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Abstract: In this work, we explore the quantum information theoretical aspects
of simulation of quantum systems on classical computers, in particular the many-
electron strongly correlated wave functions. We describe a way how to reduce
the amount of data required for storing the wavefunction by a lossy compression
of quantum information. For this purpose, we describe the measures of quantum
entanglement for the density matrix renormalization group method. We imple-
ment the computation of multi-site generalization of mutual information within the
DMRG method and investigate entanglement patterns strongly correlated chemi-
cal systems. We present several ways how to optimize the ground state calculation
in the DMRG method. The theoretical conclusions are supported by numerical
simulations of the diborane molecule, exhibiting chemically interesting electronic
structure, like the 3-centered 2-electron bonds. In the theoretical part, we give a
brief introduction to the principles of the DRMG method. Then we explain the
quantum informational motivation behind our quantum chemical calculations and
present results.
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Introduction and Motivation

“In the year 1992, S. R. White introduced a very powerful numerical method, the
density-matrix renormalization group (DMRG). It allows us to determine the phys-
ical properties of low-dimensional correlated systems such as quantum spin chains
or chains of interacting itinerant electrons to unprecedented accuracy.” (from Sza-
lay et al. [2015])// // Simulating quantum chemical problems is a well-known
difficult task, whose complexity scales exponentially with the number of particles
involved.

Since the quantum computers, promising an efficent solution to these problems
have not arrived yet to practice, we must make use of the most powerful comput-
ing clusters in order to be able to simulate quantum chemistry. The electronic
molecular Hamiltonian reads

Ĥ =T̂ + Û (1)

= −


i

2

2me

∇2
ri

+
1

2



i



j>i

e2

4π0 |ri − rj|
(2)

This would be impossible without using clever approximations and optimiza-
tions.

What do we mean by effective simulation? That is such simulation whitch
exhibits polynomial scaling with the input size (e.g. number of particles, or more
practically number of bytes).

There are many different methods which attemp to deal with the complexity of
the quantum chemical simulations. Namely the density functional theory, coupled
clusters, renormalization group methods and so on.

This thesis focuses on the density matrix renormalization group method from
the quantum information theoretical point of view. We describe the DMRG opti-
mizations and generalizations for multipartite entanglement calculations.

First we introduce the relevant quantum theoretical terms, then we explain
how is the entanglement relevant for quantum chemical calculations. We explain
the principles of some basic optimizations for the DMRG method and finally we
conlude with describing the three-site mutual information calculation that we car-
ried out for the diborane molecule, having programmed a new and fully general
DMRG module for such calculations.
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1. Quantum Entanglement and
Quantum Information Theory

1.1 What is entanglement? Composite Quan-

tum Systems

In this section, we will define the basic terms to clarify what do we mean by
quantum entanglement and how do we think of the composite quantum systems
from the viewpoint of Quantum Information Theory. Let us start with a definition
of a pure state.

Definition 1 (Pure state). A quantum system is said to be in a pure state, if we,
in theory, have a complete knowledge about the system. That is, we know exactly in
which state the system is. In the Hilbert space H, representing the possible states
of a quantum system, the pure state is represented by a single vector |ψ ∈ H.

Let H be finite dimensional. That is, there is a finite set of basis states |i ∈ H,
such that each pure state in H can be expressed as

|ψ =
n

i=1

ci |i , ci ∈ C (1.1)

and we say H is n-dimensional.
Now we understand what is meant by a pure state. In contrast to the pure

state, there is a mixed state, which we will define shortly. But first let’s introduce
the quantum entanglement.

Imagine a quantum system composed of two or more parts. From a mathe-
matical point of view, such parts are the subspaces of full system’s Hilbert space
H, which can be expressed as a tensor product of the subspaces. For a bipartite
system built from partitions H1 and H2, we have H = H1

H2. However, each
state cannot be expressed as a tensor product |ψ = |ψ1 ⊗ |ψ2 of states from the
first and second partition. To be exact, such states are the most common. So,
how do we compose |ψ from the subsystem states?

Let us fix the basis of H1 and H2 as |j and |k, with a different dimension in
general. Now each state |ψ ∈ H can be expressed a tensor product

|ψ =

n1

j=1

n2

k=1

cjk |j ⊗ |k (1.2)
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where cjk is a n1×n2 matrix of complex amplitudes. Further on, we will use a short
notation |j ⊗ |k ≡ |j |k. The above structure can be generalized to multiple
partitions, with basis |i1 |i2 |i3 ... |iN. Assuming all N partitions to have the
same dimension q, the tensor of complex amplitutes then takes a form ci1i2i3...iN ,
with a dimension qN . This is the case for many-particle systems.

Now let’s use the definition and examples from Galindo and Mart́ın-Delgado
[2002] to introduce the two key terms for this chapter.

Definition 2 (Entangled and separable state). A quantum pure state |ψ in a
Hilbert space H =

N
i=1 Hi is said to be separable with respect to the factor spaces

H1, ...,HN , when it can be factorized as follows

|ψ = ⊗N
i=1 |ψi , |ψi ∈ Hi (1.3)

Otherwise the state |ψ is called entangled.

To give few examples of entangled states, we will use the simplest multipartite
Hilbert space built of qubits, that is distinguishable spin-1

2
particles on the lattice,

each such partition with dimension q = 2 and basis |0 , |1. Here we will use
common abbreviations like |0 ⊗ |1 ⊗ |0 ≡ |010.

Famous examples are the Bell states or EPR pairs introduced by Einstein et al.
[1935]

Φ± :=
1√
2

[|00 ± |11] , (1.4)

Ψ± :=
1√
2

[|01 ± |10] . (1.5)

According to Galindo and Mart́ın-Delgado [2002], these states can be physically
represented by a spin-1

2
triplet or singlet, or by entagled polarized photons.

For a three-qubit case, we will mention the GHZ state, introduced by Green-
berger et al. [1989]

|GHZ :=
1√
2

[|000 + |111] . (1.6)

The GHZ state has been observed experimentally in polarization of three entangled
spatially separated photons by Bouwmeester et al. [1999].

1.2 Measuring Entanglement

In past decades, it turned out that quantum entanglement is a feature that disct-
incts the quantum systems from classical ones. For instance, entanglement allows
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quantum information to overcome some of the limitations posed by classical infor-
mation, as exemplified by the phenomena of teleportation, dense coding, etc., to
be explained in the following sections. For these reasons, a new view of entagle-
ment had to be introduced by Bennett [1998], considering it a resource in quantum
information. Something that we must have available if we want to exploit the new
communication and cryptography possibilities offered by the quantum protocols.

And even if those futuristic concepts were not applied eventually, it is still
essential to understand the qualification and quantification of quantum entan-
glement. Important questions like “How much is the system entangled?” gave
rise to the entanglement measures and separability criteria, fields with still many
unanswered questions and often without a consent over conclusions. These topics
correspond to the issue of classification of multipartite entanglement, which have
been explored for pure states, but for mixed state ensembles, there are still many
open problems. In further text, we will discuss how various quantities measuring
entanglement can be used for classifying the partial separability. We will show
why these terms are relevant for optimizing the quantum simulations and how
do we take advantage of them in designing the DMRG and other tensor product
methods.

There are several types of entanglement measures that can be calculated from
the density operator, which we will introduce shortly. Those entropies characterize
the mixedness of a multipartite system state. Let us cite several examples given in
the paper by Szalay et al. [2015]. The most commonly used entanglement measure
is the von Neumann entropy, followed by the more general one-parameter Rényi
entropies for parameter lower than 1, the Hartley entropy (assymptotically similat
to Rényi entropy), the Schmidt rank, and the one-parameter family of Tsallis
entropies.

Let us now briefly sum up the prerequisite definitions for intrucing some par-
ticular examples of the entanglement measures. First let us introduce the density
operator. Assume a bipartite division of our quantum system in a state given
by the equation (1.2). Then the reduced density matrix is defined based on the
amplitudes of the state

ρij ≡


l

cilcjl, (1.7)

where i and j index the basis states of the first subsystem, while the l indexex the
second subsystem (environment), which we trace out. ρij represents the matrix
elements of the density operator ρ̂.

ρ̂ ≡


mn

|m ρmn n| (1.8)

which in turn represents the so called mixed state.
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Now imagine a system composed of L identical sites of a 1D lattice. We may
define the von Neumann entropy as.

Definition 3 (n-orbital entropy). Given an orbital labelled by index i on the lattice
i = 1 ... L, we define the one-orbital, two orbital and three orbital von Neumann
entropy as

Si = −


ν

ων i lnων i, (1.9)

Sij = −


ν

ων i j lnων i j, (1.10)

Sijk = −


ν

ων i j k lnων i j k, (1.11)

(1.12)

where ων l, ων i j, ων i j k are the eigenvalues of one-orbital, two-orbital and three–
orbital reduced density matrix ρi, ρij, ρijk, indexed by ν, with the rest of the system
traced out like in equation 3.2.

Now we are ready to define the site mutual information between two lattice
sites.

Iij = −Sij + Si + Sj. (1.13)

This quantity is one of the most important entanglement measures and we will
describe it further in chapter 3.
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2. Matrix Product States and
Tensor Product Approximation

2.1 Singular Value Decomposition

In this section, we will briefly introduce the priciple of Singular Value Decomposi-
tion (SVD), a very flexible tool from linear albegra widely used in the chapters to
follow for entanglement based optimizations. This method, based on the good old
separation of variables, provides us with a powerful framework for parametrizing
tensors in a data-sparse representation suitable for quantum states in bipartite
Hilbert spaces. In the case of quantum states, it is known as the Schmidt decom-
position. Now we are going to define SVD, based on definition from the textbook
by Golub and Van Loan [1996].

= =

Figure 4: Resulting matrix shapes from a singular value decomposition (SVD), corresponding to the two rectangular
shapes that can occur. The singular value diagonal serves as a reminder that in M = USV † S is purely non-negative
diagonal.

This is schematically shown in Fig. 4. Singular values and vectors have many highly interesting
properties. One which is of practical importance in the following is the optimal approximation
of M (rank r) by a matrix M′ (with rank r′ < r) in the Frobenius norm ∥M∥2F =



i j |Mi j|2 induced
by the inner product ⟨M|N⟩ = TrM†N. It is given by

M′ = US ′V† S ′ = diag(s1, s2, . . . , sr′ , 0, . . .), (19)

i.e. one sets all but the first r′ singular values to be zero (and in numerical practice, will shrink
the column dimension of U and the row dimension of V† accordingly to r′).

As a first application of the SVD, we use it to derive the Schmidt decomposition of a general
quantum state. Any pure state |ψ⟩ on AB can be written as

|ψ⟩ =


i j
Ψi j|i⟩A| j⟩B, (20)

where {|i⟩A} and {| j⟩B} are orthonormal bases of A and B with dimension NA and NB respectively;
we read the coefficients as entries of a matrix Ψ. From this representation we can derive the
reduced density operators ρ̂A = TrB|ψ⟩⟨ψ| and ρ̂B = TrA|ψ⟩⟨ψ|, which expressed with respect to
the block bases take the matrix form

ρA = ΨΨ
† ρB = Ψ

†Ψ. (21)

If we carry out an SVD of matrix Ψ in Eq. (20), we obtain

|ψ⟩ =


i j

min(NA ,NB)

a=1
UiaS aaV∗ja|i⟩A| j⟩B

=

min(NA ,NB)

a=1

⎛

⎜⎜⎜⎜⎜⎝



i
Uia|i⟩A

⎞

⎟⎟⎟⎟⎟⎠
sa

⎛

⎜⎜⎜⎜⎜⎜⎝



j
V∗ja| j⟩

⎞

⎟⎟⎟⎟⎟⎟⎠

=

min(NA ,NB)

a=1
sa|a⟩A|a⟩B. (22)

Due to the orthonormality properties of U and V†, the sets {|a⟩A} and {|a⟩B} are orthonormal and
can be extended to be orthonormal bases of A and B. If we restrict the sum to run only over the
r ≤ min(NA,NB) positive nonzero singular values, we obtain the Schmidt decomposition

|ψ⟩ =
r

a=1
sa|a⟩A|a⟩B. (23)

16

Figure 2.1: Singular Value Decomposition scheme. The figure shows dimensions
of matrices in the equation (2.1). Left and right case correspond to nA ≤ nB and
nA ≥ nB respectively. (from Schollwöck [2011])

Let HA and HB be the partitions (subspaces) of the system’s Hilbert space
H. Now SVD states, that an arbitraty matrix M of dimensions nA × nB can be
decomposed as

M = UDV †, (2.1)

with

• U a nA×nmin, where nmin := minnA, nB matrix with orthonormal columns,
the so called left singular vectors, implying U †U = I. In the case when
nA ≤ nB, U becomes unitary with UU † = I.

• D is a diagonal nmin×nmin matrix with nonnegative diagonal entries di called
the singular values. The number of nonzero singular values is the Schmidt
rank of matrix M .
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• V † is a nmin×nB matrix with orthonormal rows (the right singular vectors),
with V †V = I. Analogically, when nA ≥ nB, then also V V † = I and V is
unitary.

Remark. The number r of nonzero singular values is called the Schmidt rank. It
is closely related to the Schmidt decomposition which we will describe shortly.
Furthermore, it is straightforward that the bipartite quantum system is entagled
(we say that the blocks are entangled) if and only if it’s Schmidt rank is strictly
greater than 1.

Remark. Note also that in certain cases when we are not particularly interested
in the singular values, we can decompose M instead of M = UDV † as M = QR,
with R playing the role of DV †. The so-called QR decomposition is faster to
compute and retains the unitarity QQ† = I. Nevertheless for the DMRG method
in further chapters, we will need to find the eigenvalues.

The mathematicians offer us an approximation based on SVD used widely in
quantum chemistry. It approximates matrix M of rank r with a matrix M  of
rank m < r. It optimizes chosen M  with respect to the so-called Frobenius norm

M 2F =


ij

M 
ij

2 induced by the scalar product A|B = Tr

A†B


. Let the

singular values be sorted in descending order d1 ≥ d2 ≥ ... ≥ dr, then the optimal
approximation M  is given by

M ≈M  ≡ UD V †, D = diag (d1, d2, ..., dr, 0, ..., 0) .

Thanks to SVD, we can shrink the column dimension of U and the row dimension
of V † to m in the quantum chemical computations.

We don’t give a proof of the approximation here, since proof of a very similar
statement for DMRG in dirac formalism can be found in the chapter 4.2. For a rig-
orous, but very readable proof of both SVD existence and the above approximation
optimality, please refer to the mathematical lecture notes by Gander [2008].

2.2 The Principle of MPS

In this section, we introduce the Matrix Product State, one of the most effective
methods for storing a quantum state in the computer memory, especially suitable
for the many-body problems.

Let’s have a Hilbert space built of many equal q-dimensional partitions. We
will think of them as sites of a one dimensional lattice of length L. We can fix the
basis for each site and label it e.g. {|i1}, i1 = 1...q for site 1, {|i2} for site 2 and
so on to L. We can write the general pure state as

|ψ =


i1 ... iL

ci1 ... iL |i1 ... iL , (2.2)

9



with the number of coefficients ci1 ... iL growing exponentially with respect to the
number of lattice sites. We would like to find a representation of this state that is
more local with respect to partitions, but at the same time preserves the nonclassi-
cal bonds between them. This can be done using the Singular Value Decompositin.
We will see that even though the products may not seem to be very physical, they
are closely connected to quantum theory.

Let us now follow the steps from Schollwöck [2011] to derive the procedure
which decomposes the matrices from the left, resulting in the so-called left-canonical
MPS. In order to put it in the SVD, we have to reshape the qL-dimensional state
vector into a q× qL−1 matrix by setting the first site to index the row number and
other site indices to designate the column number. Then we perform the SVD,
changing the basis {|i1} → {|u1}

Ψi1 (i2 ... iL) =ci1 ... iL (2.3)

Ψi1 (i2 ... iL) =

r1

u1

Ui1u1du1V
†
u1 (i2 ... iL)

≡
r1

u1

Ui1u1cu1 i2 ... iL , (2.4)

where in the last step (2.4), we multiplied D and V † and reshaped it back into a
vector c. Now the representation is a little bit more efficient, since the rank is now
r1 ≤ q.

We proceed with an analogical procedure, just for the second lattice site index.
We decompose Ui1u1 into q row vectors Ai1 with elements Ai1

u1
= Ui1u1 . In order

to be able to use SVD again, we also have to reshape cu1 i2 ... iLi −→ Ψ(u1 i2) (i3 ... iL).
So Ψ is a rectangular matrix with dimension r1q × qL−2. Altogether, this yields
following form of c, where we apply the SVD to Ψ in the second step

ci1 ... iL =

r1

u1

Ai1
u1

Ψ(u1 i2) (i3 ... iL), (2.5)

ci1 ... iL =

r1

u1

r2

u2

Ai1
u1
U(u1 i2)u2 du2V

†
u2 (i2 ... iL)

,

=

r1

u1

r2

u2

Ai1
u1
Ai2

u1 u2
Ψ(u2 i3) (i4 ... iL), (2.6)

with another reshape-reorder U(u1 i2)u2 −→ Ai2
u1 u2

and a multiplication

du2V
†
u2 (i2 ... iL)

−→ Ψ(u2 i3) (i4 ... iL). Note the possible decrease of number of elements

to be kept r2 ≤ r1q ≤ q2, where we refer to the dimensions of Ψ, which is now
r2q× qL−3. To be complete, we add that Ai2 is a r1× r2 matrix. In analogy to the
previous two iterations, we continue with applying SVDs and reshaping to arrive

10



to the equality

ci1 ... iL =


u1 ... uL

Ai1
u1
Ai2
u1 u2

... AiL−1
uL−2 uL−1

AiL
uL−1

≡ Ai1Ai2 ... AiL−1AiL , (2.7)

where we wrote the last expression in a compact notation of the matrix product.
Note that Ai1 and AiL are vectors, but we can make them matrices by appending
a dummy index. Then we can write our quantum state as a matrix product state

|ψ =


i1 ... iL

Ai1Ai2 ... AiL−1AiL |i1 ... iL . (2.8)

To be able to perform this procedure on the computer, we have to revise the
dimensions of A-matrices. The maximum dimension will be reached when for each
SVD, the number of non-zero singular values equals the upper bond. Counting the
above SVD iterations, we obtain following dimensions of A-matrices: 1× q, q× q2,
..., qL/2−1×qL/2, qL/2×qL/2−1, ..., q2×q, q×1, going from the first to the last site.
In the middle of the lattice, the matrix dimension blows up exponentially. Thus it
is usually impossible to decompose a many-body quantum state to the exact MPS
representation. We have to introduce some approximations.

We will see in following chapters that the MPS form is particularly appropriate
for the approximations of many-body systems in quantum chemistry and solid state
physics.

Remark. Note another usefull feature of the A-matrices. For each SVD above,
U †U = I holds. After a substition of U with a sequence of Ai, we see that

δum un =


um−1 im

U †
um (um−1 im)U(um−1 im)un

=


um−1 im

Aim†
um um−1

Aim
um−1 um

⇒


im

Aim†Aim = I (2.9)

Such matrices are called left-normalized and a matrix product state will all ma-
trices left normalized is being refered to as left-canonical. Equation (2.9) may not
hold for the last site, but that’s just a minor technicality.

Remark. There was nothing special on starting from the first site on the left.
We can also carry out an analogical procedure starting from the last site and
proceeding in the opposite order. The result is then called right-canonical matrix
product state and its matrices are right-normalized.

11



Consider also combining the two procedures, starting with the decomposition
from the left, reaching lattice site l and then continuing with the decomposition
from the right, finishing at l. This approach yields the so called mixed-canonical
matrix product state, decomposing the tensor c from equation (2.2) as

ci1 ... iL = Ai1 ... Ail DBil+1 ... BiL , (2.10)

where Bi are the matrices of the decomposition from the right and D is a diagonal
matrix of singular values of the bond (l, l + 1).

This form of MPS is particularly interesting for its correspondence with the
decomposition in the DMRG method in chapter 4.3.

For further details about the different approaches to MPS decomposition,
please refer to Schollwöck [2011].

Remark. The MPS can be used even for multi-dimesional lattices and for those the
presented derivation holds too. The problem is that the numerical treatment of
states based on a multi-dimensional lattice is very demanding in terms of the com-
putational resources. Multi-dimensional version of MPS representation is called
Tree Tensor Network State . For futher reference please see Szalay et al. [2015].

Remark. The MPS decomposition is not unique! There is a freedom in choosing
the gauge. Let’s have two adjacent sets of matrices M il , M il+1 , such that they
can be multiplied, with the multiplication row/column dimension D. The matrix
product state is invariant under a following transformation by a D×D matrix X

M il −→M ilX, M il+1 −→ X−1M il+1 . (2.11)

This fact gives the decomposition a gauge degree of freedom.
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3. Optimizing Quantum Chemical
Ab initio Calculations

When dealing with the quantum chemical problems described in the Introduction,
we need to employ a number of approximations, and clever wavefuction repre-
sentations in order to overcome the exponential complexity scaling for many-body
problems. We will see in this chapter, that quantum information theoretical frame-
work may offer some important approaches to treat the system more effectively.
The related matrix product state formalism which was introduced in the previous
chapter proves to be extremely handy in these applications.

3.1 Using Entanglement for Optimization and

Classification

3.1.1 The Role and Significance of Entanglement

Entangled quantum systems exhibit a behaviour completely different from classical
systems. The observed phenomena have no classical counterpart and in this sense
we approach entirely new branch of physics. Entanglement is one of the most
important, if not the most important feature determining the “quantumness” of
a physical system. As was shown by Bell [1964], quantum entanglement is not
a negligible, unimportant property of the system. It can strongly influence the
system and it can easily have a deep impact on the system behaviour, especially
for cats (see Schrödinger [1935]) and more importantly for the discussed fields of
quantum chemistry and solid state physics (see the review by Szalay et al. [2015]).

There are several effective methods for simulating strongly correlated chemical
systems. One of these is the Density Matrix Renormalization Group (QC-DMRG),
which we will describe quite extensively in this work. This method uses the en-
tanglement knowledge itself to effectively aproximate systems of many orbitals
connected with potentially a large number of pairwise interactions.

Entanglement related concepts have been successfully used by quantum infor-
mation theorists to explain the criteria of convergence of this group of numerical
methods. On top of that, the quantum information theory contributed notably in
chemistry, to the development of the electronic structure theory.

In this chapter, we will examine how can the quantum information theory find-
ings contribute to quantum chemical calculations. What new does it tell us about
the structure of the chemically interesting systems, how can we use it to optimize
the necessary approximations, or even to design a completely new methods based
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on the quantum correlations knowledge.
For instance, we can characterize the amount of correlation of an orbital with

the rest of the system by the single-orbital entropy. Sum of these entropies for
all orbitals gives a total correlation, which we can use to detect changes in the
entanglement structure when we modify our representation of wavefunction or
when we alter the system parameters like bond lengths, geometry etc.

However, mutual information is the most important quantity brought by the
Quantum Information theory. It can be used to characterize the entanglement
structure of our system. If we calculate it, then theoreticaly, without any previous
knowledge of the system, we are able to find the most important bonds between
orbitals, to describe the molecule topology, or to detect or verify the presence of a
specific chemical bond between two arbitraty subsystems in any basis we choose
(see Nalewajski [2004] and Szalay et al. [2016]). Also, it provides a good estimate of
the complexity for methods designed to cope with the strongly correlated systems,
e.g. the QC-DMRG, since they are widely dependent on the amount of correlation
present (see Szalay et al. [2015]). We will show in section 4.4 that mutual infor-
mation can be used in the numerical simulations as a cost function for optimizing
the basis and topology of our reprentation, and for the efficient initialization of
the computation.

3.1.2 Schmidt Decomposition

We have already mentioned that there is a very important application of SVD
for quantum chemistry, called the Schmidt Decomposition. Let us now explain its
principle with the quantum chemistry in mind. We will show how the Schmidt
Decomposition can be used for any quantum state. A pure quantum state of a
bipartite system AB can be written as

|ψ =


i, j

Ψij |i |j , (3.1)

where |i and |j are the orthonormal single-partition bases of A and B. The
reduced density operators and their respective matrix forms are defined as

ρ̂A = TrB |ψ ψ| ρ̂B = TrA |ψ ψ|
ρA =ΨΨ† ρB =Ψ†Ψ.

Setting nmin to be the dimension of the smaller partition, we are ready to
employ the SVD on the density matrix Ψ in equation (3.1) in order to obtain a
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sum

|ψ =


ij

nmin

k=1

UikDkkVjk |i |j

=

nmin

k=1



i

Uik |i

dk



j

Vjk |j


=

nmin

k=1

dk
uk

A

uk

B
. (3.2)

Thanks to the above declared orthonormality of U and V †, single-partition basesuk

A

and
uk

B

are both orthogonal and span subspaces of the full partitions
A and B respectively. Restraining ourselves to the sum over only the r nonzero
singular values, we arrive to the final result, the Schmidt Decomposition

|ψ ≡
r

k=1

dk
uk

A

uk

B
. (3.3)

Remark. Note that the squares of the Schmidt values are exactly the density matrix
ρA eigenvalues.

We can use the Schmidt decomposition for approximating the system’s wave
function by limiting the number of eigenstates in the sum (3.3) to certain number
m. We will see in chapter 4 how does it work and why is it a very appropriate
method for strongly correlated quantum chemical systems.

3.1.3 Block Entropy, Multiple Site Correlations and Mu-
tual Information

In the quantum chemical methods in our focus, we will usually divide the full
many-body Hilbert space into a number of smaller subspaces. Those will consist
of one or few neighbouring orbitals. In order to analyse the interactions of the
subspaces and the bonding within, we can observe the change of von Neumann
entropy of this block with respect to its size.

It can even be used to study the quantum phases of one-dimensional systems. In
the paper of Szalay et al. [2015], the behaviour of block entropy for one dimensional
critical system with soft modes is simulated. On figure 3.1, we can see that the
entropy oscillates with enlarging the block by adding more orbitals. This behaviour
is caused by grouping of orbitals into more entangled clusters. When we add just a
part of such cluster in our block, it will result in increase of block entropy, reflecting
the bonds of the block with the rest of the system.
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(a) (b)

Figure 14: (a) Contiguous block of orbitals to determine block entropy. (b) Block entropy
profile S{1,2,...,l} obtained with the DMRG method for a one-dimensional critical model with
soft modes at k = ±2⇡/3.
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Figure 15: Block entropy profile obtained by the DMRG method for the LiF molecule at
bond length dLi-F = 3.05 a.u. for a non-optimized tensor topology (a) and for an optimized
tensor topology (b).

4.2.2 Block entropy

The usual practice is to take one, two, or more neighboring orbitals into a subsystem (called
also block), as is shown in Fig. 14(a) for a one-dimensional topology used in DMRG. The
scaling behavior of the von Neumann entropy S{1,2,...,l} of a contiguous block of the first l
orbitals with the number of orbitals has also been used to study the quantum phases of
one-dimensional systems. For systems with local interactions, this “block entropy” diverges
logarithmically with block size l for critical systems, but saturates for gapped systems32,241,
and in certain cases its profiles provide further information about the energy spectrum116,131.
For example, the oscillation with a period of three as is shown in Fig. 14 identifies soft modes
with a wavevector, k = ±2⇡/3. In contrast to this, the block entropy has more complex
behavior when non-local interactions are present15,127 and its profile depends strongly on the
ordering of the orbitals along the one dimensional chain as will be discussed below. As an
example, block entropy profiles obtained with the DMRG method for the LiF molecule at
bond length dLi-F = 3.05 a.u. are shown in Fig. 15. At this point it is worth to note that
not only the profiles are di↵erent but the maximum of the block entropy is much smaller in
the latter case. This property will be used to optimize tensor methods as will be discussed
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Figure 3.1: (a) Scheme of a contiguous block of lattice orbitals to determine block
entropy. (b) Profile of block entropy computed via the DMRG method for critical
one-dimensional model with soft modes. (from Szalay et al. [2015])

This was for a system with only local interactions. When the nonlocal inter-
actions are present, the entropy behaviour becomes more complex. As we can see
on the figure 3.2, the curve is strongly dependent on the order in which we add
the system’s orbitals to our block. We will use this fact later on for optimizing the
ordering of orbitals in our DMRG simulation.
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Figure 14: (a) Contiguous block of orbitals to determine block entropy. (b) Block entropy
profile S{1,2,...,l} obtained with the DMRG method for a one-dimensional critical model with
soft modes at k = ±2⇡/3.

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

l

S
N
(l
)

0 5 10 15 20 25
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

l

S
N
(l
)

(a) (b)

Figure 15: Block entropy profile obtained by the DMRG method for the LiF molecule at
bond length dLi-F = 3.05 a.u. for a non-optimized tensor topology (a) and for an optimized
tensor topology (b).

4.2.2 Block entropy

The usual practice is to take one, two, or more neighboring orbitals into a subsystem (called
also block), as is shown in Fig. 14(a) for a one-dimensional topology used in DMRG. The
scaling behavior of the von Neumann entropy S{1,2,...,l} of a contiguous block of the first l
orbitals with the number of orbitals has also been used to study the quantum phases of
one-dimensional systems. For systems with local interactions, this “block entropy” diverges
logarithmically with block size l for critical systems, but saturates for gapped systems32,241,
and in certain cases its profiles provide further information about the energy spectrum116,131.
For example, the oscillation with a period of three as is shown in Fig. 14 identifies soft modes
with a wavevector, k = ±2⇡/3. In contrast to this, the block entropy has more complex
behavior when non-local interactions are present15,127 and its profile depends strongly on the
ordering of the orbitals along the one dimensional chain as will be discussed below. As an
example, block entropy profiles obtained with the DMRG method for the LiF molecule at
bond length dLi-F = 3.05 a.u. are shown in Fig. 15. At this point it is worth to note that
not only the profiles are di↵erent but the maximum of the block entropy is much smaller in
the latter case. This property will be used to optimize tensor methods as will be discussed
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Figure 3.2: Block entropy profile calculated using the DMRG method for LiF
molecule. Nonlocal interactions present in this system are responsible for complex
shape of the curve. (from Szalay et al. [2015])

We have mentioned earlier in section 3.1.1, that the single-orbital entropy and
the mutual information can be used for describing certain features of chemical
systems. Let us now define those quantities in the quantum chemical terms.

First we will discuss the single-orbital entropy. It’s value is related to the
mixedness of a local state as it is expressed by the eigenvalues of the one-orbital
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reduced density matrix.
It was shown by Legeza and Sólyom [2003], that the closer the orbital is to

the Fermi surface, the larger is magnitude of the single-orbital entropy. The value
of th one-orbital entropy is important, because, we can deduce the amount of
contribution of the orbital to the total correlation energy. See figure 3.3 for an
example plot of single-orbital entropy of the LiF molecule.

Summing up the single-orbital entropies yields the total correlation of the sys-
tem, defined as

Itot = −
L

l=1

Sl. (3.4)

We can assume that the full system is in the pure state, then this sum gives us
an information on how much entanglement is encoded in the wave function - it is
equal to total entanglement.
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Figure 17: One orbital entropy profile for the LiF molecule at bond length (a) Li-F = 3.05 a.u.
and at (b) dLi-F = 13.7 a.u. Symbols label the irreducible representations of the molecular
orbitals in the C2v point group.

various transition metal complexes15,26,29,30. Therefore, these quantities provide chemical
information about the system, especially about bond formation and nature of static and
dynamic correlation15,29,30,62,112. As an example, Si and Iij are shown in Figs. 17 and 18,
respectively, for the equilibrium bond length dLi-F = 3.05 a.u. and at large separation
dLi-F = 13.7 a.u.. It is clear form Fig. 18 that some orbitals are strongly entangled with
several other orbitals while some orbitals are entangled with only a few others and some are
almost disentangled from the system.

4.2.4 One- and two-orbital reduced density matrix and generalized correlation
functions

It has been shown17,70 that one can also analyze the sources of entanglement encoded in Iij

by studying the behavior of the matrix elements of the two-orbital reduced density matrix
⇢ij. The d-orbital wave function can be written in terms of the single-orbital q-dimensional
basis as

| i =
X

↵1,...,↵d

U(↵1, . . .↵d)|{1}
↵1

i ⌦ . . . ⌦ |{d}
↵d

i, (165)

where the ↵j labels single-orbital basis states and the set of coecients U(↵1, . . . ,↵d) is
viewed as a tensor of order d. The one- and two-orbital reduced density matrices ⇢i =
Tr1,...,⇤i,...,d

| ih | and ⇢ij = Tr1,...,⇤i,...,⇤j,...,d
| ih | can be calculated by taking the appropriate
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Figure 3.3: Single orbital entropy profiles for LiF molecule at different bond
lengths. (a) d = 3.05 a.u. (b) d = 13.7 a.u.. Symbols indicate the irreducible
represantantions of orbitals in the point group C2v. (from Szalay et al. [2015])

Changing the parameters of the system will induce a change in total correla-
tion. We can use it to watch how much did the system’s entanglement pattern
change upon a modification. This modification doesn’t have to be as significant as
changing the topology of the system, it is clear from figure 3.3 that even a slight
change of bond-length may strongly influence both the total correlation and the
single-orbital correlations.

The most important among those quantities is the mutual information, which
has been defined in section 1.2. For two orbitals, it reads

Iij = −Sij + Si + Sj. (3.5)
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This is the total correlation between the orbitals i and j. Sij here is the von
Neumann entropy of the subsystem consisting of the two orbitals. In general,
both classical and quantum correlations contribute to Iij.

It can be used to study molecular bonding properties of various quantum chem-
ical or solid state systems, e.g. spin or fermionic chains, metal complexes etc. We
can exploit this information for omptimization of our representation of the wave
function, i.e. modify its structure to reflect the entanglement pattern given by the
two-orbital mutual information plot. As shown in Legeza et al. [2008], respecting
the system’s entanglement structure may be of vital importance to the complexity
of our simulation.

On figure 3.4 see example plot of two site mutual information, where we see
how the entanglement structure depends on the the system parameters. Note that
the relevant correlations stay even after this change.
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Figure 18: (Color online) Mutual information represented as a two-dimensional weighted
graph for the LiF molecule at bond length (a) dLi-F = 3.05 a.u. and at (b) dLi-F = 13.7 a.u.
Colors indicate di↵erent strengths of Iij and the symbols label the irreducible representations
of the molecular orbitals in the C2v point group.

partial traces of | ih |, leading to the matrix elements

⇢i(↵i,↵
0
i) = h{i}

↵i
|%i|{i}

↵0
i
i

=
X

↵1,...,⇢⇢↵i,...,↵d

U(↵1, . . . ,↵i, . . . ,↵d)U(↵1, . . . ,↵0
i, . . . ,↵d),

(166a)

⇢ij(↵i,↵j,↵
0
i,↵

0
j) = h{i}

↵i
{j}
↵j

|%ij|{i}
↵0

i


{j}
↵0

j
i

=
X

↵1,...,⇢⇢↵i,...,

⇢⇢↵j ,...,↵d

U(↵1, . . . ,↵i, . . . ,↵j, . . . ,↵d)U(↵1, . . . ,↵0
i, . . . ,↵

0
j, . . . ,↵d). (166b)

The dimension of U grows exponentially with system size d, thus, such full tensor repre-
sentations of the wave function, needed for the computation of the reduced density matrices
above, are only possible for small system sizes. Using the methods described in the previous
and following sections, the dth-order tensor U can, in many cases, be eciently factorized
into a product of matrices, as e.g., in (152g)

U(↵1, . . . ,↵d) = A1(↵1)A2(↵2) . . .Ad(↵d), (167)

leading to an MPS representation of the wave function, where the Ai(↵i) are M⇥M matrices
in general238. For systems with open boundary conditions, A1(↵1) and Ad(↵d) are row and
column vectors, respectively. In the MPS representation, the calculation of ⇢i and ⇢ij by
means of Eqs. (166a) and (166b) corresponds to the contraction of the network over all states
except those at orbital i in the first case and at orbital i and j in the second, as depicted in
Fig. 19 for a chain with d = 8 orbitals.

From a di↵erent point of view, the matrix elements of %i and %ij in Eqs. (166a) and (166b)
can be written as expectation values of projection-like operators acting on the corresponding
orbitals Let the transition operators be defined as

T (m) = |↵0ih↵|, for m = 1, . . . , q2, (168)
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Figure 3.4: Change of entanglement pattern with respect to the bond length for
the LiF molecule. (a) d = 3.05 a.u. (b) d = 13.7 a.u.. Same as on the figure 3.3,
symbols indicate the irreducible represantantions of orbitals in the point group
C2v. (from Szalay et al. [2015])

We can extend these thoughts to even more orbitals. In general, we could
use n-orbital reduced density matrix to define the mutual information between
n-orbitals. However, this quantity is usually not considered relevant for higher
n, since the amount of correlation tends to vanish exponentially with n. Also,
according to Barcza et al. [2015], for n > 2, the relevant measures of correlations
and their interpretations are not fully understood yet, and the structure of entan-
glement can ve very complicated. In the simplest n = 3 three-orbital case, the
mutual information is usually defined as a generalization of two-orbital case, based
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on Venn diagrams,

Iijk =S (ρijk) − S (ρij) − S (ρik) − S (ρjk)

+S (ρi) + S (ρj) + S (ρk) (3.6)

where S is the von Neumann entropy. We will mention the three-orbital mu-
tual information often in the following chapters, since calculating it was the main
objective of a practical part of this thesis.

The above quantities provide us with chemical information about the system,
in particular about the bond formation. Also thanks to these quantities, it is
possible to explain the nature of static and dynamic correlations in the system.

3.1.4 Reduced Density Matrix: Generalized Correlation
Functions

Another approach to studying the entanglement encoded in the mutual information
is to analyze the matrix elements of two-orbital reduced density matrix ρij. We
will present now a practical way to calculate the two-orbital and also n-site mutual
information.

Having the usual L-site wavefunction

|ψ =


u1 ... uL

cu1 ... uL
|u1 ... |uL , (3.7)

with the tensor of coefficients cu1 ... uL
, we can calculate the two-site reduced density

matrix ρij by taking the partial trace in |ψψ| over all indices of local bases except
for ui and uj

ρij =


uk, u

k

∀k =i, j

cu
1 ... u


L
cu1 ... uL

. (3.8)

Here each ρij has still four indices ui, u

j, ui, uj, which we pair up as (ui, u


j),

(ui, uj), in the sense that each pair labels a basis state of the two-site subsystem
ij. Now ρij is really a matrix with dimension q2 × q2. Its single matrix element
(ρij)u

i u

j ui uj

corresponds to the transition |ui uj →
ui uj


between the basis states

of subsystem ij, which also has dimension q2.
Let me pause for a while to emphasize that we this correspondence will soon

provide us with a practical way how to calculate the ρij matrix elements. But
before describing it, we will show how to calculate ρij from the matrix product
state form.

The dimension of cu1 ... uL
grows exponentially with the number of sites L. So

calculating ρij like this is practically impossible from many-body systems. For-
tunately, for most chemically interesting systems, there exists a decomposition in
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the form of a product of matrices

|ψ =


u1 ... uL

Au1Au2 ... AuL−1AuL |u1 ... uL , (3.9)

which we derive in section 2.2 and which we can use for a more compact and
approximated representation of |ψ. Having the state in matrix product form,
calculation of ρij now corresponds to the contraction of the tensor network
Au

1 ... Au
LAu1 ... AuL over all pairs of indices uk, uk except i and j

ρij =


uk, u

k

∀k =i, j

Au
1 ... Au

LAu1 ... AuL , (3.10)

which you can see also schematically on figure 3.5. So if we have the MPS form of
|ψ, we have a straightforward way to calculate the ρij.
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Figure 19: Contraction of the MPS network to calculate the one- (a) and two-orbital (b)
reduced density matrices %i and %ij for a chain with d = 8.

which describe a possible transition between the initial states |↵i and the final states |↵0i
understood for a given orbital, with the numbering rules

↵ 1 = ((m  1) mod q), ↵0  1 = b(m  1)/qc , (169a)

m  1 = (↵ 1)q + ↵0  1. (169b)

(Here bxc denotes the floor function, the integral part of x.) These operators can be extended
to operate on the complete Hilbert space consisting of d local Hilbert spaces labeled by
i = 1, . . . , d as

T (m)
i = I ⌦ · · · ⌦ I ⌦ T (m) ⌦ I ⌦ · · · ⌦ I, (170)

with the operator T (m) in the i-th position.
One can now easily check that the matrix elements of the one- and two-orbital reduced

density matrices, given in (166a)-(166b), can be expressed as the expectation values of the
transition operators for one and for two sites, respectively, as follows

⇢i(↵i,↵
0
i) = hT (mi)

i i, (171a)

⇢ij(↵i,↵j,↵
0
i,↵

0
j) = hT (mi)

i T (mj)
j i, (171b)

using the numbering rules (169) for each orbitals. That is, the matrix representation of
the one-orbital reduced density operator %i can be constructed from expectation values of
operators describing transitions between the single-orbital basis |{i}

↵i i, while the two-orbital
reduced density operator %ij can be constructed from expectation values of operators describ-

ing transitions between two-orbital basis states |{i}
↵i 

{j}
↵j i ⌘ |{i}

↵i i ⌦ |{j}
↵j i. This is a general-

ization of the procedure introduced in the DMRG context for spin-1/2 fermion models29,201.
In the following, we refer to the expectation values of pairs of state-transition operators in
Eq. (171b) as generalized correlation functions in order to distinguish them from conven-
tional correlation functions, i.e., those based on physically motivated self-adjoint operators
such as local spin or density operators. For (171a), note that when the individual local basis
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Figure 3.5: Contraction of the MPS network for calculating the two-site reduced
density matrix ρij for i = 3, j = 7 a lattice with 8 orbitals. Connected lines
correspond to the contraction of indices, whereas the four lines without connection
to any Ai represent the four free indices of ρij. (from Szalay et al. [2015])

A slightly different approach which we applied in our practical calculations is
to make use of the following relation for the density operator which expresses the
correspondence emphasized above

ρ̂ij =


u
i u


j ui uj

(ρij)u
i u


j ui uj

ui uj

ui uj| . (3.11)

In this equation, we can see explicitly the correspondence of matrix elements of
ρij with transition amplitudes between the basis states of subspace ij. It becomes
clear that we can calculate the matrix elements of ρij as the expectation values of
transition operators

(ρij)u
i u


j ui uj

= ψ|T (ui u

j)

(ui uj)
|ψ (3.12)

20



and that’s exactly how we calculated ρij in the practical part. Just to clarify, here

the operator T
(ui u


j)

(ui uj)
corresponds to the transition |ui uj →

ui uj

. The matrix

elements of this operator are really simple: zeroes everywhere, except for a single

1 at row (ui u

j), column (ui uj). The expectation values ψ|T (ui u


j)

(ui uj)
|ψ are usually

refered to as the two-site generalized correlation functions (see Barcza et al. [2015]).
We can also consider the simpler one-site case, where in equation (3.8), we

don’t leave out two pairs of indices, but just one pair, getting ρi. Analogically
we define the one-site basis transition operators, calculate their expectaion values
ψ|T ui

ui
|ψ to obtain the elements of the one-site reduced density matrix.

Note that we can express the two-site transition operators in terms of those
single-site transitions as

T
(ui u


j)

(ui uj)
=T ui

ui
T

uj
uj (3.13)

=
i−1

k=1

✶⊗ T i

i

j−i−1

k=1

✶⊗ T j

j

L−j

k=1

✶, (3.14)

where without loss of generality i < j. The second equality holds when all the
lattice sites are equal q-dimensional subspaces of the full Hilbert space, thus we
can define a transition operator T i

i between single-site basis states i and i. For
this case, assuming that the local states are completely distinguished by abelian
quantum numbers, e.g. the one-site reduced density matrix can be calculated like

ρi = ψ|




T 1i
1i

0 0 . . . 0

0 T 2i
2i

0 . . . 0
...

...
...

. . .
...

0 0 0 . . . T qi
qi


 |ψ (3.15)

The above two-site reduced density matrix calculation can be generalized to
the three-site version

(ρij)u
i u


j ui uj

= ψ|T (ui u

j)

(ui uj)
|ψ (3.16)

(ρijk)u
i u


j u


k ui uj uk

= ψ|T (ui u

j uk)

(ui uj,uk)
|ψ , (3.17)

where T
(ui u


j uk)

(ui uj,uk) operates in the q3 dimensional subspace formed by the three lattice

sites ijk. It represents the transition |ui uj uk →
ui uj uk


in this subspace. The

indices of ρijk are again grouped as (ui uj uk) and (ui u

j u


k) so that ρijk is a q3× q3

matrix for a single ijk combination. There is L3 of ijk combinations, so the
amount of data is growing considerably and we have to think of sparse matrix
data representation and other tricks to be able to work with it.
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To calculate the mutual information, first we have to calculate the von Neu-
mann entropy of the subsystem described by reduced density matrix ρ. That is
S(ρ) = Tr{ρ ln ρ}. If we know the eigenvalues ων of ρ, this calculation simplifies
to S(ρ) =


ν ων lnων . Then we are free to use the equations (3.5) and (3.6) to

calculate the two-site and three-site mutual information Iij and Iijk.
This is enough for introducing the generalized correlation functions and ex-

plaining how to form the reduced density matrix from them. It may seem simple,
however calculating these expectation values is not so easy in practice. The reason
for this is because it’s impossible to store the full form of quantum operators and
quantum states in the classical computer. We will explain further in chapter 5
how we dealt with it for large many-body states.

3.2 Selected Methods in Matrix Product States

language

In this section, we will describe few methods compatible with MPS state represen-
tation. The main goal is to decribe a historical path that led to the developmnet
of the DMRG method, that we use in our calculations.

3.2.1 Block Renormalization Group Method

The Block Renormalization Group Method (BRG) was introduced by Kadanoff
[1966] for the two-dimensional Ising model. Kadanoff attempted to approximate
the full configuration Hilbert space of a L-orbital system. Later it was applied also
to one-dimensional quantum systems.

The idea behind of this method is to group the orbitals into blockso of size l.
The Hamiltonian is then divided into a part corresponding to the intrablock inter-
actions between the orbitals inside the block and interblock interactions between
the blocks. The full Hamiltonian is then a sum of many interblock and intrablock
terms. In each iteration we pick the m lowest lying eigenstates of the intrablock
subsystem and truncate the rest, transforming each Hamiltonian into a new form
in the new approximated basis.

So the new basis is determined only with respect to the truncation in intrablock
subspace. This truncation then propagates into the rest of the operators. Thanks
to keeping only m states per block, we can rescale the interactions strengths (flow
equations) and retain the original form of the full Hamiltonian.

In the following iteration, we take the blocks and join them together in groups
of l. From each the big block, we again keep only m lowest eigenstates of the
intrablock Hamiltonian. In this way we continue on and on, each time joining l
blocks into one larger block and truncating it. The scheme of connecting sites
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into blocks is on the figure 3.6. This procedure we repeat until we reach the fixed
point, that is, the iterations stop changing the interaction strenths. Then we can
calculate the physical quantities in the limit → ∞.

h h h h h h h hJ J J J J J J

h′ h′ h′ h′J ′ J ′ J ′

h′′ h′′J ′′

(a) (b)

Figure 21: Schematic plot of the Block Renormalization Group (BRG) method as bloc
transfromation procedure where h and J label on-orbital and nearest neighbor interaction,
respectively (a), and as a tree-network (b).

new impetus to its application for strongly correlated systems.

4.3.2 Numerical renormalization group method (NRG)

Another variant of the RG method, known as the Numerical Renormalization Group (NRG)
method shown in Fig. 22 is due to Wilson258. In the NRG related Hamiltonian an impurity
interacts with a local fermion. The dynamics of this fermion is described by a semi-infinite
one dimensional network, also know as the Wilson chain. The impurity sits on the left side
and electrons can move along the chain with an exponentially decreasing hopping amplitude
j/2. Therefore, each orbital represents a di↵erent energy scale. Starting with the very
left orbital, new blocks including l orbitals are formed by adding orbitals systematically to
the block, i.e., ⌅(L) = ⌅(l) ⌦ ⇤l+1 where in the first step ⌅(l) = ⇤1. In each iteration step
the block Hamiltonian is solved and the unitary transformation matrix O is formed from
eigenstates corresponding to the lowest M eigenvalues. The block Hamiltonian is rescaled
based on the decay rate of the hopping and the intrablock Hamiltonian is determined on
the new basis. Another major di↵erence compared to the BRG method is that in NRG
q < M ⌧ qd states are kept, thus the original form of the Hamilton is lost. Due to the
appearance of new operators during the iteration scheme flow equations described above
cannot be studied. The change in the energy spectrum, however, can be analyzed and once
subsequent iterations leave the spectrum unchanged the fix point is reached. This approach
works well due to the separation of energy scales. A problem, however, arises for lattice
models when  ! 1 and error starts to accumulate significantly for increasing block size.
This hindered the application of NRG to large lattice models. Quite recently, an extension
of the method using a similar blocking structure as in DMRG has led to the development
of the so called density matrix numerical renormalization group (DM-NRG) which allows us
to study more complex problems12,98,188,231,246.
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Figure 3.6: Scheme of forming the block in the Block Renormalization Group
method. J labels nearest neighbor interaction and h denotes on-orbital interaction.
(from Szalay et al. [2015])

Unfortunately, this procedure truncates the system so dramatically, that it
can’t be used in the quantum chemistry. The strongly entangled systems with
long range interacions loose their essential correlation structures, even though there
have been some recent developments succesfully altering this method in favour of
such systems (see Szalay et al. [2015]).

3.2.2 Numerical Renormalization Group Method

Another method based on BRG which was to fix its problems is called the Numer-
ical Renormalization Group Method (NRG). It was developed by Wilson [1975].
Wilson considered an impurity on the one-dimensional lattice, interacting with a
local fermion. The exited states of this fermion live in the semi-infinite latttice
with an impurity sitting on the first site. The system has exponentially decaying
probability of hopping into the higher excited states with hopping amplitude λ−l/2.
This one-dimensional network is called the Wilson chain.

We start with a small block of 1 orbital. Then in each iteration, we enlarge it
by adding one lattice site, diagonalize the Hamiltonian of the system and perform
truncation, keeping only m lowest lying eigenstates. The new intrablock Hamil-
tonian is rescaled to reflect the decaying amplitudes of the hopping of its excited
eigenstates. See figure 3.7 for the scheme of enlarging the block.
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Figure 22: Schematic plot of the Numerical Renormalization Group (NRG) method a block-
decimization procedure (b) leading to a tree-network (a). Hamiltonian on the Wilson chain
of length d: the hopping is decreasing exponentially (c). A complete basis of a Wilson
chain represented as the exponentially increasing number of energy levels belonging to the
successive iterations. Continuous/dashed lines represent kept, low-energy/discarded, high-
energy levels, respectively. For the consecutive iteration steps the distances between the
levels illustrates how the energy resolution of NRG gets exponentially refined (d).

4.3.3 Density matrix renormalization group method (DMRG)

In order to circumvent problems discussed for BRG and NRG, in the two-site variant of
the Density Matrix Renormalization Group (DMRG) method249 ⇤(d) is approximated by a

tensor product space of four tensor spaces, i.e., ⌅
(d)
DMRG = ⌅(l) ⌦ ⇤l+1 ⌦ ⇤l+2 ⌦ ⌅(r). This is

called superblock and the basis states of the blocks are optimized by successive application
of the singular value decomposition as discussed in Secs. 3.5 and 4.2.1. Here we use the
convenient notations that the whole system, consisting of d orbitals 1, 2, . . . d, is partitioned
into blocks (subsystems), for which we use the labels (L), (l), (R) and (r). (l) simply means
the block composed of the first l orbitals, that is, (l) = {1, 2, . . . , l}. An extended block
composed of the first l + 1 orbitals is denoted as (L) = {1, 2, . . . , l, l + 1}. The other part of
the system is (R) = {l+2, l+3, . . . , d}, while (r) = {l+3, . . . , d}. The d-orbital wavefunction
is, therefore, written as

| DMRGi =
X

m(l)↵l+1↵l+2m(r)

UDMRG(m(l),↵l+1,↵l+2, m(r))|⇠(l)
m(l)

i ⌦ |{l+1}
↵l+1

i ⌦ |{l+2}
↵l+2

i ⌦ |⇠(r)
m(r)

i

(173)
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Figure 3.7: Scheme of forming the block in the Numerical Renormalization Group
method. On the left, the block decimization procedure is depicted. On the right we
can see how the high energy states are discarded, leading to exponential refinement
of the NRG energy resolution. (from Szalay et al. [2015])

In this method, only q < m < L states are kept, making it impossible to
retain the original form of Hamiltonian. Also the flow equations cannot be studied
in this approach. This method also stops at thefixed pont, when the subsequent
interations leave the energy spectrum unchanged.

The whole method works thanks to the separation of energy eigenstates. How-
ever, for the systems in which the factor λ → 1, we are getting into trouble with
amplitudes not decaying quickly enough and the truncation error accumulates
promptly (see Szalay et al. [2015] or Wilson [1975]). Thus for large models, the
applications may be very problematic and plagued by errors.

3.2.3 Density Matrix Renormalization Group

Fortunately, there is another method which solves problems of both BRG and
NRG. It’s name is the Density Matrix Renormalization Group (DMRG) and it
was developed by Wilson [1975]. It incorporates a more sophisticated way of
truncating the states, based on the Singular Value Decomposition, working with
the eigenstates of the reduced density matrix, instead of the Hamiltonian directly.
The idea is to focus on minimizing the error of approximation of the wave-function
of subsystem described by the “intrablock” reduced density matrix ρ. This is
instead of working directly with the subsystem Hamiltonian.

The principle of this method is a little more complicated than the previous
cases. See the scheme on figure 3.8. We have a left block, right block and two
sites in the middle, or LqqR, with dimensions ml × q × q ×mr. First we let both
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blocks grow site by site, keeping m eigenstates of ρ with the largest eigenvalues
(for explanation see chapter 4).

d = 4

d = 6

d = 8

d = 10

d = 10

d = 10

d = 10

Infinite
Lattice
Method

Finite
Lattice
Method
(sweeping)

Figure 23: Decomposition of the d-orbital Hilbert space into four subsystems called su-
perblock. The d-orbital Hilbert space is built iteratively from a left block including l active
orbitals and the right block from r active orbitals. The size of the two blocks is increased
in each iteration step until l + 2 + r = d. In the following steps the d-orbital system is
partitioned asymmetrically, i.e. the size of left block is increased systematically while the
size of the right block is decreased until l = d3 and r = 1. The same procedure is repeated
in the opposite direction until l = 1 and r = d  3. This procedure is called sweeping
(macro-iteration step).

where the tensor UDMRG is determined by an iterative diagonalization of the corresponding so
called superblock Hamiltonian. The dimensions of the spaces of the local left block including
l orbitals and the right block with r = d l 2 orbitals are denoted with Ml = dim ⇤(l) and
Mr = dim ⇤(r), respectively. Since dim ⇤l+1 = dim ⇤l+2 = q, the resulting dimensionality of

the DMRG wave function is dim ⌅
(d)
DMRG = q2MlMr ⌧ qd.

In the original version of the DMRG, introduced to treat finite one-dimensional lattice
models249, the Hilbert space of a lattice with d sites is built iteratively starting with four sites
as shown in Fig. 23. In each iteration step, the Hilbert space ⌅(L) of an enlarged block (L)
is formed from the tensor product of the Hilbert spaces of the block ⌅(l) and the adjacent
site ⇤l+1 – similarly ⌅(R) from ⇤l+2 and ⌅(r) – and transformed to a new truncated basis
by using a unitary operation based on singular value decomposition as discussed in section
4.2.1. Therefore, in each iteration step the size of the e↵ective system is increased by two
until the desired length d is achieved. This procedure is called infinite-lattice procedure. In
the following steps the d-site system is partitioned asymmetrically, i.e. the size of left block
is increased systematically while the size of the right block is decreased until l = d  3
and r = 1. In each iteration step, the approximated Hilbert space of the left block (called
system block) is improved as it interacts with the right block (called environment). The same
procedure is repeated in the opposite direction until l = 1 and r = d 3 when the left block
becomes the environment block and the right block the system block. This procedure is
called sweeping (macro-iteration) and it is a part of the so called finite-lattice method. For
more detailed derivations we refer to the original papers and review articles211,249,250.

In analogy, in the infinite-lattice procedure one can say that the d-orbital Hilbert space
is built iteratively by forming l-orbital and r-orbital blocks from the one-orbital Hilbert
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Figure 3.8: Scheme of forming the block in the Density Matrix Renormalization
Group method. First the so called infinite-lattice method is employed to grow the
block to desired size L and then the finite lattice method carries out the sweeping
procedure. (from Szalay et al. [2015])

When they reach size L, we start assymetricaly enlarge left block at the expense
of the right block. Right block now represents environment, whose interaction with
left block we use to optimize its Hamiltonian iteration after iteration.

When the right block shrinks to the size of one lattice site, we start moving in
the opposite direction and continue all the way to enlarge the right block to its
maximal size L−3. This procedure is called sweeping and it leads to optimization
of hamiltonian based on both the intrablock and interblock interactions. On top
of that, from this algorithm, we can directly obtain the MPS form of the ground
state (see chapter 4). But this holds to certain extent also for BRG and NRG.
What makes the difference is really the way in which we truncate the subsapces
and transform our quantum state and operator. The DMRG method respects the
entanglement structure of the system. The amount of correlation can be measured
by the number ml, r of left/right subspace states, which we need to keep in order
to make the truncation error in reasonable bounds.

After few sweeps, the wavefunction and Hamiltonians are usually already ap-
proximated with a high precision, easily reaching the desired chemical accuracy.

In DMRG, we can estimate the truncation error and complexity of the method,
and work in close contanct with the entanglement structure of the system. This
makes it a method suitable for larger systems, chemical systems and strongly
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correlated systems with nonlocal interactions. Unfortunately, for large systems,
it is still impossible to simulte them, limiting us to work with still quite small
molecules, with practical computational maximum of systems with around 64 sites.

But still, according to Schollwöck [2011], the DMRG is currently being rec-
ognized as the most powerful amongst the numerical methods for study of one-
dimensional quantum lattices, and speaking more generally, one of the most effi-
cient methods for simulating strongly correlated systems with linear (1D) entan-
glement pattern. The next chapter, chapter 4, is devoted solely to the description
of the DMRG method and aims to bring light to its principles.

3.2.4 Tree Tensor Network States

As we have mentioned earlier in chapter 2, the Tree Tensor Network State is the
generalization of the Matrix product state for higher dimensional lattice. These
tensor product states have been designed to be compatible eith the DMRG method,
since thay have the structure of a tree. A tree is a acyclic graph, that means it
doesn’t contain any circle in its structure. Therefore we can define order in whoch
the DMRG is performed along the tree, visiting all of its branches, dividing the
system into two large blocks and two small sites. This wouldn’t be possible in a
cyclic graph, since the two blocks could in general be connected and interact even
on the intrablock level.

The algorithm for doing DMRG in the tree lattice (tensor network) is called
the Tree Tensor Network State algorithm and for computations, it is an order
of magnitude more demanding than the normal DMRG. It can be only run on
the biggest supercomputers of our time. However, it has a potential of solving
quantum chemical problems with strong 2D or 3D entanglement structure that
used to be considered intractable on classical computers (see Nakatani and Chan
[2013] for further reference).

26



4. Density Matrix
Renormalization Group

In this chapter, we will introduce the algorithm of the renormalization group meth-
ods in detail, reflecting the historical development of methods leading to discovery
of DMRG. Then we will explain the principle of DMRG and describe some related
technicalities.

4.1 Real-space renormalization of Hamiltonians

Here we will formulate the numerical renormalization technique (RG) in terms
of density matrices (DMRG) for arbitrary quantum lattice systems, as described
in the original paper of White [1992]. For the sake of simplicity, we will explain
the priciples on one-dimensional zero-temperature real space version of our model.
In priciple, thanks to our density matrix approach, the above case can be later
generalized to 2D or 3D case, or to momentum space (mostly loosing some scaling
efficiency). This approach doesn’t suffer from the common minus sign problem
of the Monte Carlo methods and it is quite stable even for strong couplings and
disordered systems.

For educational reasons, let us first describe the numerical renormalization
method on 1D lattice of real-space blocks, forming together the full Hilbert space
of the system in question. We will use the spin-1

2
Heisenberg model, as a typical

example of a system that has such structure naturally, even though this blocking
can be used for a general quantum system.

In infinite lattice RG method, we carry out a following procedure:

1. First we split the infinite lattice into equal blocks A.

2. Then we consider a subsystem AA of the two neighbouring blocks together
and we diagonalize its Hamilonian HAA.

3. Now we use m lowest-lying eigenstates of AA to form an approximate Hamil-
tonian HA(2) .

4. We repeat the procedure with larger blocks A(i) and their respective effective
Hamiltonians HA(i) . See figure 4.1 for a schematic picture.

Obviously we assume here that the m lowest lying eigenstates are dominant and
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Figure 4.1: Various blocking schemes for one-dimensional renormalization group
methods. (a) Standart approach for NRG. (b) Infinite lattice method. (c) Finite
lattice method. in (b) and (c), we first diagonalize the entrire system and then
form a reduced density matrix for the part labelled as A. Lattice sites are depicted
by the solid circles. (from White [1992])

play a leading role in forming the larger blocks. We will discuss this assumption
in the further text.

Numerical RG provides a smart approximation and was the first effective so-
lution to the Kondo problem, introduced in the paper of Wilson [1975]. Unfortu-
nately, this approach is flawed with errors originating from the way it treats the
boundaries of block. For most problems, such errors make it impossible to get
quantitatively accurate results, as was shown by White and Noack [1992].

For forming the effective Hamiltonian of the larger block, we will use analogical
approach as Wilson did for Kondo problem. This involves changing the basis to
the set of m lowest lying eigenstates. Denoting the corresponding transformation
matrices as O, this yields

HA(2) = OHAAO
†. (4.1)

Here the dimesion of O is m× r, with r := dimHAA. As one may expect, the rows
of O are the m lowest-lying eigenstates of HAA. The procedure carried out above
for the Hamiltonian operator is the so called renormalization present in the name
of RG methods.

The above mentioned boundary errors originate from our selection of the lowest-
lying energy eigenstates of AA and following subsystems. However our selection is
natural, it neglects the influence of interaction of such blocks. HAA has no connec-
tion with neighbouring blocks and thus its eigenstates will reflect this fact, leading
to errors and non-physical behaviour at the block boundaries. In most systems,
these blocks interact with each other and we need to modify our algorithm to take
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this into account. In following chapter, we show how to choose the optimal set
of the new basis states, allowing us to use the RG method even for interacting
systems.

4.2 Density matrices and DMRG truncation

In order to select an optimal set of basis states for approximating the enlarged
block system in RG methods, we present a Density Matrix Renormalization Group
method, introduced in White [1992]. The basic idea can be outlined on the grounds
of a superblock method proposed by White and Noack [1992].

Consider a superblock composed of three or more A blocks. Now think about
which basis states should we choose to efficiently represent our subsystem AA.
The idea is to consider the lowest energy eigenstates of the superblock and project
those to our sybsystem AA in order to get our desired set of basis states of AA.
However, the projection of superblock eigenstates to AA is not clearly defined for
a many-particle wave function. Also in general, we have to consider a projection
operation onto a complete set of block states. We need to find a way to select the
most influential states in this projection. In the text to follow, we will show that
the optimal strategy is to keep the eigenvectors with the largest eigenvalues of the
density matrix of AA.

Let’s assume that we know the state of the whole lattice, a pure state |ψ. Our
task is to find m states that represent the lattice state most effectively, that is,
to truncate the basis and keep only m states. More fashionable name for such
procedure is “lossy quantum compression”.

Remark. Assuming the pure state here is only for simplicity and the following
conclusions would stay unchanged either for a mixed state or for a system at finite
temperature. See White [1992] for further reference.

First we fix the basis as

|ψ =


i, j

Ψij |i |j , (4.2)

where |i, i = 1 ... r is the basis of AA and the states |j indexed by j form basis
of the rest of the lattice. Assume for simplicity that coefficients Ψij are real. We
are looking for m states |uν, with m < r approximating |ψ like

|ψ ≈


ν, j

cνj |uν |j , (4.3)

where cνj is a real rectangular matrix. Now the reduced density matrix for AA is

ρii ≡


j

ΨijΨij. (4.4)
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Notice the trace over j, the rest of the lattice. Now we can express the error of
our lossy compression

σ =

|ψ −


ν, j

cνj |uν |j
. (4.5)

We will attemp to minimize the error σ with respect to cνj and i|uν. Looking
for |uν orthogonal


uα
uβ


= δαβ.

Theorem 1. To minimize the error σ under above assumptions, the optimal so-
lution states |uν for ν = 1 ...m are the eigenvectors of reduced density matrix ρ
with the largest eigenvalues ων.

Proof. Let us use the norm definition |x2 ≡ x|x to express the error

σ2 =


ψ| −



µ, j

cµj j| uµ|


|ψ −


ν, l

cνl |uν |l


= (4.6)

=


i,j,k,l

ΨijΨkl i|k j|l − 2


i,j,ν,l

ψijcνl i|uν j|l+ (4.7)

+


µ,j,ν,l

cµjcνl uµ|uν j|l , (4.8)

where j|l = δjl. So, thanks to the orthogonality, we can simplify to

σ2 =


i,j

ΨijΨij − 2


i,j,ν

ψijcνj i|uν+ (4.9)

+


ν,j

cνjcνj. (4.10)

From the definition of eigenstate of operator ρ̂ii we obtain

ρ̂ii |uν =


j

ΨijΨij |i i|uν = ων |uν (4.11)

Now we can move to the eigenbasis of ρii , we’ll call it
̃i

. There the matrix

ρii is diagonal, with eigenvalues


Ψ̃ii

2
. If we fix |uν to be the eigenstates, then

we have
̃
i
uν


= δiν and things simplify considerably

ρ̂ii |uν =


j

ΨijΨij |uν δiν = ων |uν , (4.12)

ων =


j

ΨijΨνj

̃
i
uν


=


j

ΨνjΨνj. (4.13)
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Here the term for eigenvalue ων is similar to one of the error terms. That can
inspire us to set cνj := Ψνj. Putting all together, we are left with

σ2 =


j





i

ΨijΨij −


νi

ΨνjΨνj  
ων

δνi


 . (4.14)

This implies that our choice of selecting eigenvectors |uν with the largest eigen-
values ων is justified and our statement is proven.

Remark. Density matrix eigenvalues ων express the probability to find the system
AA in its eigenstate |uν. The sum of eigenvalues, Pm =


ν ων tells us the

probability of AA to be within the considered approximated set of states, and so
1 − Pm measures the accuracy of the truncation to m states.

4.3 Infinite and Finite-system DMRG

So when we have the eigenstates, we know how to pick the relevant ones. But let’s
discuss a bit more the diagonalization itself. Say we have a lattice of p identical
blocks and we want to diagonalize the Hamiltonian. This approach, used in the
article of White and Noack [1992], is ineffective for many-body problems, since the
Hamiltonian dimension grows as mp, having m states per block.

In contrast, one particulary efficient configuration is described in the famous
paper by White [1992]. There the superblock is formed from two big blocks and
two smaller lattice sites. We will use a notation LqqR for such configuration, which
you can see on figure 4.2. Now L is the big block on the left, R is the right block
and q, q are the two sites in the middle. Each of the big blocks corresponds to A
above, with dimension m. In such configuration, the Hilbert space dimension is
O(m2). In each iteration, we will add the neighbouring site to block L and R.

Figure 4.2: The LqqR configuration used for the DMGR calculations. Left rect-
angle represents the block L, then there are two sites q,q in the middle and the
right block R. (from White [1993])

Let us sketch one iteration of the Density Matrix Renormalization Group al-
gorithm for infinite lattice as presented in White [1993].
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1. Make four initial blocks LqqR, each consisting of a single site at the be-
ginnning, representing the four site system to stat with.

2. Form Hamiltonian in sparse matrix form for the superblock.

3. Using the sparse matrix Davidson or Lanczos algorithm, diagonalize the
Hamiltonian of system LqqR in order to find the target state, usually the
ground state.

4. Apply the equation 4.3 to express the reduced density matrix ρ of the two
extended blocks Lq and qR.

5. Diagonalize ρ to obtain m of its largest eigenvalues ων and their respective
eigenvectors |uν.

6. Form the relevant operators for each of the four blocks LqqR.

7. Transform to the new truncated basis using the equation 4.2, with vectors
|uν as rows of the transformation matrices O. Transform block and all the
relevant operators using the equation ?.

8. For the following iteration, take the current extended block Lq as the new L
and instead of old R use the reflection of new block L.

9. Go to step 2.

Remark. The method used for truncating the block L and R basis to m states is
designed specifically to find one target state of the system LqqR. Not multiple,
e.g. the excited states of LqqR. However, the above method can be modified to
calculate multiple states. For more information on calculating the excited states,
see Chandross and Hicks [1999].

Now we will cite the algorithm for finite-lattice method as described by White
[1993]. The finite-lattice method works with a fixed superblock size L, iterating
from left to right and back to optimize the block representations.

Both the infinite and finite-lattice methods are used in the DMRG. First the
infinite method is used to grow the superblock to the target size L and then the
finite lattice method improves the block representation and the related wavefunc-
tion by sweeping (sweep means that the algorithm passe the whole lattice, site by
site). This procedure iteratively converges to the ground state of the system. We
will describe the finite lattice method already including the intialization by the
infinite-lattice method. We will denote the number of current iteration by i. Each
iteration consists of L− 3 steps indexed by the left block size l.
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1. (First half of i) Use the infinite-lattice method to build the lattice to L sites.
At each iteration store the block Hamiltonian and end operator matrices for
the left block. Label blocks as Bl by their size l = 1..L/2.

2. (Start of the second half of I = 1) Set l = L/2. Use Bl as left block and the
reflection of BL−l−2 as the new right block.

3. Do steps 2.-8. of the infinite lattice method.

4. Store the new left block as Bl+1, replacing the old block.

5. Replace the right block with a reflection of BL−l−2, obtained from the first
half of this iteration.

6. If l < L− 3, set l = l + 1 and go to step 3.

7. (Start of iteration i for i > 2) Make four intial blocks, the first three with
just a single site a the right block consisting of the reflection of BL−3 from
previous iteration. Set l = 1.

8. Follow steps 2.-8. from the infinite-lattice method.

9. Store the new left block as Bl+1, replacing the old block.

10. Replace th right block with a reflection of BL−l−2, obtained from the previous
iteration (if l ≤ L/2 − 1) or the first half of this iteration (l > L/2 − 1).

11. If l < L − 3, set l = l + 1 and go to step 8. Else if l = L − 3, start a new
iteration by going to step 7. (Stop after 2 or 3 iterations.)

For simplicity we assumed even L. After few iterations, each Bl accurately
represents an l-block, which is the left l sites of an L-site chain. This method
reaches good accuracy or even converges already in the middle of the second sweep.
Usually two or three sweeps are sufficient.

When the finite-lattice DMRG converges we have the ground state of the Hamil-
tonian and we can also have all the required operators renormalized in the subse-
quent steps, if we keep track of them, or we can just keep track of the O matrices
from the equation 4.1 and carry out the renormalization after the DMRG, when
required for any arbitraty operator. The arbitrary operator X then has the form
of

X = OL−1...O2O1X1O
†
1O

†
2...O

†
L−1, (4.15)

where the lower index corresponds the number of sites for the block for which we
form the operator X in each subsequent iteration step.
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Remark. Note that there is a very important correspondence between the DMRG
procedure and the MPS formalism. It is possible to reindex the transformation
matrices O from the equation 4.1 generated in each step of DMRG to obtain the A
matrices of the MPS formalism. Thus we are able to get the MPS decomposition
from a DMRG sweep.

4.4 Entanglement-based Optimizations for the DMRG

method

4.4.1 Schmidt Ranks and the dynamic block state selection

Even though the simplest approach is to truncate the blocks at each iteration to
some fixed size of m states, we can also adapt the block size dynamically in such
way that the quantum correlations are preserved as much as possible. According
to Legeza et al. [2003], such approach is more efficient in terms of our control of
the truncation error δ, making δ more stable to fluctuations during the DMRG
sweep (see figure 4.3). This procedure is called the dynamic block state selection
(DBSS) and it’s based on a gradual enlargement of the block sizes, such that the
estimate of the truncation error is kept bellow a user defined maximum.

Another important quantity we need to keep track of is the quantum informa-
tion loss. When we enlarge a block of size l by one site and truncate, the entropy
of the resulting block S(l+1) is lower than the sum of entropies S(l) and S(1) of the
former subsystems

S(l) + S(1) − S(l+1) = Il ≥ 0, (4.16)

where Il is the mutual information describing the correlation between the former
block and the newly added orbital. In case Il > 0, we have to consider increasing
the number of states kept for the new block, since we need more information to
describe the enlarged block.

The total information gain during one sweep is


i = 1LIi. In general case Ii
is a function of subsequent sweeps. But according to Szalay et al. [2015], from the
moment when the DMRG converges on, the S(l) and S(1) don’t change any more.

The fancy-named DBSS is in fact a very simple procedure which after each
enlargement of block with m states increases the number of block states
m ≤ m× q until the following condition is satisfied

S(l) + S(1) − S
(l+1)
truncated < χ, (4.17)

where χ is the predefined boundary for the error induced by the correlation loss.
With DBSS, we can guarantee that the entanglement between the blocks

doesn’t get truncated dramatically and we can predefine a desired accuracy.
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Remark. The risk of converging into a local minima leads to a neccessity to intro-
duce the minimum number of block states mmin. According to Szalay et al. [2015],
the practical experience is that mmin = q3 or q4 is usually sufficient. In order to
limit the computational complexity of the simulation, we need also to set an upper
boundary mmax.

4.4.2 Optimizing the basis

Working in the right basis set is among the most important properties in terms
of optimization of any simulation or physical theory. The most common cost
function for optimizing the basis in quantum chemistry is the energy. Observing
its convergence provides us with information essential for monitoring the quality
of our choice. However, it’s not the only quantity to look for in this context.

Quantum Information Theory offers us tools for analysis of the entanglement
structure. As we have emphasized in section 3.1.1, in many cases its structure has
to be taken into account for quantum-chemical or solid-state physics problems.
This holds also for basis optimization.

When we select an appropriate basis, we should analyze the quantum corre-
lations between and inside the orbitals of our system and select the basis that
respects this entanglement pattern. Our choice is then reflected in mutual infor-
mation, overall entanglement and other quantities measuring entanglement, which
are usually strongly basis dependent. The choice of basis has also a major influ-
ence on the convergence properties and performance of DMRG. For instance, with
the appropriate set of basis states, representing equal quantum state may require
significantly smaller amount of block states (see Wouters et al. [2014]).

The main objective is to find such basis, in which the entanglement is localized
inside the orbitals. In such setup, a smaller number of states is necessary to
represent the block with desired accuracy.

Let me cite an example of basis optimization for DMRG method by Murg
et al. [2010]. This group optimized basis via the canonical transformation of the
fermionic modes, using a q × q unitary matrix U . The cost functoin was the
energy E, whose calculation was implemented via the following formula based on
the Hamiltonian. They applied a gradient search to the function

E (U) =


ij


UTU †

ij
a†iaj +



ijkl


(U ⊗ U)V (U ⊗ U)†


ijkl

a†ia†jakal, (4.18)

where T and V are the single electron and two electron integrals corresponding
to the kinetic and potential part of Hamiltonian respectively. Here a†i and ai
are the fermionic creation and annihilation operators (for quantum chemistry).
Expectetaion values a†iaj and a†ia†jakal. Can be calculated separately with

35



respect to the original state, since they’re independent on U . The gradient of E(U)
can be calculated explicitely and quite efficiently, allowing for repeated calculation
during the network optimization.

4.4.3 Optimizing the MPS initialization

The initial performance of SVD is strongly influenced by the initial matrix con-
figurations in our MPS state. Wrong choice of inital approximation may lead our
DMRG calculation to the local minima (see Moritz and Reiher [2006]).

In the first iteration, the values of the matrix elements are usually initialized
as random numbers. When we perform SVD to select most relevant states in
the left block, the result eigenstates of the density matrix ρ are higly dependent
on the basis states used to construct the right (environment) block. In the real
quantum system, the state of the subsystem tends to be strongly entangled with
the enviroment. Thus, in order to recreate the realistic initial conditions, we need
to find such representation of the environment block, which maximizes the von
Neumann entropy S(l) of the left block (see Szalay et al. [2015]).

This can be achieved by selecting the orbitals with the higest single-orbital
entropy values. The vector of orbitals sorted by one-oribital entropy is called the
CAS-vector. It can be determined based on the chemical considerations about the
system, or it can be obtained directly from the entropy calculation.

This optimization has been extendent by exploiting features of the familiar
Configuration Interaction (CI) procedure. Here the wave function is writen in
terms of a linear combination of determinants with expansion coefficients given by
the requirement of minimizing the energy. The determinants labelled as s, d, t
correspond to the singly, doubly, triply, etc. excited relative to the Hartree-Fock
(HF) configuration. The CI wave function can be written as

Ψ = cHFΦHF +


s

csΦs +


d

cdΦd +


t

ctΦt + ... (4.19)

The number of determinants is increased systematically in order to achieve higher
accuracy.

When the HF wavefunction is known, we can keep only the states of the right
block which together with the state of the left block describe some of the excited
states corresponding to a given CI-level, with respect to the HF. Then the right
block contains state for a given CI-level and the total wave function can contain
higher excitations thanks to the correlations between the blocks. This alows us to
control the minimum CI-level and together with the CAS ordering in each iteration,
the double optimization is carried out. This yields a useful interconnection between
the enviroment block states, which are in each step constructed based on the
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renormalized left block states and the left block states which are optimized during
the SVD to best fit the well represented environment block. Then the the reduced
density matrix of the left block is well defined and we can use DBSS (see section
4.4.1) to truncate it appropriately.

This so called CI-DEAS procedure guanrantees a presence of several strongly
entangled orbitals from the very beginning. Both static and dynamic correlations
are taken into account and the risk of falling into local minima is minimized. This
procedure efficiently finds most of the correlation energy and after the initialization
is over, that is after half a sweep, the chemical accuracy is reached (see Szalay et al.
[2015]).
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Figure 32: (a) Similar to Fig. 30(b) but for LiF at dLi-F = 3.05 a.u. with CAS(6,25)
and targeting the ground state and excited states within a single DMRG calculation with
Ml = Mr = 64 block states, for optimized tensor hierarchy (ordering). (b) Similar to (a) but
using the DBSS procedure with Mmin = 64 and  = 107.

This means that if I(l) > 0 then we need more information for the description of the state of
the (l) block and the • separatedly than for the description of them as a whole (L) = (l)•,
that is, they are correlated. A similar relation holds for the right block, (R) ⌘ •(r), as well.
If an e↵ective system of length d + 2 is formed by adding two non-interacting orbitals to the
right and left ends of the chain, all blocks containing 1 to d orbitals of the original system
can be formed by the forward and backward sweeps. The total information gain during a
half sweep can be calculated as

Pd1
l=1 I(l). In general, I(l) is also a function of subsequent

sweeps. However, once the DMRG method has converged, subsequent DMRG sweeps do not
change S(l) and Sl. If, additionally, all Ml = ql and Mr = qr basis states of the blocks are
kept at each iteration step, i.e., no truncation is applied, a sum rule holds, which relates the
total information gain within a full half sweep and the sum of orbital entropies given as

d1X

l=1

I(l) =
dX

l=1

Sl , (193)

where we have used S(1) = S1 and S(d) = 0.
This equality, however, does not hold in practical DMRG calculations since during the

renormalization process S(L) is reduced to S
(L)
Trunc due to the truncation of the basis states.

Once the DMRG method has converged, the following equality should hold to a good accu-

70

Figure 4.3: Plot of complex statistics of a DMRG sweep when simulating
LiF molecule at bond length d = 3.05 a.u. for fixed number of block states.
We can see the energy E of the ground state in atomic units, relative error
(EDMRG − EFCI) /EFCI for comparing the DMRG energy with precise Full Con-
figuration Interaction method, number of block states Ml, Mr, truncation error
δTR

and the dimension ΞDMRG of the superblock as a function of DMRG iteration
steps. On the left side, there are graphs for non-optimized ordering and on the
right the tensor hiearchy (ordering) was optimized prior to the simulation. (from
Szalay et al. [2015])



5. Practical Part: Multipartite
Entanglement Patterns and
Correlations

The main aim of this master thesis was to design a module for the universal
Budapest DMRG code for calculating three-site reduced density matrix, mutual
information and correlations of general operators acting on three sites. Budapest
DMRG is a complex system for simulating quantum mechanical models from solid
state physics and quantum chemistry. It is written in MATLAB and compiled in C
and some of its part are prepared for parralel computations. Even our module had
to be parallelized to be able to run on computer clusters with multiple machines
and multiple processor cores, designed for large scale computations.

After finishing the development and verifying correctness of the program with
several exact simulations, we have carried out a demonstrational simulation of the
diborane molecule, a well known example of a molecule with unusual bonding,
namely with 3-orbital 2-electron bonds. The goal of our demonstration was to
determine whether bonds in diborane exhibit the three-site correlations.

The module was included in the production version of Budapest DMRG and
will be used by our group and by the Budapest-based group for practical calcu-
lations of chemically interesting systems with intention to study the multipartite
correlations and investigate the entanglement patterns of these systems.

In this chapter, we are going to describe our solution and practical calculations.

5.1 Generalized Correlation Functions

In this section, we are going to describe how the mutual information was calculated
using the generalized correlation functins introduced in chapter 3.1.4. This section
aims to present the relevant terms from the viewpoint of practical calculations.

First let’s clarify the system partition we work at. When the reduced density
matrices ρij, ρijk are calculated, the system is effectively split into three, respec-
tively four subsystems. Thus a generalization of the usual definition of bipartite
entanglement must be taken into account. For tripartite systems or systems with
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four partitions, the wavefunction is decomposed as

|Ψ =


ui uj β

cuiujβ |ui uj β ,

|Ψ =


ui uj uk β

cuiujukβ |ui uj uk β , (5.1)

where we used our usual notation for labelling the bases of lattice sites i, j and k
with ui, uj and uk. For the rest of the system (the environment), we used index
β. For the tripartite system, that is, for calculating the two-site reduced density
matrix, the generalized correlation function can be expressed as

Ψ|T (um un)

(um un) |Ψ =


u
i u


j β





ui uj β

cu
iu


jβ

 cuiujβ


ui u


j β

T (um un)

(um un) |ui uj β ,

=


β, β

cu
mu

nβ
 cumunβ um un β|um un β ,

=


β

cu
mu

nβ
cumunβ ≡ (ρmn)u

m u
n um un , (5.2)

where in the last step, we assume that we work in the orthonormal basis.
The generalized correlation function measures the amplitude of the transition

between initial and final state with respect to the environment. Therefore it de-
pends on the amplitude of the coefficients of the two states.

For example, the reader might imagine the singlet valence bond between or-
bitals witch spin-1

2
degrees of freedom. For such example, we may use T (um un)

(um un) 
directly for characterizing the bond.

In general, the value of T (ui u

j)

(ui uj)
 might scale to a finite value with respect to

the distance of the sites i, j on the lattice. According to Barcza et al. [2015],
this scaling may occur even for many-body states without a long-range order. In
such case, we can choose to study the connected part of the generalized correlation
function

T (ui u

j)

(ui uj)
C ≡ T (ui u


j)

(ui uj)
 − T ui

ui
T uj

uj , (5.3)

where we subtract the possibly disconnected part fully contained in T ui
ui
T uj

uj .
Note that the mutual information is defined in equation (3.5) in the similar manner,
that the disconnected part doesn’t contribute.

For a better picture, we will show a practical example of building two-site
reduced density matrix from the generalized correlation functions. We will consider
a simple model of L spin-1

2
particles on the one-dimensional lattice. We will label

the spin-up and spin-down basis states with |↑ and |↓.
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Since the dimesion of one lattice site is q = 2, there are q2 = 4 transition
operators T ui

ui
 with u, u =↑, ↓ and i = 1..L. Then for example the transition

|↑i −→ |↓i on site i will be carried out by the operator T
↓i
↑i and the transition

|↓i↑j −→ |↑i↓j on sites i, j by the operator T
↓i↑j
↑i↓j . We will use shorthand notation

T ↓↑
↑↓ when its obvious which sites are involved in the transition. Analogously, we

will use the three-site transition operators T
(ui u


j uk)

(ui uj,uk) introduced in equation (3.17).
Now we will discuss forming of the reduced density matrix, beginning with

the two-site version ρij, since the calculation of the one-site case has already been
described in chapter 3.1.4. First we should emphasize that the reduce density
matrix is usually a sparse matrix and to optimize it’s calculation, we should focus
only on the nonzero elements. First note that from its definition, the reduced
density matrix preserves certain quantum numbers, like in this case the overall
spin. Thanks to this symmetry, we know that we don’t have to calculate the ma-
trix elements corresponding to the transitions which change the total spin. The
nonzero matrix elements, are listed in the table 5.1. We see that we need to
calculate only the expectation values for the listed operators, which is 6 out of
16 matrix elements. For higher dimensional site SU(n) model, this optimization
becomes significant and for the three-site reduced density matrix, it is particu-
larly important, since the total number of matrix elements scales like q3 × q3.

ρij |↓↓ |↓↑ |↑↓ |↑↑
|↓↓ T ↓↓

↓↓ 
|↓↑ T ↓↑

↓↑  T ↑↓
↓↑ 

|↑↓ T ↓↑
↑↓  T ↑↓

↑↓ 
|↑↑ T ↑↑

↑↑ 

Table 5.1: Nonzero elements of the two-site reduced density matrix for one-
dimensional spin-1

2
lattice. Initial states are in the leftmost column, whereas final

states are located in the top row.

Now let’s move to the three-site case, still considering the example of one-
dimensional spin-1

2
lattice. For the three-site reduced density matrix ρijk, the

number of nonzero elements is 36 out of 64 (see Szilvási et al. [2015]). You can
see its block-diagonal stucture in table 5.2. Each block corresponds to a single
value of the total spin. Note that the degeneracy subspaces are of different size
compared with the two-site case in table 5.1.
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ρijk |↓↓↓ |↓↓↑ |↓↑↓ |↑↓↓ |↓↑↑ |↑↓↑ |↑↑↓ |↑↑↑
|↓↓↓ T ↓↓↓

↓↓↓ 
|↓↓↑ T ↓↓↑

↓↓↑  T ↓↑↓
↓↓↑  T ↑↓↓

↓↓↑ 
|↓↑↓ T ↓↓↑

↓↑↓  T ↓↑↓
↓↑↓  T ↑↓↓

↓↑↓ 
|↑↓↓ T ↓↓↑

↑↓↓  T ↓↑↓
↑↓↓  T ↑↓↓

↑↓↓ 
|↓↑↑ T ↓↑↑

↓↑↑  T ↑↓↑
↓↑↑  T ↑↑↓

↓↑↑ 
|↑↓↑ T ↓↑↑

↑↓↑  T ↑↓↑
↑↓↑  T ↑↑↓

↑↓↑ 
|↑↑↓ T ↓↑↑

↑↑↓  T ↑↓↑
↑↑↓  T ↑↑↓

↑↑↓ 
|↑↑↑ T ↑↑↑

↑↑↑ 

Table 5.2: Nonzero elements of the three-site reduced density matrix for one-
dimensional spin-1

2
lattice. Leftmost column contains the intial states, whereas

final states are located in the top row. The block diagonal structure corresponds
to the total spin conservation.

When we obtain ρij and ρijk in the block-diangonal form, it’s straightforward
to diagonalize it block by block and calculate the von Neumann entropy, for both
the two-site case Sij and three-site case Sijk. For that we use equations 1.10 and
1.11. Then we can apply equations (3.5) and (3.6) to get the two-site and three-site
mutual information Iij and Iijk. Of course for the one-site case it’s even simpler,
making use of the equations (1.9) and (3.4).

Let us emophasize once more that our calculations and whole the entanglement
structure is basis dependent. We follow closely the method of Szilvási et al. [2015]
to find a link between the chemical bonds and the mutual information.

5.2 Our Solution

Budapest DMRG code implements the classical version of DMRG, where the O
matrices correspond with the MPS decomposition (see section 4.3), but the pro-
gram still works with states in the traditional form of renormalization picture,
without directly using MPS. In case of applications requiring the MPS formalism
there is an option to use the post-DMRG analysis, which means that after the
DMRG finishes, we convert the state to MPS form and work with it further. Our
code doesn’t use MPS directly and it can be used as a benchmark to compare
with for MPS based three-site reduced density matrix calculations, thanks to it’s
general design and numerical performance.
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In order to implement the procedure from the previous section for calculating
the generalized correlation functions and the respective quantities, we had to make
a program for efficient generating of the three-site operators based on equation

4.15. Then, having the operators T
(ui u


j uk)

(ui uj,uk) in a sparse matrix form, respecting
the symmetries of quantum numbers and having all the required O matrices in
a compact form on the disk, we made a program for an effective contraction of

the matrix form of T
(ui u


j uk)

(ui uj,uk) with the wave function vector |Ψ. The script is able
to calculate the expectation values required to obtain the generalized correlation
functions and other three-site operators correlations using the powerful tensor
product libraries from Budapest DMRG.

Our program for three-site operator correlations works in a following way

1. Load the definitions of single-site operators from which we build the three-
site operators. Load the O matrices and other stored files generated by
DMRG for basis tranformations and truncation. Load information about
the actual model and intialize superblock.

2. Performing the enlarging of the block in the infinite-lattice procedure, renor-
malize operators with O matrices based on the Hamiltonian structure, quan-
tum number denegeracy subspaces and phase factors. When the block size
reaches the desired size (half of the lattice, see figure 3.8), the operators in
the sparse form are ready for further use.

3. Store the sparse operators for each site combinations in form of a large vector
of matrices. Using the fermionic/bosonic operators symmetry we store only
operators for sites i ≤ j ≤ k. With our scripts and libraries from Budapest
DMRG, the operators stored in this form may be multiplied, contracted with
states and used like if they were in the full form. In case of need, we may
reconstruct the full form.

4. Using our own script, contract the operator with wavefunction to obtain
the expectation values. Thanks to respecting the symmetries of the system,
tracking changes of quantum numbers and having our operators stored in
a form compatible with the Hamiltonian structure, we may use the tensor
libraries from Budapest DMRG to calculate the expectation value.

5.3 About the Implementation

When calculating the three-site reduced density matrix, first we have to find out
which matrix elements are nonzero. To do this, we made another script which
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automatically explores the basis states of subspaces where the two-site and three-
site operators act. Then we are able to determine which combinations of transition
operators T ui

ui
conserve the quantum numbers and thus correspond with nonzero

matrix ements of ρ.
Another script we made takes care of building the block diagonal form of three-

site reduced density matrix ρijk introduced in the previous section. It builds ρijk

from the computed expectation values T (ui u

j uk)

(ui uj,uk), respecting the phase signs of
general operator combinations and swapping positions on the lattice during the
procedure (nontrivial technicality). Then the script reverts the optimized lattice
ordering to the former form, diagonalizes blocks of ρijk and from its eigenvalues
ων it calculates entropy and mutual information.

After calculating all the relevant quantities, we need to make sure that the
values are correct. This is done (only for small systems, since the complexity
scaling is exponential) using our script for exact calculation of the correlation
functions. This script loads the single site operators and generates full form of these
operators. It retains the full operator matrices in the memory, being very simple,
however also very ineffective. It builds the full Hamiltionian and diagonalizes it
to find the ground state wave funciton. Then it multiplies these matrices to build
a three-site operator and calculates their correlations, contracting them with the
ground state vector in order to calculate the expectation values. When building
the full form of Hamiltonian and calculating its eigenvalues and eigenstates, the
script uses a bruteforce MATLAB diagonalization. All the calculated quantities
then proceed to an automated comparation script, which determines up to which
accuracy were our calculations precise.

The last script I will describe handles the parallelization of the calculation of the
generalized correlation functions. Since the number of nonzero matrix elements of
three-site reduced density matrix may scale to hundreds of thousands for practical
calculations, we need to be able to run them on a large computatinal cluster. For
this we made a script that distributes the calculation to all available machines
and processor cores. Thanks to the fact that each expectation value may be
calculated independently, a simple bash script can just split the task in as many
parts as many computers are available and distribute them accordingly. Then a
second script parallelizes the calculation on a single machine via MATLAB parallel
environment, to use all the free processor cores.
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5.4 Summary of Used Approximations and Op-

timization Tricks

During our practical calculations, we have directly made use of following approx-
imations, methods and optimization procedures, most of which are described in
this thesis. We include also relevant links for further reference.

• Singular value decomposition. Section 2

• Density matrix Renormalization Group method and its advanced truncation.
Chapter 4

• Dynamic block state selection using the entanglement structure. Please refer
to section 4.4.1.

• Optimizing the initialization using the CI-DEAS procedure. Section 4.4.1.

• Ordering optimization using the Fiedler vector. See Szalay et al. [2015].

• Schmidt ranks optimization. Section 4.4.1.

• Quantum numbers symmetries. See Szalay et al. [2015].

• Sparse matrix storage optimization. See Eijkhout [1992].

• Davidson algorithm for diagonalization. See Crouzeix et al. [1994].

• Parallelizaton on bash level and using MATLAB parfor. See Sharma and
Martin [2009] or the official documentation The MathWorks, Inc. [2016b].

• Effective pre-summation of Hamiltonian terms. See Szalay et al. [2015].

• Budapest DMRG tensor product libraries. See Szalay et al. [2015].

• MATLAB mcc compilation of MATLAB code to C. See official documenta-
tion The MathWorks, Inc. [2016a].

• Budapest DMRG feature of transforming all objects and classes to structures
prior to compilation.
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5.5 Diborane

5.5.1 Expected Behavior of Mutual Information

As a first demonstration of our module for three-site correlations, we calculated the
entanglement pattern of diborane B2H6, whose structure can be seen in figure 5.1.
This molecule exhibits three-site correlations related to its 3-centered 2-electron
bonds on the B2H2 ring.

Based both on the chemical intuition and rigorous description from paper Las-
zlo [2000], we will now briefly sum up our expectations considering the behaviour of
mutual information in diborane. We expect that the two site mutual information
will reflect all the bonds visible on figure 5.1. However, it should not be present
between the boron core orbitals 6, 12 and other orbitals (see the indexing in figure
5.2), since we don’t expect the core orbitals to interact with other atoms.

There should be a correlation between boron and its outer hydrogens (not in the
ring), as these are covalently bonded. But these hydrogens shouldn’t be strongly
correlated with other atoms.

Finally, for the three-mutual correlations, we expect them to take part in the
3-center 2-electron bonds in the ring. It can be either B-H-B, or H-B-H. Especially
the orbitals heading in the direction along the ring should be responsible for these
bonds.

Figure 5.1: Stereo skeletal formula of diborane with all explicit hydrogens and
assorted measurements. (from Wikimedia Commons [2016])

5.5.2 Results

The geometry of diborane was optimized at the DFT(B3LYP)/cc-pVDZ level. We
followed the work of Szilvási et al. [2015] and Szalay et al. [2016] and studied the
chemical bonding in terms of correlations of localized (atomic-like) orbitals. The
canonical Hartree-Fock molecular orbitals were therefore localized by the Pipek-
Mezey procedure with tight threshold 10-12 and minimized the number of atomic
orbitals contributed in each localized orbitals. All preliminary calculations have
been done by MOLPRO Version 2010.151 (see Werner et al. [2010]).
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Using the procedure described above, we have calculated all the relevant nonzero
combinations of transition operator expectation values, from which we formed the
one-site, two-site and three-site reduced density matrices ρi, ρij and ρijk. Then
we calculated one-site, two-site and three-site entropy Si, Sij, Sijk and mutual
information Iij and Iijk.

The lattice size (given by the basis size) is L = 16 orbitals and one-site dimen-
sion q = 4. Thus each ρij is a 16 by 16 matrix and each ρijk is 64 × 64. There
is exactly 400 nonzero elements of each three-site reduced density matrix ρijk and
36 nonzero elements for each ρij. Remember that also i, j, k = 1..16, which means
that there is in total 163×400 relevant matrix elements for the three-site case. Our
script in each run calculated one ρijk matrix, that means it had to run 400-times.
We used a computational cluster with 215 Intel Xeon cores at 3.0 GHz of the J.
Heyrovský Institute of Physical Chemistry in Prague.

The resulting two-site mutual information scheme is depicted on graphs in
figures 5.3a, 5.4a and 5.4b. The schematic plot of three-site mutual information,
which was the main objective to calculate, is on the figure 5.5a. You can see its
relative values in table 5.2. For one-site entropy and the eigenvalues of ρi, see
graphs in figure 5.3b. The one site entropy ρi shows how significant is the orbital
labelled by i for the chemical bonds, so we can compare it with the rest of the
orbitals. In the Attachments section, you can see the plots of two-site hopping

amplitudes represented by functions T (ui u

j)

(ui uj)
.

In the section to follow, we will discuss the observed entanglement pattern and
explain how does its structure correspond with the present chemical bonds.
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Figure 5.2: Localized (atomic-like) molecular orbitals of diborane.
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(a) Schematic plot of mutual information Iij for the diborane molecule that we calculated
using the QC-DMRG method. Localized (atomic-like) molecular orbitals are labeled by
circles and numbered 1..16. See the indexing on figure 5.2. Colour of the lines between
the orbitals depict the strength of correlation between them. Darker lines signify higher
Iij . For more detailed information on the analysis method, please refer to Szilvási et al.
[2015].

12  2 13  1  3  9 11 10  4  5 14 16  8  7 15  6
0

1

2

o
cc
u
p
.
n
u
m
b
e

12  2 13  1  3  9 11 10  4  5 14 16  8  7 15  6
0

0.5

1

ω
(i
)

α

 

 
| 0 ⟩
| ↓⟩
| ↑⟩
| ↑↓⟩

12  2 13  1  3  9 11 10  4  5 14 16  8  7 15  6
0

0.5

1

1.5

Orbital index

S
(ρ

(i
) )

(b) Plot shows the single-orbital entropy S (ρi) profile.

49



50

122 131 3 9 11104 5 14168 7 156

12 213 1 3 91110 4 51416 8 715 6

0

0.5

1

1.5

2

2.5

Orbital indexOrbital index

(a) Bar plot of two-site mutual information Iij between the localized (atomic-like) molec-
ular orbitals in the diborane molecule.

12
2

13
1
3
9

11
10
4
5

14
16
8
7

15
6

Orbital index

O
rb

ita
l in

de
x

12 2 13 1 3 9 11 10 4 5 14 16 8 7 15 6

(b) Plot of two-site mutual information Iij between the localized (atomic-like) molecular
orbitals in the diborane molecule. Darker squares in the table signify higher values of
Iij .



51

12

2 13

1

39

11

10

4

514

16

8 7

15

6

(a) Schematic plot of three-orbital mutual information Iijk for the diborane molecule that
we calculated using the QC-DMRG method. Localized (atomic-like) molecular orbitals
are labeled by circles and numbered 1..16. See the indexing on figure 5.2. Colour of the
lines between the orbitals depict the strength of correlation between them. Darker lines
signify higher Iijk. Relative values of Iijk can be found in table 5.2.
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(b) Detail of the 3-orbital 2-electron bonds in the diborane molecule displayed via three-
orbital mutual information Iijk plot.



orient. i-j-k Iijk description orient. i-j-k Iijk description
>∞ 4-5-10 0.22 H-B-H hor. 8 ∨∞ 4-5-9 0.16 B-H-B mix.
∞ < 4-10-11 0.22 H-B-H hor. ∞∨ 8 4-11-14 0.16 B-H-B mix.
∨ = 4-5-14 0.17 H=B right ∞∧ 8 10-11-14 0.16 B-H-B mix.
∧ = 5-10-14 0.17 H=B right > 8 4-10-14 0.12 H-B-H vert.

8 ∧∞ 5-9-10 0.16 B-H-B mix. 8 < 4-9-10 0.12 H-B-H vert.

Table 5.2: Orbital combinations exhibiting the most significant three-site corre-
lation. The values of other combinations are smaller at least by one order of
magnitude I < 0.01. Horizontal ∞ and vertical 8 in description refers to the spa-
tial orientation of the involved boron orbitals. ∨, ∧ correspond to the case which
involve the lower and upper hydrogen respectively. For the orientations labelled
by =, this is a special case when two orbitals of single boron interact with a single
hydrogen from the ring. Please don’t confuse = with chemical formalism, there is
still only one electron involved.

5.5.3 Discussion

Let’s start with analysis of the two-site mutual information depicted in figures
5.3a, 5.4a and 5.4b. We can see from the absence of bonds for orbitals 6 and 12
that these core orbitals do not participate, as was expected.

4-covalent σ-bonds between the borons and end hydrogens (outside the ring)
are 1-3, 2-13, 7-15, 8-16. These are the strongest detected correlations.

Bonds between orbitals 4, 5, 9, 10, 11 and 14 correspond to the interesting 3
or 4-center bonds.

We can clearly see the bond B-B between boron atoms. This may be due to
the correlation of localized orbital with a significant overlap. However, this bond
is much weaker than the covalent bond B-H, but still stronger than the 3-center
2-electron bonds. This is in agreement with the fact that the distance between
borons is 1.76 Å, while the double of the covalent radius is 1.62 Å. For detailed
explanation, please refer to Laszlo [2000].

Considering the two-site mutual information in the 3-center 2-electron bonds
in the B2H2 ring, in localized orbital basis it looks more like a 4-center 4-electron
bonds. This is because the boron orbitals contribute to the bond with both upper
and lower half of the ring involved. But this is not a problem from the chemical
point of view. If it is so, the H-B-H bonds should also exhibit the three-site cor-
relation and they shouldn’t be independent. And this is really the case - we’ll see
shortly that these are the strongest three-site correlations present in diborane.
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According to the single-orbital entropy profile in figure 5.3b, the orbitals are quite
equally linked to the rest of the system, with the exceptions in core orbitals 6 and
12, whose contribution is negligible, since the are doubly occupied and hence do
not contribute to any other bonds.

Now finally, let’s move to the three-site mutual information plot in figure 5.5a.
We can happily confirm that the resulting Iijk fully satisfies our hopes to find a
significant three-site entanglement in the B2H2 ring, between its orbitals 4, 5, 9,
10, 11 and 14. In table 5.2, we compare the Iijk values for the strongest bonds
with 0.1 < Iijk < 0.3. The other bonds outside the ring are at least one order of
magnitude weaker, with Iijk < 0.01.

The strongest are the H-B-H bonds connected by the horizontal (not vertical!)
orbital on the left boron and same for the symmetrical case on the right side.
Even though these orbitals are horizontally oriented, they are still large enough
to interact with both hydrogens on the ring, thus responsible for what seems as a
4-center 4-electron bond on the two-site plot in figure 5.3a. This is an argument
for the hypothesis that the 4-center 4-electron bond is present.

The next on the list ordered by the correlation strength are the odd bonds
4-5-14, 5-10-14 which do not correspond to the case H-B-H, nor B-H-B. Those are
the correlations between one hydrogen and two boron orbitals. Their presence is
probably caused by the large overlap present and the entanglement inside of the
ring, which with a closer look clearly becomes very difficult to describe.

It is obvious from the Iijk plot that the remaining three-site bonds represent
the rest of the expected correlation between the overlapping ring orbitals.

Thus we conclude this section with declaring that our expectations were almost
fully confirmed and the demonstration of our DMRG module for calculating the
three-site entanglement can be considered successful.

Remark. Note that the above three-site mutual information analysis was from some
part more intuitive than mathematically rigorous. In some more delicate cases than
this simple demonstration, we have to be aware of the complications that may arise
with nonintuitive behaviour of definitions, with properties of multipartite mutual
information or with the linked quantities. For further reading from a mathematical
point of view, please refer to Williams and Beer [2010] and Szalay et al. [2016]. A
rigorous description of the multipartite entanglement measures is beyond reach of
this thesis.
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Conclusion and Outlook

5.6 Conlusion

We have made a module for calculating the three-site operator correlations in the
Budapest implementation of the Density Matrix Renormalization Method.

We have sucessfully calculated the three-site mutual information for diborane
and we used it together with other corresponding quantities to analyze the entan-
glement pattern. We discussed the results extensively in the last chapter, conclud-
ing a successful verification of the theoretical prediction of the outcomes. We have
verified the presence of three-partite mutual information in the B2H2 ring in the
diborane molecule.

In the theoretical part, we introduced the relevant terms to build a basic quan-
tum information theoretical picture about the problem. We have reviewed serveral
methods for optimizing the of the quantum simulations, namely for the DMRG
method.
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Ö. Legeza, J. Röder, and B. A. Hess. Controlling the accuracy of the density-matrix
renormalization-group method: The dynamical block state selection approach.
Phys. Rev. B, 67:125114, Mar 2003. doi: 10.1103/PhysRevB.67.125114. URL
http://link.aps.org/doi/10.1103/PhysRevB.67.125114.
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T. Szilvási, G. Barcza, and Ö. Legeza. Concept of chemical bond and aromaticity
based on quantum information theory. ArXiv e-prints, September 2015.

The MathWorks, Inc. Matlab compiler, July 2016a. URL http://www.mathworks.

com/help/compiler/.

The MathWorks, Inc. Matlab parallel computing toolbox, July 2016b. URL http:

//www.mathworks.com/help/distcomp/.

H-JKPJ Werner, PJ Knowles, G Knizia, FR Manby, M Schütz, P Celani, T Ko-
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