie gravitace redukovat v Newtonovskou
teorii gravitace, tzv. Newtonovskou limitu Eisteinových rovnic. Plné Einsteinovy
rovnice gravitačńıho pole se v Newtonovské limitě neredukuj́ı přesně na Pois-
sonovu rovnici Newtonovské teorie gravitačńıho pole. Newtonovská limita ob-
sahuje nav́ıc dva členy s kosmologickou konstantou, které klasická teorie gravi-
tace nezná. Rozd́ıl potenciál̊u Poissonovy rovnice a Newtonovské limity muśı být
na nekosmologických vzdálenostech (typické vzdálenosti pro slunečńı soustavu)
zanedbatelný. Numerické řešeńı daných potenciál̊u vykazuje změny v rozd́ılech
vzhledem k volbě hustotńıch profil̊u.
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Introduction
In 1917, Albert Einstein added the cosmological term Λgµν to his equations of
the gravitational field. Einstein assumed the existence of a static universe, which,
however, was not a solution to his originally published field equations in 1915.
Stationarity was achieved by the just-introduced additional term proportional to
the metric tensor. The cosmological constant, which was thus added to Einstein’s
field equations at the time, lead to a solution for the static universe.

Extensive observations in the 1920s and 1930s have shown that the universe
is probably not static, as Einstein predicted. It was mostly the work of Slipher,
Lemur, Robertson and Hubble that brought a non-trivial relationship between
redshift and distance, i.e. the correlation between the radial velocity and the
distance of an object. This dependence showed that the universe must expand,
hence it is dynamic. Einstein therefore abandoned the static universe and ex-
cluded the cosmological constant from the field equations. In 1917 he described
its introduction as the biggest blunder of his life.

New research and observations, mainly under the leadership of Perlmutter and
Riess, again point to a cosmological term. Due to the observation of distant
supernovae, it has been shown that the universe is not only expanding, but the
expansion itself is accelerating. This discovery again introduced the cosmological
constant into Einstein’s equations of the gravitational field, as a term explaining
this accelerated expansion. The cosmological constant plays the role of so-called
dark energy. In 2011, Saul Perlmutter, Adam Riess and Brian P. Schmidt were
awarded the Nobel Prize for the discovery of the accelerating expansion of the
universe.

Assuming the validity of the basic principles of the general theory of relativ-
ity, the cosmological term automatically appears on the left-hand side side of the
Einstein equations. If, however, Einstein’s theory of gravitation is to be an exten-
sion of Newton’s theory of gravity, then for low velocities and weak gravitational
fields, Einstein’s theory must give the same results as Newton’s theory. We call
this limit case the Newtonian limit of Einstein’s equations.

The inconsistency of the Newtonian limit lies precisely in the cosmological con-
stant, which does not appear in the classical theory of gravity. Unlike the Poisson
equation for Newtonian theory, the Newtonian limit has 2 terms with the cosmo-
logical constant. These terms cause a difference in the resulting potentials. In
order for the classical Newtonian theory of gravity to remain valid, it is necessary
to arrive at insignificant differences on small scales in the solar system, where the
classical Newtonian theory gives reliable results.

The aim is to show how these differences will change on small distances (char-
acteristic distances of the solar system - of the order of the astronomical unit)
for different density profiles. We further discuss whether today’s instruments can
observe such deviations and thus determine the cosmological constant on small
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scales. We also discus the significance of the modified Poisson equation consider-
ing greater distances (galactic scales in light years) for different density profiles.
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1. Development of cosmological
constant Λ
The cosmological constant Λ is one of the constituents present in Einstein equa-
tions (hereafter EE). Especially, it is part of the left ”geometric” side. However,
Einstein published his equations of the gravitational field in the 25-th of Novem-
ber 1915 in Berlin [Einstein, 1915] primarily neglecting the cosmological constant.

The equations read as
Gim = −κ(Tim − 1

2gimT ). (1.1)

From eq. (1.1), we see that Einstein denoted the indices by the classical Latin
alphabet (i, m, . . . ), while throughout the text we will use Greek letters (α, β, . . . )
to denote the indices of tensors.

The field equations defined in this way do not support the closed static uni-
verse, which according to Einstein corresponds precisely to the model supported
by nature. In 1917, he added the Λ-term to account for the static universe. In
the following Chapters we will show that we get the Λ-term into EE starting
from the basic principles of the general theory of relativity, i.e. without requiring
the universe to be static or dynamic. The equations of the gravitational field he
published in 1917 are as follows [Einstein, 1917]

Gµν − Λgµν = −κ
(︃

Tµν − 1
2gµνT

)︃
. (1.2)

In 1922, Friedmann solved EE for a homogeneous and isotropic universe. The
keystone of these models is the so-called FRLW metrics. Friedman’s equations
were derived based on the full EE (1.2) and therefore contained the Λ-term. By
default, Friedmann formulated only one equation. However, two are commonly
used. The second one is derived from the first and also contains the cosmological
term Λ [Friedmann, 1922].

Despite his belief in the closed, static universe, Einstein set the cosmological
constant in Friedman’s equations to zero, thus obtaining a homogeneous and
isotropic solution. The solution was the expanding universe known today as the
Friedmann-Einstein universe [Einstein, 2006].

In the following years, it really turned out that nature supports a dynamic uni-
verse rather than a static one. The dynamically expanding universe was mainly
supported by Lemâıtre, Slipher and Hubble. They showed a linear correlation
between the red shift, i.e. the speed of the object’s distance and its distance
from the observer. Observational data then clearly contradicted the theory of the
static universe [Slipher, 1917, Lemâıtre, 1927, Hubble, 1929]. Einstein therefore
again excluded the cosmological term Λgµν from his equations and declared that
the introduction of this term into gravitational field equations was the biggest
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blunder in his life1. It is possible that Gamow paraphrased this statement in his
biography in his own way [Gamow, 1956].

Since the late 1930s, a number of astronomers have taken the cosmological term
in the field equations as redundant. When solving problems, the cosmological
constant was automatically assumed to be zero. This state lasted until the 1990s,
with the exception of the 1950s, when the cosmological constant appeared for
some time in poly-particle physics [Weinberg, 1989, Carroll et al., 1992].

At the beginning of the third millennium, observations of distant type Ia2. Sev-
eral teams, mainly around Perlmutter and Riess, have studied the significance
of the cosmological term on supernovae Ia, which show a significant redshift.
The results of the measurements clearly point to an accelerating universe that
is expanding. The gravity resulting from visible matter is not enough to hold
it together, which necessarily implies the non-zero character of the cosmological
constant Λ. This significant discovery contributed to the re-introduction of the
cosmological term with the cosmological constant into EE. In 2011, the discovery
of the accelerating expansion of the universe was awarded the Nobel Prize for
Saul Perlmutter, Adam Riess and Brian P. Schmidt. Today, this model of the
universe is known as the standard model [Perlmutter et al., 1999, Riess et al.,
1998].

In cosmology, instead of the Λ-term itself, the ratio between the energy den-
sity caused by the cosmological constant and the critical density of the universe
is often used, denoted as ΩΛ. Recent research points to the significance of this
term, which is approximately equal to ΩΛ ≈ 0, 7 [Baker et al., 1999]. Let us
realize that today’s standard model of the universe includes more than a third of
all energy, the so-called dark energy, which acts against gravity.

The most recent measurements of the cosmological constant in the universe set
its value at 10−56 cm−2 [Kohn, 2020]. The quantum field theory contradicts this
value and predicts a huge value for the quantum vacuum. The quantum vacuum
defined in this way is equivalent to the cosmological constant, which means that
the values should be the same. However, the results predicted by the quantum
field theory differ by about 120 orders of magnitude compared to the measured
cosmological constant. This is the greatest discrepancy between the theoretical
prediction and the actual measured value in the history of physics [Rugh and
Zinkernagel, 2002, Adler et al., 1995].

1Recent research shows that Einstein may never have made the notorious statement the
biggest blunder [Livio, 2013].

2Supernovae of this type are exceptionally bright standard candles, with which it is possible
to reliably calculate the distance from the observer with respect to the observed luminosity.
Before 90´s, it was difficult to discover these supernovae in galaxies due to a lack of technology.
Projects led by Perlmutter and Riess already had larger telescopes at their disposal, with which
it was possible to detect the given types and thus study them, which enabled the mentioned
discovery [Perlmutter et al., 1998].
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2. Introduction and existence of
cosmological constant Λ
Next we will work with the following notation. Any other cases or changes in
notation will be explicitly mentioned.

• The time component will be negative, while the spatial components will be
positive. We will therefore work with the signature (-1,1,1,1). However,
Einstein relied on the inverse signature, i.e. (1,-1,-1,-1) (see eq. (1.2)).

• We will consider geometrized units, where the gravitational constant G and
the speed of light c are equal to one. For consistency, the essential formulas
will also be given in standard units.

We will show that the existence of cosmological constant Λ stems directly from
the basic principles of the general theory of relativity and the significance of the
quantities that characterize this theory. The full EE of the gravitational field will
clearly define the cosmological term with Λ.

2.1 The existence of cosmological constant Λ
EE, like Maxwell’s equations, are fundamental, in other words, they are not de-
rived from other equations. They are deductively derived from the developed
theory of the gravitational field based on the initial principles that must apply
to the theory.

The only way to work on EE is to use the existing theory of the gravitational
field, i.e. Newton’s theory, and transform it into Einstein’s. Newton’s theory is
characterized by the Poisson equation, i.e.

∆ϕ(t, r⃗) = 4πρ(t, r⃗), (2.1)

where the gravitational constant G is assumed to be equal to 1, given that we
consider geometrized units. In standard units, the eq. (2.1) reads as ∆ϕ(t, r⃗) =
4πGρ(t, r⃗).

The eq. (2.1) contains several problems which, when solved, lead to EE. First of
all, it is good to realize that the given eq. (2.1) describes the effect immediately.
Both the potential ϕ and the density ρ depend on time and the position vector
r⃗, while the time is exactly the same on both sides. On the right side there is no
retardation of time. There is no propagation between bodies in finite time, but
infinite instead. Thus, if the field is to propagate the eq. (2.1) should contain
not only spatial derivatives, but also a temporal derivative, which does not occur
there. This discrepancy is at odds with causality.

The second problem that the eq, (2.1) poses is that it is not covariant. Be-
cause if it met the principle of general covariance, it would have to be invariant.
The left side of the Poisson equation is invariant, which can be seen by replacing
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the Laplace operator ∆ with the d´Alambert operator □, solving the first causal-
ity problem, as d´Alambert also contains the second time derivative1. However,
the right-hand side of the eq. (2.1) is not an invariant because the density of ρ
in Newtonian theory of gravity is given by the relation dM

dV
, where dM is not the

rest mass and dV is not the rest volume. This problem can also be solved if we
write ρ0, i.e. the proper density, instead of ρ. Thus we re-write the eq. (2.1) to
the tensorial form, which already satisfies the condition of causality and also the
condition of general covariance.

ϕµ
;µ = 4πρ0. (2.2)

The newly formed eq. (2.2) is valid only in the rest system, because only in such
a system can the gravitational action of a substance be described by the rest
density ρ0. In the general theory of relativity, we need the field equations to be
valid not only in a rest system, but in any system. We replace the right side
of the eq. (2.2) with the energy and momentum tensor T µν , which captures not
only the energy density, but also the energy density flow and the momentum den-
sity flow, necessary to describe the gravitational interaction in the general system.

On the left side, in the original Poisson eq. (2.1), the Laplace operator ap-
pears. This operator is linear in second derivatives and in the Chapter 3, we
show that the equivalent quantity against the potential phi in the general theory
of relativity is the metric, i.e. the components of the metric tensor gµν . Thus,
it is natural to require that the left side contain a second-order tensor, since the
right side is proportional to T µν . Another requirement for the left side is that it
must contain metric, its first derivatives and its second derivatives. Derivatives
of higher order of the metric can be neglected due to the fact that the Laplace
operator is second order and we also require that the second derivatives of the
metric to be linear, which again follows from the nature of the Laplace operator.
Let us define the left side as

Aµν = Aµν(gαβ, gαβ,γ, gαβ,γδ). (2.3)

It will be clear from the forthcoming Chapters that the first derivatives of the
metric are clearly connected with Christoffel’s symbols. The problem is that
Christoffel symbols are not tensors because they can be reset in a locally inertial
system. However, we will require that the dependence of the searched left side
does not depend on the system in which we are, so we no longer have to directly
consider the first derivatives of the metric in the searched form of the tensor Aµν .

It can be shown that every tensor Aµν defined in this way can be expressed
unambiguously using the variables gβ and Rαβγδ, i.e. using both metrics and
Rieman’s tensor, which must be linear. This restriction reduces the tensor Aµν

to
Aµν = Aµν(Rµν , Rgµν , gµν). (2.4)

The dependence of the individual variables in the rule for Aµν will define the left
side of EE. We will rewrite the original equations of the gravitational field (2.1)

1In the equation: □ϕ ≡ ϕµ
;µ ≡ gµνϕ;µν , is ϕ invariant, then the whole left side of the eq.

(2.1) is invariant.
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in the form
c1Rµν + c2Rgµν + c3gµν = c4Tµν . (2.5)

It is possible to derive the relationship between the constants c1 and c2 if we use
the 2-nd Bianchi identity in the following form

Rµν
[αβ;ρ] = 0 (2.6)

and conservation laws
T µν

;ν = 0. (2.7)
The final form of the coefficients that multiply the terms in EE by Rµν , Rgµν , gµν

and Tµν are 1, −1
2 , c3

c1
a c4

c1
, respectively.

The left side of EE represents the geometry of space-time. In addition to the
contraction of the Riemann tensor, the metric tensor multiplied by the constant
c3
c1

, which we denote as Λ, enters the geometry of space-time as well. We have
shown that the full EE of the gravitational field necessarily contain a Λ-term,
which is also called a cosmological term.

2.2 Intuitive meaning of cosmological constant
The source right hand-side of EE contains the energy and momentum tensor Tµν .
This tensor can be defined for different media. In our applications, we will further
use its prescription for charged incoherent dust and for an ideal fluid. So let’s
define the energy and momentum tensor for charged incoherent dust as

T dust
µν = gαµgβνρuαuβ (2.8)

and for an ideal fluid as

T fuid
µν = gαµgβν

[︂
(ρ + P )uαuβ + Pgαβ

]︂
. (2.9)

2.2.1 Cosmological constant Λ as a source
Let’s define EE for an ideal fluid as

Rµν − 1
2Rgµν + Λgµν = 8π [(ρ + P )uµuν + Pgµν ] . (2.10)

The energy-momentum tensor of an ideal fluid has, in contrast to the energy-
momentum tensor of dust, an additional component – pressure. Thus, the differ-
ence lies within the interaction being involved in the equations of its components
via pressure, whereas in the case of the energy-momentum tensor of dust there is
no such a term.

Let’s re-arrange the eq. (2.10) to better understand the meaning of the Λ−term.

Rµν − 1
2Rgµν = 8π [(ρ + P )uµuν + Pgµν ] − Λgµν

= 8π [(ρ + P )uµuν ] + (8πP − Λ)gµν .
(2.11)
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Note from eq. (2.11) that Λ−term in EE is acting against pressure. We know
from Euler’s equations that pressure acts similarly to the density of matter, from
which we can directly characterize the significance of the negative and positive
value of the cosmological constant. For Λ > 0 with respect to what is written,
we can state that it acts repulsively, unlike Λ < 0, which acts attractively.

To further clarify the Λ-term in EE let’s assume the vacuum system, i.e. Tµν = 0

Rµν − 1
2Rgµν + Λgµν = 0. (2.12)

Let’s place the term with the Λ (Λgµν) to the right-hand side and notice that it
acts as source, i.e.

Rµν − 1
2Rgµν = −Λgµν . (2.13)

Comparing the eq. (2.13) to the expression of the energy-momentum tensor of
an ideal fluid given by (2.9) we get the equations for both pressure (equation of
state) and density of the system with Λ-term acting as a source

−Λgµν = 8π [(ρ + P )uµuν + Pgµν ]
=⇒ P = −ρ

=⇒ ρ = Λ
8π

.

(2.14)

2.2.2 Cosmological constant Λ as an independent constant
of Einstein’s equations

The second option is that we look at the cosmological constant as an independent
constant of the established theory. In the first case, we considered that the cos-
mological constant acted on the right source side as a source of curvature. The
basis of this view is the idea that the established EE (1.2) contain the Newtonian
gravitational constant G and the cosmological constant Λ, which characterize the
gravitational interaction.

This whole Chapter is based on [Nowakowski, 2001, Weinberg, 1989, Tavora,
2020, Walters, 2016].
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3. Newtonian limit

3.1 Newtonian limit without cosmological con-
stant

We start from the geodesic equation, which can be written as [Hartle, 2002]

d2xν

dτ 2 + Γν
µσ

dxµ

dτ

dxσ

dτ
= 0. (3.1)

Einstein’s general theory of relativity is an extension of the Newton’s theory of
gravity designed to cover the high speeds and areas of strong gravitational fields.
In another the non-relativistic (i.e. v << c), weak gravity limit of Einstein’s
theory leads to Newton’s theory.

The above mentioned can be characterized as

• Weak gravitational field - The gravitational field should be homoge-
neous. The weak gravitational field condition can be formulated as a
slight additional perturbation hµν to the Minkowski space-time, described
bt Minkowski metric1 Let us formulate then the covariant metric tensor as
[Misner et al., 1973]

gµν = ηµν + hµν , (3.3)
whereas the contravariant version of the metric tensor follows [Misner et al.,
1973]

gµν = ηµν − hµν . (3.4)
Let us show that both statements are consistent, i.e. that their product has
to result in Kronecker delta

(ηµν + hµν) (ηνσ − hνσ) =
= δσ

µ + hσ
µ − hσ

µ + O(h2).
(3.5)

We treat hµν as if it were a field in Minkowski space-time and raise or lower
its indices using η

hσ
µ = ηβσhµβ. (3.6)

We neglect the O(h2) contribution to the inner product defined by eq.
(3.5) as hµν ≪ ηµν . Therefore we get the same result as one would expect

1Consider the Cartesian coordinate system in which the Minkowski metric is diagonal, that
is

ηµν =

⎛⎜⎜⎝
−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠ , (3.2)

which is described by the ην [Anadijiban, 1993].

10



when carrying out the inner product in Minkowski space-time without the
perturbation.

Γν
µσ = gαµΓαρσ

= 1
2gµα (gαρ,σ + gσα,ρ − gρσ,α)

= 1
2 [ηµα − hµα) ((ηαρ + hαρ),σ + (ησα + hσα),ρ − (ηρσ + hρσ),α]

= 1
2 (ηµα −✟✟hµα) (hαρ,σ + hσα,ρ − hρσ,α) ,

(3.7)

where we used the fact that the derivative of the Minkowki tensor is zero,
so the only contributing term to the Christoffel symbols is the derivative
of the term hµν . We can delete the term hµα as well because that would
contribute to the result up to the term O(h2). The Christoffel symbols then
translate as

Γν
µσ = 1

2 (ηµα) (hαρ,σ + hσα,ρ − hρσ,α) , (3.8)

• Slow movements - This assumption dictates the spatial components of
the four-velocity to be smaller than the time component of the four-velocity⃓⃓⃓⃓

⃓dxi

dτ

⃓⃓⃓⃓
⃓ ≪

⃓⃓⃓⃓
⃓ dt

dτ

⃓⃓⃓⃓
⃓ . (3.9)

The expression given by eq. (3.9) is written in geometrized units, with the
speed of the light equal to one. Contrary to the standard unit represen-
tation the term ct is substituted by t in the time component of four-velocity.

Let us write the first term in (3.9) using the coordinate time t instead
of proper time τ ⃓⃓⃓⃓

⃓dxi

dt

⃓⃓⃓⃓
⃓
✓
✓
✓✓

⃓⃓⃓⃓
⃓ dt

dτ

⃓⃓⃓⃓
⃓ ≪

✓
✓
✓✓

⃓⃓⃓⃓
⃓ dt

dτ

⃓⃓⃓⃓
⃓ . . . |vi| ≪ c, (3.10)

where we used the fact that Lorentz factor, defined as dt
dτ

, is non-zero and
after truncation we reverse back to the standard units showing the initial
velocity assumption.

We describe the geodesic equation (3.1) as

d2xν

dτ 2 + Γν
00

(︄
dt

dτ

)︄2

+
✟✟

✟✟✟✟

Γν
0j

dt

dτ

dxj

dτ
+

✟
✟✟✟

✟✟

Γν
j0

dxj

dτ

dt

dτ
+

✟
✟✟✟

✟✟

Γν
ji

dxj

dτ

dxi

dτ
= 0. (3.11)

where most of the terms can be neglected, because from the breakdown of the
christoffel symbols given by (3.7) it is obvious that they are small because as they
are of size O(h) and also the spatial components of four-velocity are small com-
pared to the time component of four-velocity. It is reasonable to ignore the last
three terms of the eq. (3.11), where the last term is small in all aspects discussed,
i.e. in the Γ and in both four-velocity spatial components, and the second and
third terms are small in the Γ and in one four-velocity spatial component. The
first term is small only in the Γ and will remain present. The geodesic equation
then translates as

d2xν

dτ 2 + Γν
00

(︄
dt

dτ

)︄2

= 0. (3.12)
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Limiting ourselves to the stationary situations the metric tensor follows

gµν,0 = 0, (3.13)

where it is obvious that the given relation is not covariant, i.e. it depends on the
choice of coordinates2.

Let us incorporate the latter assumption of the stationary field into non-zero
components of Christoffel symbols

Γν
00 = 1

2 (ηµα) (✟✟✟hα0,0 +✟
✟✟h0α,0 − h00,α)

= −1
2h ,ν

00 .
(3.14)

Inserting the eq. (3.14) into the eq. (3.12) we obtain Newtonian limit (hereafter
NL) of the geodesic equation (3.1) as

d2xν

dτ 2 − 1
2h ,ν

00

(︄
dt

dτ

)︄2

= 0. (3.15)

• Time component ν = 0 of eq. (3.16)

d2x0

dτ 2 −
✟✟

✟✟✟
✟✟✟1

2h ,0
00

(︄
dt

dτ

)︄2

= 0

=⇒ d2t

dτ 2 = 0 =⇒ dt

dτ
= const.

(3.16)

The second term from eq. (3.16) is zero due to stationary field asusumption
and we obtain a linear dependence between dt and dτ .

• Spatial components ν = i of eq. (3.15)

d2xi

dτ 2 − 1
2h ,i

00

(︄
dt

dτ

)︄2

= 0. (3.17)

First of all, we solve the derivation of spatial coordinates with respect to
proper time dτ , so that we obtain the derivation of spatial coordinates with
respect to the coordinate time dt

d2xi

dτ 2 = d

dτ

(︄
dxi

dt

dt

dτ

)︄
= d2xi

dt2

(︄
dt

dτ

)︄2

+
✟✟

✟✟✟✟dxi

dt

(︄
d2t

dτ 2

)︄
. (3.18)

The second term is equal as the eq. (3.16) holds. With this in mind we
write the eq. (3.17) as

d2xi

dt2

(︄
dt

dτ

)︄2

− 1
2h ,i

00

(︄
dt

dτ

)︄2

= 0/

(︄
dt

dτ

)︄2

=⇒ d2xi

dt2 − 1
2h ,i

00 = 0, (3.19)

where we again used the non-zero property of Lorentz factor dt
dτ

.
2The stationary field assumption is better expressed so that there are such coordinates in

which the metric does not depend on time. Furthermore this coordinate system must be exactly
the one in which the metric can be decomposed into a Minkowski special relativistic part and
a small perturbation given by hµν , as described in eq. (3.3).
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Consider the Newtonian equation [Misner et al., 1973]

d2xi

dt2 = −ϕ,i. (3.20)

If we compare this equation with NL of the geodesic equation given by (3.19) we
can determine the term h00, as this perturbation term is clearly related to the
Newtonian potential gradient

h00 = −2ϕ + const. (3.21)

If we consider the classical Newtonian potential, it is natural to normalize it
according to the needs of the given problem. We know that such a potential for
an isolated system with a central body will be zero for r → ∞. Alternatively if
we assume that at infinity we will have a flat space-time, described by Minkowski
metric, h00 will be zero, so the integration constant const has to be equal to zero
as well, i.e.

h00 = −2ϕ. (3.22)
Let us insert this term into eq. (3.3) and we get

g00 = −1 − 2ϕ, (3.23)

which considering standard units translates as

g00 = −1 − 2ϕ

c2 . (3.24)

3.2 Newtonian limit with cosmological constant
Let us formulate EE in the following form [Einstein, 1916]

Rµν − 1
2Rgµν⏞ ⏟⏟ ⏞

Gµν

+Λgµν = κTµν , (3.25)

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric tensor, Λ is
the cosmological constant and Tµν is the energy-momentum tensor.

For our purposes it is more practical to rewrite the eq. (3.25) so that only Ricci
tensor appears on the left-hand side and calculate its trace

gµν
(︃

Rµν − 1
2Rgµν + Λgµν

)︃
= gµν (κTµν)

R − 2R + 4Λ = κT

R = −κT + 4Λ.

(3.26)

We substitute the result of eq. (3.26) for Ricci’s scalar R into the original EE
(3.25), i.e.

Rµν − 1
2(4Λ − κT )gµν + Λgµν = κTµν

Rµν − 2Λgµν + 1
2κTgµν + Λgµν = κTµν

Rµν = κ
(︃

Tµν − 1
2Tgµν

)︃
+ Λgµν .

(3.27)
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Next we define the Riemann tensor as [Misner et al., 1973]

Rσ
µαν ≡ Γσ

µν, − Γσ
µα, + Γσ

βαΓβ
µν − Γσ

βνΓβ
µα. (3.28)

Given the definition of the Riemann tensor and the definition of the Ricci tensor,
which arises from the contraction of Riemann tensor in the first and the third
index, we can write [Misner et al., 1973]

Rµν ≡Rσ
µσν

= Γσ
µν,σ − Γσ

µσ,ν + Γσ
ασΓα

µν − Γσ
ανΓα

µσ

= ✟
✟✟✟Γ0
µν,0 + Γi

µν,i −✟
✟✟✟Γ0
µ0,ν −✟✟✟Γi

µi,ν +✘✘✘✘✘Γ0
00Γ0

µν +✘✘✘✘✘Γ0
i0Γi

µν +✘✘✘✘✘Γj
0jΓ0

µν+
+✘✘✘✘✘Γj

ijΓi
µν −✘✘✘✘✘Γ0

0νΓ0
µ0 −✘✘✘✘✘Γ0

iνΓi
µ0 −✘✘✘✘✘Γj

0νΓ0
µj −✘✘✘✘✘Γj

iνΓi
µj =

= Γi
µν,i,

(3.29)
where we used, that all Christoffel symbols are zero except Γi

00. It is thus clear
from eq. (3.29) that the only choice of indices µ and ν resulting in non-zero
Christoffel symbol are µ = 0 and ν = 0, i.e. we are left with the term Γi

00,i.

If we combine the results given by eq. (3.14) and (3.22) we can write

R00 = Γi
00,i = ϕ,i

,i ≡ ∆ϕ. (3.30)

Based on the above calculated non-zero components of the Ricci tensor we rewrite
the equation (3.27) as

R00 = κ
(︃

T00 − 1
2Tg00

)︃
+ Λg00, (3.31)

where the left-hand side is given by the eq. (3.30) and the right-hand side needs
to be further expressed in the NL.

The right- hand side of eq. (3.31), therefore, contains the terms T00, T and
g00 that need to be modified. We g00 term is given by eq. (3.23). We formulate
the remaining two terms in the NL as

• T : From the definition of the energy-momentum tensor of dust [Landau and
Lifshitz, 1980] we can write

T µν
dust = ρ0u

µuν . (3.32)

We further define its trace as
T = ρuµuµ

= ρgµνuµuν

= ρgµν dxµ

dτ

dxν

dτ

= ρ
ds2

dτ 2

= −ρ,

(3.33)

whereas the result is expressed in geometric units. Considering standard
units we would have to multiply the density by the speed of light squared
(−ρc2).
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• T00:

T00 = ρu0u0

= ρ(g00u
0 +✟

✟✟g0iu
i)u0

.= ρg00u
0u0

= ρg00(−1 −✟
✟✟uiui)

.= −ρg00

= −ρ(−1 −✚
✚2ϕ)

.= ρ,

(3.34)

where in the first approximation we considered that the time component
of four-velocity is much larger than its spatial components. In the second
step, we neglected the potential, which is small compared to 1. Standard
unit expression would again lead to ρc2.

Now considering the zero cosmological constant, i.e. Λ = 0, in eq. (3.31) we get

R00 ≡ ∆ϕ = κ
(︃

T00 − 1
2Tg00

)︃
= κ

(︃
ρ − 1

2(−ρ)(−1 − 2ϕ)
)︃

= κ
(︃

ρ − 1
2ρ − ρϕ)

)︃
= κ

(︃1
2ρ
)︃

.

(3.35)

Poisson’s equation in classical Newtonian physics in standard units is given by

∆ϕ = 4πGρ. (3.36)

Comparing the eq. (3.36) and (3.35) constrains the value of constant κ to 8π,
expressed in standard units as 8πG

c4 .

Finally, let us “switch on“ the cosmological constant Λ. Considering the ex-
pressions for the Ricci tensor R00 and the dust energy-momentum tensor T00 the
eq. (3.31) then translates as

R00 ≡ ∆ϕ = 4πρ + Λg00

= 4πρ + Λ(−1 − 2ϕ)
= 4πρ − Λ − 2Λϕ

∆ϕ + 2Λϕ = 4πρ − Λ.

(3.37)

This whole Chapter is based on [Nowakowski, 2001, Weinberg, 1989, Earman,
2001].
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4. Solution of the Newtonian
limit

4.1 Numerical solution in Cartesian coordinates
Let’s go back to Chapter 3, where we derived the NL in the form of (3.37). The
second key equation is the Poisson equation

∆ϕ(x, y, z) = 4πρ(x, y, z), (4.1)

Next, let’s define the Laplace operator ∆ in the Cartesian coordinate system as

∆ = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . (4.2)

Given the definition of the Laplace operator (4.2), let’s rewrite the eq. (2.10) and
(4.1). For simplicity, we consider only one coordinate (e.g. x), thus replacing the
full 3 dimensional solution with 1 dimensional one, still preserving the physical
nature of the problem.

In the following we formulate two cases, i.e. case I and case II, where case
I will correspond to a solution with Λ-term equal to zero and case II Λ-term
being non-zero.

• case I
∂2ϕ(x)

∂x2 = 4πρ(x). (4.3)

• case II
( ∂2

∂x2 + 2Λ)ϕ(x) = 4πρ(x) − Λ. (4.4)

Let’s define ∆x, where we discretize the continuous variable x

∆x = b − a

n
; xi = a + i∆x, i = 1, ..., n − 1, (4.5)

where a and b are the initial and final value of the distance at which we will in-
vestigate the potential ϕ and n is the numerical value by which we cut the given
spatial section b-a into ∆xi. The larger n, the closer our solution will be to the
real one, i.e. ∆xi → 0 for n → ∞.

We introduce the notation describing the physical quantities ϕ and ρ evaluated
at certain point of our discretized mesh, i.e.

ϕi+1 = ϕ(xi + ∆x)
ϕi = ϕ(xi)

ϕi−1 = ϕ(xi − ∆x)
ρi = ρ(xi).

(4.6)
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Let us define the Taylor polynomial at a given point as [Weir et al., 1996]
∞∑︂

n=0

fn(a)
n! (x − a)n. (4.7)

Based on the definition of (4.7), let us expand the given parts of the potential
into Taylor series (a=0 )

ϕi+1 = ϕ(xi + ∆x)

= ϕi + ∆x
∂ϕ

∂x

⃓⃓⃓⃓
⃓
x=xi

+ ∆x2

2!
∂2ϕ

∂x2

⃓⃓⃓⃓
⃓
x=xi

+ ∆x3

3!
∂3ϕ

∂x3

⃓⃓⃓⃓
⃓
x=xi

+ ...
(4.8)

and

ϕi−1 = ϕ(xi − ∆x)

= ϕi − ∆x
∂ϕ

∂x

⃓⃓⃓⃓
⃓
x=xi

+ ∆x2

2!
∂2ϕ

∂x2

⃓⃓⃓⃓
⃓
x=xi

− ∆x3

3!
∂3ϕ

∂x3

⃓⃓⃓⃓
⃓
x=xi

+ ...
(4.9)

Adding the eq. (4.8) and (4.9) leads to

ϕi+1 + ϕi−1 = 2ϕi + ∆x2 ∂2ϕ

∂x2

⃓⃓⃓⃓
⃓
x=xi

+ O(∆x4). (4.10)

Notice that the linear and cubic terms are subtracted from each other, so we can
express from the given equations the formula for the second derivative, which ap-
pears in the Poisson equation. The term of the fourth derivative will contribute
to the error of potential determination most significantly1. For sufficiently small
values of ∆x (or for sufficiently large n) the error will be of the order of negligi-
bility with respect to the constant and quadratic term [Apostol, 1967].

In the last step of this scheme we express the second derivative (4.10) as

∂2ϕ

∂x2 = ϕi+1 − 2ϕi + ϕi−1

∆x2 + O(∆x2). (4.11)

Now let us formulate the case I and II respectively

• case I
∂2ϕ(x)

∂x2 = 4πρ(x) →

ϕi+1 − 2ϕi + ϕi−1

∆x2 + O(∆x2) = 4πρi,

(4.12)

where, after multiplication by the quadratic error, we obtain

ϕi+1 − 2ϕi + ϕi−1 +✘✘✘✘✘O(∆x2) = ∆x24πρi. (4.13)

Error O(∆x2) has been deleted based on the negligible impact on the given
equation [Apostol, 1967].

1From the nature of the definition of the Taylor polynomial, we see that only even powers
contribute to the error of potential determination. All odd powers are subtracted from each
other.
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• case II

( ∂2

∂x2 + 2Λ)ϕ(x) = 4πρ(x) − Λ →

ϕi+1 − 2ϕi + ϕi−1

∆x2 + O(∆x2) + 2Λϕi = 4πρi − Λ,

(4.14)

where similarly to the case I (4.13), after multiplication by the quadratic
error, we obtain

ϕi+1 − ϕi(2 − 2Λ∆x2) + ϕi−1 +✘✘✘✘✘O(∆x2) = ∆x2(4πρi − Λ). (4.15)

Based on the same discussion as in case I, we deleted the term O(∆x2).

Eq. (4.13) and (4.14) differ from each other in one term multiplied by ϕi. We
notice that both finite difference schemes of the Poisson equations can be unified
as

ϕi+1 − αϕi + ϕi−1 = ∆x24πρi, α ∈ R. (4.16)
Assuming Dirichlet boundary conditions the unified finite difference scheme of
Poisson equation translates in matrix formalism as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−α 1 0 0 0 . . . . . . 0
1 −α 1 0 0 . . . . . . 0
0 1 −α 1 0 . . . . . . 0
0 0 1 −α 1 . . . . . . 0
0 0 0 1 −α

. . . . . .
...

...
...

... . . . . . . . . . . . . ...
0 0 0 0 . . . . . . . . . 1
0 0 0 0 0 0 1 −α

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

A

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1
ϕ2
ϕ3
ϕ4
...
...
...

ϕn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

x

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∆x2(4πρ1 − Λ) − ϕ0
∆x2(4πρ2 − Λ)
∆x2(4πρ3 − Λ)
∆x2(4πρ4 − Λ)

...

...

...
∆x2(4πρn−1 − Λ) − ϕn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
⏞ ⏟⏟ ⏞

b

.

(4.17)
We obtained the matrix equation Ax⃗ = b⃗. Now solving the system of linear
equations given by (4.17) will present us with the potential ϕ.

The solution for the required potential ϕ is conditioned by choosing both the
initial and final value of potential ϕ0 and ϕn, respectively, as well as the density
profile ρ. We are interested in the change of the potential behaviour based on
solutions when Λ = 0 and Λ ̸= 0, i.e. the case of a modified Poisson equation
with a Λ−term.

4.2 Numerical solution in Spherical coordinates
In a similar way as in sub-section 4.1, we derive a solution in Spherical coordinates.
We will start from the Poisson equation in the form (4.1) and the NL (3.37). The
Laplace operator in Spherical coordinates reads as

∆ = 1
r2

∂

∂r

(︄
r2 ∂

∂r

)︄
+ 1

r2 sin(θ)
∂

∂θ

(︄
sin(θ) ∂

∂θ

)︄
+ 1

r2 sin2(θ)
∂2

∂φ2 , (4.18)
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Eq. (4.18) depends on three variables r, θ and φ. For simplicity, considering the
spherical symmetry, i.e. ∂

∂θ
= ∂

∂φ
= 0, we write

∆ = 1
r2

∂

∂r

(︄
r2 ∂ϕ(r)

∂r

)︄
= ∂2ϕ(r)

∂r2 + 2
r

∂ϕ(r)
∂r

. (4.19)

Applying the spherical Laplace given by (4.19) to case I and case II we obtain

• case I
∆ϕ(r) = r

∂2ϕ(r)
∂r2 + 2∂ϕ(r)

∂r
= 4πρ(r)r. (4.20)

• case II

(∆ + 2Λ)ϕ(r) = r
∂2ϕ(r)

∂r2 + 2∂ϕ(r)
∂r

+ 2Λrϕ(r)

= (4πρ(r) − Λ)r.
(4.21)

Similar to Cartesian coordinates, let’s discretize ∆r

∆r = b − a

n
; ri = a + i∆r, i = 1, ..., n − 1. (4.22)

Taking similar steps for the evaluation of potential ϕ and density ρ at the certain
points of our discretized mesh we define

ϕi+1 = ϕ(ri + ∆r)
ϕi = ϕ(ri)

ϕi−1 = ϕ(ri − ∆x)
ρi = ρ(ri).

(4.23)

Let’s expand the potentials ϕi+1 and ϕi−1 into the Taylor series as

ϕi+1 = ϕ(ri + ∆r)

= ϕi + ∆r
∂ϕ

∂r

⃓⃓⃓⃓
⃓
r=ri

+ ∆r2

2!
∂2ϕ

∂r2

⃓⃓⃓⃓
⃓
r=ri

+ ∆r3

3!
∂3ϕ

∂r3

⃓⃓⃓⃓
⃓
r=ri

+ ...
(4.24)

and

ϕi−1 = ϕ(ri − ∆r)

= ϕi − ∆r
∂ϕ

∂r

⃓⃓⃓⃓
⃓
r=ri

+ ∆r2

2!
∂2ϕ

∂r2

⃓⃓⃓⃓
⃓
r=ri

− ∆r3

3!
∂3ϕ

∂r3

⃓⃓⃓⃓
⃓
r=ri

+ ...
(4.25)

In order to express the second and first derivatives in spherically symmetric vari-
ations of the Poisson equation, it is necessary to define the difference and the sum
of the eq. (4.24) and (4.25)

ϕi+1 + ϕi−1 = 2ϕi + ∆r2 ∂2ϕ

∂r2

⃓⃓⃓⃓
⃓
r=ri

+ O(∆r4) (4.26)

and
ϕi+1 − ϕi−1 = 2∆r

∂ϕ

∂r

⃓⃓⃓⃓
⃓
r=ri

+ O(∆r3). (4.27)
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The expression (4.26) involves the error O(∆r4) in the same way as it was with
Cartesian coordinates. Additional term that will contribute to the error of deter-
mining the second derivative in the Poisson equations will be O(∆r6). In another
words, all even powers. A similar discussion based on [Weir et al., 1996] will rule
out these errors compared to the largest term. The expression (4.27) is already
burdened by a third-order error, as these powers add up to (4.26). Thus, the
determination of the first derivative, which is moreover found in the spherical
expression of the Poisson equation, as opposed to the Cartesian expression, is
burdened by all odd powers from the third order. Due to the nature of the prob-
lem, we will neglect all these powers compared to the largest term [Weir et al.,
1996].

We re-formulate case I and case II

• case I

r
∂2ϕ(r)

∂r2 + 2∂ϕ(r)
∂r

= 4πρ(r)r →

ri
ϕi+1 − 2ϕi + ϕi−1

∆r2 + ϕi+1 − ϕi−1

∆r
+ O(∆r2) = 4πρiri

ϕi+1

(︃
ri

∆r2 + 1
∆r

)︃
− ϕi

2ri

∆r2 + ϕi−1

(︃
ri

∆r2 − 1
∆r

)︃
+✘✘✘✘✘O(∆r2) = 4πρiri,

(4.28)

where the error O(∆r2) was neglected [Weir et al., 1996]. For simplicity we
define four variables, which multiply the individual parts of the potentials
evaluated at certain mesh points, i.e.

αI
i = ri

∆r2 + 1
∆r

βI
i = 2ri

∆r2

γI
i = ri

∆r2 − 1
∆r

δI
i = 4πρiri.

(4.29)

Now let’s rewrite eq. (4.28) using αI
i, βI

i , γI
i and δI

i as in eq. (4.29).

αI
iϕi+1 − βI

iϕi + γI
iϕi−1 +✘✘✘✘✘O(∆r2) = δI

i . (4.30)

• case II (︄
r

∂2

∂r2 + 2 ∂

∂r
+ 2Λr

)︄
ϕ(r) = (4πρ(r) − Λ)r →

ri
ϕi+1 − 2ϕi + ϕi−1

∆r2 + ϕi+1 − ϕi−1

∆r
+ O(∆r2) + 2Λriϕi =

(4πρi − Λ)ri

ϕi+1(
ri

∆r2 + 1
∆r

) − ϕi(
2ri

∆r2 − 2Λri) + ϕi−1(
ri

∆r2 − 1
∆r

) +✘✘✘✘✘O(∆r2) =

(4πρi − Λ)ri.

(4.31)
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Similarly define the variables that multiply the individual parts of the po-
tentials evaluated at certain mesh points in eq. (4.31)

αII
i = ri

∆r2 + 1
∆r

βII
i = 2ri

∆r2 − 2Λri

γII
i = ri

∆r2 − 1
∆r

δII
i = (4πρi − Λ)ri.

(4.32)

Further we write eq. (4.31) using αII
i , βII

i , γII
i and δII

i from eq. (4.32)
αII

i ϕi+1 − βII
i ϕi + γII

i ϕi−1 = δII
i . (4.33)

Comparing the case I and case II leads unification of finite difference scheme as
follows

αI
i = αII

i ≡ αi

βI
i ̸= βII

i

γI
i = γII

i ≡ γi

δI
i ̸= δII

i

(4.34)

αiϕi+1 − β
I/II
i ϕi + γiϕi−1 = δ

I/II
i . (4.35)

Assuming Dirichlet boundary conditions the unified finite difference scheme of
Poisson equation translates in matrix formalism as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β
I/II
1 α1 0 0 0 . . . . . . 0

γ2 −β
I/II
2 α2 0 0 . . . . . . 0

0 γ3 −β
I/II
3 α3 0 . . . . . . 0

0 0 γ4 −β
I/II
4 α4

. . . . . . 0
0 0 0 γ5 −β

I/II
5

. . . . . .
...

... ... ... . . . . . . . . . . . . ...
0 0 0 0 . . . . . . . . . αn−2

0 0 0 0 0 0 γn−1 −β
I/II
n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1
ϕ2
ϕ3
ϕ4
...
...
...

ϕn−2
ϕn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
I/II
1 − γ1ϕ0

δ
I/II
2 r2

δ
I/II
3 r3

δ
I/II
4 r4

...

...

...
δ

I/II
n−2

δ
I/II
n−1 − αn−1ϕn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.36)
Now solving the system of linear equations given by (4.36) will present us with
the potential ϕ represented in Spherical coordinates.

21



4.3 Numerical solution in Polar coordinates
The last case of coordinates system in which we will investigate the Poisson equa-
tions are Polar coordinates. Let’s define the Laplace operator in Polar coordinates
as follows

∆(f) = 1
r

∂

∂r

(︄
r

∂

∂r

)︄
(f) + 1

r2
∂

∂θ

(︄
∂

∂θ

)︄
(f). (4.37)

The expression (4.37) depends on two variables r and θ. Assuming axial symme-
try, i.e. ∂

∂θ
= 0, the Laplace operator translates as

∆ = 1
r

∂

∂r

(︄
r

∂

∂r

)︄
= ∂2ϕ(r)

∂r2 + 1
r

∂ϕ(r)
∂r

. (4.38)

Applying the polar Laplace given by (4.38) to case I and case II we obtain

• case I
∆ϕ(r) = r

∂2ϕ(r)
∂r2 + ∂ϕ(r)

∂r
= 4πρ(r)r. (4.39)

• case II

(∆ + 2Λ)ϕ(r) = r
∂2ϕ(r)

∂r2 + ∂ϕ(r)
∂r

+ 2Λrϕ(r)

= (4πρ(r) − Λ)r.
(4.40)

In a similar way, we introduce a discrete variable ∆r2, such as

∆r = b − a

n
; ri = a + i∆r, i = 1, ..., n − 1. (4.41)

We introduce the notation describing the physical quantities ϕ and ρ evaluated
at certain point of our discretized mesh, i.e.

ϕi+1 = ϕ(ri + ∆r)
ϕi = ϕ(ri)

ϕi−1 = ϕ(ri − ∆r)
ρi = ρ(ri).

(4.42)

We expand the potentials ϕi+1 and ϕi−1 in the Taylor series

ϕi+1 = ϕ(ri + ∆r)

= ϕi + ∆r
∂ϕ

∂r

⃓⃓⃓⃓
⃓
r=ri

+ ∆r2

2!
∂2ϕ

∂r2

⃓⃓⃓⃓
⃓
r=ri

+ ∆r3

3!
∂3ϕ

∂r3

⃓⃓⃓⃓
⃓
r=ri

+ ...
(4.43)

and

ϕi−1 = ϕ(ri − ∆r)

= ϕi − ∆r
∂ϕ

∂r

⃓⃓⃓⃓
⃓
r=ri

+ ∆r2

2!
∂2ϕ

∂r2

⃓⃓⃓⃓
⃓
r=ri

− ∆r3

3!
∂3ϕ

∂r3

⃓⃓⃓⃓
⃓
r=ri

+ ...
(4.44)

2The notation is the same as for Spherical coordinates, because it is essentially the same
variable.
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Laplace in Polar coordinates (4.38) contains similarly as Laplace in Spherical
coordinates the first and second derivative, therefore it is necessary to subtract
the eq. (4.43) and (4.44) and add them once again to obtain the respective
derivatives.

ϕi+1 + ϕi−1 = 2ϕi + ∆r2 ∂2ϕ

∂r2

⃓⃓⃓⃓
⃓
r=ri

+ O(∆r4) (4.45)

and
ϕi+1 − ϕi−1 = 2∆r

∂ϕ

∂r

⃓⃓⃓⃓
⃓
r=ri

+ O(∆r3). (4.46)

The expression (4.45) involves even powers of errors from the fourth upwards,
while due to the same discussion as in the case of Spherical coordinates higher
powers are neglected against the largest term. The same discussion applies to the
eq. (4.46), which is burdened with odd errors from the third order upwards.

Given the above, let’s define case I and case II for Polar coordinates

• case I

r
∂2ϕ(r)

∂r2 + ∂ϕ(r)
∂r

= 4πρ(r)r →

ri
ϕi+1 − 2ϕi + ϕi−1

∆r2 + ϕi+1 − ϕi−1

2∆r
+ O(∆r2) = 4πρiri

ϕi+1(
ri

∆r2 + 1
2∆r

) − ϕi
2ri

∆r2 + ϕi−1(
ri

∆r2 − 1
2∆r

) +✘✘✘✘✘O(∆r2) = 4πρiri.

(4.47)

In eq. (4.47) we define the variables that multiply the individual parts of
the potentials evaluated at certain mesh points as

αI
i = ri

∆r2 + 1
2∆r

βI
i = 2ri

∆r2

γI
i = ri

∆r2 − 1
2∆r

δI
i = 4πρiri.

(4.48)

Let’s rewrite the eq. (4.47) using the introduced variables αI
i, βI

i , γI
i a δI

i as

αI
iϕi+1 − βI

iϕi + γI
iϕi−1 = δI

i . (4.49)

• case II

(r ∂2

∂r2 + ∂

∂r
+ 2Λr)ϕ(r) = (4πρ(r) − Λ)r →

ri
ϕi+1 − 2ϕi + ϕi−1

∆r2 + ϕi+1 − ϕi−1

2∆r
+ O(∆r2) + 2Λriϕi =

= (4πρi − Λ)ri

ϕi+1(
ri

∆r2 + 1
2∆r

) − ϕi(
2ri

∆r2 − 2Λri) + ϕi−1(
ri

∆r2 − 1
2∆r

) +✘✘✘✘✘O(∆r2) =

= (4πρi − Λ)ri.

(4.50)
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Let’s define the following

αII
i = ri

∆r2 + 1
2∆r

βII
i = 2ri

∆r2 − 2Λri

γII
i = ri

∆r2 − 1
2∆r

δII
i = (4πρi − Λ)ri.

(4.51)

Given the definition of the variables by eq. (4.51), let’s rewrite the eq.
(4.50) as

αII
i ϕi+1 − βII

i ϕi + γII
i ϕi−1 = δII

i . (4.52)

As in the case of the spherical equivalent of the Poisson equation we compare the
defined variables for case I and case II, i.e.

αI
i = αII

i = αi

βI
i ̸= βII

i

γI
i = γII

i = γi

δI
i ̸= δII

i .

(4.53)

We further define unified finite difference scheme as

αiϕi+1 − β
I/II
i ϕi + γiϕi−1 = δ

I/II
i . (4.54)

Assuming Dirichlet boundary conditions the unified finite difference scheme of
Poisson equation translates in matrix formalism as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−β
I/II
1 α1 0 0 0 . . . . . . 0

γ2 −β
I/II
2 α2 0 0 . . . . . . 0

0 γ3 −β
I/II
3 α3 0 . . . . . . 0

0 0 γ4 −β
I/II
4 α4

. . . . . . 0
0 0 0 γ5 −β

I/II
5

. . . . . .
...

... ... ... . . . . . . . . . . . . ...
0 0 0 0 . . . . . . . . . αn−2

0 0 0 0 0 0 γn−1 −β
I/II
n−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ϕ1
ϕ2
ϕ3
ϕ4
...
...
...

ϕn−2
ϕn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δ
I/II
1 − γ1ϕ0

δ
I/II
2

δ
I/II
3

δ
I/II
4
...
...
...

δ
I/II
n−2

δ
I/II
n−1 − αn−1ϕn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.55)
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Now solving the system of linear equations given by (4.55) will present us with
the potential ϕ represented in Polar coordinates.
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5. Results
We show the behaviour of the numerically solved potential for both cases – with
and without the cosmological constant Λ. We also discuss the differences between
the two potentials for the case of Spherical and Polar coordinates.

In order to be able to compare the individual numerical solutions we need to
know at least one analytical solution to the problems. We will take the solution
of eq. (3.37) and (2.1) for the vacuum, for the case of spherical symmetry, as
the starting analytical solution. Thus, we require an accurate vacuum analytical
solution for NL

1
r2

d

dr

(︄
r2 d

dr

)︄
ϕ + 2Λϕ = −Λ (5.1)

and accurate vacuum analytical solution for Poisson equation

1
r2

d

dr

(︄
r2 d

dr

)︄
ϕ = 0. (5.2)

The analytical solution of eq. (5.1) can be derived due to the knowledge of
the analytical solution for the so-called Yukava potential. This potential was
derived by Hideki Yukawa in 1934 for case of the potential that describes the
field of nuclear forces [Yukawa, 1935]. The analytical solution for the spherically
symmetric case (5.1) is given by (see in detail Appendix A.1)

ϕvacuum(r) = Ā

r
cos

√
2Λr + C̄

r
sin

√
2Λr − 1

2 . (5.3)

The difference between solutions (5.3) and the solution for the classical Newtonian
potential for vacuum case (see in detail Appendix A.2) follows

∼ (
√

2Λr) − (
√

2Λr)2

2! − (
√

2Λr)3

3! . (5.4)

If we take into account the current size of Λ (Λ ≈ 10−56 cm−2 [Kohn, 2020]), the
ratio of the leading term (

√
2Λr)1, which contributes to the difference of both

solved potentials the most, is for small distances the following

• Sun-Jupiter distance: On scales up to the distance of Jupiter from the
sun (∼ 7 × 1013 cm [Nasa, 2021a]), for vacuum case, we can assume

(
√

2Λr)2

2! + (
√

2Λr)3

3!

(
√

2Λr)
≈ Λ 1

2 r + Λr2 ≈ 10−28 × 1013 + 10−56 × 1026

≈ 10−15 + 10−30 ≈ 10−15.

(5.5)

We see that the worst case scenario on Sun-Jupiter scales will cause a max-
imum error of 10−15.

1If we define small spatial scales up to the size of our galaxy, which is about ∼ 1023 cm,
then the term (

√
2Λr) is indeed the dominant term (i.e. in the worst case scenario) and still an

order of magnitude 10−5 larger than the next term (
√

2Λr)2

2! .
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• Sun-Voyager I distance: On scales up to the distance of Voyager I from
the sun (∼ 2 × 1015 cm [Nasa, 2021b]), for vacuum case, we can assume

(
√

2Λr)2

2! + (
√

2Λr)3

3!

(
√

2Λr)
≈ Λ 1

2 r + Λr2 ≈ 10−28 × 1015 + 10−56 × 1030

≈ 10−13 + 10−26 ≈ 10−13.

(5.6)

We see that the worst case scenario on Sun-Voyager I scales will cause a
maximum error of 10−13.

• Distance of the gravitational interaction of the sun: Considering
the characteristic scales between ∼ 0 cm and ∼ 2 × 1018 cm [Nasa, 2021c],
which is approximately the upper limit of the gravitational interaction of
the sun

(
√

2Λr)2

2! + (
√

2Λr)3

3!

(
√

2Λr)
≈ Λ 1

2 r + Λr2 ≈ 10−28 × 1018 + 10−56 × 1036

≈ 10−10 + 10−20 ≈ 10−10.

(5.7)

We see that the worst case scenario, the scale of the order of the outer edge
of the solar system will cause, corresponds to a maximum error of 10−10.

• The dimensions of our galaxy: The characteristic dimensions of galaxies
in space are variable. However, we consider distances proportional to the
radius of our galaxy, which are ∼ 1023 cm [Coffey, 2010]

(
√

2Λr)2

2! + (
√

2Λr)3

3!

(
√

2Λr)
≈ Λ 1

2 r + Λr2 ≈ 10−28 × 1023 + 10−56 × 1046

≈ 10−5 + 10−10 ≈ 10−5.

(5.8)

The worst case scenario that can occur at such a distance is proportional
to the error 10−5.

We calculated two potentials – without Λ, denoted as ϕunperturbed and the potential
with Λ denoted as ϕperturbed . In total, we considered four distance scales, namely
the Sun-Jupiter distance, the Sun-Voyager1 I distance, the radius of solar system
and the radius of our galaxy. Each case was analyzed for the following density
profiles to ρ = 0, ρ = const, ρ ∝ r and ρ ∝ 1

r
.
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5.1 Sun-Jupiter distance
For the Sun-Jupiter distance, we observe large deviation between ϕunperturbed and
ϕperturbed in the case of zero density. For long distances, both potentials are close
to zero, which are reasonable boundary conditions. Given the analytical solutions
(5.1) and (5.2), we are able to determine the expected difference between the two
potentials in the case of vacuum assuming spherical symmetry. The difference
will be given by the leading term (

√
2Λr), which for the distance 5.2 Au is at

the level of 10−14.The numerical method described in Chapter 4 gives identical
results for the selected case (see Figure 5.1).

After adding the mass to the problem, the difference between the calculated
potentials is reduced by several orders of magnitude. However, this is not the
case in general. In the case of constant density the potential difference shifts to
the level of 10−16 (see Figure 5.2). For a linearly decreasing density, the difference
is at the 10−15 level (see Figure 5.4). However, if we consider a linearly increas-
ing density with distance, then the difference increases by one order of power
(∼ 10−13). This phenomenon is probably due to the above-discussed character of
Λ, which acts against gravity, i.e. against matter (see Figure 5.3).

We do not observe a significant change in results given different choice of coor-
dinates. However, changing the coordinate system causes a shift in the distance
where the maximum difference between the calculated potentials takes place.

However, the plotted differences ϕunperturbed and ϕperturbed are at the limit of
measurability with respect to the double precision, i.e. at the level of 10−16.
The differences vary with respect to the given density profile. At such small
distances, the density profile is highly unbalanced, which is likely to shift the dif-
ference towards the limit value 10−16 compared to the vacuum solution. Despite
the different density profiles, we should not reach smaller differences than 10−16,
and therefore even at such a short distance it should be possible to detect the
cosmological constant Λ.
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5.2 Sun-Voyager I distance
In the case of the Sun-Voyager I distance we observe large deviation between
ϕunperturbed and ϕperturbed in the case of zero density. For long distances, both
potentials are close to zero, which are reasonable boundary conditions. Given
the analytical solutions (5.1) and (5.2), we are able to determine the expected
difference between the two potentials in the case of vacuum assuming spherical
symmetry. The difference will be given by the leading term (

√
2Λr) (same as for

Sun-Jupiter distance), which for the distance 150 Au is at the level of 10−13.The
numerical method described in Chapter 4 gives identical results for the selected
case (see Figure 5.5).

The difference between the numerically calculated potentials begins to change
with respect to the density profile. In the case of constant density the potential
difference shifts to the level of 10−15 (see Figure 5.6). For linearly decreasing den-
sity, the difference is at 10−14 (see Figure 5.8). However, if we consider linearly
increasing density profile the difference increases almost by one order, which is
exactly same result as in the case of Sun-Jupiter distance. This phenomenon is
probably due to the above-discussed character of Λ acting against gravity, i.e.
against matter (see Figure 5.7).

Different density profiles influence the differences of potentials ϕunperturbed and
ϕperturbed in detectable values, i.e. above the double precision level. However, it
is necessary to consider more realistic profiles to describe the density distribution
between the sun and Voyager I.

We do not observe a significant change in results given different choice of co-
ordinates. Changing the coordinate system causes a shift in the distance where
the maximum difference between the calculated potentials takes place.
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5.3 Distance of the gravitational interaction of
the sun

For the distance of the gravitational interaction of the sun we also observe large
deviation between ϕunperturbed and ϕperturbed in the case of zero density. For long
distances, both potentials are close to zero, which are reasonable boundary condi-
tions. Given the analytical solutions (5.1) and (5.2) we are able to determine the
expected difference between the two potentials in the case of vacuum assuming
spherical symmetry. The difference will be given by the leading term (

√
2Λr)

(same as for Sun-Jupiter distance), which for the distance 120 000 Au is at the
level ∼ 10−10.The numerical method described in Chapter 4 above gives identical
results for the selected case (see Figure 5.9).

After adding the mass to the problem, the difference between the calculated
potentials is in some cases reduced by several orders of magnitude, but in the
case of linearly increasing density with distance increases by one order of power
(see Figure 5.11). In the case of constant density the potential difference shifts to
the level of 10−12 (see Figure 5.10). For linearly decreasing density, the difference
is at 10−11 (see Figure 5.12).

Given the choice of density profile we observe a considerable variable distribution
of differences for the potentials ϕunperturbed and ϕperturbed. However, this does not
play a big role as even a difference of a few 10 000 Au at such a distance still
accounts for a theoretically measurable difference in potential.

We do not observe a significant change in results given different choice of coor-
dinates. However, changing the coordinate system causes a shift in the distance
where the maximum difference between the calculated potentials takes place.
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5.4 Distance of the radius of our galaxy
For the distance of the gravitational interaction on the scale of the radius of our
galaxy, we observe deviation between ϕunperturbed and ϕperturbed in the case of zero
density. For long distances, both potentials are close to zero, which are reasonable
boundary conditions. Given the analytical solutions (5.1) and (5.2) we are able
to determine the expected difference between the two potentials in the case of
vacuum assuming spherical symmetry. The difference will be given by the leading
term (

√
2Λr) (same as for Sun-Jupiter distance), which for the distance 105 700

ly is at the level ∼ 10−5.The numerical method described in Chapter 4 above
gives identical results for the selected case (see Figure 5.13).

After adding the mass to the problem, the difference between the calculated
potentials is in some cases reduced by several orders of magnitude but in the case
of linearly increasing density profile it increases by one order of power (see Figure
5.15). In the case of constant density the potential difference shifts to the level of
10−9 (see Figure 5.14). For linearly decreasing density, the difference is at 10−8

(see Figure 5.16).

We do not observe a significant change in results given different choice of coor-
dinates. However, changing the coordinate system causes a shift in the distance
where the maximum difference between the calculated potentials takes place.

Overall, the differences on such large scales should theoretically be detectable.
In general the dimensions of galaxies in the universe vary as well as their density
distribution, which will significantly change the order differences compared to
the ones we calculated. However, given the galactic scales and the leading term
(
√

2Λr) of the series, we can state that the differences between ϕunperturbed and
ϕperturbed will certainly be detectable for some cases.
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5.5 Commentary on the numerical solutions
The numerical method we used to determine the difference between ϕunperturbed
and ϕperturbed was implemented for four different density profiles, i.e. ρ = 0,
ρ = const, ρ ∝ r and ρ ∝ 1

r
. We compared the accuracy of the numerical solution

with the exact analytical solution for one density profile, specifically for ρ = 0.

The theoretical basis for the numerical solution of such a system is applicable
to various input parameters of the mass distribution on the studied scales. The
calculations were performed, only on spatial scales up to ∼ 1023.

We show all captured differences for the considered density profiles in both coor-
dinate systems.

Table 5.1: The difference between ϕunperturbed and ϕperturbed for different density
profiles, i.e. ρ = 0, ρ = const, ρ ∝ r and ρ ∝ 1

r
.

Distance [cm] ρ = 0 ρ = const ρ ∝ 1
r

ρ ∝ r

7.8×1013 10−14 10−16 10−15 10−13

Sperical 2.2×1015 10−13 10−15 10−14 10−12

coordinates 1.8×1018 10−10 10−12 10−11 10−9

1.0×1023 10−5 10−7 10−6 10−4

7.8×1013 10−14 10−16 10−15 10−13

Polar 2.2×1015 10−13 10−15 10−14 10−12

coordinates 1.8×1018 10−10 10−12 10−11 10−9

1.0×1023 10−5 10−7 10−6 10−4

Due to the double precision, we see that the differences between ϕunperturbed and
ϕperturbed on the spatial scales up to the size of the Sun-Jupiter distance are de-
tectable. The order of magnitude of differences with respect to the density profiles
used may be even greater if we approach the real density distribution. We expect
the real density profile to reduce the vacuum error by one to two orders of magni-
tude, bringing us closer to the limit value 10−16. It is not certain with regard to
today’s instruments whether it is possible to observe such minimal differences in
the Keplerian orbits given the perturbation Λ−term. At smaller distances than
the Sun-Jupiter distance, the difference ϕunperturbed and ϕperturbed is likely to be
immeasurable due to reaching the limit of the double precision.
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Conclusion and future
prospectives
In the introduction part we have highlighted the most important milestones of
the cosmological constant Λ. We have also shown that the existence of Λ in Ein-
stein’s field equations follows directly and relentlessly from the basic principles
the general relativity is built upon.

Another extensive part of this work was the derivation of the Newtonian limit
from Einstein’s field equations. We then used the Poisson’s equation of New-
tonian gravity and the modified Poisson’s equation of the Newtonian limits of
Einstein’s field equations as starting equations to account for the differences in
potential once we introduced the cosmological constant Λ.

After introducing spherical and polar symmetry, we have numerically calcu-
lated the difference in potentials of both equations for specified density profiles
(ρ = 0, ρ ∝ const (const = 1), ρ ∝ r, ρ ∝ 1

r
). We derived an analytical solution

for zero density, based on which we checked the correctness of the numerical so-
lution.

We show different behaviour of ϕunperturbed and ϕperturbed at different distances
(5 Au – 100 000 ly), for four density profiles (ρ = 0, ρ ∝ const (const =
1), ρ ∝ r, ρ =∝ 1

r
) in two coordinate systems (Spherical coordinates, Polar

coordinates). At these distances the order of the magnitude of the differences
between ϕunperturbed and ϕperturbed is ranging from 10−17 to 10−4 depending on the
density profile (see Figures (5.1)-(5.16) and table (5.1)). The difference between
ϕunperturbed and ϕperturbed decreases with distance according to the theoretical as-
sumptions.

The thesis also opens many future prospects, which can be summarized as follows

• To describe the most realistic density profiles for each distance scale. Based
on these data, then to determine the realistic distance at which the influence
of the cosmological constant Λ can be observed.

• To create a theoretical model that could measure the cosmological constant
Λ on such small scales.

• To propose an experimental solution to the problem based on a theoretical
model.
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A. Analytical solution and Taylor
series

A.1 Analytical solution of the Newtonian limit
for vacuum

Consider a vacuum where the density is zero. We will rewrite equation (3.37) in
the form:

∆ϕ + 2Λϕ = −Λ. (A.1)
In spherical symmetry, a partial differential equation (A.1) transitions to an or-
dinary differential equation. Let us first solve the homogeneous part, i.e. the
right side is equal to zero. Let us consider a similar differential equation with the
opposite sign, i.e. ∆ϕ − 2Λϕ = −Λ, with its homogeneous part is ∆ϕ − 2Λϕ = 0.
This latter type of differential equation was already solved by Hideki Yukawa in
1934, so let us assume that the solution of homogeneous part of eguation (A.1)
will be in the form ϕ(r) = A

r
cos(Br)+ C

r
sin(Br). However, since our equation for

the case of vacuum is different in the sign on the left hand side compared to the
original Yukawa equation1 [Yukawa, 1935], we consider the solution imaginary in
exponential, i.e. a combination of sine and cosine functions. We will be interested
in the constant B

1
r2

d

dr

(︄
r2 d

dr

)︄
ϕ(r) + 2Λϕ(r) = 0

1
r2

d

dr

(︄
r2 d

dr

)︄(︃
A

r
cos(Br) + C

r
sin(Br)

)︃
+

+2Λ
(︃

A

r
cos(Br) + C

r
sin(Br)

)︃
= 0

1
r2

d

dr

(︄
r2
[︄

−ABsin(Br)r − Acos(Br) + CBcos(Br)r − Csin(Br)
r2

]︄)︄
+

+2Λ
(︃

A

r
cos(Br) + C

r
sin(Br)

)︃
= 0

1
r2

(︂
−AB2cos(Br)r −✘✘✘✘✘✘✘

ABsin(Br) +✘✘✘✘✘✘✘
ABsin(Br) − CB2sin(Br)r+

+✘✘✘✘✘✘✘
CBcos(Br) −✘✘✘✘✘✘✘

CBcos(Br) + 2Λ
(︃

A

r
cos(Br) + C

r
sin(Br)

)︃
= 0

−AB2

r
cos(Br) − CB2

r
sin(Br) + 2Λ

(︃
A

r
cos(Br) + C

r
sin(Br)

)︃
= 0(︂

−AB2 + 2ΛA
)︂

cos(Br) +
(︂
−CB2 + 2ΛC

)︂
sin(Br) = 0.

(A.2)

1The vacuum case of the Yukawa equation in Spherical coordinates is (∆− 1
c2

∂2

∂t2 −λ2)U = 0,
where the unknown potential U is a function of x, y, z a t [Yukawa, 1935].
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Fulfilling the zero right hand side will lead to these combinations(︂
−AB2 + 2ΛA

)︂
= 0 ∧

(︂
−CB2 + 2ΛC

)︂
= 0 ∨(︂

−AB2 + 2ΛA
)︂

= 0 ∧ sin(Br) = 0 ∨

cos(Br) = 0 ∧
(︂
−CB2 + 2ΛC

)︂
= 0 ∨

cos(Br) = 0 ∧ sin(Br) = 0.

(A.3)

From the above conditions (A.3) it is clear that only the first one can be met,
because sin(r) = 0 for r = 0+kπ, where k ∈ N and cos(r) = 0 for r = k π

2 , where
k ∈ N. Due to this, it is not possible to meet the fourth condition and resetting
the parentheses is not possible for r = 0 + kπ or r = k π

2 , so we are left with(︂
−AB2 + 2ΛA

)︂
= 0 ∧

(︂
−CB2 + 2ΛC

)︂
= 0 =⇒ B = ±

√
2Λ. (A.4)

We consider the boundary condition for the potential at infinity to be zero. Since
we considered only a real solution, we hide the resulting sign B in the appropriate
constants A and C, which we denote as Ā and C̄. The analytical solution of the
homogeneous part of the differential equation (A.1) then follows

ϕ0(r) = Ā

r
cos

√
2Λr + C̄

r
sin

√
2Λr. (A.5)

We seek the particular solution with respect to the right side as a constant k

ϕp(r) = k (A.6)

and we estime the value of constant k as

1
r2

d

dr

(︄
r2 d

dr

)︄
ϕp(r) + 2Λϕp(r) = −Λ

1
r2

d

dr

(︄
r2 d

dr

)︄
k + 2Λk = −Λ

+2Λk = −Λ

k = −1
2 .

(A.7)

We substitute the expression (A.6) into (A.1) to determine the required constant
k. With respect to the theory of solving differential equations, the resulting
solution will be given by the sum of the homogeneous part of the differential
equation ϕ0(r) and the particular solution ϕp(r). The overall vacuum analytical
solution of (A.1) then follows

ϕvacuum(r) = ϕ0(r) + ϕp(r). (A.8)
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We verify our solution as

1
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d

dr

(︄
r2 d

dr

)︄
ϕp(r) + 2Λϕp(r) = −Λ

1
r2

d

dr
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2
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Ā
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2)
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√

2Λsin(
√

2Λr)r − Ācos(
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+
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Ā

r
cos(
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√
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2
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√
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r
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2
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0 = 0
(A.9)

The analytical solution of equation (A.1) in spherical symmetry for the vacuum
given by (A.8) reads as

ϕvacuum(r) = Ā

r
cos

√
2Λr + C̄

r
sin

√
2Λr − 1

2 . (A.10)
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A.2 Taylor series of the vacuum solution
Given the analytical solution (A.10), we write the Taylor series for sin(x) and
cos(x) as

sin(x) =
∞∑︂

n=0
(−1)n x2n+1

(2n + 1)! , x ∈ (−∞, +∞) (A.11)

and
cos(x) =

∞∑︂
n=0

(−1)n x2n

(2n)! , x ∈ (−∞, +∞). (A.12)

Let’s write the first tree terms of the series for (A.11) and (A.12)

sin(x) ≈ x − x3

3! + x5

5! − O(x7) (A.13)

and
cos(x) ≈ 1 − x2

2! + x4

4! − O(x6). (A.14)

Let’s rewrite the vacuum analytical solution (A.10) as

ϕvacuum(r) = 1
r

(︂
Ācos

√
2Λr + C̄sin

√
2Λr

)︂
− 1

2 . (A.15)

Substituting the series for (A.11) and (A.12) into (A.15) and we obtain

ϕvacuum(r) ≈ 1
r

(︄
Ā

[︄
1 − (

√
2Λr)2

2! + (
√

2Λr)4

4! − O((
√

2Λr)6)
]︄

+

+C̄

[︄
(
√

2Λr) − (
√

2Λr)3

3! + (
√

2Λr)5

5! − O((
√

2Λr)7)
]︄

− 1
2 .

(A.16)

The vacuum solution of the Poisson equation in spherical symmetry is

ϕP oisson(r) = D

r
, (A.17)

where the sign is hidden in the constant D and due to the zero character of the
Newtonian potential for r → ∞ we set the other integration constant equal to
zero.

The calculations are performed on the spatial scales of the galaxy. Due to the
large variability of sizes, we chose our galaxy as a reference, i.e. spatial scales of
the order of ∼ 1023 cm. For such scales, it is reasonable to consider the develop-
ment of goniometric functions up to the cube at most, as each additional power
represents an error below double precision levels, because Λ ∼ 10−56 cm−2. We
the modify the expression for ϕvacuum(r) as

ϕvacuum(r) ≈ 1
r

(︄
Ā + C̄(

√
2Λr) − Ā

(
√

2Λr)2

2! − C̄
(
√

2Λr)3

3!

)︄
− 1

2 . (A.18)

We do not consider the displacement of the perturbed vacuum potential, so let’s
neglect the term −1

2 , and also after a suitable normalization of the constants Ā

and C̄ we can observe the difference between the potentials for the vacuum case
at the following level

C̄(
√

2Λr) − Ā
(
√

2Λr)2

2! − C̄
(
√

2Λr)3

3! . (A.19)

60


	Introduction
	Development of cosmological constant Λ
	Introduction and existence of cosmological constant Λ
	The existence of cosmological constant Λ 
	Intuitive meaning of cosmological constant
	Cosmological constant Λ as a source
	Cosmological constant Λ as an independent constant of Einstein's equations


	Newtonian limit
	Newtonian limit without cosmological constant
	Newtonian limit with cosmological constant

	Solution of the Newtonian limit
	Numerical solution in Cartesian coordinates
	Numerical solution in Spherical coordinates
	Numerical solution in Polar coordinates

	Results
	Sun-Jupiter distance
	Sun-Voyager I distance
	Distance of the gravitational interaction of the sun
	Distance of the radius of our galaxy
	Commentary on the numerical solutions

	Conclusion and future prospectives
	Bibliography
	List of Figures
	List of Tables
	List of Abbreviations
	Analytical solution and Taylor series
	Analytical solution of the Newtonian limit for vacuum
	Taylor series of the vacuum solution


