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ABSTRACT 
In this thesis we apply neural networks as nonparametric and nonlinear methods 
to the Central European stock markets returns (Czech, Polish, Hungarian and 
German) modelling. In the first two chapters we define prediction task and link 
the classical econometric analysis to neural networks. We also present 
optimization methods which will be used in the tests, conjugate gradient, 
Levenberg-Marquardt, and evolutionary search method. Further on, we present 
statistical methods for comparing the predictive accuracy of the non-nested 
models, as well as economic significance measures. In the empirical tests we first 
show the power of neural networks on Mackey-Glass chaotic time series followed 
by real-world data of the daily and weekly returns of mentioned stock exchanges 
for the 2000:2006 period. We find neural networks to have significantly lower 
prediction error than classical models for daily DAX series, weekly PX50 and  BUX 
series. The lags of time-series were used, and also cross-country predictability 
has been tested, but the results were not significantly different. We also achieved 
economic significance of predictions with both daily and weekly PX-50, BUX and 
DAX with 60% accuracy of prediction. Finally we use neural network to learn 
Black-Scholes model and compared the pricing errors of Black-Scholes and neural 
network approach on the European call warrant on CEZ. We find that networks 
can be used as alternative pricing method as they were able to approximate the 
market price of call warrant with significantly lower error then Black-Scholes 
itself. Our last finding was that Levenberg-Marquardt optimization algorithm used 
with evolutionary search provides us with significantly lower errors than 
conjugate gradient or gradient descent. 
Keywords: emerging stock markets, predictability of stock returns, neural 
networks, optimization algorithms, derivative pricing using neural networks  
JEL classification: C22, C32, C45, C53, E44,  G14, G15 
 
ABSTRAKT  (in Czech) 
V této práci jsou aplikovány neuronové sítě jako neparametrická, nelineární 
metoda modelování na středoevropské trhy (Český, Polský, Maďarský a 
Německý). V prvních dvou kapitolách je definováno prognózování v kontextu 
klasické ekonometrické analýzy ve spojení s neuronovými sítěmi. Dále jsou 
prezentovány optimalizační metody použité při testování – konjugovaný gradient, 
Levenberg-Marquardt a genetické algoritmy, a nakonec statistické metody pro 
srovnání přesnosti předpovědí různých modelů a jejich ekonomickou signifikaci. 
V empirickém modelování je nejdřív ukázána výkonnost neuronové sítě na 
chaotické časové řadě Mackey-Glass. Dále následuje analýza reálných denních a 
týdenních časových řad středoevropských indexů pro období let 2000 až 2006, 
kde je ukázáno, že Neuronové sítě predikují denní výnosy DAX a týdenní výnosy 
PX50, BUX se signifikantně nižší chybou pomocí časových řad historických výnosů 
než ostatní ekonometrické metody. Podobných výsledků bylo dosaženo při 
predikci národního výnosu pomocí zpožděných výnosů alespoň jednoho 
z ostatních indexů. Dále je taky ukázáno, že s Neuronovou sítí byla dosažena 
ekonomická signifikace predikce denních i týdenních výnosů PX-50, BUX i DAX. 
Přesnost předpovědí testovaných řad se pohybuje kolem 60%, co považujeme za 
dobrý výsledek. V poslední kapitole je použita neuronová síť pro ocenění 
Evropského nákupního warrantu na ČEZ za pomoci časové řady historických cen. 
Je ukázáno, že síť je možné použít i jako alternativu pro oceňování, jelikož dokáže 
aproximovat tržní cenu lépe než Black-Scholesův model. Poslední testy ukázaly, 
že Levenberg-Marquardtova optimalizační metoda použita s genetickým 
algoritmem vykazuje signifikantně nižší chyby odhadů než ostatní metody. 
Klíčová slova: výnosy akcií a jejich predikce pomocí neuronové sítě, optimalizační 
algoritmy, oceňování derivátů pomocí neuronové sítě 
JEL klasifikace: C22, C32, C45, C53, E44,  G14, G15 
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Introduction 
 

“One of the earliest and most enduring questions of financial econometrics 

is whether financial asset prices are forecastable. Perhaps because of the obvious 

analogy between financial investments and games of chance, mathematical 

models of asset prices have an unusually rich history that predates virtually every 

other aspect of economic analysis. The fact that many prominent mathematicians 

and scientists have applied their considerable skills to forecasting financial  

securities prices is a testament to the fascination and the challenges of this 

problem. Indeed, modern financial economics is firmly rooted in early attempts to 

“beat the market”, an endeavor that is still of current interest, discussed and 

debated in journal articles, conferences, and at cocktail parties!” 

Campbell, Lo and MacKinlay (1997), p.27 

 

Life must be understood looking backwards, but must be lived looking 

forward. The past is helpful for predicting the future, but we have to know which 

approximating models to use, in combination with past data, to predict future 

events. Žikeš (2003) finds that European stock returns do not follow random 

walk, thus contains predictable components, and presents modern econometric 

techniques which helps us to uncover part of the pattern. We would like to link 

these methods with neural networks research and provide a useful bridge which 

lacks in most of the literature. This thesis is an extension of previous work aimed 

on the predictability of Central European stock markets returns, presenting the 

neural network approach to the problem. 

On the basis of universal approximation theorem, we use the neural 

networks with hope they will improve the prediction task as they are able to 

approximate any function as Hornik, Stinchcombe, and White (1989) shows. 

Thus, we will aim on comparison of results of econometric modelling and neural 

network modelling to see whether neural networks brings us closer insight into 

the patterns of stock returns or not. The readers shall see that the neural network 
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is a very useful nonparametric econometric technique. Criticisms rise mainly from 

the fact that neural networks drew their motivation from biological phenomena, 

from physiology of nerve cells, they have become part of a separate literature 

(see Hertz, Krogh and Palmer (1991), Hutchinson, Lo, and Poggio (1994), Poggio 

and Girosi (1990), and White (1988) resp. (1992) for the overview). We will also 

append this discussion in this thesis. The structure will be as followed: 

 

We start with theoretical framework of stock returns predictability in the 

first chapter, where we present Efficient Market Hypothesis, define the prediction 

task, and present linear regression models and GARCH modelling.  

In the second chapter we move further on to neural networks. We discuss 

methodology problems first to avoid confusion, then we present basic forms of 

networks and transformation functions which will be tested further in the next two 

chapters. We also discuss the most important - optimization methods used. 

Starting with quasi-Newton stochastic gradient search, through conjugate 

gradient and Levenberg-Marquardt we get to stochastic evolutionary searches 

and discuss nonlinear estimation problem. At the end of the chapter we pay 

attention to the evaluation of estimated models, and to statistical methods of 

predictive accuracy and economic significance. We close the chapter with Black-

Box criticism discussion where we comment on its irrelevance.  

In the third chapter we apply presented methods to central European stock 

market returns. We start with the modelling of Mackey-Glass’s chaotic time series 

to show how neural network perform on artificial data. On the basis of general 

approximation theorem we expect the neural network to approximate the process 

very well. We will also compare it to common techniques presented in the first 

chapter to illustrate the power of the networks. In the rest of the chapter we 

model the PX-50, BUX, DAX and WIG daily and weekly returns. On the in-sample 

and more important out-of-sample criteria we test classical autoregressive 

models, ARIMA (p,I,q) and GARCH with neural networks. For the comparison we 

use statistical tests described in the theoretical part, and also tests of economic 

relevance of the prediction model. 

In the last chapter we examine the usage of neural networks to derivatives 

pricing. If the price of derivative is determined by the Black-Scholes formula, 

neural network can be used to estimate the Black Scholes formula with sufficient 

degree of accuracy. If the assumptions of Black-Scholes model are violated, the 

neural networks can be used as better and more efficient derivative pricing 

models. We follow this analysis as the logical implication from findings in the third 

chapter, while assumptions of Black Scholes as lognormal distribution of stock 
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prices, geometric Brownian motion, constant volatility or frictionless markets are 

nonrealistic, we expect the neural network to be able to price the derivatives 

more efficiently. We conduct the empirical analysis on the European call warrant 

on the CEZ, the second most liquid security on the Czech stock market. The 

methodology is simple. Firstly we test if the neural network is able to 

approximate the Black-Scholes on the artificial data on the call warrant on CEZ. 

Then we will use real market prices and test if the neural networks can be used 

as the nonparametric derivative pricing method effectively than Black-Scholes 

itself. 

The thesis concludes with summary of the empirical results we achieve and 

suggestions for further research. 
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Chapter 1  

 

Stock returns predictability using 

modern econometric methods 
 

 

Predictability of stock returns have been attracting the attention of many 

academics and professionals for a long time1. It concerns forecasting future 

returns from the past – observed – returns as well as cross-sectional forecasting 

from other - financial or macroeconomic - variables2 that relates to the returns. 

The basic assumption is that history tends to repeat itself, meaning that past 

patterns of price behavior in individual stocks will tend to repeat in future. Thus 

the way to predict the future of returns is to develop and uncover those patterns. 

The economic rationale for doing so is very strong: abnormal returns. At a first 

glance, the problem seems to be simple. All we need is historical prices of the 

returns which we want to forecast, and “user-friendly” econometric software 

which will do the work for us and recognize the patterns in the data. Costs are 

negligible even to a common investor and possible results of correctly modeled 

returns are very attractive. 

 

This chapter outlines commonly used techniques for time series prediction, 

and presents enhanced modern econometric methods for modelling of time series 

and detecting the presence of regular patterns. Although it presents most of the 

                                          
1 Campbel, Lo, MacKinlay (1997) can be used to find references addressing almost any question of the 

problem. Hellstrom, Holmstrom (1998), Hawanini and Keim (1993). 
2 Main reference to this research are Fama and French (1988, 1989, 1990), Chen, Roll and Ross 

(1986), Barro (1990) 
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important concepts and brings the reader in the problem, it serves just as an 

introductory chapter to the main concept – neural networks presented in this 

thesis.  

The organization is as follows. Firstly, the Efficient Market hypothesis, an idea 

which stands at the beginning of this research is presented in its three forms in 

(1.2). Martingale and Random Walk processes helps to close the basic framework 

of stock returns predictability. In (1.4) we present Classical Linear regression 

modelling with more general autoregressive and ARIMA (p,1,q) models. 

Subchapter (1.5) follows with exploring nonlinear, time-varying models which 

stands on the generalized autoregressive conditional heteroskedasticity, GARCH. 

 

1.1 Properties of stock returns time-series 

 

First of all we present basic properties of stock returns as the motivation. 

All of the problems will be discussed in detail in following subchapters thus the 

reader can find references there. Also statistical and distributional properties (i.e. 

heavy tails) will not be mentioned here as we will discuss them further in 

empirical testing of the presented models. This part should only serve as an 

essential introduction of the basic concepts of stock returns predictability. 

 

i) Stock returns time series often behave nearly like a random-walk process, 

which means that from a theoretical point of view there are no predictable 

regular patterns. Predictability of stock returns have also been questioned 

in scope of the efficient market hypothesis. 

ii) Statistical properties of the time series are different at different points in 

time.  

iii) Financial time series are very noisy, meaning that there is a large amount 

of random day-to-day variations. 

 

1.2 Efficient market hypothesis 

 

The efficient market hypothesis (EHM) has been one of the most 

important concepts in modern financial theory as it has found broad acceptance3. 

As summarized by Fama (1970), “a market in which prices always ‘fully reflect’ 

                                          
3 Anthony and Biggs (1995), Malkiel (1987), White (1998) 
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available information is called ‘efficient’.” As Campbel, Lo, MacKinlay (1997) 

remarks, quotation marks ‘fully reflects’ are prompting that the formulation needs 

to be explained in detail. Malkiel (1987) expands the Fama’s definition with the 

idea of judging efficiency of market by measuring the profits that can be made by 

trading on the available information. He writes: “If the market is efficient, it is 

impossible to make economic profit by trading on the information.” Thus if the 

current price reflected all information available at the market, no prediction of 

future changes would be possible. As new information enters the market, it is 

immediately reflected and new market price is developed. Depending on the type 

of information set, Roberts (1967) distinguishes 

 

 Weak-form Efficiency: The information set includes only the history of 

the prices or returns themselves. In other words, technical analysis4 is 

of no use. 

 Semistrong-form Efficiency: The information set includes all publicly 

available information known to all market participants. In other words, 

fundamental analysis5 is of no use. 

 Strong-form Efficiency: The information set includes all privately 

available information known to any market participant. In other words, 

even insider information is of no use. 

 

As we consider stock returns predictability at this work, we will work only with 

weak-form efficiency which enables us to hope that we will be able to predict the 

future returns from the past ones. 

 

1.2.1 Martingale model 

 

Martingale model was perhaps the earliest idea of financial asset pricing 

models, which grew from the history of game of chances and probability theory. 

Girolamo Cardano (1565) proposed that the “most fundamental principle of 

                                          
4 Technical analysis is based on creating various basic indicators as trend-lines, support and 

resistance, volatility, momentum indicators etc. from past prices and volume. Indicators are used to 

produce trading (buy/sell) signals or rules. This is done mainly graphically by comparing the price and 

a trading rule. 
5 Fundamental analysis is mainly based on the financial analysis of the company’s value aiming on 

profitability, efficiency and true value of company’s stock. 
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gambling is equal conditions.” Thus by the means of a fair game, the stochastic 

process { } 0t t
P ∞

=
 satisfies the following condition: 

1t t tP P+Ε ⎡ ⎤ =⎣ ⎦F , (1.1) 

where tP  is stock price at time t and is Ft -measurable, 1t tP+Ε ⎡ ⎤⎣ ⎦F  are conditional 

expectations defined on the probabilistic space { }( ), , ,Ω F F Pt , where Ω  is the 

space of market situations, F  is σ -algebra of the subsets of Ω , { }Ft  is the 

usual filtration, { }1 1, ,...,σ −=t t tP P PF , which is also called information set, and P  

is a probability measure on F . Then tomorrow’s price is expected to be equal to 

today’s price given the historical prices as information set. Martingale hypothesis 

implies that the expected return is zero as: 

1 1t t t t tP P r+ +Ε ⎡ ⎤ = + Ε ⎡ ⎤⎣ ⎦ ⎣ ⎦F F , (1.2) 

or if equation (1.1) holds, 

 1 1 0t t t t tP P r+ +Ε ⎡ − ⎤ = Ε ⎡ ⎤ =⎣ ⎦ ⎣ ⎦F F , (1.3) 

where tr  is stock price change. The reader should note that martingale 

hypothesis implies that price changes are uncorrelated at all lags. Increments in 

value (changes in price) are unpredictable and conditional on the information set 

which is fully reflected in prices. Hence any attempt of linear and nonlinear 

forecasting rules is ineffective, as  

( ) ( ), 0t t t jCov f r g r +
⎡ ⎤ =⎣ ⎦ , (1.4) 

where ( ).f and ( ).g  are two arbitrary functions , :f g∀ →\ \ , tr  and t jr +  are 

stock price changes, or returns in two periods for all t  and 0j ≠ . 

In fact, the martingale was considered to be a necessary condition for an efficient 

market. Roberts (1967) considers it to be a weak-form market efficiency.  

Main drawback of the martingale model is that it does not allow a trade-

off between risk and expected return. If the expected return was zero, no one 

would invest in the security. It has been shown that martingale is neither a 

necessary nor a sufficient condition for rational markets6.  

 

 

 

                                          
6 i.e. Leroy (1973) 
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1.2.2  Random Walk model 

 

The martingale model given by (1.1) resp. (1.2) can be rewritten equivalently as  

1t t tP P ε+ = + , (1.5) 

where { }tε  is a martingale difference sequence. In this form, it is nearly identical 

with the random walk model, the forerunner of the theory of efficient capital 

markets. The martingale, however, is less restrictive than the random walk. It 

requires only independence of the conditional expectation of price changes from 

the information available. Random walk model requires, furthermore, 

independence involving the higher conditional moments of the probability 

distribution of price changes. 

 Campbel, Lo and MacKinlay (1997) distinguish between three versions of 

the random walk hypothesis. The simplest one is Random Walk 1 or RW1, the 

independently and identically distributed - iid7 increments in which the dynamics 

of { }tp 8is given by: 

 ( )2
1 , 0,t t t tp pμ ε ε σ−= + + ∼ , (1.6) 

where tε  is an random variable with zero mean, variance 2σ and μ  is the 

expected price change or drift. Conditional mean and variance are linear functions 

of time9, which implies that random walk is nonstationary. We will assert that 

natural logarithm of prices follows random walk with iid increments to avoid the 

problem of limited liability of stock returns. If the { }tP was normally distributed, 

there would always be positive probability of 0tP <  which is unrealistic. 

 Random Walk is thus sufficient but not necessary condition for market 

efficiency in its weak-form. Hence rejecting the null hypothesis H0 that stock 

returns follow random walk does not mean market inefficiency. The second 

version, RW2, also relaxes the identical distribution assumption which allows 

time-varying, unconditional volatility. RW1 is thus a special case of RW2 which 

contains more general price processes and allows for unconditional 

                                          
7 iid will be used from this point as standard notation for independently and identically distributed 

variable 

8 Continuously compounded returns 1t tr p p −= − , where tp  is natural logarithm of price lnt tp P= . 

9 2
0 0 0, .t tp p p t Var p p tμ σΕ ⎡ ⎤ = + ⎡ ⎤ =⎣ ⎦ ⎣ ⎦  
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heteroskedasticity10. RW3 is an even more general version – one most often 

tested in the literature – which relaxes the independence assumption and includes 

price processes with dependent but uncorrelated increments. Lo, MacKinlay 

(1988) exploits simple Random walk tests in detail. We will not describe the tests 

here as the reader can follow the reference if needed. 

Now, when we have discussed the basic idea of stock return predictability, 

we can move on to more sophisticated methods, but before we do so, a short 

conclusion of EHM framework will be carried out. The paradox of efficient markets 

is that if every investor believed a market was efficient, then the market would 

not be efficient because the participants would not want to trade as they would 

not expect the profit. In effect, efficient markets depend on market participants 

who believe the market is inefficient and trade securities in an attempt to 

outperform the market. For deeper analysis, see Grossman, Stiglitz (1980) 

Although market efficiency is not really testable because of joint 

hypothesis11, it provides a basic framework of stock returns prediction. It started 

the discussion, and non-rejecting Random Walk hypothesis implies that there are 

no patterns to be found in the stock returns.  

 

Even we can not test the market efficiency, in reality we find most of the 

markets to be neither perfectly efficient nor completely inefficient. For evidence, 

Cambazoglu (2003), Hellstrom, Holstrom (1998), Lo, MacKinlay (1988), Žikeš 

(2003) and much more researchers found predictable patterns at various world 

stock markets and provided an evidence that tested markets are predictable to 

some extent. From the other point of view, we can say that all markets are 

efficient to a certain extent, some more so than others. “Rather than being an 

issue of black or white, market efficiency is more a matter of shades of gray” 12. 

In markets with substantial impairments of efficiency, more knowledgeable 

investors can outperform less knowledgeable ones. Hence, abnormal returns, 

even if small ones, will necessarily exist to compensate participants for taking 

their risk, even if predictable patterns will not be found. This debate is the 

starting point for predictability models which will be discussed in next chapters. 

 

                                          
10 In recent literature reader can find dozens of empirical evidence that returns are conditional 

heteroskedastic. i.e. Campbel, Lo and MacKinlay (1997) contains the reference 
11 Any test of efficiency must assume an equilibrium model that defines normal returns. Rejecting 

market efficiency implies that market is truly inefficient or an incorrect equilibrium model has been 

assumed. Hence, market efficiency as such can never be rejected, Fama (1991) 
12 Lo, MacKinlay (1988) 
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1.3 Definition of the prediction task 

 

Prediction problem can be formulated in various ways. We will restrict on 

defining the stock returns prediction, as it is the primary concern of the thesis, 

even if the stock prices are not the only financial time-series of the general 

economist’s interest. General prediction can be defined as follows: 

 

Let tP  be a random variable defined on a probability space { }( ), , ,Ω F F Pt , 

where Ω  is space of outcomes, F  is σ -algebra of the subsets of Ω , and P  is a 

probability measure on F  and { }Ft  is the usual filtration. A conditional 

probability 1+⎡ ⎤⎣ ⎦t tP FP  is conditional probability of the set tP  being evaluated with 

the information available in the σ -algebra F . 

 

Now let us assume following economic agent’s utility functions: 

( ) ( )( )ˆ,γ+ + +=t h t h t hu W g P P , (1.7) 

where agent’s utility ( ).u  depends on the variable P  in time +t h , decision 

function ( ).γ  and forecast P̂  with forecasting horizon 1≥h , and w  is an reward 

variable. For illustration, let us set 1=h . At time 1+t , agent’s utility depends on 

the realization of 1+tp , and accuracy of it’s forecast, 1ˆ +tp . Forecasting is defined as 

major factor of a decision rule. 

 

Let ( )ˆ ,θ+ +⎡ ⎤ = =⎣ ⎦Ft h t tt h tE P P h X  be an expectation of +t hP  conditional on 

the information set Ft , where θ ∈Θ  is unknown vector of parameters, where 

kΘ ⊆ \  is compact and observable at time t , tX  is an Ft -measurable vector of 

variables. 

tX  may include −t nP  information, but also some exogenous variables, indicators, 

etc. Thus the reader may note that an optimal forecast from our definition does 

not exclude misspecification or failure to include relevant information in tX , 

which may have crucial impact on the predictions. Under this imperfect setting, 

utility function will be negatively correlated with forecast error which can be 

defined as ˆε ++ += −t ht h t t h tp p . 
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Maximizing utility function requires to find optimal forecast *ˆ
+t hP  and to 

establish optimal decision ( ).γ  based on this forecast. Optimality here can be 

achieved by minimizing expected loss function : +→\ \L : 

 

( )*ˆ arg min , , ,
θ

θ α++
∈Θ

≡ ⎡ ⎤⎣ ⎦Ft h tt h tP E L P X , (1.8) 

were α  is a degree of asymmetry. The reader can find in-depth discussions of 

possible error functions with assumptions in Patton, Timmermann (2004, 2006) 

reference as general definition of Loss function is sufficient for our definition of 

prediction task. Rigorous discussion of prediction task can also be found in 

Hamilton (1994). For illustration, we define just optimal forecast depending on 

loss function which depends only on forecast errors. This form13 will be also used 

further in our tests: 

( ) ( )*ˆ ˆmin min ε++ + +
⎡ ⎤ ⎡ ⎤≡ − =⎣ ⎦ ⎣ ⎦F Ft h t tt h t t h t t h tP E L P P E L . (1.9) 

 

Later in the chapter (2.8) - Statistical Comparison of Predictive Accuracy, we will 

present an optimal forecast under the different loss functions. 

In next sections we will consider classical linear and nonlinear regression 

models as common choices of estimating +⎡ ⎤⎣ ⎦Ft h tE P , through which we will get 

to another possibilities, neural network models 

 

1.4 Linear regression models 

 

Mounting evidence in the literature can be found, that stock prices do not 

follow random walk. Lo, MacKinlay (1988) decisively reject the null hypothesis 

that U.S. stock weekly returns are the random walk process. Žikeš (2003) finds 

that Central European markets also do not follow random walk. Filacek et al. 

(1998) find that daily returns of PSE’s14 main index PX-50 are significantly 

positively autocorrelated. In this subchapter we will introduce basic linear and 

nonlinear regression models, so the principle of the modern forecasting 

techniques can be extended in next chapters by Neural Network models. 

                                          
13 i.e. MSE – mean squared error, MAE – Mean absolute error has this form 
14 Prague Stock Exchange, Czech Republic 
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1.4.1 Classical regression model 

 

When predicting, we usually start with a linear regression model, where a 

given output variable y  is predicted from information on a set x  of observed 

variables. In time series, input variables might include lagged output variable or 

contemporaneous exogenous variables. The model is defined by following 

equation: 

 ,
1

p

t i i t t
i

y xβ ε
=

= +∑ , (1.10) 

 ( )20,t Nε σ∼ , 

where tε  is random disturbance term, 0ε⎡ ⎤ =⎣ ⎦t tE x . { }pβ  are parameters to be 

estimated, while m{ }pβ  represents estimated set of coefficients and m{ }py denotes 

estimated (predicted) output variables. The main goal is to find m{ }pβ to minimize 

the sum of squared differences, or residuals ψ  between the observed y  variable 

and the model-predicted �y variable. There are a various ways and estimation 

methods15 of the problem: 

 

 � �( )
2

2

1 1

T T

t t t
t t

Min y yψ ε
= =

= = −∑ ∑ , (1.11) 

 where   

,
1

p

t i i t t
i

y xβ ε
=

= +∑ , 

 �
,

1

p

i i tt
i

y xβ
=

=∑ , 

 ( )20,t Nε σ∼ . 

 

                                          

15 with different assumptions about distribution of the disturbance term tε , or about the constancy of 

its variance 
2σ , as well as about the independence of the input variable, reader can find these 

methods at any standard econometric textbook, i.e.  Greene (1993) or Baltagi (2002) 
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1.4.2 Autoregressive model 

 

Commonly used linear model which enhances classical regression is an 

autoregressive model: 

 ,
1 1

p q

t i t i j j t t
i j

y y xβ γ ε−
= =

= + +∑ ∑ , (1.12) 

where are ( )20,t Nε σ∼ , and where there are q  exogenous x  variables with 

coefficients jγ , p  lags of the dependent variable y and p q+ coefficients to be 

estimated. In the time-series model this is known as the linear ARX model, since 

the autoregressive components are given by lagged y variables and it 

incorporates exogenous x  variables.  

 

 

1.4.3 The ARIMA (p,1,q) model 

 

Generalization of simple Random Walk Model and Autoregressive Model is 

allowing for serial correlation in the disturbances tε . Autoregressive integrated 

moving average model - ARIMA (p,1,q) - is  the most applied linear model for 

approximation of stock returns processes. It puts together three processes for 

modelling the serial correlation in the disturbances: AR (p), MA (q) and 

integration order term. The processes are as follows. 

AR (p) process includes p lagged values of the returns in the forecasting 

equation for the unconditional residual. An autoregressive model of order p has 

the form: 

 
1

p

t i t i t
i

r rρ ε−
=

= +∑ , (1.13) 

or represented using lag operator L. { }1,..., : −∀ ∈ =n
t t nn p L r r : 

 
1

1
p

i
i t t

i
L rρ ε

=

⎛ ⎞⎛ ⎞
− =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ . (1.14) 

 The second, integration order term corresponds to differencing the values 

being forecast. In this model, the first difference is enough as the stationarity can 

be achieved. Third, MA (q) process uses lagged values of forecast error to 

improve the current forecasts. For the q order it has the form: 
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1

q

t t i t i
i

r ε θ ε −
=

= +∑ , (1.15) 

or  
1

1
q

i
t i t

i

r Lθ ε
=

⎛ ⎞
= +⎜ ⎟
⎝ ⎠

∑ . (1.16) 

Thus ARIMA (p,1,q)16 model can be generally represented by: 

 ( )
1 1

1 1 1
p q

i j
i t j t

i j
L L r Lρ μ θ ε

= =

⎛ ⎞⎛ ⎞
− − = + +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ . (1.17) 

A common way to estimate the ARIMA (p,1,q) was proposed by Box and 

Jenkins (1976). Time series needs to be differenced to achieve stationarity. Then 

the guess of p and q is made by observing autocorrelation and partial correlation 

functions. Nonlinear least squares or Maximum likelihood method is then applied 

to estimate the model, and diagnostic tests are run to see if the guess of p and q 

orders was appropriate. Box-Jenkins methodology is widely used and the reader 

can find the details in Box and Jenkins (1976).  

While choosing p,q as a “let the data speak” process is being attacked by 

researchers because it is a process of guessing, ARIMA model still helps the 

researchers in understanding of behavior of the stock prices. Linear models may 

become of very good use mainly on the markets with long-term trends with only 

small symmetric changes in the variable. However, for the volatile markets, 

nonlinear processes in the returns may come into the researcher’s sight. Thus, 

linear models may fail to capture the turning points, bubbles and unexpected 

moves in the prices. For this reason, we will present nonlinear forecasting 

techniques. 

 

1.5 GARCH models 

 

There are many types of nonlinear functional forms to use as an 

alternative to linear ones. The main approach is the GARCH-type models17. These 

models are based on the main principles of the modern finance – risk which is 

related to an expected stock returns. To measure the risk of an asset, the 

standard deviation of returns from unconditional mean is used. This measure is 

also interpreted as the volatility of a stock returns hence main use of GARCH 

                                          
16 Note that ARIMA (0,1,0) is a random walk which is a special case of this general process. 
17 GARCH stands for generalized autoregressive conditional heteroskedasticity. The model was 

introduced by Engle (1982) who received the Nobel price in 2003 for his work on this model and 

generalized by Bollerslev (1986). 
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models is for volatility prediction. Following describes a general GARCH(r,p) 

model: 

0 1
T

t t tr xβ β ε= + + , (1.18) 

( )20,t tε φ σ≈ , 

2 2 2
0

1 1

n m

t i t i j t j
i j

σ α α ε δ σ− −
= =

= + +∑ ∑ , (1.19) 

where r is rate of return, tε  is normally distributed with zero mean and 

conditional variance 2σ . α ’s and δ ’s represent evolution of conditional variance. 

Condition ( )
( )max ,

1
1

p q

i i
i

α δ
=

+ <∑  is imposed so the unconditional variance is finite, 

whereas its conditional variance evolves over time. 

For the demonstrative purposes we set ,r p  to 1 and present GARCH (1,1) 

model, which is most common in financial time series predictions. 

2 2 2
0 1 1 1 1t t tσ α δ σ α ε− −= + + . (1.20) 

 GARCH-M type model is another useful alternative, while it accounts for 

the possibility that returns are dependent on the volatility. In GARCH-M models, 

the variance of the disturbance term directly affects the mean of the dependent 

variable. Thus it includes volatility in the return equation: 

 2
0 1t t tr β β σ ε= + + , (1.21) 

 2 2 2
0 1 1 1 1t t tσ α α ε δ σ− −= + + . (1.22) 

 

The GARCH-M model is a stochastic recursive system, given the initial 

conditions 2
0σ  and 2

0ε , as well as estimates. Random shock is drawn from the 

normal distribution, hence we can use maximum likelihood estimation. The 

likelihood function L is the joint likelihood of observing { }ty , for 1,...,t T=  and 

has following form: 

�( )2

2 2
1

1 exp
ˆ ˆ2 2πσ σ=

⎡ ⎤−⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

∏
T t t

t t t

y y
L , (1.23) 

� l
0 1β β σ= + tty , (1.24) 

�
t t ty yε = − , (1.25) 

l 2 2 2
0 1 1 1 1σ α δ σ α ε− −= + +t t t . (1.26) 
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The usual method of obtaining the parameter estimates l l l l �
0 1 10 1, , , ,α α β β δ  is 

maximizing he logarithm of the likelihood function wrt. parameters and restriction 

that variance is greater than zero and 0α > , 0δ >  : 

l l l l �{ }
( ) ( ) l( )

�( )
l0 1 10 1

2

, , , , 1 1 1

1ln ln 2 ln
2

T T T t t
tt

t t t t

y y
Max L

α α β β δ
π σ

σ= = =

⎛ ⎞−⎜ ⎟= − + +⎜ ⎟
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ , (1.27) 

where l 2
1,..., ; 0tt T σ∀ = > . 

 

 What is nice about the GARCH approach is that it captures the source of 

nonlinearity. Conditional variance is nonlinear function of past values, variance is 

the function of past prediction errors. Thus the risk factor in the 

forecasting/predicting the dynamics of asset returns is captured well by the 

model. GARCH models are also able to capture well-observed phenomenon in 

stock returns time series, volatility clustering. Periods of high volatility are 

followed by high volatility and the same with periods of low volatility. Thus we 

have a specific set of parameters to be estimated with well-defined meaning, 

interpretation, and rationale. But the model is restrictive, because we are limited 

to these well-defined sets of parameters and distribution, and specific form. 

Possibility for reduction of this restrictiveness is to follow Bollerslev (1986) 

and use his proposed Student’s t-distribution which better captures to financial 

time-series as they are often leptokurtic18 and fat-tailed. Bollerslev and 

Wooldridge (1988) also derive the quasi-maximum likelihood estimation method. 

 

A interested reader should look for the details in the mentioned references as 

our main interest of this thesis is neural network models and we just outline the 

principles of the modern econometric tools for predicting time-series so we can 

compare and link it to the neural network approach in next sections. Even though 

it’s not the main aim of this thesis, it can also serve to some extend as an 

overview of all main methods, linear and nonlinear regression-types and also 

neural network-types. By starting the thesis with this first chapter where a reader 

could find not only the framework for the prediction in form of EHM and Random 

Walk but also the preview of approaches, we can do so. After this brief 

introductory chapter to the problem, we will continue with the neural networks. 

 

                                          
18 Variable is called leptokurtic when the standardized fourth moment, kurtosis, is higher than 3, 

sometimes referred to as  excess kurtosis. This also results in “fatter tails” of the density function.  
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Chapter 2  

 

Neural Networks 
 

Neural Networks learning methods provide a robust approach to 

approximating real-valued, vector-valued, and discrete-valued functions. The 

study of artificial neural networks (ANNs) has been inspired by the observation 

that biological learning systems are built of very complex webs of interconnected 

neurons. ANNs, are analogically built webs of interconnected set of simple units, 

or inputs which may be possible outputs of other units, to produce simple output, 

which may become input in other units, Mitchell (1997). The interested reader is 

recommended to use the reference for further details, as we will put the neural 

networks in use with financial time series, mainly stock returns. By referring to 

“neural networks” we will consider mainly research targeting development of 

systems capable to approximate complex functions efficiently and robustly in the 

manner of the definition (1.3). 

 

The main motivation of neural networks usage in predicting stock returns, 

or other financial time-series, is the same as presented in the first chapter. As 

classical econometric models provide us some insights into the behavior of stock 

returns, we believe that neural network will do better. We believe that the 

learning  process of neural networks will help approximate the learning process of 

agents or investors more efficiently resulting in finding a better understanding of 

stock prices. Contrary to the EMH, several researchers claim the stock market 

exhibit chaos19. Chaos is a nonlinear deterministic process which appears 

random, but can not be easily expressed. With the neural network’s ability to 

                                          
19 Hsieh (1991), Barkoulas, travlos (1998), Peters (1994) 
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learn nonlinear, chaotic systems, it may be possible to outperform traditional 

analysis presented in previous chapters. 

 

McNelis (2005) shows very good results on predicting artificial data and 

chaos process by neural networks and shows how artificial intelligence could shed 

more light on the time-series processes more then econometric tools presented in 

the first chapter. He tests predicting power of the models also on industry data, 

inflation, but the test on stock markets and volatility are missing. In the following 

chapters, we will follow his and other works with empirical research on Central 

European Markets while we believe that emerging markets, in particular, or 

markets with a great innovation and changes, represent great opportunity for the 

use of neural networks for the prediction task. The reasons are intuitive:  

The data are often very noisy either because of thinness of the markets or 

information or discontinuous trading20 gaps. Thus we have to deal with lots of 

asymmetries and nonlinearities which can not be assumed. The other reason is 

that agents in these markets are themselves in process of learning, mainly by 

trial and error. Often they can not assume impact of policy news or legal changes 

to the market simply because they did not see any real examples in their past. 

Thus, information set for the prediction task is very limited. As we will show, 

parameter estimates of neural networks are themselves a result of “learning by 

mistake” and the search process and can be compared to parameters used by 

agents to forecast and make decisions. 

 

In this chapter we will present theoretical framework of neural networks 

used further in the work for empirical modelling. We begin with methodology 

problems, introducing the basic definitions of neural networks, feedforward and 

multilayered feedforward neural networks. On the basis of universal 

approximation theorem, these forms can approximate any continuous real 

function as Hornik, Stinchcombe, and White (1989) show. We show that neural 

network is not black-box instrument by describing transformation functions, 

neurons and defining the system mathematically. Then we follow with crucial 

learning algorithms discussion, as tool for optimalization in terms of error 

minimization. We discuss basic gradient descent search, more sophisticated 

conjugate gradient method, Levenberg-Marquardt method which seems to be 

most efficient. We close the discussion with presenting a stochastic evolutionary 

search and the discussion of the nonlinear estimation problem. 

                                          
20 Often there are many stocks with no or very low volume trades at these markets 
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Finally, we turn into the crucial data preprocessing and testing statistics for 

comparison of the analysis conducted in following chapters. We introduce 

nonlinear Principal Component Analysis as an tool for dealing with curse of 

dimensionality. 

 

After the exhaustive introduction of neural network estimation procedure, 

we close the chapter with attending Black-box criticism discussion and try to 

argue in favor of neural network usage in econometric modelling. 

 

2.1 The methodology problems 

 

Much of the early development and work on neural network analysis has 

been within psychology, neuroscience related to the pattern recognition problems. 

Genetic algorithms used for empirical implementation of neural networks have 

followed similar pattern of development in applied mathematics in optimization of 

dynamic nonlinear and discrete systems, moving into data engineering. 

Thus these systems have been developed in different surroundings that 

econometrical and statistical models which results in confusion in literature, 

mainly from the simple technical and naming conventions. A model is known as 

an architecture, and we train rather than estimate the network architecture. A 

Researcher uses training set and test set of data instead of in-sample and out-of-

sample data, and the confusion should disappear whenever the reader expects 

coefficients instead of weights. 

If we consider the application of neural networks, or Artificial Intelligence 

itself, the gap is almost widening. Broad literature on neural networks is simply 

not relevant to financial professionals or academics. Also mounting publications 

and empirical works on usage of neural networks in finance does not link to 

preceding theoretical financial literature which is probably the reason why the 

most of this literature is not taken seriously by the broader financial and 

economic academic community. As McNelis (2005) remarks: “The appeal of the 

neural network approach lies in the assumption of bounded rationality: when we 

forecast in financial markets, we are forecasting the forecasts of others, or 

approximating the expectations of others.” Thus, market participants are 

continuously learning and adapting their beliefs from the past mistakes. 

The basic is that reactions of market participants are not linear and 

proportionate, but asymmetric and nonlinear to changes in variables. Neural 

networks approximate this behavior in a very intuitive way, while our definition 
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from (1.3) still holds. A Very important point is approximation through the 

learning process. As market agents are continuously learning, the neural network 

is trying to capture the learning process and base on it. The difference between 

Neural Network models and presented econometric models is also that 

researchers are not making hypothesis about the coefficients to be estimated, or 

about functional form of the model. The coefficients, or as mentioned weights, are 

not able to be interpreted. In this manner, the methodology of prediction is 

different while in econometrics one is striving to obtain consistent, accurate, 

unbiased estimates of parameters to be interpreted. 

 

2.2 What is a Neural Network? 

 

 Like linear or nonlinear methods, a neural network relates a set of input 

variables, say, { } , 1,...,ix i k=  to a set of one or more output variables, say, 

{ }, 1,..., *jy j k= . Let us recall the definition of the stock returns prediction 

problem from chapter (1.3). It defines the prediction problem in the very similar 

manner. The only difference between network and other approximation methods 

is, that the approximating function uses one or more so called hidden layers, in 

which the input variables are squashed or transformed by a special function, 

known as logistic or logsigmoid transformation. While this approach may seem 

“esoteric” or maybe “mystical” on at the first glance, the reader will soon see that 

it may be used as a very efficient way to model nonlinear processes. 

 

The reason we turn into neural network is straightforward. It is the goal of 

the prediction problem to find an approach or method that forecasts the data 

best, generated by unknown, nonlinear processes, with as few parameters as 

possible, which is as simple as achievable and as easy to estimate as it can be. 

Even if it seems impossible now, we may be surprised by the findings of next 

chapters. Moreover, it has been shown that “neural networks can approximate 

any function with finitely many discontinuities to arbitrary precision”21. This is 

known as  the universal approximation theorem. 

 

                                          
21 Hornik, Stinchcombe, White (1989) 
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2.2.1 Feedforward Networks 

 

FIGURE 2.1. : Feedforward Neural network 

Structure of the most basic and commonly used neural network in finance 

with one hidden layer22 containing two neurons, three input variables and one 

output is schematically shown in FIGURE 2.1. We can see that in comparison with 

classical linear models, there are two more neurons which process inputs to 

improve the predictions. It should be mentioned here that the connection 

between input variables and neurons, also called input neurons, and connections 

between neurons and output, output neurons are called synapses. 

The reader might note that the simple linear regression model is just a 

special case of the feedforward neural network, namely network with one neuron 

which contains a linear approximation function. The simples example of an 

artificial neural network is the binary threshold model, McCulloch and Pitts 

(1943), in which an output Y can either be zero or one related to I input 

variables. The model may be formalized as follows23: 

1

I

i i
i

Y f Xβ μ
=

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ , (2.1) 

( )
1 0
0 0.

if u
f u

if u
≥⎧

= ⎨ <⎩
 , (2.2) 

where ( )f u  is the activation function, hidden layer which transforms the inputs 

into the neuron, and if the weighted sum of inputs is greater than μ , neuron is 

activated. Now, we can discuss in detail most common functional forms of the 

“mystic” neurons work 

                                          
22 Sometimes referred to as multiperceptron network 
23 We include this simple example here because it is very illustrative connection between classical 

regression models and neural network models and we fell that this connection is often being forgotten 

to explain in the neural networks financial research papers. This results in confusion and refusing of 

this approaches. 
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2.2.2  Transformation functions – logsigmoid, tansig and 

Gaussian 

 

Maybe the most confusion about neural networks comes from the hidden 

layer presence and the function of neurons. They process inputs by forming linear 

combinations of them and then squashing these combinations using the 

logsigmoid function. In this part we will describe these squasher or 

transformation functions, but for the illustrative purposes, we start with the figure 

of a typical logistic function which will transform inputs, say { }, 5,...,5ix i = −  

before transmitting their effects to the output. 
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FIGURE 2.2. : Logsigmoid function 

 

This function reflects the learning behavior of the networks, more precisely, 

“learning by doing”. The function is increasingly steep until the inflection point 

from which it becomes increasingly flat and its slope moves exponentially to zero. 

Nonlinear sigmoid function captures learning process in the formation of 

expectations characterized by bounded rationality. Kuan, White (1994) describes 

it as “tendency of certain types of neurons to be quiescent of modest levels of 

input activity, and to become active only after the input activity passes a certain 

threshold, while beyond this, increases in input activity have little further effect”. 

The feedforward or multilayered perception (MLP) network can be described by 

following equations: 

 

 

1 
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*

, ,0 , ,
1

i

k t k k i i t
i

n xω ω
=

= +∑ , (2.3) 

( )
,, ,

1
1 k tk t k t nN n

e−= Λ =
+

, (2.4) 

*

0 ,
1

k

t k k t
k

y Nγ γ
=

= +∑ , (2.5) 

where ( ),k tnΛ  is the logsigmoid activation function. There is *i  input variables 

{ }x , and *k  neurons. ,k iω  represents coefficient vector or input weights vector. 

Variable ,t kn  is squashed by the logsigmoid function, and becomes a neuron ,t kN  

at time t. Then the set of *k  neurons are combined linearly with the vector of 

coefficients { } , 1,..., *k k kγ =  and forms the final output which is forecast � ty . This 

model is the workhorse of  the neural networks forecasting approach as almost all 

researchers start with this network as the first alternative to the linear models. 

 

An alternative to a logsigmoid activation function is tansig or tanh 

hyperbolic tangent function. The behavior is very similar to the logsigmoid 

function, but it squashes the linear combinations within the wider interval of 

[ ]1,1−  rather then [ ]0,1 . Formalization of the network with tansig squasher 

functions is as follows: 

*

, ,0 , ,
1

i

k t k k i i t
i

n xω ω
=

= +∑ , (2.6) 

( )
, ,

, ,, ,

k t k t

k t k t

n n

k t k t n n
e eN n
e e

−

−

−
= Τ =

+
, (2.7) 

*

0 ,
1

k

t k k t
k

y Nγ γ
=

= +∑ , (2.8) 

where ( ),k tnΤ  is the tansig activation function. 

 

 Another activation function is cumulative Gaussian function, commonly 

referred to as the normal function. FIGURE 2.3 plots this activation function 

against logsigmoid function. 
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FIGURE 2.3: Gaussian function 

 

 The advantage of usage the Gaussian function is that has thinner tails, 

thus it does not respond to some extreme values. It can be observed from the 

figure, that it shows very little or no response to extreme values below -2 and 

above +2, while logsigmoid responds to them much more. Mathematical 

formalization of the neural network using Gaussian activation function can be 

represented by following system: 

 

*

, ,0 , ,
1

i

k t k k i i t
i

n xω ω
=

= +∑ , (2.9) 

( )
, 2

,
1
2

, ,
1

2

k t
k t

n
n

k t k tN n e
π

−

−∞

= Φ = ∫ , (2.10) 

*

0 ,
1

k

t k k t
k

y Nγ γ
=

= +∑ , (2.11) 

where ( ),k tnΦ  is the standard cumulative Gaussian function. 

 

 We described basic functional forms of neural networks with most 

commonly used transformation functions. The reader is now probably asking the 

questions: “OK but, what transformation function should I use?”, or “Are there 

any other transformation functions?”. There are many other possible 

transformation functions in fact. The reason we describe these few is that they 

performed best in our tests and are also used in each of the references used in 

this paper. 
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 The answer to the first question is not as simple as answer to the second 

one. Each transformation function transforms inputs in a different manner. Some 

respond to extreme values, some do not, thus they do not serve equally well in 

approximating the unknown function. Hence, choosing the form of squasher 

function is often up to the researcher and the data used. The best way is to 

perform tests with different transformation functions used in the neurons and use 

the one which performs best. This is one of the main drawbacks of neural 

networks, which will be discussed in further detail at the end of this chapter, 

while it takes time. 

 

 

2.3 Multilayered Feedforward Networks 

 

By making use of two or more hidden layers, we may be able to 

approximate more complex systems. FIGURE 2.4 illustrates neural network with 

two hidden layers, each consisting of two neurons. In the figure we also illustrate 

an example of time series modelling with neural network. Say we have returns 

{ }tx  through time t  and we want to forecast them. Then we simply use inputs 

{ }2 1, ,− −t t tx x x  to produce output{ }1tx + . For generality of the illustration, we denote 

y  as output variable. 

Mathematical representation of the system with *i  input variables, *k  

neurons in one hidden layer, and *l  neurons in the second hidden layer follows: 

 

*

, ,0 , ,
1

ω ω
=

= +∑
i

k t k k i i t
i

n x , (2.12) 

,,
1

1 k tk t nN
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+
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,,
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1 l tl t pP
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+
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t l l t
l
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FIGURE 2.4: Feedforward network with two hidden layers 

 

Adding a second hidden layer increases the number of parameters to be 

estimated and this is basically the cost of complexity which is gained by using 

more hidden layers. Researchers should note that with more parameters not only 

greater training time is a problem, there is a much greater probability that the 

parameter estimates will converge to a local, rather that global optimum. This 

problem is further discussed in chapter (2.5). As shown by Dayhoff and DeLeo 

(2001), simplicity of network brings better results and we will probably manage 

with smaller networks in our tests also: 
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“A general function approximation theorem has been proven for three-layer 

neural networks. This result shows that artificial neural networks with two layers 

of trainable weights are capable of approximating any nonlinear function. This is 

powerful computational property that is robust and has ramifications for many 

different applications of neural networks. Neural networks can approximate a 

multifactor function in such a way that creating the functional form and fitting the 

function are performed at the same time, unlike nonlinear regression in which a 

fit is forced to a pre-chosen function. This capability gives neural networks a 

decided advantage over traditional statistical multivariate regression techniques.” 

 

(Dayhoff and DeLeo(2001, p.1624) 

2.4 Learning algorithms 

 

In order to be able to approximate the target function – in our case stock 

returns, the neural network has to be able to “learn”. The process of learning is 

defined as adjustment of weights using a learning algorithm. We present common 

backpropagation algorithm and two more specific, conjugate gradient algorithm, 

and Levenberg-Marquardt algorithm. These two are presented mainly because 

they provided most impressive results in comparison to other common methods 

as the reader can see in next chapters. 

 

The most common way to train neural network is by learning an algorithm 

called “backpropagation” or “error-backpropagation”. Let us assume following 

error function: 

( ) ( )
*

2

1

1 ˆϖ
=

Ψ = −∑
t

t t
t

y y
T

, (2.17) 

where ˆty is the estimated output variable of the network - or forecast, ty is 

variable being forecasted, or input variable in time { }1,...,∈t T . Then according to 

our definition of prediction task in (1.3), the main goal of the learning process is 

to minimize ( )ϖΨ  - the sum of prediction errors for all training examples. 

Training phase is thus unconstrained nonlinear optimization problem, where the 

goal is to find optimal set of weights of parameters by solving minimization 

problem.  

( ){ }min : nω ωΨ ∈ℜ , (2.18) 

where : nΨ ℜ →ℜ  is continuously differentiable. 
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2.4.1  Stochastic gradient descent backpropagation learning 

algorithm 

 

There are several ways of achieving minimization of the ( )ϖΨ , but 

basically the algorithm is as follows24: 

(i) choose random initial values for the model – weights ϖ  

(ii) calculate the gradient G of the error function ( )ϖΨ with respect 

to each weight 

(iii) adjust the model weights so we move a short distance in the 

direction of the greatest rate of decrease of the error, i.e. in the 

direction of (–G) 

(iv) repeat steps (ii) and (iii) until G is zero and ( )ϖΨ  is 

minimized. 

So we are searching for the gradient ( )G ϖ= ∇Ψ  of function Ψ which is the 

vector of first partial derivatives of the error function ( )ϖΨ with respect to the 

weight vector ϖ  

( ) ( ) ( ) ( )
1 2

, ,...,
n

ϖ ϖ ϖ
ϖ

ϖ ϖ ϖ
∂Ψ ∂Ψ ∂Ψ⎛ ⎞

∇Ψ = ⎜ ⎟∂ ∂ ∂⎝ ⎠
. (2.19) 

Further more, the gradient specifies the direction that produces the steepest 

increase in Ψ . The negative of this vector thus gives us the direction of steepest 

decrease.  

FIGURE 2.5 25 the behavior of ( )ϖΨ with respect to one weight ϖ . In order to 

find minimum, we always have to increase/decrease w in opposite direction to the 

slope, by j jixω ηδΔ = , where ,η∈ℜ but most commonly26 0 0.5η< ≤  is learning 

rate that determines size of steps for the algorithm, the rest is the partial 

derivative of ( )ϖΨ with respect to weights. Thus: 

                                          
24 Schraudolph and Cummins (2002) 
25 Please note that the figure is only schematic and in real neural network we will work with much 

more weights then one. 
26 Note that this is usual interval used by rule of thumb. If η is too small near zero, it may take huge 

time to converge to optimal weights. If η is too big it may happen that it will “jump” from positive to 

negative gradient and optimum will not be found at all. 
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( )
j ji

ji

x ϖω ηδ
ϖ

∂Ψ
Δ = = −

∂
, (2.20) 

and finally the algorithm will find the final weights with minimum the error 

function by 

1
ji ji

t tω ω ω+ ← +Δ . (2.21) 

 

FIGURE 2.5 : Gradient descent 

 

So if we find negative gradient in step (ii) of algorithm, we will increase w in step 

(iii) and vice versa. In this way we will move towards the minimum ( ) 0ϖ∇Ψ =  

by repeating the algorithm in N steps.  

 

Important feature of this algorithm is that is assumes a quadratic error 

function, hence there exist only one minimum. In practice the error function will 

have apart from the global minimum multiple local minima. At this point the 

reader probably knows what will follow – the alert that algorithm can converge to 

local minimum and will not find global one. Other drawbacks of this method are 

that there is a need to specify η and much worse, it’s slow convergence.  
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2.4.2  Conjugate Gradient Learning Algorithm 

 

Besides popular steepest descent algorithm, conjugate gradient algorithm is 

another search method that can be used to minimize the network error function 

( )ϖΨ  in conjugate directions. This method puts into the use orthogonal and 

linearly independent non-zero vectors and in some cases brings better 

convergence results then previous method. 

Definition: :i jTwo vectors d and d are mutually G conjugate if−  

0T
i jd Gd = . (2.22) 

Then to minimize error function ( )0ωΨ  we begin with initializing the parameter 

vector ω  of n elements at any random value 0ω : ( )0 cωΨ = . Then we iterate on 

the weights set ω  until minimum of ( )ωΨ  is found. Error function is represented 

by following second-order Taylor expansion: 

1( )
2

Tc Gω ω ω ωΨ = −∇ + , (2.23) 

where ∇  is gradient of the error function wrt. weights set ω  and G is Hessian of 

the error function, an n n× symmetric and positive definite matrix. Name 

conjugate27 comes from the fact that in this iteration, weights vectors are 

conjugates of Hessian. 

Choosing ( )0 0,1 0,,..., kω ω ω=  as set of k  initial parameters, we search for direction 

0 0d = −∇ . The gradient vector is defined as: 

( ) ( )

( ) ( )

( ) ( )

0,1 1 0, 0,1 0,

0,1 0, 0, 0,1 0,

0

0,1 0, 0,1 0,

,..., ,...,

,..., ,..., ,...,

,..., ,...,

k k

i i k k

i

k k k

k

h
h

h
h

h
h

ω ω ω ω

ω ω ω ω ω

ω ω ω ω

⎛ ⎞Ψ + −Ψ
⎜ ⎟
⎜ ⎟
⎜ ⎟Ψ + −Ψ
⎜ ⎟

∇ = ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟Ψ + + −Ψ
⎜ ⎟⎜ ⎟
⎝ ⎠

#
. (2.24) 

The ih  is set as ( )0,max , iε εω with 610ε −= . Hessian 0G  is matrix of second-order 

partial derivatives of ( )ωΨ wrt. to 0ω and is computed similarly as Jacobian or 

gradient vector: 
                                          
27 Method was originally proposed by Hestens, Stiefel (1952) 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2 2

2
0,1 0,1 0,2 0,1 0,

2 2 2

2
0 0,2 0,1 0,2 0,2 0,

2 2 2

2
0, 0,1 0, 0,2 0,

, ,

, ,

, ,

k

k

k k k

G

ω ω ω
ω ω ω ω ω

ω ω ω
ω ω ω ω ω

ω ω ω
ω ω ω ω ω

⎛ ⎞∂ Ψ ∂ Ψ ∂ Ψ
⎜ ⎟

∂ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ Ψ ∂ Ψ ∂ Ψ⎜ ⎟
⎜ ⎟= ∂ ∂ ∂ ∂ ∂
⎜ ⎟
⎜ ⎟
⎜ ⎟∂ Ψ ∂ Ψ ∂ Ψ⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

"

"

# # % #

…

. (2.25) 

Off-diagonal elements of the matrix will be given by: 

 

( ) ( ) ( )
( ) ( )

2
0,1 0, 0, 0, 0,1 0, 0, 0,

0, 0, 0,1 0, 0, 0, 0,1 0,

,..., , ,..., ,..., ,.., ,...,1
, ,..., , ,..., ,...,

i i j j k i j j k

i j j i i i j k k

h h h

h h h

ω ω ω ω ω ω ω ωω
ω ω ω ω ω ω ω ω

⎡ ⎤Ψ + + −Ψ +∂ Ψ
⎢ ⎥= ×

∂ ∂ ⎢ ⎥−Ψ + −Ψ⎣ ⎦
 (2.26) 

And diagonal elements are given by: 

 

( ) ( ) ( ) ( )
2

0,1 0, 0, 0,1 0, 0,1 0, 0,2 2
0,

1 ,..., ,..., 2 ,..., ,..., ,...,i i k k i i k
i i

h h
h

ω
ω ω ω ω ω ω ω ω

ω
∂ Ψ

⎡ ⎤= × Ψ + − Ψ +Ψ −⎣ ⎦∂
 (2.27) 

We found direction 0d thus we can follow iteration process to solve the 

minimization problem of ( )ωΨ . 

1k k k kdω ω α+ = + , (2.28) 

1 1k k k kd dβ+ += −∇ + , (2.29) 

α  and β  are momentum terms to avoid oscillations. Let 
1

1k
k

μ
β

=
+

. Equation 

(2.29) can be rewritten as follows  

( )1 1
1 (1 )k k kd dμ μ
μ+ += −∇ + −⎡ ⎤⎣ ⎦ , (2.30) 

which allows us to look at the search direction as a convex combination of the 

current steepest descent direction and the direction of last move. The search 

distance of each direction is varied. Value of kα  can be found by line search 

techniques such as Brent’s Algorithm28 so that ( )k k kw dαΨ +  is minimized given 

fixes kω  and kd . 

 

                                          
28 Brent (1973) 
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kβ  is then calculated by following three formulae: 

Hestens and Stiefel’s formula29  
[ ]
[ ]
1 1

1

T
k k k

k T
k k kd

β + +

+

∇ ∇ −∇
=

∇ −∇
. (2.31) 

Polak and Ribiére’s formula30 
[ ]1 1

T
k k k

k T
k k

β + +∇ ∇ −∇
=

∇ ∇
. (2.32) 

Fletcher and Reeve’s formula31 1 1
T
k k

k T
k k

β + +∇ ∇
=

∇ ∇
. (2.33) 

Shanno’s inexact line search32 considers the conjugate method as memoryless 

quasi-Newton method and derives following formula for computing 1kd + : 

1 1 1
T T T T

Tk k k k k k k k
k k k kT T T T

k k k k k k k k

y y p y pd p y
p y p y p y p y+ +

⎡ ⎤⎛ ⎞ ∇ ∇ ∇
= −∇ − + − +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
, (2.34) 

where k k kp dα=  and 1k k ky += ∇ −∇  

Conjugate gradient method finds optimal vector ω  along the current gradient by 

doing the li-search, and converges to the solution faster than steepest gradient. 

Method computes gradient at the new point and projects it onto the subspace 

defined by the complement of the space defined by all previously chosen 

gradients. New direction is orthogonal to all previous search directions. 

 

Before moving to Levenberg-Marquardt algorithm, we will sum up the 

conjugate gradient algorithm, by putting it into few simple steps: 

(i) set k=1, initialize 0ω  

(ii) compute ( )0 0ω∇ = ∇Ψ  

(iii) set 0 0d = −∇  

(iv) compute kα  by line search where ( )arg mink k k kw dαα α= Ψ +⎡ ⎤⎣ ⎦  

(v) update weight vector by 1k k k kdω ω α+ = +  

(vi) if network error ( )ωΨ  is less than a pre-set minimum value of the 

maximum number of iterations has been reached, stop  

else go to next step 

(vii) if 1k n+ > , then 1 1kω ω += , k=1 and go to step (ii)  

                                          
29 Hestens, Stiefel (1952) 
30 Polak (1971) 
31Dai, Yuan (1996) 
32 Shanno (1978) 
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else 1) set k=k+1  

  2) compute ( )1 1k kω+ +∇ = ∇Ψ   

  3) compute ˆkα   

  4) compute new direction 1 1k k k kd dβ+ += −∇ +  

  5) go to step (iv)   

We do not expect from conjugate gradient approach to minimize error function 

better, but we do expect more efficiency while it should provide faster results. 

Next, we introduce last, Levenberg-Marguard algorithm, an we will expect also 

better level of minimization from it. 

 

2.4.3 Levenberg-Marquardt Learning Algorithm 

 

Gradient descent works for simple models, but is too simplistic for more 

complex models. So we may want to use more sophisticated methods to obtain 

better results. The technique invented by Levenberg33 involves blending between 

the introduced steepest gradient and the quadratic approximation. It uses the 

steepest gradient to approach minimum, and then switch to the quadratic 

approximation. We can formalize it as follows. Let λ  be a “blending factor”, 

constant which will determine the mix between the two methods. The update rule 

here is: 

( ) 1
1k k H dω ω λ −
+ = − + Ι , (2.35) 

where againω  is weight vector, H is Hessian matrix of the error function and I is 

identity matrix. Depending on the value of λ  we can approach to following forms. 

With 0λ → , we get 1
1k k H dω ω −
+ = − , which is basically quadratic approximation 

and  with growing λ  we get 1
1

k k dω ω
λ+ = −  which the reader can compare to 

equation (2.21) and find that it is steepest gradient.  

Algorithm adjusts value of λ  according to whether ( )ωΨ  is increasing or 

decreasing as follows: 

(i) do update according to equation (2.35) 

(ii) evaluate the error at the new weight vector 

                                          
33 Levenberg (1944) 
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(iii) if the error has increased as result of the step (i), retract weights to 

previous values and increase λ  by34 10. Then go to (i)  

Else (if the error decreased), accept the weights and decrease λ  by 

factor 10. 

If error is increasing, quadratic approximation is not working well and we 

are far from the minimum. Thus we need to approach simple descent by 

increasing λ  to locate the minimum. Conversely, if we locate the minimum and 

the error is decreasing, approximation is working well. Hence, we expect that we 

are closer to minimum so we try to incline to Hessian by decreasing the λ . 

 Marquardt (1963) improved this method with a clever incorporation of 

estimated local curvature information. His insight was that when λ  is high and 

we are doing essentially gradient descent, we can still benefit from Hessian 

matrix that we estimated. He suggested that we should move further in the 

directions in which the gradient is smaller in order to get around the error valley 

problem. Marquardt replaced identity matrix from equation (2.35) with diagonal 

of Hessian: 

[ ]( ) 1
1k k H diag H dω ω λ

−

+ = − + . (2.36) 

We can see that this method does not require other computations then previous 

methods. All we need is ( )ωΨ  as error function of estimated output and desired 

output, and it’s gradient ( )ω∇Ψ . 

It is important to notice that it is nothing more than a heuristic method. It is 

not optimal for any defined criterion of speed or final error. What is so appealing 

is that it works extremely well in practice. Its only drawback is that it requires 

matrix inversion step, thus becomes much slower than backpropagation or 

conjugate gradient in more complex models. On the other hand, it has a much 

better results as the reader will see in further chapters. 

 

2.5 The Nonlinear Estimation Problem 

 

As we saw in previous subchapters, finding the coefficient values of 

nonlinear models is not that easy job as neural network is highly complex 

nonlinear system. We can hit several locally optimal solutions, but none of these 

                                          
34 Or other significant factor. 10 was originally proposed by Levenberg. 
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can be the best solution in terms of minimizing error between our model 

prediction ŷ  and actual value y .  

In any nonlinear system, we start the estimation with initial conditions as 

we saw in previous chapter. These are meant to be a guess or random variable, 

and we get to the problem of some parameters being guessed better than others. 

This may end in converging to local rather than global optimum and of course to 

best forecast in local neighborhood of initial guess, but not best forecast ahead of 

the “initial area”.  This can be very intuitively illustrated in following FIGURE 2.6 :  

 

 

FIGURE 2.6: Problem of search for local optima 

 

As we can see, initial set weights may rather lie near to a local maximum 

than a minimum, or near a saddle point while our search of minimum of error 

function is using derivatives of error function. Thus we have to recognize also 

curvature around our point by second-derivatives which will provide us better 

insight. If the change of gradient or second-derivative is positive, we know that 

we are near minimum and vice versa for maximum. 

So as we adjust weights by presented algorithms, we can easily get stuck at 

any of the positions from FIGURE 2.6 where derivative is zero or function has a 

flat slope (blue lines on the figure). If we are adjusting weights by too large 

steps, algorithm can easily converge from near-global minimum to maximum or 

other point. If we adjust by too small steps in contrary, the algorithm may get 

stuck in a saddle point for a long time during the training period and may not 

converge to a minimum at all. 

( )ϖΨ  

ω  

saddle point 

global minimum 

local minimum 

local maximum 

global maximum 
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Maybe the reader is asking the question: “but what can we do to avoid this 

problem?” There are several techniques of minimizing the chance of converting to 

“the wrong” optimum. A very intuitive way is re-estimation of whole model, 

another way is stochastic evolutionary search presenting in following subchapter. 

 

2.5.1 Stochastic evolutionary search 

 

Genetic algorithm reduces the likelihood of landing in a local minimum. We 

do not need to approximate Hessian, we start with “population” of p initial 

guesses, { }0,1 0,2 0,, ,..., pω ω ω and update them by genetic selection, breeding, and 

mutation, for many generations, until the best coefficient vector is found. Let us 

have a closer look at this process. 

(i) Population creation   

We start with a population *N  of random vectors ω . Let p  be the 

size of each vector representing the total number of parameters to be 

estimated. Then we create following population: 

1 1 1 1

2 2 2 2

3 3 3 3

1 2 *p p p pi N

ω ω ω ω
ω ω ω ω
ω ω ω ω

ω ω ω ω

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

…
# # # #

. (2.37) 

(ii) Selection  

The next step is the selection of two pairs from population at random, 

with replacement, and evaluation the fitness of them according to sum 

of squared errors. Weights with lower error receive better fitness 

values. Two winning vectors (i,j) with best fitness are then chosen for 

“breeding” 

(iii) Crossover 

now, these two vectors (i,j) will “breed children” meaning they will be 

associated with another pair of vectors C1(i) and C2(j) by one of three 

methods to be chosen randomly with same probability equal to 1/3. 

Shuffle crossover for which random draws from a binomial distribution 

are made and new vectors are swapped or no change is made , 

Arithmetic crossover for which the random value of ( )0,1c∈  is chosen 

and then new vectors are linear combination of old ones: 
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( ) ( ), , , ,1 , 1i p j p i p j pc c c cω ω ω ω+ − − +  or last one, Single-point crossover, 

where integer I is randomly chosen from set [ ]1, 1k − . The vectors are 

then cut at this integer and parameters are swapped. 

(iv) Mutation 

now “children” C1(i) and C2(j) have to mutate in generations 

1,2,..., *G G=  with probability35, say, 0.15 0.33/p G= +�  assigned to 

them. Randomly drawing real numbers ( )1 2, 0,1r r ∈  and random 

number s from a standard normal distribution, mutated weight ,i pω�  is 

given by  

 

1
*

, 2 1

,
1

*
, 2 1

1 0.5

1 0.5

b

b

G
G

i p

i p
G
G

i p

s r if r

s r if r

ω

ω

ω

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎛ ⎞−⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟+ − >

⎜ ⎟⎪ ⎪⎪ ⎝ ⎠ ⎪= ⎨ ⎬
⎛ ⎞⎪ ⎪
⎜ ⎟− − ≤⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

�  , (2.38) 

where G  is the number of generations, *G  is the maximum number 

of generations and b is the degree to which the mutation is 

nonuniform. Usually b=2. Probability of creating new coefficient which 

is far from the current coefficient diminishes as G approaches *G . 

This allows more precise search of weights approaching to a global 

optimum. 

(v) Election tournament  

The last step is “tournament” in which all chosen weights are 

competing for the best fitness criterion. Again, two vectors with the 

best fitness “survive” and pass to next generation. Even if the older 

pair has better fitness, it wins the tournament and the younger one is 

eliminated. 

 

The process is repeated from (i) through (v) for *G  generations. Convergence is 

obtained if we do not see improvement in fitness of the last – optimal weights. 

Unfortunately, literature does not provide us with the optimal value of *G as for 

each problem it will be different. What we can do is to add simple if-then rule of 

no improvement in sum of squared errors, or fitness. If there is no improvement 

seen, the algorithm will stop. 

                                          
35 Probability here is just an example 
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2.5.2  Hybrid learning as a solution? 

 

 One of the main drawbacks of genetic algorithms is its extreme slowness. 

Even for reasonable dimension of weights vector ω , the various combinations 

and permutations of elements that the genetic algorithm might find optimal may 

become very large. In the next sub-chapter we will discuss the course of 

dimensionality problem, but even if we manage to reduce the dimension 

significantly the time taken to converge to a global optimum may be extremely 

long. On the other hand, it has been mathematically proved36, that convergence 

occurs. 

The hybrid approach solves partially the problem of slowness of the 

genetic algorithm. We may run genetic algorithm for a reasonable number of 

generations, say 50 or 100 which will take little time and then use obtained 

vector of weights as initial weights in gradient searching algorithms. 

 

 Problems arise even with usage of the hybrid approach because of the 

nature of neural networks. The Neural network structure can give different results 

with some kind of data, as initial guess may fall in the local optimum trap as we 

saw in previous chapters. We can use repeated estimations for the robustness of 

results. Granger and Jeon (2002) have suggested a simple idea of thick 

modelling. The framework of this idea is to repeatedly estimate a given data set 

with different specifications and then use the mean of the obtained information. 

They mainly use this method for forecasting, thus they find a mean of repeated 

forecasts to be an optimal one. They find this method outperformed simple linear 

models, while it also outperformed individual network results on macroeconomic 

data modelling. 

 

2.6 Preprocessing the data 

 

One of the first steps of research when modelling time series is adjusting, 

scaling the data and removing nonstationarity. These procedures are known as 

data preprocessing and are often crucial for the results. In this subchapter we will 

discuss the problems of preprocessing the data including curse of dimensionality. 

 

                                          
36 See Hartl (1990), or Mitchel(1997) 



39 

2.6.1 Curse of dimensionality 

 

One of the most important steps in designing a neural network is the 

choice of appropriate data pre- and post-processing. The first problem arrives 

with choosing the variables that may explain our observations best. In forecasting 

stock market prices, there may be many variables that may have influence on the 

price. If we use all possible candidates as a regressors in the model, we will face 

the curse of dimensionality, first mentioned by Bellman (1961). It simply means 

that the number of sample sizes needed to estimate a model with a given degree 

of accuracy grows exponentially with the number of variables in the model. 

Thus, intuitive assumption – “more data will provide greater insight into 

the process” does not necessarily hold and reduction of dimensionality is often 

necessary for good, simple predictive model, as it is crucial for the model to 

choose variables that influence the observations most. In other words, to reduce 

the number of regressors to a manageable subset if we want to have sufficient 

degree of freedom for any meaningful conclusions. 

 

2.6.2 Principal Component Analysis 

 

Principal component analysis (PCA) is basically an approach to reducing a 

large set of variables into a smaller subset – reduction of dimensionality while 

preserving as much information contained in the data as possible. PCA identifies 

linear combinations of data that explain most of the variation of the original data. 

For N vectors, N linearly independent combinations will explain total variation of 

the data. However, what if only two or three linear combinations, or principal 

components explains most of the variation of the total data set? We can then 

significantly reduce the dimension of the model. This should be done with caution 

because it can happen that we reduce important information away. 

 

2.6.2.1 Karhunen-Loeve Transformation 

The goal of principal component analysis is to map d-dimensional vectors 

ix to m-dimensional vectors iz with m d< . We can express vector x  as linear 

combination of a set of d orthonormal vectors iu  

1

d

i i
i

x z u
=

=∑ , (2.39) 
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where the vectors iu satisfy the orthonormality relationship 

T
i j iju u δ= , (2.40) 

where ijδ  is the Kronecker delta37. Explicitly, coefficients iz  can be found as 

T
i iz u x= . (2.41) 

So the dimensionality reduction works as follows: :m m d>  coefficients iz  are 

replaced by constant, say ib  so vector x  can be best approximated as follows: 

1 1

m d

i i i i
i i m

x z u bu
= = +

= +∑ ∑� . (2.42) 

So again we are solving problem of minimization of sum of squares errors of data 

set of N samples, which is defined as: 

( ) ( )22
,

1 1 1

1 1
2 2

N N d

n n n j i
n n i m

u x x z b
= = = +

Ψ = − = −∑ ∑ ∑� . (2.43) 

If we set 0
ib

∂Ψ =∂ , then  

1

1 N
n T

i i i
n

b z u x
N =

= =∑ , (2.44) 

with x being arithmetic mean and using (2.41) we can rewrite Ψ as: 

( ) ( )( )2

1 1 1

1 1
2 2

d N d
T T
i n i i

i m n i m

u u x x u u
= + = = +

Ψ = − =∑ ∑ ∑ ∑ . (2.45) 

Where ( )( )
1

n
T

n n
i

x x x x
=

= − −∑ ∑ is covariance matrix of ix . As shown in Bishop 

(1996), minimum can be found when the basis vector satisfies condition 

i i iu uλ=∑  so they are eigenvectors of the covariance matrix. Note that since 

covariance matrix is real and symmetric, its eigenvectors can be orthonormal as 

assumed. Thus value of error in minimum is equal to: 

( )min
1

1 d

i
i m

u
N

λ
= +

Ψ = ∑ , (2.46) 

and minimum can be found by choosing d m−  smallest eigenvalues and their 

corresponding eigenvectors iu - or principal components - to discard. 

 

                                          
37 Kronecker delta is a function of two variables, usually integers, which is 1 if they are equal, and 0 

otherwise. 1,2 0δ = , but 3,3 1δ = . It can be formalized as follows: ,

1
0

δ
=⎧

= ⎨ ≠⎩
i j

if i j
if i j

. 
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2.6.3 Nonlinear Principal Components using neural networks 

 

Neural networks can also be used for reduction of dimensionality problem. 

Network is trained to map the d -dimensional input space onto itself over a m -

dimensional ( )m d< hidden layers. Let us consider four input variable network 

encoded by two logsigmoid functions under neurons n  in a dimensionality 

reduction mapping as shown in FIGURE 2.7.  

 

 

FIGURE 2.7: Neural Principal components 

 

First two N-neurons for dimensionality reduction mapping are linearly 

combined to form H neural principal components. Then these are decoded by 

another logsigmoid Q-neurons for reconstruction mapping which are linearly 

combined to generate inputs as the output layer. Thus inputs 1,..., nx x  are 

mapped into themselves. Letting X be a matrix with k  columns, there is j  

neurons and p , model can be formalizes by following system of equations: 

,
1

K

j j k k
k

n Xα
=

=∑ , 

( )
1

1 expj
j

N
n

=
+ −

, 

,
1

J

p p j j
j

H Nβ
=

=∑ , 

,
1

P

j j p p
p

q Hγ
=

=∑ , 

x3 

x2 

x1 

N11 

N21 

Inputs - x Inputs - x 

Q21 

Q22 H - units 

x4 

x3 

x2 

x1 

x4 
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( )
1

1 expj
j

Q
q

=
+ −

, 

,
1

ˆ
J

k k j j
j

X Qδ
=

=∑ . (2.47) 

And naturally, this system of equation can be optimized by solving minimization 

of sum of squared errors problem ( ){ }min : nx xΨ ∈ℜ where ( )Ψ x  is a loss 

function.  

McNellis(2005) shows that nonlinear principal component analysis 

outperforms linear one in much better accuracy. The main drawback is again the 

time needed to find the optimum. 

 

2.6.4 Stationarity: Dickey—Fuller Test 

 

Most of the time series considered in this thesis are time dependent and 

before starting to work with them, we need to difference the data to gain 

covariance stationarity time series. Series is said to be (weakly or covariance) 

stationary if the first and second moments38 are constant through time. 

The most commonly used test for stationarity is one proposed by Dickey 

and Fuller (1979). For a given series { }ty : 

1
1

k

t t i t i t
i

y y yρ α ε− −
=

Δ = + Δ +∑ , (2.48) 

where 1t t ty y y −Δ = − , ρ , iα  are coefficients to be estimated, and tε  is a random 

disturbance term with ( ) 0tE ε =  and ( )2 2
tE ε σ= . Under the null hypothesis, 

0ρ = . From equation (2.48) we can see that if this holds, ty  at any time will be 

equal to 1ty −  plus/minus effects of the remaining terms. Thus long-run expected 

value of the series is uncertain if 1t ty y −=  and  ( ) ( ) 0t tE y E ε= = . Series with 

0ρ =  are called nonstationary, or a unit root process.  

If there is some persistence in the model, with ρ  falling in the interval ( )1,0− , 

the relevant regression changes to: 

( ) 1
1

1
k

t t i t i t
i

y y yρ α ε− −
=

= + + Δ +∑ . (2.49) 

                                          
38 First moment - mean, second moment – variances and covariances 
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In the long run it is still valid that 0t iy −Δ =  for ,...,i i k= . But long-run mean 

reduces to the following, with ( )* 1ρ ρ= + : 

( )1 *t ty ρ ε− = . (2.50) 

Then, expected value of ty  is ( ) ( )
( )1 *

t
t

EE y ε
ρ= − . 

For stationarity, it is necessary that coefficient ρ  is significantly less than zero. 

Dickey and Fuller tests are modified, one-sided t-tests of hypothesis 0ρ <  in a 

linear regression and allow presence of constant and trend terms in the 

regressions. 

 Most of the time financial series are nonstationary themselves and needs 

to be first-differenced to achieve stationarity. Logarithmic first differencing 

usually helps and it is nothing else then transforming the financial series into the 

returns: 

( ) ( )1ln lnt t tr P P−Δ = − , (2.51) 

where tr  is return of the series, tP is series itself. After transforming the series we 

should use proposed Dickey-Fuller test39 to assure that our testing series are 

stationary. 

 

2.6.5  Data scaling 

 

Sometimes we use data with very high or low numbers, or outliers which 

may cause a computer to assign zero to values being minimizes. Sometimes we 

want to test differently scaled data, i.e. if we want to test effects of interest rates 

changes on the market, or sometimes our data simply contains too many zero 

values which cause errors in the estimation process. For all of these cases, it 

might be crucial to scale the data right after we gained its stationarity. 

The reader should also note that using i.e. logsigmoid functions for 

estimation might cause that large value will be simply assigned40 1 and low 

values 0. Then it is very likely that we might loose information. Thus there may 

be a need in transforming the data. The most simple is linear scaling function to 

range (0,1) or(-1,1). It uses maximum and minimum values of the series x . 

Following equations represent scaling to intervals (0,1) and (-1,1) respectively: 

                                          
39 Or an alternative to it 
40 For illustration see FIGURE 2.2. : Logsigmoid function, p. 19 
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( )
( ) ( )

*
,*

,

min
max min

i t i
i t

i i

x x
x

x x
−

=
−

, (2.52) 

( )
( ) ( )

*
,*

,

min
2. 1

max min
i t i

i t
i i

x x
x

x x
−

= −
−

. (2.53) 

 There are also nonlinear methods of scaling data which transforms 

series ix  say to iz  i.e. in following way. Firstly we standardize a series, and then 

use nonlinear transformation: 

( )
1*

1 exp
x

z
=

+ −
, (2.54) 

x

x xz
σ
−

= . (2.55) 

 Of course it is often very hard to say which of the transformation should 

be used. It depends only on the results obtained, so researcher is left with trial – 

error method. Luckily for us, most of the financial series does not need scaling 

while first differencing most of the times help us to “keep” data in the narrow 

ranges. In other words, how many times we see 1 representing 100% return in 

two consequent time periods tx  and 1tx + ? On the other hand, we should always 

keep in mind this possibility of data pre-processing. 

 

 

2.7 Evaluation of estimated models 

 

Until now we presented complex procedure of estimation with neural 

networks. In this section we will briefly present a few criteria which will help us 

with interpreting the results. We will work with in-sample criteria, or training 

period results interpretation which is in fact evaluation for information on how 

well the estimated data fits our modeled data. We will see that model which 

explains most of the variation of the training data may turn to be inapplicable for 

forecasting purposes, or better said out-of-sample data which model “did not see 

before”. They are also called testing data or out-of-sample criteria which will be 

most important for us in the testing part. 

 

So the framework of empirical testing is the following: After preprocessing 

the data we divide it into 2 or 3 samples – training, cross-validation and testing 

sets. The Neural network will be estimated using the training data and optimal 
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weights will be found at this stage. Then the weights are put to cross-validation 

data and might be slightly adapted to changes if we find that in-sample criteria 

deteriorated. Just after that, the last set of data is put to test. Coefficients 

obtained from training will be used to perform with new data which had no impact 

on calculating the coefficients, which is the most important part. The reader 

should also be aware of the proportion of training to testing data set. In most of 

the studies they cut 20-25% for testing purposes, but it can be crucial for our 

results to do this with patience. Imagine we want to model AAA stock returns and 

15.01.2002 there had been huge reforms at the company leading to consistently 

higher than expected profits. This would also have impact on returns of our AAA 

Company and if we train network on the data until 15.01.2002 and try to test 

them further on, we may be extremely disappointed. Our model will know just 

pattern from the pre-reform period. Hence according to changes, also pattern of 

returns changed after the date and our model will not be capable to deal with it. 

 

2.7.1  Normality 

 

It is a common practice that residuals are assumed to come from a Gaussian 

or normal distribution in econometric modelling. Assumption may be needed for 

efficiency, and we often do not release it also in neural network modelling. Well-

known test, Jarque-Bera (1980) statistics, starts from the assumption that a 

normal distribution has zero third moment - skewness41 S  and fourths moment - 

kurtosis42 K  of 3 and measures the difference from the normal distribution.. 

Given the residual vector ε̂ , the Jarque-Bera statistics is formalized as follows: 

( ) ( )2
2 3ˆ

6 4
KN kJB Sε

⎛ ⎞−−
= +⎜ ⎟

⎜ ⎟
⎝ ⎠

. (2.56) 

                                          
41 Skewness is a measure of asymmetry of the distribution of the series around the mean. We 

compute it as 

3

1

1
ˆ

N
i

i

y yS
N σ=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ where σ̂  is estimator of the standard deviation. Positive 

skewness means long right tail, negative skewness implies long left tail. 
42 Kurtosis measures the peakedness or flatness of the distribution of the series. We compute is as 

follows: 

4

1

1
ˆ

N
i

i

y yK
N σ=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑ . If kurtosis exceeds 3, the distribution is peaked, said to be 

leptokurtic and if it’s less than 3 it is flat – platykurtic relative to normal distribution. 
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Under the null hypothesis of a normal distribution, the Jarque-Bera statistics is 

distributed as ( )2 2χ . Reported probability is probability, that Jarque-Bera 

statistic exceeds in absolute value the observed value under the null hypothesis. 

Thus i.e. JB=4.32 (p<0.039523) tells us that we reject the null hypothesis of 

normal distribution at the 5% significance level but not at the 1% significance 

level. 

 

2.7.2 Goodness of fit 

 

R-squared coefficient (multiple correlation coefficient) is probably the most 

commonly used measure of overall goodness of fit of a model. It can be simply 

interpreted as the fraction of variance of the dependent variable explained by the 

independent variables. Value of statistics fall into the ( )0,1  interval43 while if it’s 

0,we can assume that model fits the data no better that simple mean of 

dependent variable if it’s 1, model explains the variance perfectly. Statistics is 

represented by: 

( )

( )

2

2 1

2

1

ˆ
T

t t
t
T

t t
t

y y
R

y y

=

=

−
=

−

∑

∑
. (2.57) 

One problem with using 2R  as a measure of goodness of fit is that it will never 

decrease as we add regressors. As an extreme case, we can obtain 2 1R =  if we 

include as many independent regressors as there are sample observations. Thus 

we adjusted 2R  measure is used, 2R  or 2adjR  which penalizes 2R  for addition of 

regressors which do not contribute to the explanatory power of the model. It can 

be computed as follows: 

( )2 2 11 1 TR R
T k
−

= − −
−

. (2.58) 

and is naturally never larger then 2R  In all our tests, if we refer to 2R , we refer 

to adjusted statistics. 

 

                                          
43 Please note that for number of reasons this coefficient can be also negative in standard econometric 

modelling. For example if regression does not have an intercept or constant, if it contains restrictions, 

or if the model is two-stage least squares or ARCH. 
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2.7.3  Schwarz Information Criterion 

 

One way to modify the 2R  statistic is to make use of Schwarz (1978) 

information criterion which corrects the performance of a model for the number of 

parameters, k , it uses. The statistic is used simply to prefer model with lowest 

value.  

( ) ( )2

1

ˆ ln
ln

T
t t

t

y y k T
SC

T T=

⎛ ⎞−
= +⎜ ⎟

⎜ ⎟
⎝ ⎠
∑ . (2.59) 

Alternatively, Akaike or Hannah-Quinn statistics may be used which punishes a 

given model by factor of 2 /k T  or ( )( )ln ln /k T T⎡ ⎤⎣ ⎦  respectively. Schwarz 

criterion punishes model more than others by factor of ( )( )ln /k T T . 

 

2.7.4  Q-Statistics 

 

Besides having properties of constancy of variances, assumption of 

normality of residuals, serial independence is next step of evaluating whether 

there is some information content in residuals. If model is well-specified, 

residuals should not contain any pattern in their first and second moments. Thus 

we need to test for serial independence and homoskedasticity, or constancy of 

variance.  

If the autocorrelation is absent, residuals are unpredictable from past 

data. The autocorrelation function is defined by the following equation, for 

different lag lengths m : 

( ) 1

2

1

ˆ ˆ
ˆ

ˆ

T

t t m
t m

m T

t
t

ε ε
ρ ε

ε

−
= +

=

=
∑

∑
. (2.60) 

Following statistics proposed by Ljung and Box (1978) is than used for examining 

the joint significance of the first M residual autocorrelations, with asymptotic Chi-

squared distribution with M degrees of freedom ( )2 Mχ : 

( ) ( ) ( )
( )

2

1

ˆ
2

M
m

m
Q M T T

T m
ρ ε

=

= +
−∑ . (2.61) 
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2.7.5  Root Mean Squared Error Statistic 

 

The most common statistic for evaluating out-of-sample fitness under 

quadratic loss function is the root mean squared statistic derived from Mean 

squared error: 

( )2

1

1 ˆ
T

t t
t

RMSE y y
T =

= −∑ , (2.62) 

where T is number of observations. Normalized Mean Squared Error is also used 

and is given by: 

( )

( )

2

1

2

1

ˆ
T

t t
t
T

t t
t

y y
NMSE

y y

=

=

−
=

−

∑

∑
. (2.63) 

Please note that NMSE can also be expressed by 21 R− . See equation  (2.57). 

 

 

2.8 Statistical Comparison of Predictive Accuracy 

 

The key question in forecasting is measurement of accuracy of different 

forecasts, as we are interested in the model producing most accurate forecasts. 

As we will compare performance of various econometric models and neural 

network models, we have to consider statistical methods for comparing the 

results so we are able to identify if neural network models help us in producing 

more accurate results or not. This needs to be done on out-of-sample model 

valuation. 

Let us consider two h-step forecasts, { }
1

ˆ + =

T
i
t h t t

p  and { }
1

ˆ + =

T
j

t h t t
p , of the time 

series { } 1+ =

T
t h t

p  with forecast errors of { }
1

ε + =

T
i
t h t t

 and { }
1

ε + =

T
j

t h t t
. To choose model 

with significantly lower prediction error, thus better accuracy, we wish to compare 

the expected loss associated with both forecasts. Of course this will depend on 

the chosen loss function as defined in (1.3). We will restrict on the loss function 

dependent on the forecast error here, ( )ε +t h hL , and we will try to find optimal h-

step prediction: 

( )*ˆ arg min ε+ +
⎡ ⎤≡ ⎣ ⎦Ftt h t t h tP E L  (2.64) 
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Thus we will test the null hypothesis of equal forecast accuracy for two 

forecasts against the alternative hypothesis of unequal forecast accuracy: 

 

( ) ( )0 : 0ε ε+ +
⎡ ⎤− =⎣ ⎦

i j
t h t t h tH E L L , (2.65) 

( ) ( )1 : 0ε ε+ +
⎡ ⎤− ≠⎣ ⎦

i j
t h t t h tH E L L , (2.66) 

where ( )ε +t h tL  is positive loss function and ( ) ( )ε ε+ +−i j
t h t t h tL L is the loss 

differential. 

 

In the testing of the null hypothesis, the choice of the loss function is 

needed. In the next subchapter, we will present quadratic loss function, when we 

basically chose model j , if ( ) ( )2 2
ε ε+ +<j i

t h t t h t , mean absolute loss function, when 

we choose model j  if ε ε+ +<j i
t h t t h t , and also asymmetric loss functions, when we 

are more concerned about positive errors than negative, or vice-versa. 

 

2.8.1  Optimal forecast under different loss functions 

 

Quadratic loss function – under the quadratic loss function, we can define 

optimal h-step forecast as follows: 

( )2
*ˆ ˆarg min ++ +

⎡ ⎤≡ −⎢ ⎥⎣ ⎦
Ft h tt h t t h tP E p p , (2.67) 

where the prediction is conditional expectation ˆ
+ +⎡ ⎤ =⎣ ⎦Ft h t t h tE P P  on information 

set F . Thus considering two forecasts { }
1

ˆ + =

T
i
t h t t

p  and { }
1

ˆ + =

T
j

t h t t
p , we will choose 

forecast { }
1

ˆ + =

T
j

t h t t
p if it satisfies ( ) ( )2 2

ˆ ˆ+ ++ +
⎡ ⎤ ⎡ ⎤− < −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

j i
t h t ht h t t h tE p p E p p   

Quadratic loss function is the most popular in the literature, it is monotonically 

increasing, symmetric, homogenous of degree 2 and differentiable everywhere. 

 

Mean absolute loss function – under the mean absolute loss function, the 

optimal h-step forecast will be: 

( )*ˆ ˆarg min ++ +
⎡ ⎤≡ −⎢ ⎥⎣ ⎦

Ft h tt h t t h tP E p p , (2.68) 
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where loss function ( ) ˆε ++ += −t ht h t t h tL p p  is monotonically increasing, symmetric, 

homogenous and differentiable everywhere except 0ε + =t h t . 

 

Asymmetric loss functions - sometimes the researcher is more concerned 

about positive errors ( )ˆ 0+ +− >t h t h tp p , than about negative errors 

( )ˆ 0+ +− <t h t h tp p  as they may be more costly. Two well known asymmetric loss 

functions are linear exponential loss function – Linex, and linear-linear loss 

function – Lin-Lin: 

 

Linex loss function – under the linear exponential loss function, the optimal h-step 

forecast will be: 

( )( ) ( )( )*ˆ ˆ ˆarg min exp 1+ ++ + +
⎡ ⎤≡ − + − −⎢ ⎥⎣ ⎦

Ft h t h tt h t t h t t h tP E a p p a p p ,  (2.69) 

for 0≠a . Function is asymmetric as for 0>a  it is almost linear to the left of the 

y-axis, and almost exponential to the right, and vice versa for 0<a .For this loss 

function, we will try to find the { }
1

ˆ + =

T
j

t h t t
p  which will satisfy following condition: 

( )( ) ( )( )
( )( ) ( )( )

ˆ ˆexp 1

ˆ ˆexp 1

+ ++ +

+ ++ +

⎡ ⎤− + − −⎢ ⎥⎣ ⎦
⎡ ⎤< − + − −⎢ ⎥⎣ ⎦

j j
t h t ht h t t h t

i i
t h t ht h t t h t

E a p p a p p

E a p p a p p
,   0≠a . 

 

Piecewise asymmetric loss functions 

 

( ) ( )
( )

1

2

; 0
; , ,

; 0

ε ρ ε
ε ρ

ε ρ ε

+ +

+

+ +

⎧ >⎪= ⎨
<⎪⎩

t h t t h t

t h t

t h t t h t

aL
L a b

bL
         , , 0ρ >a b , (2.70) 

 

where typically ( ) ( )1 2; ;
ρ

ε ρ ε ρ ε+ + += =t h t t h t t h tL L . Special cases are: 1ρ = : Lin-

Lin loss function and  2ρ = : Quad-quad loss function, both non-differentiable at 

zero, but continuous, and asymmetric for ≠a b  
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2.8.2  Diebold-Mariano Test 

 

The most important question is, how can we determine, if the out-of-

sample fit of one model is significantly better than the out-of-sample fit of 

another model. Diebold and Mariano (1995) have proposed a test for the null 

hypothesis of equal predictive ability, against the alternative of non equal 

predictive ability. For two nonnested 44 models, let the { }
1

ε + =

T
i
t h t t

 and { }
1

ε + =

T
j

t h t t
be 

the h-step ahead prediction errors. Under the assumption that errors are strictly 

stationary, the null hypothesis of equal predictive accuracy is specified as 

( ) ( )0 : 0ε ε+ +
⎡ ⎤− =⎣ ⎦

i j
t h t t h tH E L L , and ( ) ( )1 : 0ε ε+ +

⎡ ⎤− ≠⎣ ⎦
i j
t h t t h tH E L L . The statistic is 

based on loss differential, 

( ) ( )ε ε+ += −i j
t t h t t h td L L , (2.71) 

is following: 

( ) ( )
( )

( )1

1

1

1

0,1
1 ˆ1

τ

τ

τ γ τ

=

−

=− −

=
⎧ ⎫⎪ ⎪
⎨ ⎬
⎪ ⎪⎩ ⎭

∑

∑
∼

T

t a
t

T

T

d
TDM N

T S T

, (2.72) 

where ( ) ( )( )
1

1ˆ τ
τ

γ τ −
= +

= − −∑
T

t t
t

d d d d
T

 and { }1 ( )
τ

S T  is the lag window, and 

( )S T  is the truncation lag. The statistics is based on the idea that for large 

samples the mean loss differential, which is the numerator in (2.72), is 

approximately normally distributed with mean μ  and variance ( )2 0π df . In the 

denominator of (2.72), there is an consistent estimate of ( )2 0π df , which is 

weighted sum of the available sample autocovariances. For further details please 

see Diebold, Mariano (1995). 

Thus we will test if the competing neural network model with out-of-sample 

prediction errors { }
1

ε + =

T
j

t h t t
, is significantly better than a benchmark model with 

prediction errors{ }
1

ε + =

T
i
t h t t

. The τDM statistics is approximately normally 

distributed under the null hypothesis of no significant differences in predictive 

accuracy of the models. Thus if the neural network’s predictive errors will be 

                                          
44 neither one is a special case of the other 
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significantly lower than for example ARIMA(p,I,q), the τDM should be below the 

critical value of -1.96 at the 5% critical level. Thus we will report the statistics 

and the p-values for it. 

 

2.9 Economic significance tests 

 

In the final analysis, the criteria will rest on the question: “how does the 

results of a neural network lend themselves to interpretations that make 

economical sense and give us better information for decision making?”. 

Let 1 1
κ κ
+ +⎡ ⎤≡ ⎣ ⎦Ft t tz E r  be the expected return on an optimal portfolio κ  for 

period 1+t , and 1+tr  the rate of return on a risk-free asset at 1+t , whose value is 

known at time t . For this study, portfolio κ  will always consist of an asset being 

predicted. Simple asset allocation strategy is formed45: 

1 1
1

1
0 ,

κ

θ + +
+

⎧ >
= ⎨
⎩

t t
t

if z r
otherwise

 (2.73) 

where 1θ +t  is the fraction of asset invested in the portfolio κ . So we will invest to 

an asset being predicted if the expected return is greater that a risk-free return, 

and vice versa. Thus realized return on this trading strategy 1+tx  will be 

( )1 1 1 11κθ θ+ + + += + −t t t t tx r r . 

 

2.9.1 The Henriksson-Merton measure 

 

Henriksson and Merton (1981) proposed a non-parametric measure to 

evaluate the performance of the trading strategy described above. Let 1p  denote 

the probability of a correct forecast in an “down” market and 2p  be the 

probability of a correct forecast in an “up” market: 

 

1 Pr 0 ,κθ⎡ ⎤= = ≤⎣ ⎦t t tp ob r r  

2 Pr 1 .κθ⎡ ⎤= = >⎣ ⎦t t tp ob r r  

                                          
45 See Henriksson and Merton (1981), Lo and MacKinlay (1997). 
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1 2+p p  is a sufficient statistic for assessing the predictions46. A sufficient 

condition for forecast to have a positive economic value is 1 2 1+ >p p , while the 

null hypothesis of no predictability can be formed as: 

 

0 1 2: 1,+ =H p p  

against 

1 1 2: 1.+ >H p p  (2.74) 

Under the null hypothesis, 1n  - number of successful predictions in a “down” 

market has hypergeometric distribution that can be asymptotically approximated 

by normal distribution: 

( )
( )

1 1 21
1 2,

1
⎛ ⎞−
⎜ ⎟⎜ ⎟−⎝ ⎠
∼
a n N N N nnNn

N N N
, (2.75) 

where 1 2= +N N N  is total number of observations with 1N  observations where 

κ ≤t tr r , 1 2= +n n n  is total number of predictions that κ ≤t tr r , while 1n  is number 

of successful predictions, given κ ≤t tr r , and 2n  number of unsuccessful 

predictions. Thus null hypothesis can be tested with this statistics by referring 1n  

to the critical values of normal distribution. 

 

2.9.2  The Break-Even Transaction Costs 

 

Another direct measure of the economic significance of stock return 

predictability can be found in Lo and MacKinlay (1997). Basically, they measure 

break-even transaction costs equating total return on an active market-timing 

trading strategy with the total return on a passive investment. The end-of-period 

value of a dollar investment over the entire period can be defined as: 

 

( )1 ,κ= +P
T rW r  

( ) ( )( )1 1 1 ,κθ θ= + + − +A
T t t t tW r r  

where A,P are active and passive. If we switch between these two portfolios k 

times, the one-way transaction costs (100 x c) can be found from equation: 

 

                                          
46 Merton (1981) 
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( )1= − kP A
T TW W c , 

hence 

1/

1
⎛ ⎞

= − ⎜ ⎟
⎝ ⎠

kP
T

A
T

Wc
W

. (2.76) 

 

(100 x c) are implied transaction costs and if we compare them with the real-

world transaction costs, we will get a measure of economic significance of stock 

return predictability. 

 

2.9.3 Pesaran and Timmerman non-parametric market timing 

 

In financial time series one may be often interested more in the sign of the 

stock return predictions rather than the exact value. If we have good sign 

predicting model, we can use it for construction of simple signals. If the model 

predicts positive change, buy signal would be created, if negative change, sell 

signal would be created. Furthermore, if the predicted sign is the same as for the 

previous period, hold signal would be created.  

Such statistics was formalized by Pesaran and Timmerman (1992) and is 

based on the null hypothesis that a given model has no economic value in 

forecasting the direction. The statistics is defined as follows: 

 

( ) ( )
( )0,1

var var
−

=
−

∼
aSR SRIPT N

SR SRI
, (2.77) 

 

where SR is success ratio computed as an weighted average of 

{ }ˆ1 . 0+ += >h t h t hI p p , SRI is estimate of the probability of correctly predicting the 

direction of change assuming independence between the actual and the predicted 

directions, ( )( )ˆ ˆ1 1= − − −SRI DD D D , where D  and D̂  are weighted averages of 

an { }1 0+= >actual
h t hI p  and { }ˆ1 0+= >predicted

h t hI p  respectively. 

 Thus the PT  statistics is approximately distributed as standard normal, 

under the null hypothesis that the signs of the forecasts and the signs of actual 

variables are independent. Hence, if we will have a model with a very good 

predictive accuracy, forecasted and actual signs will be statistically dependent, 

and the forecasting model will have economic significance. 
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2.10 Black-box criticism 

 

The growth in popularity of neural networks in recent years has led some 

researchers to make partial judgments in favor or against these models. In this 

section, we will review a few of these claims and discuss the black-box criticism. 

Let us start with few statements: 

 

(i) Networks do not require the type of distributional assumptions used in 

econometrics 

(ii) Networks are intelligent systems that learn 

(iii) The early stopping procedure requires arbitrary decisions by the 

researcher 

 

Some researchers, such as Aiken and Bsat (1999), claim that neural 

networks are not constrained by the distributional assumptions used in other 

statistical methods. However, as demonstrated by Sarle (1998), neural networks 

involve exactly the same type of distributional assumptions as other statistical 

methods. For more than a century, statisticians have studied the properties of 

various estimators and have identified the conditions under which these 

estimators are efficient, i.e. when they yield consistent unbiased estimates with a 

minimal variance. They discovered, for example, that efficient results are 

obtained when the errors are normally distributed with zero mean, are 

uncorrelated with each other, and have a constant variance throughout the 

sample. By rigorously identifying these optimality conditions, statisticians have 

been able to assess the consequences of the violation of these conditions. Since 

many neural networks are equivalent to statistical methods, they require the 

exact same conditions to attain an optimal performance. This implies, among 

others, that the residuals of a neural network should be subjected to the same 

diagnostic tests that are applied to the residuals of a linear regression model. 

Researchers who ignore these optimality conditions and proceed to estimate their 

network weights will obtain sub-optimal estimates. Most empirical studies 

involving neural networks do not pay attention to these optimality conditions.  

 

Researchers also tend to ignore issues of stationarity when building their 

network. A prudent researcher should verify that all variables in the network are 

stationary before experimenting with different architectures. In fact, level 

variables that are trend stationary but that are not bounded could also pose 
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problems for the network. Since a hidden unit produces a value that is bounded, 

the use of input variables that grow continuously over time could eventually lead 

the hidden units to reach their maximal or minimal value. The contribution of 

each hidden unit to the network's output (which is given by the value of the 

hidden unit multiplied by the weight connecting it to the output unit) would then 

remain constant, even if the boundless input continues to grow over time. This 

would result in a deterioration of forecasting accuracy for subsequent periods. 

Similar problems would arise when attempting to forecast a level variable that 

grows continuously over time. Hence, even trend stationary level variables should 

be transformed so that they do not grow continuously over time (e.g. by using 

the first difference, the growth rate, the ratio to GDP, etc.) 

 

Also when implementing the early stopping procedure, the researcher must 

make a certain number of arbitrary decisions that can have a significant bearing 

on the estimation results. First, the researcher must divide the sample into 

training, validation, and test sets. A commonly used "rule of thumb" consists in 

retaining 25 percent of the sample for the validation set and test set and with the 

remainder being allocated to the training set. However, this guideline does not 

have any theoretical or empirical foundations as results vary depending on data 

used. In addition, the researcher must decide which observations to include in 

each set. Some researchers assemble their validation set from the most recent 

observations in their time series, while others randomly select observations from 

the entire sample. Once again, there is no objective rule to this effect. 

This criticism should not be overemphasized since a researcher can estimate 

the network using a different division of the data into the various sets and thus 

assess the sensitivity of the results to this allotment. Moreover, it is important to 

remember that econometricians make similar arbitrary decisions when they 

withhold observations from their sample in order to make out-of-sample 

forecasts. Econometricians using time-series data typically withhold an arbitrary 

number of observations from the end of their sample, since they are interested in 

assessing the model's capacity to forecast the future. To the extent that 

researchers in the neural network field assemble their validation and test sets 

from the last observations of the sample, they will be consistent with standard 

econometric practice. 

 

The beauty of neural networks is that they can model behavior of agents 

without in the process of learning without giving them the model according to 

which they can change their behavior. A nice example is the Black-Scholes option 
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pricing model47 which was found to approximate behavior of agents in the 

markets who are searching for the arbitrage opportunity. Nowadays, the model is 

used for options pricing and in fact, agents adjusted their decisions to it. 

Hutchinson, J.M., A.W. Lo and T. Poggio (1994) shown that neural networks can 

learn Black-Scholes very quickly. The reader can use this reference to learn more 

about this research. In the last chapter, we will use the neural network to price a 

warrant on Czech security and compare it to Black-Scholes pricing. And this is the 

example which shows us that neural networks has great potential in 

approximating of behavior of agents without “knowing” the model first. Neural 

network is able to find the price of the option even more efficiently than Black-

Scholes, without using it, just by process of learning. Thus, even if philosophical 

question, black-box criticism can be easily turned down by this argumentation 

while neural networks perform in very efficient way of learning. Just as economic 

agents are in learning process. 

 

2.11 Concluding remarks 

 

We discussed the process of modelling series by neural networks in this 

chapter in depth so we can move further to test the theory on real data as “Gray 

is the theory, green is the life” 48.We Defined neural networks, discussed learning 

processes of finding optimal solutions and formalized it, we also discussed 

preprocessing data methods and closed the chapter with defining estimation 

criteria for our modelling. So we are ready to put the theory to test in next 

chapter. 

We saw that when facing the task of estimating a model we have a large 

number of choices at all stages of the modelling process. We can assign different 

weights to in-sample and out-of-sample performance. We also have to decide e.g. 

whether to take logarithms and first-difference the data, deseasonalize or scale 

them, what type of network specification to use, which diagnostics should have 

more weight for and so on. 

Most of these questions generally take care of themselves in the process of 

modelling. In general, we want to find out and compare the performance to linear 

models, we use the same data preprocessing and lags as we would use in linear 

models. Thus sometimes, linear models can help us in choosing the input 

                                          
47 Black and Scholes (1973), Merton (1973) 
48 Mephistopheles words from Goethe’s tragedy Faust, Erster Teil, Studierzimmer. 
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variables of the network by estimating in-sample performance of it. Of course if 

we have linear model which is poorly specified it will not be hard for network to 

outperform it. Also in-sample performance of the network in comparison to well-

specified linear model should be better. Real test of performance is on out-of-

samples. After the inputs specifications, we start with simplest networks and 

search algorithms moving to more complex ones. Always we compare the 

performance by estimation criteria and if these do not improve by more complex 

methods, we should stick to the simpler ones. Commonly with more variables and 

more complexity we can have better feeling of explaining the variance of data, 

but we may also end up with disappointment when test the model on out-of-

samples. Generally, we should not loose the parsimony as parsimonious models 

often outperform the more complex ones. 

So the reader can see that it is a very complex process, we can say “state of 

the art” when researcher can influence the process in many ways and can directly 

improve the results by choosing different optimalization algorithms, or 

transformation functions in neurons. This is also one of the main drawbacks put 

to a criticism of neural networks – slowness of the estimation process. But as we 

will see time investment may bring some fruit. 
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Chapter 3  

 

Application to Central-European Stock 

Market returns modelling 
 

In this chapter, we will use the presented theory for modelling49 of the 

Central-European stock markets with emphasis on the prediction task defined in 

1.3. We believe that the emerging markets represent the best ground for the use 

of neural network models. The data are very often much noisier because the 

markets are very thin and also due to the speed with which the news spread 

among the market agents. Thus our assumption is that neural network should be 

able to help uncover the process. 

As the motivation for the good modelling results of emerging markets the 

reader may be interested in following research that has been carried recently. 

Almost all results are very impressive. Nygren (2004) examines the predictability 

of Swedish stock exchange, Mohan, Jha, Laha, and Dutta (2005) examines neural 

networks predictive power on Bombay stock exchange, Cambazoglu (2003) finds 

impressive patterns on Turkish stock exchange. Finally, Yao, Tan, and Poh (1999) 

study Kuala Lumpur Stock Exchange with some impressive results. 

Encouraged with previous research, we move to test the power of neural 

networks in Central-European Markets against linear methods discussed in the 

first chapter. Outline of this chapter is as follows: firstly we will use artificial 

Mackey-Glass time series for testing as these are not constrained with the sample 

                                          
49 Please note that all tests were carried out using Eviews 4.1 and Neuro Solutions 5.0 software – 

product that provide environment for neural networks modelling, and development of any learning 

procedures. Free 60–day, fully functional evaluation copy can be ordered at 

http://www.neurosolutions.com/  also with MATLAB or EXCELL extensions 
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length and should prove the ability of networks to discover and learn the pattern 

of series almost perfectly. Then we will model returns of Central European Stock 

indices daily and weekly, namely of Prague, Warsaw and Budapest stock 

exchanges which we believe describe the corresponding stock markets well. For 

comparison and more complex forecasting model development we will analyze 

also index of Deutche Boerse which is believed to be most liquid in continental 

Europe. 

Finally, on the basis of cointegration analysis we will develop a robust 

forecasting model when the indices will be predicted among each others lags, as 

there has been recent studies of European Stock market cointegration – see Žikeš 

(2003) – who found European markets to be co integrated. 

 

 

3.1 Example of a Mackey-glass artificial series 

 

To show the power of neural network approach relative to autoregressive 

linear models, we start with simple example of artificial data modelling50. Very 

good motivation for use of these data is that there is no size-of-the-sample limits! 

The data are artificial which means that they are produced by model, and thus we 

know that there exist functional form. According to general approximation 

theorem, neural network should be able to learn the system by which the data 

are generated.  For this purposes, we use Mackey-Glass51 time series produced 

by a following stochastic time-delay difference system:  

 

( ) ( )
( )101

x tdx x t
dt x t

α γ
β

γ

−
= +

+ −
, (3.1) 

 

where ( )x t  is the value of the time series at the time t . This system is chaotic 

for 16.8γ > . We use the value of 30, and ,α β  values of 0.2 and -0.1 

respectively. The data are scaled to (-1,1) interval: 

                                          
50 Reader is convinced to use the McNelis (2005) reference for more examples on artificial data 

modelling. 
51 Mackey and Glass (1977) 
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FIGURE 3.1: Mackey-Glass chaotic time series 

 

Firstly, we reject the null hypothesis of normality with help of Jarque-Bera test 

statistic being equal to 86.3 at 1% significance level52. The value of test statistics 

of Augmented Dickey-fuller test exceeds the critical values so we can reject the 

null hypothesis of a unit root. Thus series are stationary. We find strong 

autocorrelation in the data, but we try first with simple regression - ty  being 

explained by 1ty − , 2ty −  and 3ty − . Autocorrelation still remains strong in residuals 

even after estimating ARMA (p,q) model. We find that ARMA(2,2) best fits the 

data, but we still can not reject the null hypothesis of serial independence of 

residuals. ARCH-LM test strongly suggests the presence of heteroskedastic 

residuals, but we found that even GARCH(1,1) model did not help. 

 

Table 1: Estimation results: Mackey-Glass chaotic time-series 

Statistics  data Autoregression ARMA(2,2) NN 
adjR^2   0.8 0,84 0.99 
Q-stats   165* 155*  
Schwarz criterion  -0,234583 -0,431651 -7.6489 
ARCH-LM   80.729* 50,39*  
Dickey-Fuller -7.289867*    
Jarque-Bera  86.73115*    
Out-of-sample results 
RMSE 0.212 0.1916 0,0503969 
NMSE 0.162 0.132 0,0100132 
  AR vs. NN ARMA vs. NN  
DM(0)  -14.88* -14.11*  
DM(1)  -17.86* -14.42*  
DM(2)  -14.33* -12.26*  
DM(3)  -16.53* -13.39 *  

*1% significance level, DM statistics are comparing NN models versus benchmark 

linear models. 

                                          
52 For the distributions of time-series and all other results of tests see Appendix A 
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The in-sample performance of the models is quite good. Classical 

regression, ARMA(2,2) explains 80% and 84% of the variance in data 

respectively. Feedforward Neural network with one layer and 3 neurons with 

logsigmoid function and Levenberg-Marquardt optimization was chosen as an 

alternative to linear models.  As we can observe from results, it explains 99% of 

an in-sample data. Schwarz information criterion is much better also. Results are 

very good as for linear models and network, but real test will be out-of-sample 

data testing53. 
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ARMA (2,2)
Neural Network Error

FIGURE 3.2: Out-of-sample prediction error comparison 

For out-of-sample, we use Diebold – Mariano (chapter 2.8.2)  to compare 

simple autoregression and ARMA (2,2) with neural network errors. DM statistics 

strongly rejects the null of no significant differences in predictive accuracy at 1% 

significance levels for all tested lags. Neural network also managed to explain 

98% of the data. Errors can be compared in figure (3.2).  

Of course we were testing artificial data thus data which were “created” and 

obviously must contain pattern. One would expect that if the data are artificial, 

good predicting model should recognize the pattern and use it for powerful 

predictions. As we see, linear models managed to uncover the pattern of artificial 

data well (ARMA little better than simple regression), but still neural model was 

much better in this task, when it predicted with better accuracy much more 

significantly than other models. We chose this example to show power of neural 

networks and their ability to learn the pattern. Clearly, if the underlying data 

were generated by a stochastic process, networks will be preferred over other 

tested models. Thus we showed that the general approximation theorem is valid, 

and we will see how the models will perform on the real data in next sections, or 

maybe better said, if the data are generated by any process which is to be 

uncovered or not. 
                                          
53 We divided 20% of observations for real-time forecasting. 
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3.2 European Stock markets 

 

3.2.1 Data description 

 

In the prediction task, we focus on sample of 1566 daily returns54 from 

January 2000 until April 2006 and 382 weekly returns from January 1999 until 

April 2006 of value-weighted indices PX-50, WIG, BUX and DAX55. All the data 

were downloaded and regularly uploaded from Bloomberg during the research. 

Monthly returns were omitted because the sample size very small even for neural 

network. The descriptive statistics of the series is summarized in the following 

table. 

Table 2: The descriptive statistics 

 Daily (1564 observations) Weekly (381 observations) 
 BUX DAX PX-50 WIG BUX DAX PX-50 WIG 
 Mean 0,00067 -0,00005 0,00075 0,00056 0,00293 0,00337 0,00028 0,00329
 Median 0,00049 0,00045 0,00081 0,00047 0,00240 0,00525 0,00332 0,00507
 Maximum 0,06004 0,07553 0,04179 0,05593 0,09569 0,08719 0,12887 0,11501
 Minimum -0,07433 -0,08875 -0,06000 -0,08468 -0,13579 -0,09876 -0,13919 -0,18100
 Std, Dev, 0,01410 0,01690 0,01248 0,01281 0,02967 0,02748 0,03383 0,03402
 Skewness -0,14797 -0,01262 -0,27616 -0,12427 -0,20928 -0,23586 -0,17928 -0,40852
 Kurtosis 4,88697 5,61569 4,38258 5,54571 4,61303 3,69753 4,27986 5,35253
 Jarque-Bera 237,74* 445,90* 144,45* 426,35* 44,09* 11,26* 28,05* 98,46*

*Significant at the 1% level. 

 

Jarque-Bera test statistics tells us that all indices for daily and weekly 

returns deviate from normal distribution. This is no surprise to us because 

financial time series are well known to be leptokurtic, but we will have a closer 

look to an distribution to learn more about the shape of it. We will report 

histogram and non-parametric Epanechnikov kernel density estimator – which 

has the form of ( ) ( ) ( )23 1 14= − ≤K u u I u  - for all series. The bandwidth h was 

selected according Silverman’s rule of thumb, ( )1/50.9 min , /1.34−=h kN s R . See 

Silverman (1986, equation 3.31). 

                                          

54 To achieve stationarity all the data are first difference of log series 1ln lnt t tr P P −= −  

55 PX-50 – Prague Stock Exchange, WIG – Warsaw Stock Exchange, BUX – Budapest Stock Exchange 

and DAX – Deutche Boerse 
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Kernel density estimate (orange)                 Normal distribution (brown) 
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            FIGURE 3.3: Histograms and Kernel density functions compared to normal distribution 
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Distributions of central European stock markets are in line with the 

developed stock market distributions. They are leptokurtic as expected which 

means that they are said to have heavy or fat tails. This may be attributed to 

conditional heteroskedasticity, so it is important to notice this before estimation. 

 

3.2.2 Empirical results – daily returns 

 

We start with modelling the daily returns of each index with ARIMA 

estimation. Augmented Dickey-Fuller statistics exceed the critical values on 1% 

significant level, thus we can reject the null of presence of unit root and state that 

all tested series are stationary. PX50 seems to follow ARIMA (1,0,1) best. BUX 

returns seems to be explained well by ARIMA(2,0,2), WIG and DAX does not 

contain AR and MA errors thus the random walk hypothesis can not be rejected 

for them. Ljung-Box Q statistics shows us the presence of conditional 

heteroskedasticity in the residuals from ARIMA models. So we will try to model it 

by GARCH(1,1) model as it turns out that this model rules not only with its 

parsimony, but also performance with these series. We find these ARIMA-GARCH 

models to be most appropriately specified. ARIMA(1,0,1)-GARCH(1,1) for PX50, 

ARIMA(2,0,2)-GARCH(1,1) for BUX, and GARCH(1,1) for DAX and WIG returns. 

According to results in Table 3 we can see that null hypothesis of no serial 

correlation can be clearly rejected with PX50 model and also with BUX model. 

Thus these models do not explain all of the variance and should be used with 

caution for forecasting prediction task. We will use them only as the 

representatives of linear modelling against the neural networks, because we did 

not find any better specification models for the data. This might be explained by 

use of daily stock returns which are autocorrelated due to the effect of 

nonsynchronous trading56. Thus in next sections the use of weekly data should 

improve performance of these models. 

Table 4: In-sample performance on daily returns 

 PX50 BUX WIG DAX 
 linear neural linear neural linear neural linear neural
Adj R-squared 0.004888 0,19 0.021550 0,11 0.0019618 0,09 0.024190 0,16
Schwarz criterion -6.020920 -9,283 -5.732452 -8,58 -6.002524 -8,61 -5.715768 -6,5
Ljung-box Q(4) 8,96* 3,8** 7,7  3,31 
Ljung-box Q(8) 13,312** 5,98 10,48  7,18 
Ljung-box Q(12) 16,42** 9,775 13,82  13,481 

*,**,*** significance on 1%, 5% and 10% levels 

                                          
56 For more details of this issue see Campbel, Lo, MacKinlay (1997) 
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Table 5: Out-of sample performance on daily returns 

 PX50 BUX WIG DAX 
 linear neural Linear neural linear neural linear neural 
RMSE 0,0199 0,00966 0.0154 0.149 0.012 0.011 0.086 0.08
NMSE 1,003 0,965 0.999 0.981 1.012 0.99 1.007 1.012
D-M(0) -1.1 (0.14) -0.59 (0.25) -0.98 (0.16) -1.72 (0.04) 
D-M(1) -0.91 (0.18) -0.82 (0.2) -1.09 (0.13) -1.78 (0.036) 
D-M(2) -0.83 (0.21) -0.79 (0.22) -1.2 (0.11) -2.02 (0.022) 
D-M(3) -0.71 (0.24) -0.78 (0.21) -1.16 (0.13) -1.72 (0.04) 
H-M 1 (0.00) 1.08 (0.00) 1.01 (0.02) 1.02 (0.00) 1 (0.00) 1 (0.1) 1 (0.00) 1.03 (0.15)
P-T 51%(0.2) 56% (0.07) 53% (0.12) 54% (0.02) 54% (0.5) 54% (0.3) 62% (0.4) 47% (0.13
TC 0.002% 1.2% 0.31% 1.1% 0.002% 0.2% 0.03% 0.3%

D-M: Diebold-Mariano statistic (p-values), H-M: Henriksson – Merton statistic, P-T: Pessaran-

Timmerman (SR with p-value), TC – total costs 

 

In comparison to modern econometric tools, we will model stock returns 

using presented neural network methodology. Simple Feedforward Time-Delayed 

structure of network will be used in testing with 1 hidden layer, and Levenberg-

Marquardt algorithm. Inputs were used 3 lagged variables mapped into 3 neurons 

as we found it provided best results. From results obtained, we can see that there 

is very poor pattern to be learned from our data. It seems that although indices 

returns are predictable to some extend, it is very small. Neural networks perform 

a little better with explaining the in-sample data. 2R  increases from 0.4% 

achieved by linear model to 19% achieved by neural net with PX50 index, and 

similarly with other indices as shown in Table 5. Schwarz criterion also favors to 

neural networks.  

But real test of out-of-samples does not make very big difference between 

usage of linear and neural network models. We withheld 20% of the data as a 

rule of thumb for out-of-sample testing. As to the Diebold Mariano test, we can 

not reject the null hypothesis of equal predictive accuracy of linear and neural 

network models for all tested series, except DAX. Thus neural network model 

does not seem to have significantly different errors for the tested daily returns. 

Economic significance of predictions differs. For all linear models, we can not 

reject the null hypothesis of no predictability with Henriksson-Merton statistic57 

and neither Pessaran-Timmerman. Thus linear models have no economic value 

and should not be used for real predictions. Even implied transaction costs are on 

very low level. Situation is little bit different with neural network models. With 

PX50 and BUX data, we can reject the null of no predictability, while H-M is 

significant at 1% level for both data sets. P-T is significant at 10% level for PX50, 

and BUX also, which means that the null hypothesis of independence of actual 

                                          
57 we use PRIBOR as risk-free rate, and it will be used also in following tests 
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signs and forecasted signs can be rejected at 10% significance level. Implied 

transaction costs are higher than real world transaction costs. Thus even if neural 

networks could not beat the linear models with statistically significant lower 

errors, they seem to have economic value at least for two tested series. 

 

 Although we can gain some predictive edge with daily European Stock 

returns, time-series does not seem to explain themselves very well. It may be 

caused by autocorrelation which we could not remove, but as to the power of 

approximation ability of neural networks, we think the tested daily returns can 

simply be unpredictable, or producing not significant predictions. In the following 

section we will see if the weekly data will bring us better results and we will be 

able to gain some more predictive edge using neural network models. 

 

3.2.3 Empirical results – weekly returns 

Again we start with the very similar approach with weekly returns. ADF 

test confirms stationarity of the data, thus we can proceed to Box-Jenkins 

methodology. PX-50 follows ARIMA (1,0,0). Note that this result is interesting, 

because the weekly data contains MA errors no more. Other weekly returns are 

best explained with the same models as daily ones. After the observation of Q 

statistics we add GARCH(1,1) to model heteroskedasticity in the residuals and we 

end with  ARIMA(1,0,0)-GARCH(1,1) for PX50, ARIMA(2,0,2)-GARCH(1,1) for 

BUX, and GARCH(1,1) for DAX and WIG returns. It is interesting that the null 

hypothesis of no serial correlation can not be rejected at 1%, 5% and even 10% 

significance levels. Thus models seems to explain most of the variance in the data 

and thus can be used for predicting. 

Feedforward Time-delayed neural network  architecture with 1 hidden 

layer, 3 inputs (lagged variables), logsigmoid squasher function and Levenberg-

Marquardt algorithm is put to test. From obtained results we can see that in-

sample improvement by the neural network seems to be really significant as to 

the explanatory power and Schwarz criteria.  

Table 6: in-sample performance on weekly returns 

 PX50 BUX WIG DAX 
 linear neural linear neural linear neural linear neural 
Adj R-squared 0,018 0,48 0,014 0,15 -0,00056 0,28 -0,00447 0,34 
Schwarz criterion -4,3765 -9,456 -3,95 -11,17 -4,25 -7,2966 -4,12 6,87 
Ljung-box Q(4) 0,1034 1,445 7,07 3,236  
Ljung-box Q(8) 5,942 2,2489 16,331*** 6,28  
Ljung-box Q(12) 8,087 7,6128 19,147*** 10,814  

*,**,*** significance on 1%, 5% and 10% levels 
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Table 7: Out-of sample performance on weekly returns 

 PX50 BUX WIG DAX 
 linear neural Linear neural linear neural linear neural 
RMSE 0,0206 0,01915 0.0342 0.015 0.025 0.019 0.022 0.02
NMSE 0,9806 0.978 0.993 0.987 1.03 0.97 1.029 0.99
D-M(0) -2.01 (0.022) -1.78 (0.0375) -0.65 (0.25) -0.67 (0.25) 
D-M(1) -2.03 (0.021) -1.89 (0.029) -0.62 (0.26) -0.54 (0.29) 
D-M(2) -1.85 (0.031) -1.98 (0.023) -0.68 (0.24) -0.48 (0.31) 
D-M(3) -1.94 (0.025) -1.8 (0.035) -0.8 (0.21) -0.51 (0.29) 
H-M 1.07 (0.04) 1.09 (0.00) 0.9 (0.02) 1.01 (0.05) 1 (0.2) 1.1 (0.00) 1 (0.00) 1.2 (0.06)
P-T 58% (0.25) 60% (0.09) 58%(0.2) 60%(0.12) 0.55%(0.15) 58% (0.09) 55% (0.3) 58% (0.07)
TC 0.4% 0.8% -0.6% 0.1% 0.01% 1% 0.03% 0.7%

D-M: Diebold-Mariano statistic (p-values), H-M: Henriksson – Merton statistic, P-T: Pessaran-

Timmerman (SR with p-value), TC – total costs 

  

 Let us turn to more interesting out-of-sample forecasts. Diebold-Mariano 

tells us that neural networks have significantly lower error compared to linear 

models with PX50 and BUX, as null hypothesis of equal predictive accuracy can be 

rejected at 5% significance level for all lags. For other two tested series, WIG and 

DAX, the null of equal predictive accuracy can not be rejected, thus for these 

data, the models performs statistically similar. As to the economic significance of 

forecasts, we reject the null hypothesis of no predictability using H-M for PX50 

and WIG series at 1% significance levels, and for DAX at 10% significance level. 

According to P-T, the neural networks has also significant sign predictions, as the 

null hypothesis of independence of signs between predicted series and actual 

ones can be rejected at 10% significance levels. Implied transaction costs are 

quite low, but slightly higher than those of real world58. Models did not perform 

well only with BUX series, where we can not reject neither the null hypothesis of 

no predictability, nor the null of signs independence. 

 

From preceding tests we can conclude that there is a predictive edge in the 

European-stock markets.  Neural networks seem to explain the time series a little 

better than classical approach. When facing the prediction task, the results are 

also improved. We can say that with significant chance of 3:2 next week’s return 

can be predicted with use of raw price data with neural network. We use these 

results as the starting point for development of more robust model in next 

subchapter. While it is clear that one can gain abnormal returns using presented 

methods, we will try to propose different model which will use not only the lagged 

                                          
58 we found real-world transaction costs for an 10.000 EUR investment in Czech Republic to be cca. 

0.05% in average. 
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variables of the time series itself, but also other variables to gain more 

explanatory power and robust results even on daily returns. 

 

 

3.3 PX-50: Gaining the predictive edge 

 

In previous sections we found that the European Stock markets  contain 

predictable components, but use of the models with lagged data does not seem to 

provide us with strong results59 on daily data. On the weekly data models 

performed significantly better in two cases, and we managed to gain economic 

significance almost for all tested series. In this chapter we will continue with 

different approach. We will try to find empirical relationship between the 

European Stock Markets and if we manage to find any, we will use it to build a 

model which would bring us deeper understanding of the PX-50 stock market 

returns. In this part, we will use the same daily data as described in previous 

section60. 

 

3.3.1 Cointegration of BUX, WIG, DAX and PX-50 markets 

 

Our first hypothesis is that PX50, DAX, BUX and WIG are co-moving and 

thus the returns of these markets can be used to bring more light into their 

patterns and to predict each other. Žikeš (2003) provided us with results of 

Johansen multivariate cointegration analysis and found that all markets are 

influenced by at least one lagged variable of neighbor markets. Instead of 

conducting the same research and receiving the same results we will try to use 

his results in our modelling. Let us firstly examine very illustrative figure FIGURE 

3.4 where we plot daily returns of all indices normalized to interval (0,1). 

                                          
59 The results are not that bad though. Reader should keep in mind that if we can predict future 

returns with 55%-60% accuracy we have “3/2 : 1” ratio of winning to loosing trades. If we manage to 

predict returns with 70% accuracy it is actually excellent result as we have a “7/3 : 1” ratio of winning 

to loosing trades and we can consistently earn abnormal returns from the market. 
60 We just remind that for all of the tests we divide the tested sample into 70% in-sample, 10% cross-

section and 20% out-of-sample for neural nets, and 80% : 20% for regressions. 
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FIGURE 3.4: Daily price of BUX, DAX, WIG, PX-50 scaled to (0,1) 

 

From the figure it is clear that the Czech, Hungarian and Polish markets are 

moving together, German market was falling much faster in the period of 2002 – 

2003 and in the middle of the year 2003 it joined other markets but 

underperformed them. From this period we can see that the markets are co-

moving. With empirical rigorous background of Žikeš’s analysis, we can use this 

information for the PX50 stock market returns prediction. 

First of all, we conduct a PCA analysis to find which vectors influence 

market returns most. We will conduct classical regression PCA analysis and also 

nonlinear neural network PCA described in section (2.6.3) for all four indices. 

logsigmoid squasher function and Levenberg-Marquardt optimalization 

mechanism will be used. The results are in following table: 

 

Table 8: Results of PCA 

 PX50 BUX WIG DAX 
 classical neural classical neural classical neural classical neural 
Adj R-squared 0,281 0,31 0,352 0,4 0,323 0,34 0,184 0,24 
Schwarz criterion -6,36 -9,13 -6,2 -9,13 -6,47 -9,25 -5,42 -8,2 
Ljung-box Q(4) 10,98**  20,2*  8,58***  17,23*  
Ljung-box Q(8) 13,241  30,058*  9,91  55,03*  
Ljung-box Q(12) 15,232  33,97*  14,69  59,95*  

1 PX50 returns are being explained by BUX, WIG and DAX with coefficients 0.276*,  0.243* and 0.076* resp. 
2 BUX returns are being explained by PX50, WIG and DAX with coefficients 0.322*,  0.376* and 0.117* resp. 
3 WIG returns are being explained by PX50, BUX, and DAX with coefficients 0.2189*,  0.290* and 0.1075* resp. 
4 DAX returns are being explained by PX50, BUX and WIG with coefficients 0.191*,  0.258* and 0.30* resp. 
*,**,*** significance levels of 1%, 5% and 10% resp. 
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Thus we can see that really all markets are influencing each other and are 

moving in tight range. Thus we may try to use lags of PX-50, BUX and WIG for 

explaining their variance and follow the analysis from previous chapters. The 

reader noticed that DAX coefficients are smallest thus DAX surprisingly does not 

have such big influence on the three market indices. They explain themselves 

best and this information can be used also for their prediction in following text.  

Not so surprisingly, DAX is not explained well with PX-50, BUX and WIG 

returns. This is caused mainly by the fact that half of the tested period the DAX 

was moving faster against remaining markets. If we divide the sets to 2 subsets 

of pre-2003 and after-2003 we would find much better results in the second 

period. But this is obvious from the FIGURE 3.4 so we will leave this part as an 

exercise for interested readers as we will provide the division to the sub-periods 

in next out-of sample forecasting tests. Thus for now the results are clear and we 

will move further to use them for real forecasting of the market returns. 

 

3.3.2  Cross-market predictions 

 

In previous subchapter we found that the PX-50, BUX, WIG and DAX returns 

are co-moving thus now we will be interested if this information can be used for 

the forecasting. The methodology here will be quite different. We will try to 

forecast the one day return of the market with use of the lags of 3 remaining 

markets. For this purpose we apply correlation analysis61 to find which lags 

influences the returns most. Than we will use linear OLS estimate and Feed 

Forward Neural Network again with best performing logsigmoid transformation 

function and Levenberg-Marquardt search algorithm. Following models were 

developed62:  

 

1 0 1 1 2 5 3 1 4 3 550 50 50t t t t t tPX PX PX BUX BUX DAXβ β β β β β+ − − − −= + + + + +  (3.2) 

1 0 1 3 2 5 3 4 2t t t t tBUX BUX BUX DAX DAXβ β β β β+ − − −= + + + +  (3.3) 

1 0 1 2 5 3 4 3 5 6 250 50t t t t t t tWIG WIG WIG PX PX DAX DAXβ β β β β β β+ − − −= + + + + + +   (3.4) 

1 0 1 3 2 4 3 5 4 4 5 150t t t t t tDAX DAX DAX PX WIG BUXβ β β β β β+ − − − − −= + + + + +  (3.5) 

 
                                          
61 We use sample correlation coefficient - Pearson product moment correlation coefficient which is the 

best estimate of the correlation between two series to determine the potential explanatory variables. 

We pick all variables with correlation coefficient statistically significant at 1%, 5% and 10% levels. 
62 Estimates can be found in appendix B 
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Table 9: In-sample performance of the daily models for whole tested period 

in-sample PX50 BUX WIG DAX 
 classical neural classical neural classical neural classical Neural 
Adj R-squared 0,0234 0,12 0,015 0,202 0,023 0,17 0,019 0,11 
Schwarz criterion -6,038 -8,99 -5,78 -8,85 -6,08 -9,409 -5,23 -7,98 
Ljung-box Q(4) 1,31  5,53  0,96  2,8  
Ljung-box Q(8) 2,99  5,94  1,302  24,69  
Ljung-box Q(12) 3,016  6,53  4,05  30,51*  

   *,**,*** significance levels of 1%, 5% and 10% resp. 

 

As we can see, PX50, BUX, WIG and DAX returns seems to be explained to 

some extend with their mutual lags. As to the comparison of the autoregressive 

model with neural network, neural network leaves the autoregressive models far 

behind. As to the explanatory power, neural network explains 12%-20% of 

variance of the returns in individual model, while autoregression only 1.5%-

2.34%. Schwartz criterion is also preferring networks much better. So Implication 

for the modelling would be very intuitive – use linear regression model to identify 

significance of the variables and then improve the estimates with neural 

networks. The reader can observe very interesting thing – there is no 

autocorrelation present in the models. Ljung-box Q statistics were not significant 

at any level for any Q(k). So the results suggests us, that we could gain some 

predictive edge from these models. 

Again, we will be concerned with out-of-sample testing more than in-

sample. In Table 10 we have the results for whole testing period.  

 

Table 10: Out-of-sample performance of the daily models for whole tested period 

 PX50 BUX WIG DAX 
 Linear neural linear neural linear neural linear neural 
RMSE 0.09 0,009 0,0152 0.014 0.012 0.0095 0.0086 0.008
NMSE 0,985 0.978 0.994 0.96 1.014 0.999 1.014 0.9878
D-M(0) -0.71 (0.23) -0.26 (0.59) -0.06 (0.52) -1.9 (0.02) 
D-M(1) -0.71 (0.22) -0.23 (0.59) -0.08 (0.52) -1.99 (0.02) 
D-M(2) -0.68 (0.24) -0.23 (0.59) -0.08 (0.53) -1.91 (0.02) 
D-M(3) -0.65 (0.25) -0.24 (0.59) -0.077 (0.53) -1.8 (0.036) 
H-M 1.03 (0.06) 1.07 (0.00) 1.04 (0.2) 1.06 (0.05) 0.98 (0.00) 1 (0.05) 1.02 (0.15) 1.07 (0.00)
P-T 56%(0.056) 59%(0.06) 52%(0.27) 57%(0.05) 52%(0.61) 56% (0.21) 53% (0.22) 57% (0.12)
TC 0.6% 1.2% 1% 1.7% -0.62% -.46% -0.45% 0.2%

D-M: Diebold-Mariano statistic (p-values), H-M: Henriksson – Merton statistic, P-T: Pessaran-

Timmerman (SR with p-value), TC – total costs 

 

In our final tests, Diebold-Mariano tells us that for almost all series the 

errors of linear models and neural ones are almost identical, while we can not 
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reject the null hypothesis of equal predictive accuracy for PX50, BUX, WIG. But 

we can reject the null hypothesis of no predictability for PX50, BUX and DAX at 

1%, 5% and 1% significance levels resp. We also reject the null hypothesis of 

independence of directional change of actual and predicted series for PX50 and 

BUX at 10% significance level. Implied transaction costs are also in line with H-M 

and P-T statistic, while they confirm economic significance. But again, we were 

not able to gain consistently and significantly better predictive power for all tested 

series, even with usage of neural network models. This may imply that the daily 

European stock market returns are simply unpredictable, as the lags of 

surrounding markets did help to explain the variance very little. 

 

3.4 Concluding remarks 

 

At the very beginning of this chapter we illustrate the power of neural 

network modelling. Our hypothesis was that if the neural network can 

approximate any function, it must be capable of approximating artificial chaotic 

time series. And we showed that it performed very well on the Mackey-Glass 

chaotic time series, even in the prediction of them. We compared classical 

econometric approaches to model the Mackey-Glass chaotic time series with 

neural network, and showed that neural network performs much better in the 

task with significantly lower errors. Thus we showed that neural network is 

capable of approximating any process, hence it is very strong instrument for our 

prediction task. 

 

Next we moved to real world data, the Central European stock market 

returns represented by PX-50, BUX, WIG and DAX indices. We described the data 

first and found no deviation from distributional properties of other developed and 

more liquid markets which was no surprise to us. More interestingly, we 

conducted the in-depth analysis of daily returns, followed by weekly returns and 

found that neural networks can be used to improve predictive power of the 

classical models only slightly. For daily returns, neural networks improves only 

economic significance, but the prediction are not significantly different from linear 

models. We conclude that daily European stock market returns may not contain 

any significant pattern to be uncovered when using historical prices. With weekly 

returns neural networks performed significantly better than linear models on 

PX50 and BUX markets. Economical significance was also gained for 3 out of 4 
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markets, while networks achieved around 60% directional accuracy on weekly 

data, which is quite good result. 

 

Thus finally on the basis of cointegration analysis we modeled the returns 

with lagged variables of all four indices as we found they are significant to the 

returns. In fact, it is logical step as the markets are moving together, and mainly 

in these days of globalization, world markets are trading very tightly. In the times 

when this research had been conducted, NASDAQ63 unsuccessfully bid for the 

London Stock Exchange. Few months later in late may 2006, NYSE64 and 

EURONEXT65 bourse announced the merger and creation of first transatlantic 

exchange behemoth, the largest stock exchange in the world. Thus markets are 

no more depending only on local  economical issues, but surly weaker exchanges 

follow stronger ones.  

But the analysis did not bring the fruit, as the daily lags of surrounding 

markets did not improve our results. Again we could not reject the null hypothesis 

of equal predictive accuracy of the used models, and economic significance was 

very similar to the analysis conducted in the chapters before. Thus we conclude 

that daily European Stock markets may not contain any predictable pattern even 

if the lags of surrounding markets are used. 

 

An attentive reader will note that one can try to improve or modify the 

model for real trading and use indicators, or smoothed prices. We obtained the 

results with raw stock markets returns, but for instance, if exponential moving 

averages are used to smooth the stock market returns, the prediction of short-

term direction is even stronger. We showed that a good predictive model can be 

build from raw data and we will leave the exercise of using other inputs of moving 

averages, or indicators to the reader. For example lagged moving averages of 5 

days may predict a one week ahead return well as they smooth the series. And 

there is much more models to be used depending on the strategy we want to 

achieve. But we also draw attention to the problem of relevance of the data used. 

Neural network can approximate any process but when building the model, bear 

in mind that if you input data which are of no importance into the model, it will 

return nothing else but forecasts which will be not be applicable. The relevance of 

the inputs is crucial for good results. In next chapter we will induce implications 

for derivative pricing methods. 

                                          
63 USA Technological stock Exchange 
64 New York Stock Exchange 
65 second largest European bourse – integration of Bruxelles, Paris and Amsterdam 
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Chapter 4  

 

Application to pricing derivatives 
 

In previous chapter we concluded that with the use of neural networks we 

are able to gain a predictive edge. Of course this is very strong implication for the 

markets and traders, but still, it is of quite speculative usage. And of course there 

are many problems of using these models in real trading. The main drawback is 

for example that most of the models are behaving in the manner that they tend 

to predict the movement with some lag. This is fine if the markets are steady and 

the model captures the short-term trends well, but if there are unexpected 

exogenous moves or crushes of the stock market, the models very often fail to 

warn us. Of course it depends on the input variables used, but still one should 

never base his/her trading strategy only on the predictive model as other part of 

the success is understanding the market and proper reaction to economic news. 

Of course, the modelling of the market returns and uncovering the pattern serves 

to a trader very well in gaining abnormal returns in the market if combined also 

with understanding of the markets. 

Much stronger implications of our findings can be made for another very 

interesting area – pricing and hedging of the derivatives. Well known Black-

Scholes66 model for pricing of European call options is based on assumptions 

which are unrealistic. Stock prices under the log-normal distribution follow 

geometric Brownian motion, volatility is constant over time and returns are 

normally distributed. But these assumptions are nonrealistic. Our study only 

extends the empirical literature which shows that based on this assumptions, 

Black-Scholes can not be used for rational pricing of the options. We just showed 

that the returns are strongly predictable, thus are far away from random walk, 

                                          
66 Black and Scholes (1973), Merton (1973) 
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and the biggest problem is constancy of volatility. One solution to the problem is 

to re-estimate the model every day with “new” - updated volatility which will be 

set to constant, but this approach for example does not decrease hedging error 

which is crucial for big institutional traders. 

In the following chapter we will show how neural networks can be used to 

option pricing much efficiently on the basis of universal approximation theorem. 

We will start with very brief theoretical introduction, which will be followed with 

application to an pricing of an warrant which underlying is the largest and second 

most liquid stock on the Prague Stock exchange – CEZ. 

 

4.1 Theoretical framework proposed by Black and Scholes 

 

Much of a growth of the market for options and other derivatives is linked 

to the famous papers by Black and Scholes (1973) and Merton (1973) in which 

closed-form option pricing formulas were obtained through a dynamic hedging 

argument and no-arbitrage condition. This approach has been generalized to 

pricing of an array of securities, and even if there is no close-form solution, 

pricing formulas can be obtained numerically. 

 

The basics of the model lies on the assumption of the hedging/no-

arbitrage approach, underlying price dynamics ( )S t  which is assumed to follow 

geometric Brownian motion:  

( ) ( ) ( ) ( )dS t S t dt S t dW tμ σ= + , (4.1) 

where μ  is expected gain or constant drift, σ  volatility and ( )W t is Wiener 

process67. Let ( ),C S t  be the value or price of the European68 call option on non-

paying dividend stock. For t T<  the pay-off is following: 

( ) ( )( )max ,0r T te S t X− − − , (4.2) 

Thus under the assumption of lognormal distribution of stock prices where 

 

                                          
67 Continuous-time Gaussian stochastic process with independent increments. 
68 Basic divisions of options is call option (right to buy underlying security for given strike price in 

given time) and put option (right to sell underlying security for a given strike price in the the given 

time). European options can be exercised only at the expiry date, while American option can be 

excercised at any time before the expiry date. 
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ln ln * ,
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S T S t T t T tσμ σ
⎡ ⎤⎛ ⎞
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∼ , (4.4) 

the Black-Scholes formula is derived69: 

( ) ( ) ( ) ( ) ( )1 2
r T tC t S t d Xe d− −= Φ − Φ , (4.5) 

( ) ( )2
1,2

1 1ln
2

S t
d r T t

XT t
σ

σ
⎛ ⎞

= + ± −⎜ ⎟
− ⎝ ⎠

, (4.6) 

where ( ).Φ represents cumulative normal distribution function, ( )S t  is price of 

underlying asset, X  is strike price or exercise price, r risk-free interest rate, σ  

volatility and ( )T t−  time to expiration. To be complete, we just note that price of 

put option can be obtained from put-call parity ( ) ( ) ( ) ( )r T tS t P t e X C t− −+ = + . 

 

This approach to option pricing led to great boom of derivatives trading in 

1970’s and 80’s respectively. Of course from that time there was an mounting 

evidence that this solution leads to an errors in pricing of the derivatives, but 

until now no-one came with appropriate substitute of the model. Main drawbacks 

are misspecification of process of Stock price ( )S t  leading to systematic pricing 

and hedging error of derivatives. Another crucial assumption is constant volatility 

which is not realistic at all. Another issue is also pricing of American options, the 

ones which can be executed any time, not only at time of expiration. 

 

4.2 Neural network approach to derivatives pricing 

 

Purpose of this chapter is to introduce another – data driven – method of 

derivative pricing, where the data will determine the dynamics of the ( )S t  and its 

relation to the derivative security. Assumptions of constant volatility and 

lognormal distribution of the underlying process can also be relaxed. On the basis 

of the assumption of universal approximation property of neural networks we 

assume that network must be capable to learn the Black-Scholes formula. If it is 

                                          
69 We advice to use the references for exact derivation and for better understanding of the model  

while it is not our intention to repeat what has been written in thousands of publications. 
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true, than it can also be trained on the real data and optimal model with optimal 

weights “becomes” the derivative pricing model. Thus we expect that the neural 

network can better approximate the price of derivative through learning process 

than Black-Scholes formula, and can be used to minimize error of hedging or 

pricing of the derivatives. 

 

Methodology of neural network has been presented in-depth in previous 

chapters, thus we have strong theoretical background for the testing. All we need 

to do at this point is to “let the data speak” and move to most interesting part – 

empirical results. Before we do so, we would like to draw attention to advantages 

and disadvantages of the neural network usage to derivatives pricing. Firstly, 

networks does not rely on restrictive parametric assumptions described above, 

they are robust to the specification errors that plague parametric models, and 

more important, they are also adaptive and respond to structural changes in the 

data generating process. Finally they are flexible enough to encompass a wide 

range of the price dynamics. 

On the other hand the advantages comes to cost of large amounts of data 

needed to best optimalization of weights. Therefore the approach would not be 

appropriate for newly issued instruments. Another cost is that if the underlying 

asset’s prices is well understood and can be analytically expressed, network will 

probably not outperform the Black-Scholes. But we have to say that this case is 

very unlikely on today’s markets. Also first drawback turns out to diminish if we 

consider that there are always amounts of derivatives available to the same asset 

on the market, thus the newly issued derivative can often be replicated using 

these data as the underlying process is identical. 

 

In the next section we will put our hypothesis to test. We will try to learn 

and price the call warrant on CEZ, currently second most liquid stock on Prague 

Stock exchange which forms 25% of the base of PX-50 index70. Czech market is 

considered as an emerging market, and the liquidity can not be compared to 

biggest world markets. What is more important, the warrant on CEZ is not 

directly traded in the Czech stock exchange and in the times this thesis was being 

finished, there was also no legal regulation of this derivative on the Czech stock 

                                          
70 CEZ has been largest stock on the PSE until Erste Bank placed its stock emissions to the market few 

months before this thesis was finished, 2.2.2006 
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markets71. Thus the derivatives based on the Czech stocks are being traded 

tightly and the pricing of them is more difficult as pricing of much more liquid 

options in united states. Now we know the methodology, chosen warrant will be 

closely described in next section, but to be complete, we need to define warrant 

first as we refer to it without definition in previous text. Definition: 

 

Warrant is a security that entitles the holder to buy or sell a certain 

quantity of an underlying security under agreed price and exercise period. The 

right to buy is referred to as an call warrant, right to sell as an put warrant. 

 

The reader might be confused with the difference between warrant and 

option, as the definition might seem identical. But when warrant is exercised, a 

new share of a stock is created while this does not happen with options. Main 

difference is also that options are being issued by independent parties, such as 

Chicago Board Options Exchange, while warrants are issued and are guaranteed 

by companies, such as Special Purpose acquisition company, or large banks which 

find warrants to be very good dynamic investment instrument nowadays. Another 

difference is in lifetime of the derivative. We talk about years in warrants, but 

months in options. The last inequality is in the basis of the derivative. While 

talking about options we talk about 100 options in one contract and 1 option 

means right to buy/sell 1 stock of underlying asset, in warrant we can often meet 

ratios from 0.01 or 0.1 meaning that you need 100 resp. 10 warrants to have and 

right to buy/sell 1 stock. But the reader is right if he/she does not see the 

difference in pricing of warrants and options, because they are identical as to this 

issue. 

 

4.3 Pricing of CEZ Call warrant 

4.3.1 The data 

 

In this section we will perform an empirical testing where we want to 

compare the price of Black-Scholes model, learned neural network and real 

market price of an call warrant with underlying security CEZ, strike price 500 CZK 

and maturity 14.6.2006. Holder of one warrant has the right to buy one CEZ 
                                          
71 new legal regulations and also vast of derivative securities such as warrants, certificates, turbo-

certificates are being prepared for the Czech stock market to be issued while this thesis is being 

finished. 



80 

stock for 500 CZK at the expiration, thus this is European warrant. Warrant was 

issued by Deutsche Bank 22.10.2004 and is traded in Stuttgart, EUWAX bourse, 

or directly with eminent in EUR. ISIN of the security is DE000DB21187. We have 

the data of daily closing prices of CEZ security denoted in EUR, and closing price 

of warrant from 26.4.2005 until 24.4.2006. Thus we will test one year of data, 

meaning 253 observations which should be enough. The data were downloaded 

directly from EUWAX. 

First of all, let us have a look at the distributional properties of underlying, 

CEZ security. 

 

Table 11: the descriptive statistics of daily CEZ returns 

Mean Median Maximum Minimum Std. Dev. 
0.002936 0.003744 0.066613 -0.083199 0.018375 

     
Skewness Kurtosis Jarque-Bera   
-0.529039 5.847853 97.29744*   

*Significant at the 1% level. 

 

Jarque-Bera statistics rejects normality of CEZ returns at 1% significance 

level. Thus we can again conclude that returns are leptokurtic which can be well 

observed from following figure. Epanechnikov kernel density72 (orange) line has 

excess kurtosis over the Gaussian normal distribution (brown), and has also fatter 

tails. 

CEZ

-0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06
0

5

10

15

20

25

 

FIGURE 4.1: Histogram, Kernel density function of daily CEZ returns 

 

                                          
72 The same as with previous data in section 3.2.1. 
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Even if this should be no surprise to any researcher in quantitative finance, we 

again remind that basic assumption of log-normality is violated, and this property 

should be in favor for neural networks, and of course, against Black-Scholes. 

 

4.3.2  Learning the Black Scholes formula 

 

Given the power and flexibility of the networks to approximate any 

complex nonlinear relation, we begin with learning the Black-Scholes price of the 

described CEZ call warrant. This means that we compute the prices of the warrant 

using the (4.5) model on the daily basis. To be more realistic, we relax the 

assumption of the constant volatility and compute volatility on the daily basis as 

standard deviation for last 20 trading days73. We then estimate the price which is 

generated by differential Black-Scholes equation using Feedforward neural 

network with one hidden layer, sigmoid transformation function and Levenberg-

Marquardt optimalization algorithm. We shall note that the 80% of the data were 

used to training the network, and rest to testing, or as an out-of-sample. 

 

Table 12: estimation results for Black-Scholes learned by network 

In-sample  Neural Network 
Adj R^2  0.9999963 
Schwarz criterion -8.15 
Out-of-sample results 
RMSE 0,0504 
NMSE 0,0202 

 

From the results we can conclude that the network is able to efficiently 

approximate the Black-Scholes pricing formula, which is no surprise to us as 

mentioned before. While network performed very well on the artificial data of 

Mackey-Glass chaotic time series, it is logical that it could learn the Black-Scholes 

also very well. Hence we can conduct more interesting test, use the neural 

network to the pricing of warrant and compare with real data. Then we will clearly 

see the errors of Black-Scholes and errors of neural network, compare them and 

see if the neural network can approximate the derivative price more efficiently or 

not. 

 

                                          
73 As this approach is widely used among traders and financial theory. 
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4.3.3 Performance of Neural Network in warrant pricing 

 

In the final tests we will aim on comparing the real price collected from 

EUWAX74, theoretical Black-Scholes pricing and neural network pricing. The 

method is simple. We will use the derived Black-Scholes price for each day from 

previous part, learned neural network price and compare their errors to real 

market price for the day.  

Inputs to neural network used will be price of the underlying CEZ in EUR 

and time (T-t). While interest rate and volatility are assumed constant in Black-

Scholes model, we will not include them. Moreover, we will hope that the network 

will learn also changes in these parameters and can capture it from the data, as 

the assumption is unrealistic as discussed earlier. Thus two inputs will be 

confronted with the real market price, and then the obtained network model will 

be used to real pricing at out-of-sample data. We should note that we use raw 

data, no differencing as we try to approximate the price of the derivative, not to 

predict the return. This may result in worse results as if we used derived, e.g. 

normalized data. Moreover we will compare feedforward network with one layer 

with conjugate gradient search and Levenberg-Marquardt search as we did not 

attach the comparison in previous tests. We note that in all previous tests the two 

algorithms were used and results were similar – Levenberg-Marquardt performed 

much better on stock market data. The results are following: 

Table 13: in-sample performance comparison 

insample    
 BS NNconj NNlevenberg 
Adj R^2 0,979 0,999 0,996 
r 0,97 0,999 0,998 

 

Table 14: out-of-sample performance comparison 

Outofsample   
 BS NNconj NNlevenberg 
RMSE 0,224 0,198 0,078 
NMSE 0,458 0,358 0,092 
r 0,76 0,802 0,93 
  BS vs. 

NNconj 
BS vs. 

NNlevenberg 
NNconj vs. NN 

levenberg 
D-M (0)  -1.17 (0.12) -1.71 (0.04) -1.76 (0.035) 
D-M (1)  -1.13 (0.12) -2.29 (0.01) -1.78 (0.038) 
D-M (2)  -0.99 (0.15) -1.98 (0.02) -1.61 (0.053) 
D-M (3)  -1.38 (0.08) -2.94 (0.00) -1.68 (0.045) 
D-M (4)  -1.72 (0.04) -2.59 (0.00) -1.63 (0.049) 

                                          
74 Trading platform where the warrant is traded 
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From the results we can see that the in-sample performance is very good 

determined with very high coefficient of determination. Small r refer to linear 

correlation coefficient between the estimated output vector and real vector 

output. Out-of-sample results are very impressive also. We can see that Neural 

network outperforms classical Black-Scholes approach far, as NMSE is much 

lower. Diebold Mariano statistic is not significant only for lags 0,1,2 when 

comparing BS and NN with conjugate gradient. Thus the null hypothesis of equal 

error functions can not be rejected for these lags. When comparing NN used with 

Levenberg-Marquardt algorithm and Black-Scholes, we see that D-M is significant, 

thus the null hypothesis of equal errors can be rejected at 5% level for all lags. 

Among networks, Levenberg-Marquardt algorithm approximates the price much 

better than conjugate gradient as in all previous tests, while we can reject the 

null hypothesis of equal errors at 5% significance levels. Thus Levenberg-

Marquardt has significantly lower errors than conjugate gradient. It has 

significantly lower errors also when compared to Black-Scholes. 

So let us have a look at an comparison of the out-of-sample period of the 

error functions of all three tested models. 
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FIGURE 4.2: out-of-sample errors comparison 

 

To conclude, previous results show that even if we relax the strict 

assumptions of Black-Scholes model, take only price of the underlying security 

and time value of it, we can estimate the optimal weights and use the obtained 

model to an option pricing better then Black-Scholes itself. 
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4.4 Concluding remarks 

 

To conclude the chapter, we applied neural network to approximation of 

warrant price. Firstly we introduce briefly the Black-Scholes approach to the 

derivatives pricing and its main drawbacks of unrealistic assumptions. Then we 

show that neural network can learn the Black-Scholes formula very well. 

Finally, we compare Black-Scholes pricing, Neural Network pricing and real 

price of the market on the out-of-sample testing. Neural networks clearly 

outperforms Black-Scholes pricing method. Simulated data training not only 

produces statistically lower error which has crucial implications for delta-hedging 

strategies, but we have to note once again that with neural network approach, we 

do not need to worry about volatility at all, nor about interest rates or log-

normality of returns. 

Even if the results are promising, we used only data for one warrant and 

one security, thus no generalization can be claimed here. But there is mounting 

evidence mainly on the more liquid options exchanges in USA in favor of our 

research which finds that neural networks can be use to pricing of the derivatives 

as an substitute if other analytical methods fail. The reason why we conducted 

this analysis was to show that neural networks are able to help to price 

derivatives on the emerging markets where the liquidity of underlying stock is 

lower if compared to developed markets, derivatives are not traded in the “home” 

country of the origin, it is traded in different currency so the exchange rate enters 

the formula, and most important of all – the liquidity of warrant is very low as 

Czech investors are not familiar with this forms of investing. Thus it seems very 

difficult to price such instrument and catch the behavior of market participants in 

these conditions. 

Thus most important implication is that we showed that even such non-

liquid derivatives can be priced even without considering and worrying about 

volatility problem, which is threatening investors most. We may consider to use 

also other inputs as general market volatility, market returns if correlated with 

the underlying security or others. We believe that if we can train the network to 

price the derivative with only the price of underlying asset and time value of the 

derivative, as we showed, few more inputs might help to explain the remaining 

part of the variance, hence this analysis set forward the research. The problem 

becomes also very actual at Czech Stock market as derivatives are to become 

traded at the market soon. Thus we hope that our research will help to move 

further in understanding the market processes. 
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Conclusion 
 

 

In this thesis we present neural network approach and its application on 

the European stock market returns modelling. We show that there is no black box 

behind the networks, but robust mathematical model and we view the analysis as 

nonparametric econometric method. Thus we provided a link between theoretical 

approach of classical econometric with neural networks, and then use it to 

empirical test on the Czech, Hungarian and Polish returns from 1999:2006 period 

to see if the networks will help us in uncovering the returns process. We also 

present an optimization algorithms and statistical and economic tests for 

comparing the models. 

 

After the theoretical background is set, we show that neural network can 

approximate any process on the Mackey-Glass chaotic time series. We use 

autoregressive model, ARMA (2,2) which fit the data best and the feedforward 

neural network with one layer and three neurons, logsigmoid function and 

Levenberg-Marquardt optimization. Neural network performed significantly better 

than other methods with out-of-sample NMSE 0.01, it explained 99% of the 

variance also when faced to an prediction task. Autoregression and ARMA (2,2) 

managed the out-of-sample NMSE at 0.162 and 0.132, while we strongly rejected 

the Diebold-Mariano’s null hypothesis of equal errors when comparing the 

models. Thus neural networks uncovered the process very well with significantly 

lower errors, and we moved to the real-world empirical analysis of European 

Stock market returns. 

Firstly we conduct the tests on the daily returns and we find that with use of 

neural networks we did not manage to get significantly lower prediction errors 

according to Diebold-Mariano test, but we gained some economic significance on 

PX50 and BUX markets when the direction predictions were significant at 5% 

resp. 10% significance levels and we were able to predict the next day direction 

with 56% and 54% probability of correct prediction respectively. 
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We left the daily series to conduct the same tests on the weekly ones. The in-

sample adjusted 2R  of the neural network was impressive, while it explained 

48% of PX50, 15% BUX, 28% WIG and 34%DAX variance using only lagged 

explanatory variables. When faced to out-of-sample forecasting, we were able to 

reject the null hypothesis of equal prediction errors between linear and neural 

models with PX50 and BUX series at 5% significance level. Thus Neural networks 

had significantly better forecasting error when testing the PX50 and BUX series. 

We also achieved better economical significance of the models, while being able 

to forecast the PX50, WIG and DAX with directional accuracy of 60%, 58% and 

58% significant at 10% levels. Also implied transaction costs computed were 

higher than the real-world transaction costs, which tells us that the predictions 

are economically significant.  

In the next part, we use the fact that tested markets are co-moving. We use 

Principal Component Analysis to find if the lagged returns of surrounding markets 

have significant influence on the tested market, or not. i.e. we test if the lagged 

returns of BUX, WIG and DAX can be used to explain the PX50 return. And we 

find that there are significant lags of surrounding markets for each of the tested 

markets. Then we use these results to model the stock market’s return using the 

cross-country lags on the daily data. And we get similar results, when we could 

not reject the hypothesis of equal errors of linear and neural models for all series 

but DAX. Interestingly, neural networks perform significantly better only on daily 

DAX returns. We again gain economic significance on the PX50, BUX and DAX 

daily returns with neural networks. WIG daily returns predictions are again not 

economically significant. 

To sum up the results of an application of neural network on Central European 

stock market returns, we would say that daily returns does not contain significant 

patterns, as neural networks could not approximate them. It managed to do 

significantly better in case of German DAX, which was basically picked as a 

benchmark of the large liquid European stock market. On the other hand, WIG 

seems to be completely unpredictable using just lagged historical returns. On the 

PX50, BUX and DAX markets, neural network predictions were economically 

significant. We managed to gain more predictive edge from weekly returns, while 

neural networks performed significantly better than linear modelling on PX50 and 

BUX prediction, and it provided us with economically significant predictions also 

with ability to predict direction with 60% probability. 

Of course our findings have still very strong implication for the markets 

and traders, but still, it is of quite speculative usage. Even more, there are many 

problems of using these models in real trading. Main drawback is for example that 
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most of the models are behaving in the manner that they tend to predict the 

movement with some lag. This is fine if the markets are steady and the model 

captures the short-term trends well. But if there are unexpected exogenous 

moves or crushes of the stock market, the models very often fail to warn us. 

Much stronger implications of our findings can be made for another very 

interesting area – pricing of derivatives. We test the neural network on the 

European call warrant on CEZ, and we find that neural network is able to learn 

the Black-Scholes pricing model and can explain 99% of the variance of price. 

This is no surprise to us as the results are the same as from artificial Makey-Glass 

chaotic time series. Real test were actual market prices obtained from EUWAX 

market where the warrant is traded. We try to use neural network to approximate 

the price of the European call warrant on CEZ using only the price of CEZ and 

time. Thus we relax the constancy of volatility. We also price the warrant with 

Black-Scholes using the recomputed volatility on the daily basis, so we are more 

realistic in our analysis. On the out-of-sample results, we conclude that neural 

network is able to approximate CEZ call warrant price on 92%, while Black-

Scholes only on 65%. Out-of-sample errors of network are also significantly lower 

then with Black-Scholes. Thus we conclude that neural networks may be used as 

an alternative for derivative pricing.  

In these test we also compare conjugate gradient and Levenberg-Marquardt 

optimization methods. We reject the null hypothesis of equal prediction errors 

while Levenberg-Marquardt method produced significantly lower errors. This is 

also reason why we used it in all tests. 

 In this research we presented the models using only lagged historical data, 

and even if we could gain some predictive edge using neural network models, it is 

clear that further analysis needs to be done. Mainly usage of other variables 

affecting the price of stocks should be considered, as we see that the data does 

not explain themselves well. 
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Appendix A: distribution of Mackey-Glass 

series 
 

 

Table 15: Mackey-Glass chaotic time-series distribution:  

 

Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis 
0.171735 0.263853 1.000000 -1.000000 0.483982 -0.523041 2.458327 

       
Significant at the 1% level. 

 

 

FIGURE A.1.: Histogram of a Mackey-Glass chaotic time-series distribution.  
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Appendix B: OLS Estimation  results  
for PX50, BUX, WIG and DAX models 

 

Table 16: PX50 model 

Variable Coefficient Std. Error t-Statistic Prob.  
0β  0.000834 0.000331 2.518340 0.0119 

1β  -0.066742 0.031630 -2.110083 0.0350 

2β  0.063869 0.027743 2.302173 0.0215 

3β  0.064417 0.027921 2.307141 0.0212 

4β  0.077691 0.024692 3.146457 0.0017 

5β  0.058844 0.018724 3.142688 0.0017 

 

Table 17: BUX model 

Variable Coefficient Std. Error t-Statistic Prob.  
0β  0.000766 0.000376 2.037470 0.0418 

1β  0.047583 0.028101 1.693296 0.0906 

2β  0.068265 0.027978 2.439997 0.0148 

3β  0.060791 0.021326 2.850566 0.0044 

4β  0.033276 0.021337 1.559500 0.1191 

 

Table 18: WIG model 

Variable Coefficient Std. Error t-Statistic Prob.  
0β  0.000554 0.000324 1.710250 0.0875 

1β  0.075760 0.032033 2.365101 0.0182 

2β  0.061295 0.027892 2.197569 0.0282 

3β  -0.063423 0.030753 -2.062354 0.0394 

4β  0.053653 0.027227 1.970563 0.0490 

5β  0.044133 0.019863 2.221846 0.0265 

6β  0.044053 0.018288 2.408821 0.0161 

 

Table 19: DAX model 

 Variable Coefficient Std. Error t-Statistic Prob.  
0β  0.052203 0.028030 1.862370 0.0628 

1β  -0.110060 0.029929 -3.677415 0.0002 

2β  0.067533 0.041382 1.631945 0.1029 

3β  0.085239 0.045611 1.868815 0.0619 

4β  0.077619 0.036835 2.107219 0.0353 
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