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List of Symbols
:= ... definition
N ... set of natural numbers

N0 := N ∪ {0} ... the union of N and {0}
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A△B ... symmetric difference of sets A and B

Lp(Ω) := Lp(Ω, F ,P) ... Lp space, where p ≥ 1
P -a.s.−−−→
t→∞
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L1

−−−→
t→∞

... convergence in L1, as t → ∞
P−−−→

t→∞
... convergence in probability P, as t → ∞

D−−−→
t→∞

... convergence in distribution, as t → ∞
ucp−−−→

n→∞
... uniform convergence on compacts

in probability, as n → ∞
λ(·) ... Lebesgue measure on B(R)
f |A ... mapping f restricted on set A

C([a, b],R) ... space of all continuous functions f : [a, b]→R
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Introduction
Fractional Brownian motions (fBm) and Rosenblatt processes are families of pro-
cesses that are indexed by Hurst parameter H ∈ (0, 1) and H ∈ (1

2 , 1) respectively.
In the past two decades, fBm received a lot of attention, because it was found very
useful in modelling various long-range and short-range dependent phenomena. It
is a Gaussian, self-similar process and if H ∈ (1

2 , 1) then it is also long-range de-
pendent. It has strictly stationary increments, and it can be showen that fBm is
the only Gaussian process that is self-similar with strictly stationary increments
([1, p. 2]).
A Rosenblatt process, on the other hand, is a non-Gaussian process. It is, simi-
larly as fBm, self-similar, long-range dependent and has strictly stationary incre-
ments. Long-range dependence turned out to be a desired mathematical property
when modeling certain, for example, economical phenomena. Rosenblatt process
is not as widely used as fBm, however, non-Gaussian data with fractal noise had
been observed (see [2]). In these cases, using a Rosenblatt process to model
these phenomena might be more appropriate than using fBm. Because Rosen-
blatt processes have not been as intensively studied as fBms, there are still many
mathematical properties that are yet to be proved or disproved.

In this thesis, we are interested in different concepts of variations. For the fBm,
most of these properties had already been proved and our goal is to prove them
for Rosenblatt process.
Namely, we analyze p-variation, pathwise p-th variation along the sequence of
partitions, and p-th variation along the sequence of partitions, for p > 0.

Thesis is divided into two chapters. In first chapter, we give some necessary
definitions. First, we define the Wiener process and fBm. We continue with the
Rosenblatt process for which we show how it was discovered and we also comment
on its connection with a fBm. After that, we define all various definitions of varia-
tions. Finally, we recall some basic definitions and theorems of the ergodic theory.

The second chapter is the author’s original work, however, some techniques of
proofs are known. We start by proving ergodicity of increments of a Rosenblatt
process. The reason why we need ergodicity is that we would like to use Birkhoff’s
Ergodic Theorem to prove Theorem 4 and consequently, prove that a Rosenblatt
process is not a semimartingale. In [4], it has been proved that a fBm is a semi-
martingale if and only if H = 1

2 . In the case of fBm, it is easier because ergodicity
follows directly from the fact that its increments are mixing (see [5, Proposition
5.1.1]). After proving that a Rosenblatt process is not a semimartingale, we con-
tinue with proving that there exists some sequence of partitions of some bounded
interval for which the Rosenblatt process with Hurst parameter H ∈ (1

2 , 1) has
pathwise finite 1

H
-th variation along this sequence of partitions. In the last sec-

tion of the second chapter, we prove that P-a.a. paths of the Rosenblatt process
are of infinite 1

H
-variation.
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1. Preliminaries

1.1 Wiener process
Recall that a Gaussian process is a process with Gaussian finite-dimensional dis-
tributions. Gaussian processes are uniquely, up to finite-dimensional distribu-
tions, determined by their mean and covariance functions. For that reason, it
makes sense to define Gaussian processes only by the mean and covariance func-
tions.

Definition 1. A centered, continuous, Gaussian process W = (Wt, t ∈ R+) with
W0 = 0 P-a.s. is called the Wiener process if its covariance function ϕ is of the
form

ϕ(t, s) = E[WtWs] = s ∧ t, (1.1)
for every t, s ∈ R+.

To show the existence of the Wiener process, we would need to show that the
function given by the right-hand side of the (1.1) is positive semidefinite and then
appeal to the Daniell-Kolmogorov theorem.
What follows is a characterization of Wiener process.

Lemma 1. ([6, p. 47], [9, p. 24]) The stochastic process W = (Wt, t ∈ R+) is
the Wiener process, if

1. its trajectories are continuous,

2. W0 = 0 P-a.s.,

3. it has independent increments, i.e. for every n ∈ N, t0, . . . , tn ∈ R+, t0 <
. . . < tn it holds that the random variables Wt1 − Wt0 , Wt2 − Wt1 , . . . , Wtn −
Wtn−1 are independent,

4. for every s, t ∈ R+ it holds that Wt − Ws
D∼ N(0, |t − s|).

For more properties of Wiener process see, for example, Chapter 2 in [7] or
Chapter 11 in [8].
Now we will define two-sided Wiener process (i.e. Wiener process defined on R).

Definition 2. ([9, p. 60]) Let W 1 = (W 1
t , t ∈ R+) and W 2 = (W 2

t , t ∈ R+) are
two independent Wiener processes defined on the same probability space. Then
the process W = (Wt, t ∈ R) defined by

Wt =
⎧⎨⎩W 1

t , t ≥ 0,

W 2
−t, t < 0,

is called two-sided Wiener process.

In the rest of this thesis, by Wiener process we will always mean the two-sided
Wiener process from Definition 2.
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1.2 Fractional Brownian Motion
Fractional Brownian motions are a family of stochastic processes parametrised
by the Hurst parameter H ∈ (0, 1).

Definition 3. ([10, p. 273]) A centered, Gaussian process W H = (W H
t , t ∈ R+)

with W H
0 = 0 P-a.s. is called the fractional Brownian motion (fBm) with Hurst

parameter H ∈ (0, 1) if its covariance function ϕH is of the form

ϕH(t, s) = E[W H
t W H

s ] = 1
2
(︂
t2H + s2H − |t − s|2H

)︂
, (1.2)

for every t, s ∈ R+.

Again, if we would like to prove the existence of the fBm, we would need to
show that the function on the right-hand side of the (1.2) is positive semidefinite.
Now, we are going to discuss some properties of the fBm which immediately follow
from the form of covariance function (1.2).
If H = 1

2 , then it holds that ϕ 1
2

= 1
2(t + s − |t − s|) = s ∧ t. This is the same form

as the covariance function (1.1) and we can conclude that if H = 1
2 , then fBm is

in fact the Wiener process. Hence, in this case it holds that its increments are
independent.
Next, we have that the fBm is self-similar (or more specifically H-self-similar).
It means that it is invariant in distribution under suitable scaling of time (see
the exact definition in [11, Definition 1.1.1]). More precisely, for every α > 0
it holds that the processes (α−HW H

αt , t ∈ R+) and (W H
t , t ∈ R+) have the same

finite-dimensional distributions. This follows because both processes are centered,
Gaussian and for every s, t ∈ R+ it holds that

E[(α−HW H
αt)(α−HW H

αs)] = α−2H 1
2((αt)2H + (αs)2H − |αt − αs|2H

= 1
2
(︂
t2H + s2H − |t − s|2H

)︂
= E[W H

t W H
s ].

It also holds that fBm has strictly stationary increments (in the sense that it holds
W H

t − W H
s

D∼ W H
t−s for every s, t ∈ R+, s < t). Indeed, let us have s, t ∈ R+,

s < t. Then W H
t −W H

s and W H
t−s are both centered, normally distributed random

variables and it holds

E[|W H
t − W H

s |2] = E[(W H
t )2] − 2E[W H

t W H
s ] + E[(W H

s )2]
= t2H −

(︂
t2H + s2H − |t − s|2H

)︂
+ s2H

= |t − s|2H

= E[|W H
t−s|2].

Now, we are interested whether the increments of the fBm are dependent or
independent. Let us choose t1, s1, t2, s2 ∈ R+, s1 < t1 < s2 < t2 and let us have

6



increments W H
t1 − W H

s1 , W H
t2 − W H

s2 . It holds that

E[(W H
t1 − W H

s1 )(W H
t2 − W H

s2 )] = ϕH(t1, t2) − ϕH(t1, s2) − ϕH(s1, t2) + ϕH(s1, s2)

= 1
2
(︂
−|t1 − t2|2H + |t1 − s2|2H

+|s1 − t2|2H − |s1 − s2|2H
)︂

.

(1.3)

If H ∈ (0, 1
2), then by concavity of the right-hand side of (1.3), it holds

|t1 − s2|2H + |s1 − t2|2H < |t1 − t2|2H + |s1 − s2|2H

and therefore it holds

E[(W H
t1 − W H

s1 )(W H
t2 − W H

s2 )] < 0.

If H ∈ (1
2 , 1) then

|t1 − s2|2H + |s1 − t2|2H > |t1 − t2|2H + |s1 − s2|2H

and therefore it holds

E[(W H
t1 − W H

s1 )(W H
t2 − W H

s2 )] > 0.

Overall, we can conclude that if H ∈ (0, 1
2), then the increments of fBm are

negatively correlated and if H ∈ (1
2 , 1), then the increments of fBm are positively

correlated. If H = 1
2 , then fBm is the Wiener process and its increments are

independent.
We say that a stochastic process (Xt, t ∈ N0) with finite second moments is
long-range dependent (definition from [11, p. 21]) if

∞∑︂
n=1

|r(n)| = ∞,

where r is the function r(n) := E[(Xn+1 − Xn)(X1 − X0)], for n ∈ N. In the
case of the fBm with H ∈ (0, 1), we have that (W H

n+1 − W H
n )n∈N0 is a strictly

stationary, Gaussian process with
rH(n) = E[(W H

n+1 − W H
n )(W H

1 − W H
0 )]

= 1
2
(︂
|n + 1|2H + |n − 1|2H − 2|n|2H

)︂
, for every n ∈ N.

From there, we obtain that if H ∈ (1
2 , 1), then the fBm is long-range dependent,

i.e. it holds ∑︁∞
n=1 |r(n)| = ∞. If H ∈ (0, 1

2), then ∑︁∞
n=1 |rH(n)| < ∞.

By Kolmogorov’s continuity theorem (see [7, Theorem 2.9]), it holds that there
exists modification of a fBm with all paths being continuous functions (proof of
this can be found in [1, Section 3]).
In [4, Section 2], it was proved that fBm is a semimartingale if and only if H = 1

2 .
For that reason, we cannot integrate with respect to the fBm in the sense of Itô
stochastic integration theory.

It was actually Mandelbrot and Van Ness who first coined the term fractional
Brownian motion in their paper [12]. They obtained an integral representation
of fBm in terms of the Wiener process.
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Lemma 2. ([12, Definition 2.1], [13, p. 35], [10, Proposition 5.1.2])
Let H ∈ (0, 1) and (Wt, t ∈ R) be a Wiener process. Then the process W H =
(W H

t , t ∈ R+) defined for t ∈ R+ by

W H
t = C1(H)

∫︂
R

(︃
(t − s)H− 1

2
+ − (−s)H− 1

2
+

)︃
dWs (1.4)

is called the fractional Brownian motion with the Hurst parameter H ∈ (0, 1).
Here x+ = max(x, 0) for x ∈ R and

C1(H) = (Γ(2H + 1) sin(πH))
1
2

Γ(H + 1
2)

where Γ(z) =
∫︁∞

0 xz−1e−x dx, z > 0, is the Gamma function.

1.3 Rosenblatt process

1.3.1 History and definition of Rosenblatt distribution
The term Rosenblatt process was first coined by Taqqu in [14]. It is called after
the American mathematician Murray Rosenblatt. While studying central limit
theorems for mixing sequences of random variables, he gave an interesting coun-
terexample for one of the central limit theorems.
Let us briefly describe the example. In [15, p. 434-435] he found the following pro-
cess: Let Y H = (Y H

k , k ∈ Z) be a centered, strictly stationary, Gaussian process
with unit variance and the the covariance function

rH(k) = E[Y H
0 Y H

k ] = (1 + k2) 1−H
2 , for k ∈ Z,

where H ∈ (1
2 , 1). From the definition of covariance function rH we see that Y H

is long-range dependent because it holds ∑︁∞
k=1 |rH(k)| = ∞. Now let us consider

process XH = (XH
k , k ∈ Z), defined by

XH
k = (Y H

k )2 − 1, for every k ∈ Z, (1.5)

and set
σH =

(︃1
2(2H − 1)H

)︃ 1
2

.

Then there exists a random variable ZH such that
σH

nH

n∑︂
k=1

XH
k

D−−−→
n→∞

ZH (1.6)

and it holds that random variable ZH is centered and has unite variance. The
characteristic function of ZH for θ ∈ R is

φZH
(θ) = E[eiθZH ] = exp

(︄
1
2

∞∑︂
k=2

(2iθσH)k cH
k

k

)︄
, (1.7)

where

cH
k =

∫︂ 1

0
. . .
∫︂ 1

0⏞ ⏟⏟ ⏞
k-times

|x1−x2|H−1|x2−x3|H−1· · · |xk−1−xk|H−1|xk−x1|H−1 dxk dxk−1 . . . dx1.
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It holds that series on the right-hand side of (1.7) converges for small values of
θ (see [13, Appendix] for the proof and exact computation) and that is enough
to characterize the distribution function. The distribution of a random variable
characterized by (1.7) is called a Rosenblatt distribution. From the form of right-
hand side of (1.7), it is easy to see that the Rosenblatt distribution with parameter
H ∈ (1

2 , 1) is non-Gaussian. We can see also that it holds

σH −−−→
H→1

√︄
1
2 , cH

k −−−→
H→1

1,

for every k ∈ N and it holds for θ ∈ R that

lim
H→1−

φZH
(θ) = exp

(︄
1
2

∞∑︂
k=2

(
√

2iθ)k

k

)︄

= exp
(︃

−1
2(log(1 −

√
2iθ) +

√
2iθ)

)︃
= e−

√
2

2 iθ 1√︂
1 −

√
2iθ

.

(1.8)

In the second equality we used definition of natural logarithm via its Taylor series.
Function (1.8) is a characteristic function of random variable 1

2(ε2 − 1), where
the distribution of ε is N(0, 1). In other words, if H = 1, then the Rosenblatt
distribution is a chi-squared distribution ([16, p. 2]).
If H → 1

2
+, then the corresponding distribution of random variable ZH is N(0, 1)

(see the proof in [16]).

1.3.2 Definition of Rosenblatt process
Taqqu in [14] defines Rosenblatt process (ZH(t), t ∈ R+) for H ∈ (1

2 , 1) as the
limit

ZH(t) := lim
n→∞

ZH
n (t) (1.9)

where

ZH
n (t) := σ

nH

⌊nt⌋∑︂
k=1

XH
k , t ∈ R+,

with XH = (XH
k , k ∈ Z) defined in (1.5) and limit on the right-hand side of (1.9)

is in the sense of convergence in distribution. Note that the Rosenblatt distribu-
tion (1.7) is the same as distribution of Rosenblatt process ZH(t) in t = 1.

Now we continue with the definition of the integral representation of a Rosenblatt
process.

Definition 4. ([13, Equations 37-39], [5, Equation 3], [17, Example 2])
Let H ∈ (1

2 , 1). The Rosenblatt process RH = (RH
t , t ∈ R+) of the Hurst param-

eter H is defined by

RH
t := CR

H

∫︂ ′

R2

(︃∫︂ t

0
(u − y1)

H
2 −1

+ (u − y2)
H
2 −1

+ du
)︃

dWy1 dWy2 , t ∈ R+,

where CR
H is a normalizing positive constant such that E[(RH

1 )2] = 1, the double
stochastic integral is the Wiener-Itô multiple integral of order two with respect

9



to the Wiener process W = (Wt, t ∈ R) where the prime means that integration
excludes the diagonal y1 = y2.

Remark 1. [18, Remark 1] It holds that

CR
H =

√︂
2H(2H − 1)

2β(1 − H, H
2 )

where β(a, b) :=
∫︁ 1

0 va−1(1 − v)b−1 dv is the Beta function at a, b ∈ R+.
Remark 2. From Definition 4, it immediately follows that RH

0 = 0 P-a.s. for
every H ∈ (1

2 , 1).

1.3.3 Properties of Rosenblatt process
We start by characterizing the Rosenblatt process via its characteristic function.

Lemma 3. ([14, section 6], [13, equation (12), (13)])
Let RH = (RH

t , t ∈ R+) be a Rosenblatt process with Hurst parameter H ∈ (1
2 , 1).

For n ∈ N, t1, . . . , tn ∈ R+, the characteristic function φRH
t1

,...,RH
tn

of random
vector R := (RH

t1 , . . . , RH
tn

)⊤ at θ := (θ1, . . . , θn) ∈ Rn is

φRH
t1

,...,RH
tn

(θ) = E[ei⟨θ,R⟩]

= E[ei
∑︁n

j=1 θjRtj ]

= exp
⎛⎝1

2

∞∑︂
k=2

(2iσH)k

k

∑︂
s1,...,sk∈{1,...,n}

θs1 · · · θsk
S∗

H(ts1 , . . . , tsk
)
⎞⎠

(1.10)

where σ =
(︂

1
2(2H − 1)H

)︂ 1
2 , ⟨·, ·⟩ is standard Euclidean inner product and

S∗
H(ts1 , . . . , tsk

) :=
∫︂ ts1

0
. . .
∫︂ tsk

0
|x1 − x2|H−1|x2 − x3|H−1 . . .

. . . |xk−1 − xk|H−1|xk − x1|H−1 dxk dxk−1 . . . dx1.

(1.11)

Remark 3. Note again that the series on the right-hand side of (1.10) converges
for small values of θ ∈ Rn i.e. there exists ε > 0 such that the series on right
hand side of (1.10) converges for every θ ∈ Rn such that ||θ|| < ε. The exact
computation of ε can be found in [13, Appendix].

It has been shown in [16, p. 4] that

S∗
H(1, 1) =

∫︂ 1

0

∫︂ 1

0
|x1 − x2|H−1|x2 − x1|H−1 dx2 dx1

= 1
(2H − 1)H

and

S∗
H(1, 1, 1) =

∫︂ 1

0

∫︂ 1

0

∫︂ 1

0
|x1 − x2|H−1|x2 − x3|H−1|x3 − x1|H−1 dx3 dx2 dx1

= 2
H(3H − 1)β(H, H).

10



Closed form expression of function S∗
H for k ≥ 4, k ∈ N, could not be found

which means that it has to be computed numerically. In [16, Section 2], a more
sophisticated method for numerical computing of S∗

H has been proposed.

It holds that a Rosenblatt process has strictly stationary increments. This follows
from the form of characteristic function (1.10) (or more specifically from (1.11)),
or alternatively, the proof of this can be also found in [17, Example 2]. Moreover,
it holds that the covariance function of a Rosenblatt process is of the same form
as the covariance function (1.2) of fBm (proof can be found in [13, p. 40]). From
there it follows that the Rosenblatt process is long-range dependent (which is
not surprising because it is defined as a limit of sum of long range dependent
random variables). Because the covariance function of a Rosenblatt process is
of the same form as the covariance function of the fBm (with the same Hurst
parameter H ∈ (1

2 , 1)), we can apply Kolmogorov’s continuity theorem (see [7,
Theorem 2.9]) and we obtain that there exists a modification of the Rosenblatt
process with all paths being continuous functions.
Finally, from the the form of characteristic function (1.10) it also follows that
Rosenblatt process is self-similar (alternatively this also follows from the finite
time interval representation of Rosenblatt process in [13, p. 40 and equation
(48)]).

Summary of properties of Rosenblatt process

Rosenblatt process (RH
t , t ∈ R+) with Hurst parameter H ∈ (1

2 , 1)

• is a non-Gaussian process,

• starts at zero (i.e. RH
0 = 0 P-a.s.),

• is centered,

• has variance E[(RH
t )2] = t2H , for every t ∈ R+,

• has covariance function of the same form (1.2) as fBm,

• is self-similar,

• has strictly stationary increments,

• is long-range dependent,

• has modification with all paths being continuous functions.

1.3.4 Connection with Fractional Brownian Motion
We begin with the definition of a Hermite process of order k ∈ N.

Definition 5. [5, p. 2] We define the Hermite process Zk
H = (Zk

H,t, t ∈ R+) with
Hurst parameter H ∈ (1

2 , 1) of order k ∈ N for t ∈ R+ by

Zk
H(t) := c(H, k)

∫︂
Rk

∫︂ t

0

⎛⎝ k∏︂
j=1

(s − yj)
−( 1

2 + 1−H
k

)
+

⎞⎠ ds dWy1 . . . dWyk
(1.12)
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where the above integral is a multiple Wiener-Itô stochastic integral with respect
to Wiener process W = (Wt, t ∈ R) and c(H, k) is a positive constant such that
it holds E[(Zk

H(1))2] = 1.

Hermite processes are H-self-similar and have stationary increments (see [5,
p. 2]). In Subsection 1.3.1 we showed in (1.6) that the sum of correctly nor-
malized sum of dependent chi-squared random variables converge to Rosenblatt
distribution. Now we will show the significance of transformation x2 − 1.

Hermite polynomial of degree m ∈ N0 is defined (see [5, p. 2]) for x ∈ R by

Hm(x) = (−1)me
x2
2

dm

d xm
e− x2

2 .

It holds that H2(x) = x2 − 1., i.e. the transformation in (1.5) is Hermite polyno-
mial of degree 2. Note that Hermite polynomials play important role in Malliavin
calculus because they form a complete orthonormal system in the space L2 gen-
erated by Gaussian sequences (see [10, Theorem 1.1.1]). For more details we refer
the reader to the book [10].
Let us again consider centered, strictly stationary, Gaussian process
Y H = (Y H

k , k ∈ Z) with unit variance such that its correlation function satisfies

rH(n) := E[Y0Yn] = n
2H−2

k L(n)

with H ∈ (1
2 , 1), k ∈ N and L is slowly varying function at infinity. Slowly varying

function L (see [11, Definition 2.1.1]) is a measurable, positive function such that
for every x ∈ R+ it holds

lim
t→∞

L(tx)
L(t) = 1.

Let us choose function g such that E[g(Y0)] = 0 and E[g(Y0)2] < ∞. Furthermore,
let us suppose that if we can rewrite g as

g(x) =
∑︂

j∈N0

cjHj(x)

where
cj = 1

j! E[g(Y0Hj(Y0))]

and it holds
k = min{j ∈ N0 : cj ̸= 0}.

Finally, by the Non-Central Limit Theorem [19, Theorem 1′, p. 32], it holds for
every t ∈ R+ that

Zk
H,n(t) := 1

nH

⌊nt⌋∑︂
j=1

g(Yj) D−−−→
n→∞

Zk
H(t)

where Zk
H = (Zk

H(t), t ∈ R+) is a Hermite process of order k. Hermite processes
are therefore limits of normalized sums of long range dependent random variables.

12



If k = 1 then from Definition 5 we obtain that Zk
H is the fBm with Hurst pa-

rameter H from interval (1
2 , 1) (compare (1.4) with (1.12) for k = 1). Remember

that fBm is long-range dependent only for Hurst parameter H ∈ (1
2 , 1). That

being said, fractional Brownian motion with Hurst parameter H ∈ (1
2 , 1) is the

simplest Hermite process and the only Gaussian Hermite process. Hermite pro-
cesses are non-Gaussian for every order k ∈ N, k ≥ 2. The simplest non-Gaussian
Hermite process, with k = 2, is the Rosenblatt process with the Hurst parameter
H ∈ (1

2 , 1).

1.4 Various Variations
In this section we introduce three different concepts of variation:

• p-variation (Definition 6),

• pathwise p-th variation along the sequence of partitions (Definition 7),

• p-th variation along the sequence of partitions (Definition 8).

We start with definition of p-variation. Recall that path (or trajectory) of real-
valued stochastic process (Xt, t ∈ I) indexed on non-empty set I is (deterministic)
function X•(ω) : I → R for ω ∈ Ω.

Definition 6. ([20, Definition 5.1], [21, p. 163]) Let p > 0 and T > 0. A function
f : [0, T ] → R is said to be of finite p-variation if

||f ||p -var,[0,T ] :=
⎛⎝ sup

π∈D([0,T ])

∑︂
[tj ,tj+1]∈π

|f(tj+1) − f(tj)|p
⎞⎠ 1

p

< ∞

where the supremum is taken over the set D([0, T ]) of all partitions π of the
interval [0, T ].

Note that the notion p-variation is usually defined more generally on metric
space (E, d), but for our purposes, taking real-valued functions will be sufficient.
The notion of p-variation is of interest only for p ≥ 1, because all continuous
functions with finite p-variation, where p ∈ (0, 1), are constant (for the proof see
[20, Proposition 5.2]). It also holds that if f is a real continuous function on
[0, T ] with finite p-variation and finite p̂-variation on [0, T ], where 0 < p < p̂,
then ||f ||p̂ -var,[0,T ] ≤ ||f ||p -var,[0,T ] ([20, Proposition 5.3]). From there, it follows
that p-variation as a function of p is non-increasing. If p = 1, then 1-variation
is sometimes also called total variation. Functions with finite total variation are
called bounded variation functions. Bounded variation functions can be used
as integrators (for details see for example [22, Subsection 1.7.3]). It holds that
P-a.a. paths of Wiener process have infinite total variation on any non-trivial
interval (see [7, Corollary 2.17]). For that reason we cannot use Lebesgue-Stieltjes
integral if we want to integrate with respect to Wiener process, but we need some
additional theory.
We continue with the definition of the pathwise p-th variation along a sequence
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of partitions. The concept of pathwise quadratic (case when p = 2) variation
along the sequence of partitions was first proposed by Föllmer in [3] and later
generalized by Cont and Perkowski in [21] for p > 2.
Definition 7. ([21, Definition 1.1]) Let p > 0 and T > 0. A continuous function
f : [0, T ] → R is said to have finite pathwise p-th variation along a sequence of
partitions π = (πn)n∈N of interval [0, T ], where πn = {tn

0 , . . . , tn
N(πn)} is such that

0 = tn
0 < tn

1 < . . . < tn
N(πn) = T and has vanishing mesh

|πn| = supi∈{1,...,N(πn)} |tn
i − tn

i−1| −−−→
n→∞

0, if the sequence of measures {µn}n∈N

where
µn :=

∑︂
[tj ,tj+1]∈πn

δtj
|f(tj+1) − f(tj)|p, for every n ∈ N,

converges weakly to a non-atomic measure µ (here, δu denotes Dirac measure at
the point u ∈ R). In that case we write f ∈ Vp(π) and [f ]pπ(t) := µ([0, t]) for
t ∈ [0, T ], and we call [f ]pπ the pathwise p-th variation of f along sequence of
partitions π.
Remark 4. Authors of [21, Definition 1.1] define p-th variation along sequence of
partitions (without the word ”pathwise”). We added the this word because we
need to differentiate between concepts in Definition 7 and Definition 8. And since
we will be interested in applying Definition 7 to paths of stochastic processes, we
added the word ”pathwise”.

Note that pathwise p-th variation along sequence of partitions is purely deter-
ministic notion. In Section 2.4, we will prove that P-a.a. trajectories of Rosen-
blatt process with Hurst parameter H ∈ (1

2 , 1) have finite pathwise 1
H

-th variation
along sequence of dyadic partitions.
Definition 8. Choose p > 0 and let us suppose that X = (Xt, t ∈ R+) is a real
valued stochastic process defined on probability space (Ω, F ,P). Furthermore,
choose t ∈ R+ and π = (πn)n∈N, where π is the sequence of partitions of the
interval [0, t] with πn = {tn

0 , . . . , tn
N(πn)} such that 0 = tn

0 < tn
1 < . . . < tn

N(πn) = t
and has vanishing mesh |πn| = supi∈{1,...,N(πn)} |tn

i − tn
i−1| −−−→

n→∞
0. We say that

process X has p-th variation along the sequence of partitions π at t, if the limit

lim
n→∞

∑︂
[tj ,tj+1]∈πn

|Xtj
− Xtj−1 |p (1.13)

which is defined in the sense of convergence in probability, exists. In that case
we write ⟨X⟩p

π(t) := limn→∞
∑︁

[tj ,tj+1]∈πn
|Xtj

− Xtj−1|p (where the limit is again
in the sense of convergence in probability).

1.5 Ergodic Theory
This section serves as a quick introduction to Ergodic Theory. We present some
essential definitions and we prove few lemmas because we will need some steps in
proofs later in Section 2.1. Finally we will present fundamental result - Birkhoff
Ergodic Theorem. Most of the definitions and lemmas are taken from the excellent
book by Seidler [24] (book is in czech only).
We begin by defining endomorphism, one of the essential concepts in Ergodic
Theory.
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Definition 9 ([24, p. 19]). Let (Ω, F , µ) be a measure space. We say that a
transformation T : Ω → Ω is an endomorphism of space (Ω, F , µ) if it holds that

(i) T is measurable, i.e. it holds T −1F ∈ F for every F ∈ F ,

(ii) T is measure-preserving, i.e. it holds µ(T −1F ) = µ(F ) for every F ∈ F .

We say that T is an automorphism of (Ω, F , µ) if T is a bijection and both T and
T −1 are endomorphisms.

Note that endomorphisms and automorphisms are sometimes called (for exam-
ple in [25]) measure-preserving transformation and invertible measure-preserving
transformation, respectively. The quadruplet (Ω, F , µ, T ) is sometimes called a
dynamical system. Let T be an endomorphism of probability space (Ω, F ,P).
Then we define T 0 as the identity function, T 1 = T , and for every n ∈ N we
define T n+1 = T ◦ T n.

Dynamical systems have a natural probabilistic interpretation.

Lemma 4. [24, Section 1.2] If T is an endomorphism of probability space
(Ω, F ,P) and f : Ω → R is a Borel measurable function, then (f ◦ T n, n ∈ N) is
a strictly stationary process.

Proof. Let T be an endomorphism of probability space (Ω, F ,P) and f : Ω → R
be a measurable function. Choose n ∈ N, t1, . . . , tn ∈ I and h > 0 such that
ti + h ∈ I for every i ∈ {1, . . . , n} and choose x1, . . . xn ∈ R. Then, it holds

P
[︂
{ω ∈ Ω : (f ◦ T t1+h)(ω) ≤ x1, . . . , (f ◦ T tn+h)(ω) ≤ xn}

]︂
=P

[︂
(f ◦ T t1+h)−1((−∞, x1]) ∩ . . . ∩ (f ◦ T tn+h)−1((−∞, xn])

]︂
=P

[︂
(f ◦ T t1 ◦ T h)−1((−∞, x1]) ∩ . . . ∩ (f ◦ T tn ◦ T h)−1((−∞, xn])

]︂
=P

[︂
((T h)−1 ◦ (f ◦ T t1)−1)((−∞, x1]) ∩ . . . ∩ ((T h)−1 ◦ (f ◦ T tn)−1)((−∞, xn])

]︂
=P

[︂
(T h)−1

(︂
(f ◦ T t1)−1((−∞, x1]) ∩ . . . ∩ (f ◦ T tn)−1((−∞, xn])

)︂]︂
∗=P

[︂
(f ◦ T t1)−1((−∞, x1]) ∩ . . . ∩ (f ◦ T tn)−1((−∞, xn])

]︂
=P

[︂
{ω ∈ Ω : (f ◦ T t1)(ω) ≤ x1, . . . , (f ◦ T tn)(ω) ≤ xn}

]︂
.

In ∗= we used the measure-preserving property (ii) from Definition 9.

Opposite implication also holds. Remember that canonical version of the
process is defined as process of projections on space of trajectories that have the
same finite-dimensional distributions as the original process ([24, p. 9]).

Lemma 5. [24, Section 1.2] Let (Zn, n ∈ N) be a strictly stationary stochastic
process. Then there exists process (f ◦ T n, n ∈ N), which is a canonical version
of process (Zn, n ∈ N), where f is Borel measurable function and T is endomor-
phism, both defined on the space of trajectories of (Zn, n ∈ N).
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Proof. Let us have a strictly stationary stochastic process (Zt, t ∈ N) on proba-
bility space (Ω, F ,P). Let us define

Ω̃ = RN = {ω̃ : N → R},

Gt : Ω̃ → R, ω̃ → ω̃(t), t ∈ N,

F̃ =
⨂︂
N

B(R) = σ(Rt, t ∈ N).
(1.14)

Sigma algebra F̃ is generated by measurable cylinders of the form {ω̃ ∈ Ω̃ :
ω̃(ti) ∈ Γi, i ∈ {1, . . . , k}}, where k ∈ N, t1, . . . , tk ∈ N and Γ1, . . . , Γk ∈ B(R).
We can see that the mapping Λ : Ω → Ω̃ defined as ω → Z•(ω) = (Zt(ω), t ∈ N) is
F -measurable because we have that for every measurable cylinder A ∈ F̃ of the
form A = {ω̃ ∈ Ω̃ : ω̃(ti) ∈ Γi, i ∈ {1, . . . , k}}, where k ∈ N, t1, . . . , tk ∈ N and
Γ1, . . . , Γk ∈ B(R), it holds Λ−1(A) = {ω ∈ Ω : Zti

(ω) ∈ Γi, i ∈ {1, . . . . , k}} ∈ F .
We define probability measure P̃ as the image of measure P under transformation
Λ, i.e. P̃ [·] = P[Λ(·)−1].
We have thus constructed probability space (Ω̃, F̃ , P̃ ) with stochastic process
(Gi, i ∈ N). From the construction, it follows that the finite-dimensional distri-
butions of (Zi, i ∈ N) on probability space (Ω, F ,P) and those of (Gi, i ∈ N)
on probability space (Ω̃, F̃ , P̃ ) are identical. Indeed, let us choose n ∈ N,
0 ≤ t1 ≤ . . . ≤ tn < ∞ and A1, . . . , An ∈ B(R). Then it holds

P[{ω ∈ Ω : Zt1(ω) ∈ A1, . . . , Ztn(ω) ∈ An}] =
= P̃ [Λ({ω ∈ Ω : Zt1(ω) ∈ A1, . . . , Ztn(ω) ∈ An})]
= P̃ [{ω̃ ∈ Ω̃ : ω̃(t1) ∈ A1, . . . , ω̃(tn) ∈ An}]
= P̃ [{ω̃ ∈ Ω̃ : Gt1(ω̃) ∈ A1, . . . , Gtn(ω̃) ∈ An}].

Now, we define the shift operator T : Ω̃ → Ω̃, by ω̃(·) → ω̃(· + 1). Then it
holds (T 2ω̃)(n) = (T ◦ T )(ω̃)(n) = (T ◦ ω̃)(n + 1) = ω̃(n + 2), for every n ∈ N.
Therefore, it can be easily shown by induction that for any k ∈ N it holds
(T kω̃)(n) = ω̃(n + k).
Now, for t ∈ N, we have Gt(ω̃) = ω̃(t) = (T 0ω̃)(t) = (T t−1ω̃)(1) = G1(T t−1ω̃) =
(G1 ◦ T t−1)(ω̃) for ω̃ ∈ Ω̃. For that reason, we can see that (G1 ◦ T t−1, t ∈ N)
and process (Zt, t ∈ N) have the same finite dimensional distributions or in other
words (G1 ◦ T t−1, t ∈ N) is a canonical version of (Zt, t ∈ N).
Lastly, we will show that the shift operator T is an endomorphism. Operator T is
measurable because for any measurable cylinder A ∈ F̃ , we have T −1(A) = {ω̃ ∈
Ω̃ : ω̃(ti + 1) ∈ Γi, i ∈ {1, . . . , k}} is again a measurable cylinder and therefore
an element of F̃ . Now, we will show that operator T is measure invariant. By
[24, Lemma 1.1] it is enough to show that for every cylindrical set A ∈ F̃ it holds
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P̃ [T −1A] = P̃ [A]. We have

P̃ [T −1A] = P̃ [{ω̃ ∈ Ω̃ : ω̃(ti + 1) ∈ Γi, i ∈ {1, . . . , k}}]
= P̃ [{ω̃ ∈ Ω̃ : Rti+1(ω̃) ∈ Γi, i ∈ {1, . . . , k}}]
= P[Λ−1({ω̃ ∈ Ω̃ : Rti+1(ω̃) ∈ Γi, i ∈ {1, . . . , k}})]
= P[{ω ∈ Ω : Zti+1 ∈ Γi, i ∈ {1, . . . , k}}]
= P[{ω ∈ Ω : Zti

∈ Γi, i ∈ {1, . . . , k}}]
= P[Λ−1({ω̃ ∈ Ω̃ : Rti

(ω̃) ∈ Γi, i ∈ {1, . . . , k}})]
= P̃ [{ω̃ ∈ Ω̃ : Rti

(ω̃) ∈ Γi, i ∈ {1, . . . , k}}]
= P̃ [{ω̃ ∈ Ω̃ : ω̃(ti) ∈ Γi, i ∈ {1, . . . , k}}]
= P̃ [A],

where we used strict stationarity of process (Zi, i ∈ N). Thus operator T is shown
to be measure-invariant and therefore an endomorphism.

Overall, we have showen that for every strictly stationary stochastic process
(Zn, n ∈ N), there exists an endomorphism T and a measurable function f such
that the process (f ◦ T n, n ∈ N) has the same finite-dimensional distributions
as (Zn, n ∈ N). On the other hand, we have showen that every process of the
form (f ◦ T n, n ∈ N), where f is measurable function and T is endomorphism, is
strictly stationary.

Let us assume that T is an endomorphism of probability space (Ω, F ,P). We
say that set A ∈ F is T -invariant if T −1A = A. We say that function f : Ω → Ω
is T -invariant if f ◦ T = f on Ω. Let us denote S = {A ∈ F : T −1A = A}, a
system of all T -invariant sets. It is not difficult to verify that S is a σ-algebra.
It is also not difficult to show that a measurable function f on Ω is T -invariant
if and only if f is S-measurable (the proof can be found in [24, p. 21]).
Now we will state a fundamental result - Birkhoff Pointwise Ergodic Theorem.
Note that there is also Mean Ergodic Theorem proved by von Neumann (see for
example [26, p. 23]) which we do not discuss in this work.

Theorem 1 ([26, Birkhoff Ergodic Theorem, 1931, p. 30]). Let (Ω, F ,P) be a
probability space, T be an endomorphism on this space, and f ∈ L1(Ω, F ,P).
Then it holds that

1. the limit limn→∞
1
n

∑︁n−1
k=0 f(T kω) = f ∗(ω) exists for P-a.a. ω ∈ Ω,

2. f ∗(Tω) = f ∗(ω) for P-a.a. ω ∈ Ω, i.e. f ∗ is T -invariant,

3. f ∗ ∈ L1(Ω, F ,P) and ||f ∗||1 ≤ ||f ||1,

4. if A ∈ F with T −1A = A, then
∫︁

A f dP =
∫︁

A f ∗ dP,

5. 1
n

∑︁n−1
k=0 fT k → f ∗, in L1(Ω, F ,P).

Note that if we denote S to be the σ-algebra of T -invariant sets, then statement
(4) in the above theorem, says that f ∗ = E[f |S], P-a.e. Next we would like to
know some criterion when the function f ∗ = E[f |S] in Birkhoff Ergodic Theorem
is constant. This leads us to the definition of an ergodic operator.
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Definition 10. Let T be an endomorphism of probability space (Ω, F ,P) and
let us denote S = {A ∈ F : T −1A = A} the σ-algebra of T -invariant sets. We say
that dynamical system (Ω, F ,P, T ) is ergodic if P(A) ∈ {0, 1} for every A ∈ S.

If the probability space is fixed, we usually talk about ergodicity of operator T .
We can think of ergodicity as ”in-decomposability condition”. If A ∈ F is
T -invariant set and P[A] ∈ (0, 1), then we can study T on probability space
(A, F|A,P |A) and (Ω \ A, F|Ω\A,P |Ω\A) separately. If (Ω, F ,P, T ) is ergodic
than this separation cannot be done. For that reson, ergodicity of dynamical
system gives us property that we cannot reduce or factor the dynamical system
into smaller components in the sense as described above.
An important characterization of an the ergodic operator is the following lemma.

Lemma 6. ([26, Proposition 4.1, p. 42]) Operator T on (Ω, F ,P) is ergodic if
and only if every T -invariant measurable function on Ω is constant P-a.e.

This leads us to the following theorem which is usually called the law of large
numbers for strictly stationary sequences.

Theorem 2 ([26, p. 44]). T is an ergodic operator on probability space (Ω, F ,P)
if and only if for every f ∈ L1(Ω, F ,P) it holds that

lim
n→∞

1
n

n−1∑︂
k=0

f(T kω) =
∫︂

Ω
f dP, for P -a.a. ω ∈ Ω.

Proof. Let us assume that dynamical system (Ω, F ,P, T ) is ergodic. Birkhoff
Ergodic Theorem statement (2) then tells us that if the limit f ∗ exists, then it is
T -invariant. Therefore, because T is ergodic, by Lemma 6 it holds that f ∗ from
Birkhoff Ergodic Theorem is constant P-a.e. and this constant value is

∫︁
Ω f dP.

On the other hand, let us suppose that for each f ∈ L1(Ω, F ,P), it holds
that f ∗ is constant P-a.e. We would like to show that T is ergodic. For that
it is enough, by Lemma 6, to show that every T -invariant measurable func-
tion on Ω is constant P-a.s. Let f be a T -invariant measurable function on
Ω. Then, from T -invariance, we have f ◦ T = f on Ω and from there, we have
1
n

∑︁n−1
k=0 f(T kω) = 1

n

∑︁n−1
k=0 f(ω) = f(ω) = f ∗(ω), P-a.e.. We showed that f is

constant on Ω, for P-a.a. ω ∈ Ω.
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2. Variations of Rosenblatt
process

2.1 Ergodicity of increments of Rosenblatt pro-
cess

Our goal in this section is to show that the increments of Rosenblatt process are
ergodic. We first prove the following lemma which, as it turns out, is a key step
in proving ergodicity of increments of Rosenblatt process.
Lemma 7. Let (RH

t , t ∈ R+) be a Rosenblatt process defined on a probability
space (Ω, F ,P) with Hurst parameter H ∈ (1

2 , 1). Denote Y H = (Y H
k , k ∈ N) by

Yk = RH
k − RH

k−1, for every k ∈ N. Furthermore, denote characteristic function
of random vector (Y H

t1 , . . . , Y H
tp

)⊤ by φY H
t1

,...,Y H
tp

, where p ∈ N and t1, . . . , tp ∈ R+,
t1 < . . . < tp. Then, for every θ1, . . . , θp, θp+1, . . . θ2p ∈ R and τ ∈ N, it holds

|φY H
t1

,...,Y H
tp

,Y H
t1+τ ,...,Y H

tp+τ
(θ1, . . . , θp, θp+1, . . . , θ2p)

− φY H
t1

,...,Y H
tp

(θ1, . . . , θp)φY H
t1+τ ,...,Y H

tp+τ
(θp+1, . . . , θ2p)| −−−→

τ→∞
0.

Proof. Let us fix p ∈ N, τ ∈ N and choose t1, . . . , tp ∈ R+. Let (RH
t , t ∈ R+) be a

Rosenblatt process defined on a probability space (Ω, F ,P) with Hurst parameter
H ∈ (1

2 , 1).
In order to ease notation in this proof, we denote ti+p := ti + τ for i ∈ {1, . . . , p}
and we will also write φ(θ1, . . . , θp), φ(θp+1, . . . , θ2p) and φ(θ1, . . . , θ2p) instead of
φY H

t1
,...,Y H

tp
(θ1, . . . , θp), φY H

tp+1
,...,Y H

t2p
(θp+1, . . . , θ2p) and φY H

t1
,...,Y H

t2p
(θ1, . . . , θ2p).

By Lemma 3, we have

φ(θ1, . . . , θp)φ(θp+1, . . . , θ2p) = exp
(︄

1
2

∞∑︂
k=2

(2iσH)k

k
Fk(τ)

)︄

where

Fk(τ) =
∑︂

r1,...,rk∈{1,...,p}
θr1 · · · θrk

S∗
H(tr1 , . . . , trk

) +
∑︂

l1,...,lk∈{p+1,...,2p}
θl1 · · · θlkS∗

H(tl1 , . . . , tlk)

(2.1)
and function S∗

H is from (1.11). Again, by Lemma 3, we have

φ(θ1, . . . , θ2p) = exp
⎛⎝1

2

∞∑︂
k=2

(2iσ)k

k

∑︂
j1,...,jk∈{1,...,2p}

θj1 · · · θjk
S∗

H(tj1 , . . . , tjk
)
⎞⎠ (2.2)

We can rewrite the series on the right-hand side of (2.2) as∑︂
j1,...,jk∈{1,...,2p}

θj1 · · · θjk
S∗

H(tj1 , . . . , tjk
) = Fk(τ) + Lk(τ)

where Fk(τ) is defined in (2.1) and

Lk(τ) =
∑︂

j1,...,jk∈{1,...,2p}
∃h∈{1,...,k}:jh∈{1,...,p}

∃g∈{1,...,k}:jg∈{p+1,...,2p}

θj1 · · · θjk
S∗

H(tj1 , . . . , tjk
). (2.3)
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Now we would like to show that Lk(τ) −−−→
τ→∞

0. In order to do that, we need to
show on the right-hand side of (2.3) that it holds S∗

H(tj1 , . . . , tjk
) −−−→

τ→∞
0.

We suppose that j1, . . . , jk ∈ {1, . . . , 2p} and we fix h ∈ {1, . . . , k} such that
jh ∈ {1, . . . , p} and we fix g ∈ {1, . . . , k} such that jg ∈ {p + 1, . . . , 2p}. We
can also suppose, without loss of generality, that h < g. Note that it holds
tjg = tjg−p + τ because we used notation tj + τ = tj+p for every j ∈ {1, . . . , p}.
Then it holds, for function S∗

H from (2.3), that

S∗
H(tj1 , . . . , tjk

) = S∗
H(tj1 , . . . , tjh

, . . . , tjg , . . . , tjk
)

= S∗
H(tj1 , . . . , tjh

, . . . , tjg−p + τ, . . . , tjk
)

=
∫︂ tj1

tj1 −1
. . .
∫︂ tjh

tjh
−1

. . .
∫︂ tjg−p+τ

tjg−p+τ−1
. . .
∫︂ tjk

tjk
−1

|x1 − x2|H−1· · · |xg−1 − xg|H−1 · |xg − xg+1|H−1· · · |xk − x1|H−1 dxk . . . dx1

=
∫︂ tj1

tj1 −1
. . .
∫︂ tjh

tjh
−1

. . .
∫︂ tjg−p

tjg−p−1
. . .
∫︂ tjk

tjk
−1

|x1 − x2|H−1 · · · |xg−1 − u + τ |H−1 · |u−τ − xg+1|H−1 · · · |xk − x1|H−1

dxk . . . dxg+1 du dxg−1 . . . dx1
(2.4)

where in the last equality we substituted u = xg + τ .
Let us denote, for g and h being still fixed, the function

fτ (x1, . . . , xk) := |x1 − x2|H−1 · · · |xg−2 − xg−1|−H−1 · |xg−1 − xg + τ |H−1

· |xg − τ − xg+1|H−1 · |xg+1 − xg+2|H−1 · · · |xk − x1|H−1.

Let us denote
S := (tj1 − 1, tj1) × . . . × (tjg−1 − 1, tjg−1) × (tjg−p − 1, tjg−p)

× (tjg+1 − 1, tjg+1) × . . . × (tjk
− 1, tjk

).

Then, for fixed τ , we can rewrite (2.4) as∫︂
S

fτ (x) dλ(x),

where λ is the Lebesgue measure.
Now we will verify assumptions of Dominated convergence theorem ([22, Theorem
1.4.49]) for sequence of functions {fτ }τ∈N. Let us define function ϕ as

ϕ(x1, . . . , xk) = fτ (x1, . . . , xg−1, xg + τ, xg+1, . . . , xk).

Then it holds that ϕ ∈ L1(S, B(S), λ). From the way functions f and ϕ are
defined, we can see that |fτ (x)| ≤ ϕ(x) for λ-a.a. x ∈ S and for every τ ∈ N.
From definition of function fτ , it holds that fτ −−−→

τ→∞
0 λ-a.s. on S.

All assumptions of Dominated convergence theorem ([22, Theorem 1.4.49]) have
been fulfilled, therefore we have∫︂

S
fτ (x) dλ(x) −−−→

τ→∞
0.

From there it follows that Lk(τ) −−−→
τ→∞

0 and the proof of our lemma is complete.
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Now we are ready to prove the main theorem of this section.

Theorem 3. Rosenblatt process (RH
t , t ∈ R+) with Hurst parameter H ∈ (1

2 , 1)
has ergodic increments, i.e. it holds that the process

(RH
k − RH

k−1, k ∈ N)

is ergodic.

Proof. Let (RH
t , t ∈ R+) be a Rosenblatt process defined on a probability space

(Ω, F ,P) with Hurst parameter H ∈ (1
2 , 1). Let us define, similarly as in the

proof of Lemma 5, the following notions

Ω̃ = {ω̃ : N → R},

G̃t : Ω̃ → R, ω̃ → ω̃(t), t ∈ N,

F̃ =
⨂︂
N

B(R).

Next, let us denote Y H = (Y H
k , k ∈ N) by Y H

k = RH
k − RH

k−1 for every k ∈ N.
Furthermore, let us have a mapping Λ : Ω → Ω̃ defined by ω → Y H

• (ω) where
Y H

• (ω) = (Y H
k (ω), k ∈ N) is a trajectory of process Y H . Then Λ is F -measurable

(as we argued in the proof of Lemma 5). We define a probability measure P̃ by
P̃ [·] = P[Λ−1(·)].
Finally, we define a shift operator T : Ω̃ → Ω̃ by ω̃(·) → ω̃(· + 1). Operator
T is an endomorphism as we showed in the proof of Lemma 5 and it also holds
that Y H on (Ω, F ,P) and (G̃1 ◦ T k, k ∈ N0) on (Ω̃, F̃ , P̃ ) have the same finite
dimensional distributions.
Our goal is to show that T is an ergodic operator. Let us have S = {A ∈
F̃ : T −1A = A}. Then it holds that S is a σ-algebra. Let us fix A ∈ S. We
would like to show that P̃ [A] ∈ {0, 1}. We know that every event (i.e. every
set) in a σ-algebra can be approximated by a finite dimensional event (for the
proof of a slightly more general claim, see for example [27, Theorem D., p. 56]).
Therefore, for every ε > 0 there exists n ∈ N, t1, . . . , tn ∈ N, t1 < . . . < tn, and
ξ1, . . . , ξn ∈ B(R) such that if we denote

B =
{︂
ω̃ ∈ Ω̃ : ω̃(ti) ∈ ξi, ∀i ∈ {1, . . . , n}

}︂
,

then it holds that B ∈ F̃ and

P̃ [A △ B] < ε,

where △ is the symmetric difference of two sets. From there we obtain

| P̃ [A] − P̃ [B]| < ε. (2.5)

It holds that B is generated by random vector (Y H
t1 , . . . , Y H

tn
)⊤ because we have

B = {ω̃ ∈ Ω̃ : ω̃(ti) ∈ ξi, ∀i ∈ {1, . . . , n}
= {ω̃ ∈ Ω̃ : G̃ti

(ω̃) ∈ ξi, ∀i ∈ {1, . . . , n}
= Λ({ω ∈ Ω : Y H

ti
(ω) ∈ ξi, ∀i ∈ {1, . . . , n}}).
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Note that for the inverse mapping T −1 it holds

T −1B =
{︂
ω̃ ∈ Ω̃ : ω̃(ti + 1) ∈ ξi, ∀i ∈ {1, . . . , n}

}︂
and more generally

T −kB = (T −1 ◦ . . . ◦ T −1⏞ ⏟⏟ ⏞
k-times

)B =
{︂
ω̃ ∈ Ω̃ : ω̃(ti + k) ∈ ξi, ∀i ∈ {1, . . . , n}

}︂
.

for every k ∈ N.
Now, let us denote for every τ ∈ N : Aτ := T −τ A and Bτ := T −τ B. We have
A = Aτ because A ∈ S (this holds in the sense that A ⊆ Aτ & Aτ ⊆ A). We
also have that Bτ approximates Aτ for every τ ∈ N because Bτ is generated by
the random vector (Y H

t1+τ , . . . , Y H
tn+τ )⊤ and because Y H is strictly stationarity. In

other words, we have
| P̃ [Aτ ] − P̃ [Bτ ]| < ε.

From there we have

P̃ [(A ∩ Aτ )△(B ∩ Bτ )] ≤ P̃ [(A△B)] + P̃ [(Aτ △Bτ )] < 2ε

because (A ∩ Aτ )△(B ∩ Bτ ) ⊆ (A△B) ∪ (Aτ △Bτ ). So it holds

| P̃ [A ∩ Aτ ] − P̃ [B ∩ Bτ ]| < 2ε.

Because A = Aτ , we have P̃ [A ∩ Aτ ] = P̃ [A] and we can rewrite the last
inequality as

| P̃ [A] − P̃ [B ∩ Bτ ]| < 2ε. (2.6)
We know that because T is an endomorphism, it holds P̃ [B] = P̃ [Bτ ].
Next we have by Lemma 7 the following convergence

| P̃ [B ∩ Bτ ] − P̃ [B] P̃ [Bτ ]| −−−→
τ→∞

0. (2.7)

Because T is endomorphism (and therefore P̃ -measure preserving mapping), it
holds P̃ [B] = P̃ [Bτ ]. But this means that (2.7) could be rewritten as

| P̃ [B ∩ Bτ ] − P̃ [B]2| −−−→
τ→∞

0.

But from (2.5) it follows that P̃ [A] can be approximated by P̃ [B] and from (2.6)
it follows that P̃ [A] can be approximated by P̃ [B ∩Bτ ] which converges to P̃ [B]2
as τ → ∞. Thus, both P̃ [B] and P̃ [B]2 approximate P̃ [A] which means that
either P̃ [A] = 0 or P̃ [A] = 1. In other words, T is ergodic operator. Therefore
Y H is ergodic stochastic process.

2.2 p-th variation along the sequence of parti-
tions of Rosenblatt process

The following theorem is key step in proving that Rosenblatt process is not a semi-
martingale in the next section. We will prove that Rosenblatt process has finite
p-th variation along the sequence of dyadic partitions in the sense of Definition 8
for p ≥ 1

H
.

22



Theorem 4. Let (RH
t , t ∈ R+) be a Rosenblatt process with Hurst parameter

H ∈ (1
2 , 1) defined on probability space (Ω, F ,P). Then it holds

2n∑︂
j=1

|RH
j

2n
− RH

j−1
2n

|p P−−−→
n→∞

⎧⎪⎪⎨⎪⎪⎩
0, if p > 1

H
,

E[|RH
1 | 1

H ], if p = 1
H

,

∞, if 0 < p < 1
H

.

Proof. Let us fix parameters H ∈ (1
2 , 1) and p > 0. Let us denote Rosen-

blatt process with Hurst parameter H by (RH
t , t ∈ R+) defined on a proba-

bility space (Ω, F ,P). Let us assume we have a sequence of dyadic partitions
{ j

2n , j = 0, . . . , 2n}n∈N of the interval [0, 1]. We define

Qn,p =
2n∑︂

j=1
|RH

j2−n − RH
(j−1)2−n|p(2n)pH−1.

Let us now consider
Q̂n,p = 1

2n

2n∑︂
j=1

|RH
j − RH

j−1|p.

From self-similarity of Rosenblatt process, we obtain that for every n ∈ N, Qn,p

has the same distribution as Q̂n,p. As we already proved, the sequence (RH
k −

RH
k−1, k ∈ N) is ergodic (Theorem 3) and strictly stationary (Subsection 1.3.3).

Let us have the same definitions of (Ω̃, F̃ , P̃ ), Y H , (G̃k, k ∈ N) and the shift
operator T as in the proof of Theorem 3. Then we define the function fp : Ω̃ → R
by ω̃ → |ω̃(1)|p. We then have fp ∈ L1(Ω̃, F̃ , P̃ ) because p > 0. Therefore, we
can use the Birkhoff Ergodic Theorem and we obtain the following convergence
P̃ -a.s. and in L1(Ω̃)

1
2n

2n−1∑︂
k=0

fp(T kω̃) P̃ -a.s., L1(Ω̃)−−−−−−−→
n→∞

∫︂
Ω̃

fp(ω̃) dP̃ (ω̃).

By the similar argument as in the proof of Theorem 3, it holds that (|RH
k −

RH
k−1|p, k ∈ N) has the same finite dimensional distributions as (fp ◦ T k, k ∈

N0) = (|(T k(•))(1)|p, k ∈ N0). Now we have that∫︂
Ω̃

fp(ω̃) dP̃ (ω̃) =
∫︂
Ω̃

|ω̃(1)|p dP̃ (ω̃)

=
∫︂
Ω̃

|G̃1(ω̃)|p dP̃ (ω̃)

=
∫︂
Ω

|Y H
1 (ω)|p dP(ω)

=
∫︂
Ω

|RH
1 (ω) − RH

0 (ω)|p dP(ω)

= E[|RH
1 − RH

0 |p]
= E[|RH

1 |p].

Let us denote Cp := E[|RH
1 |p].

Because it holds
1
2n

2n−1∑︂
k=0

fp(T kω̃) D∼ Q̂n,p,
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for every n ∈ N and because Qn,p
D∼ Q̂n,p for every n ∈ N, we have that

Qn,p
D−−−→

n→∞
Cp.

And because Cp is deterministic, we have

Qn,p
P−−−→

n→∞
Cp.

From there it follows that

(2n)1−pHQn,p =
2n∑︂

j=1
|RH

j
2n

− RH
j−1
2n

|p P−−−→
n→∞

⎧⎪⎪⎨⎪⎪⎩
0, if p > 1

H
,

E[|RH
1 | 1

H ], if p = 1
H

,

∞, if 0 < p < 1
H

.

Remark 5. In the statement of Theorem 4, we considered sequence of dyadic
partitions { j

2n , j = 0, . . . , 2n}n∈N of the interval [0, 1]. If we take sequence of
dyadic partitions of the interval [0, t] for t > 0, i.e. we take sequence of partitions
{ j

2n t, j = 0, . . . , 2n}n∈N, then all the calculations can be done in similar way as in
proof of Theorem 4 and we obtain the following convergence

2n∑︂
j=1

|RH
j

2n t
− RH

(j−1)
2n t

|p P−−−→
n→∞

⎧⎪⎪⎨⎪⎪⎩
0, if p > 1

H
,

tE[|RH
1 | 1

H ], if p = 1
H

,

∞, if 0 < p < 1
H

.

Similarly, if we take sequence of uniform partitions { i
n
t, i = 0, . . . , n}n∈N of the

interval [0, t] for t > 0, then all the calculations will pass in the same way as in
the dyadic partitions case and we obtain the following convergence

n∑︂
j=1

|RH
j
n

t
− RH

j−1
n

t
|p P−−−→

n→∞

⎧⎪⎪⎨⎪⎪⎩
0, if 1 > 1

H
,

tE[|RH
1 | 1

H ], if p = 1
H

,

∞, if 0 < p < 1
H

.

(2.8)

2.3 Rosenblatt process is not a semimartingale
In [4, Section 2], Rogers has proved that fracional Brownian motion is semi-
martingale if and only if H = 1

2 (i.e. only if fBm is the Wiener process). In this
subsection we will show that Rosenblatt process is not a semimartingale for every
H ∈ (1

2 , 1). Proof for this is depends substantially on Theorem 4.

Theorem 5. Rosenblatt process with Hurst parameter H ∈ (1
2 , 1) is not a semi-

martingale.

Proof. Let us fix H ∈ (1
2 , 1), and let RH = (RH

t , t ∈ R+) be a Rosenblatt process
with Hurst parameter H defined on probability space (Ω, F ,P).
Let us denote for every p > 0 and n ∈ N

Vn,p :=
2n∑︂

j=1
|RH

j
2n

− RH
j−1
2n

|p.
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Because H ∈ (1
2 , 1), it holds that 1

H
∈ (1, 2).

If p ∈ ( 1
H

, 2), then by Theorem 4 we have Vn,p
P−−−→

n→∞
0. Therefore there exists

increasing subsequence {ni}i∈N ⊆ N, ni −−−→
i→∞

∞ such that Vni,p
P -a.s.−−−→
i→∞

0. But
that means that quadratic variation of RH is zero and therefore, if RH is to be a
semimartingale, then RH must be a process of a finite variation.

If p ∈ (1, 1
H

), then by Theorem 4 it holds Vn,p
P−−−→

n→∞
∞. Therefore, there exists

some increasing subsequence {mj}j∈N ⊆ N, mj −−−→
j→∞

∞ such that Vmj ,p
P -a.s.−−−→
j→∞

∞
and therefore RH cannot be a process of finite variation because p > 1.
Therefore, we have to conclude, Rosenblatt process with Hurst parameter H ∈
(1

2 , 1) is not a semimartingale.

2.4 Pathwise 1
H -th variation along the sequence

of partitions of Rosenblatt process
In this section, we would like to show that the Rosenblatt process with Hurst
parameter H ∈ (1

2 , 1) has a finite pathwise 1
H

-th variation along a sequence of
partitions in the sense of Definition 7. It means that we need to find some
sequence of partitions π or at least show that there exists some sequence of
partitions π of interval [0, T ], such that for every continuous path S on interval
[0, T ] of Rosenblatt process, it holds that S ∈ V 1

H
(π), in the sense of Definition 7.

We first define sequence of dyadic partitions because of its extensive use in this
section.

Definition 11. Let T > 0. We define the sequence of dyadic partitions of
interval [0, T ], ET = {ET,n}n∈N, by ET,n = {tn

i , i = 0, . . . , n} with tn
i = i

2n T , for
i ∈ {0, . . . , 2n}.

Now, we state the main theorem of this section. Throughout this section we
suppose, without loss of generality, that all paths of Rosenblatt process are con-
tinuous.

Theorem 6. Let us fix T > 0 and let (RH
t , t ∈ [0, T ]) be a Rosenblatt process

defined on (Ω, F ,P) with Hurst parameter H ∈ (1
2 , 1). Let ET = {ET,n}n∈N be the

sequence of dyadic partitions of interval [0, T ]. Then there exists a subsequence
ẼT of ET such that

RH
• (ω) ∈ V 1

H
(ẼT ), for P -a.a. ω ∈ Ω,

where V 1
H

(•) denotes the set of all continuous paths with finite pathwise 1
H

-th
variation along the sequence of partitions ẼT , from Definition 7

Before we begin with the proof of Theorem 6, we will first prove the following
lemma.

Lemma 8. Let us fix T > 0 and let (RH
t , t ∈ [0, T ]) be a Rosenblatt process

defined on (Ω, F ,P) with Hurst parameter H ∈ (1
2 , 1). Then, for every t ∈ [0, T ]
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it holds ∑︂
[tn

j ,tn
j+1]∈ET,n

tj≤t

|RH
tn
j+1

− RH
tn
j
|

1
H

P−−−→
n→∞

tE[|RH
1 |

1
H ],

where ET = {ET,n}n∈N is a sequence of dyadic partitions of interval [0, T ].

Proof. Let us fix T > 0 and t ∈ [0, T ] and consider the sequence of dyadic
partitions ET . In Theorem 4 we have already proved the statement of the lemma
for the case when t = T . For that reason we consider t ∈ [0, T ).
Firstly, let us suppose that there exists m ∈ N such that t ∈ ET,m, or in other
words, there exists m ∈ N and j ∈ {0, . . . , 2m − 1} such that t = j

2m T . Then we
have for n ∈ N, n > m that

∑︂
[ti,ti+1]∈ET,n

ti≤t

|RH
ti+1

− RH
ti

|
1
H =

2n−mj∑︂
i=0

|RH
i+1
2n T

− RH
i

2n T |
1
H

D∼ T

2n

2n−mj∑︂
i=0

|RH
i+1 − RH

i |
1
H

=
(︃

T

2n
(2n−mj + 1)

)︃⎛⎝ 1
2n−mj + 1

2n−mj∑︂
i=0

|RH
i+1 − RH

i |
1
H

⎞⎠
=
(︃

j

2m
T + T

2n

)︃⎛⎝ 1
2n−mj + 1

2n−mj∑︂
i=0

|RH
i+1 − RH

i |
1
H

⎞⎠ .

(2.9)

In the second row, we used self-similarity of Rosenblatt process. Now, similarly as
in the proof of Theorem 4, by Birkhoff Ergodic Theorem, we obtain the following
convergence P-a.s. and in L1(Ω):

1
2n−mj + 1

2n−mj∑︂
i=0

|RH
i+1 − RH

i |
1
H

P -a.s., L1(Ω)−−−−−−−→
n→∞

E[|RH
1 |

1
H ]. (2.10)

Combining (2.9), (2.10) and the fact that t = j
2m T we obtain the convergence

∑︂
[ti,ti+1]∈ET,n

ti≤t

|RH
ti+1

− RH
ti

|
1
H

D−−−→
n→∞

tE[|RH
1 |

1
H ].

From there, we obtain the desired convergence in probability∑︂
[ti,ti+1]∈ET,n

ti≤t

|RH
ti+1

− RH
ti

|
1
H

P−−−→
n→∞

tE[|RH
1 |

1
H ]. (2.11)

because tE[|RH
1 | 1

H ] is deterministic.
Now, let us suppose that t is not dyadic rational, i.e. we suppose that there
does not exist any m ∈ N and j ∈ N such that t = j

2m T , or equivalently, for
every m ∈ N it holds t /∈ ET,m. It means that for every n ∈ N, there exists
index xn ∈ {0, . . . , 2n − 1} such that t ∈ (xn

2n T, xn+1
2n T ). That gives us a sequence
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{xn}n∈N for which it holds xn

2n T < t < xn+1
2n T for every n ∈ N. We know that set

{ j
2n , j ∈ N0, n ∈ N} is dense on R+. From there it follows that

xn

2n
T −−−→

n→∞
t (2.12)

and
xn + 1

2n
T −−−→

n→∞
t. (2.13)

As we already mentioned, for every fixed m ∈ N it holds that xm

2m T ∈ ET,m and
xm+1

2m T ∈ ET,m. For that reason, as we already proved in (2.11), it holds that
∑︂

[ti,ti+1]∈ET,n

ti≤ xm
2m T

|RH
ti+1

− RH
ti

|
1
H

P−−−→
n→∞

xm

2m
T E[|RH

1 |
1
H ]

and ∑︂
[ti,ti+1]∈ET,n

ti≤ xm+1
2m T

|RH
ti+1

− RH
ti

|
1
H

P−−−→
n→∞

xm + 1
2m

T E[|RH
1 |

1
H ].

It also holds on Ω and for every n ∈ N, n > m that∑︂
[ti,ti+1]∈ET,n

ti≤ xm
2m T

|RH
ti+1

−RH
ti

|
1
H ≤

∑︂
[ti,ti+1]∈ET,n

ti≤t

|RH
ti+1

−RH
ti

|
1
H ≤

∑︂
[ti,ti+1]∈ET,n

ti≤ xm+1
2m T

|RH
ti+1

−RH
ti

|
1
H .

Therefore, if we send n → ∞, we obtain (for m being still fixed)

xm

2m
T E[|RH

1 |
1
H ] ≤

∑︂
[ti,ti+1]∈ET,n

ti≤t

|RH
ti+1

− RH
ti

|
1
H ≤ xm + 1

2m
T E[|RH

1 |
1
H ] (2.14)

Finally, (2.14) with xm

2m T −−−→
m→∞

t and xm+1
2m T −−−→

m→∞
t, completes the proof.

Remark 6. In the statement of Lemma 8, we assumed ET to be the sequence
of dyadic partitions (because dyadic rationals is a dense set on R) because we
needed to show that (2.12) and (2.13) hold. The proof of Lemma 8 would pass
in the same way for any sequence of partitions for which the convergences (2.12)
and (2.13) hold.
We will continue with citations of two lemmas. The first lemma gives us suffi-
cient conditions for uniform convergence in probability of family of continuous
processes.

Lemma 9. ([28, Lemma 3.1]) Let (Zε)ε>0 be a family of continuous processes.
Let us suppose that

1. for every ε > 0, t → Zε(t) is non-decreasing P-a.s.,

2. there exists a continuous process (Z(t))t≥0 such that Zε(t) P−−−→
ε→0+

Z(t).

Then (Zε)ε>0 converges to Z uniformly in probability P.
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The next lemma gives us necessary and sufficient conditions for continuous path
to have a p-th variation along a sequence of partitions.

Lemma 10. ([21, Lemma 1.3]) Let T > 0, S ∈ C([0, T ],R) and π = {πn}n∈N
be a sequence of partitions of [0, T ]. It holds that S ∈ Vp(π) if and only if there
exists a continuous function [S]p such that

∀t ∈ [0, T ] :
∑︂

[tj ,tj+1]∈πn

tj≤t

|S(tj+1) − S(tj)|p −−−→
n→∞

[S]p(t). (2.15)

If this property holds, then the convergence in (2.15) is uniform.

Now we have enough theory to prove the desired Theorem 6.

Proof of Theorem 6. Our goal is to show that there exists some sequence of par-
titions and continnuous function such that (2.15) holds.
Let us fix T > 0 and let ET be a sequence of dyadic partitions of interval [0, T ].
Furthermore, let us denote for every n ∈ N and t ∈ [0, T ]

Zn(t) :=
∑︂

[tn
j ,tn

j+1]∈ET,n

tj≤t

|RH
tn
j+1

− RH
tn
j
|

1
H , Z(t) := tE[|RH

1 |
1
H ].

Then, from Lemma 8, it holds that

Zn(t) P−−−→
n→∞

Z(t), for every t ∈ [0, T ]. (2.16)

From there, it follows that for every t ∈ [0, T ], there exists some increasing
subsequence of indexes {nt,k}k∈N ⊆ N with nt,k −−−→

k→∞
∞, and there exists Ωt ∈ F

with P[Ωt] = 1 such that it holds, for every ω ∈ Ωt, that

Znt,k
(t, ω) −−−→

k→∞
Z(t, ω).

In order to verify (2.15), we need to show that {nt,k}k∈N and Ωt can be chosen
independently of t. In other words, we would like to show that there exists Ω̃ ∈ F
with P[Ω̃] = 1 and an increasing sequence of indexes {nk}k∈N ⊆ N, nk −−−→

k→∞
∞

such that for every t ∈ [0, T ] and for every ω ∈ Ω̃ it holds

Znk
(t, ω) −−−→

k→∞
Z(t, ω).

We do that by verifying sufficient assumptions of uniform convergence in proba-
bility in Lemma 9.
We have (Zn)n∈N family of continuous processes. Firstly, we are interested
whether it holds that for every n ∈ N, the mapping t → Zn(t) is non-decreasing
P-a.s. on [0, T ].
Let us choose 0 ≤ s < t ≤ T . Then it trivially holds that Zn(s) ≤ Zn(t) because

Zn(t) = Zn(s) +
∑︂

[tn
j ,tn

j+1]∈ET,n

s<tn
j ≤t

|RH
tn
j+1

− RH
tn
j
|

1
H
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and therefore t → Zn(t) is non-decreasing P-a.s. on [0, T ] for every n ∈ N. It
also holds that Zn(t) P−−−→

n→∞
Z(t), for every t ∈ [0, T ] as we showed in (2.16).

Therefore, by Lemma 9, it holds that Zn
ucp−−−→

n→∞
Z, or in other words, it holds that

∀ε > 0 : P
[︄

sup
t∈[0,T ]

|Zn(t) − Z(t)| > ε

]︄
−−−→
n→∞

0.

From there, it follows that there exists some increasing subsequence of indexes
{nk}k∈N ⊆ N with nk −−−→

k→∞
∞ and there exists Ω̃ ∈ F with P[Ω̃] = 1, such that

for every ω ∈ Ω̃ it holds

sup
t∈[0,T ]

|Znk
(t, ω) − Z(t, ω)| −−−→

k→∞
0.

But it means that the following holds:

∀ω ∈ Ω̃, ∀t ∈ [0, T ] :
∑︂

[tnk
j ,t

nk
j+1]∈ET,nk

t
nk
j ≤t

|RH
t
nk
j+1

(ω) − RH
t
nk
j

(ω)| 1
H −−−→

k→∞
tE[|RH

1 |
1
H ].

Finally, by Lemma 10, we have for every ω ∈ Ω̃ that RH
• (ω) ∈ V 1

H
(ẼT ), where

ẼT = {ET,nk
}k∈N. In other words, we say that all continuous paths of Rosenblatt

process RH have finite pathwisie 1/H-th variation along a sequence of partitions
ẼT , i.e. it holds that

µn :=
∑︂

[tnk
j ,t

nk
j+1]∈ET,nk

δt
nk
j

|RH
t
nk
j+1

− RH
t
nk
j

|
1
H

converges weakly to a measure µ without atoms for every t ∈ [0, T ] and it holds
that µ([0, t]) = tE[|RH

1 | 1
H ].

2.5 1
H -Variation of Rosenblatt process

In this subsection we will suppose, without loss of generality, that Rosenblatt
process (RH

t , t ∈ R+) with fixed Hurst parameter H ∈ (1
2 , 1) is defined on com-

plete probability space (Ω, F ,P) with all paths being continuous functions.
The next question we might ask is whether paths of Rosenblatt process have finite
p-variation in the sense of Definition 6. Clearly, if p ∈ (0, 1

H
), then the paths of

Rosenblatt process will not be of finite variation because, by Theorem 4, it holds
that ∑︁2n

j=1 |RH
j

2n
− RH

j−1
2n

|p P−−−→
n→∞

∞.
In this section we will prove, that P-a.a. paths of Rosenblatt process are not of
finite p-variation even if p = 1

H
. Results proved in this section could not be found

anywhere in the literature, however, the techniques of the proofs are known (see
[29] where claims from this section are proved for fractional Brownian motion).

Firstly, let us define some notions. For a, b ∈ R+, a < b, we define random
variable

Υ[a,b] = sup
n∈N,a≤t1<...<tn≤b

n−1∑︂
i=1

|RH
ti+1

− RH
ti

|
1
H .
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Note that Υ[a,b] is a measurable mapping because Rosenblatt process has continu-
ous sample paths and therefore we can take the supremum over rational numbers
t1, . . . , tn ∈ Q.
Let λ(•) be Lebesgue measure on B(R+), U be a finite union of disjoint open
intervals (si, ti) ⊂ R+ with si, ti ∈ Q for every i ∈ {1, . . . , n} and some n ∈ N,
and let U be the collection of such subsets of R+. For every U ∈ U of the form
U = ⋃︁n

i=1(si, ti), where n ∈ N, 0 ≤ s1 < t1 ≤ s2 < t2 ≤ . . . ≤ sn < tn ≤ b, we
define the random variable

ζU =
n∑︂

i=1
|RH

ti
− RH

si
|

1
H . (2.17)

Note that it holds

Υ[a,b](ω) = sup
U∈U ,U⊆[a,b]

ζU(ω), for every ω ∈ Ω.

Firstly, we prove the following simple lemma which follows from the Birkhoff
Ergodic Theorem.

Lemma 11. Let us fix m ∈ N and denote pm = P[|RH
1 | 1

H ≥ m].
Let us denote Z(m)

n = 1[︂
|RH

n −RH
n−1|

1
H ≥m

]︂ for every n ∈ N. Then it holds

1
n

n∑︂
i=1

Z
(m)
i

P -a.s.−−−→
n→∞

pm.

Proof. We know that increments of Rosenblatt process are strictly stationary and
they are also ergodic, as we proved in Theorem 3. Consequently, the function
1[︂

|·|
1
H ≥m

]︂ is measurable and therefore also the process (Z(m)
n , n ∈ N) is ergodic.

For that reason, we can use Birkhoff Ergodic Theorem and we obtain

1
n

n∑︂
i=1

Z(m)
n

P -a.s.−−−→
n→∞

E[Z(m)
1 ].

And we use the fact that E[Z(m)
1 ] = pm.

Note that we can see from the proof of Lemma 11 that the convergence in the
statement of Lemma 11 holds, by Birkhoff Ergodic Theorem, also in the sense of
L1(Ω), but we do not need this type of convergence in further proofs.
The following lemma lies at the heart of the proof of the main result.

Lemma 12. Let us choose s, t ∈ Q+, s < t, denote I = (s, t) and fix m > 0.
Denote pm = P[|RH

1 | 1
H ≥ m] and choose r ∈ (0, pm). Then there exists Am ∈ F

such that P[Am] = 1 and for every ω ∈ Am, there exists Uω ∈ U such that it holds

• Uω ⊂ I,

• λ(Uω) > rλ(I),

• ζUω(ω) ≥ mλ(Uω).

30



Proof. Let us fix m > 0. For every n ∈ N and for every i ∈ {0, . . . , n} we define
tn
i = s + i

n
(t − s) and Jn

k = (tn
k−1, tn

k) for k ∈ {1, . . . , n}. Let us also denote

S(m)
n =

n−1∑︂
i=0
1[︃⃓⃓⃓

RH
tn
i+1

−RH
tn
i

⃓⃓⃓ 1
H ≥m t−s

n

]︃.
By (2.17), we can see that for every ω ∈ Ω and k ∈ {1 . . . , n} we have ζJn

k
(ω) =

|RH
tn
k
(ω) − RH

tn
k−1

(ω)| 1
H and λ(Jn

k ) = t−s
n

. For that reason, S(m)
n (ω) counts the

number of subintervals Jn
k for which it holds ζJn

k
(ω) ≥ mλ(Jn

k ). By definition
of {tn

i , i ∈ {0, . . . , n}}, strict stationarity of increments and self-similarity of the
Rosenblatt process, we have for every i ∈ {0, . . . , n − 1} that

⃓⃓⃓
RH

tn
i+1

− RH
tn
i

⃓⃓⃓ 1
H =

⃓⃓⃓⃓
RH

s+ i+1
n

(t−s) − RH
s+ i

n
(t−s)

⃓⃓⃓⃓ 1
H

D∼
⃓⃓⃓⃓
RH

i+1
n

(t−s) − RH
i
n

(t−s)

⃓⃓⃓⃓ 1
H

D∼
⃓⃓⃓⃓
|t − s

n
|H(RH

i+1 − RH
i )
⃓⃓⃓⃓ 1

H

D∼ t − s

n

⃓⃓⃓
RH

i+1 − RH
i

⃓⃓⃓ 1
H .

For that reason, it holds that S(m)
n has the same distribution as Z(m)

n , where Z(m)
n

is defined for n ∈ N by

Z(m)
n =

n−1∑︂
i=0
1[︂

|RH
i+1−RH

i |
1
H ≥m

]︂.
By Lemma 11, we have that

1
n

Z(m)
n

P -a.s.−−−→
n→∞

pm.

From there, we have

1
n

S(m)
n

P−−−→
n→∞

pm

because pm is a deterministic. Therefore, there exists some increasing subsequence
{ni}i∈N ⊆ N, with ni −−−→

i→∞
∞, such that

1
ni

S(m)
ni

P -a.s.−−−→
i→∞

pm.

Let us denote
Am = {ω ∈ Ω : 1

ni

S(m)
ni

(ω) −−−→
i→∞

pm}.

Then P[Am] = 1. Let us fix ω ∈ Am. Then there exists iω ∈ N such that

1
ni

S(m)
ni

(ω) > r, for every i ∈ N, i > iω.
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Let us choose i ∈ N, i > iω, and let

Jω =
{︃

Jni
k : ζJ

ni
k

(ω) ≥ m
t − s

ni

, k ∈ {1, . . . , ni}
}︃

.

Then Jω ̸= ∅ because if Jω = ∅, then S(m)
ni

(ω) = 0 would hold but we have
1
ni

S(m)
ni

(ω) > r which is a contradiction. In fact, Jω has exactly S(m)
ni

(ω) elements.
Finally, let us denote

Uω :=
⋃︂

V ∈Jω

V.

Then it holds that

λ(Uω) = S(m)
ni

(ω)t − s

ni

> rλ(I)

and

ζUω(ω) =
∑︂

V ∈Jω

ζV (ω)

≥ Sni
(ω)mt − s

ni

= mλ(Uω).

That completes the proof.

Corollary 1. Let us fix m ∈ N, denote pm = P[|RH
1 | 1

H ≥ m] and set rm = pm

2 .
Then there exists Cm ∈ F with P[Cm] = 1 such that if ω ∈ Cm and V ∈ U ,
then there exists Uω ∈ U with Uω ⊂ V for which it holds λ(Uω) > rmλ(V ) and
ζUω(ω) ≥ mλ(Uω).

Proof. The statement follows from Lemma 12. Indeed, by using Lemma 12, we
obtain for every U ∈ U set AU

m ∈ F , P[AU
m] = 1 and for every ω ∈ AU

m there
exists Uω ∈ U such that Uω ⊆ U , λ(Uω) > rλ(U) and ζUω(ω) ≥ mλ(Uω). Now it
is enough to set

Cm =
⋂︂

U∈U
AU

m.

Lemma 13. Fix 0 ≤ a < b, a, b ∈ Q. Then Υ[a,b](ω) = ∞ for P-a.a. ω ∈ Ω.

Proof. Let us choose m ∈ N arbitrarily, fix 0 ≤ a < b, a, b ∈ Q, denote pm =
P[|R1|

1
H ≥ m] and choose r ∈ (0, pm). Then, by applying Lemma 12 to the open

interval I = (a, b), we obtain that there exists C1
m ∈ F such that P[C1

m] = 1 and
for every ω ∈ C1

m there exists U1
ω ∈ U such that

U1
ω ⊂ I,

λ(U1
ω) > rλ(I),

ζU1
ω
(ω) ≥ mλ(U1

ω).

Let us denote
W1 = {U1

ω, ω ∈ C1
m}.
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Now, by Corollary 1 (with m being already fixed), there exists C2
m ∈ F such that

P[C2
m] = 1 such that for every ω ∈ C2

m ∩ C1
m (the following holds by Corollary 1

for every ω ∈ C2
m, but we will need it only for every ω ∈ C2

m ∩ C1
m) and every

U1
ω ∈ W1, there exists U2

ω ∈ U such that

U2
ω ⊂ I \ U1

ω,

λ(U2
ω) > rλ(I \ U1

ω),
ζU2

ω
(ω) ≥ mλ(U2

ω).

Let us denote
W2 = {U2

ω, ω ∈ C2
m ∩ C1

m}.

We continue in the same manner as before. At the k-th step (where k ∈ N), we
have that there exists Ck

m ∈ F with P[Ck
m] = 1 such that for every ω ∈ ⋂︁k

i=1 Ci
m

and every U1
ω ∈ W1, . . . , Uk−1

ω ∈ Wk−1 there exists Uk
ω ∈ U for which it holds

Uk
ω ⊂ I \ (U1

ω ∪ . . . ∪ Uk−1
ω ),

λ(Uk
ω) > rλ(I \ (U1

ω ∪ . . . ∪ Uk−1
ω )),

ζUk
ω
(ω) ≥ mλ(Uk

ω).

We denote
Wk = {Uk

ω , ω ∈
k⋂︂

i=1
Ci

m}.

Let us denote
Ck

m =
k⋂︂

i=1
Ci

m

for every k ∈ N, and
C∞

m =
∞⋂︂

i=1
Ci

m.

Then it holds Ck
m ∈ F and P[Ck

m] = 1 for every k ∈ N ∪ {∞}. Let us fix k ∈ N.
Then, for every ω ∈ Ck

m, we have U1
ω ∈ W1, . . . , Uk

ω ∈ Wk and ⋂︁k
i=1 U i

ω = ∅ (this
also holds for k ∈ N ∪ {∞}).
Let us choose ω ∈ Ck

m and denote

V k
ω =

k⋃︂
i=1

U i
ω.

Then we have V k
ω ∈ U . Furthermore, from (2.17) and from properties of

U1
ω, . . . , Uk

ω , we have

ζV k
ω

(ω) =
k∑︂

i=1
ζU i

ω
(ω) ≥

k∑︂
i=1

mλ(U i
ω) = mλ(V k

ω ). (2.18)

Now, we will prove by induction that

λ(I \ V k
ω ) ≤ (1 − r)k(b − a).
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If k = 1, we have

λ(U1
ω) > rλ(I)

−λ(U1
ω) ≤ −rλ(I)

λ(I) − λ(U1
ω) ≤ λ(I) − rλ(I)

λ(I \ U1
ω) ≤ (1 − r)λ(I)

λ(I \ V 1
ω ) ≤ (1 − r)(b − a).

Now, let us suppose that this inequality holds for k − 1 and we will prove it for
k, where k ∈ N . In other words, we suppose that it holds

λ(I \ V k−1
ω ) ≤ (1 − r)k−1(b − a).

Then,

λ(I \ V k
ω ) = λ(I \ (V k−1

ω ∪ Uk
ω))

= λ(I \ V k−1
ω ) − λ(Uk

ω).
(2.19)

Now, from

λ(Uk
ω) > rλ(I \ (U1

ω ∪ . . . ∪ Uk−1
ω ))

= rλ(I \ V k−1
ω ),

we have that
−λ(Uk

ω) ≤ −rλ(I \ V k−1
ω ).

Therefore, if we continue in (2.19), we obtain

λ(I \ V k
ω ) ≤ λ(I \ V k−1

ω ) − rλ(I \ V k−1
ω )

= (1 − r)λ(I \ V k−1
ω )

≤ (1 − r)k(b − a).

We proved that λ(I \ V k
ω ) ≤ (1 − r)k(b − a) for every k ∈ N. From the fact that

1 − r ∈ (0, 1), we see that
λ(I \ V k

ω ) −−−→
k→∞

0

and
λ(V k

ω ) −−−→
k→∞

λ(I) = b − a.

For this reason and from (2.18), it holds for every ω ∈ C∞
m that

sup
k∈N

ζV k
ω

(ω) ≥ sup
k∈N

mλ(V k
ω )

= m lim
k→∞

λ(V k
ω )

= m(b − a).

And from there, it follows that for every ω ∈ C∞
m it holds

sup
U∈U ,U⊂[a,b]

ζU(ω) ≥ sup
k∈N

ζV k
ω

(ω),
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and therefore

Υ[a,b](ω) = sup
U∈U ,U⊂[a,b]

ζU(ω)

≥ m(b − a)

for every ω ∈ C∞
m .

We proved that for fixed m ∈ N and for every ω ∈ C∞
m it holds

Υ[a,b](ω) ≥ m(b − a).

Now, we denote
C =

⋂︂
m∈N

Ck
m.

Then it holds C ∈ F and P[C] = 1, and furthermore, for every ω ∈ C, we have
that

Υ[a,b](ω) ≥ m(b − a)
holds for every m ∈ N, and therefore

Υ[a,b](ω) = ∞

holds for every ω ∈ C and P[C] = 1.

Theorem 7. There exists N ∈ F , P[N ] = 0, such that for every a, b ∈ R+, a < b,
it holds that

sup
n∈N,a≤t1<...<tn≤b

n−1∑︂
i=0

|RH
ti+1

(ω) − RH
ti

(ω)| 1
H = ∞

holds for every ω ∈ Ω \ N .

Proof. The claim follows from Lemma 13. Indeed, for every 0 ≤ a < b, a, b, ∈ Q,
we obtain set Na,b ∈ F with P[Na,b] = 0 such that Υ[a,b](ω) = ∞ for all ω ∈
Ω \ Na,b. It is enough to set N = ⋃︁

a,b∈Q+,a<b Na,b and we obtain the statement of
the theorem.
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Conclusion
In this thesis we have proved numerous properties of Rosenblatt processes that
could not be found in the literature. First, we proved that the increments of
Rosenblatt processes are ergodic. We continued with proving that Rosenblatt
processes have finite p-th variation along sequence of dyadic partitions for p ≥ 1

H

and consequently we proved that Rosenblatt process is not a semimartingale.

After that, in Section 2.4, we showed that Rosenblatt process has finite path-
wise 1

H
-th variation along sequence of dyadic partitions. We proved Lemma 8

for only one specific sequence of partitions (for sequence of dyadic partitions).
One possibility for further research is to find the class of sequences of partitions
for which Lemma 8 holds. The problem may be approached by investigating
assumptions on how fast the mesh

sup
j=0,...,N(n)

{|tn
j − tn

j−1|}

will converge to 0 as n → ∞, where {tn
j , j = 0, . . . , N(n)}n∈N is a sequence of

partitions and N : N → N is some increasing function. For sequence of dyadic
partitions, this mesh converges exponentially fast i.e. 1

2n −−−→
n→∞

0.
Lastly, in Section 2.5, we showed that P-a.a. trajectories of the Rosenblatt process
with Hurst parameter H ∈ (1

2 , 1) have infinite p-variation if p = 1
H

. We also
argued that this holds for 0 < p < 1

H
. The interesting open question remains

what happens if p > 1
H

? We could not find answers in the case of p > 1
H

in
literature for fractional Brownian motion either.
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