
MASTER THESIS

Bc. L’ubica Jančová

Effectivity and Limitations of
Homomorphic Secret Sharing Schemes

Computer Science Institute of Charles University

Supervisor of the master thesis: Mgr. Pavel Hubáček, Ph.D.
Study programme: Mathematics

Study branch: Mathematics for Information
Technologies

Prague 2022

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

ii

I would like to thank this thesis supervisor Pavel Hubáček and consultant Ignacio
Cascudo for their time, patience, and all the valuable advice. I would like to thank
my family for their infinite support and Nicolas Mazzocchi for being here for me
at every moment.

iii

iv

Title: Effectivity and Limitations of Homomorphic Secret Sharing Schemes

Author: Bc. L’ubica Jančová

Institute: Computer Science Institute of Charles University

Supervisor: Mgr. Pavel Hubáček, Ph.D., Computer Science Institute of Charles
University

Consultant: Dr. Ignacio Cascudo Pueyo, Research assistant professor, IMDEA
Software Institute

Abstract: This thesis focuses on constructions of Homomorphic Secret Sharing
(HSS) based on assumptions not known to imply fully homomorphic encryption.
The efficiency of these constructions depends on the complexity of the Distributed
Discrete Logarithm (DDLog) problem in the corresponding groups. We describe
this problem in detail, focusing on the possibility of leveraging preprocessing in
prime order groups, and deriving upper bounds on the success probability for
the DDLog problem with preprocessing in the generic group model. Further, we
present a new HSS construction. We base our construction on the Joye-Libert
encryption scheme which we adapt to support an efficient distributed discrete log-
arithm protocol. Our modified Joye-Libert scheme requires a new set of security
assumptions, which we introduce, proving the IND-CPA security of our scheme
given these assumptions.

Keywords: Homomorphic Secret Sharing, Distributed Discrete Logarithm, Generic
group model

v

vi

Contents

Introduction 3

1 Preliminaries 5
1.1 Basic cryptographic definitions . 5
1.2 Homomorphic Secret Sharing . 7
1.3 Distributed Discrete Logarithm problem 8

2 The Distributed Discrete Logarithm problem with preprocessing 15
2.1 Preprocessing in the generic group model 15
2.2 Auxiliary input and Bit-fixing model 18
2.3 Lower bounds for DDLog with preprocessing in the generic group

model . 21

3 HSS from Joye-Libert encryption scheme 31
3.1 Modified Joye-Libert public-key encryption scheme 31
3.2 Security of the Modified Joye-Libert encryption scheme 34
3.3 DDLog for the Modified Joye-Libert encryption scheme 42
3.4 Homomorphic Secret Sharing from the Modified Joye-Libert en-

cryption scheme . 43

Conclusion 53

Bibliography 55

1

2

Introduction
The possibility of privately outsourcing computation is a major application of
cryptography. We can easily imagine a small device, for example, a mobile phone,
employing a server with a significantly larger computational power to tackle its
computational tasks. We want to ensure that the delegated computation stays
private. Depending on what is required to stay private, we can distinguish be-
tween input privacy and function privacy. We want to guarantee that no informa-
tion on the client’s inputs is leaked to the server performing the computation in
input privacy. Whereas we want to keep the function, computed over the inputs,
hidden from the server in the function privacy. The function privacy has been
tackled for example by the distributed point function in [GI14] and function secret
sharing in [BGI15]. In this thesis, we focus on the privacy of the client’s inputs.

The input privacy can be ensured by Fully Homomorphic Encryption (FHE),
which is an encryption scheme, that supports the evaluation of an arbitrary ef-
ficiently computable function on encrypted data. For example, using FHE, the
client would encrypt his inputs and send the encrypted data together with the
description of the function he wants to evaluate to the server, the server would
evaluate the function on the encrypted data and send an output to the client,
and the client would decrypt the output provided by the server and thus ob-
tain the desired result. All of the known FHE constructions (e.g. [Gen09]) are
lattice-based encryption schemes, and they rely on assumptions as Learning with
errors (LWE) or Ring Learning with errors (RLWE). The lattice-based approach
bears some issues with noise which grows with every operation performed on the
encrypted data. To control the noise growth, in order to be able to decrypt cor-
rectly at the end of the evaluation, it is necessary to perform costly bootstrapping
operations, which allow keeping the noise small.

In search of a more efficient way to securely outsource computation, we can
relax this model to its secret-sharing variant. Instead of one server performing
the computation, we secret-share the data between two servers so that each of
the shares computationally hides the client’s data. Then each of the servers
evaluates the function chosen by the client on its share and sends the evaluation
output to the client. Given the outputs from both servers, the client composes
the result of the computational task. A scheme that implements this model is
called a Homomorphic Secret Sharing (HSS). We emphasize that the trust model
in HSS is different from the trust model of FHE. In FHE, the client does not
trust the server and keeps his data computationally hidden from it. In the HSS
case, the client does not trust the servers either, and the share of data given to
each individual server computationally hides the data; however, the client trusts
that the two servers will not collude to uncover his data, i.e., given both shares,
the client’s data are not hidden.

It is possible to construct an HSS based on known constructions of FHE. More-
over, [BKS19] constructed HSS for the class of Restricted Multiplication Straight-
line (RMS) programs from LWE, which does not imply FHE. Their construction
avoids the costly operations of FHE and enjoys a considerably better efficiency
than the HSS constructions implying FHE. Currently, there exist several construc-
tions of HSS for RMS programs that rely on conceptually different assumptions,

3

which are not known to imply FHE. These comprise constructions based on the
ElGamal encryption scheme [BGI16], relying on the Decisional Diffie-Hellman
assumption (DDH) and constructions based on the Paillier encryption scheme
[OSY21], relying on the Decisional Composite Residuosity (DCR) assumption.

In this thesis, we focus on the constructions of HSS based on the assumptions
not known to imply FHE. In Chapter 1, we review some basic cryptographic
definitions, including the definition of HSS. We also recall the Distributed Discrete
Logarithm (DDLog) problem, which is used in the constructions of HSS from
[BGI16] and [OSY21]. We focus on the DDLog problem for the prime order
groups, corresponding to the case of [BGI16].

[DKK20] gave lower bounds on the error probability of the DDLog problem for
prime order groups in the generic group model. This error probability scales with
Ω(T −2), where T denotes the number of performed group operations, which also
implies a non-negligible correctness error in the HSS construction form [BGI16].
In Chapter 2, we analyze the DDLog problem for prime order groups in the
preprocessing model. We examine the possibility of saving computation while
allowing the parties to precompute an advice string in advance. We perform this
analysis in the generic group model using the approach from [CDG18]. We show
that for generic groups, if we allow the parties to precompute a small advice string
(of size S = O(N/W), where N is the size of the group, and W denotes the size of
the interval in the DDLog problem), then the preprocessing does not meaningfully
help. In particular, for a success probability ϵ, we prove a lower bound on the
number of group operations T 2 = Ω(ϵW), while a DDLog algorithm with no
preprocessing presented by [DKK20] reaches the complexity T 2 = O(W

1−ϵ
). For a

constant probability of success these two bounds match. If we allow a big advice
string (S = Ω(N/W)), then the problem allows a time-space trade-off bounded
by ST 2 = Ω(ϵN), where ϵ denotes the success probability.

In Chapter 3, we present a new construction of HSS, based on the Joye-Libert
(JL) encryption scheme ([JL13]). The original Joye-Libert scheme does not seem
to naturally support an efficient way of calculating DDLog. In order to get an
efficient DDLog protocol, we introduce some modifications to the JL scheme.
We call this new encryption scheme modified Joye-Libert (mJL) scheme. Due
to our modifications, the assumptions on which the security of mJL relies are
not the same as the ones of the original scheme. Therefore, we define a set of
assumptions the security of mJL relies on, and we prove its IND-CPA security
given these assumptions. Then, we present our DDLog protocol for mJL, and we
employ it forwards a construction of HSS using mJL as its underlying encryption
scheme.

4

1. Preliminaries
In this chapter, we review the basic definitional framework. We define Homomor-
phic Secret Sharing, as well as the class of Restricted Multiplication Straight-line
programs, which we will be able to evaluate with our construction of HSS. We
recall the Distributed Discrete Logarithm problem, explain its relation to the
Homomorphic Secret Sharing and define it in the context of the generic group
model.

1.1 Basic cryptographic definitions
In this section, we review several standard cryptographic definitions. We also
introduce the notation we use throughout the text.

Notation. For n ∈ N, we denote by [n] the set of natural numbers from 1 to
n, i.e., [n] = {1, . . . , n}. By the symbol ←, e.g. a ← [n], we denote a uniformly
random choice of an element from a given set. Furthermore, for a probabilistic
algorithm A, a← A means that a has been an output generated by the algorithm
A with a uniformly random choice of the random coins of the algorithm.
For a, b ∈ Z, we denote by gcd(a, b) the greatest common divisor of a and b.
By a boolean expression in square brackets, e.g., [a < b], we denote its truth
value, that is 1 if the expression is true, 0 if it is false.
By PPT we denote a probabilistic polynomial-time Turing machine, i.e., a prob-
abilistic Turing machine for which there exists k ∈ N, such that its running time
on an input of size n is O(nk).

Definition 1 (Public-key encryption scheme). Let λ ∈ N be a security parameter.
A public key encryption scheme with message space M is a sequence of PPT
algorithms (KeyGen, Enc, Dec) such that KeyGen is a key generation algorithm
that on input 1λ outputs a key pair composed of a public key and a secret key
(pk, sk) ← KeyGen(1λ). Enc is an encryption algorithm and Dec is a decryption
algorithm such that for every m ∈M we have Dec(sk, Enc(pk, m)) = m.

Definition 2 (Negligible function). Let f be a function f : N → R. We say f
is negligible if for every c ∈ N exists nc ∈ N such that for every x ≥ nc we have
|f(x)| < 1

xc . We denote this by f = negl(x).

We review the standard notion of IND-CPA security.

Definition 3 (IND-CPA security). Let (KeyGen, Enc, Dec) be a public-key encryp-
tion scheme and λ ∈ N be a security parameter. For a PPT algorithm A, attacker
on the IND-CPA property, we define its advantage AdvIND-CPA

A (λ) in the IND-CPA
security experiment (Figure 1) as follows:

AdvIND-CPA
A (λ) :=

⏐⏐⏐⏐⏐Pr[1← ExpIND-CPA
A (1λ)]− 1

2

⏐⏐⏐⏐⏐.
We say a public-key encryption scheme is IND-CPA secure if for every non-
uniform PPT attacker A is its IND-CPA advantage negligible, i.e., AdvIND-CPA

A (λ) =
negl(λ).

5

Figure 1 − IND-CPA security experiment.

ExpIND-CPA
A (1λ):

1. The challenger runs KeyGen with security parameter λ to generate
the secret key sk and the public key pk and it sends (1λ, pk) to the
adversary A.

2. On input (1λ, pk) the adversary A chooses two messages m0, m1 from
the message space of the public-key encryption scheme and sends
m0, m1 to the challenger.

3. The challenger chooses uniformly at random a bit b ∈ {0, 1} and
sends c = Enc(sk, mb) to A.

4. A outputs a guess b′.

5. The output of the experiment is 1 if b = b′, otherwise the output of
the experiment is 0.

Definition 4. Let D0, D1 be two probability distributions and λ ∈ N be a se-
curity parameter. Consider a PPT algorithm D, we call it a distinguisher, and
the indistinguishability experiment described in Figure 2. We say D wins in the
indistinguishability experiment if b = b′ and we define the advantage of D in the
indistinguishability experiment as follows:

AdvD0,D1
D (λ) :=

⏐⏐⏐⏐⏐Pr[b′ = 1 | b = 1]− Pr[b′ = 1 | b = 0]
⏐⏐⏐⏐⏐.

We say the distributions D0, D1 are computationally indistinguishable, we denote
D0

c≈ D1, if for every PPT D, its advantage in the indistinguishability experiment
for the distributions D0, D1 is negligible.

Figure 2 − Indistinguishability experiment for the distributions D0, D1 .

ExpD0,D1
D (1λ):

1. The challenger chooses a bit b← {0, 1} and a challenge x← Db and
sends (1λ, x) to D.

2. On input (1λ, x) the distinguisher D outputs a guess b′ ∈ {0, 1}.

We review the notion of Key-Dependent Message security (KDM) introduced
by Black, Rogaway and Shrimpton in [BRS02]. We base our definition of KDM
security on the version from [OSY21, Definition 2.2].
Definition 5 (KDM security). Let λ denote the security parameter, F be some
set of functions and let (KeyGen, Enc, Dec) be a public-key encryption scheme.
We define an advantage of a PPT attacker A in the KDM security experiment as
follows:

AdvKDM
A (λ) :=

⏐⏐⏐⏐⏐Pr[1← ExpKDM
A (1λ)]− 1

2

⏐⏐⏐⏐⏐.
6

Figure 3 − KDM security experiment.

ExpKDM
A (1λ):

1. The challenger runs KeyGen on input 1λ and receives the output
(pk, sk). It forwards (1λ, pk) to A.

2. On input (1λ, pk) the attacker A chooses a polynomial subset
{f1, . . . , fp} ⊂ F and send his choice to the challenger.

3. The challenger chooses b← {0, 1}. If b = 1 it sets ci = Enc(pk, fi(sk)),
if b = 0 it sets ci = Enc(pk, 0|fi(sk)|) for i ∈ [p], and it sends c1, . . . , cp

to A.

4. A outputs b′ ∈ {0, 1}, the guess for the bit b.

5. The output of the experiment is 1 if b = b′, otherwise the output of
the experiment is 0.

We say a public-key encryption scheme is KDM-secure (Key-Dependent Message
secure) over the set of functions F if for every non-uniform PPT A is its advan-
tage AdvKDM

A (λ) negligible, i.e., AdvKDM
A (λ) = negl(λ).

1.2 Homomorphic Secret Sharing
We base the definition of Homomorphic secret sharing on the definitions of HSS
given by [BGI16] and [BGI+18].

Definition 6 (Homomorphic secret sharing). Let n ∈ N and λ ∈ N be a security
parameter. We define a 2-party Homomorphic secret sharing (HSS) for a class of
programs P as a sequence of PPT algorithms (Share, Eval, Dec) with the following
syntax

Share(1λ, (w1, . . . , wn)): Given a security parameter and inputs (w1, . . . , wn) the
algorithm Share outputs (share0, share1), the secret shares for party 0 and
party 1 respectively.

Eval(P, b, shareb): Given a program P ∈ P, a party index b and b-th shares of the
inputs, the algorithm Eval outputs outb, corresponding to the b-th share of
the final output out.

Dec(out0, out1, β): Given the output shares out0, out1 and a modulus β the algo-
rithm returns a final output out.

such that the following correctness and security requirement hold.

Correctness
Let δ be a given error bound. A HSS is said to be δ-correct if for every
polynomial p there is a negligible function ϵ such that for every λ ∈ N, for

7

every input (w1, . . . , wn), for every program P ∈ P of input length n and
size m such that m ≤ p(λ) the following holds:

Pr
[
Dec(out0, out1, β) = P (w1, . . . , wn)

⏐⏐⏐⏐⏐(share0, share1)← Share(1λ, (w1, . . . , wn)),

outb ← Eval(P, b, shareb), b ∈ {0, 1}
]
≥ 1− δ − ϵ(λ)

We say the HSS is statistically correct, if it is 0-correct.

Security
For every b ∈ {0, 1}, for every polynomial p and every n ≤ p(λ) and every
two input sequences w1, . . . , wn and v1, . . . , vn such that |wi| = |vi|, i ∈ [n],
for every non-uniform PPT distinguisher A there exists a negligible function
ϵ such that for every λ ∈ N⏐⏐⏐⏐⏐Pr[1← A(1λ, shareb)]− Pr[1← A(1λ, shareb

′)]
⏐⏐⏐⏐⏐ ≤ ϵ(λ),

where (share0, share1)← Share(1λ, (w1, . . . , wn)) and (share0
′, share1

′)←
Share(1λ, (v1, . . . , vn)).

The Homomorphic secret sharing constructions from [BGI16], [BKS19] and
[OSY21] as well as our protocol described in Chapter 3 are HSS schemes for the
class of Restricted Multiplication Straight-line programs. We define this class of
programs below.

Definition 7 (RMS program, [BGI16, Definition 3.1]). Let β, m, M ∈ N. A
Restricted Multiplication Straight-line program (RMS) with a magnitude bound
M and size m is a sequence of m instructions of the following types:

• Load input value into memory (id, yi ← wi),

• Add two memory values (id, yu ← yi + yj),

• Multiply an input value by a memory value (id, yu ← wi · yj),

• Output value from memory as an element of Zβ (id, β, outj ← yi),

where each of the instructions has its unique identifier id. If the size of any
memory value exceeds M at any point of the execution, the program’s output on
the corresponding input is defined to be ⊥. Otherwise the output is defined to be
a sequence of values outj ∈ Zβ, outputed by the instructions of type (id, β, outj ←
yi), sorted by id.

1.3 Distributed Discrete Logarithm problem
In this section, we review the notion of distributed discrete logarithm (DDLog)
problem and we give a brief explanation on how the DDLog problem is connected
to HSS. Then, we focus on the DDLog problem for prime order groups. We also
recall the concept of the generic group model and formally define the DDLog

8

problem for prime order groups in the generic group model.

Let (G, ·) be a group in the multiplicative notation and ω ∈ G. The distributed
discrete logarithm problem is a problem of transforming multiplicative shares of
some secret m, to its additive shares. More precisely, two players, P0 and P1,
are holding h0 ∈ G and h1 ∈ G respectively, such that h1

h0
= ωm for some given

subgroup generator ω. The players want to convert their shares, without any
communication in between them, to shares a0, a1, such that a1 − a0 = m.

Solving the distributed discrete logarithm problem efficiently is essential for
some of the constructions of HSS, for example, the constructions from [BGI16] and
[OSY21]. In these constructions, during the homomorphic evaluation, the parties
hold encryptions of the secret inputs with some public-key encryption scheme
(e.g., ElGamal encryption in [BGI16] and Paillier encryption in [OSY21]), as well
as the additive shares of the inputs. After performing the multiplication opera-
tion Multiply an input value by a memory value of the RMS program, instead of
additive secret shares of the result, the parties naturally obtain its multiplicative
secret shares. For further evaluation of the RMS program, the additive shares
are needed, and this is where the DDLog problem plays its role. By solving the
distributed discrete logarithm problem, the parties convert their multiplicative
shares h0, h1 to the shares a0, a1 such that a1 − a0 = m, which are the additive
shares of m.

In the case of [BGI16], the underlying group is a prime order group and the
element ω is its generator. We examine the DDLog problem in this case in more
detail.

Distributed Discrete Logarithm problem for prime order groups. Let
(G, ·) be a cyclic group of prime order N with a generator g. In the distributed
discrete logarithm problem in G on interval of size W ∈ N, W ≤ N two inde-
pendent players P (0) and P (1), who cannot communicate, get as input gb and
gb+x respectively, where x ← {x ∈ Z ∩ [−W/2, W/2]} and b ← ZN , while the
representation of the group G is known by both players. At the end of their ex-
ecution, the players output elements P (0)(gb), P (1)(gb+x) ∈ ZN respectively. We
say the players P (0), P (1) solved the distributed discrete logarithm problem, if
P (1)(gb+x) − P (0)(gb) = x. We say that the error event occurred in the solution
of DDLog problem if P (1)(gb+x)− P (0)(gb) ̸= x.

In order to solve the DDLog problem, [BGI16] proposed a DDLog procedure
([BGI16, Algorithm 1]) resulting in the error probability δ, with the time com-
plexity O(W log(1/δ)

δ
) group operations [BGI16, Proposition 3.2]. Their procedure

selects a set of special group elements (using a pseudorandom function) and each
of the players searches through T points closest to his input, in sense of multipli-
cation by the group generator g. If the player finds a special point, the output
of the DDLog procedure on his input will be the number of steps (multiplication
by g) he made until finding the special point. It is clear, that if both of the
players find the same special point, P (0)(gb) − P (1)(gb+x) = x will hold. To be
consistent with our definition of solution of the DDLog problem, let the players
output minus the number of steps made, then P (1)(gb+x)− P (0)(gb) = x. There-
fore, the success probability of this DDLog procedure is exactly the probability of

9

the players synchronizing on the same special point. In [BGI16], the error proba-
bility introduced by the DDLog procedure propagates throughout the entire HSS
scheme and subsequently affects its efficiency.

The DDLog problem in prime order groups has been studied in detail in
[DKK20]. The authors proposed a more sophisticated DDLog procedure resulting
in the error probability O(W/T 2) ([DKK20, Theorem 2, Corollary 1]), where T
denotes the number of group-operations performed. Their procedure consists of
iterating random walks with carefully chosen parameters of maximal step length
and number of steps in each stage, in the way that they continuously reduce the
probability of the two players not synchronizing on their path.

The authors also analysed the limitations of the DDLog problem. They
proved, by a reduction of the discrete logarithm on the interval (DLI) problem to
the DDLog problem, that in specific families of groups, where the DLI problem
is difficult, the error probability of DDLog is Ω(W/T 2) [DKK20, Theorem 3].

[DKK20] also analyzed the DDLog problem in the generic group model, the
model, which inhibits the attacker from exploiting a particular structure and
properties of the related group. In [DKK20, Theorem 5] they showed that the
error probability of any generic DDLog procedure is Ω(W/T 2).

These two results gave the lower bound to the error probability in the DDLog
problem, matching the upper bound of their DDLog procedure. Therefore, this
procedure can be considered as optimal. The error probability Ω(W/T 2) also
implies a non-negligible correctness error in the HSS construction from [BGI16].

Nevertheless, these results do not rule out DDLog procedures exploiting par-
ticular properties of some groups, where the DLI is not a difficult problem, or
where the order of the underlying group is not prime. This is the case of the
DDLog procedure and a subsequent HSS construction in [OSY21] from the Pail-
lier encryption scheme, as well as our DDLog procedure and HSS construction
presented in Chapter 3.

Now we describe the generic group model we consider, and we define the
DDLog problem in this generic group model. The generic group model was in-
troduced by Shoup in [Sho97], we use a version from [CDG18] with small adjust-
ments.

The Generic Group Model. Let G be a cyclic group of prime order N with
a generator g. In the generic group model, we assume that the structure of G is
random, in the sense that the adversary does not have more information about the
group structure than he would have if the group was given by a random injective
function σ : ZN → [M]. This means that the elements of G are represented by
the elements from Im(σ). More precisely, for a ∈ ZN , the representation of the
group element ga is σ(a). We call the mapping σ an encoding function.

Definition 8 (Encoding function). Let N, M ∈ N, M ≥ N and consider ZN , the
additive group of integers modulo N , and the set [M] = {1, . . . , M}. An encoding
function σ of ZN on [M] is an injective mapping from ZN to [M]. We denote
IN,M the set of all encoding functions of ZN on [M] and Yσ the range of σ. 1

1We omit the subscript σ in Yσ, if the mapping is clear from the context.

10

In order to allow an adversary to perform group operations, the adversary
in the generic group model is granted an access to a group operation-oracle O,
which chooses a random encoding function σ ← IN,M at the beginning of an
experiment and then answers adversary’s queries of the following types:

Forward query
A query a ∈ ZN is answered by σ(a) ∈ [M].

Group-operation query
A query (s1, s2), where s1, s2 ∈ Yσ is answered by σ(x1 + x2), where x1, x2
are elements of ZN such that σ(x1) = s1 and σ(x2) = s2. If any of s1, s2 is
not in Yσ, the query is answered by ⊥.

Inverse query
A query s, where s ∈ Yσ is answered by σ(−x), where x ∈ ZN is the
preimage of s, i.e., σ(x) = s. If s /∈ Yσ, the query is answered by ⊥.

In the generic group model we measure the time complexity of the attacker by
the number of oracle queries performed during its execution.

We define an unpredictability application [CDG18], which captures in the
generic group model the problem of guessing some secret information x given a
challenge from a challenge space CHx.

Definition 9 (Unpredictability application). Let λ ∈ N be a security parameter.
An unpredictability application G in the oracle O-model is defined by a space of
secrets X , a set of challenge spaces {CHx | x ∈ X}, a PPT challenger C with
oracle access and an oracle O. We define the advantage of A on G, denoted
AdvGO

A (λ), as the probability of success of A in the unpredictability experiment
ExpGO

A (1λ) (Figure 4), i.e.,

AdvGO

A (λ) = Pr[1← ExpGO

A (1λ)].

We define the probability of error of A in G to be the probability of the output of
the unpredictability experiment ExpGO

A (1λ) being 0, i.e.,

ErrGO

A (λ) = 1− AdvGO

A (λ).

We say A runs in the time T if it performs at most T oracle queries.

The distributed discrete logarithm problem can also be seen as a problem
of guessing secret information, given a challenge from some challenge space de-
pendent on the secret. In particular, the attacker tries to guess x given the
challenge of the form gb, gb+x. Nevertheless, the unpredictability application does
not provide a good representation for this problem, as it carries several differ-
ences compared to it. Especially, the attacker in the distributed discrete loga-
rithm problem is composed of two algorithms who cannot communicate and each
of these algorithms only gets to see half of the challenge, moreover, to solve the
DDLog problem, is to get the secret x secret-shared between these two algorithms,
not known explicitly by any of them. We call this special type of attacker a dis-
tributed attacker and we represent similar problems by distributed unpredictability
application.

11

Figure 4 − Unpredictability experiment.

ExpGO

A (1λ):

1. The challenger C generates a secret x from X and a challenge c from
the challenge space CHx. It forwards (1λ, c) to A.

2. On input (1λ, c) the attacker Amakes queries to oracle O and receives
answers from the oracle.

3. The attacker A chooses a guess x′ ∈ X and sends it to C.

4. The output of the experiment is defined to be 1 if x = x′, otherwise
the output of the experiment is 0.

Definition 10 (Distributed attacker). A distributed attacker (A(0),A(1)) is a
pair of independent PPT A(0) and A(1), who cannot communicate. We say the
distributed attacker runs in the time T if each of A(0) and A(1) does not make
more than T oracle queries during its execution.

Definition 11 (Distributed unpredictability application). Let λ ∈ N be a security
parameter. A distributed unpredictability application G in the oracle O-model is
defined by a space of secrets X , a set of challenge spaces {CHx | x ∈ X}, where the
elements of CHx are of form (c0, c1), a PPT challenger C with oracle access and
an oracle O. We define the advantage of the distributed attacker A = (A(0),A(1))
on G, denoted AdvGO

A (λ), as the probability of success of A in the distributed
unpredictability experiment ExpGO

A (1λ) (Figure 5), i.e.,

AdvGO

A (λ) = Pr[1← ExpGO

A (1λ)].

We define the probability of error of A in G to be the probability of the output of
the unpredictability experiment ExpGO

A (1λ) being 0, i.e.,

ErrGO

A (λ) = 1− AdvGO

A (λ).

Now, we define the distributed discrete logarithm problem in the generic group
model.

Definition 12 (Distributed discrete logarithm application). Let λ ∈ N be a
security parameter, let N, W ∈ N, N > W and O be a group operation oracle. The
(N, W) - distributed discrete logarithm application GO

DDLog(N, W) is a distributed
unpredictability application in O-model, where the space of secrets is X = {x |
x ∈ Z ∩ [−W/2, W/2]}, the challenge space for x ∈ X is defined as CHx =
{(σ(b), σ(b + x)) | σ ∈ IN,M , b ∈ ZN}, and the challenger CDDLog is a PPT
that samples b← ZN and x from the set of integers in the interval [−W/2, W/2]
uniformly at random. Then CDDLog makes two forward queries b, b+x to the oracle
and passes (1λ, σ(b)) as a challenge to A(0) and (1λ, σ(b + x)) as a challenge to
A(1).

12

Figure 5 − Distributed unpredictability experiment.

ExpGO

A (1λ):

1. The challenger C generates a secret x from X and a challenge (c0, c1)
from the challenge space CHx. It forwards (1λ, c0) to A(0) and (1λ, c1)
to A(1).

2. For i = 0, 1:

(a) On input (1λ, ci) the attacker A(i) makes queries to oracle O and
receives answers from the oracle.

(b) The attacker A(i) chooses a guess xi ∈ X and sends it to C.

3. The output of the experiment is defined to be 1 if x1 − x0 = x,
otherwise the output of the experiment is 0.

13

14

2. The Distributed Discrete
Logarithm problem with
preprocessing
In this chapter, we focus on the distributed discrete logarithm problem for prime
order groups in the preprocessing model. We examine to what extent the prepro-
cessing can help the attacker to solve the distributed discrete logarithm problem.
In other words, we will allow the attacker to precompute a bitstring of length S
in the offline phase, i.e., before receiving the challenge, without any restriction
on the time of its computation. Then, the precomputed advice bitstring is passed
as an additional input to the attacker running in the online phase, i.e., after
receiving the challenge. Regarding the time complexity of the attacker, we are
only interested in the time complexity of its online phase. We examine whether
the additional advice computed during the offline phase can help to reduce the
error probability in the DDLog problem. We study this question in the context
of generic groups, that is, in the generic group model.

2.1 Preprocessing in the generic group model
In this section, we introduce the definitional framework of the generic group model
for the algorithms with preprocessing. The framework is adapted from [CDG18]
with some small adjustments in order to capture the distributed attacker. First,
we define the preprocessing oracle.

Definition 13 (Preprocessing oracle). The preprocessing oracle O is an oracle
formed by a pair of oracles (Opre,Omain), where Opre can only be queried during the
offline phase of an experiment, i.e., before the challenge is generated and Omain
can only be queried in the online phase of an experiment.

The attacker in the preprocessing model is composed of two algorithms, one
of them running in the offline phase and having access to Opre, the other one
running in the online phase and having an access to Omain.

Definition 14 ((S, T)-attacker, [CDG18, Definition 1]). Let S, T ∈ N and O =
(Opre,Omain) be a preprocessing oracle. An (S, T)-attacker A = (A0,A1) in the
O-model consist of two probabilistic algorithms:

A preprocessing algorithm A0, which is computationally unbounded and which
interacts with Opre and outputs a bitstring of length at most S bits.

An online algorithm A1, which takes as input an S-bit output of A0 and a
challenge from the challenger, then makes at most T queries to Omain, and outputs
a guess.

Now, we define the notions of unpredictability application and distributed un-
predictability application in the preprocessing model. The following definitions
(Definition 15, 16, 17) correspond to Definition 9, 10 and 11 extended to the pre-
processing model. The (S, T)-attacker and the unpredictability application with

15

preprocessing correspond to the model used by [CDG18], whereas the distributed
(S, T)-attacker and the distributed unpredictability application with preprocessing
allow us to model the DDLog problem with preprocessing in the generic group
model.

The following definition formalizes the problem of guessing secret information
x given a challenge from a related challenge space CHx, while we allow the attacker
to precompute advice string before receiving the challenge.

Definition 15 (Unpredictability application with preprocessing). Let λ ∈ N be
a security parameter. An unpredictability application with preprocessing G in
the oracle (Opre,Omain)-model is defined by a space of secrets X , a set of chal-
lenge spaces {CHx | x ∈ X}, a PPT challenger C with oracle access to Omain
and a preprocessing oracle (Opre,Omain). We define the advantage of A on G, de-
noted AdvG(Opre,Omain)

A (λ), as the probability of success of A in the unpredictability
experiment with preprocessing ExpG(Opre,Omain)

A (1λ) (Figure 6), i.e.,

AdvG(Opre,Omain)

A (λ) = Pr[1← ExpG(Opre,Omain)

A (1λ)].

We define the probability of error of A in G to be the probability of the output of
the unpredictability experiment with preprocessing ExpG(Opre,Omain)

A (1λ) being 0, i.e.,

ErrG(Opre,Omain)

A (λ) = 1− AdvG(Opre,Omain)

A (λ).

We say an unpredictability application with preprocessing G is ((S, T), ϵ)-secure
in the (Opre,Omain)-model if for every (S, T)-attacker A for every λ ∈ N it holds
that AdvG(Opre,Omain)

A (λ) ≤ ϵ(λ).

As the online attacker in the DDLog problem is not a single algorithm, yet
an attacker composed of two algorithms who cannot communicate, we need to
introduce a definition of such attacker in the preprocessing model.

Definition 16 (Distributed (S, T)-attacker). Let S, T ∈ N and O = (Opre,Omain)
be a preprocessing oracle. A distributed (S, T)-attacker A = (A0,A(0)

1 ,A(1)
1) in

the O-model consist of three probabilistic algorithms:
A preprocessing algorithm A0, which is computationally unbounded and which

interacts with Opre and outputs a bitstring of length S bits.
Two independent online algorithms A(0)

1 ,A(1)
1 , which cannot communicate and

each of which takes as input an S-bit output of A0 and a challenge, then makes
at most T queries to Omain, and outputs a guess.

Now, we define the distributed unpredictability application with preprocessing,
which formalizes the problem of the distributed (S, T)-attacker’s online algo-
rithms guessing additive shares of secret information x, given a challenge from
the related challenge space CHx.

Definition 17 (Distributed unpredictability application with preprocessing). Let
λ ∈ N be a security parameter. A distributed unpredictability application with
preprocessing G in the oracle (Opre,Omain)-model is defined by a space of secrets
X , a set of challenge spaces {CHx | x ∈ X}, where the elements of CHx are of the
form (c0, c1), a PPT challenger C with oracle access to Omain and a preprocessing

16

Figure 6 − Unpredictability experiment with preprocessing.

ExpG(Opre,Omain)

A (1λ):

1. The attacker A0 makes queries to oracle Opre and receives answers
from the oracle.

2. At the end of its execution, A0 outputs an advice bitstring adv of
maximal length S bits and forwards adv to the online phase attacker
A1.

3. The challenger C generates a secret x from the space X and a challenge
c from the challenge space CHx. It forwards (1λ, c) to A1.

4. On input (1λ, adv, c), the attacker A1 makes queries to the oracle
Omain and receives answers from the oracle.

5. The attacker A1 chooses a guess x′ ∈ X and sends it to C.

6. The output of the experiment is defined to be 1 if x = x′, otherwise
the output of the experiment is 0.

oracle (Opre,Omain). We define the advantage of a distributed (S, T)-attacker A =
(A0,A(0)

1 ,A(1)
1) on G, denoted AdvG(Opre,Omain)

A (λ), as the probability of success of A
in the distributed unpredictability experiment with preprocessing ExpG(Opre,Omain)

A (1λ)
(Figure 7), i.e.,

AdvG(Opre,Omain)

A (λ) = Pr[1← ExpG(Opre,Omain)

A (1λ)].

We define the probability of error of A in G to be the probability of the output of
the unpredictability experiment with preprocessing ExpG(Opre,Omain)

A (1λ) being 0, i.e.,

ErrG(Opre,Omain)

A (λ) = 1− AdvG(Opre,Omain)

A (λ).

We say a distributed unpredictability application with preprocessing G is ((S, T), ϵ)-
secure in the (Opre,Omain)-model if for every distributed (S, T)-attacker A, for
every λ ∈ N it holds that AdvG(Opre,Omain)

A (λ) ≤ ϵ(λ).

Now, we define the DDLog problem with preprocessing in the generic group
model.

Definition 18 (Distributed discrete logarithm application with preprocessing).
Let λ ∈ N be a security parameter, let N, W ∈ N, N > W . The (N, W)-
distributed discrete logarithm application with preprocessing G

(Opre,Omain)
DDLog (N, W) is

a distributed unpredictability application with preprocessing in (Opre,Omain)-model,
where Opre is an oracle that samples σ ← IN,M at the beginning of the experiment
and Omain is a group operation oracle for the encoding functon σ, the space of
secrets is X = {x | x ∈ Z ∩ [−W/2, W/2]}, the challenge space for x ∈ X is
defined as CHx = {(σ(b), σ(b + x)) | b ∈ ZN}. The challenger CDDLog is a PPT

17

Figure 7 − Distributed unpredictability experiment with preprocessing.

ExpG(Opre,Omain)

A (1λ):

1. The attacker A0 makes queries to oracle Opre and receives answers
from the oracle.

2. At the end of its execution A0 outputs an advice bitstring adv of
maximal length S bits and forwards adv to the online phase attackers
A(0)

1 ,A(1)
1 .

3. The challenger C generates a secret x from the space X and a challenge
(c0, c1) from the challenge space CHx. It forwards (1λ, c0) to A(0)

1 and
(1λ, c1) to A(1)

1 .

4. For i = 0, 1 :

(a) On input (adv, 1λ, ci) the attacker A(i) makes at most T queries
to oracle Omain and receives answers from the oracle.

(b) The attacker A(i) chooses a guess xi ∈ X and sends it to C.

5. The output of the experiment is defined to be 1 if x1 − x0 = x,
otherwise, the output of the experiment is 0.

that samples x← X and b← ZN . Then CDDLog makes two forward queries b, b+x
to the oracle Omain and passes (1λ, σ(b)) as a challenge to A(0)

1 and (1λ, σ(b + x))
as a challenge to A(1)

1 .

2.2 Auxiliary input and Bit-fixing model
Following the technique of [CDG18], we define two different preprocessing or-
acles: Auxiliary-input generic group oracle and Bit-fixing generic group oracle.
The auxiliary-input generic group oracle allows us to model the preprocessing
experiment. Nevertheless, it seems difficult to perform an analysis of complexity
directly in this model, while the bit-fixing generic group oracle offers a model that
is easier to analyse. [CDG18, Theorem 1] proved a relation between an attackers’
success probabilities in these two models. We state this result in Proposition 1.

The auxiliary-input generic group oracle allows modelling the preprocessing
experiments for generic groups, in the sense that the interface Opre allows the
offline attacker to see the entire group structure, i.e., the mapping σ. Then,
A0 can choose a bitstring of maximal length S and pass it to the online phase
attacker A1 as an additional input.

On the other hand, the bit-fixing generic group oracle allows the offline at-
tacker to fix P points (a, s) ∈ ZN × Y and the mapping σ is chosen afterwards,
in the way that it respects these fixed points.

18

Definition 19. We define:

Auxiliary-input generic group oracle AI-GG(N, M) as a pair (Opre,Omain),
where:

• Opre: Samples σ ← IN,M and outputs σ.
• Omain: Answers forward queries, group-operation queries, and inverse

queries using σ sampled by Opre.

Bit-fixing generic group oracle BF-GG(P, N, M) as a pair (Opre,Omain), where:

• Opre: Samples Y ⊂ [M] of size N uniformly at random, takes as
input at most P ∈ N pairs of the form (a, s), a ∈ ZN , s ∈ Y with no
collisions, and samples σ uniformly at random from the subset of IN,M

containing all the injections consistent with the sampled range Y and
the given fixed points.
• Omain: Answers forward queries, group-operation queries, and inverse

queries using σ sampled by Opre.

Proposition 1 ([CDG18, Theorem 1]). Let P, N, M ∈ N, N ≥ 16 and γ > 0.
Consider a ((S, T), ϵ′)-secure unpredictability application with preprocessing G in
the BF-GG(P, N, M)-model. If P ≥ 6(S + log γ−1) · T comb

G , then G is ((S, T), ϵ)-
secure in the AI-GG(N, M)-model for ϵ ≤ 2ϵ′ + γ. Where T comb

G denotes the
combined number of queries of the attacker and the challenger.

Proof. For the proof we refer to [CDG18, Appendix A].

We remark that Proposition 1 was formulated in [CDG18] only for ((S, T), ϵ)-
secure unpredictability applications with preprocessing, the distributed applica-
tions were not considered. We are interested in proving upper bounds on the
success probability of an attacker in the distributed discrete logarithm applica-
tion with preprocessing, which is a distributed unpredictability application with
preprocessing. If we applied Proposition 1 to the DDLog problem directly, we
would be forced to represent the distributed attacker as a non-distributed at-
tacker in the BF-GG(P, N, M)-model, i.e., an attacker with an online algorithm
that gets both challenges and performs up to 2T oracle queries. Then, we would
apply the theorem on this stronger attacker and we would obtain the bounds in
the AI-GG(N, M)-model. Thus, the clear disadvantage of the distributed attacker
of having the challenge given to two separate algorithms that are not allowed to
communicate cannot be exploited in the BF-GG(P, N, M)-model before applying
the Proposition 1. Overall, this approach leads to loose bounds on the success
probability of the distributed attacker. Our central observation is that the theo-
rem holds in the same way for a distributed attacker.

We also remark that the generic group model used in [CDG18] does not allow
the attacker to perform inverse queries. This approach is justified by the fact that
the authors apply Proposition 1 to derive bounds precise up to a polylogarithmic
factor (polynomial in log N). The inverse of an element x in a group of order
N is equal to xN−1. Therefore, applying the Square and Multiply algorithm,
we can simulate the inverse operation using O(log N) group-operations. Thus,
the analysis in a version of the generic group model without the inverse queries

19

translates to the result precise up to a polylogarithmic factor in a model, where
these queries are allowed. However, we seek to get bounds for the DDLog problem
without neglecting the logarithmic factors, and, therefore, we explicitly include
the inverse query in our generic group model. We note that Proposition 1 holds
also in our version of the generic group model. We explain this in more detail in
the proof sketch of Theorem 2.

Theorem 2. Let P, N, M ∈ N, N ≥ 16 and γ > 0. Consider a ((S, T), ϵ′)-secure
distributed unpredictability application with preprocessing G in the BF-GG(P, N, M)-
model. If P ≥ 6(S+log γ−1)·T comb

G , then G is ((S, T), ϵ)-secure in the AI-GG(N, M)-
model for ϵ ≤ 2ϵ′ + γ. Where T comb

G denotes the combined number of queries of
the attacker and the challenger.

Proof sketch. The proof follows from the proof of Proposition 1 stated in [CDG18,
Appendix A] replacing the (S, T)-attacker with preprocessing by a distributed
(S, T)-attacker with preprocessing.

In order to prove [CDG18, Theorem 1], the authors first prove closeness of two
distributions of encoding functions, in the sense that they bound the probability
that a distinguisher which is allowed to make T forward (query a ∈ ZN is answered
by σ(a)) and backward (query l ∈ [M] is answered by σ−1(l)) oracle queries
succeeds to guess from which distribution the encoding function σ of ZN on [M]
was chosen. This proof is general and can be applied in the same manner in the
setting with distributed attackers.

Then, to prove Proposition 1, they construct an (S, T)-attacker A′ = (A′
0,A′

1)
for the BF-GG(P, N, M) oracle model from an (S, T)-attacker A = (A0,A1) for
the AI-GG(N, M) oracle model. Where A′

1 is defined as A1 and A′
0 first simulates

A0 to get the advice string and, based on it, it fixes at most P points in the en-
coding function and, thus, forces the oracle to choose the encoding function from
a convenient distribution. Then, they let the distinguisher D for the encoding
function, taking as an input the advice string calculated by A0, internally run
the online algorithm A1 and the challenger C for the unpredictability experiment
with preprocessing, the output of the distinguisher being defined as the output
of the unpredictability experiment with preprocessing resulting from the interac-
tion of A1 and C. The probability of the distinguisher outputting 1 corresponds
either to the probability of success of A in the AI-GG(N, M) oracle model or to
the probability of success of A′ in the BF-GG(N, M) oracle model, depending on
which distribution was σ chosen from. Thanks to the bound on the distinguish-
ing probability between the two aforementioned distributions, they get a relation
between the success probabilities of A in the AI-GG(N, M)-model and A′ in the
BF-GG(P, N, M)-model stated in the theorem, which concludes their proof.

If we replace the attacker A by a distributed attacker and define A′ in the
same way as in the original proof, A′ will also be a distributed attacker (as the
online algorithms of A and A′ are defined to be the same) and we can perform
the proof in the very same fashion as in [CDG18] and get the same results for
the distributed attacker.

The proof of Proposition 1 can also be adapted to the version of generic group
model which allows inverse queries. When the distinguisher D simulates A1 and
C, it must provide the answers to their oracle queries. In the proof, [CDG18] only
deals with the forward query, which D passes as a forward query to its oracle and

20

passes the answer back, and the group-operation query, which is a query of the
form (a1, a2) ∈ [M]2, answered by σ(σ−1(a1) + σ−1(a2)). The group-operation
query is simulated by D by performing two backward queries σ−1(a1), σ−1(a2)
and one forward query σ(σ−1(a1) + σ−1(a2)) to its oracle. In our case, we have to
deal also with the inverse query, which is a query of the form a ∈ [M], answered
by the element corresponding to the inverse of a. This query can be simulated
as one backward query σ−1(a) and one forward query σ(−σ−1(a)). As in the
original proof, our distinguisher makes at most 3T comb queries, where T comb is the
combined number of queries of A1 and C. The rest of the proof is the same, and
the same results follow.

2.3 Lower bounds for DDLog with preprocess-
ing in the generic group model

First, we review the Schwartz-Zippel lemma, we use the version from [CDG18,
Lemma 37], and the standard Boole’s inequality, known also as the union bound,
that we will need later.

Lemma 3 (Schwartz-Zippel). Let F be a field. Let f ∈ F[X1, . . . , Xk] be a non-
zero polynomial of total degree d ≥ 0. Let S be a finite subset of F and let
x1, . . . , xk be chosen independently uniformly at random from S. Then it holds

Pr[f(x1, . . . , xk) = 0] ≤ d

|S|
.

Lemma 4 (Union Bound). Let n ∈ N and consider events E1, . . . , En, then

Pr
[

n⋃
i=1

Ei

]
≤

n∑
i=1

Pr [Ei] .

Now, we present our main theorem giving an upper bound on the success
probability of a distributed attacker with preprocessing in the DDLog problem.
Our theorem is based on [CDG18, Theorem 10], which examines the discrete
logarithm problem in the preprocessing model. The structure of our proof is
similar to the one of [CDG18, Theorem 10]. If we simply adjusted the proof
of [CDG18, Theorem 10] to our case, we would get the bound for the success
probability of an attacker ϵ = O

(
ST 2+T 2·log(W)

W

)
.

Nevertheless, the distributed attacker allows us to make more a thoughtful
analysis and obtain better results. As the distributed attacker is a weaker attacker
than its non-distributed representation, it allows us to obtain tighter bound in the
BF-GG(P, N, M) oracle model. Then, we translate this bound to the AI-GG(N, M)
oracle model by Theorem 2.

Theorem 5. Let N, W ∈ N, N > W , N be a prime. The (N, W)-distributed
discrete logarithm application with preprocessing G

AI-GG(N,M)
DDLog (N, W) is ((S, T), ϵ)-

secure in the AI-GG(N, M)-model for any

ϵ = O

(
T 2

W
+ max{S, log(W)} · T 2

N

)
,

21

where W denotes the length of the interval in the DDLog problem. Furthermore,
if N ≥ W · log(W) the theorem holds for

ϵ = O

(
T 2

W
+ S · T 2

N

)
.

Proof. We first consider the interaction of A = (A0,A(0)
1 ,A(1)

1) with CDDLog in
the BF-GG(P, N, M)-model. Opre outputs Y , the range of σ. For the rest of the
proof we condition on the choice of Y .

We define an alternative experiment:
During the experiment, we construct a table of pairs (v(X), s), where s ∈ Y

and v(X) ∈ ZN [X, B] is a formal polynomial corresponding to the preimage of s
under σ. To construct the table, we proceed as follows:

1. A0 fixes σ in at most P points (a, s), a ∈ ZN , s ∈ Y . We add each such
point to the table as a pair (a, s), where a is a constant polynomial.

2. To create the challenge sb for A(0)
1 , CDDLog chooses sb from all unused values

in Y uniformly at random. The pair (B, sb) is stored in the table.

3. The execution of A(0)
1 :

(a) For a forward query q ∈ ZN the table is checked for the occurrence of
q ∈ ZN [X, B] as a constant polynomial. If such occurrence is found,
we respond by the corresponding sq ∈ Y that occurs in the table in
a pair with q. If not, we sample sq uniformly at random from all the
unused values in Y and we store the pair (q, sq) in the table.

(b) To a group-operation query (s1, s2) we respond by ⊥ if s1 or s2 is not
in Y . Otherwise, if s1 is not in the table, we sample a1 uniformly at
random from all unused values in ZN and we store the pair (a1, s1) in
the table. The same applies for s2. Afterwards, both s1, s2 are already
stored in the table in pairs with some polynomials u1, u2 ∈ ZN [B]. We
check the table for an occurrence of the polynomial u1 + u2. If there
is a record (u1 + u2, s3) for some s3 ∈ Y in the table, we respond by
s3 to the query. Otherwise we sample s3 uniformly at random from all
unused values in Y , we store (u1 + u2, s3) in the table, and we respond
by s3 to the query.

(c) To an inverse query s1, we respond by ⊥ if s1 /∈ Y . If s1 ∈ Y and s1
is not in the table, we sample u uniformly at random from all unused
values in ZN and we append the pair (u, s1) to the table. Now s1 is in
the table in pair with some polynomial u ∈ ZN [B]. We check the table
for an occurrence of (N − 1) · u, if such entry ((N − 1) · u, s2) is found
for some s2 ∈ Y , we answer the query by s2. Otherwise we sample
s2 uniformly at random from all unused labels from Y , we answer the
query by s2 and we add the pair ((N − 1) · u, s2) to the table.

(d) At the end of its execution, A(0)
1 outputs x0.

4. To create the challenge sb+x for A(1)
1 , CDDLog chooses sb+x from all unused

values in Y uniformly at random. The pair (B + X, sb+x) is stored in the
table.

22

5. The execution of A(1)
1 is handled in the same way as the execution of A(0)

1 .
Except if

• A(1)
1 queries a group-operation query (s1, s2) such that either (α ·B +

β, s1), or (α · B + β, s2), for some α, β ∈ ZN , α ̸= 0 is already in the
table, or
• A(1)

1 queries an inverse query s1 such that (α · B + β, s1) for some
α, β ∈ ZN , α ̸= 0 is already in the table.

We will denote both of these by an event F and if the event F occurs, we
answer the query by ⊥ and we do not append anything to the table.
At the end of its execution, A(1)

1 outputs x1.

6. CDDLog chooses x uniformly at random from all integers in [−W/2, W/2] and
b uniformly at random from ZN . CDDLog outputs 1 if and only if x1−x0 = x.

We remark that all of the polynomials in the table at the end of the exe-
cution are distinct, as we always first check for an occurrence of a polynomial
before adding it to the table. We define a collision event as an event when after a
substitution of the values x, b, chosen by CDDLog, for the variables X, B (respec-
tively) in the polynomials in the table, there exist two entries (a, s) and (a, s′)
in the table such that s ̸= s′. We denote this event by E, which corresponds
to a discrepancy in the query responses to the attacker. In other words, there
is no encoding function σ such that all of our query responses would be correct
because we associated the image of a with two different elements s, s′. If this
event does not occur and the event F does not occur either then there exists an
encoding function σ compatible with all of our query responses. Furthermore,
as we always choose the elements uniformly at random from appropriate sets,
also the distribution of responses in the alternative experiment is identical to the
distribution of responses in the real distributed unpredictability experiment with
preprocessing.

Thus, the distribution of answers seen by A in the alternative experiment
differs from the one in the honest experiment only if at least one of the events E,
F occurs. We bound the probability that the execution differs from the honest
execution by bounding the probability Pr[E ∪ F] ≤ Pr[E | ¬F] + Pr[F].

We introduce a lemma that characterizes the structure of the contents of the
table at the end of the alternative experiment.

Lemma 6. At most 2T + 2 non-constant polynomials are in the table at the end
of the execution of the alternative experiment. Moreover,

1. at most T + 1 of those are of the form αB + β, for some α, β ∈ ZN ,
α ̸= 0 (we say polynomials of type 1) and they were added either as the
challenge for A(0)

1 in the step 2 or as a polynomial corresponding to a group-
operation query response during the execution of A(0)

1 in the step 3 b, or as
a polynomial in pair with a response to an inverse query in the step 3 c.
Furthermore, the value s ∈ Y in pair with such polynomial in the table is
never returned as an answer to a query made by A(1)

1 . Also,

23

2. at most T + 1 of non-constant polynomials in the table are of the form
α(X + B) + β, for some α, β ∈ ZN , α ̸= 0 (we say polynomials of type
2) and they were added either as the challenge for A(1)

1 in the step 4 or as
a polynomial corresponding to a group-operation query response or inverse
query response during the execution of A(1)

1 in step 5. Furthermore, the
value s ∈ Y in pair with such polynomial in the table is never returned as
an answer to a query made by A(0)

1 .

There are no non-constant polynomials in the table of forms different than the
polynomials of type 1 and 2.

Proof. First, notice that a non-constant polynomial can only be introduced in
the table in pair with a challenge sb, sb+x, or in pair with a response to a group-
operation or inverse query, where at least one of the queried elements s1, s2 or the
queried element s1 (for the inverse query) has already been in the table in pair
with a non-constant polynomial. As there are 2 challenges and at most 2T queries
performed by the distributed attacker, there is at most 2T+2 non-constant poly-
nomials in the table at the end of the execution.

Next, we notice that the part 2 holds:
We notice, that the first polynomial with a non-zero coefficient next to the

variable X is added to the table with the challenge sb+x in the step 4. Therefore,
the polynomials with a non-zero coefficient next to the variable X can be added
to the table as a result of a group-operation query or an inverse query only after
this moment. There are at most T queries performed after this moment, there-
fore, there cannot be more than T + 1 polynomials with a non-zero coefficient
next to the variable X, and thus, not more than T + 1 polynomials of type 2.
Furthermore, when a new polynomial is added to the table, we sample its pair
value s from the unused values in Y . As the polynomials of type 2 appear in the
table only after the end of execution of A(0)

1 , none of the values s in pairs with
such polynomials could have been returned as an answer to a query made by A(0)

1 .

Next, we prove that at the end of the execution there are no non-constant
polynomials of forms different than polynomials of type 1 and 2 in the table:

We have already noticed, that non-constant polynomials are only being added
to the table in the challenge pair, during a group-operation query as a sum of
two polynomials already present in the table, where at least one of them is non-
constant, or during an inverse query, as an (N − 1) multiple of a polynomial in
pair with the queried element, if it is non-constant. Therefore, it is obvious that
all polynomials in the table are at most of degree 1 in both, B and X. Now,
it is enough to show there is no polynomial of the form α1B + α2X + β, where
α1, α2, β ∈ ZN , α2 ̸= 0, α1 ̸= α2, we will say polynomial of type 3. We already
know a polynomial of this form has not been added to the table before the step 4
of the execution, because all of the polynomials until this step are of degree 0
in the variable X. The polynomial added with the challenge in the step 4 is
X + B, which is a polynomial of type 2. Therefore, it is enough to look at the
polynomials added to the table during the step 5. We will prove by induction,
there are no non-constant polynomials of type different than type 2 added to the
table during the step 5. We suppose there has been no non-constant polynomials

24

different than type 2 added to the table during the step 5 before the i-th query in
step 5. Trivially, for i = 1 the assumption holds. We will prove it holds for i + 1.
From the induction hypothesis it follows that there are no polynomials different
from the constant polynomials, polynomials of type 1 and polynomials of type 2
before the i-th query of step 5 in the table. In case i-th query is a forward query,
either a constant polynomial or no polynomial is added to the table. In case the
i-th query is a group operation query (s1, s2), the following cases can occur:

1. At least one of the pair s1, s2 is not in Y . Then ⊥ is returned and no
polynomials are added to the table.

2. s1, s2 ∈ Y , none of them is in the table, or one of them is in the table in pair
with a constant polynomial and the other one is not in the table, or both
are in the table in pair with a constant polynomial. Then only constant
polynomials are added to the table.

3. s1, s2 ∈ Y , one of them is in the table in pair with a polynomial of type 2
and the other one is not in the table, is in the table in pair with a constant
polynomial, or is in the table in pair with a polynomial of type 2. Then
the response will be in the table in pair with a polynomial of type 2 or a
constant polynomial.

4. s1, s2 ∈ Y , one of them is in the table in pair with a polynomial of type
1. Then the query is answered by ⊥ and no polynomials are added to the
table.

In case the i-th query is an inverse query s1, the following cases can occur:

1. s1 /∈ Y . Then ⊥ is returned and no polynomials are added to the table.

2. s1 ∈ Y and s1 is not in the table, or is in the table in pair with a constant
polynomial. Then only constant polynomials are added to the table.

3. s1 ∈ Y and s1 is in the table in pair with a polynomial of type 2, then the
response is in the table in pair with a polynomial of type 2.

4. s1 ∈ Y and s1 is in the table in pair with a polynomial of type 1, then the
query is answered by ⊥ and no polynomials are added to the table.

By our analysis listing all of the possible cases, no non-constant polynomial
of type different than type 2 was added during the i-th query. Therefore no non-
constant polynomial of type different than type 2 was added during the step 5.

Therefore, no non-constant polynomials of forms different than the polynomi-
als of type 1 and 2 are in the table at the end of the execution of the alternative
experiment.

Part 1 follows from the fact that no non-constant polynomial of type different
than type 2 are being added to the table during the execution of A(1)

1 . More
precisely, the polynomials of type 1 can only be introduced in the table in pair
with the challenge sb or in pair with a response to a group-operation query or an
inverse query by A(0)

1 . A(0)
1 makes at most T queries, therefore, at most T + 1

polynomials of type 1 are in the table at the end of the execution. By the analysis
of the possible group-operation and inverse query responses during the step 5 an

25

s in pair with a polynomial of type 1 will never be returned as an answer to a
query made by A(1)

1 . This concludes the proof of the lemma.

To prove Theorem 5, we can bound the collision probability Pr[E | ¬F] in
two steps.

1. First, we estimate the probability that there exist two polynomials p1(X, B),
p2(X, B) in the table such that when we substitute the value x ∈ [−W/2, W/2]
chosen by CDDLog for the variable X then p1(x, B) = p2(x, B). We refer to
this event as collision in step 1.

2. Second, we condition on the fact that the collision in step 1 did not happen
and we consider the set of polynomials from the table after the substitution
for X and estimate the probability that in this set there exist two polyno-
mials p1(B), p2(B) such that when we substitute the value b ∈ ZN chosen
by CDDLog for the variable B then p1(b) = p2(b). We refer to this event as
collision in step 2.

Regarding the first step, we have already established that all of the polyno-
mials in the table are distinct and that there are only at most T + 1 polynomials
dependent on variable X and that these are the polynomials of type 2 (Lemma 6).
Therefore, we only examine the probability that one of the polynomials of type 2
from the table collide after the substitution for X with another polynomial from
the table. Therefore, without loss of generality, we can assume p1 is a polynomial
of type 2. We look at the possible forms of p2:

• p2 is a constant polynomial. After the substitution for X, p1 is still a
polynomial linear in B, therefore p1(x, B) ̸= p2(x, B).

• p2 is a polynomial of type 1. A collision in step 1 can occur in this case.

• p2 is a polynomial of type 2. Let p1(X, B) = α1(X + B) + β1, p2(X, B) =
α2(X + B) + β2, where α1, α2 ̸= 0, as both of the polynomials are of type
2. Consider p1(x, B) = p2(x, B), i.e., α1B + (β1 + α1x) = α2B + (β2 + α2x),
and thus, α1 = α2 and β1 = β2. Then p1(X, B) = p2(X, B), but there were
no identical polynomials in the table before the substitution. Therefore,
p1(x, B) ̸= p2(x, B).

Therefore, we only need to estimate the probability of p1(x, B) = p2(x, B), where
p1 is a polynomial of type 2 from the table and p2 is a polynomial of type 1
from the table. We will consider a polynomial p′(X, B) = p2(X, B) − p1(X, B)
for each possible choice of p1 from the polynomials of type 2 in the table and p2
from the polynomials of type 1 in the table. As, by Lemma 6, there are at most
T + 1 polynomials of type 1 and at most T + 1 polynomials of type 2, we have
(T + 1) · (T + 1) polynomials p′ to consider. The polynomial p′(X, B) is a non-
zero polynomial and, after the substitution of x for X, it is equal 0 if and only if
p1(x, B) = p2(x, B). Now, we apply the Schwartz-Zippel lemma (Lemma 3) over
the field of fractions of ZN [B] to bound the probability of p′(x, B) = 0 for an x
chosen uniformly at random from the set of size W . We get Pr[p′(x, B) = 0] ≤ 1

W
.

Then, by the union bound (Lemma 4), the probability of the collision in step 1

26

is at most (T +1)2

W
.

Regarding the second step, we condition on the event that there was no col-
lision in step 1. After the substitution for X, we are left with at most 2T + 2
non-constant distinct polynomials from ZN [B] and the total number of entries
in the table is at most P + 3T + 2. We consider all the difference polynomials
p′(B) = p1(B) − p2(B), where p1(B) belongs to the set of non-constant polyno-
mials from the table after the substitution for X and p2[B] belongs to the set
of all polynomials (including constant polynomials) from the table after the sub-
stitution for X, different from p1(B). Using the same argumentation as in the
step 1, the probability of the collision in step 2 is equal to the probability of any
of the difference polynomials p′(B), after the substitution of b ← ZN , being 0.
We apply the Schwartz-Zippel lemma over the field ZN and the union bound to
get that the probability of collision in step 2 is at most (2T + 2) · (P + 3T + 1)

N
.

Together, we have

Pr[E | ¬F] ≤ (T + 1)2

W
+ (2T + 2) · (P + 3T + 1)

N
.

Now, we bound Pr[F]. Let us denote T the set of elements s ∈ Y occurring
in the table in pair with a polynomial of type 1 at the end of the alternative
experiment, i.e.,

T = {s ∈ Y | ∃α, β ∈ ZN , α ̸= 0 : (αB + β, s) ∈ Table}.

The probability Pr[F] is the probability that, for some s ∈ T , A(1)
1 makes a

group-operation query (s, ·), (·, s), or an inverse query s during its execution. We
call such queries unexpected and we bound the probability of the first occurrence
of an unexpected query.

Let S[i] denote the set of elements from Y that has been revealed to A(1)
1

before its i-th query.

S[i] = P ∪ {sb+x} ∪
{s ∈ Y | s was a response to the j-th query for some j < i} ∪
{s ∈ Y | s or (s, ·) or (·, s) was the j-th query for some j < i}.

We examine the probability that an unexpected query appears as the i-th
query of A(1)

1 for the first time during the execution.
In case the i-th query of A(1)

1 is a group-operation query, we are interested in
the probability

Pr[{s1, s2} ∩ T ̸= ∅ | S[i] ∩ T = ∅],

where (s1, s2) is the i-the query made by A(1)
1 and the probability is taken over

the randomness of the experiment.
In case the i-th query of A(1)

1 is an inverse query, the probability of our interest
is

Pr[{s} ∩ T ̸= ∅ | S[i] ∩ T = ∅],

27

where s is the i-the query made by A(1)
1 and the probability is taken over the

randomness of the experiment.
Let us fix the index i, the set S[i] and also the query (s1, s2) or s. We remark

that the choice of T is dependent on S[i] only by having empty intersection with
it. Therefore, for every y ∈ Y \ S[i] the following holds

Pr[y ∈ T | S[i] ∩ T = ∅] = |T |
|Y \ S[i]| ,

where the probability is taken over the randomness of the experiment. We get
the following bound for our fixed i-th query:

Pr[i-th query is the first unexpected query]
≤ max

{
Pr
T

[{s1, s2} ∩ T ̸= ∅ | S[i] ∩ T = ∅], Pr
T

[{s} ∩ T ̸= ∅ | S[i] ∩ T = ∅]
}

≤ 2 |T |
|Y \ S[i]| ≤ 2 T + 1

N − (P + 3T) .

where the last inequality uses |T | ≤ T +1 (Lemma 6) and S[i] ≤ P +1+3(i−1) <

P + 3T , as there are at most T queries made by A(1)
1 .

Therefore, by the union bound over the queries of A(1)
1 , we can bound the

probability that any query was unexpected, and thus, the probability of F , as
follows:

Pr[F] ≤
T∑

i=1
Pr[i-th query is the first unexpected query]

≤
T∑

i=1
2 T + 1

N − (P + 3T)

≤ 2T (T + 1)
N − (P + 3T) .

Together, we get

Pr[E ∪ F] ≤ (T + 1)2

W
+ (2T + 2) · (P + 3T + 1)

N
+ 2 · T · (T + 1)

N − (P + 3T) .

Since in the alternative experiment x is chosen at the end of the experiment
uniformly at random from the integer values in the interval [−W/2, W/2], the
success probability of A in the alternative experiment is at most 1/W . By the
union bound, we can bound the success probability ϵ′ of A in the standard ex-
periment by the following:

ϵ′ ≤ (T + 1)2 + 1
W

+ (2T + 2) · (P + 3T + 1)
N

+ 2 · T · (T + 1)
N − (P + 3T) .

In the rest of the proof, we assume that N ≥ 16 (required by Proposition 1).
This can be done without loss of generality since we are proving an asymptotic
bound. Now, we apply Theorem 2 in order to bound the attacker’s success prob-
ability ϵ in the AI-GG(N, M)-model. It holds that T comb

GDDLog = 2T + 2, and we set
γ := 1/W and P := 6(S + log(W)) · (2T + 2). By Theorem 2, we get:

28

ϵ ≤ 2 · ϵ′ + γ

≤2 · (T + 1)2 + 3
W

+ 2 · (2T + 2) · (P + 3T + 1)
N

+ 4 · T · (T + 1)
N − (P + 3T) .

without loss of generality, we assume T ≥ 72. Furthermore, assume that N ≥
72 ·max{S, log(W), 1} · T , otherwise if

N < 72 ·max{S, log(W), 1} · T ≤ max{S, log(W), 1} · T 2,

then max{S, log(W), 1} · T 2

N
> 1 and the theorem’s bound is looser than ϵ =

O(1), which holds trivially. Then

N − (P + 3T) = N − (6(S + log(W)) · (2T + 2) + 3T)
≥ N − (12 ·max{S, log(W), 1} · (2T + 2) + 3T)
≥ N − 36 ·max{S, log(W), 1} · T
≥ N/2.

Consequently, for the sum of the second and the third term, we have

2 · (2T + 2) · (P + 1 + 3T)
N

+ 4 · T · (T + 1)
N − (P + 3T)

≤ 2 · (2T + 2) · (P + 1 + 3T)
N

+ 8 · T · (T + 1)
N

= 4 · (T + 1)(P + 1 + 5T)
N

= 4 · (T + 1)(6 · (S + log W)(2T + 2) + 1 + 5T)
N

≤ 192 ·max{S, log(W), 1} · T 2

N
.

Therefore, for ϵ

ϵ ≤3T 2

W
+ 192 ·max{S, log(W), 1} · T 2

N

=O

(
T 2

W
+ max{S, log(W)} · T 2

N

)
.

Furthermore, if N ≥ (W · log(W)) then we get:

ϵ ≤3T 2

W
+ 192 ·max{S, 1} · T 2

N
+ 192 · log(W) · T 2

N

≤3T 2

W
+ 192 ·max{S, 1} · T 2

N
+ 192 · T 2

W

=O

(
T 2

W
+ S · T 2

N

)
.

Which concludes the proof of Theorem 5.

29

In Theorem 5, we derived an upper bound for the success probability of a
distributed (S, T)-attacker. Assuming N ≥ W log W , our bound for a big pre-
processing advice (S = Ω(N/W)) translates into a bound on time-space trade-
off in the DDLog problem ST 2 = Ω(ϵN). For a small preprocessing advice
(S = O(N/W)), our bound translates to a lower bound on the time complexity
of the DDLog problem T 2 = Ω(ϵW). Interestingly, if we consider a constant
success probability in the DDLog problem, our bound for a distributed attacker
with preprocessing with a small advice matches the time complexity of the algo-
rithm with no preprocessing running in time T 2 = O(W

1−ϵ
) from [DKK20]. This

implies that if we want to achieve a constant success probability in the DDLog
problem, then allowing the attacker to precompute a preprocessing advice of or-
der S = O(N/W) does not asymptotically help to save computation time in the
online phase of the DDLog problem.

30

3. HSS from Joye-Libert
encryption scheme

3.1 Modified Joye-Libert public-key encryption
scheme

In this section, we first introduce several standard definitions and theorems about
quadratic residues and then we define the Modified Joye-Libert public-key encryp-
tion scheme, our modified version of the scheme introduced in [JL13].

Definition 20 (Quadratic Residue). Let N ∈ N, y ∈ Z, gcd(y, N) = 1. We
say y is a quadratic residue modulo N if there exists x ∈ Z∗

N such that y = x2

mod N . We say y is a quadratic non-residue modulo N if it is not a quadratic
residue modulo N.

Definition 21 (Legendre symbol). Let p be a prime. We define the Legendre
symbol modulo p as a function

(
·
p

)
: Z→ {−1, 0, 1} defined as follows:

(
a

p

)
=

⎧⎪⎨⎪⎩
1 if a is a quadratic residue modulo p
0 if p | a
−1 if a is a quadratic non-residue modulo p

Definition 22 (Jacobi symbol). Let N ∈ N and N = pe1
1 · · · · · pen

n be the prime
factorization of N . We define the Jacobi symbol modulo N as a function

(
·

N

)
:

Z → {−1, 0, 1}, such that for every a ∈ Z we have
(

a
N

)
=
(

a
p1

)e1 · · · · ·
(

a
pn

)en,
where the symbols at the right hand side of the equation are the Legendre symbols.

Proposition 7 ([Ros84, Theorem 9.5]). Let N ∈ N and a, b ∈ Z. Then(
a · b
N

)
=
(

a

N

)
·
(

b

N

)
.

Proof. For the proof we refer to the proof of [Ros84, Theorem 9.5].

Proposition 8. Let p, q be primes and N = p ·q. Denote JN := {a ∈ Z∗
N |

(
a
N

)
=

1} and QRN := {a ∈ Z∗
N | ∃b ∈ Z∗

N : a = b2 mod N}. Then:

1. JN form a subgroup of Z∗
N .

2. QRN form a subgroup of JN .

Proof.

1. By an easy observation 1 ∈ JN as
(

1
N

)
=
(

1
p

)
·
(

1
q

)
= 1, because 1 = 12

both modulo p and modulo q. By Proposition 7, for a, b ∈ JN , we have
a · b ∈ JN , as

(
a·b
N

)
=
(

a
N

)
·
(

b
N

)
= 1. Consider a ∈ JN , if a−1 /∈ JN then(

1
N

)
=
(

a·a−1

N

)
= 1 · (−1) = −1, but we know

(
1
N

)
= 1, therefore a−1 ∈ JN .

31

2. If a ∈ Z∗
N is a quadratic residue modulo N , then a is also a quadratic residue

modulo p and modulo q. Then, for every a ∈ QRN :
(

a
N

)
=
(

a
p

)
·
(

a
q

)
= 1,

therefore a ∈ JN . Clearly 1 ∈ QRN and let a, b ∈ QRN , a = x2 mod N ,
b = y2 mod N for some x, y ∈ Z∗

N . Then, ab = (xy)2 ∈ QRN and a−1 =
(x−1)2 ∈ QRN .

Notation. We use the notation for the groups from Proposition 8, i.e., JN for
the group of elements with Jacobi symbol modulo N equal to 1 and QRN for the
group of quadratic residues modulo N, for N ∈ N. We also denote JN := Z∗

N \JN ,
the set of elements from Z∗

N with Jacobi symbol -1.

Proposition 9 ([KL20, Proposition 15.21]). Let p,q be two distinct primes and
N = p · q. Then, for every x ∈ Z∗

N , x ∈ QRN if and only if x ∈ QRp and
x ∈ QRq.

Proof. For the proof we refer to the proof of [KL20, Proposition 15.21].

Proposition 10 ([KL20, Proposition 15.23]). Let p, q be two distinct odd primes
and N = p · q. Then:

1. |JN | = 1
2 |Z

∗
N |.

2. |QRN | = 1
2 |JN |.

Proof. For the proof we reference to the proof of [KL20, Proposition 15.23].

Now, we present an encryption scheme based on the Joye-Libert public-key
encryption scheme introduced by [JL13]. In order for the scheme to support
an efficient DDLog protocol, we introduce several modifications in the original
scheme. We call this new scheme Modified Joye-Libert encryption scheme (mJL).

Definition 23 (Modified Joye-Libert encryption scheme (mJL)). Let λ ∈ N be a
security parameter and k ≥ 1. We define the modified Joye-Libert public-key en-
cryption scheme as a scheme consisting of algorithms (KeyGenmJL, EncmJL, DecmJL)
described below.

KeyGenmJL(1λ, k): On input 1λ and k ≥ 1, KeyGenmJL samples primes p, q of the
form p = 2kp′ +1 and q = 2kq′ +1, where p′, q′ are primes. It sets N := p ·q,
d := p′ ·q′ and samples g ← JN \QRN and it outputs the pair (pk, sk), where
pk = (g, gd, k, N) and sk = d.

EncmJL(pk, m): On input pk and the message m ∈ Z2k , EncmJL samples a random
r ← Z∗

N and it outputs gm · r2k mod N .

DecmJL(sk, c): On input sk and a ciphertext c ∈ Z∗
N , DecmJL calculates γ := cd

mod N and extracts the message bit by bit from γ using the algorithm
Extract (Algorithm 1).

32

Algorithm 1: Extract(γ, pk)
m = 0;
for i = 0, . . . , k − 1 do

t := (γ
gd·m)2k−i−1 mod N ;

if t = 1 then
m(i) := 0;

else if t = −1 then
m(i) := 1;

m := m + m(i) · 2i;
return m

In the original Joye-Libert encryption scheme, the only requirement on the
primes p and q is that p is equal 1 modulo 2k. In our modified scheme, we
require this property from both of the primes. Moreover, we require the largest
powers of 2 dividing p − 1 and q − 1 to be the same. This allows us to perform
the decryption algorithm modulo N only; although, in the original scheme, the
decryption is performed modulo p. Another change we introduce in the scheme
is that we reveal gd as a part of the public key, which allows a construction of a
DDLog protocol.

It might seem that the inclusion of gd to the public key compromises the
security of the scheme. Actually, if we defined p = 2kp′ + 1, q = 2lq′ + 1, for
some k, l ∈ N, k < l, it would imply gcd(N, (gd)2k − 1) = p. Nevertheless, in our
construction we require the largest powers of 2 dividing p− 1 and q− 1 to be the
same, and, in this case, gcd(N, (gd)2k − 1) does not reveal the factorisation of N .
We discuss the security of the modified Joye-Libert encryption scheme in detail
in section 3.2.

The following theorem shows the correctness of the modified Joye-Libert
scheme.

Theorem 11. Let λ ∈ N be a security parameter and k ∈ N. For every m ∈ Z2k ,
it holds m = DecmJL(sk, EncmJL(pk, m)), where (pk, sk)← KeyGenmJL(1λ, k).

Proof. First, we review the structure of the group Z∗
N .

Z∗
N
∼= Z∗

p × Z∗
q
∼= Zp−1 × Zq−1 ∼= Zp′ × Z2k × Zq′ × Z2k .

Thus, all of the subgroups in Z∗
N are of order at most 2k · p′ · q′. Therefore, we

have γ = (EncmJL(pk, m))d = gm·d · r2k·d = gm·d mod N .
Next, we prove (gd)2k−1 = −1 mod N . As g ∈ JN \ QRN , by Proposition 9,(

g
p

)
=
(

g
q

)
= −1. As d = p′ · q′ is an odd number, we have from Proposition 7(

gd

p

)
=
(

g
p

)d
= −1. Therefore, gd is a quadratic non-residue modulo p and thus

2k | ordZ∗
p
(gd). Furthermore, as the order of Z∗

p is 2k · p′, (gd)2k = (gq′)2k·p′ = 1
mod p, that is ordZ∗

p
(gd) | 2k. Together, we have ordZ∗

p
(gd) = 2k. In the same

way, we can prove 2k | ordZ∗
q
(gd) and ordZ∗

q
(gd) | 2k. Therefore, ordZ∗

q
(gd) = 2k.

Together with the isomorphism Z∗
N
∼= Z∗

p ×Z∗
q, it implies (gd)2k−1 = −1 mod N .

Next, let us denote ti the value of t calculated in the i-th iteration of Algo-
rithm 1 and mi the i-th least significant bit of m, i.e., m =

k−1∑
i=0

2i ·mi. We prove

33

by induction, that for every i ∈ {0, . . . k − 1}, m(i) = mi. For i = 0 we have t0 =
(gd·2k−1)m = (−1)m mod N . Then, t0 = 1 if and only if m is an even number, that
is, if m0 = 0 and t0 = −1 if and only if m0 = 1. The Algorithm 1 sets m(0) accord-
ingly. Now suppose m(j) = mj for all j ∈ {0, . . . , i}, we prove m(i+1) = mi+1. We

have ti+1 =
(
gd·2k−i−2

)m−
i∑

j=0
2j ·m(j)

=
(
gd·2k−i−2

) k−1∑
j=i+1

2j ·mj

=
(
gd·2k−1

)mi+1 mod N .
As before, we have ti+1 = 1 ⇐⇒ mi+1 = 0 and ti+1 = −1 ⇐⇒ mi+1 = 1, which
is how the Algorithm 1 sets m(i+1). Finally, as mi = m(i) for all i ∈ {0, . . . k− 1},
we have m =

k−1∑
i=0

2i ·m(i), and thus, m = DecmJL(sk, EncmJL(pk, m)).

3.2 Security of the Modified Joye-Libert encryp-
tion scheme

We follow the security proof of Joye-Libert scheme from [BHJL17] to prove the
IND-CPA security of the modified scheme. Due to the modification of the scheme,
in particular, due to the inclusion of gd into the public key, we need to introduce
a new assumption (k-dRI, Definition 26) and modify the assumptions used in the
original proof of security in [BHJL17].

The following definition is a modification of a standard Quadratic Residuosity
assumption [BHJL17, Definition 2]. In the standard case, the assumption says
that a PPT attacker is not able to distinguish between a quadratic residue modulo
N and an element from JN \QRN . Our modified version assumes that the attacker
is not able to distinguish between these distributions even if he is given an element
xd, where x ← JN \ QRN and d is the secret key of the modified Joye-Libert
scheme.
Definition 24 (Modified Quadratic Residuosity Assumption, k-QRm). Let N =
p ·q be generated by KeyGenmJL(1λ, k) from Definition 23 alongside with d = p′ ·q′.
The Modified Quadratic Residuosity Assumption (k-QRm) states that for every
PPT distinguisher D, the advantage Advk-QRm

D (λ) is a negligible function in the
security parameter λ. Where the advantage Advk-QRm

D (λ) is defined as the advan-
tage of D in the indistinguishability experiment ExpD0,D1

D (1λ) for the distributions
D0 = {(y, xd, k, N) | y, x← JN \QRN} and D1 = {(y, xd, k, N) | y ← QRN , x←
JN \QRN}, i.e.,

Advk-QRm
D (λ) =

⏐⏐⏐⏐⏐Pr[D(1λ, (y, xd, k, N)) = 1 | y ← QRN , x← JN \QRN]

− Pr[D(1λ, (y, xd, k, N)) = 1 | y, x← JN \QRN]
⏐⏐⏐⏐⏐,

where the probability is taken over the choice of (N, p, q, d) and the choice of x
and y from the appropriate sets.

The Squared Jacobi Symbol Assumption [BHJL17, Definition 3] formalizes
the inability of a PPT attacker of distinguishing between a square of a random
element from JN and a square of a random element from JN . Again, we modify
the assumption by giving xd, where x ← JN \ QRN , as an extra input to the
attacker.

34

Definition 25 (Modified Squared Jacobi Symbol Assumption, k-SJSm). Let
N = p · q be generated by KeyGenmJL(1λ, k) from Definition 23 alongside with
d = p′ · q′. The Modified Squared Jacobi Symbol Assumption (k-SJSm) states
that for every PPT distinguisher D, the advantage Advk-SJSm

D (λ) is a negligible
function in the security parameter λ. Where the advantage Advk-SJSm

D (λ) is de-
fined as the advantage of D in the indistinguishability experiment ExpD0,D1

D (1λ)
for the distributions D0 = {(y2, xd, k, N) | y ← JN , x ← JN \ QRN} and
D1 = {(y2, xd, k, N) | y ← JN , x← JN \QRN}, i.e.,

Advk-SJSm
D (λ) =

⏐⏐⏐⏐⏐Pr[D(1λ, (y2, xd, k, N)) = 1 | y ← JN , x← JN \QRN]

− Pr[D(1λ, (y2, xd, k, N)) = 1 | y ← JN , x← JN \QRN]
⏐⏐⏐⏐⏐,

where the probability is taken over the choice of (N, p, q, d) and the choice of x
and y from the appropriate sets.

We introduce a new assumption, we call it the d-th Root Indistinguishability
Assumption. The d-th Root Indistinguishability Assumptions assumes inability
of a PPT attacker of distinguishing between a pair (x, xd) and (y, xd), where
x, y ← JN \QRN and d is the secret key of the mJL scheme.

Definition 26 (d-th Root Indistinguishability Assumption, k-dRI). Let N = p · q
be generated by KeyGenmJL(1λ, k) from Definition 23 alongside with d = p′ · q′.
The d-th Root Indistinguishability Assumption (k-dRI) states that for every PPT
distinguisher D, the advantage Advk-dRI

D (λ) is a negligible function in the security
parameter λ. Where the advantage Advk-dRI

D (λ) is defined as the advantage of
D in the indistinguishability experiment ExpD0,D1

D (1λ) for the distributions D0 =
{(y, xd, k, N) | y, x← JN \QRN} and D1 = {(x, xd, k, N) | x← JN \QRN}, i.e.,

Advk-dRI
D (λ) =

⏐⏐⏐⏐⏐Pr[D(1λ, (x, xd, k, N)) = 1 | x← JN \QRN]

− Pr[D(1λ, (y, xd, k, N)) = 1 | y, x← JN \QRN]
⏐⏐⏐⏐⏐,

where the probability is taken over the choice of (N, p, q, d) and the choice of x
and y from the appropriate sets.

To construct the proof of the IND-CPA security of the Joye-Libert encryp-
tion scheme, [BHJL17] introduced the Special Quadratic Residuosity Assumption
[BHJL17, Definition 5], the Special Squared Jacobi Symbol Assumption [BHJL17,
Definition 6], and the Gap 2k-Residuosity Assumption [BHJL17, Definition 4]. In
Definition 27, 28 and 29, we give their modified versions, with the modification
of providing xd as an additional input to the attacker, where x← JN \QRN .

Definition 27 (Modified Special Quadratic Residuosity Assumption, k-QRm*).
Let N = p · q be generated by KeyGenmJL(1λ, k) from Definition 23 alongside with
d = p′ · q′. The Modified Special Quadratic Residuosity Assumption (k-QRm*)

35

states that for every PPT distinguisher D the advantage Advk-QRm*

D (λ) is a negligi-
ble function in the security parameter λ. Where the advantage Advk-QRm*

D (λ) is de-
fined as the advantage of D in the indistinguishability experiment ExpD0,D1

D (1λ) for
the distributions D0 = {(y, xd, k, N) | y, x← JN\QRN} and D1 = {(y2, xd, k, N) |
y ← JN , x← JN \QRN}, i.e.,

Advk-QRm*

D (λ) =
⏐⏐⏐⏐⏐Pr[D(1λ, (y2, xd, k, N)) = 1 | y ← JN , x← JN \QRN]

− Pr[D(1λ, (y, xd, k, N)) = 1 | y, x← JN \QRN]
⏐⏐⏐⏐⏐,

where the probability is taken over the choice of (N, p, q, d) and the choice of x
and y from the appropriate sets.

Definition 28 (Modified Special Squared Jacobi Symbol Assumption, k-SJSm*).
Let N = p · q be generated by KeyGenmJL(1λ, k) from Definition 23 alongside with
d = p′ · q′. The Modified Special Squared Jacobi Symbol Assumption (k-SJSm*)
states that for every PPT distinguisher D the advantage Advk-SJSm*

D (λ) is a negli-
gible function in the security parameter λ. Where the advantage Advk-SJSm*

D (λ) is
defined as the advantage of D in the indistinguishability experiment ExpD0,D1

D (1λ)
for the distributions D0 = {(y2, xd, k, N) | y ← JN , x ← JN \ QRN} and
D1 = {(y2, xd, k, N) | y, x← JN \QRN}, i.e.,

Advk-SJSm*

D (λ) =
⏐⏐⏐⏐⏐Pr[D(1λ, (y2, xd, k, N)) = 1 | y, x← JN \QRN]

− Pr[D(1λ, (y2, xd, k, N)) = 1 | y ← JN , x← JN \QRN]
⏐⏐⏐⏐⏐,

where the probability is taken over the choice of (N, p, q, d) and the choice of x
and y from the appropriate sets.

Definition 29 (Modified Gap 2k-Residuosity Assumption, Gap2k-Resm). Let
N = p · q be generated by KeyGenmJL(1λ, k) from Definition 23 alongside with
d = p′ · q′. The Modified Gap 2k-Residuosity Assumption (Gap2k-Resm) states
that for every PPT distinguisher D the advantage AdvGap2k-Resm

D (λ) is a negligible
function in the security parameter λ. Where the advantage AdvGap2k-Resm

D (λ) is
defined as the advantage of D in the indistinguishability experiment ExpD0,D1

D (1λ)
for the distributions D0 = {(y2k

, xd, k, N) | y ← Z∗
N , x ← JN \ QRN} and

D1 = {(y, xd, k, N) | y, x← JN \QRN}, i.e.,

AdvGap2k-Resm
D (λ) =

⏐⏐⏐⏐⏐Pr[D(1λ, (y, xd, k, N)) = 1 | y, x← JN \QRN]

− Pr[D(1λ, (y2k

, xd, k, N)) = 1 | y ← Z∗
N , x← JN \QRN]

⏐⏐⏐⏐⏐,
where the probability is taken over the choice of (N, p, q, d) and the choice of x
and y from the appropriate sets.

36

Analogously to [BHJL17, Lemma 1], we prove “k-QRm+k-SJSm =⇒ k-QRm*+
k-SJSm*”.

Lemma 12. Let λ denote the security parameter, let k ∈ N and N = p · q be
generated by KeyGenmJL(1λ, k). For every PPT distinguisher A against k-QRm*

or k-SJSm*, A is also a distinguisher against k-QRm or k-SJSm and there exists
a distinguisher B against k-QRm with comparable running time to A such that
the following holds:

Advk-QRm*

A (λ) ≤ Advk-QRm
A (λ) + 1

2Advk-SJSm
A (λ),

Advk-SJSm*

A (λ) ≤ Advk-SJSm
A (λ) + 1

2Advk-QRm
B (λ).

Proof. LetA be the adversary against k-QRm or k-SJSm taking as input (a, b, k, N).
Let us denote the following probabilities as follows:

ϵ1 := Pr[A(1λ, (a, b, k, N)) = 1 | b = xd & x, a← JN \QRN],
ϵ2 := Pr[A(1λ, (a, b, k, N)) = 1 | a = y2, b = xd & x, y ← JN \QRN],
ϵ3 := Pr[A(1λ, (a, b, k, N)) = 1 | a = y2, b = xd & x← JN \QRN & y ← QRN],
ϵ4 := Pr[A(1λ, (a, b, k, N)) = 1 | a = y2, b = xd & x← JN \QRN & y ← JN].

Then, from the definition of the advantages and Proposition 10, we have:

Advk-QRm
A (λ) =

⏐⏐⏐⏐⏐ϵ1 −
1
4(ϵ2 + ϵ3)−

1
2ϵ4

⏐⏐⏐⏐⏐,
Advk-SJSm

A (λ) =
⏐⏐⏐⏐⏐12(ϵ2 + ϵ3)− ϵ4

⏐⏐⏐⏐⏐,
Advk-QRm*

A (λ) =
⏐⏐⏐⏐⏐ϵ1 −

1
2(ϵ2 + ϵ3)

⏐⏐⏐⏐⏐,
Advk-SJSm*

A (λ) =
⏐⏐⏐⏐⏐ϵ2 − ϵ4

⏐⏐⏐⏐⏐.

Therefore, for the advantage against k-QRm* we get

Advk-QRm*

A (λ) =
⏐⏐⏐⏐⏐ϵ1 −

1
2(ϵ2 + ϵ3)

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐ϵ1 −

1
4(ϵ2 + ϵ3)−

1
2ϵ4 + 1

2ϵ4 −
1
4(ϵ2 + ϵ3)

⏐⏐⏐⏐⏐
≤
⏐⏐⏐⏐⏐ϵ1 −

1
4(ϵ2 + ϵ3)−

1
2ϵ4

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐12ϵ4 −

1
4(ϵ2 + ϵ3)

⏐⏐⏐⏐⏐
= Advk-QRm

A (λ) + 1
2Advk-SJSm

A (λ).

Furthermore, if |ϵ2−ϵ3| is non-negligible, we can construct a k-QRm distinguisher
B running A as a subroutine with a non-negligible advantage Advk-QRm

B (λ) ≥
|ϵ2 − ϵ3| as follows
B :

37

1. On input (1λ, (a, b, k, N)) run A(1λ, (a2, b, k, N)).

2. On output b′ given by A output also b′.
Then, we get

Advk-QRm
B (1λ) =

⏐⏐⏐⏐⏐Pr[B(1λ, (y, xd, k, N)) = 1 | y ← QRN , x← JN \QRN]

− Pr[B(1λ, (y, xd, k, N)) = 1 | y, x← JN \QRN]
⏐⏐⏐⏐⏐

=
⏐⏐⏐⏐⏐Pr[A(1λ, (y2, xd, k, N)) = 1 | y ← QRN , x← JN \QRN]

− Pr[A(1λ, (y2, xd, k, N)) = 1 | y, x← JN \QRN]
⏐⏐⏐⏐⏐

=
⏐⏐⏐⏐⏐ϵ3 − ϵ2

⏐⏐⏐⏐⏐.
Thus, for the advantage against k-SJSm* we get

Advk-SJSm*

A (λ) =
⏐⏐⏐⏐⏐ϵ2 − ϵ4

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐12ϵ2 − ϵ4 + 1

2ϵ3 −
1
2ϵ3 + 1

2ϵ2

⏐⏐⏐⏐⏐
≤
⏐⏐⏐⏐⏐12ϵ2 − ϵ4 + 1

2ϵ3

⏐⏐⏐⏐⏐+
⏐⏐⏐⏐⏐12ϵ2 −

1
2ϵ3

⏐⏐⏐⏐⏐
≤ Advk-SJSm

A (λ) + 1
2Advk-QRm

B (λ),

which completes the proof.

Analogously to [BHJL17, Theorem 3], we prove “k-QRm + k-SJSm =⇒
Gap2k-Resm”.
Lemma 13. Let λ denote a security parameter, let k ∈ N and N = p · q be gen-
erated by KeyGenmJL(1λ, k). For every PPT distinguisher B against Gap2k-Resm
there exist a k-QRm distinguisher D1 and a k-SJSm distinguisher D2 with com-
parable running times to B such that

AdvGap2k-Resm
B (λ) ≤ 3

2

(
(k − 1

3) · Advk-QRm
D1 (λ) + (k − 1) · Advk-SJSm

D2 (λ)
)

.

Proof. Let us denote the following distributions for i ∈ {0, . . . , k − 1} as follows

Di := {(y2i

, xd, k, N) | x, y ← JN \QRN},
D′

i := {(y2i

, xd, k, N) | y ← JN , x← JN \QRN},
Rk := {(y2k

, xd, k, N) | y ← Z∗
N , x← JN \QRN}.

We remark that

AdvGap2k-Resm
B (λ) =

⏐⏐⏐⏐⏐Pr[B(1λ, (a, b, k, N)) = 1 | (a, b, k, N)← D0]

− Pr[B(1λ, (a, b, k, N)) = 1 | (a, b, k, N)← Rk]
⏐⏐⏐⏐⏐.

38

In order to prove the statement, we connect the distribution D0 and Rk by a
chain of distributions which we prove are all computationally indistinguishable
under k-QRm and k-SJSm assumptions.

D0
c≈ D′

1
c≈ D1

c≈ D′
2

c≈ . . .
c≈ Dk−2

c≈ D′
k−1

c≈ Dk−1
c≈ Rk

First, we show that under k-QRm* assumption, Di−1
c≈ D′

i for every i ∈ [k−1]:
Let D be a distinguisher that distinguishes between the distributions Di−1 and

D′
i with advantage AdvDi−1,D′

i
D (λ). We construct a k-QRm* distinguisher Ak-QRm*

i

with the same advantage.
Ak-QRm*

i on input (1λ, (a, b, k, N)) chooses a random z ← JN and runs D on
input (1λ, (z2i ·a2i−1

, b, k, N)). In case a = y2, y ← JN , then z2i ·a2i−1 = z2i ·y2i =
(zy)2i which is an element from the distribution {y2i

, y ← JN}. Otherwise, if
a ← JN \ QRN , then z2i · a2i−1 = (z2 · a)2i−1 , which is an element from the
distribution {y2i−1

, y ← JN \ QRN}. Ak-QRm*

i outputs the output of D. Then,
Advk-QRm*

Ak-QRm*
i

(λ) = AdvDi−1,D′
i

D (λ).

Next, we show that under k-SJSm* assumption D′
i

c≈ Di, for every i ∈ [k− 1]:
Let D be a distinguisher that distinguishes between the distributions D′

i and
Di with advantage AdvD′

i,Di

D (λ). We construct a k-SJSm* distinguisher Ak-SJSm*

i

with the same advantage.
Ak-SJSm*

i on input (a, b, k, N) runs D on input (a2i−1
, b, k, N) and outputs the

output of D. In case a = y2, y ← JN \ QRN , then a2i−1 = y2i is an element
from the distribution {y2i

, y ← JN \ QRN}. Otherwise, if a = y2, y ← JN ,
then a2i−1 = y2i is an element from the distribution {y2i

, y ← JN}. Then,
Advk-SJSm*

Ak-SJSm*
i

(λ) = AdvD′
i,Di

D (λ).

Next, we show that under the k-QRm assumption Dk−1
c≈ Rk:

Let D be a distinguisher that distinguishes between the distributions Dk−1 and
Rk with advantage AdvDk−1,Rk

D (λ). We construct a k-QRm distinguisher Ak-QRm

with the same advantage.
Ak-QRm on input (a, b, k, N) runs D on input (a2k−1

, b, k, N) and outputs the
output of D. In case a ← QRN , then a2k−1 = x2k for some x ∈ Z∗

N , which
gives a random element of {y2k

, y ← Z∗
N}, hence (a2k−1

, b, k, N) is chosen from
distribution Rk. Otherwise, if a← JN \QRN , then a2k−1 is a random element of
{y2k−1

, y ← JN \QRN}, and thus, (a2k−1
, b, k, N) is chosen from the distribution

Dk−1. Then, Advk-QRm*

Ak-QRm (λ) = AdvDk−1,Rk

D (λ).

Finally, we define the distinguishers D1, D2:

D1: Chooses and runs one of the distinguishers with following probabilities

• Ak-QRm*

i with probability 2
3k−1 for every i ∈ [k − 1],

• The adversary B defined in Lemma 12 for A := Ak-SJSm*

i (we will denote
this distinguisher Bi) with probability 1

3k−1 for every i ∈ [k − 1],

• Ak-QRm with probability 2
3k−1 ,

39

and outputs the output of the chosen distinguisher.

D2: Chooses and runs one of the distinguishers with following probabilities

• Ak-QRm*

i with probability 1
3k−3 for every i ∈ [k − 1],

• Ak-SJSm*

i with probability 2
3k−3 for every i ∈ [k − 1],

and outputs the output of the chosen distinguisher.

Now, we have

AdvGap2k-Resm
B (λ) ≤

k−1∑
i=1

Advk-QRm*

Ak-QRm*
i

(λ) +
k−1∑
i=1

Advk-SJSm*

Ak-SJSm*
i

(λ) + Advk-QRm
Ak-QRm(λ)

≤
k−1∑
i=1

Advk-QRm
Ak-QRm*

i

(λ) + 1
2

k−1∑
i=1

Advk-QRm
Bi

(λ) + Advk-QRm
Ak-QRm(λ)+

+
k−1∑
i=1

Advk-SJSm
Ak-SJSm*

i

(λ) + 1
2

k−1∑
i=1

Advk-SJSm
Ak-QRm*

i

(λ)

=3k − 1
2 · Advk-QRm

D1 (λ) + 3k − 3
2 · Advk-SJSm

D2 (λ),

where the first inequality is due to

AdvGap2k-Resm
B (λ) = AdvD0,Rk

B (λ)

≤
k−1∑
i=1

AdvDi−1,D′
i

B (λ) +
k−1∑
i=1

AdvD′
i,Di

B (λ) + AdvDk−1,Rk

B (λ)

and as proved above, this induces the distinguishers Ak-QRm*

i , Ak-SJSm*

i , Ak-QRm

respectively. The second inequality is the application of Lemma 12 and the
following equality is due to the definition of D1,D2.

Now, following the proof of IND-CPA security of the Joye-Libert scheme
[BHJL17, Theorem 1], we prove IND-CPA security of the modified Joye-Libert
encryption scheme.

Theorem 14. Let λ be a security parameter. For every IND-CPA adversary A
for the encryption scheme (KeyGenmJL, EncmJL, DecmJL) with parameter k ≥ 1,
there exists a k-QRm distinguisher D1, a k-SJSm distinguisher D2 and a k-dRI
distinguisher D3 such that

AdvIND-CPA
A (λ) ≤ 3k − 1

2 · Advk-QRm
D1 (λ) + 3k − 3

2 · Advk-SJSm
D2 (λ) + Advk-dRI

D3 (λ).

Proof. We first introduce 3 hybrid distributions:

Hybrid 0 : H0 := {(g, gd, k, N) | g ← JN \QRN},

40

Hybrid 1 : H1 := {(g, yd, k, N) | g, y ← JN \QRN},

Hybrid 2 : H2 := {(g, yd, k, N) | y ← JN \QRN , g = x2k
, x← Z∗

N}.

We point out that the distributions of the Hybrid 0 and the Hybrid 1 are
indistinguishable under the k-dRI assumption (follows directly from the definition
of the k-dRI assumption) and the distributions of the Hybrid 1 and the Hybrid
2 are indistinguishable under the k-QRm and k-SJSm assumptions (follows from
Lemma 13). More precisely, using the Union bound (Lemma 4), we get that for
every PPT distinguisher D between the distributions H0 and H1 there exists a
k-QRm distinguisher D1, a k-SJSm distinguisher D2 and a k-dRI distinguisher D3
such that

AdvH0,H2
D (λ) ≤ 3k − 1

2 · Advk-QR
D1 (λ) + 3k − 3

2 · Advk-SJS
D2 (λ) + Advk-dRI

D3 (λ).

Further, we show that for every PPT IND-CPA attacker A on the mJL scheme,
there exists a PPT distinguisher D for the distributions H0 and H2, such that
AdvIND-CPA

A (λ) = AdvH0,H2
D (λ), by constructing a H0, H2 distinguisher which uses

A as a subroutine and has the same advantage.

D(1λ, (a, b, k, N)):

1. D runs A on input (1λ, pk = (a, b, k, N)).

2. On receiving A’s query (m0, m1), D chooses a bit β ← {0, 1} uniformly at
random, samples r ← Z∗

N , calculates c := amβ · r2k and gives the response c
to A.

3. After A outputs β′, D outputs 1 if β = β′ and 0 otherwise.

We remark that in case D’s input (a, b, k, N) has been chosen from H0, D acts
as the challenger for A in the IND-CPA experiment. If (a, b, k, N) has been chosen
from H2, the distributions of encryptions of messages m0 and m1, {c = am0 · r2k |
r ← Z∗

N} and {c = am1 · r2k | r ← Z∗
N} respectively, are identical. Therefore, in

this case, the probability that A guesses β is 1
2 . We have:

AdvH0,H2
D (λ) =

⏐⏐⏐⏐⏐Pr[β = β′ | (a, b, k, N)← H2]− Pr[β = β′ | (a, b, k, N)← H0]
⏐⏐⏐⏐⏐

=
⏐⏐⏐⏐⏐Pr[β = β′ | (a, b, k, N)← H0]−

1
2

⏐⏐⏐⏐⏐
= AdvIND-CPA

A (λ).

The theorem follows.

Theorem 14 shows that the modified Joye-Libert encryption scheme is IND-CPA
secure under the k-QRm, k-SJSm and k-dRI assumptions.

41

Algorithm 2: DDLogmJL(h, ω)
α = 0;
for i = 0, . . . , k − 1 do

t := (h
ωα)2k−i−1 ;

a(i) :=
[
t > N

2

]
;

α := α + a(i) · 2i;
return α

3.3 DDLog for the Modified Joye-Libert encryp-
tion scheme

In this section, we consider the distributed discrete logarithm problem for the
modified Joye-Libert scheme. Let λ, k ∈ N and (pk, sk) ← KeyGenmJL(1λ, k),
sk = d pk = (g, gd, k, N). As we introduced earlier, the DDLog problem is the
problem of two players, P0 and P1, that are holding h0 ∈ Z∗

N and h1 ∈ Z∗
N

respectively, such that h1
h0

= ωm for some subgroup generator ω, and want to
convert their shares, without any communication in between them, to shares a0,
a1, such that a1 − a0 = m. In the case of the distributed discrete logarithm
problem for the mJL scheme, ω will be a generator of a subgroup of order 2k,
more precisely ω = gd.

In Lemma 15, we review the distributed discrete logarithm procedure for the
Goldwasser-Micali scheme [OSY21, Algorithm 5.5]. It serves as a base for the
construction of our DDLog procedure for the modified Joye-Libert scheme.

Lemma 15. Let N ∈ N be odd and h0, h1 ∈ Z∗
N , such that h1 = h0·(−1)i mod N ,

for some i ∈ Z2. Set z0 := [h0 > N
2] and z1 := [h1 > N

2]. Then z0 +z1 = i mod 2.

Proof. If i = 0 then h0 = h1 and therefore z0 = z1 and thus z0 + z1 = 0 mod 2.
If i = 1 then h0 = −h1 and therefore z0 ̸= z1 and thus z0 + z1 = 1 mod 2.

We propose a procedure for solving the distributed discrete logarithm problem
for mJL scheme in Algorithm 2. In Theorem 16, we prove the correctness of
Algorithm 2.

Theorem 16. Let k ∈ N, k ≥ 2 and N ∈ N be a modulus generated by
KeyGenmJL(1λ, k). Let ω be an element of the order 2k in Z∗

N , let h0, h1 ∈ Z∗
N

and h1/h0 = ωa mod N for some a ∈ Z2k . Let a0 =
k−1∑
i=0

a
(i)
0 · 2i, a1 =

k−1∑
i=0

a
(i)
1 · 2i

be the outputs of DDLogmJL(h0, ω), DDLogmJL(h1, ω) respectively. Then

a1 − a0 = a mod 2k.

Proof. Let us denote t
(i)
0 , t

(i)
1 the t value set in the i-th iteration of the algorithm’s

cycle for i ∈ {0, . . . , k − 1}, and α
(i)
0 , α

(i)
1 the α value set in the (i − 1)-th iter-

ation of the algorithm’s cycle, for i ∈ [k], of DDLogmJL(h0, ω), DDLogmJL(h1, ω)
respectively.

We prove by induction on i that α
(i)
1 − α

(i)
0 = a mod 2i for every i ∈ [k]. We

remark that, even though the i in the algorithm is running from 0 to k − 1, our

42

induction runs from i = 1 to i = k. Notice that α
(k)
0 , α

(k)
1 are well defined, even

thought there is no k-th iteration of the cycle.
For i = 1 we have

t
(0)
1

t
(0)
0

=
(

h1

h0

)2k−1

=
(

h0 · ωa

h0

)2k−1

=
(
ω2k−1)a

= (−1)a mod N,

where the last equality holds because ω2k−1 is an element of order 2 in Z∗
N

with Jacobi symbol equal to 1 (because k ≥ 2) and only −1 fulfils both of these
properties. By Lemma 15, we get a

(0)
0 +a

(0)
1 = a mod 2. Therefore −α

(1)
0 +α

(1)
1 =

a
(0)
0 + a

(0)
1 = a mod 2.

Now, we suppose −α
(i)
0 + α

(i)
1 = a mod 2i. That means there exists b(i) ∈ Z

such that −α
(i)
0 + b(i) · 2i = a− α

(i)
1 .

For t
(i)
0 , t

(i)
1 we have

t
(i)
0 =

(
h0

ωα
(i)
0

)2k−i−1

= (h0 · ω−α
(i)
0)2k−i−1 mod N,

t
(i)
1 =

(
h1

ωα
(i)
1

)2k−i−1

= (h0 · ωa−α
(i)
1)2k−i−1 = (h0 · ω−α

(i)
0 +b(i)·2i)2k−i−1

= t
(i)
0 · ωb(i)·2k−1 = t

(i)
0 · (−1)b(i) mod N.

If b(i) is even, then t
(i)
1 = t

(i)
0 mod N and therefore a

(i)
0 = a

(i)
1 . It means that in

the i-th step of both algorithms DDLogmJL(h0, ω), DDLogmJL(h1, ω) we are adding
the same value to the α. In other words, α

(i+1)
0 − α

(i)
0 = α

(i+1)
1 − α

(i)
1 . Therefore,

a + α
(i+1)
0 − α

(i+1)
1 = a + α

(i)
0 − α

(i)
1 = b(i) · 2i = 0 mod 2i+1,

where the last equality follows from the assumption that b(i) was even.
Let b(i) be odd, then t

(i)
1 = −t

(i)
0 mod N , and therefore, either

α
(i+1)
0 = α

(i)
0 + 2i and α

(i+1)
1 = α

(i)
1 ,

or

α
(i+1)
0 = α

(i)
0 and α

(i+1)
1 = α

(i)
1 + 2i.

Therefore,

a+α
(i+1)
0 −α

(i+1)
1 = a+α

(i)
0 −α

(i)
1 ±2i = b(i) ·2i±2i = b(i) ± 1

2 ·2i+1 = 0 mod 2i+1,

where the last equality holds because b(i)±1
2 ∈ Z, as b(i) is an odd number.

Finally, a1 − a0 = α
(k)
1 + α

(k)
0 = a mod 2k.

3.4 Homomorphic Secret Sharing from the Mod-
ified Joye-Libert encryption scheme

In this section, we propose algorithms Share, Eval and Dec and prove these form
a Homomorphic Secret Sharing for RMS programs with a magnitude bound 2k.

43

Notation. In our HSS construction we use two different representations of el-
ements. More precisely, we represent an element x ∈ Z2k by its mJL ciphertext,
as well as its additive secret sharing. To denote these two representations we use
the same notation as [BGI16]. For x ∈ Z2k we denote:

1. [[x]] a modified Joye-Libert encryption of the element x, where the encryp-
tion uses the public key generated by KeyGen(1λ, k + s).

2. ⟨x⟩ an additively secret shared element over Z2k+s . More specifically two
elements ⟨x⟩0, ⟨x⟩1 ∈ Z2k+s , held by the two evaluation parties P0 and P1
respectively, such that ⟨x⟩1 − ⟨x⟩0 = x mod 2k+s.

As well as the HSS constructions by [BGI16] and [OSY21] our construction
of HSS relies on pseudorandom functions. The pseudorandom functions has been
introduced by [GGM86]. We review the definition of pseudorandom function from
[KL20].
Definition 30. Let λ ∈ N. Let F : {0, 1}key × {0, 1}in → {0, 1}out be a function.
We say F is a pseudorandom function (PRF), if for every PPT distinguisher D,
there exists a negligible function ϵ such that⏐⏐⏐⏐⏐Pr[1← DF (k,·)(1λ)]− Pr[1← Df(·)(1λ)]

⏐⏐⏐⏐⏐ ≤ ϵ(λ),

where the key k is chosen uniformly at random from {0, 1}key, f is a function
chosen uniformly at random from all functions with domain {0, 1}in and range
{0, 1}out and Dg(·) denotes that the distinguisher D is granted an oracle access to
an oracle responding to queries x ∈ {0, 1}in by g(x).

We use the notation from [BGI16] and we denote by φ ← PRFGen(1λ) the
generation of the key defining the pseudorandom function φ.

In the following theorem, we show the correctness of the HSS scheme intro-
duced in Figure 8.
Theorem 17. Let λ ∈ N, p be a polynomial and m ≤ p(λ). Proposed algo-
rithms Share, Eval, Dec defined in Figure 8 satisfy the δ-correctness property of
Homomorphic Secret Sharing (Definition 6) for RMS programs of size m and
magnitude bound M = 2k with the probability of error δ at most m · (l + 1) · 2−s.
In particular, if s is a polynomial function in λ, then (Share, Eval, Dec) satisfy the
statistical correctness property of HSS.
Proof. We follow the structure of the proof of correctness of the HSS scheme in
[BGI16, Lemma 3.10].

Let P be a RMS program of size m ∈ N and magnitude bound M = 2k and
denote

⟨dyj⟩0 :=
l∑

t=1
2t−1 · ⟨d(t)yj⟩0,

⟨dyj⟩1 :=
l∑

t=1
2t−1 · ⟨d(t)yj⟩1.

We show that the following two properties hold for all of the memory values
after each step of the homomorphic evaluation of program P except with some
specified error probability.

44

Figure 8 − Homomorphic secret sharing from modified Joye-Libert scheme.

Share(1λ, (w1, . . . , wn)): 1. Run KeyGenmJL(1λ, k + s), denote pk =
(N, k + s, g, gd) and sk = d the public and the secret key for the
modified Joye-Libert scheme. Let l = ⌈log(N)⌉ and elements
d(t) for t ∈ [l] be such that d =

l∑
t=1

2t−1d(t).

2. Sample a PRF φ ← PRFGen(1λ), φ : {0, 1}⌈log m⌉ × {0, 1}l →
{0, 1}k+s.

3. For every i = 1, . . . , n :
(a) [[wi]]← EncmJL(pk, wi)
(b) for every t ∈ [l] : [[d(t)]]← EncmJL(pk, d(t)), rt,i ← Z∗

N ,
[[d(t)wi]] := [[d(t)]]wi · r2k+s

t,i

4. Sample ⟨wi⟩0, ⟨wi⟩1 ← Z2k+s such that wi = ⟨wi⟩1 − ⟨wi⟩0
mod 2k+s.

5. Sample ⟨d(t)wi⟩0, ⟨d(t)wi⟩1 ← Z2k+s such that d(t)wi = ⟨d(t)wi⟩1−
⟨d(t)wi⟩0 mod 2k+s for every t ∈ [l].

6. For b ∈ {0, 1} output

shareb = {φ, ([[wi]], {[[d(t)wi]]}t∈[l], ⟨wi⟩b, {⟨dwi⟩b}t∈[l])i∈[n]}.

Eval(P, b, shareb):
Parse shareb = {φ, ([[wi]], {[[d(t)wi]]}t∈[l], ⟨wi⟩, {⟨dwi⟩}t∈[l])i∈[n]}. For
each instruction in P based on its type do:

• Load input value into memory (id, yi ← wi):
⟨yi⟩ := ⟨wi⟩,
⟨d(t)yi⟩ := ⟨d(t)wi⟩ for t ∈ [l].
• Add two memory values (id, yu ← yi + yj):
⟨yu⟩ := ⟨yi⟩+ ⟨yj⟩,
⟨d(t)yu⟩ := ⟨d(t)yi⟩+ ⟨d(t)yj⟩ for t ∈ [l].
• Multiply an input value by a memory value (id, yu ← wi · yj):

⟨dyj⟩ :=
l∑

t=1
2t−1 · ⟨d(t)yj⟩,

⟨yu⟩ := DDLogmJL([[wi]]⟨dyj⟩, gd) + φ(id, 0) mod 2k+s,
⟨d(t)yu⟩ := DDLogmJL([[d(t)wi]]⟨dyj⟩, gd)+φ(id, t) mod 2k+s for ev-
ery t ∈ [l].
• Output value from memory as an element of Zβ (id, β, outj ← yi):
⟨outj⟩ := ⟨yi⟩ mod β.

Dec(⟨out⟩0, ⟨out⟩1, β):
Output out := ⟨out⟩1 − ⟨out⟩0 mod β.

45

1. ⟨y⟩1 − ⟨y⟩0 = y in Z

2. ⟨dy⟩1 − ⟨dy⟩0 = dy in Z

At the beginning of the evaluation there are no memory values. Therefore the
above claim is satisfied. We analyse every type of instruction that can occur in
P.

1. Load input value into memory (id, yi ← wi): We assign directly the additive
shares mod 2k+s produced by Share to the additive shares of yi and d(t)yi.
Using the same reasoning as in [OSY21], if a1 − a0 = a mod 2k+s, a0, a1 ∈
Z2k+s , then a1 − a0 = a in Z if a1 − a ≥ 0. Therefore, there are a possible
choices of a1 such that a1 − a0 ̸= a in Z. As all of the values that occur
during the computation, including the input values, are bounded by 2k,
by the random choice of ⟨y⟩1, the probability that ⟨y⟩1 − ⟨y⟩0 ̸= y in Z is
≤ 2k

2k+s = 2−s. The same holds for the shares of d(t)y for every t ∈ [l].
Therefore, ⟨dy⟩1 − ⟨dy⟩0 ̸= dy in Z with probability ≤ l · 2−s by the union
bound (Lemma 4).

2. Add two memory values (id, yu ← yi + yj): Suppose that both properties
hold for all memory values before the execution of this instruction. Then

⟨yu⟩1 − ⟨yu⟩0 = (⟨yi⟩1 + ⟨yj⟩1)− (⟨yi⟩0 + ⟨yj⟩0)
= yi + yj = yu in Z

⟨dyu⟩1 − ⟨dyu⟩0 =
l∑

t=1
2t−1 · ⟨d(t)yu⟩1 −

l∑
t=1

2t−1 · ⟨d(t)yu⟩0

=
l∑

t=1
2t−1 · (⟨d(t)yi⟩1 + ⟨d(t)yj⟩1)−

l∑
t=1

2t−1 · (⟨d(t)yi⟩0 + ⟨d(t)yj⟩0)

= (dyi + dyj) = dyu in Z

3. Multiply an input value by a memory value (id, yu ← wi · yj):
Suppose that both properties hold for all memory values before the execu-
tion of this instruction. We have

[[wi]]⟨dyj⟩1

[[wi]]⟨dyj⟩0
= [[wi]]dyj = gdwiyj · r2k+sdyj = (gd)wiyj mod N.

Where the first equality holds because ⟨dyj⟩1−⟨dyj⟩0 = dyj in Z, the second
equality is only the definition of the mJL ciphertext and the third equality
holds because r2k+sd = 1 mod N for every r ∈ Z∗

N .
Therefore, by Theorem 16:

⟨yu⟩1 − ⟨yu⟩0 =DDLogmJL([[wi]]⟨dyj⟩1 , gd) + φ(id,0)
− (DDLogmJL([[wi]]⟨dyj⟩0 , gd) + φ(id,0)) = wiyj mod 2k+s.

As every intermediate computation value, including yu, is bounded by 2k

and as the choice of ⟨yu⟩1, ⟨yu⟩0 in Z2k+s is thanks to the addition of a

46

pseudorandom value φ(id, 0) indistinguishable from uniformly random con-
ditioned on ⟨yu⟩1 − ⟨yu⟩0 = yu mod 2k+s, we can apply the same analysis
as described in the step 1. We are getting that the probability of the first
property not holding is at most 2−s + negl(λ).
For the 2. property we have for every t ∈ [l]:

[[d(t)wi]]⟨dyj⟩1

[[d(t)wi]]⟨dyj⟩0
= [[d(t)wi]]dyj = gdd(t)wiyj · r2kdyj = (gd)d(t)wiyj .

Therefore, again by Theorem 16:

DDLogmJL([[d(t)wi]]⟨dyj⟩1 , gd) + φ(id,t)− (DDLogmJL([[d(t)wi]]⟨dyj⟩0 , gd) + φ(id,t))
= d(t)wiyj mod 2k+s.

By the same analysis as before, we get the probability of the above equation
not holding in Z at most 2−s + negl(λ).
Finally, by the union bound we get the following equation, and thus, the
property 2 except with probability ≤ l · (2−s + negl(λ)) = l · 2−s + negl(λ).

⟨dyu⟩1 − ⟨dyu⟩0 =
l∑

t=1
2t−1(DDLogmJL([[d(t)wi]]⟨dyj⟩1 , gd) + φ(id, t))

−
l∑

t=1
2t−1(DDLogmJL([[d(t)wi]]⟨dyj⟩0 , gd) + φ(id, t))

=
l∑

t=1
2t−1d(t)wiyj = dwiyj in Z

4. Output value from memory as an element of Zβ (id, β, outj ← yi): This
instruction does not alter any memory values, therefore, if the properties
hold before executing this instruction, then they hold also afterwards.
We want to show that the homomorphic execution of this instruction also
produces a correct output value, that is ⟨outj⟩1 − ⟨outj⟩0 = yi mod β.
Supposing the property 1 is true for all of the memory values before the
execution of this instruction, then

⟨yi⟩1 − ⟨yi⟩0 = yi in Z,

then we also have this equation in Zβ and therefore

⟨outj⟩1 − ⟨outj⟩0 = (⟨yi⟩1 mod β)− (⟨yi⟩0 mod β) = yi mod β.

Finally, using the union bound, we have

Dec(out0, out1, β) = (out1 − out0) mod β = out mod β,

where (out mod β) = P (w1, . . . , wn), except with error probability ≤ m · (l + 1) ·
2−s + negl(λ).

Moreover, if s is a polynomial function in λ, then m · (l + 1) · 2−s + negl(λ) =
negl(λ), as m and l are also polynomial functions in λ, and the algorithms
(Share, Eval, Dec) satisfy the statistical correctness property of HSS.

47

In order to prove that our HSS scheme is secure, we need to assume that
the underlying encryption scheme, in our case the modified Joye-Libert scheme,
remains secure even if we use it to encrypt functions of its secret key. This notion
is formalized by the KDM security (Definition 5).

Theorem 18. Assuming the IND-CPA and the KDM security of the modified
Joye-Libert scheme over the set of bit selecting functions ({fi | fi(x) = xi, i ∈ [l]},
where xi is the i-th bit of x and l = ⌈log N⌉), the algorithm Share as defined above
satisfies the security requirement from Definition 6.

Proof. We closely follow the structure of the proofs of [BGI16, Lemma 3.11] and
[OSY21, Theorem 4.4]. We introduce hybrid models in which we alter the way of
producing the share for the party b ∈ {0, 1} to bridge the distribution of shares
of w1, . . . , wn and the distribution of shares of v1, . . . , vn. We show these two
distributions are computationally indistinguishable. Fix b ∈ {0, 1} and let Hi

denote the output distribution of Hybrid i, for i = 0, 1, 2, 3.

Hybrid 0 : Shares are produced from w1, . . . , wn by the Share algorithm.

1. (share0, share1)← Share(1λ, (w1, . . . , wn)).
2. Output shareb = {φ, ([[wi]], {[[d(t)wi]]}t∈[l], ⟨wi⟩b, {⟨d(t)wi⟩b}t∈[l])i∈[n]}.

Hybrid 1 : Additive shares are replaced by random values.

1. (share0, share1)← Share(1λ, (w1, . . . , wn)).
2. Parse shareb = {φ, ([[wi]], {[[d(t)wi]]}t∈[l], ⟨wi⟩b, {⟨d(t)wi⟩b}t∈[l])i∈[n]}.
3. Sample random ri, ri,t ← Z2k+s for i ∈ [n], t ∈ [l].
4. Output shareb = {φ, ([[wi]], {[[d(t)wi]]}t∈[l], ri, {ri,t}t∈[l])i∈[n]}.

Hybrid 2 : Encryptions of the key bits times wi values are replaced by encryptions
of zero.

1. (share0, share1)← Share(1λ, (w1, . . . , wn)).
2. Parse shareb = {φ, ([[wi]], {[[d(t)wi]]}t∈[l], ⟨wi⟩b, {⟨d(t)wi⟩b}t∈[l])i∈[n]}.
3. Sample random ri, ri,t ← Z2k+s for i ∈ [n], t ∈ [l].
4. Sample [[0]]i,t ← EncmJL(pk, 0) for every i ∈ [n], t ∈ [l].
5. Output shareb = {φ, ([[wi]], {[[0]]i,t}t∈[l], ri, {ri,t}t∈[l])i∈[n]}.

Hybrid 3 : Encryptions of input values wi are replaced by encryptions of zero.

1. Run KeyGenmJL(1λ, k + s), denote pk = (N, k + s, g, gd) and sk = d the
public and the secret key for the modified Joye-Libert scheme.

2. Sample a PRF φ← PRFGen(1λ), φ : {0, 1}⌈log m⌉ × {0, 1}l → {0, 1}k+s.
3. Sample random ri, ri,t ← Z2k+s for i ∈ [n], t ∈ [l].
4. Sample [[0]]i,t ← EncmJL(pk, 0) for every i ∈ [n], t ∈ [l].
5. Sample [[0]]i ← EncmJL(pk, 0) for every i ∈ [n].
6. Output shareb = {φ, ([[0]]i, {[[0]]i,t}t∈[l], ri, {ri,t}t∈[l])i∈[n]}.

48

We remark that H0 represents the honest sharing of w1, . . . , wn and H3 is
an entirely simulated sharing, independent of w1, . . . , wn. We prove the output
distributions in these hybrid experiments are computationally indistinguishable.

First, we notice that the output distributions of Hybrid 0 and Hybrid 1 are
identical, due to the uniformly random choice of additive shares.

Next, let DH2,H1 be a distinguisher that is able to distinguish between the
output distributions of Hybrid 2 and Hybrid 1 with non-negligible probability.
We construct AKDM, an attacker on the KDM security of the modified Joye-Libert
scheme, which succeeds with non-negligible probability.

AKDM(1λ):

1. AKDM is given the mJL public key pk.

2. AKDM sends the set of bit selecting functions f1, . . . fl to the challenger.

3. On challenger’s response c1, . . . , cl, AKDM generates:

(a) [[wi]]← EncmJL(pk, wi) for every i ∈ [n],
(b) ri, ri,t ← Z2k+s for every i ∈ [n], t ∈ [l],
(c) For every i ∈ [n], for every t ∈ [l] samples r′

i,t ← Z∗
N and sets xi,t :=

cwi
i · (r′

i,t)2k+s mod N .

(d) φ← PRFGen(1λ), φ : {0, 1}⌈log m⌉ × {0, 1}l → {0, 1}k+s.

4. AKDM runsDH2,H1 on input (1λ, shareb = {φ, ([[wi]], {xi,t}t∈[l], ri, {ri,t}t∈[l])i∈[n]}).

5. AKDM outputs the output of DH2,H1 .

We notice that in case c1, . . . , cl are encryptions of bits of the secret key, we have
xi,t = (ci)wi · (r′

i,t)2k+s = gd(i)·wi · (r̂wi
i · r′

i,t)2k+s mod N , which for a uniformly ran-
dom choice of r′

i,t gives a random encryption of d(i) ·wi. Therefore, the distribution
of shareb in this case is identical to the one from Hybrid 1.

In the other case, if c1, . . . , cl are encryptions of zero, we have xi,t = (ci)wi ·
(r′

i,t)2k+s = g0 · (r̂wi
i · r′

i,t)2k+s mod N , which for a uniformly random choice of r′
i,t

gives a random encryption of 0. Thus, we get the distribution of shareb identical
to the one from Hybrid 2.

Therefore, we have constructed an KDM-security attacker AKDM with the
following advantage:

AdvKDM
AKDM(λ) =

⏐⏐⏐⏐⏐Pr[ExpKDM
AKDM(1λ) = 1]− 1

2

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐Pr[b′

KDM = bKDM]− 1
2

⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐⏐Pr[b′

KDM = 1, bKDM = 1] + Pr[b′
KDM = 0, bKDM = 0]− 1

2

⏐⏐⏐⏐⏐
= 1

2

⏐⏐⏐⏐⏐Pr[b′
KDM = 1 | bKDM = 1]− Pr[b′

KDM = 1 | bKDM = 0]
⏐⏐⏐⏐⏐

= 1
2

⏐⏐⏐⏐⏐Pr[b′
IND = 1 | bIND = 1]− Pr[b′

IND = 1 | bIND = 0]
⏐⏐⏐⏐⏐ = 1

2AdvH2,H1
DH2,H1 (λ),

49

where bKDM, b′
KDM denote the bits b, b′ from the KDM security experiment and

bIND, b′
IND denote the bits b, b′ from the indistinguishability experiment ExpH2,H1

DH2,H1 (1λ).
Next, we show for every non-uniform PPT distinguisher DH2,H3 that his ad-

vantage is negligible. We introduce another hybrid argument, where we define for
i ∈ {0, . . . , n} H ′

i as the output distribution of Hybrid 2 where we replace [[wj]]
by random encryption of zero for all j ∈ [i]. Then H ′

0 = H2 and H ′
n = H3.

Now, for every i ∈ [n] a distinguisher DH′
i−1,H′

i for the distribution of H ′
i−1

and H ′
i can be used to construct an attacker on the IND-CPA security of the

underlying modified Joye-Libert scheme AIND-CPA
i .

AIND-CPA
i :

1. On receiving the challenge (1λ, pk), AIND-CPA
i chooses m0 = wi and m1 = 0

and sends these to the challenger.

2. AIND-CPA
i generates:

• rj, rj,t ← Z2k+s for j ∈ [n], t ∈ [l],
• [[0]]j,t ← EncmJL(pk, 0) for j ∈ [n], t ∈ [l],
• [[0]]j ← EncmJL(pk, 0) for j ∈ [i− 1],
• [[wj]]← EncmJL(pk, wj) for j ∈ {i + 1, . . . , n},
• φ← PRFGen(1λ), φ : {0, 1}⌈log m⌉ × {0, 1}l → {0, 1}k+s.

3. On receiving the response ciphertext c, AIND-CPA
i runs DH′

i−1,H′
i on input

{φ,([[0]]j, {[[0]]j,t}t∈[l], rj, {rj,t}t∈[l])j∈[i−1],

(c, {[[0]]i,t}t∈[l], ri, {ri,t}t∈[l]), ([[wj]], {[[0]]j,t}t∈[l], rj, {rj,t}t∈[l])j∈{i+1,...,n}}.

4. AIND-CPA
i outputs whatever DH′

i−1,H′
i outputs.

We remark that if c = EncmJL(pk, wi), DH′
i−1,H′

i receives an element from H ′
i−1

as an input and if c = EncmJL(pk, 0), DH′
i−1,H′

i receive an element from H ′
i as an

input. Therefore, if we denote bIND-CPA, b′
IND-CPA the bits b, b′ from the IND-CPA se-

curity experiment and bIND, b′
IND denote the bits b, b′ from the indistinguishability

experiment ExpH′
i−1,H′

i

DH′
i−1,H′

i
(1λ), we have

AdvIND-CPA
AIND-CPA

i
(λ) =

⏐⏐⏐⏐⏐Pr[ExpIND-CPA
AIND-CPA

i
(1λ) = 1]− 1

2

⏐⏐⏐⏐⏐ =
⏐⏐⏐⏐⏐Pr[b′

IND-CPA = bIND-CPA]− 1
2

⏐⏐⏐⏐⏐
=
⏐⏐⏐⏐⏐Pr[b′

IND-CPA = 1, bIND-CPA = 1] + Pr[b′
IND-CPA = 0, bIND-CPA = 0]− 1

2

⏐⏐⏐⏐⏐
= 1

2

⏐⏐⏐⏐⏐Pr[b′
IND-CPA = 1 | bIND-CPA = 1]− Pr[b′

IND-CPA = 1 | bIND-CPA = 0]
⏐⏐⏐⏐⏐

= 1
2

⏐⏐⏐⏐⏐Pr[b′
IND = 1 | bIND = 1]− Pr[b′

IND = 1 | bIND = 0]
⏐⏐⏐⏐⏐

= 1
2AdvH′

i−1,H′
i

DH′
i−1,H′

i
(λ).

50

Together we have

AdvH2,H3
DH2,H3 (λ) ≤

n∑
i=1

AdvH′
i−1,H′

i

DH′
i−1,H′

i
(λ) ≤ 2 ·

n∑
i=1

AdvIND-CPA
AIND-CPA

i
(λ) ≤ negl(λ).

Thus, the indistinguishability of distributions H2 and H3 follows from the seman-
tic security of the modified Joye-Libert scheme.

Therefore, for every PPT distinguisher D we have

AdvH0,H3
D (λ) ≤ AdvH0,H1

D (λ) + AdvH1,H2
D (λ) + AdvH2,H3

D (λ) ≤ negl(λ).

We have shown that one party’s share distribution of input w1, . . . , wn is
indistinguishable from entirely simulated distribution independent of the input
values. Together with the same argumentation for the shares of v1, . . . , vn, it
implies that, for every b ∈ {0, 1}, the distributions of shareb and shareb

′ are com-
putationally indistinguishable, where (share0, share1) ← Share(1λ, (w1, . . . , wn))
and (share0

′, share1
′)← Share(1λ, (v1, . . . , vn)). This concludes the proof.

Theorem 17 and Theorem 18 imply that the algorithms (Share, Eval, Dec) form
a statistically correct Homomorphic Secret Sharing under the k-QRm, k-SJSm and
k-dRI assumptions, assuming KDM security of the modified Joye-Libert encryp-
tion scheme over the set of bitselecting functions, and setting the paramater s to
be a polynomial function of the security parameter.

51

52

Conclusion
In this thesis, we focused on constructions of homomorphic secret sharing from
assumptions not known to imply the fully homomorphic encryption. Such con-
structions have been introduced in [BGI16] and [OSY21]. We studied in detail the
distributed discrete logarithm problem, the common denominator of this group of
HSS constructions. The thesis contains two independent results, the first one
being a negative result limiting the effectiveness of solving the DDLog problem
in prime order groups in the preprocessing model and the second one being a new
HSS construction.

The first result is introduced in the Chapter 2. Motivated by the HSS con-
struction by [BGI16], which reaches a non-negligible correctness error induced
by an error in the solution of the DDLog problem, and the follow-up work by
[DKK20], showing an optimal DDLog protocol reaching an error O(W/T 2), we
analysed the DDLog problem for prime order groups in the preprocessing model.
Adapting the technique comparing the auxiliary input and bit-fixing model in-
troduced by [CDG18] we derived an upper bound for the success probability in
the DDLog problem with preprocessing. Assuming N ≥ W log W , our bound for
a big preprocessing advice (S = Ω(N/W)) translates into a bound on time-space
trade-off in the DDLog problem ST 2 = Ω(ϵN). For a small preprocessing advice
(S = O(N/W)), our bound translates to a lower bound on the time complexity
of the DDLog problem T 2 = Ω(ϵW). For a constant probability of success our
bound for the distributed discrete logarithm problem with preprocessing with a
small advice matches the time complexity of the algorithm with no preprocessing
running in time T 2 = O(W

1−ϵ
) from [DKK20]. Therefore, this algorithm can be

considered as optimal even if a small preprocessing is allowed. As an open ques-
tion we leave the time complexity bounds on the distributed discrete logarithm
problem in generic groups of orders which are not prime.

The second result is a new HSS construction for RMS programs with magni-
tude bound 2k introduced in the Chapter 3. We based our HSS construction on
Joye-Libert encryption scheme [JL13]. To be able to construct a DDLog protocol,
we made several changes in the JL scheme, resulting in the Modified Joye-Libert
(mJL) encryption scheme. Due to the modifications we made, we needed to adapt
the security proof of the scheme, which includes modifying assumptions from the
original proof (k-QRm, k-SJSm) and introducing a new assumption (k-dRI). An
important question, which stays open, is whether these assumptions are secure.
Our DDLog protocol for the mJL scheme enjoys the probability of success 1 and
gives a possibility of constructing an HSS protocol with a negligible error proba-
bility. A downside of our HSS construction is that in order to achieve a negligible
error probability for RMS programs with magnitude bound 2k, we cannot use
the modified Joye-Libert scheme with the message space Z2k , which would suf-
fice to encrypt all of the computation values. Instead, we need to use the mJL
scheme with the message space of size Z2k+s , where s is a polynomial function in
the security parameter. The possibility of removing this issue that influences the
protocol’s complexity stays an open question. Our HSS construction’s security is
based on the KDM security of mJL scheme over the set of bitselecting functions.
As an open question, we leave whether this property holds.

53

54

Bibliography
[BGI15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In

Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology
- EUROCRYPT 2015 - 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria,
April 26-30, 2015, Proceedings, Part II, volume 9057 of Lecture Notes
in Computer Science, pages 337–367. Springer, 2015.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size
barrier for secure computation under DDH. In Matthew Robshaw and
Jonathan Katz, editors, Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part I, volume 9814 of Lecture
Notes in Computer Science, pages 509–539. Springer, 2016.

[BGI+18] Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tes-
saro. Foundations of homomorphic secret sharing. In Anna R. Karlin,
editor, 9th Innovations in Theoretical Computer Science Conference,
ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94
of LIPIcs, pages 21:1–21:21. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2018.

[BHJL17] Fabrice Benhamouda, Javier Herranz, Marc Joye, and Benôıt Libert.
Efficient cryptosystems from 2k-th power residue symbols. J. Cryptol.,
30(2):519–549, 2017.

[BKS19] Elette Boyle, Lisa Kohl, and Peter Scholl. Homomorphic secret sharing
from lattices without FHE. In Yuval Ishai and Vincent Rijmen, editors,
Advances in Cryptology - EUROCRYPT 2019 - 38th Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings, Part
II, volume 11477 of Lecture Notes in Computer Science, pages 3–33.
Springer, 2019.

[BRS02] John Black, Phillip Rogaway, and Thomas Shrimpton. Encryption-
scheme security in the presence of key-dependent messages. In Kaisa
Nyberg and Howard M. Heys, editors, Selected Areas in Cryptography,
9th Annual International Workshop, SAC 2002, St. John’s, Newfound-
land, Canada, August 15-16, 2002. Revised Papers, volume 2595 of
Lecture Notes in Computer Science, pages 62–75. Springer, 2002.

[CDG18] Sandro Coretti, Yevgeniy Dodis, and Siyao Guo. Non-uniform bounds
in the random-permutation, ideal-cipher, and generic-group models. In
Hovav Shacham and Alexandra Boldyreva, editors, Advances in Cryp-
tology - CRYPTO 2018 - 38th Annual International Cryptology Confer-
ence, Santa Barbara, CA, USA, August 19-23, 2018, Proceedings, Part
I, volume 10991 of Lecture Notes in Computer Science, pages 693–721.
Springer, 2018.

55

[DKK20] Itai Dinur, Nathan Keller, and Ohad Klein. An optimal distributed
discrete log protocol with applications to homomorphic secret sharing.
J. Cryptol., 33(3):824–873, 2020.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Michael Mitzenmacher, editor, Proceedings of the 41st Annual ACM
Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 - June 2, 2009, pages 169–178. ACM, 2009.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct
random functions. J. ACM, 33(4):792–807, 1986.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their
applications. In Phong Q. Nguyen and Elisabeth Oswald, editors, Ad-
vances in Cryptology - EUROCRYPT 2014 - 33rd Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, Copenhagen, Denmark, May 11-15, 2014. Proceedings, volume
8441 of Lecture Notes in Computer Science, pages 640–658. Springer,
2014.

[JL13] Marc Joye and Benôıt Libert. Efficient cryptosystems from 2k-th power
residue symbols. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology - EUROCRYPT 2013, 32nd Annual Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques, Athens, Greece, May 26-30, 2013. Proceedings, volume
7881 of Lecture Notes in Computer Science, pages 76–92. Springer,
2013.

[KL20] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptog-
raphy. Chapman & Hall/CRC Cryptography and Network Security
Series. CRC Press, 2020.

[OSY21] Claudio Orlandi, Peter Scholl, and Sophia Yakoubov. The rise of Pail-
lier: Homomorphic secret sharing and public-key silent OT. In Anne
Canteaut and François-Xavier Standaert, editors, Advances in Cryp-
tology - EUROCRYPT 2021 - 40th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Zagreb,
Croatia, October 17-21, 2021, Proceedings, Part I, volume 12696 of
Lecture Notes in Computer Science, pages 678–708. Springer, 2021.

[Ros84] Kenneth H. Rosen. Elementary Number Theory and Its Applications.
Addison Wesley Publishing Company, 1984.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related prob-
lems. In Walter Fumy, editor, Advances in Cryptology - EUROCRYPT
’97, International Conference on the Theory and Application of Cryp-
tographic Techniques, Konstanz, Germany, May 11-15, 1997, Proceed-
ing, volume 1233 of Lecture Notes in Computer Science, pages 256–266.
Springer, 1997.

56

	Introduction
	Preliminaries
	Basic cryptographic definitions
	Homomorphic Secret Sharing
	Distributed Discrete Logarithm problem

	The Distributed Discrete Logarithm problem with preprocessing
	Preprocessing in the generic group model
	Auxiliary input and Bit-fixing model
	Lower bounds for DDLog with preprocessing in the generic group model

	HSS from Joye-Libert encryption scheme
	Modified Joye-Libert public-key encryption scheme
	Security of the Modified Joye-Libert encryption scheme
	DDLog for the Modified Joye-Libert encryption scheme
	Homomorphic Secret Sharing from the Modified Joye-Libert encryption scheme

	Conclusion
	Bibliography

