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Introduction

Since Craig’s landmark result on interpolation for classical predicate logic, proved
as the main technical lemma in [14], interpolation is considered one of the central
concepts in pure logic. Various interpolation properties find their applications in
computer science and have many deep purely logical consequences.

We focus on two propositional versions of Craig interpolation property:

Craig Interpolation Property: for every provable implication (A — B) there is
an interpolant I containing only only common variables of A and B such that both
implications (A — I) and (I — B) are provable.

Craig interpolation, although it seems rather technical, is a deep logical property. It
is closely related to expressive power of a logic - as such it entails Beth’s definabil-
ity property, or forces functional completeness. It is also related to Robinson’s joint
consistency of two theories that agree on the common language. Craig interpolation
has an important algebraic counterpart - it entails amalgamation or superamalgama-
tion property of appropriate algebraic structures. In case of modal provability logics,
Craig interpolation entails fixed point theorem.

There are other interpolation properties, defined w.r.t. a consequence relation
rather then w.r.t. a provable implication. In presence of deduction theorem the two
possibilities coincide. However, in modal logics, we have at least two possible con-
sequence relations - local and global - and also two such interpolation properties
[28]. In this case, thanks the deduction theorem for the local consequence relation,
the Craig interpolation coincides with the local interpolation and entails the global
interpolation, but not other way round.

A stronger version of Craig interpolation property arises in relation with quantifier
elimination:

Uniform Interpolation Property: for every formula A and any choice of propo-
sitional variables g, there is a post-interpolant Ip.s4(¢) depending only on A and §
such that for all provable implications (A — B), where the shared variables of A and
B are among §, (A — Ia(q)) and (Ipesta(q) — B) are provable. Similarly there
is a pre-interpolant: for every formula B and any choice of propositional variables 7
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there is a formula I, g(7) depending only on B and 7 such that for all provable impli-
cations (A — B) where the shared variables of A and B are among 7, (Iprep(7) — B)
and (A — Ir.g(F)) are provable.

Uniform interpolation as connected to a quantifier elimination is used in computer
science in slicing programs.

The presence of the (uniform) interpolation property has a proof-theoretic sig-
nificance since it is closely related to the existence of analytic properties of a proof
system: Suppose that the rule

A—- B B—C
A-C
is admissible in the proof system. Then interpolation property implies that looking
for a proof of A — C it suffices to look for proofs of A — B and B — C where only
variables occurring already in A and C respectively occur.

This reflects in such computer science applications as theorem proving, simplifi-
cations of database queries, or SAT based model checking.

We would like to stress that to have an interpolation property is significant for a
logic. The fact that most of widely used logics satisfy interpolation properties does not
mean that most of logics have interpolation, it is rather other way round - we usually
deal with logics having interpolation. (For example, there is continuum of logics over
provability logic GL having Craig interpolation, and there is also continuum of logics
over GL without Craig interpolation {13].) The matter here is not so much if a logic
has an interpolation, but rather where the logic interpolates (in which schematic
extension or in which extension of the language).

A lot information of various interpolation and related properties in modal logic
can be found in Maksimova’s work [34], [35], and in Maksimova’s and Gabbay’s book
[17].

The aim of the thesis is to study interpolation properties of propositional modal logics
from a proof-theoretic point of view. We concentrate on the stronger from the two
interpolation properties in the first part of our thesis.

Uniform Interpolation. As usual in the case of modal logics, semantic methods are
better developed and preferred proving important characterizations of a logic which
is also the case of uniform interpolation. Semantic proofs are often considered to
offer better insight into a problem while proof-theoretic proofs are useful thanks their
constructiveness. We do not quite share this opinion and find proof-theoretic proofs
valuable as providing deep understanding as well, alternative but not very far from
the semantic one. However, constructiveness is one of our main motivation to extend
study of uniform interpolation by proof-theoretic methods.

Since uniform interpolants can be easily expressed using propositional quantifiers,
i.e., quantifiers ranging over propositional variables, the phenomenon of the existence



of uniform interpolants can be viewed as the possibility of a simulation, or equivalently
an elimination, of certain propositional quantifiers. A semantic proof of uniform inter-
polation based on such a simulation of propositional quantifiers was given by Visser
in [52] for modal logics K, Gédel-Lob’s logic of provability GL and Grzegorczyk’s
logic S4Grz. (For GL, uniform interpolation was first proved by Shavrukov in [47].)
Visser’s semantic proof uses a model theoretic argument based on bisimulations on
Kripke models. The proof yields a semantic meaning of uniform interpolants and
information about their type - a complexity bound in terms of CI-depth. However,
the proof does not provide us with a construction of the interpolants. A similar se-
mantic argument should also work for modal logic T but it is not given in Visser’s
paper. A proof of uniform interpolation for K, based on a semantic argument, can
be found also in Kracht's book {28].

We concentrate on a proof-theoretic method introduced by Pitts in [39] where he
proved that intuitionistic propositional logic satisfies uniform interpolation. In this
case, a semantic argument using bisimulations on Kripke models was given later by
Ghilardi and Zawadowski in [19], and independently by Visser in [52]. The Pitts’ ar-
gument uses a simulation of propositional quantifiers in the framework of an analytic
sequent proof system. The main point of keeping the information "to be the uniform
interpolant” finite and thus represented by a single formula is in a use of a termi-
nating sequent proof system, i.e., a proof system in which any backward proof-search
terminates.

As Craig interpolation relates to cut-free proofs, uniform interpolation relates to
terminating proof-search trees. Proving Craig interpolation, we start with a cut-free
(or nortmalized) proof of an implication and construct an interpolant inductively from
the proof. Proving uniform interpolation, we start with a kind of proof-search tree for
a formula (we search for all proofs in which the formula can occur in the appropriate
context) and a uniform interpolant is then the formula corresponding to such a tree.

Here our study closely relates to decision procedures and proof-search related area.

So far such a proof-theoretic proof of uniform interpolation has been given by
the author for modal logics K and T in [3]. In this thesis we extend the method to
logics having arithmetical interpretation - Gédel-Léb’s logic of provability GL and
Grzegorczyk's logic S4Grz. The main advantage of the proof-theoretic method we
use is that it provides an explicit effective and also easily implementable construction
of uniform interpolants. An interesting part of the proof consists in an application
of terminating analytic sequent calculi for modal logics, namely in the case of logics
having arithmetical interpretation which are usually not considered in this context.

The second part of the thesis is devoted to a version of the Craig’s interpolation the-
orem considered in connection with proof complexity - so called feasible, or effective
interpolation.



Feasible interpolation. The complexity of propositional proofs, especially lower
bounds on their size, are of main interest in proof complexity: proving that in no
proof system the lengths of proofs can be polynomially bounded would prove that
NP # coNP. Various classical propositional proof systems have been concerned,
including versions of sequent calculus, resolution refutations, Frege systems etc. Re-
cently the study extends to various nonclassical propositional logics.

Proving lower bounds on size of proofs, a version of the Craig’s interpolation
theorem, so called feasible interpolation, is concerned. It enables to extract, from
a proof of an implication, a boolean interpolation circuit whose size is polynomial in
the size of the proof. If the extracted circuit is monotone, we talk about monotone
feasible interpolation which turns out to be a strong property of a proof system from
the complexity point of view.

Krajicek [29] proposed a method of proving lower bounds using feasible interpo-
lation: suppose we are able to show that some implication does not have a simple
interpolant, than, providing feasible interpolation holds, it cannot have a simple proof.

Methods how to obtain concrete examples of hard tautologies for a proof system
satisfying feasible interpolation were proposed by Razborov in [42], and by Bonet,
Pittasi, and Raz in [7]. For the case of monotone feasible interpolation it immedi-
ately yields lower bounds for a proof system, while in general case we have to use
some, usually modest, complexity assumptions (like that there exist pseudorandom
generators or that factoring is hard to compute).

Feasible interpolation was already proved for several classical proof systems by
Krajicek [30], Pudldk [40], and for intuitionistic sequent calculus by Buss and Pudlak
in [12], or by Goerdt in [22]. Monotone feasible interpolation was used to prove lower
bounds e.g. for Resolution ([40],[6]), Cutting Planes ([40],[6]) or Hilbert’s Nullstel-
lensatz proof systems ([10],[2]).

The approach of [11] and [12], where intuitionistic propositional logic is considered,
is to derive feasible interpolation from feasible disjunction property which is proved
using a natural deduction calculus and a sequent calculus respectively.

Feasible interpolation for modal logic S4, which is naturaly related to intuitionistic
logic, has been cousidered using this method by the author in [4], and by Ferrari,
Fiorentini, and Fiorino in [15] where feasible disjunction property is proved for various
modal logics using a different method, while feasible interpolation is derived only for
S4 using a straightforward translation of the appropriate part of the intuitionistic
case.

In this part of the thesis we follow the method of {12] and simplify the proof used
in [4] to obtain feasible interpolation theorem through feasible disjunction property
for several modal propositional logics. Our motivation is to make clear how easily
the method proposed in [12] works in case of modal logics and that it is indeed more
general then the intuitionistic case, rather then use a blind translation of the more



complicated intuitionistic case to particular modal logics.

As a consequence we obtain, under some complexity assumption, the existence
of hard modal tautologies. A speed-up between classical proofs and proofs in modal
systems can be obtained as a corollary of appropriate feasible interpolation theorems,
assuming e.g. that factoring is hard [12], [7].

In very recent work of Hrubes [26] it has been shown that modal logics K, K4,
S4, GL satisfy even monotone feasible interpolation theorem and concrete examples
of hard tautologies has been presented.

Overview of the thesis

The thesis is organized as follows:

¢ Chapter 1 Preliminaries: we fix notation and briefly sketch basic facts about
normal modal logics - an axiomatization, Kripke semantics and arithmetical
interpretation.

e Chapter 2 Modal sequent proof systems: introduces cut free sequent calculi
that are used in the following chapter to prove uniform interpolation and their
structural properties are proved. Since our method of proving uniform inter-
polation is closed to decision procedures and since termination of the calculi is
one of its main ingredients, we also discuss proof-search and its termination in
modal logics. Some of the calculi contain loop-preventing mechanisms.

e Chapter 3 Uniform Interpolation: we prove uniform interpolation theorem
for modal logics K, T, GL, and S4Grz. The proof consists in a construction of
a formula simulating propositional universal quantification. It entails uniform
interpolation via an interpretation of a second order modal logic in its proposi-
tional counterpart. However, the construction itself can bee seen constructing
an interpolant directly.

e Chapter 4 Feasible Interpolation: we prove feasgible interpolation for modal
propositional logics K, K4, K4Grz, GL, T, S4, and S4Grz via feasible dis-
junction property. For this chapter, we define different sequent proof systems
with the cut rule, uniformly for all the logics. We derive complexity conse-
quences - the existence of hard modal tautologies (under some modest com-
plexity assumptions).



Chapter 1

Preliminaries

1.0.1 Notation

We shall consider propositional modal logics and quantified propositional modal log-
ics. We follow literature in referring to quantified propositional modal logics as to
second order propositional modal logics.

The letters A, B, ... range over formulas, the letters p, g, ... range over propositional
variables, Greek letters ', A, ... range over finite multisets of formulas (in Chapters
2,3) or finite sets of formulas (in Chapter 4). It will be clear form context whether
we speak about sets or multisets. We write T', A for the multiset union of I' and A
(the set union resp.). Membership relation sign € relates to sets as well as to multisets
according to its context. {A|p(A)} denotes the multiset (set) of formulas satisfying
the property .

For a multiset T, T'° denotes the corresponding set.

OT denotes the multiset (set) {0A|A € T'}. T° denotes the multiset (set) {A[OA €
r'}.

'\ A denotes the set I' — {A}; T\ A, B denotes the set I' — {A, B}

We use the following propositional second order modal language and definition of
formulas:

A = p|0AJA A B|-A|VpA

Logical connectives V, —, < and the constants T, L are defined as usual and 3pA =4
-Vp—A, $A =4 -0-A. We freely use the full language in the text.

We denote the set of propositional variables by Var and the set of all modal formulas
Fla.




Writing A(p, §) we mean that all propositional variables of A are among p, 3. Var(T')
stays for the set of all variables free in the multiset (set) I

A notation of the form I' = A or Z|I' = A is a sequent. To keep readability, we
often enclose sequents in the text with brackets (). T" is called the antecedent and A
is called the succedent of the sequent I' = A.

We use the sign F¢ for provability in the calculus C. We write Sy;...;S, F¢ S for
a fact that a sequent S is provable in calculus C from sequents S; ... S, as assump-
tions. Writing ¢ I' & A we mean that both e T'= A and o A =T

The weight w(A) of a modal formula A is defined as follows:
o w(p) =w(l) =1
e w(Bo()=w(B)+w(C)+1
o w(—B)=w(0B)=w(B)+1

The weight w(I") of a multiset T" is the sum of weights of the formula occurrences from
T, the weight of a sequent is the sum of the weight of its antecedent and the weight
of its succedent.

Quantifiers bind propositional variables; we adopt the usual definition of the scope,
free, and bounded variables.

1.0.2 Normal modal logics

We focus on so called normal modal logics which extend classical propositional logic
and at least contain a schema expressing that the O modality distributes over im-
plication. From a semantic point of view, this is a class of logic with natural frame
semantics.

We just briefly list some basic facts about logics we deal with in the thesis. More
on modal logics in general, as well as all missing details and proofs can be found in
books [5], [13], [8].

In what follows, we treat axioms and rules as schemata. A usual definition of
normal modal logic is the following one identifying logic with the set of its tautologies:

Definition 1.0.1. Normal modal logic is any set of modal formulas that
e contains (all instances of) classical propositional tautologies
e contains (all instances of) the schema K: O(A — B) — (04 — OB)

e is closed under the rules Modus Ponens and the Necessitation rule: A/OA.



We understand normal modal logics rather as extensions of classical propositional
logic in modal language with axiom schemata and the Necessitation rule. Given
a Hilbert style axiomatization H of classical propositional logic, we consider following
normal modal logics:

e the minimal propositional normal modal logic K with its Hilbert style axioma-
tization Hg which results from adding the schema K and the Necessitation rule
to H.

e logic T with its Hilbert style axiomatization Hr which results from adding
the reflexivity schema T: OA — A to Hg

¢ logic K4 with its Hilbert style axiomatization Hg4 which results from adding
the schema 4: 0A — D0A to Hy

e logic S4 with its Hilbert style axiomatization Hg4 which results from adding
the schema T to Hyy

e Godel-Lob’s logic GL with its Hilbert style axiomatization Hgy which results
from adding the Lob’s axiom L:

0(0A — A) - 0A
to Hyi or equivalently to Hgy

o Grzegorczyk’s logic K4Grz with its Hilbert style axiomatization Hg4g,, which
results from adding the the Grzegorczyk’s axiom Grz:

O(0(A — 0A4) - A) - OA
to Hy or equivalently to Hyy

o Grzegorczyk’s logic S4Grz with its Hilbert style axiomatization Hgyg,, which
results from adding the Grzegorczyk’s axiom Grz to Hr or equivalently to Hgy

A proof in a modal Hilbert calculus is defined as usual and a proof from assump-
tions is defined in two different ways as follows:

Definition 1.0.2. T’ }—‘}{L A iff there is a finite sequence of formulas each of them is
either an axiom or an assumption from I', or a result of an application of the rule
MP to some two preceeding formulas, or a result of an application of the rule Nec to

some preceeding formula; and the last formula in the sequence is A.
[ Y Aiff there is a finite I' C T such that by, AT — A.



Note that (4}, DOA) and therefore we do not have the usual deduction theorem
for this definition of proof from assumptions. For by deduction theorem follows
immediately from the definition.

The letters g, [ in superscripts refer to "global” and "local”. This is motivated
by corresponding relations of semantic consequence (definition of which see below).
The local provability can be alternatively defined as follows: T’ HHL A iff there is
a proof of A from I" where the Necessitation rule is not used once an assumption from
I is used, i.e., we allow to necessitate only theorems.

It is the local provability which corresponds to Gentzen style formalization of
modal logics.

1.0.3 Kripke semantics

Kripke semantics is based on relational structures called Kripke frames consisting
on an nonempty set (usually called a set of possible worlds) together with a binary
relation on the set which is called the accessibility relation. Possible worlds can be
seen as classical valuations, modal formulas are evaluated in a possible world relatively
to the accessible worlds: a formula OA holds in a possible world whenever A holds
in all accessible worlds. Precisely:

Definition 1.0.3. A frame F is a pair (W, R) where W is a nonempty set and
R CW x W is a binary relation on W.

A model M is a triple (W, R, V') where (W, R) is a frame and V : Var — P(W) is
a valuation function mapping propositional variables to subsets of W.

A valuation function V' generates a relation Ik, C W x Flla of validity of a formula
in a world as follows:

o wiky piff we V(p)

s wity AANBiff wiby Aand wiky B

o wiky —Aiff wiy A

o wlky OA iff for all w/, wRw' implies w' Iy A

A formula A holds in a model M = (W, R, V), notation Fuq A, iff for all w € W
w li‘v A.

A formula A holds in a frame F, notation Fx A, iff it holds in every model based on
F.

A formula A holds in a class of frames §, notation Fg A, iff for any frame F € §,
Er A
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A formula A is a local semantic consequence of T' w.r.t. a class of frames §, notation
I !:‘3 A, iff for any model M = (W, R,V) based on a frame from §, and any world
we W, ifforall C € T wliky C then w by A.

A formula A is a global semantic consequence of T w.r.t. a class of frames §, notation
r }:% A, iff for any model M based on a frame from §, if for all C € I’ M E C then
ME A

We say that a calculus Hy is complete w.r.t. a class of frames § iff

Fu, A it Fg A

We say that a calculus Hy, is strongly complete w.r.t. a class of frames § iff

IHy, A ff TH; A

The following completeness theorems hold:

e The calculus Hg is strongly complete w.r.t. the class of all Kripke frames.
e The calculus Hr is strongly complete w.r.t. the class of reflexive Kripke frames.

e The calculus Hgy is strongly complete w.r.t. the class of transitive Kripke
frames.

e The calculus Hgy strongly complete w.r.t. the class of reflexive and transitive
Kripke frames. It is also complete w.r.t. the class of partially ordered frames.

e The calculus Hgy, is complete w.r.t. the class of transitive and converse well-
founded Kripke frames. It is also complete w.r.t. finite irreflexive trees.

e The calculus Hgyar, is complete w.r.t. the class of transitive and converse
well-founded Kripke frames.

e The calculus Hsyor, is complete w.r.t. the class of transitive, reflexive and
converse well-founded Kripke frames. It is also complete w.r.t. finite partially
ordered trees.

We define the following translation A* of modal formulas (to interpret reflexivity):
* does nothing with propositional variables, it commutes with logical connectives, and
(O0A) = OA A A. Then the following holds:

Frug, A it bFp., A%
Frsser, A I Fgo AY
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1.0.4 Arithmetical interpretation

There is a possibility to interpret the O modality as formalized provability in an arith-
metical theory. For Gédel-Lob’s logic GL this yields a natural provability interpre-
tation. The main reference is Boolos’ book [8], for a history of provability logic see
also [45].

Fix an arithmetical recursively axiomatizable theory T with its axiomatization
expressed by a sentence 7. Consider a standard proof predicate Pr, (@) for T. We de-
fine an arithmetical evaluation of modal formulas to be a function from propositional
variables to arithmetical sentences such that it commutes with logical connectives,
and e( L) = (0 = 5(0)), and e(QA) = Pr.(e(A)).

We say that modal logic L is arithmetical complete w.r.t. an arithmetical theory
T (or it is the logic of provability of T') if

Ve(bg, A iff T e(A)).

Godel-Lob’s logic GL was proved to be complete for Peano arithmetic by Solovay
[49]. Later was shown that it is the logic of provability of a large family of reasonable
formal theories.

Using this fact and properties of the translation A* from S4Grz to GL, we obtain
the following arithmetical interpretation of Grzegorczyk’s logic: let an arithmetical
evaluation of modal formulas be as before, only now e(0A) = Pr.(e(A)) A e(A).




Chapter 2

Modal sequent proof systems

In classical and intuitionistic logic, sequent proof systems originated by Gentzen [18]
are recognized one of basic and most general proof-theoretic formulations of the logic.
In case of modal logic they are no more accepted so widely as the natural formulation
of derivability in a logic. A problematic point can be found in the nature of sequent
rules - they usually introduce a connective and leave the context untouched. This is no
more the case treating modal operators by a sequent rule. Typically, an introduction
rule for the necessity modality to the succedent manipulate formulas in the antecedent
as well. However, we find sequent calculi quite natural for modal logics, in the sense
that they satisfactorily treat the local consequence relation of modal logics (see 1.0.2).

The fact that we deal with normal modal logics extending classical propositional
logic is reflected by the design of modal sequent calculi - they are obtained extending
a classical sequent calculus by modal rules. It is not the case, as one would expect,
that each modal axiom corresponds to some sequent rule. To obtain a formulation of
a sequent calculus with nice structural and analytic properties as e.g. cut admissibility
(or elimination), one should be careful introducing modal rules. Concerning rules for
the necessity modality in logics we consider in this thesis, we have one left rule
corresponding to the schema T if the logic we deal with is reflexive, and one right
rule corresponding to the distributivity schema K and all the other axioms at once.

The particular form of sequent calculi we have chosen for this and the following
chapter fits our aim to use it for proof-search related manipulations. In particular, we
use multisets of formulas to formulate a sequent, we use a definition without the cut
rule which is to be proved admissible in our systems, and all other structural rules
are built in strong logical rules.

Since the proof of uniform interpolation contained in the next chapter is closely
related to decision procedures for modal logics and termination of a proof-search in
the calculi is one of its main ingredients, we devote some space in this chapter to

12
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explain proof-search in modal logics.

For basic reference on modal sequent calculi see e.g. Wansing’s chapter in [54],
or Schwichtenberg’s and Troelstra’s book [51]. For sequent calculi of modal logics
having arithmetical interpretation you may consult Sambin Valentini [46] or Avron

.

The chapter 2 is organized as follows:

e Section 2.1: we define the sequent calculus G for classical propositional logic
as the common basis for all modal sequent calculi. We briefly discuss sets vs.
multisets setting.

e Section 2.2: we define the sequent calculus Gmg for modal logic K and Gmrp
for modal logic T.

— Subsection 2.2.1: we explain proof-search in modal logics based on sequent
calculi, discuss the termination problem and show that in Gmg any proof-
search terminates. Then we define the calculus Gm} for modal logic T
including a simple loop preventing mechanism and show that it is termi-
nating. Termination is one of the main requirements on the proof system
we use to prove uniform interpolation using the Pitts’ method.

— Subsection 2.2.2: we prove that structural rules weakening, contraction,
and cut are admissible in our calculi. We show that Gmr and GmJ}. are
equivalent.

e Section 2.3: we define the sequent calculus Gmegy for modal logic GL and
Gmgy; for modal logic S4Grz.

— Subsection 2.3.1: we show that in GmgL any proof-search terminates.
Then we define the calculus Gmg,, for modal logic S4Grz including two
loop preventing mechanisms and show that it is terminating.

— Subsection 2.3.2: we prove that structural rules weakening and contraction
are admissible in our calculi. We show that Gmg,, equals Gmer..

— subsection 2.3.2: we show cut admissibility in Gmg and Gmg,, (and thus
in Gm{,,) using a semantic argument based on a decision procedure.

2.1 Classical sequent calculus G

First we introduce the sequent calculus G for classical propositional logic as the com-
mon basis which, extending by appropriate modal rules, results in particular modal
logics.
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Antecedents, succedents and principal formulas are defined as usual. We consider
antecedents and succedents to be finite multisets of fomulas.

We consider sequent proofs in a tree form, the height of a proof is just its height
as a tree.

Definition 2.1.1. Sequent calculus G:

Ip=pA

LAB=A  T=ABA
TAAB=A " TS AVB.A

V-1t

A=A . = AA |
T = -4 A [,-A=A "

I'=s AA I'= B,A A=A I''B= A
T= AAB,A T T,AVB = A

V-1

The calculus G corresponds to the calculus G3cp from [51].

The structural rules of weakening, contraction, and cut are not listed in the defi-
nition of G, however, they are admissible in it. We prove this fact for modal sequent
calculi based on G later.

Remark 2.1.2. Sets vs multisets

Since we are not dealing with substructural logics and the contraction rules are
sound for all our systems, we have a choice between a formalization using sets or
multisets of formulas. It is convenient to deal with multisets rather then with sets of
formulas when considering proof-search and complexity related problems. The reason
is that, in sets, the rules of contraction are hidden. It is therefore easier to control
all steps in proofs and decision procedures dealing with a contraction-free calculus
defined for multisets (although one has to prove that contraction rules are admissi-
ble). However, as will become clear later, we somehow cannot obey referring to sets
establishing termination arguments for our calculi. On the other hand, if we dealt
with sets, we would need to take care on steps where contractions are hidden and
there it is like dealing with multisets again.
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2.2 Sequent calculi for logics K and T

We introduce the sequent calculus Gmg for modal logic K and Gmg for modal logic
T in a natural way, prove their structural properties, and show they are indeed equiv-
alent to the corresponding Hilbert style formalizations. Then we define the sequent
calculus Gm7: for modal logic T including a loop preventing mechanism and show it
is terminating and equivalent to Gmp.

Definition 2.2.1. Sequent calculus Gmg results from adding the following modal
rule to G:

I'= A Ok
oIl = 0A,%

Sequent calculus Gmyr results from adding the following modal rule to Gmg:

[,O4,A=A
T
[,04 = A

Antecedents, succedents and principal formulas are defined as before. In the case
of the Ok rule, DA and all formulas from OI' are principal.

Since our motivation comes from backward proof-search, we restrict the Dy rule
- IT contains only propositional variables and 2 contains only propositional variables
and boxed formulas. This becomes clear in a termination argument.

The weakening rules, the contraction rules, and the cut rule are not listed among
our rules, but they are admissible in our systems.

Definition 2.2.2. We say that a rule is invertible if whenever the conclusion of
the rule has a proof, each premiss has a proof as well.

Notice that all the classical rules and the O7 rule are invertible which can be easily
shown either by a semantic argument or by induction on derivations.

2.2.1 Termination

Let us briefly explain how a proof search in modal logics works. We consider the sim-
plest case of K.

We start with a sequent (I' = A). Applying rules of the calculus backwards
we create a tree whose nodes are labeled by sequents. Applying a rule, we create
a predecessor node(s) of the current node labeled by the conclusion of the applied rule
and label the new node(s) by the premiss(es) of the rule. We proceed until we reach
a sequent in which all formulas are either atomic or boxed, say (OI', 11 = OA, A).
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Let us call it a critical sequent. If it is not an initial sequent (ITN A = @) and OA is
nonempty we apply the Og-rule and create a predecessor node(s) labeled by sequents
(I' = B), for all B € A. We continue until there is no rule to be applied.

Leaves of the tree are labeled by sequents, on which no rule can be applied - they
are either initial sequents or unprovable sequents. We mark the leaves as follows
- the initial sequents as positive and the others as negative. We continue marking
the sequents in the tree as follows: a critical sequent is marked as positive if at least
one of its predecessors has been marked as positive. Any other sequent is marked as
positive if all its predecessors have been marked as positive.

If the bottom sequent has been marked as positive, it is provable and by deleting
all negative sequents we obtain its proof.

Since all the rules except the Ok rule are invertible and we always first apply them
backwards to reach a critical sequent, it is natural to define the following concept of
a closure of a sequent (I' = A) to consist of all immediately preceding critical sequents
in a proof search tree for (I' = A) (i.e. the critical sequents from the closure under
all backward applicable invertible rules):

Definition 2.2.3. For a calculus Gmy, and a sequent (I' = A), let C(I'; A) denote
the smallest set of sequents containing (I' = A) and closed under backward applica-
tions of the invertible rules of Gm .

The closure of a sequent (I" = A} denoted CI(I'; A} is then the set of all critical
sequents from C(I'; A).

It is clear that the closure of a sequent is finite and that conjunction of sequents
from the closure proves the original sequent, and also whenever the original sequent
is provable, each of sequents from the closure is provable as well, See Lemma 2.3.5
below.

The proof search tree then looks as follows: starting with a sequent (I' = A),
we first obtain a conjunction of branches with nodes labeled by critical sequents
from the closure CI(I'; A), and then we apply a modal jump to each of them (if
possible) to obtain a disjunction of branches with nodes labeled by all the possible
Oy predecessors.

A proof search terminates if the corresponding tree is finite. In other words, it
terminates if there is a function defined on sequents which decreases in every backward
application of a rule.

Any backward proof search in the calculus Gmy obviously terminates: we consider
the weight of a sequent to be the function and observe that for each rule, the weight
function decreases in every backward application of the rule:

Lemma 2.2.4. Backward proof search in Gmyg always terminates.

This is not the case in the calculus Gmy due to the Or rule in which a contraction
is hidden and therefore the weight function can increase in a backward application
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of the DOr rule (observe that the rule can always be applied backwards to a critical
sequent). Moreover, no other function does the job - the calculus is not terminating.
A counterexample is e.g. a proof search for sequent (p = {(p A q)) which creates
a loop.

This defect can be easily avoided by a simple loop-preventing mechanism: once we
handle O A going backward the O rule, we mark it. To do it we add the third multiset
33 to each sequent to store formulas of the form 0OA already handled. We empty this
multiset whenever we go backward through the Ok rule since in this case the boxed
content of the antecedent properly changes. This idea results in the following calculus
similar to the calculus used in [33] and [25] (in [33], it can be recognized in the decision
procedure; in [25], the one-sided form of the calculus is used).

The loop preventing mechanism is built in the syntax which is usual when you
have in mind an implementation of a decision procedure. The reason we have chosen
this way is that, in the next chapter, we are going to use the calculus (or the sequents)
in recursively called arguments of the procedure constructing the interpolants. It is
easier to manage with a built-in mechanism.

We suggest reader to understand the third multiset as formulas which have been
marked.

Definition 2.2.5. Sequent calculus Gm#:
Zlp=pA

S, A, B = A Sr=ABA
STLAAB=A " ST =AVB,A *

r

A=A = El=44A |
TIC = -4, A S0,-A=A T

Er=A44 Ir=BA  SrA=A ILB=A

ST = AAB,A T ST.AVE = A VAl

or= A DA ZICLA= A
m s
Orjl = 04,A Sir,04 = A

In the OF; rule, IT contains only propositional variables and A contains only propo-
sitional variables and boxed formulas.

We define the closure of a sequent as before, only notice that here we are closing,
besides the classical rules, under the 0. rule as well.
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Definition 2.2.6. For a calculus Gm{ and a sequent (L' = A), let C(Z|T; A)
denote the smallest set of sequents containing (£|I' = A) and closed under backward
applications of the invertible rules of Gmj.

The closure of a sequent (Z|I' = A) denoted CI(Z|I'; A) is then the set of all
critical sequents from C(Z|T"; A).

Now let us see that this calculus is terminating.

Lemma 2.2.7. Backward proof search in Gmi always terminates.

Proor oF LEMMA 2.2.7. We define b(0%,I1, A) to be the number of boxed sub-
formulas of formulas from O, TI, A counted as a set.

With each sequent (3{IT = A) occurring during a proof search we associate an or-
dered pair of natural numbers (b(Z,11,A), w(II,A)). We consider the pairs lexico-
graphically ordered. In every backward application of a rule this measure decreases
in terms of the lexicographical ordering - for all rules except the O} rule w decreases
while b remains the same, for the O} rule b decreases.

For all rules except the O} rule w decreases while b remains the same. For classical
rules this is obvious since they do not change the set of boxed subformulas. For the O
rule observe that b(0A, A) = b(OA).

For the OF rule b decreases. It follows from the fact that (CI') > b(T') for a finite
multiset of formulas I'. To see this, let us sf(I') denote the set of subformulas of
a multiset I'.  Moreover, let < denote the well quasi-ordering on formulas defined
A =X Biff w(A) < w(B), and let < denote the corresponding strict ordering. Observe
that, for A € sf(B), it holds that A < B. There are two possibilities:

Either there is OB € sf(0OT") such that OB ¢ sf(I") and we are done (in this case
OB e OI).

Or, for all OB € sf(0OT), it holds OB € sf(I"). Then each OB € OT is a subfor-
mula of a formula from I'. Consider any formula from OI' and denote it OB;. Then
(1B is a subformula of a formula from I', say By. Obviously By < By since 083, < B,.
Since OB, € OI, it is a subformula of some B; € I" such that B, < By < B;. We
continue this way and create a sequence of B; from I where each OB; is a subformula
of By and for any j < 4, B; < B;. Since I' is finite, the sequence is also finite.
Consider its last element B,,. Since the < ordering is well founded, there is no such
formula in T", a subformula of which is OB, - a contradiction.

So there is OB € sf(0r') such that OB ¢ sf(T') and hence b(0T) > b(T').

See also [24] or [25], where another (however closely related) function is considered
which depends on the weight of the sequent for which the proof search is considered.
See also Remark 2.2.11. Here we can do without referring to the input sequent using
the lexicographical ordering. Referring to the input sequent becomes necessary (even
in the lexicographical setting) when dealing with modal logics that requires more
complicated loop checking mechanisms, as e.g. GL or S4Grz. QED
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2.2.2 Structural rules

Structural rules, i.e., the weakening rules, the contraction rules, and the cut rule are
not listed among our rules in definitions of the calculi, but they are admissible in our
systems.

Admissibility of a rule, elimination of a rule, and closure under a rule are three
slightly different notions from the point of view of structural proof theory. For a dis-
cussion on this topic see [38]. What follows are proofs of a rule-admissibility estab-
lished through induction on derivations.

We shall prove admissibility of structural rules for the calculus Gmj. For the cal-
culi Gmg and Gmy, admissibility of structural rules can be proved similarly but since
it is an immediate consequence of their admissibility in Gmf., we omit it.

For the cut-elimination in modal logics based on multisets see e.g. [51], where
a slightly different symmetric definition of sequent calculi is used (treating both O
and ¢ modalities as primitive).

In what follows, the horizontal lines in proof figures stay for instances of rules of
Gmi as well as for instances of admissible rules (see the appropriate labels).

Definition 2.2.8. We call a rule admissible if for each proof of an instance of its
premiss(es) there is a proof of the corresponding instance of its conclusion.

We call a rule height-preserving admassible if for each proof of an instance of its
premiss(s) of height n there is a proof of the corresponding instance of its conclusion
of height < n.

We call a rule height-preserving invertible if whenever the conclusion of a rule has
a proof of height n, each premiss has a proof of height < n.

Note that all rules except the Og-rule and the Of-rule are height-preserving in-
vertible. This can be easily shown by induction on the height of the proof of the con-
clusion.

Lemma 2.2.9. The weakening rules are admissible in Gm}..

PROOF OF LEMMA 2.2.9. The weakening rules are:

SIC = A L Zr=4 SIC = A
S A= A Y Tr SR A YekT Soar o A veeklr

The proof is by induction on the weight of the weakening formula and, for each
weight, on the height of the proof of the premiss. The induction runs simultaneously
for all the weakening rules. Note that in the weak-1+ rule, the weakening formula is
always of the form OA.

.Fo‘r an atomic weakening formula the proof is obvious - note that weakening is
built in initial sequents as well as in the O}-rule.
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For non atomic and not boxed formula we use height-preserving invertibility of
the appropriate rule, weaken by formula(s) of lower weight, and then apply the ap-
propriate rule.

Let us consider the weakening formula of the form OA. If the last inference is
a classical inference or a OF inference, we just use the i.h., weaken one step above,
and use the appropriate rule again. Let the last inference be a O} inference. The
case of weak-r is then obvious since it is built-in the O rule. weak-1+ and weak-1
are captured as follows using the i.h.:

0|=° = B
U As B
3 D+
0|T° = B o _S0A=0BA K .
0<% A= B “’ez; Y, 04|A,T = 0B, A ‘é’ia -
$,04F = 0B,A Y0AT=0BA

The later is the only non height-preserving step in the proof. It is easy to see that
this problem does not occur when dealing with Gmy or Gmy where the the height-
preserving admissibility of weakening rules can easily be obtained. However, the height-
preserving admissibility of weakening rules is not necessary in what follows. QED

Lemma 2.2.10. The contraction rules are height-preserving admassible in Gmi..

Proor or LEMMA 2.2.10. The contraction rules are:

A A=A ) Ir=AAA
ST, A= A O TRTSA A

contr-r

,04,0AF = A
Y,04T= A

contr-1+

The proof is by induction on the weight of the contraction formula and, for each
weight, on the height of the proof of the premiss. The induction runs simultaneously
for all the contraction rules. We use the height preserving invertibility of rules. Note
that in the contr-1+ rule the contraction formula is always of the form OA.

For A atomic, if the premiss is an initial sequent, the conclusion is an initial
sequent as well. If not, A is not principal and we use i.h. and apply contraction one
step above or, in the case of O rule, we apply the rule so that the conclusion is
weakened by only one occurrence of A.

For A not atomic and not boxed we use the height preserving invertibility of
the appropriate rule and by i.h. we apply contraction on formula(s) of lower weight
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and then the rule again. The third multiset does not make any difference here and it
works precisely as in the classical logic.

All the steps are obviously height preserving.

Now suppose the contraction formula to be of the form O0B. We distinguish three
cases:
(i) The contraction formula is the principal formula of a O} inference in the an-
tecedent. Then we permute the proof as follows using the i.h.:

0| B,B,I'=C - 0|B,B,T = C
K contr-1
OB,0B,0NI = 0OC, % 9|B,T = C o
contr-1+ K
0B, 0l = 0C, % OB,0r'll = 0C, %

The permutation is obviously height preserving.

(ii) The contraction formula is the principal formula of a OF inference in the an-
tecedent. Then we permute the proof as follows using the i.h. and the height pre-
serving invertibility of the O rule:

T,0B|0B, B,T = A

invert.
,0B0B BT =A LOB,8BB BT = A s
ZOBOBI=4 T DOBIBL=A o
SIOB,T = A ot TIOB,T = A

The permutation is height preserving since the steps contr-1, contr-14-, and invert. do
not change the height of the proof.

(iii) The contraction formula is the principal formula in the succedent and we want
to have admissible the following contraction:

fT = B
0%
Orjl = 0B,0B,% .
oIl = 0B,5 ot

Then we use the O} rule so that the conclusion is not weakened by the other occur-
rence of OB. This step is obviously height preserving.

(iv) The contraction formula is not the principal formula. If the last step is a OF
inference, OB is in A. Then we use the O} rule so that the conclusion is weakened by
only one occurrence of the contraction formula. If the last step is another inference,
we use contraction one step above on the proof of lower height. If it is an initial
sequent, the conclusion of the desired contraction is an initial sequent as well. Again,
all the steps are height preserving. QED
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Remark 2.2.11. Removing duplicate formulas.

As long as we have the height-preserving admissibility of the contraction rules, we
can always remove duplicate formulas during a backward proof search. It is important
for the space complexity. Consider the O3 rule is applied backwards. It can be split
into two cases: either the principal formula OA is already in the third multiset 32, and
then we do not add it there, or it is not, and the inference stays as it is and we add
OA to . This corresponds to treating the third multiset as a set. Try for example
to search for a proof of (§|30000p = OOOOp) in both versions of the calculus. If
we allow duplicate formulas in X, the increase of the weight of the sequent can be
exponential. For more on this topic see Heuerding [24], the calculus K72 We do
not change Gmy. this way to prove uniform interpolation. However, our proof can be
easily reformulated in this manner.

If we consider a proof-search for a sequent (©|IT = A) and put ¢ = w(0,I1, A),
an analogous function to that in {24] would be f(Z|[; A) = ¢? - (2, T, A) + w(l', A).
It decreases in each backward application of a rule of the variant of Gm.;. where we
do not duplicate formulas in the third multiset £. Then possible increase of w(I", A)
in a backward application of the OF rule is balanced by ¢*. If we do not remove
duplicate formulas, the constant ¢® has to be replaced by an exponential function of
c. !

Lemma 2.2.12. The following cut rules are admissible in Gm}..

AL = A4 GAT= A SFP=A04 ©,040=%
oI = AA cut 2,010 = A, A

cut+

The above cut rule cannot be replaced by the expected form of cut:

LI=AA ©O|AIll=A .
ZoI=AA

ut’ |

since it is not admissible in Gmj. The counterexample is the following use of cut’:

Olp=p Ot
K
Op|@ = Op 0|Cp=p
Op|@ = p ¢

ut’

'In Heuerding [24] (where one-sided version of the calculus is used treating both 01, & as primi-
tive), (') is replaced by the number of boxes in I'. There is a gap since the function can increase
in a backward application of the ({,new) rule of his calculus K 752, An example is a proof search
for $tp where f(01OTp) < f(OTp|Op) since then the number of boxes in the sequent increases.
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which results sequent (Op|@ = p) unprovable in Gmj.

However, the cut rule above suffices to go through the proof of Theorem 3.3.1
and it corresponds to system Gmyr in view of Lemma 2.2.13. The cut+ rule is only
needed to prove admissibility of the cut rule and it will not be used in the proof of
Theorem 3.3.1. What we care on here are only sequents with the third multiset empty
since they matches usual sequents of the system Gmy and therefore they have clear
meaning (see Lemma 2.2.13, 2.2.16).

ProoF OoF LEMMA 2.2.12. The proof of cut-admissibility is by induction on the weight
of the cut formula and, for each weight, on the sum of the heights of the proofs of
the premisses. The main step is the following: Given cut-free proofs of the premisses
we have to show that there is a proof of the conclusion using only cuts where the cut
formula is of lower weight or cuts where the sum of the heights of the proofs of
the premisses is lower.

We proceed simultaneously for both the cut rules. Note that in the cut+ rule, the
cut formula is always of the form OA.

If the cut formula is an atom and principal in one premiss (which is then an initial
sequent) then we can replace the cut inference by weakening inferences. If the cut
formula is principal in both premisses, the conclusion is an initial sequent. If it
is principal in neither premiss, we can apply the cut rule one step above so that
the sum of the heights of the proofs of its premisses is lower, then apply the original
rule and finally some contractions (if one premiss is an initial sequent, the conclusion
is an initial sequent as well).

Let us consider non atomic and not boxed cut formula. If it is not principal
formula in one premiss we can apply the cut rule one step above so that the sum
of the heights of the proofs of its premisses is lower, then apply the original rule
and finally some contractions. If the cut formula is principal in both premisses we
proceed the same way as in the case of classical sequent calculus. For missed details
(reduction steps treating classical connectives) see the proof for calculus G3cp in {51]
or [38]. We deal with the cut rule where the third multiset is empty and therefore it
does not make any change here.

Let the cut formula be of the form OB. Again, if it is not principal in one premiss
we can apply the cut rule one step above so that the sum of the heights of the proofs
of its premisses is lower, then apply the original rule and finally some contractions.
So let the cut formula be principal in both premisses. Then there are two cases to
distinguish:

(i) The cut formula is the principal formula of a O}, inference in both premisses
(i.e. the following instance of the cut+ rule):
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)T =B QI B = C
OrI” = 0B, A OB, oMl = ac, A
ar,omr, i’ = A,0C, A

Here we apply the i.h. and use the following cut inference with the cut formula of
lower weight and the O} rule to permute the proof as follows:

+
DK

cut+

¢r=B QIB=C
o, I=C
Or, 0|, IV = A, 0C, A

cut

+
EIK

(i) The cut formula is the principal formula of a O} inference in one premiss
while it is the principal formula of a O inference in the other. The only possibility
how this situation can occur is the following instance of the cut rule:

00 =B . OB[I,B=A
— 0} 0
@' = 0B, A OB, II= A

00, I = AA

+
T

cut

In this case we use, by the i.h., one cut+ inference with a lower sum of the heights of
its premisses and one cut inference with the cut formula of a lower weight to permute
the proof as follows:

00 =B -
Or = 0B,A * OB[I,B=A o
cu
|0, B,Il = AA =5
gT 0= A, A o

QED

Lemma 2.2.13. Gm{ s equivalent to Gmy:

Fomy T = A iff gy BT = A

ProoF OF LEMMA 2.2.13. The right-left implication follows immediately since delet-
ing the ”|” symbol from all sequents in a GmZ proof of (0|T' = A) yields a Gmr
proof of (I' = A).

The left-right implication is proved by induction on the height of the proof Fem,.
I' = A using admissibility of structural rules (weakening and contraction suffice here).

The steps for initial sequents and classical rules are obvious since they do not
change the third multiset. So let us consider the box rules.

The O rule is captured in Gm;: as follows
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Ir= A
O = 0A, A
OO|T, 1 = 04, A
0|OT, 11 = DA, A

The O rule is captured as follows:

+
DK

admiss. weak.
OF inferences

QIT, 04, A= A | +
invert. of OF
DALA A=A dmi ;
admiss. contr.
DA A=A o3
I, 04 = A

QED
As an immediate consequence of Lemma 2.2.10 , 2.2.9, and 2.2.13 we obtain:

Corollary 2.2.14. The weakening and the contraction rules are admissible in Gmyp
and Gmy.

ProOOF OF CoR. 2.2.14. For Gmyp it follows from the three lemmata immediately.
For admissibility of weak-1 in Gmg, we only remove the symbol "—-" from the left
proof-tree in 2.2.9, weak-r is obviously admissible as before.

For admissibility of contraction rules, we use (i) and (iii) form 2.2.10 removing
the symbol ”— again and omitting steps for the 07 rule. QED

The height preserving admissibility of the weakening and the contraction rules in
Gmr and Gmg can also be obtained using a similar proof as for Gmj.

As an immediate consequence of Lemma 2.2.12 and 2.2.13 we obtain the following
admissibility of the usual cut rule in Gmy and Gmg:

Corollary 2.2.15. The cut rule

I'=s>AA All=A
=A%

cut
1s admissible in Gmq and Gmg.

ProOOF oF COR. 2.2.15. For Gmy it follows from 2.2.12 and 2.2.13 immediately.
For Gmg we again use argument from 2.2.12 removing the symbol "—" and
omitting steps for the OF rule. QED

Lemma 2.2.16. Gmyg and Gmr are equivalent to the corresponding Hilbert style
definitions Hyx and Hr:
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FGmKP:>A’L‘_[f FHKAP_’VA
FGmTP:>A7:.[f FHTAP_’VA

PROOF OF LEMMA 2.2.16. Easy induction on the height (the length) of the proof
of ' = A (AT — V A resp.) using admissibility of structural rules. QED

2.3 Sequent calculi for logics having arithmetical
interpretations
Consider the form of L6éb’s and Grzegorczyk’s axioms:
0O(D — p) — Op

where D is Op and O(p — Op) respectively. Let us call D a diagonal formula.
The presence of the diagonal formula in the axioms reflects in its presence in the ap-
propriate sequent rules - in both cases it appears in the antecedent of its premiss.

It causes problems proving structural properties of such a sequent system, e.g.
cut elimination. Although both calculi are known to admit cut elimination, a direct
syntactic proof of cut elimination is highly nontrivial.

We have formulated our calculi without the cut rule so we have to show that it is
admissible in our systems. We refer to the semantical completeness argument given
by a form of a decision procedure for the calculi.

For more information see [46], [1].

Definition 2.3.1. Sequent calculus Gmg results from G adding the following modal
rule (as before, IT contains only propositional variables and A contains propositional
variables and boxed formulas):

ar,r,0A= A4
or,II = 0A4,A

Ogr

Sequent calculus Gmg,, results from G adding the rule Or and the following modal
rule:

Or,0(A - 0A4) = A

DG"rz:
Or,T1 = OA, A
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2.3.1 Termination

We shall se that, for termination of proof search in GL and Grz, the presence of
the diagonal formula in the Oy rule is substantial since it provides us with a nice and
natural loop checker which is already built in the syntax.

In Gmgr, consider a proof search for a sequent (IT = A}. First we create a tree,
as before for K and T, going backwards the rules of Gmey.

To obtain termination we would need to make one more restriction here - if one of
the critical branches above a Og;, inference is closed, the others are closed as well (this
branching is disjunctive and you can think of the branches as treating simultaneously).
Try e.g. to create such a tree for (0-00p = Op) to get feeling what is the matter
here - this proof search creates an infinite branch repeating the Ogy, inference with
O0Op principal.

It is important to note that this looping is not substantial for creating a proof or
a counterexample since we reach an initial sequent (on another branch of course) before
this looping starts. Also note that this looping occurs on the disjunctive branching of
a proof-search tree. Let us see that this kind of looping can occur only in the case of
provable sequents (in contrast to logics S4 or K4 where a similar proof search creates
a loop in the case of an unprovable sequent and the resulting counterexample then
must contain an infinite branch or a loop):

Since for the classical rules the weight function decreases, a loop must contain at
least one O, inference. Think of the critical sequent of this Ogy inference. To create
a loop we need to meet following two things: we need a formula (in the antecedent)
which returns the same boxed formula again and again to the succedent - i.e. we need
a formula O-0OB in the antecedent. Then we need the Ogp, inference to be applied -
i.e. we need at least one formula OC in the succedent. But a sequent of this form,
iLe. (0-0B,T = OC,A), is provable in GL (for admissibility of weakening see 2.3.6
below, (TII, B = B, A) is obviously provable):

0B,B,0B= B

OB = 0B admi K

O-0B,0B = B,0B T‘SS' weax.
0-0B,-0B,0B=B

Octr
D-0B = OB admiss. weak
0-0B,0C = C,0B ) )

0-0B,-0B,0C = C —l

Ogtr
O-0B = 0C admiss. weak
O-0B,T = 0C,A ’ :

GL
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However, a simpler loop preventing mechanism using the substantial presence of
the diagonal formula can be used as follows: the looping can be prevented by checking,
when applying the Og;, rule backwards, if the diagonal formula is (already) in the an-
tecedent or not, since it detect possible previous backward application of the Ogy
rule with the same principal formula. If the diagonal formula is in the antecedent,
the critical sequent is of the form (OI', 0A, ® = OA,0A, ¥), which is obviously prov-
able, and we immediately close the branch as in the case of an initial sequent. This
mechanism can be built in the calculus itself splitting the Og rule into two cases,
but we do not change the definition of the calculus and only use this loop preventing
mechanism proving termination of the calculus Gmgy and Theorem 3.4.1.

For a decision procedure for GL and a termination argument for its sequent
calculus (based on sets) see also [53].

Now let us precisely state that a proof search in Gmgy terminates. This means
that the resulting proof search tree is finite.

Lemma 2.3.2. Proof search in the calculus Gmgp always terminates.

PROOF OF LEMMA 2.3.2. Consider a proof search for a sequent (IT = A). Let d
be the maximal box-depth of IT, A. This is the maximal number of Oy, inferences in
a branch of the proof search tree providing we use the loop preventing mechanism as
described above, i.e., we do not apply the Og;, rule if the diagonal formula is already
in the antecedent. This is crucial since it enables us to bound the weight of sequents
occurring in a proof search:

Put ¢ = 2%w(II,A), i.e. an upper bound of the weight of a sequent occurring in
a proof search for a sequent (II = A) (c is then a constant for (IT = A).)

Let b(I") be the number of boxed formulas in " counted as a set.

For a sequent (I' = A), consider an ordered pair (¢ — b(T"), w(T", A)). Now this
measure decreases in every backward application of a rule in terms of the lexicograph-
ical ordering:

¢ is certainly greater or equal to the maximal number of boxed formulas in the an-
tecedent which can occur during the proof search, so the first number does not de-
crease below zero. For a classical rule, the weight of a sequent decreases. For the Ogy,
rule b increases and so ¢ — b decreases. Note that we are using the loop preventing
mechanism here and do not apply the Og;, rule backwards if the principal formula is
already in the antecedent.

Notice that in contrast with the case of Gmj in 2.2.7 where a similar idea is used,
this measure also depends on the complexity of the input sequent.

Another way (closer to the approach of [25] or [24]) how to formulate the function
is the following: For any sequent (I' = A) consider the following function:

f(T = A) =c*—cb(T) + w(, A).
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This function (values of which are nonnegative integers) decreases in every backward
application of a rule in a proof search for (IT = A).

Here c is a constant, ¢? is included to ensure that f doesn’t decrease below zero,
and cb(I") balances the possible increase of w(I' = A) in the case of a backward
application of the Ogp-rule.

QED

Gmgy, itself is not terminating for the same reason as Gmyp - we have to prevent
reflexive looping. It is done precisely as in the case of the calculus Gm} by adding
the third multiset of formulas to a sequent.

The proof search is analogous to the previous case of GL but this time the se-
quents that can cause ’transitive’ looping are not provable any more. In contrast
to the previous case, the looping occurs on the conjunctive branching here (thanks
the form of the diagonal formula it occurs in a backward application of the V-1 rule).
See the following example of looping - the two bold sequents are, up to contraction,
the same (O(p — Op) «» O(~p V Op)):

O0-0Op,0(-p V Op),0(-p VvV Op),= p,p,Op
O0-0p, O(=p V Op), O(—p V Up), —p,= p,0Op
0-0p, O(=p vV Op), B(=pV Bp),~pVOp,=p,0p "
D—-0p, ~Op, O(=p V Op), O(=p V Op), "pVOp, = p 1
rZ
O-0p,0(-p vV Op) = p,0p
O-0p, ~0p, O(-pVOp) = p _
DGrz
D—bl:]p e Dp

V-1

However, as in the case of GL, these loops are not substantial for creating a proof
or a counterexample. Diagonal formula plays a crucial role also here and can be used
as a natural loop-preventing mechanism:

The looping is prevented by splitting the Og,.. rule into two cases distinguishing
if the diagonal formula is present in the antecedent or not (this time we have to
build the mechanism into the calculus itself since it changes the rule and not only
close a branch of a proof search tree). We also change the premisses of the Grz rules
closing under the Op rule at the same time. This results in the following calculus
Gm,, containing two loop-preventing mechanisms:

Definition 2.3.3. The calculus Gmg,, results from the calculus Gm} by adding
the following two rules:
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ar, 0(A — 0A4)er 0 A
QA OAILS A oy (A—DA g7 —n0
ormn = 04,A O = 04, A

Consider the second, Of, _, rule bottom up. When the diagonal formula is already
in the third multiset, we apply the rule so that we neither add the diagonal formula to
the third multiset, nor we add I" to the antecedent. The latter relates to the following:
to move from (OT|...) to (OT|I"...) in the antecedent in a backward application of
the Oy, rule corresponds to treating transitivity (a similar phenomenon can be seen
in completeness proofs for transitive modal logics). This is omitted here to prevent
looping. However, the calculus remains complete - it is equivalent to the Gmyg,, as
we show in Lemma 2.3.10. First let us see that Gm{,,, is terminating.

To make the argument easier, we adopt the same restriction to the O} rule as
in the remark 2.2.11 about duplicate formulas - we shall treat the third multiset as
a set.

Lemma 2.3.4. Proof search in Gmf,, for sequents of the form (BT = A) always
terminates.

PRrOOF OF LEMMA 2.3.4. Consider a proof search for a sequent (#|II = A). Let
d be maximal box depth in (@|IT = A), which is, as in the case of GL, the max-
imal number of Of,, rules along one branch of the proof search tree. Let b(I') be
the number of boxed subformulas of I" counted as a set.

With each sequent (Z|T" = A) occurring during the proof search, we associate
an ordered pair (e — |£°|, w(I", A)). Here e = d.b(I1, A) is an upper bound of the num-
ber of formulas stored in I if we do not duplicate formulas. Therefore the first number
does not decrease below zero. The measure obviously decreases in every backward
application of a rule of the calculus. For the OF, ,, rule, |Z°| increases and so e — |£°|
decreases, while for other rules the weight w(I", A) decreases.

If we would allow duplicate formulas in X, then b(I') has to be counted as a mul-
tiset, and e would be a highly exponential function of b.

QED

The closure of a sequent is for Gmgy and G’mgm defined as before for Gmyg and
Gm7 respectively.

Notice that for a non-critical sequent any sequent from its closure is of strictly
less weight.

The following lemma is an easy observation about the closure we shall use later in
our proofs:

Lemma 2.3.5. (1) Let Gmy be one of Gmy,GmgL and (I' = A) be a sequent,

ngzr (A - DA) € r
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) Iy =A;. . I, =AF=A
if Fom, I' = A then bgy, II; = A; for each i.
(i) I,,0= QA L, 0=>0A, F1LO0= QA
if Fom, IO = QA then bgm, 1L, 0 = Q,A; for each 1.

(2) Let Gm} be one of Gm}, Gmgrz" and (ZI' = A) be a sequent,
CUZIT; A) = {14|IT; :>A1, oo Yol = An}. Then:

) NI = Ay I, =2 A FED= A
if }”sz ZIC = A then P“Gm}f ;|11 = A, for each i.

(i) 11,9]1,,©= O A1;..; 1,91, 0= QLA FE O 0= QA
if [“cmz T, = Q,A then l‘sz I, T5|© = Q, A; for each i.

Proor oF LEMMA 2.3.5. (i) follows in both cases immediately from the definition
of the closure and the invertibility of the rules.

The first part of (ii) follows in both cases from (i) taking the proof-tree obtained
n (i) and adding the same context to all the sequents which by the admissibility of
weakening yields again a proof-tree. The second part of (ii) follows by the invertibility
of the rules. QED

2.3.2 Structural rules

Lemma 2.3.6. Weakening and contraction rules are height-preserving admissible in
Gmg L.

PROOF OF LEMMA 2.3.6. The arguments are similar as used in 2.2.10 and 2.2.9,
we only state the modal steps here. Weak-r is again built in the modal rule.

Weak-1 by O A, the last step is a Ogy inference:

or,r,0B = B I
OA A, 00,08 = B rea&

0
0AOQ = 0B A F

Contr-r on A, with OA principle of a Ogy, inference: we use the Ogy rule so that
we do not weaken by the other occurrence of OA in the conclusion.

1

Contr-1 on DA, with OA principle of a Ogy inference - we permute the proof as
follows:

BBIOC=C = _, BBIL=C .
0OB,0B,0r, I = OC, T B,T,0C=C "

OB.Or oo ocy  contrl OB,Or 1= 0C,x "
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The permutation is obviously height preserving. QED
Lemma 2.3.7. Weakening rules are height-preserving admissible in Gmg,..

Proor oF LEMMA 2.3.7. As before, the argument is similar as used in 2.2.9, we
only state the modal step here. Weak-r is again built in the modal rule.

Weak-1 by OA, the last step is a Og,, inference:
DF,F,D(B — DB) = B
0OA,A,O0T,0(B —0OB) = B
OA, O Il = OB, A

weak-1
DGrz

QED

Also contraction rules are height-preserving admissible in Gmg,.,, but we do not
use this fact here.

Lemma 2.3.8. Wecekening rules are admissible in Gmg, .

PROOF OF LEMMA 2.3.8. The three weakening rules are that of Lemma 2.2.9 and
also the proof is fully analogous to that of Lemma 2.2.9, the same reason why this is
not height-preserving admissibility applies here. QED

Lemma 2.3.9. Contraction rules are height-preserving admissible in Gmf,,.

ProOOF OF LEMMA 2.3.9. The three contraction rules are that of Lemma 2.2.10
and the proof is fully analogous. We only include the steps for the boxed contraction
formula: (see (i), (ii), and (iii) of Lemma 2.2.10).

(ia) The contraction formula is the principal formula of a Of, ,, inference in the an-
tecedent. Then we permute the proof as follows using the i.h.:

Or,0B,0B,0(C — 0C)|B,B,T = C
OB,0B,0r|I = 0C, X
OB,0lNI = 0C, &

+
Grzl

contr-1+

Or,oB,0B,0(C — OC)|B,B,I' = C
ar,oB,d(C — 0C)|B,T = C
OB,00NII = O0C, 2

contr-1, contr-1+

+
Grzl

The permutation is obviously height preserving.
(ib)The contraction formula is the principal formula of a O/, inference in the an-
tecedent. Then we permute the proof as follows using the i.h.:
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OB,0B,00'0 = C
OB,0B,00Nl = 0C, %
08,0 = 0C, 2

+
Grz2

contr-1+4

OB,0B,000 = C
or,oBlp = C
OB, 00N = OC, =

contr-1+4

-+
Grz2

The permutation is obviously height preserving.
(i) The contraction formula is the principal formula of a O} inference in the an-
tecedent. (ii} of Lemma 2.2.10 applies here.
(iii) The contraction formula is the principal formula in the succedent. Then we
use the appropriate OF,, rule so that the conclusion is not weakened by the other
occurrence of OB. This step is obviously height preserving.

QED

Lemma 2.3.10. The calculi Gmg,, and Gmgm are equivalent:
}—Gm(;rz '=A 2ﬁ }.Gmg” Q)IF = A,

PrROOF OF LEMMA 2.3.10. The right-left implication: deleting the ”|” symbol from
a Gmf,, proof of (QII' = A) yields correct instances of rules of Gmg,,, except
the OF, ., rule. It has to be treated as follows:

OrO(A—-DA) = A
oIl = 0A A
Or,0(A — OA),II =04, A

We end up with a Gmg,, proof of I' = A.

The left-right implication: The classical rules and the Oy rule are treated as in
Lemma 2.2.13.

The Og,, rule is simulated as follows ((A — DA) & (mAVOA) and (A — OA) ¢
I):

Oere

admiss. weak.

O, O(-AvOA) = A
lor, ) inv. of 07
Or,a(-AvOA)l,-AvO4Ad= A .
OT, O(=A vV OA)F = 4, A ) 1‘nv. of v-l and —1
Or, O(=A v DAl = A admiss. contr-r

+
Ol = 04, A o '
oI, 11 = 04, A admiss. weak-1 inferences

07 inferences

g|or, 1 = 04, A
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If (A — DA) € T', we use some admissible contr-r+ inferences before the Of,
inference is used.
QED

Cut admissibility

We state a semantic argument of cut admissibility here - it proofs that the calculi
Gmgy and Gmg,, are complete without the cut rule w.r.t. Kripke semantics. Then
an easy semantic argument of soundness of the cut rule entails its admissibility.

Lemma 2.3.10 then yields admissibility of the appropriate cut rule in Gmg,, which
is used in the proof of Theorem 3.5.1.

For proofs you may see also [1] for GL and Grzegorczyk’s logic, and [53] or [46]
for GL where redundancy of the cut rule is established through a decision procedure
which either creates a cut-free proof or a Kripke counterexample to a given sequent.

Although they use a formulation via sets of formulas, observe, that a cut-free
proof with sets can be equivalently formulated using multisets and contraction rules,
which are, as we have proved, admissible in our cut-free calculi. Equivalently, if
a sequent does not have a cut-free proof in the system based on multisets, its set-
based counterpart sequent does not have a cut-free proof in the system based on
sets.

Lemma 2.3.11. (Avron [1]:) There are a canonical Kripke model (W, <) and a canon-
ical valuation V' such that:

o < is irreflexive and transitive
o for every w e W, the set {v|v < w} is finite

o if (I' = A) has no cut-free proof in Gmegy, then there is a w € W such that
wlky A for every A €T and w ¥y B for every B € A.
There are a canonical Kripke model (W, <) and a canonical valuation V' such that:

s < partially orders W
o for every w € W, the set {v|v < w} is finite

o if (I' = A) has no cui-free proof in Gme,., then there is a w € W such that
wlky A for every A € T and w ¥y B for every B € A.

Proor orF LEMMA 2.3.11. See [1]. The canonical model is built from all saturated
sequents (closed under subformulas) that have no cut-free proof in appropriate calculi.

The lemma entails completeness of Gmgp w.r.t. transitive, well-founded Kripke
models; and completeness of Gmgr, w.r.t. transitive, reflexive and well-founded
Kripke models. QED
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Corollary 2.3.12. The cut rule

I'=AC CII=A
I'N'II= AA

is admissible in Gmgar and Gmey,.

Proor oF Cor. 2.3.12. It is easy to give a semantic argument of soundness of
the cut rule. Given a counterexample of the conclusion (T',II = A, A) of a cut infer-
ence, there is a counterexample to one of its premisses: consider the counterexample
(W,R) and a world w € W in it such that w -y A for every A € TUII and w ¥y B
for some B € AUA. For any formula C it is either the case that w IFy C, and then
w refutes (C,II = A), or wly C, and then w refutes (I' = A, C).

Now Lemma 2.3.11 (completeness of Gmegy and Gmg,,) entails admissibility of
the cut rule in the calculi. QED

Corollary 2.3.13. The cut rule

OT = A,C  O|C,T=> A
OT,I= A, A

is admissible in Gmp,,.

Proor oF Cor. 2.3.13. Follows from Corollary 2.3.12 and Lemma 2.3.10. QED



Chapter 3

Uniform Interpolation

In this chapter we concentrate on the stronger from the two Craig interpolation
properties - the uniform interpolation property. We shall prove uniform interpolation
for modal propositional logics K, T, GL, S4Grz.

The uniform interpolation property for a propositional logic is a strengthening of
the Craig interpolation property. It states that for every formula A and any choice of
propositional variables g, there is a post-interpolant I,,4.4(q) depending only on A and
g such that for all B, whenever (A — B) is provable and the shared variables of A and
B are among G, (A — Lst4(@)) and (Ipesea(q) — B) are provable. Similarly there is
a pre-interpolant: for every formula B and any choice of propositional variables 7 there
is a formula I, () depending only on B and 7 such that for all A, whenever (4 — B)
is provable and the shared variables of A and B are among 7, then (Ip.p(F) — B)
and (A — I,..p(F)) are provable.

Uniform interpolants are unique up to the provable equivalence. Concerning Craig
interpolation this means that every implication has the minimal and the maximal
interpolants w.r.t. the provability ordering.

It was proved in Wolter [55] that uniform interpolation is preserved under fusion
of modal logics.

The task of proving uniform interpolation is easy when dealing with logics satis-
fying local tabularity [13], which means that there is only finitely many nonequivalent
formulas for each finite number of propositional variables. If a logic satisfies both lo-
cal tabularity and Craig then the conjunction of all formulas 1(G) implied by A(p, §)
is the post-interpolant of A, and the disjunction of all formulas J(7) implying B(7, §)
is the pre-interpolant of B. This simple argument works e.g. in the case of classical
propositional logic or modal logic S5, while it is not the case of modal logics K, T,
K4, S4.

36
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Uniform interpolation can also be proved via a simulation (or equivalently an elim-
ination) of certain propositional quantifiers. If we can simulate propositional quan-
tification satisfying usual reasonable properties given e.g. by usual quantifier axioms
and rules then the simulations of 3pA and V7B are the post-interpolant of A(7, q)
and the pre-interpolant of B(g,7) respectively.

The main point is that even if the logic does not satisfy local tabularity we can still
keep the information "to be the uniform interpolant” finite and thus represented by
a single formula (a conjunction in the case of the existential quantifier or a disjunction
in the case of the universal quantifier).

Visser’s semantic proof of uniform interpolation yields a semantic characterization
of the simulated so-called bisimulation quantifiers: from the semantic point of view,
quantifying over p, we quantify over possible worlds that bisimulate w.r.t. all propo-
sitional variables other then p. Also a complexity bound of uniform interpolants in
terms of O-depth is obtained in the proof. However, the proof does not provide us
with a construction of the interpolants. (For more on bisimulation see [52].)

There is a proof of uniform interpolation for K in Kracht’s book [28] which uses
as a crucial fact the completeness of K w.r.t. finite irreflexive trees.

In this chapter, we apply a proof-theoretic method which was introduced by Pitts
in [39] to modal propositional logics. The argument is based on a simulation of propo-
sitional quantifiers in the framework of an analytic sequent proof system. The main
point of keeping the information "to be the uniform interpolant” finite and thus rep-
resented by a single formula is in a use of a terminating sequent proof system, i.e.,
a proof system in which any backward proof-search terminates. The method pro-
vides an explicit effective (and also easily implementable) construction of uniform
interpolants.

Concerning proof-theoretic approach to proofs of interpolation the situation is as
follows - as Craig interpolation relates to cut-free proofs, uniform interpolation re-
lates to terminating proof-search trees. Proving Craig interpolation, we start with
a cut-free proof of an implication (a sequent) and construct an interpolant inductively
from the proof. Proving uniform interpolation, we start with a proof-search tree for
a formula (we search for all proofs in which the formula can occur in the appropriate
context. So it is rather a finite proof-search subtree what we use here.} Here ter-
mination of the calculus is crucial, but we need even a bit more to prove that our
procedure terminates. A uniform interpolant is then the formula corresponding to
such a tree.

The relatively easy case of modal logics K and T (contained in sections 3.2, 3.3)
has been already treated by the author in [3], we have just slightly changed techni-
cal details of the proof. We have extended our study to logics having arithmetical
interpretations - GL and S4Grz.

The chapter 3 is organized as follows:
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e Section 3.1: we show that uniform interpolation fails for modal logic K4. This

follows immediately from the failure of uniform interpolation in modal logic 854
proved by Ghilardi and Zawadowski in {20].

Section 3.2: we prove the main technical theorem 3.2.1 providing us with an ex-
plicit algorithm which for a sequent (I' = A) constructs a formula Ay(I'; A)
to simulate universal quantification over p in K. In subsection 3.2, just before
the proof of Theorem 3.2.1, we have put an overview of the proof method.

— Subsection 3.2.1: we introduce second order K? extending K by proposi-
tional quantification and prove that K simulates K? using a translation
based on the formula A, constructed in the proof of Theorem 3.2.1.

— Subsection 3.2.2: we state the uniform interpolation theorem - Corollary
3.2.6 - and show that it follows from the fact that K simulates K? which
already satisfies uniform interpolation. We also show that we have in fact
constructed the interpolants proving Theorem 3.2.1 since they are nothing
else then quantified formulas.

The simple case of K is intended as a basic step, analogues of Theorem 3.2.1 are
to be proved for all the other logics using the same method and also analogues
of the corollaries can be obtained for all the other logics.

Section 3.3: we prove the main technical theorem 3.3.1 for logic T. The proof is
analogous to that for K, a difference is that it makes use of a sequent calculus
that includes a built in loop-preventing mechanism to enforce its termination.
It is still relatively simple and can be seen as a basic step for reflexive modal
logics.

Section 3.4: we prove the main technical theorem 3.4.1 for logic GL. The proof
is much like that for K, the main complication here is to prevent looping of our
construction caused by the fact that we deal with a transitive logic.

— Subsection 3.4.1: we show that the uniform interpolation theorem provides
us with a constructive proof of the fixed point theorem.

Section 3.5: we prove the main technical theorem 3.5.1 for logic S4Grz. This
time the proof is much like that for T since S4Grz extends T. The same
complication with looping as above in the case of GL is treated analogously
here.
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3.1 Logic K4

Since our aim of further work is to investigate uniform interpolation in provability
logics GL and S4Grz which extend modal logic K4 let us briefly discuss the failure
of uniform interpolation in K4.

It is known that modal logic S4 does not have the uniform interpolation property.
A counterexample was provided by Ghilardi and Zawadowski in [20].

Using the following translation from $4 to K4 and the fact that K4 is a subsystem
of S84 we conclude that K4 does not have the uniform interpolation either. Although
it is an easy observation, we include it here since as far as we know it is not mentioned
in the literature.

Definition 3.1.1. Translation A* of a modal formula A:
e p =p
¢ (Ao B)*=A"o B~
o (DA =0A* A A% e, (OA) =[A*

Lemma 3.1.2. /8]
Frag, A off  Fhg, A

Frg, A o A*

Lemma 3.1.3. [20] There is a modal formula B{p1,pa, q) which does not have a uni-
form post-interpolant Losig(p1,p2) in 84, i.e., there is no formula Lap(p1,p2) sat-
isfying

® Fug, B — Lsts
e for all C(p1,p2,7) such that Fyg, B — C, Fag, Iposts — C
The counterexample provided in [20] is :
B=p AO(p1 — Op2) AD(p2 — Op1) AO(p1 — q) AD(p2 — —q)

There is no formula simulating Jp,3p,B. It follows that B cannot have a uniform
post-interpolant. See also [52].

Corollary 3.1.4. There is a modal formula which does not have a uniform post-
interpolant in K4.
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PROOF OF COROLLARY 3.1.4. Consider the S4 counterexample B(p;,p2,¢). Con-
sider for the contradiction that K4 does have the uniform interpolation property.
This means that for B*, there is a formula I+ (p1, p2) such that Fg,, B* — Ipogn»
and for all C(p;, p2,7) we have that b, ., B* — C implies Fg,, Tpostp- — C. Then
we have the same for all C* of the form of a translation of a formula C. More-
over by the fact that bp,, A implies Fy,, A and that Fy,, A < A* we obtain
}—ff&; B — IpostB*-

Using the property of the translation by, A iff Fy,, A%, and again the fact that
b, A implies Fg,, A, and that by, A — A*, yields the following: for all C,
Frue, B — C implies Fyg, Ipostpr — C . But then we have obtained the uniform
interpolant for B in S84 which is the desired contradiction. QED

3.2 Logic K

Our main technical result is the following theorem. Its proof provides us with an ex-
plicit algorithm which for a sequent (I' = A) constructs a formula A,(T"; A) to simu-
late universal quantification over p. The formula VpB(p, §) (or equivalently the pre-
interpolant I..p(7)) is to be simulated by A,(@; B). To do the job, the formula
A,(T'; A) has to satisfy (i)-(iil) of the following theorem which can bee seen as ana-
logues of an axiom of specification and a generalization rule:

Theorem 3.2.1. Let I') A be finite multisets of formulas. For every propositional
variable p there exists a formula Ay(T; A) such that:

e (i)
Var(4,(T; A)) C Var(T, A)\{p}

o (ii)
FCmK F,AP(P;A) = A

o (1) moreover let II,L be multisets of formulas not containing p and Fgm,
ILT = A, A. Then
Fem,e T = Ap(T; A), A

We define a formula A,(I'; A) inductively on the weight of the multiset (I', A} as
described in the following table. In the line 2, ¢ and r are any propositional variables
other than p, and ® and ¥ are multisets containing only propositional variables.
Moreover we require that at least one of the multisets IV, A’, &, ¥ is nonempty in
the line 2, so that 0,0 does not match the line (to prevent looping).

The formula A,(T"; A) is defined recursively to equal A A (©;Z).
(O=E)eCUT;A)




41

The recursive steps for the critical sequents are given by the following table:

ar’, @; A’ ¥ matches | A,(OLY, ®; 04, ¥) equals
1 ifpedny T
2 otherwise VaV -r
ge¥  red
V DA;O(F’? B)
Bed’
VOA(T; 9)

Ap(T'; Ay where T'; A does not match any line of the table is defined to equal L. (In
particular, A,(0;8) = L.)

Consider for example 4,(0(p A ¢); Op). It matches the line 2 and thus we obtain
OA,(p A g p) V OAL(p A ¢;8). This yields OA,(p, ¢;p) V O Ay(p, ¢; @) by the closure,
and then, using lines 1 and 2, O(—gV T)V {—g. We have obtained A,(O(pAgq); Op) =
gV O(—g V T), which is provably equivalent to T.

Overview of the proof method We are to construct, for a given sequent (I'; A),
a formula satisfying (i)-(iii) of Theorem 3.2.1. It is much like to write down the ap-
propriate proof-search tree for the sequent (I'; A): first we close under the invertible
rules and define A,(T"; A) to equal A A,(0; Z) (this corresponds to conjunc-
(8=>E)eCHT;A)

tive branching of the proof-search tree on classical inferences). Then, for a critical
sequent, we test whether p € ® N ¥, If so, the sequent is initial and we end up with
T (the case there is another variable then p in ® N ¥ is included in the following
modal jump). Otherwise we apply a modal jump (which corresponds to disjunctive
branching of the proof-search tree on a modal jump): we write down a disjunction of
all variables other then p from ¥, a disjunction of all negated variables other then p
from @, a disjunction of 0A, of all possible predecessors - premisses of a Oy inference,
and one more disjunct starting with . This one is included to prove, in the part (iii)
of the theorem which is done by induction on the height of a proof of (II,T" = A, A),
the step for a Ok inference with the principal formula not containing p. To be more
precise, what we are doing here is, rather then a proof-search for (I'; A), a part of
a proof-search for any sequent extending {I'; A) by contexts not containing p. This
main idea is common to all the modal logics we consider in the thesis.

PROOF OF THEOREM 3.2.1. The definition of 4,(I'; A) runs inductively on the weight
of I', A. Note that recursively called arguments of A, are strictly less in terms of
the weight function then the corresponding match of (I'; A). For a noncritical se-
quent it is a property of the closure, for a critical sequent it is clear from the table.
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Thus our definition always terminates.

(i) follows easily by induction on I, A just because we never add p during the defini-
tion of the formula A,(I"; A).

(i1) We proceed by induction on the weight of I, A. We prove that

Fome T Ap(T; A) = AL

Let (' = A) be a noncritical sequent. Then sequents (6; = Z;) € CI(T'; A) are of
lower weight. By the induction hypothesis

Fomy O, Ap(04E;) = E;  for each 1.
Then by admissibility of weakening and by Lemma 2.3.5
}—Gmx F: Ap((—)l; El)a Sty AP(@k7 Ek} = A,

and so
Fomg T A A0 Z) = A,
(8i=>Z)eCUTA)
which is
Fome T Ap(T A) = A

Let (I' = A) be a critical sequent matching the line 1. Then (ii) is an initial sequent.
Let (I' = A) be a critical sequent matching the line 2.

o for each B € A’, we have bgm, I, A,(I'; B) = B by the i.h., which gives
Fom, OV, @, 04,1, B) = OB,0A”, ¥ by a Ok inference.

e by the i.h. we also have Fgm, I, A,(I";0) = 0, which gives, using negation
rules and the Ok rule, bgy,, O, &, OAL(TY; B)Y = OA', 0.

o for each r € ® obviously Fgm, ®,—-r, O = OA', .
o for each ¢ € ¥ obviously Fgm,, ©,¢, 0" = OA', .

Together this yields, using V-1 inferences,

Fome 00, \/ ¢\/ ~r \/ DA, B) v OA,(I";0) = DA, ¥,

ge¥  red Bed’

that is, by the line 2, g, @, 00", A,(®,0I"; OA", ¥) = DA’, T.
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(iii) We proced by induction on the height of a proof of (ILT' = A, A). We can
restrict ourselves to initial sequents and critical steps (a Oy inferences). Let us see
first that for classical (invertible) parts of the proof the task reduces to appropriate
critical sequents:

Let the last inference of the proof of (II,I' = A, A) be a classical inference. Then
(ILT = A, A) is not a critical sequent and for all (© = Z) € Cl(T;A) we have
Fomy I1,© = =, A by 2.3.5. Then the following are equivalent:

Fomy = A,(0;E),A forall (&= E)€ CUT;A).

Fome = [\ A(6;5),A

(O=E)eCKT;A)
Fome IT = Ap(T; A), A.

So let us consider then the last step of the proof of (IL,T = A, A) is an initial sequent.
Then (IL,T = A, A) is an axiom, say (Z,r = r,©). We distinguish two cases -
either 7 = p or not:

o 7 = p: then p € T N A, which means that A,(I';A) = T and since obviously
Fomge 1T = T, A, we obtain (iii).

e 7 # p: there are four cases:

— r € [IN A, then (iii) is an axiom.
— r € IIN A then the line 2 gives by invertibility of the V-1 rule

Fome 7= Ap(Dyr A').

r € T' M A then the line 2 gives by invertibility of the V-1 rule

Fomy - = Ap(T;r, A).
— r € I'N A then the line 2 gives by invertibility of the V-1 rule
Femg 7V —r = AT A),
and so by cut admissibility
Fomy 0 = A, (T; A).

In all the three cases above admissibility of the weakening rule yields what is
required.
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To treat the case of an axiom of the form (L = ©) we use the line 1 of the table
similarly.

For the remaining case let us consider that the last inference is a Oy inference:

Consider the principal formula OA € A first, i.e. A doesn’t contain p. Then the proof
ends with:
mr=A
DHI, DFI,H”, 1‘\// => DA, AI’A
where OIT', II” is IT; OIV, T is T"; and OA, A’ is A.
Then the induction hypothesis gives

Fomge II' = A,(T7;0), A

and by a —-l inference we obtain
Fomg I, —A,(T7;0) = A

Now, by a Og and a negation inference, we obtain

Fomg O I = QAL (T, 0),0A4, A
By the line 2 of the table and invertibility of the V-1 rule we have

Fomgx OAp(T;0) = A, (O, T, A).
The two sequents above yield (iii) by cut admissibility.
Consider the principal formula OA € A. Then the proof ends with:

Irr=A
oI, ar, 1", 1" = gA, A’ A

where DI, IT” is IT; OV, T is T"; and OA, A’ is A.
Now the induction hypothesis gives

Femge I = Ay(IV; A)

and by a Og inference we obtain
Fom, O IT" = OA,(T; A), A.
The line 2 of the table and invertibility of the V-l rule yields
Fomx OAR(T; A) = A,(OIY, TV, OA, A').
We obtain (iii) again by cut admissibility. QED

The following two subsections capture the connection between propositional quanti-
fiers and uniform interpolants. We state and prove the results for the basic case of
K, however, analogues of them apply for all the other logics as well by similar proofs.




45

3.2.1 Propositional quantifiers

Propositional quantifiers are usually introduced via their semantical meaning. In
the framework of Kripke semantics they are defined as ranging over propositions,
i.e., sets of possible worlds. This definition is used in Fine [16], see also Bull [9] and
Kremer [32]. The second order modal systems over logics K, T, K4, S4 obtained this
way are recursively isomorphic to full second order classical logic. This was proved
independently by Fine and Kripke shortly after Fine’s paper [16] was published, as
Kremer remarked in [32]. Also Kremer's strategy from [31] can be extended to prove
the same result, as he claims in [32]. In particular it means that these systems are
undecidable while their propositional counterparts are decidable.

Another way of defining quantified propositional logic is extending a proof system
of the propositional logic we deal with by new axioms and analogues of usual quantifier
rules. This approach was applied e.g. in Bull’s paper [9], or in [39] in the case of
intuitionistic logic. Bull in [9] proved completeness of such second order calculi over
S4 and S5 w.r.t. Kripke semantics. This sort of proof is analogous to standard
completeness proofs in first order predicate modal logics. It can also be given for
second order K? and T? considered here but it is outside of the scope of this paper.
The difference is that Bull doesn’t allow quantifiers to range over all subsets of possible
worlds but only over those given by validating some formula. In this case we quantify
over substitutions. These two possible semantical definitions are different and do not
seem to yield systems of the same complexity.

We adopt the syntactical approach and define quantified propositional modal logic
K? as follows. Consider the following sequent calculus Gmge:

Definition 3.2.2. Sequent calculus Gmg:2 results from extending Gmg by structural

rules, an initial sequent
YpOA = OVpA,

and two quantifier rules:

T, Alp/B] = A =44
I'VpA=A "~ TI=VpAA

V-1, p not free in I', A

The added axiom represents the propositional version of the Barcan formula. Note
that its converse is easily provable in the calculus using the quantifier rules.

The desirability of Barcan formula is usually discussed in first order predicate
modal logics where it relates to the question whether there is a constant domain
in all possible worlds or not. Since it is certainly the case here because we have
a constant set of propositional variables we include this scheme to our calculus.

The calculus as defined here does not have nice structural properties but is trans-
parent and suffices to capture the semantical meaning of K? quantifiers in means of




46

Bull’s paper. If we want to do without cut (if it is at all possible), we should include
the Barcan formula another way.

To simulate propositional quantifiers of Gmpg2 in Gmg we define the following
translation A* of a second order modal formula A:

o pti=p
e (CoB)*:=C*oB"
o (-C) i=~C*

e (OB)" :=0(B")
o (VpC)* := A,(C*)

Observe that for a quantifier-free formula B, B* = B holds.
Now let us see that our Theorem 3.2.1 yields the desired simulation of propositional
quantifiers.

Corollary 3.2.3. Let C be a modal formula and T', A multisets of formulas not con-
taining p. There is a formula A,(C) such that:

(i) Fomyg T = C, A implies b, T = A,(C), A

() Fomg T = Ay(C), A implies for all B, Fem, ' = Clp/B], A.

PROOF OF COROLLARY 3.2.3. We define A,(A) = A,(0; A). The first part follows
immediately from 3.2.1 (iii).

By 3.2.1 (ii) we have A,(C) = C. As A,(C) does not contain p, we obtain
A,(C) = Clp/B] by substitution, which yields the second part. QED

To obtain the desired simulation we moreover need our construction of A, to
commute with substitution:

Corollary 3.2.4. Fam, Ap(Clg/B]) = (4,(C))g/B] and Fem, (A,(C))q/B] =
A,(Clq/B]), where B doesn’t contain p,q.

PRrOOF OF COROLLARY 3.2.4. The first direction uses the following congruence
property of modal logic K: C[q/A] < C|q¢/B] whenever A & B.

By 3.2.1 (ii) we have that A,(C(q/B]) = Clg/B]. Now by the congruence prop-
erty we get (¢ « B),A,(Clq/B]) = C, and since the antecedent doesn’t contain p
also (¢ = B), Ay(Clqg/B]) = A,(C). Substituting [¢/B] it results A,(Clq/B]) =
4,(C)la/ B

The other direction: by 3.2.1 (ii) we have A,(C) = C. By substitution we get
(Ap(C))lq/B] = Clq/B] and since the antecedent doesn’t contain p, we also get by
3.2.1 (iit) (A4,(C))l¢/ B} = A,(Clq/B)). QED
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Now we are ready to prove:

Corollary 3.2.5. If kg, , I' = A then bgom, I = A"

ProoF OF COROLLARY 3.2.5. By induction on the proof of I' = A in Gmg2 using
Corollary 3.2.3 and Corollary 3.2.4.

As of the added initial sequent YpOB = OVpB, note that A,(0B) yields OA,(B)
and thus Fem, Ap(0B) = 0OA,(B) can be easily proved form the line 6 of the table
in 3.2.1. QED

The other direction cannot be obtained. An example of a schema valid on our
simulated quantifiers in K and not valid on propositional quantifiers in K? is the V
quantifier commuting with the ¢ modality:

(OVpA)" = (VPOA),

which can be easily proved from the line 7 of the table in 3.2.1. The right-left im-
plication can be seen not to hold in the second order case using Kripke semantics in
means of Bull’s paper [9], i.e., quantifying over substitutions.

3.2.2 Uniform interpolation

Corollary 3.2.6. K has the uniform interpolation property: For any multisets of
formulas T'(p, ) and A(p,q) and variables § there is a single formula Lura(q) such
that

g }_Gmx P(}‘;a fj) = IpostPA(é)a A(};}—, ‘j)

e for any multisets of formulas I1(q, ), (g, 7),
if(F“cn)lK I(p.9),1(q,7) = Ap,q),2(q,7) then Fomy T(G,7), Losira(d) =
(g, 7).

For any multisets of formulas TI(f,@) and X(I,%) and variables t there is a single
formula Iens(t) such that

b P_GmK H(?-f_, a>, -{preHE(f) = Z({v ﬁ)

o for any multisets of formulas T'(5,1), A(5,1),
U Fem I, 0),T(5,1) = B(,4), A5, 1) then bem, T(8,1) = Lyens(?), A(G, 7).

PROOF OF COROLLARY 3.2.6. The result follows immediately from Corollary 3.2.5
and the fact that K? satisfies the uniform interpolation. It is easy to see that
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(F~(AT — V A))* and (VF(ATl — V X))* are the interpolants Lpsera and Iprens
respectively.

To see that we have in fact constructed the interpolants proving Theorem 3.2.1,
observe that our construction of A, works as well for more then one propositional
variable p. We can construct A; using the procedure for all § simultaneously.

Let us have I'(7, §), A(p, ). Theorem 3.2.1 yields the formula —Az(I'; A) (con-
structed only from I') A and containing only the variables ) such that from (ii) it
follows:

Fome I = =4[ A), AL
Let us have I'(p, ), 11(g,7) = A(p, §), X(g, 7). From (iil) we get:
Fomy I, 7A5(T; A) = .

Let us have II(¢,@),2(¢,@). Theorem 3.2.1 yields the formula Az(II;X) (con-
structed only from I1, ¥ and containing only the variables f) such that it follows from

(ii):
’_G’mf( H: Aﬁ(H: Z) =X

Let us have II(f,4), I'(5,f) = L(f, @), A(5,1). From (iii) we get:
Fome T = Ag(ILE), A.

QED

3.3 LogicT

The following analogue of Theorem 3.2.1 holds for the calculus Gm:

Theorem 3.3.1. Let £, T, A be finite multisets of formulas. For every propositional
variable p there exists a formula A,(E|T; A) such that:

e (1)
Var(4,(Z[T; A)) € Var(Z,T, A)\{p}

e (11)
Foms ZI0, Ap(Z|T A) = A

o (ii1) moreover let II, A, © be multisets of formulas not containing p and FGm;
O, LT = A, A. Then
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We define a formula A,(Z|T; A) inductively as in 3.2.1, changing the table as
follows.

The formula A,(T; A) is defined recursively to equal A A0, E).

(O=E)eCUT;A)

Notice that the closure here includes aiso the closure under the Op rule.

The recursive steps for the critical sequents are given by the following table:
(again, multisets ® and ¥ contain only propositional variables, g and r are propo-
sitional variables other then p, and at least one of the multisets OIY, ®, OA', ¥ is
required to be nonempty):

OM|®; DA, ¥ matches | A,(TlY|®; 0A’, ¥) equals

1 ifpednv T
2 otherwise VagV -r
ge¥ red
V 04,0 B)
Bed/

VO A OIT; 0)

PROOF OF THEOREM 3.3.1. The procedure runs precisely as that from Theorem
3.2.1. This time the recursively called arguments of A, are strictly less then the corre-
sponding match of (X|T"; A) in terms of the function used in 2.2.7 to prove termination
of Gm.
(i) holds since we never add p during a run of the procedure constructing the formula
b

(ii) Similarly as in Theorem 3.2.1 (ii), we proceed by induction on the complexity of
(3IT"; A) given by the terminating function.

Let (3|T" = A) be a noncritical sequent. Then sequents (£2;|0; = Z;) € CI(ZE|T; A)
are of lower complexity. By the induction hypothesis

FGms 10, A,(Q4104;Z;) = =;  for each i
Then by admissibility of weakening and by Lemma 2.3.5
}—G’m; ZIF, A;,(Qk‘el; El), Ce ,A,,(Qgi@k; Ek) = Z&,

and so
Fms ZIT, N\ Ap(U]O5 ) = A,
(§4]8:=E,)e CUE|T;A)
which is
Fomg EIT, Ap(S(T5 A) = A,
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Let (Z|I" == A) be a critical sequent matching the line 1. Then (ii) is an initial
sequent.

Let (| = A) be a critical sequent matching the line 2. We have, similarly as in
3.2.1, the following:

o for each B € A', we have b1 O|I", A,(O|I"; B) = B by the ih., which gives
Fam: O, OA,(017; B)|®, = OA’, ¥ by a Ok inference. Then by weakening
and Oy inferences ¢, .« OI'[0A, (BT B), @ = OA', T.

e by the i.h. we also have FGm; PIr’, A, (9|7 0) => @, which gives, using negation
rules and the Oy rule, lma; Or'|QA (0T, B), @ = TA'| .

o for each r € ¢ obviously F¢,,+ OI'|®, ~r = OA', T,
o for each ¢ € ¥ obviously b G Or'|®, ¢ = 0OA', T,

Together this yields, using V-1 inferences,

Foms OT1®,\/ ¢ \/ - \/ 04,01, B) v O A,(0]T;0) = DA’ ¥,
gev  red BeA/
that is, by the line 2, b, .+ Oor'|@, A,(OI|®; OA’, ¥) = OA', T.

(iii) We proceed by induction on the height of the proof of sequent (8, Z|IT, T’ = A, A)
in Gm}. The same as in Theorem 3.2.1 applies here. We can restrict ourselves to
initial sequents and critical steps (a O inferences). Let us see first that for invertible
parts of the proof the task reduces to appropriate critical sequents:

Let the last inference of the proof of (0, Z|II,T" => A, A) be a classical inference. Then
(©,Z]II,T = A, A) is not a critical sequent and for all (Y = =) € CI(Z|T; A) we
have Fam; 0,1, YT = =, A by 2.3.5. Then the following are equivalent:

Fams O = A,(QT;E),A forall (QY = =) € CUTIT;A)

Fomy O = A A QT E), A

(QT=E)eCUET;A)
ch; Ol = A,(X|I; A), A

Then by weakening and Oy inferences

Fams 016,11 => A,(SIT; A), A.




So let us consider then the last step of the proof of (£,0|II,T' = A, A) is an initial
sequent. It works similarly as in 3.2.1, the third multiset has no influence here.

Let us consider that the last inference of the proof of (@, Z|ILT => A, A) is a OF
inference.

e Consider the principal formula OA € A. Then the proof ends with:

0je°, 5% = A
6,51, 1 = 04, A, A

D+

where JA, A" is A,

Then by the induction hypothesis !—Gm; 0|O7 = A,(B|E7; A) and by a Ok
inference

Foma: Ol = DA(D7; A), A,

By weakening inferences
o ©16°, 11 = DA, (I|E%; 4), A,
By Or+ inferences we obtain
b amz 0|©,I1 = OA,(B|X"; A), A.
By the line 2 of the table and invertibility of the V-1 rule we have
b oms PIDAL(0|E"; A) = A(Z|T; 04, A"
The two sequents above yield (iii+) by admissibility of the cut rule in GmF.

e Consider the principal formula OA € A, i.e., A doesn’t contain p. Then the proof
ends with:

$le°, 50 = A
6,50, 11 = A, 0A, A/

+
DK

where 0A, A’ is A.
Then by the induction hypothesis

Fomy 0107 = A,(0]27;0), A
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and by a =1 inference and a Og+ inference
bams ©,0-A4,(0/S70)[IT = DA, A,
Since weakening is admissible in GmJ,, we obtain
g 0,0 A 052 0)|A,(02°0), T = DA, A
and now OF inferences and a —-1 inference yield
Fomi Ol = $ALB|Z7;0),04, A"
By weakening inferences
b mi 016", I = GALB|27;0), DA, A
By O inferences
Fams plo, Il = OA,(B7;0),04, A"
By the line 2 of the table and invertibility of the V-l rule we have
Foms BICALBIZE;0) = A,(Z|T; 0A, AY).
The two sequents above yield (iii+) by admissibility of the cut rule in Gmi.

QED

Analogues of Corollaries 3.2.3, 3.2.4, 3.2.5 and 3.2.6 hold also for modal logic T
by very similar proofs, so we obtain, from Theorem 3.3.1, the uniform interpolation
and a simulation of propositional quantifiers.

The schema (OVpA)* « (VGO A)*, used in the previous section to separate second
order quantifiers and our simulated quantifiers, holds for T as well. The reflexivity
itself does not brake it.
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3.4 Godel-Lob’s Logic GL

Theorem 3.4.1. Let ', A be finite multisets of formulas. For every propositional
variable p there exists a formula A,(I'; A) such that:

e (i)
Var(Ay([;A)) € Var (L, A)\{p}

o (i1)
}_G‘mez’, P, Ap(F‘, A) = A

o (i) moreover let TI, A be multisets of formulas not containing p and Fomg,
LT = A, A. Then
Fomer 1= Ap(1 A) AL

We define a formula A,(I'; A) inductively as in 3.2.1, changing the table as follows
(again, q and r are propositional variables other then p, multisets ® and ¥ contain only
propositional variables and at least one of the multisets is required to be nonempty).

Also multisets T and © in the line 2 contain only propositional variables.

The formula A,(I'; A) is defined recursively to equal A A(6;Z).
(0=2T)eCUT;A)

The recursive steps for the critical sequents are given by the following table:

or’, ®; OA’, ¥ matches A,(OIY, &, 0A', ¥) equals
1|ifpe®dnPorI"NA #0 T
2 otherwise VvV -r
qEY red
\ OA,(Or, I, 0B; B)V
BeA/
O(
(0L, T=0Q,8)eCi(O.I":8)
ZO:FIO
2NQ=¢
(VavV-rv YV 0A4,(0Z X 0B;B))
€0  reY BeQ

A, (0%, Y;00,0))
(0, T=00,0)eCl{or IV:%)
oore

ProOF OF THEOREM 3.4.1. The first line corresponds to the case when the critical
sequent is an initial sequent or the diagonal formula is already in the antecedent (here
we are using the loop preventing mechanism from the termination argument in 2.3.1).
Then the procedure ends up with T.
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For the termination of this procedure (see below) we are going to use a similar
function as the one used proving termination of Gmgy in 2.3.1. So words "strictly
less” in the following paragraph refer to such a function.

The second line, as in previous proofs, corresponds to the modal jump. It treats
propositional variables from multisets ®, ¥, all the possibilities of a Og; inference
with the principal formula from OA’ and the possibility of a Og; inference with
the principal formula not from OA’ (i.e., appropriate inductive steps in the proof
of (iii) of the Theorem). The last disjunct starting with a { needs some explana-
tion. Proceeding as in previous proofs, we would add {A,(OI",I”; @) to prove (iii)
of the theorem (it captures the case of a Ogy, inference with the principal formula
not containing p). This presents a problem since (OI",I') needn’t be strictly less
then (OIV,®;0A’, ¥). As a simple example shows, it cannot be solved using any
terminating function: a run of the procedure for (Op, p; @) would create a loop then.
A solution is as follows: we skip (OI”,T”; @) and go to the next level of its proof-search
tree, which is CI(OI”,I”; @), and consider all critical sequents from the closure. For
those strictly less then (O, @; 0A’, ¥) (which means with more boxed formulas in
the antecedent) we just take their A,, while for those that needn’t be strictly less
then (O, ®; OA’, ¥) we apply the second line of the table without the { disjunct.
That this is sufficient becomes clear proving (ii) and (iii) of the theorem and it can
be also seen from Lemma 3.4.2.

Let us see that the definition terminates. The argument is similar to that we have
used to prove termination of the calculus Gmgy in 2.3.1.

Consider a run of the procedure for A,(IT; A) and let d be the maximal box-depth
of (IT; A), which is the maximal number of critical steps occurring along a branch in
the tree corresponding to the run of the procedure. This is crucial since it enables
us to consider an upper bound of the weight of an argument of A, occurring during
a run of the procedure.

Put ¢ = 4%w(II,A), i.e. an upper bound of the weight of an argument of A,
occurring during the run of the procedure for (II; A) (c is again a constant for IT; A.)
Here, in contrast to the termination argument for the calculus Gmer, we need 4% since
the weight of a recursively called argument of A, can increase more. This is caused
by the last disjunct in the second line starting with {, since it misses the actual level
of (OI",T"; ) and calls arguments from the next one presented by CI(OT",I"; ).

Let b(T") be the number of boxed formulas in I' counted as a set.

For an A, argument (I'; A), consider an ordered pair (¢ — b(I'), w(I", A)). Now
this measure decreases in every recursive step of the procedure in terms of the lexi-
cographical ordering:

It is obvious that, for each noncritical sequent (0 = Z) € Cl(T; A), w(©,Z) <
w(I', A) and that b does not decrease.

Consider a critical argument (OIV,®;0A’, ¥), ie., line 2 of the table. For all
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the three recursively called arguments b increases, thus ¢ — b as well as the whole
measure decreases.

e (O, IV,0B; B): Obviously b(OI",I",0B) > b(OI) since OB ¢ OI. (If it is,
"N A’ # @ and the line 1 is used.)

e (OY,%,0B; B) where B € Q and (OX, T = 00, 0) € CI(OT",I";0) and £° =
I"and TNQ=0: Since ZNQ =0, B¢ and (0%, ¥, 0B8) > (OL). More-
over £° = I and thus b(OX) = b(OI"). Therefore b(OX, X, 0B) > b(OT").

e (O, 7;00,0) where (O, T = 00,0) € CIAIY,I";0) and £° S I": Since
¥° 5T, it holds that 5(0O%) > b(OI") and therefore b(OX, T) > b(OT).

Before we continue proving the theorem, we prove the following lemma which will
help us to proceed as in 3.2.1.

Lemma 3.4.2.
Fome, O A (V avV/ ~rv \/ 04,(0%,5,0B; B)A
(OB, Y=00,0)cClOr IV0) ¢6©  re¥ BeQ
se=r
A A,(OF, T;00,0))
(D%, T =00,0)eCHOT IV ;0)
Teore

L=

AT, TV 0).

PROOF OF LEMMA 3.4.2. Let us denote the first part of the equivalence by {D.
The sense of the lemma stating a provable equivalence $ D < $A, (O, IV;0) is that
the long disjunct starting with < in the second line of the table can be replaced by
OAL(OI,T;0) in following proofs. This makes (iii) of the theorem provable as in
the case of modal logic K.

First observe that, by definition,

CAOT =0 N A(S).

SeCl(or,1:8)

This holds even if O, IV = @ is a critical sequent.

O N A4S =0( A A, (0L, 1; 00, 0)A

SeCHnr IV;0) (0%, T=00,0)cCH{OT,I;8)
Eo:r‘!o
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A A4,(0Z, T;00,0)),

(0, T=00,e)ecrar ;e
zeore

where, by definition given in the table,

A A, (0%, T;00,0)

(05, T=00,8)eCUTT I )
EG:FIO

= A (\V av\/-rv \ 04,(0%,%,08;B) v OD).
(O, T=00,8)eCHOT IV;9) 966 reT BeQ
}:0:3‘"0

Now, for short concentrating only on the form of what we are to prove, we show
in Gmgy, that the following holds:

Fomer O(\(A: v OD) A A\ By) & O(/\ 4 A N\ By).

i

N v , . ,
E D
Equivalently
Femar O\ ~A4: vV \/ =B)) & O(\/(~4; AT=D) v \/ =B,).
i j i i

Consider the left-right direction first. Since

Vi, Fomg, 0-D,=A; = \/(=A; A U-D)
and
Vi FGmGL -’B.?' = \/ _'Bj>
3

we obtain by V inferences and weakening

Feme, O-D, \/ —A; vV \/ -B;,0-FE = \/(ﬂAi A DﬂD) vV \/ -B;,
i J i j

i vl

e

-D -E

which, by a Oy, inference, yields

}—GmcL O0-D = O0-F,
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Now consider the right-left direction. Since

V’L, l——GmGL ""A,‘ AO-D = \/“‘Aag

and
VJ, FGmGL “‘“'Bj = \/ "‘Bj,
7
we obtain by V inferences and weakening

P—GmGL D_’D7 \/(_"41' A D-—,D) Vv \/ "!Bj, O = \/ -A; Vv \/ "!Bj,

J : 7
A v/ A S
' '

-E =

which, by a Oy, inference, yields
Fame, O-E = 0-D.

Notice that the diagonal formulas were in both cases above introduced by weakening
and so K4 would suffice to prove the lemma. QED

Let us continue proving the Theorem:
(1) follows easily by induction on I', A just because we never add p during the definition
of the formula A,(I'; A).

(i) We proceed by induction on the complexity of I', A given by the termination
function. We prove that b, I, Ap(l; A) = AL

Let (I' = A) be a noncritical sequent. Then sequents (©; = Z;) € CI(I'; A) are of
lower complexity. By the induction hypotheses

}-_Grngg 9i>Ap(®i;5‘i) = Ei

for each 1.
Then by admissibility of weakening and by Lemma 2.3.5
}—GmGL F,AP(GI; El), . ,Ap(@;c; Eg) = A,
and so
}-GmGL F, /\ Ap((‘)i; EQ) = A,
(8:=Z)ECUT;A)

which is

}—GmGL F, AP(F, A) = A.

Let (' = A) be a critical sequent matching the line 1. Then (ii) is an initial sequent.

Let (I' = A) be a critical sequent matching the line 2.
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e For each B € A’, we have Fgn,, OI",I',0B,A,(0OI",IY,0B;B) = B by
the i.h., which gives kg, OI',®,0A4,(CI",IV,0B; B) = OB, 0A", ¥ by a 0Oy,
inference.

e For each (OX, YT = 0O0Q,0) € CL(OIV,T7;0);Z° =T"°;ZNQ = @ we have the
following (since induction here is on the complexity of (I'; A) we cannot use
Lemma 3.4.2 and prove this line for $A,(OI",T; () as in 3.2.1):

— obviously Fem,, V = © and by admissibility of weakening
qeo

Feme, 05, T, \/ = 0Q,0.

geo

— obviously Femg, V , T = and by admissibility of weakening
—-reY

Feme, OZ, Y, \/ = 0Q,0.

—reY
— for each B € Q by the induction hypotheses
Feme, 0%, Z,0B,A,(0%,%,0B;B) = B
and by weakening and a Og/, inference
Fome, 0%, 0A4,(0%,2,0B; B) = 0OB.
Together this yields, using V-1 inferences,
Fomer 05,1, \/ v \/ vV \/ DA,(0%,2,0B; B) = 0Q, 6.

ge® -reY BeQ

For each (O, T = 0O, 0) € CL(OT",T";0); ° D I'° by the induction hypothe-
ses Famg, O, T, A4,(0%,T;00Q,0) = 00, 0. Let us denote the conjunction

A (\/ ¢V Vv \/ 04,(0%, £,0B; B))
(0T, Y=D0,8)eCl(OI’,IV;0) g<O reY BeQ
gmﬁi@
A A,(0Z, T;0Q,0)

(0%, T=00,0)cCl(DI",IV;0)
zeorve

i
i
H
i
f
|
i
‘



59

by C. Then, for each (0T, T = 0Q,0) € Cl(OT",T;0),
Feme, 05, T,C = 0Q, 0
by weakening and A-l inferences. Now, by Lemma 2.3.5,
Fomg, O, TV, C =0

. Using negation and weakening inferences ¢y, OI'Y, IV, 0-C = —C, and by
a Ogy, inference Fgp,, OIY, ® = O-C,0A', ¥. Now, using a negation inference
again, we obtain

Fome, O, @, 0C = OA', U,
e for each r € ® obviously Feme, @, ~r, O = OA', ¥,
e for each g € ¥ obviously Fam,, ®,¢, 01" = OA" 1.

Together this yields, using V-1 inferences,

Fome, ®, 007, \/ ¢\/ = \/ DA,(OI',I",0B; B) v 6C = 0A', T,
gy red BeA’
that is, by the line 2, kg, ©, 017, A,(®,OY; DA, ¥) = OA', .

(iii) We proced by induction on the height of a proof of (ILLT' = A /A). We can
restrict ourselves to critical steps (a O inferences). The argument from Theorem
3.2.1 applies for the rest. So let us consider that the last inference is a O¢y, inference:

Consider the principal formula DA € A first, i.e. A doesn’t contain p. Then the proof
ends with:

oI, ar, I, T/, 0A = A
OI7, O, 117, T = OA, N, A
where OIT', IT" is IT; OIY,T” is T'; and OA, A’ is A. Consider IY N A" = @ (otherwise
A,(T; A) = T and (iii) holds) so we can use the line 2. Then the induction hypothesis
gives

Fome, [T, 0A = A,(01", 1V, 0), A

and by a —-1 inference we obtain
Fome, I, OA, —A,(OT, T, 0) = A
. Now, by a Oy and a negation inference, we obtain

Feme, OIT, I = O A,(QLY, 17 0), 04, A,
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By the line 2 of the table, invertibility of the V-I rule, and Lemma 3.4.2 we have
Fame, OA(OI, TV 0) = A, (T, T"; A).

The two sequents above yield (iii) by cut admissibility.
Consider the principal formula OA € A. Again, consider I' N AP = () so we can use
the line 2. Then the proof ends with:
o, ar, i, I 0A = A
oI, or, 1", 1" = 0A, A", A

where OIT, IT1” is IT; O, is T; and OA, A" is A.
Now the induction hypothesis gives

Fome, OIU, I = A,(OI", T, 04; A)
and by weakening and a O, inference we obtain
Fome, OIT, IT” = OA,(OI, T, 0A4; A), A.
The line 2 or 3 of the table and invertibility of the V-I rule yields
Fome, OA,(O1, I, 0A4; A) = A, (O, I, 04, A").
We obtain (iii) again by cut admissibility. QED

Analogues of Corollaries 3.2.3, 3.2.4, 3.2.5 and 3.2.6 hold also for modal logic GL
by similar proofs, so we obtain, from Theorem 3.4.1, the uniform interpolation and
a simulation of propositional quantifiers.

Considering again the schema (QVPA)* — (VpOA)*, it is not clear whether it
holds in case of GL or not. Transitivity complicate things here. So far, we are able
neither to prove it nor to provide a counterexample.

3.4.1 Fixed points

Uniform interpolation theorem for logic GL entails Sambin’s and de Jongh's fixed
point theorem. Our proof then presents an alternative constructive proof of the fixed
point theorem:

Theorem 3.4.3. Fized point theorem: Suppose p is modalized in B (i.e., any occur-
rence of p is in the scope of a O). Then we can find a formula C in the variables of
B without p such that

}—GL Ce B(C)
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Uniform interpolation entails fixed point theorem. Already ordinary interpolation
does the job: a fixed point of a formula B is an interpolant of a sequent obtained
from a sequent expressing the uniqueness of the fixed point

O < B(p)) AB(g < B(g)) = p e g,

which is provable in GL - for a detailed proof see [46] and [8]. However, this method is
not useful for implementations since first we would need to have a proof of the sequent
expressing the uniqueness of the fixed point.

Direct proofs of fixed point theorem were given by Sambin [44], Sambin and Valen-
tini in [46] (construction of explicit fixed points which is effective and implementable),
Smorynski [48] from Beth's definability property, Reidhar-Olson [43], Gleit and Gold-
farb [21]. A proof from Beth’s property can be found also in Kracht’s book [28], for
three different proofs see Boolos’ book [8].

The point of non-constructiveness of proofs of the existence of fixed point is that
first the uniqueness is proved semantically, and from this is derived, using Beth’s
definability, that this explicit definition yields indeed a fixed point. Or the uniqueness
is proved syntactically, and Craig interpolation of the statement of the uniqueness
for a particular formula then yields the fixed point. This choice is constructive,
but non-effective since first we need to have a (cut-free) proof of the uniqueness for
the particular formula to construct an interpolant.

A different and effective constructive proof of fixed point theorem is the one by
Sambin and Valentini in [46]. Our proof, based on uniform interpolation, is an alter-
native effective proof then. The point is that we do not need a proof of the uniqueness
to construct the interpolants.

PROOF OF THEOREM 3.4.3. Let us consider a formula B(p, §) with p modalized in
B. The fixed point of B then would be the simulation of

3p(O(p < B(p)) A B(p))

or, equivalently, of
Vr(O(r « B(r)) — B(r)).

Let us denote them Cy and Cy and observe they are both interpolants of
(G(p « B(p)) A B(p) = O(r < B(r)) — B(r))

and that neither of them contains p,r. We show that any of them is the fixed point
of B and that they are indeed equivalent. What follows are a bit informal proof-trees
which, to keep readability, express rather statements about provability in Gmgr then
proofs in Gmgr.

First we show that (O(p « B(p)) A B(p) = O(r « B(r)) — B(r)) is provable
from the uniqueness statement:
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B(p = BE) AB(r = B(r)) = p e perp=B@).r—Br),Be) > B0)

O(p < B(p)),0(r « B(r)), B(p) = B(r)
(3(p < B(p)), B(p) = O(r < B(r)) — B(r))
(@(p = B(p)) A B(p) = O(r « B(r)) — B(r))

Now let us see that any of C; is a fixed point and thus, by the uniqueness, C; « Cs.

First observe, that whenever (I'(p) = A(p)) is provable, (I'lp/A] = Alp/A})
where we substitute A for p is provable as well (we just substitute everywhere in
the proof, to treat Og inferences can require some admissible weakenings, and we
add proofs of sequents (I', A = A, A) in place of initial sequents). The label "subst.”
in the following proof-tree refers to such a substitution, the label "inv.” refers to
invertibility of a rule:

C; = O(r « B(r)) — B(r)

O(p < B(p)) A Blp) = Ci T, = 0(C; & B(Cy) = B(Cy) st
0(C, = BC)) AB(C) = G WPt~ 5 —0(G; = B(CY), B(C))

O(C; — B(Cy)), B(C) = ¢; 7 C:,0(C; « B(C))) = B(C))
D(Ci 3 B(Cz)) = _\B{Ci), C@ D(Cg — B(C{,)) = _'Ci, B(CE)
D(C@ > B(C,)) = B(O«b) — Ci D(Ci > B(Ct)) = Ci — B(Cz)

D(Cj > B(CJ) =2 Oi > B(O,,) O
Now by a cut

B = c.g — B(Cz)

From this proof one can see that already ordinary interpolation does the job.
The point of using uniform interpolation here is that we do not need to have a proof
of (A(p « B(p)) A B(p) = O(r & B(r)) — B(r)) to construct an interpolant - we
just need to know that it is provable.

We learnt this simple proof from Albert Visser.

cut

QED

3.5 Grzegorczyk’s Logic S4Grz

Theorem 3.5.1. Let 3., A be finite multisets of formulas (¥ a multiset of bozed
formulas). For every propositional variable p there exists a formula A,(S[T; A) such
that:
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e (1)
Var(A,(Z|T;A)) € Var(S,T, A)\{p}

o (ii)
Fomg, 0I5, A(EI0A) = A

e (i) moreover let I1, A, © be multisets of formulas not containing p and }"Gmg
O,ZIIL T = A, A. Then

Fams 010,11 = A,(Z[0; A), A.

We define a formula A,(X|T; A) inductively as in 3.3.1, changing the table as
follows (again, q and r are propositional variables other then p, multisets ® and ¥
contain only propositional variables and at least one of the multisets is required to
be nonempty).

Also the multisets Y, © in the line 2 contain only propositional variables.

The formula A,(3|T"; A) is defined recursively to equal A A (Q)6; 5).
(QIO=E)eCiDIT:A)
The recursive steps for the critical sequents are given by the following table:

Orv|®; OA’, ¥ matches A, (OIY|®; OA', ¥) equals
1lifped®nNVor I"NA"#£0 T
2 otherwise VgV -r
Y red

0A,(OI", 0(B — OB)[T"; B)
BeA' (B—OBYETY
0A,(Dr|0; B))

Bea!,(B—OB)er

VO( A (Vagvy v
(OZT=00,8)eCHOrir.g) ¢ reT
Froe

\ 0A,(0%, 0(B — OB)|S; B)V
BeQ (B—0OB)¢E
v 0A,(QZ|0; B)A
BeQ L, {B—ORB)ED
A, (OZ|T;0Q,0))

(0T =00,0)eCHO T0)
20 31“/0

ProoOF OF THEOREM 3.5.1. The table follows similar ideas as the previous one,
only now we deal with two loop preventing mechanisms: one is that used for T and
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the other is splitting the Og,, rule into two cases testing if the diagonal formula is
already stored in the third multiset or not.

We adopt the same simplification as we have used proving termination of the cal-
culus Gmg,,+ - we restrict the 07 rule and treat the third multiset as a set (i.e., we
remove duplicate formulas).

Let us see that the definition terminates. Consider a run of the procedure for
Ap(B|TT; A). Let d be maximal box depth in II, A, which is, as in the case of GL,
maximal number of critical steps along one branch of the corresponding tree. Let
b(T') be the number of boxed subformulas of I" counted as a set.

With each A, argument (2|I'; A) occurring during the run of the procedure, we
associate an ordered pair (e — |£°|,w(T’, A)). We recall that we use the size of the set
e.

Here e = d.b(II, A) is an upper bound of the number of formulas stored if we do
not duplicate them.

The measure decreases in each step of the run of the procedure in terms of the lex-
icographical ordering.

For a noncritical argument (3|T'; A), for each (Q|0 = =) € CI(Z|T; A), w(©,E) <
w(l, A).

For a critical argument (OI'|®; OA’, ¥) let us see that, in the table, for each of
the five recursively called arguments the measure decreases.

e (OI",0(B — OB)|I"; B) where B € A’ and (B — OB) ¢ I': here obviously
(O v O(B — OB))°[ > AT,

o (OI'|@; B) where B € A’ and (B — OB) € I": In this case, w(f}, B) <
w(®, OA', ¥).

e (0X,0(B — OB)|X; B) where B €  and (B — 0OB) ¢ £, and (O%|T =
0Q,0) € ClI(Ar|I'; @) and £° = I': Since ¥° = I'°, also |OX°| = |OI|.
Hence |(OX UO(B — OB))°| > |OI"|.

e (OX|0; B) where B € Q and (B — OB) € %, and (OX|YT = 0Q,0) €
clar’|r’; 9) and 3° =T".
e (OX|T;00,0) where (OX|Y = 0OQ,0) € CI(OI’|IV)) and 3° D I': Since
Yo DI, |20 > |
Before we continue proving the theorem, we prove the following lemma fully anal-
ogous to the previous one:

Foms,, O A (Vv -

(OZ|T=00,6)eCl(ar’|T;B) q€© reY
»o=J°
=nOQ=0

Lemma 3.5.2.
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\/  0A4,(0%,0(B —0B)[%;B)

BeQ{B-0OB)¢E

\V} 0A,(OZ)0; B)) A A,(OZ|T; 00, 8))
BeQ,(B—-U0B)eX (OZT=0Q,e)eci(ar|I$)
Teopve
Z2NQ=9

O A, (OT'I"; 0)

PrROOF OF LEMMA 3.5.2. The proof is fully analogous to that of Lemma 3.4.2.
Again, since the form is the same as in the previous case, we show in Gmg,,+ that
the following holds:

Fomg, O(A(Aiv OD) A A By) & O(\ Ai A N\ By

E D

Equivalently

Fong,, OV 74V \/ =By) & 0(\/(24; AD=D) v \/ -B)).

i 2 7
N i A
e W

=D -F

Since, as we have noted in Lemma 3.4.2, the diagonal formulas were introduced by
weakening, we can use the same proof here. We only write it down to make it clear.
Consider the left-right direction first. Since

Vii g 0|0-D,~A; = \/(=A; AD-D)

and
Vi Foms 81-B; = \/-B;,
J
we obtain by V inferences and weakening

Fomg,. O(-E — 0-E)[0-D,\/ ~4; v \/ ~B; = \/ (-4 A 0-D) v \/ =B,

le;
J 2

N ~ o~
s ‘e

-1} -5

which by OF inferences and admissibility of contraction yields

chgrz 0-D,0(-E — O-E)| \/ —A; V \/—‘Bj = \/(_'Ai AO-D)V \/—lBj,
i i i j

A s . >
v T

-f) - B
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which, by a OF,,; inference, yields
}_Gm+ D—\DW) = D“E,
Grz
which by weakening and O inferences yields

}_Ger @lD—\D = 0O-F.

Grz

Now consider the right-left direction. Since

VZ; l_GmJGrrz

BlmA A O-D = \/ -4,
i
and
V], }_Gmg” 01—\Bj = \/ —\Bj,
J
we obtain by V inferences and weakening

Feao+
Gva-z

D—\(D — DD), D—\EI \/(_\Ai FAN D_\D) V \/ _\Bj = \/ _‘Ai V \/ _\Bj,
1 J 1 J

[ S ~ i

-E -D

which, by a OF,,, inference, yields

Famg” D—\EW) = O0-D,

which by weakening and OF inferences yields

}—G, + @'D—\E = 0-D.

mg
QED
Let us continue proving the Theorem:

(i) follows easily by induction on (E|T'; A) just because we never add p during the def-
inition of the formula A,(XZ[T; A).

(i1) Similarly as in Theorem 3.3.1 (ii), we proceed by induction on the complexity of
(2|T; A) given by the terminating function.

Let (Z|T" = A) be a noncritical sequent. Then sequents (€40, = Z;) € CI(Z|I; A)
are of lower complexity. By the induction hypotheses

}_Gmg ®|Qi7®iaAp(Qi|@i;Ei) = Ei

for each i.
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Then by admissibility of weakening and by 2.3.5

Foms,, 015, T, Ap(Q[013E1), ., Ap(QUlOk; Ex) = A,

PRI

and so
Famg,, 0BT, A A0 E) = A,
($4]169:=2,)eCHIIA)
which is
Fomg DI, T, Ap(SI0 A) = A

Let (Z|I" = A) be a critical sequent matching the line 1. Then either (ii) is an initial
sequent in the case that p € ® N ¥ or (ii) is provable in Gm¢,, in the case that
I'NA #0.

Let (Z|I" = A) be a critical sequent matching the line 2. We have, similarly as in
3.3.1, the following:

o for each B e A', (B — OB) ¢ I/, we have

Foms @0V, 0(B — 0OB),T", A,(QI",0(B — OB)|I";B) = B

Mg
by the i.h., which gives
Femt O, 0(B — OB),0A,(0OlY,0(B — OB)|I"; B)|

MGy

]I", (B — DB),AP(UF’} O(B — OB)|[I";B) =B

by O inferences, contraction inferences, and weakening. To get rid of (B —
OB), which is (=B V OB), we apply invertibility of the V-1 and —-] rules to
obtain

Famg,, BT, 0(B — OB)|IY, A,(0I", 0(B — OB)|I"; B) = B.
This yields
kG OIY,04,(0l",0(B — 0B)|I"; B)|®,= OA", ¥

by a O}, ,, inference. Then by weakening and O} inferences

Fame  OI'|0A, (0T, 0(B — OB)I; B), @ = OA', U.
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o for each B e A, (B — 0OB) € I, we have
Fomg,  010T, A,(OT"|0; B) = B
by the i.h., which gives
Foms O, 0(B — OB), D4,(0r'|0; B)|I, 4,(0T'|0; B) = B

My

by O inferences and weakening. Now we obtain
Fomg, DT, DA, (0T; B)[® = DA, ¥
by a OF,,, inference. Then by weakening and O inferences

Fomy, 0100, DA, (0T B), @ = OA', 0.

e for each (OZ|Y = 00, 0) € CHOM|IV;0);Z° =T ENQ =0

— obviously bg,,e O[T, V -r= @, and by admissibility of weakening
Tz ‘Y‘ET

Fomy,, OZIT, \/ -r = D0, 0.

reY

— obviously b+ 0 g = ©, and by admissibility of weakening
Gm’Crz o
q

Fom: OZIT, \/ ¢ = 00,0.

M
geo
~ for each B € ,(B — 0OB) ¢ %, by the induction hypotheses,

Fo

m

. 0|0%, %, 0(B — OB), 4,(0%,0(B - OB)|S; B) = B.
By OF inferences and contractions,

Femt O%,0(B — OB)|S, B — OB, A,(0O%,0(B — OUB)|S; B) = B.

Grz
To get rid of (B — OB), which is (=B Vv OB), we apply invertibility of v-1
rule and contraction to obtain

Fems  OX,0(B — OB)|S, A,(O%, 0(B — OB)|%; B) = B.

My

By weakening ¢,,;

0%, 0(B — OB), 0A,(0S, O(B — OB)|S; B)|T, A,(0%, O(B — OB)[T; B) =

B.
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Now we can apply the OF,_, rule to obtain

Fam,, D%, 04,(03,0(B — OB)|T; B)|T = 00, ©.

(i3
By weakening and a OF inference

Fomg, . OE|T, 0A4,(0F, 0(B — OB)|S; B) = 00,6,

— for each B € Q, (B — OB) € ¥, by the induction hypotheses,

Feme 010, A,(O|0; B) = B.

me
By O inferences,
Fms, . OEI, 4,(O5)8; B) = B.
By weakening
b oy 0%, 0A,(OX|0; B)[E, A,(OZ|0; B) = B.
Now we use the OF,, rule to obtain
Fomz, O%, 0A4,(0OZ|; B)|T = 0Q, 0.
By weakening and a O, inference
Fom: OZ|T, 0A,(0D)0; B) = 00, 6.

Together this yields using V-1 inferences

Foms,, OZIT, VAV

ged reY

V 0A,(0%,0(B - 0B)|5;B)V - \/ 0A4,(0%|@; B) = 0Q,©.
BeQ,(B—OB)¢E BeQ,(B—OB)ES

For each (OZ|YT = 0OQ,0) € CL(OIV|I";8); £° D I'° we have by the induction
hypotheses
b ome, 00X, T, A,(OZ|T; 00,0) = 00, 0.

Let us denote the conjunction

A (Vv -r

(OT|IT=00,0)eClOl' I 9) ¢€©  r€Y
157
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Vv \/ DA,(0O%,0(B — OB)|%; B) V \/ 0A,(O%|0; B))A

BeQ,(B—OB)¢% BeQ),(B—OB)eX
A A,(O%[T;00,0)
(OX|Y=00,0)cCci(ar {I;0)
°DIvY°

by C. Then for each (OX|T = 0Q,0) € CI(OIV|I";0),
Fomt DOX|T,C = 0Q,0
Grz
by weakening and A-l inferences. Thus by Lemma 2.3.5
I—Gm+ DFIIF/, C = @
Grz
and by negation and weakening inferences,

FGme or’, 0(-C — 0-0)|I" = ~C.

Now by a Of, , inference

Fome OT'|® = O-C,0A", ¥

mer
and by a negation inference

Fone  O'[®,OC = OA', 0.

me
e for each r € ¢ obviously I—Gmg” g|or’, @, -r = OA', 0.
o for each ¢ € ¥ obviously ¢, p|OT'®, q = OA', T.
Together this yields, using V-1 inferences,

Fomg,, 00T, \ g\~ ) DA4@F,B(5 = BB D)
g€V rcd BeA’,(B—OB)gr”

\/ OA,(OT'|0; B)) v $C = OA', T,
BeA/,(B—OB)eI”

This yields, by the line 2 of the table,

Fon: 0|00, @, 4,(CI|®; DA, ¥) = OA', T.

mea

(iii) We proceed by induction on the height of the proof of sequent (€, L|IL I = A, A)




71

in Gmy,,. Again, we can restrict ourselves to initial sequents and critical steps (Ogr,1
and Og,.,» inferences). For invertible parts of the proof the task reduces to appropriate
critical sequents as in 3.3.1.

So let us first consider the last step of the proof of (£, ©IL,T = A, A) is an initial
sequent. It works similarly as in 3.2.1, the third multiset has no influence here.

Let us consider that the last inference of the proof of (0, S|II,T = A A) is a OF,,
inference.

e Consider the principal formula OA € A. Then the proof ends with:

0,%,0(A — 0A4)|0°,5° = 4
0,%|1, 11 = OA, A", A

+
Grzl

where 0A, A’ is A. Consider ZN A = {} (otherwise Ap(I';A) = T and (iii)
holds).

Then by the induction hypotheses
}—Gm"“ @l@l]’ 6 = AP(Z» D(A - DAHZD§A).

Gr

By O inferences, contraction inferences, and weakening

Fo.t ©,0(D — 0OD)|0° = A,(Z,0(A — 04)[2°; 4),

LT
where D is A,(2,0(A — OA)|E"; A). Now, by a Of,_, inference, we obtain
Foms Ol = DAL(E, 0(A — OA)[Z7; A), A
By weakening inferences
Foms 6167, 11 = OA(S,0(4 — 0A)|5°; 4), A,
By OF inferences we obtain

Fon,, 18.TT = DA(E, O(4 — DAE 4), .

By the line 2 of the table and invertibility of the V-1 rule we have
Famt  B|0A4,(5,0(4 — DA)[D7; A) = 4,(3[T; 04, A).

The two sequents above yield (iii+) by admissibility of the cut rule in Gm,,.

e Consider the principal formula OA € A, i.e., A doesn’t contain p. Then the proof
ends with:
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©,%,0(A — 0A)|6°, 59 = A
6,50, I = A, 04, A’

+
Grzl

where OA, A is A.
Then by the induction hypotheses

Fame 0|0(A — 0A),0,0° = A,(Z]2°0), A.

ize]
By OfF inferences and contraction inferences we obtain
F—Gmg” O(A — 0A),0|(A — 0A),0° = A,(Z|Z7;0), A

To get rid of (A — OA), which is (=AV OA), we use invertibility of the V-1 and
—-1 rules, and contraction, to obtain

Fam:  O(A — 0A),0]0° = 4,(2[Z%;0), A.
By a —-l inference and weakening
Foms, O(A — 0OA),0,0-4,(Z|Z7;0)|6°, —A,(Z|2;8) = A.

By a Of,,, inference

Foms  ©, O0-A,(ZIZ%0)|T = 0A, A,
Since weakening is admissible in Gmg,,, we obtain

P*Gmgw 0, 0-A,(Z[Z%;0)|0°, =4, (Z|x%: 0), 11 = 0A, A’

and now OF inferences and a —- inference yield

Fams 018,11 = GAL(X|E,0),04, A",
By weakening inferences

= 10" 11 = OAL(XD[E";0), DA, A"

Gmg,.,
By OF inferences
Foms, 010,11 = $AL(Z]57;0),04, A,
By the line 2 of the table, invertibility of the V-1 rule, and Lemma 3.5.2 we have
Fams  O1OA(ZIET;0) = A, (ZIT; 04, A).

The two sequents above yield (iii+) by admissibility of the cut rule in Gm{, ,.

"
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Let us consider that the last inference of the proof of (€, %
inference.

ILT = A,A)isaDf ,

e Consider the principal formula OA € A. Then the proof ends with:

0,Z10= A
Déer
0,1, 11 = 04, A", A

where OA, A’ is A. Consider ENA = 0 (otherwise A,(I';A) = T and (iii)
holds).

Then by the induction hypotheses
Foms 0|© = A,(X]0; A).
By OF inferences, contraction inferences, and weakening
Fomy ©,0(D — OD)|O" = A,(T0; A),
where D is A,(Z|0; A). Now, by a Of, ., inference, we obtain

Fams O = DAL (Z]0; A), A.

me
By weakening inferences
Fome, 0|6°, 11 = 0A,(Z]0; A), A.
By O inferences we obtain
Fom, 0|0,I1 = OA,(Z(0; A), A.
By the line 2 of the table and invertibility of the V-l rule we have

Fome . OITAL(SI0; A) = Ay (S|T; 04, A",

GmgT
The two sequents above yield (iii+) by admissibility of the cut rule in Gmf,.,.

e Consider the principal formula OA € A, i.e., A doesn’t contain p. Then the proof
ends with:

0,L0= A
©,%|T, T = A, 0A, A

+
Grz2
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where OA, A’ is A.
Then by the induction hypotheses

Foms 010 = A,(S]0;0), A.

Notice that (3]0; @) is a critical sequent with all but one multisets empty, and by
the table defining 4,,  Ap(X[0;0) = L. Thus we have in fact b, 0|6 = A.

By O3 inferences we obtain

}‘Gmgm @]@D = A
and by weakening

Fom: ©,0(A — DA)I@D = A.

Mgy

By a Of,,, inference
7
Fom:_ Ol = DA, A

By admissibility of weakening we obtain

Foms . O = A,(S[T; A), 0A, A,

QED

Again, analogues of Corollaries 3.2.3, 3.2.4, 3.2.5 and 3.2.6 hold also for modal logic
GL by similar proofs, so we obtain, from Theorem 3.5.1, the uniform interpolation
and a simulation of propositional quantifiers.

With the schema (OVpA)* « (VpOA)*, the situation is the same as in the case of
GL. So far, we are able neither to prove it nor to provide a counterexample.

3.6 Concluding remarks

We have presented a nearly uniform method of a constructive proof of uniform inter-
polation in propositional modal logics, based on a terminating sequent proof system.
Two main points are to treat reflexivity, which is done using a simple loop preventing
mechanism built-in the syntax, and to treat transitivity, which is rather tricky and
to prevent looping, the presence of a diagonal formula is substantial. We conjecture
a similar proof should work also for logic K4Grz but we decided not to give it here
since it is much similar to that for S4Grz.

Observe that from our results it follows that a formula A is provable if and only
if the simulation of its universal closure (where we quantify over all propositional
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variables of A) equals T. So our construction contains, as a special case, a decision
procedure.

However, our procedure is not in PSPACE - an easy example shows that it con-
structs formulas of exponential size in some cases. A simple reason is that closing
under invertible rules we in fact construct a conjunctive normal form which is not
always of polynomial size. This is not so interesting from the point of view of modal
logics since it is present already in the classical propositional logic.

Even in the classical case, the complexity of interpolation is open. It was showed
by Mundici in [36, 37] that, assuming NP Nco — NP ¢ P/poly, not all (Craig)
interpolants in classical propositional logic are of polynomial size. (We use this ideas
in 4.3.1 to derive lower bounds on size of proofs in modal logics.)

An interesting question remains - to understand what complexity brings the pres-
ence of modalities.



Chapter 4

Feasible interpolation

In the proof complexity area, a version of the Craig’s interpolation theorem, so called
feasible interpolation, is concerned to derive lower bounds on size of proofs. Feasible
interpolation theorem states that, given a proof of an implication, we are able to
extract from it a boolean interpolation circuit whose size is polynomial in the size of
the proof. Its stronger monotone version states that we are able to extract an inter-
polation circuit which is moreover monotone.

In this chapter, we concentrate on the general feasible interpolation theorem. We
prove the theorem for modal propositional logics K, K4, K4Grz, GL, T, 54, and
S4Grz. The choice of logics. however natural, is also motivated by the method we
use which is based on modular modal sequent calculi. So we restrict ourselves to
logics for which such calculi are known and can be defined uniformly.

It is convenient in proof complexity of classical logic to formulate feasible inter-
polation rather for a proof of a disjunction instead of an implication. This is no more
equivalent in some nonclassical logics as for example intuitionistic logic. Then it is
rather a restricted form of an interpolation theorem. In case of modal logics, we deal
with a special form of disjunctions - a disjunction of boxed formulas.

Our proof is a simplification and generalization of the proof for logic S4 in [4].
Our proof technique comes from [11] and [12]. Tt derives feasible interpolation from
so called Feasible Disjunction Property (FDP) which, for a modal logic, states that
whenever a disjunction of the form (0A Vv OB) is provable, one of the disjuncts OA,
OB has to be provable as well. The method of [12] is based on sequent calculus
and uses SLD resolution to extract required information from proofs. FDP holds
also for a suitable class of formulas as assumptions. We define such a class and
call the formulas, in an analogy with intuitionistic propositional logic, Harrop. It is
similar to the class defined in [15] or [4] for S4, but here it applies to all non-reflexive
(reflexive) logics respectively.

76
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We shall show that already FDP without hypotheses entails feasible interpolation
theorem [41], which was overlooked in [15] where it was derived similarly as in {12]
only using Harrop hypotheses and only for logic S4.

Ferrari, Fiorentini, and Fiorino in [15] use method based on so-called extraction
calculi applied to Hilbert calculi or Natural deduction calculi to extract information
from proofs. The method considers itself independent on structural properties of
a particular formulation of a logic, as e.g. cut-elimination or normalization.

We would like to stress that feasible disjunction property is a property of a calculus
rather then a property of a logic. So one should be careful about choosing as general
calculus as possible in the sense of polynomial simulation.

We shall work with sequent calculi for modal logics. The motivation of using
natural deduction calculi in some cases in [15] rather then sequent calculi is that
there is no need of cut elimination which is difficult in case of provability logics.
However, we show that we can manage with a simple cut elimination in our proofs -
it eliminates classical cuts only. Moreover, we consider sequent calculi a sufficiently
general tool formalizing logic from the complexity point of view, see also 4.3.2, as well
as well developed for modal logics.

Our approach yields a simple and transparent proof of feasible interpolation in
modal logics which we find, in case of normal modal logics, simpler than the one
presented in {15]. However, {15] treats also logics we have not considered here, as e.g.
S4.1 and intuitionistic modal logic K.

FDP for a wide class of modal logics, so called extensible logics, has been proved
recently by Jefabek [27] using Frege proof systems. Hence feasible interpolation
theorem and its consequences automatically apply to all these logics as well.

It is natural to relate our results to intuitionistic logic using well known transla-
tions from intuitionistic logic to logic S4, S4Grz which can be found e.g. in [13].
From this viewpoint, our results generalize that for intuitionistic logic stated at [12].

As a consequence of feasible interpolation theorem we obtain, under an assumption
that NPNco—~ NP ¢ P/poly, the existence of hard modal tautologies.

However, recently it has been shown by Hrubes in {26} that modal logics K, K4,
S4, GL satisfy monotone feasible interpolation theorem and therefore hard tautolo-
gies can be obtained without assumptions.

For all this chapter, we consider L to be one of nonreflexive (i.e. not containing
the schema T) modal logics K, K4, K4Grz, and GL, or one of reflexive modal logics
T, S4, and S4Grz.

The chapter 4 is organized as follows:

e Section 4.1: we uniformly define sequent calculi for modal logics K, K4, K4Grz,
GL, T, S4, and S4Grz based on sets instead of multisets. Also following proofs
are to be treated uniformly for all modal logics considered in this chapter.
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e Section 4.2: we define the disjunction property for modal logic and overview
our method of proving feasible disjunction property using modal sequent calculi
with the cut rule.

— Subsection 4.2.1: we introduce the concept of the closure of a proof to treat
information contained in the proof of modal disjunction which is relevant to
decide which disjunct is true. The closure consists of the critical sequents
and is closed under the cut rule. The closure can be managed in polynomial
time.

— Subsection 4.2.2: we prove a restricted form of cut-elimination where we
do not eliminate strong modal cuts. The cut elimination does not extend
the closure of the original proof. We need a certain ”almost cut-free” proof
to reason about the closure of the original proof.

— Subsection 4.2.3: we prove the main Theorem 4.2.6 - feasible disjunction
property.

— Subsection 4.2.4: although it is not necessary for proving feasible interpo-
lation theorem, we prove feasible disjunction property also for a suitable
class of modal formulas as assumptions. In an analogy with intuitinistic
logic we call them Harrop.

e Section 4.3: as a consequence of Theorem 4.2.6 we obtain a form of feasible
interpolation theorem for modal logics.

— Subsection 4.3.1: we discuss its complexity consequences - the existence of
hard tautologies.

- Subsection 4.3.2: we conclude with some remarks.

4.1 Sequent calculi

First we define modal sequent calculi used in this part of thesis. They extend the fol-
lowing classical system G:

Definition 4.1.1. Sequent calculus G:

A=A

T'AB= A I'=A4,BA v
rarnB=oa M T=zavea V*
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A=A =~ =44 |
I= A A T,-A=A "

'=s AA F=>B,AA A=A IB=A
TS AABA T T AvB=aA V1

'=A '=sA
T 44 "kt T A4 weekl

I'=s A A All= A
I',(INA4) = (A\A),Z

cut

There are few points to remark. First is that, from now below, we consider
cedents to be sets of formulas and the comma is to be read as the set union. The rea-
son we have chosen sets is that we are interested rather in size of proofs than in
their structural properties. In this context it is easier to do without the contraction
rules. However, one should be careful to check sall cases in cut-elimination. Therefore
we stress in our notation that, in the cut rule, the cut formula is really cut away.
The other rules are also to be understood this way - in fact we should write them as

e.g.

A, B=A
\A.B),AAB=A '

1

Second point is that the initial sequents are of the form (A = A) for arbitrary for-
mula A rather then (p = p) where p is a propositional variable. Note that the version
with initial sequents (A = A) for arbitrary formula A trivially polynomially simulates
the one with (p = p) (while the other direction is not in general polynomial). So our
results hold for calculi with the atomic version of initial sequents as well.

The last point is that we have included weakening rules in the definition. The rea-
son why we haven’t built them into initial sequents and Oy rules is technical - since
we are going to use SLD resolution we need critical sequents to contain only one
formula in the antecedent (see below).

A modal sequent calculus G results from adding, if L extends T, the Or rule:

A=A 0
— Uy
I'NA= A
and the Oy, rule of the form:
" d(A)= A o,

o' = QA
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where I'* is a modification of I' and d(A) is a so called diagonal formule.
In the Oy rule, all formulas from OI', A are principal.

For Kand T, I'* =T and d(A) = T (or is just empty).

For K4 and S4, I'* = O, T and d(A) = T (or is just empty).
For GL, I'* = OI' T and d(A) = OA.

For K4Grz, I'* = 0@, T and d(A) = O(A — DA).

For S4Grz, I'* = OI" and d(A) = O(4 — DA).

So for example the Ogp rule is the following:

ar,r,oA= A 0
or = 0A

GL

The reason why we have presented the Oy rules uniformly is that proofs that follow
run for all the logics similarly (except S4Grz where we need to change the definitions
and proofs slightly).

Definition 4.1.2. A critical sequent is a sequent of the form OI' = OA which is
the conclusion of a Oy, inference.

4.2 Disjunction property

Disjunction property for a modal logic L states that whenever a disjunction of the form
OAp v OA; is a tautology of L, one of the disjunct OA; must be a tautology as well.

The standard proof-theoretic argument proving DP uses a cut-free sequent proof
system complete for L. We start with a cut-free proof of the sequent () = OAgVOA,)
and consider it backwards. An easy observations leads to the conclusion that a sequent
(@ = OA;) for some i must occur in the same proof. The absence of the cut rule is
substantial here.

Feasible Disjunction property for a modal calculus L states that whenever a dis-
junction of the form OAy vV OA; has a proof 7« in L, one of the disjunct OA; has
a proof in L which can be constructed in time polynomial in the size of .

Since we are bounded by the size of the original proof, FDP is no more just
a property of a logic but it is a property of a particular proof system. It is important
to keep this in mind.

Trivially FDP holds for cut-free analogues of modal sequent calculi Gy defined
above by the standard argument described above. But since cut-elimination is highly
noneffective even in the classical case (the size of a proof can increase exponentially)
this is not so interesting from the complexity point of view, especially when one is
interested in lower bounds on size of proofs. We would like to prove it for a formulation
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of sequent calculi with cuts which usually polynomially simulate usual Frege systems
for the same logic.

We present a simple proof of feasible disjunction property for sequent calculi G,
(including the cut rule) defined above. Given a proof of a sequent () = OA, Vv OA4;)
we want to decide for which disjunct (§ = DA;) is provable. Now it has to be done
in time polynomial in the size of the original proof.

The proof of FDP for G, goes as follows:

e consider a G, proof 7 of (0 = 04,V OA4;)

e extract from 7 information sufficient for deciding the disjunction so that it can
be treated in polynomial time (the information is the closure of the critical
sequents of 7 under the cut rule}

e prove that there is an G almost-cut-free-proof 7’ of (§ = OAy V OA;) such
that its closure does not extend the closure of 7 (we need this since 7’ can be
of exponential size and so we cannot construct it and we have to do only with
the closure of )

e consider 7’ backwards to conclude that (§ = OA;), for some %, is in the closure
of 7/, and hence in the closure of 7. This means that () = 0OA;) is provable in
Gy,

4.2.1 The closure

To extract, from a proof of a disjunction, information that is relevant for deciding
which disjunct is provable, we concentrate on critical sequents which constitute modal
information contained in the proof (since there a modality is introduced to the succe-
dent).

First we define the closure of a proof for all logics except S4Grz where we need
to capture slightly more than the critical sequents:

Definition 4.2.1. The closure of a proof 7, denoted Cl(r}, is the smallest set con-
taining the critical sequents from n and closed under cuts.

The size of the set of all the critical sequents from 7 is obviously polynomial in
the size of 7. Since the closure contains sequents with just one formula in the succe-
dent we can test presence of a sequent in the closure in polynomial time using SLD
resolution (simulating the closure under cut).

Also a proof of any sequent from the closure Cl(7) can be obtained in polynomial
time. We only need to consider the critical sequents of 7 together with their proofs
(i.e., subproofs of 7} for this argument: First we construct a proof of the considered
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sequent, from some critical sequents of 7 using the closure. Then we add the proofs
(taken from ) of those critical sequents which were used.

In contrast to the case of intuitionistic logic treated in [12] where the closure of
a proof contains all sequents from the proof, we keep in the closure only information
which is relevant in the modal sense, which means, only the critical sequents.

For S4Grz, the closure is defined as follows:

Definition 4.2.2. The closure of a Ggag,. proof =, denoted Cl(7), is the smallest
set containing the critical sequents from 7, and for each critical sequent (O' = OA)
also the sequent (OI' = O(A — OA)), and closed under cuts.

So for each critical sequent (OT" = 0A), we moreover consider the sequent (OT =
O(A — 0OA)). Now we close all these critical and added sequents under cuts as before.

As before, we can test presence of a sequent in the closure in polynomial time
using SLD resolution.

Note that the added sequents can be proved polynomially from the appropriate
critical sequents:

O = 04 K
Or = —A,04 "4

OF = SAvOA ' *F .
Or,0D = ~AvDOA 2%

Ol = O(-A vV 0A4)

and so we can always construct a proof of a sequent from the closure in polynomial
time.

4.2.2 Cut elimination

The next step is to eliminate cuts. We need to consider a certain ’almost-cut-free’
proof backwards to show that feasible disjunction property holds, but all we have in
hands is just the closure of the original proof. Therefore we prove the following form
of cut elimination which does not extend the closure of the original proof. This means
that all relevant information obtained in the almost-cut-free proof is already present
in the original proof with cuts.

In the case of modal logics, in contrast to [12], we do not need to eliminate all
cuts. In fact, the cuts with the cut formula boxed and principal in both premisses of
a Oy inference, which are usually most difficult to eliminate (in the case of GL and
Grz), need not be eliminated. This makes our argument simpler. Notice that cuts
left in a proof are cuts on two critical sequents, which means that both premisses as
well as the conclusion of such a cut inference are in the closure of the proof.
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First we consider L to be one of nonreflexive logics K, K4, GL, K4Grz, or one
of T and S4. The case of S4Grz needs some minor changes.

Definition 4.2.3. An almost-cut-free proof is a proof in which all cuts are with
the cut formula boxed and principal of a 0;, inference in both premisses.

Theorem 4.2.4. Cut elimination for L either nonreflexive or one of T or 84: Let
7 be a Gmy proof of the sequent I' = A. Then there is an almost-cut-free G proof
7' of the sequent I' = A such that Cl{7’) C Cl(x).

PROOF OF THEOREM 4.2.4. For a cut elimination proof for classical logic based on
sets see e.g. [50]. A proof for modal logics can be found in [46].

The rank of a cut inference is an ordered pair (w, h), where w is the weight of
the cut formula, and h is the sum of the heights of the proofs of the premisses of
a cut.

We consider the pairs lexicographically ordered.

The rank of a proof is the maximal rank of a cut occurring in the proof. There
can be more then one such cut in a proof.

The proof is by induction on the rank of the proof. The induction step is to eliminate
all the cuts of the maximal rank.

We start with a cut of the maximal rank. The main step is the following: Given
proofs of the premisses of the cut where all cuts are of lower rank, we have to show
that there is a proof of the conclusion using only cuts where the sum of the heights
of the proofs of the premisses is lower or cuts with the rank lower than the rank of
the cut we consider, which is, the rank of the proof.

First we consider the cut formula not starting with the O modality. There are the fol-
lowing cases to distinguish:

(i) The cut formula not principal in one premiss : we permute the cut inference up-
wards.

(ii) The cut formula introduced by weakening in one premiss: then the cut inference
is replaced by weakening inferences.

(iii) One premiss is an initial sequent: then this cut inference does nothing and can
be just removed from the proof.

(iv) The cut formula principal in both premisses: then we use by induction hypothesis
a cut(s) with the cut formula(s) of lower weight.

All these classical steps are standard, for a reference see e.g. ||

Eliminating cuts with a not boxed cut formula doesn’t change the closure of the proof.
Since neither of these steps adds a Oj inference it cannot add any new critical se-
quent,.
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Now we consider the cut formula starting with the O modality. We distinguish the fol-
lowing cases:

Elimination of a cut with the cut formula boxed and not principal of a O inference
in one premiss: there are following cases to distinguish:

(i) The cut formula boxed and not principal in one premiss (of any inference other
then O, - this cannot occur with a nonprincipal boxed formula): we permute the cut
inference upwards. This step doesn’t add any new critical sequent.

(i) The cut formula boxed and introduced by weakening in one premiss: then the cut
inference is replaced by weakening inferences.

(iii) The cut formula boxed and one premiss is an initial sequent: then this cut infer-
ence does nothing and can be just removed from the proof.

(iv) The cut formula boxed and principal of a Or inference in one premiss and prin-
cipal of a Oy, inference in the other (only for T and S4).

In the case of T, i.e. a Ok inference:
'> A 0 A, ]._V = A
Or = 04 04 (\A) = A
Or, (I'\OA4,4) = A

we transform it as follows: (note that I' can possibly contain OA).

Or

cut

= A Ok
Or = 0A4 Al'= A
OT, A, T\0A) = & ™ r=a4
T, (OT\A), (T\DA, 4) = A cut
weak

I,Or, (T'\OA4,4) = A
O, (I'\OA, A) = A

In the case of S84, i.e. a Og, inference:

Or inferences

O = A Ogy AaFI=>A Op
OF = 04 OA, (IA) = A
OF (T\OA, 4) = A

we transform it as follows: (again I can possibly contain OA).

cut

O = A Ogy
ar = 0A Al'= A ;
O, A, (D\OA) = A " Or=4

cut

(OM\A),T'\(OA4, 4) = A
OT, (T\OA, 4) = A

weak
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Neither of transformations above adds any new critical sequent and therefore it
does not extend the closure of the proof.

Cuts with the cut formula boxed and principal of O, inferences in both premisses are
not eliminated. QED

The main point which makes our argument simple is that eliminating cuts (using
a pretty standard argument) we do not use any new Oj inference and therefore we
do not add any new critical sequent and do not extend the closure.

Note that only cuts on sequents from the closure of the original proof 7 can occur
in an almost-cut-free proof #’.

To obtain a similar cut elimination in the case of S4Grz, we change the concept
of an almost-cut-free proof as follows:

An almost-cut-free proof in Ggagr, may, besides the cuts on critical sequents, contain
also cuts on sequents (OT' = O(A — OA)) treated as added axioms.

Theorem 4.2.5. Cut elimination for S4Grz: Let w be a Gsyar, proof of the sequent

' = A. Then there is an almost-cut-free Gsagr, proof @ of the sequent: T' = A such
that Cl(z") C Cl(w).

PROOF OF THEOREM 4.2.5. The argument runs precisely as before. The only
change is the following step:

Elimination of a cut with the cut formula boxed and principal of a Oy inference in
one premiss and principal of a Ogyq,, inference in the other (D denotes O(A — 0OA)):

or,oD = A AT'= A

—— " U54Grz Ur

Oor = 0A OA4,(IMA) = A .

OT, (T\OA, A) = A <

we transform it as follows: (again I'' can possibly contain OA).
Or,0D = A 4
" Ug4Grs
Oor = 0A AT = A ¢
Or, A, (T\OA) = A “C orop= 4 )
(OM\A),0D, (MDA A) =&~ c
O, 0D, (T\OA, A) = A "8 Or = 0D

cut

(Or\0D),(T"\OA,A,CD) = A

Oor, (IM\OA,A) = A
Here (OI' = OD) is added as a new axiom. The transformation does not add any
new critical sequents and therefore it does not extend the closure of the proof. QED

weak

Again, all cuts in the almost-cut-free proof 7’ are cuts on sequents form the closure
of the proof «.
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4.2.3 Feasible Disjunction Property

Theorem 4.2.6. Feasible disjunction property: Let w be a G, proof of (0 = OAgV OA;).
Then we can construct in polynomial time a G proof o of (0 = OA;) for some
i€ {0,1}.

PRrROOF OF THEOREM 4.2.6. By Theorem 4.2.4 or Theorem 4.2.5, there is an G,
almost-cut-free-proof 7’ of the same sequent. We consider #’ backwards using the fact
that cuts that can occur in 7’ are of the restricted form (both premisses of a cut are
of the form (OA = 0OC)).

Consider the last step of the proof 7.

e It cannot be a cut, since then the succedent DA,V OA; would be the succedent
of one of the premisses of the cut, but it is not a single boxed formula. Neither it
can be a cut (in case of S4Grz) of the other form, the same reason applies here.

¢ It cannot be a weakening inference since the empty sequent has no proof.

e So it can be only a V inference and the sequent () = OAq, OA;) is in 7",
Now consider the sequent (§ = OAg, OA)) and the step above it.

s If it is a weakening inference, we have a sequent (§ = 0OA,;) for some i in 7’

o If it is a cut then the cut formula must be one of 0 A,;. Otherwise the succedent
(O0Ay, OA;) would be the succedent of one of the premisses of the cut, but it is
not a single boxed formula. It cannot be the case that OAy is in the succedent
of one premiss of the cut while OA; is in the other, unless one of them is the cut
formula. But then we have a sequent (0 = 0OA,) in #’ (it is a premiss of the cut).

Consider the sequent (# = 0A,;). Again, consider the step above it.

The step above can either be a Oy infernce and hence (§ = OA;) is a critical
sequent and therefore it is in the closure Cl(#n’) and hence in the closure Cl(x) and
we are done. Or the step above can be a cut. But both premisses of such a cut are
critical sequents from the closure Cl(n’) and hence in the closure Cl(7). Then so is
(0 = 0OA;) by the closure on the cut rule.

We have shown that (0 = 0A;) is in Cl(r) for some i. Now we can construct its
proof in time polynomial in the size of 7.

QED
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4.2.4 Harrop hypotheses

Feasible disjunction property also holds for a suitable class of formulas as assumptions.
In an analogy with Harrop-Rasiowa formulas for intuitionistic logic [23], we define
the following class of modal formulas and call them Harrop. We do not claim that
they are the only formulas with this property. As in intuitionistic logic, this is an
open problem to describe the class of all formulas under which disjunction property
holds.

Although we do not need the FDP with Harrop hypotheses to prove the feasible
interpolation theorem, we include the proof here. It is going to be more complicated
then the previous one.

Definition 4.2.7. L-Harrop formulas for a logic L are defined as follows: for a logic
L extending T
H :=p|l|ODH|OA—- HIHANH

for a logic L non-extending T
H :=p|l|DAODA - HHAH
where A is an arbitrary formula and p is any propositional variable.

Remark 4.2.8. The disjunction property for modal logics as stated in this paper
also holds for a class of formulas defined as above where we allow, instead of any
propositional variable, any propositional non-modal formula. In that case we are
not able to prove that it is feasible. Consider we have an almost cut-free proof of
(' = OAgVv OA;), I a set of formulas as defined above. It can be the case that
propositional non-modal part of I is inconsistent and the disjunction was, in the orig-
inal proof, introduced by weakening. We are not able to recognize this case inspecting
the closure of the original proof which captures the modal information contained in
the proof. Neither we are able to check in polynomial time whether a set of formulas
is classically inconsistent.

Stated in our language, Harrop formulas read as follows:
for a logic L extending T

H = p|OH|-OA|-OAV HIHAH
for a logic L non-extending T"
H :=p|0A|-OA|-0OAV HIHAH

The proof of FDP proceeds as in the previous case without hypotheses, we only
extend our notion of the closure as follows:
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Definition 4.2.9. The exstended closure of a proof m in Gy, denoted CI*(7), is
the smallest set containing

e the critical sequents from ,
o the initial sequents of the form (0A = OA),

e the sequents (OH = H) for all Harrop subformulas occurring in 7, if L extends
T,

o the sequents (H, A Hy = H;) for i = 1,2 and for H; a Harrop subformula
occurring in m

e the sequents (OB V H,0A = H) for (-0BV H) a subformula occurring in 7

(OH,-0H = ) for H a Harrop subformula occurring in 7 if L extends T, or
(0A,-0A = 0) for OA a Harrop subformula occurring in 7 if L does not.

and closed under cuts, left weakenings (of course only by subformulas occurring in 7
to keep the closure finite), and right weakenings such that the conclusion have just
one formula in the succedent.

Inspecting previous proofs of cut-elimination one can observe that eliminating cuts
we do not extend the extended closure of a proof.

Lemma 4.2.10. Feasible disjunction property with hypotheses: Let m be a G proof
of (' = OAgV OA,) where I' is a set of Harrop formulas. Then we can construct
in polynomial time a G, proof o of (I = OA;) for some i € {0,1}.

PROOF OF LEMMA 4.2.10. To construct a proof in polynomial time our strategy
is to find the appropriate sequent in the closure of the proof n. By Theorem 4.2.4 or
4.2.5 there is an almost-cut-free proof #’ of the same sequent.

Consider the proof 7' backwards. We claim that either of (I' = 0A4;) is in
the closure of 7', and hence in the closure of 7.

Any inference we reach before we reach a Op inference, a cut, or an initial sequent
without passing a Oy inference or a cut (let us call this part of 7’ the lower part of
7') has the property that its premiss(es) has (have) in antecedent again only Harrop
formulas . So we can always continue considering a premiss.

At the top of the lower part of 7', we finally reach at each branch on the level
before a O;, inference or a cut, or on the level of an initial sequent, either of following
situations:

e (OI" = OA;) where OI" are Harrop subformulas of I.
Then by a similar argument as used in Theorem 4.2.6 we conclude that (O =
DA;) € ClI* (#').
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e (OIY = OB), where OI" are Harrop subformulas of I' and OB a subformula
of a Harrop disjunction (-0OB V H) or of =00B occurring as a subformula in

I'. Then by a similar argument as used in Theorem 4.2.6 we conclude that
(OIY = OB) € Cl*(x").

e (OB = 0OB) where OB is a Harrop subformula of I'. It is an initial sequent and
it cannot have other form because of restriction to Harrop formulas. (OB =
OB) € Cl*(n').

We have shown that all sequents from the top of the lower part of 7’ are in Cl*(#').

Now we use the extended closure to conclude that (I' = 0A;) is in the closure of
7' {to "restore” I' in the antecedent using sequents from the top of the lower part of
7', the left inferences of the lower part of 7', and the closure of 7).

We reason by induction on number of left inferences in the lower part of 7’

e First step is there is no left inference in the lower part of #’. In this case there
must be at least V-r inference introducing 0A, vV OA, followed by a weakening
inference introducing say Ay and we have (I' = OA;) at the top of the lower
part of 7’ and hence in the closure of n* (or other way round); or a weakening
inference introducing OAg vV OA; and we have both (I' = 0A;) at the top of
the lower part of 7' and hence in the closure of 7’

¢ Consider there are some left inferences in the lower part of 7’.

Observe that one-premiss inferences of the lower part of #’ have the following
property: if its premiss is in CI* (7'} then the conclusion is in Cl* () as well.

— For weakening it is obvious from definition of the extended closure.

— For a Ur inference with OC principal we use a cut on its premiss and
a sequent (OC = C) from Cl™(n’) to conclude that its conclusion is in
Clt(n') as well.

— For a A-l inference with C' A D principal we use two cuts on its premiss
and sequents (C' A D = C) and (CA D = D) from ClI*(#') to conclude
that its conclusion is in CI* (') as well.

— For a —-] inference with —OC principal we use a cut on its premiss and
a sequent (OC,-0C = @) from CI* (7'} to conclude that its conclusion is
in Cl*(n') as well.

So if the last inference of 7’ is one of these, we apply the induction hypotheses
to its premiss and the result applies to its conclusion as well.
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Consider the last inference of 7’ is a left disjunction inference with (~OB V H)
principal:

F,, ~0B = 0AgV 04y F’, H = 0Ayv 04
', ~0BV H = OA, v OA,

We first briefly show that if (A,~OB = 0OC) € CI*(«) then either (A =
aC) € Ol (r') or (A = OB) € ClIT(x'):

Obviously, thanks the occurrence of =B, (A, -~0B = OC) is not a critical
sequent. Consider possibilities how ~0B can have appeared: if closing under
weakening, we have that (A = OC) € Cl*(x'). If closing under cut, the other
premiss cannot be a critical sequent for the same reason - the occurrence of =0 B.
So it must be one of added sequents and the only possibility is (OB, ~0OB = 0).
In that case OC must have been introduced by weakening and we have (A=
OB) € Cl*(x").

Now we apply the induction hypothesis to the premisses of the left disjunction
inference to obtain (I', 0B = OA;) € CI™(x') and (I", H = OA;) € CI*(x).
As we have shown, there are two possibilities:

- It (I” = 0OA;) € Cl*(n') we obtain by the closure under weakening
(I',-0BV H = 0OA;) € CI*(x') and we are done.

- If (I" = OB) € ClI*(n'), we use a sequent (-OB V H,0B = H) from
the extended closure and obtain, by a cut,

(I',-OBV H = H) € ClI*(r").
By another cut with (I, H = 0A;) € CI*(r') we obtain
(I',-0B Vv H,= 0A;) € CI™ (7).

QED

4.3 Feasible interpolation

Theorem 4.3.1. Feasible interpolation theorem for modal logic L: Let 7 be a Gy,
proof of
Lzy VO-zy, ..., 0z, VO~z, = OAg Vv 0OA,

Then 1t 1s possible to construct a circuit C(x) whose size s polynomial in the size of
™ such that for every input a € {0,1}", if C(a) = i, then OA; where we substitute for
variables z; L, if a; =0, and T, if a; = 1, is a L tautology.
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ProOOF OoF THEOREM 4.3.1. For given input a consider a proof resulting from 7 by
substituting for variables z; L, ifa; =0, and T, if a; = 1. The new proof ends with
the sequent (OT VOL = DOAg[Z/a] VOA,[Z/a]). (OT VOL) is provable by a proof of
constant size and thus by a cut we easily obtain a proof of (0 = OA[Z/a]VOA,[Z/a])
of size polynomial in the size of the original proof. Now the corollary follows from
the theorem 4.2.6 - we can decide in polynomial time which disjunct is true and hence
it can be computed by a circuit of polynomial size. QED

The intuitive meaning of our version of the interpolation theorem is: if we fix
truth values of common variables of Ay and A; by O (this means in all the accesible
worlds) and we know the values, than, having a proof of

(D.'ITI vV D—:xl, ey Dxn \ D—iil'?ﬂ = DAO \ DAI},

we can check which of the disjuncts is true.

The variables x; are not required to be the only common variables of Ay and Aj;,
but the other cases do not seem to be applicable.

Moreover, if x; are the only common variables and Ay (Z, ¥) V A; (7, 2) is a classical
tautology with Z, § and # disjoint sets of variables, then

(Ozy V O-zy,...,0z, VO-z, = 04,V O4;)
is a L tautology:

Lemma 4.3.2. Let the sequent (0 = Ao(Z,7) V A1(¥, 2)) be provable in the calculus
G (with § and Z disjoint sets of variables). Then the sequent

Oz, VO-z4q,..., 0z, Vd-z, = DAo(f,m \Y DA] (g—f, E)
1s provable in the calculus Gy

Proor orF LEMMA 4.3.2. It follows from the Craig’s interpolation theorem that
there is an interpolant I{Z) such that sequents (—I(Z) = A¢(Z, %)) and (I(Z) =
A(7, 2)) have G proofs. Then both (O-I(Z) = OAy(Z,v)) and (TI(Z) = OA, (7, %))
are G, provable and so is (DI(Z) v O-I(Z) = OAy(Z,y) V OA (7, 2)).
Because
Oz, V O=ay, ..., 0z, V O-z, = O[(Z) vV O-I(Z)

is Gy, provable (it can be easily proved by induction on the weight of I), we have by
a cut
Oz, V O-zy, ..., 0z, VO-z, = OA4(Z, y) V DA (7, 2)

provable in the calculus G,. QED
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4.3.1 Complexity consequences

The main aim of proving feasible interpolation theorems for a proof system is that it
can be applied to prove lower bounds on size of proofs for the proof system. Sometimes
lower bounds are obtained under plausible complexity assumptions like that factoring
is hard to compute. Since we have proved a general feasible interpolation theorem and
not a monotone interpolation theorem, we cannot omit some complexity assumptions
to obtain lower bounds for proof systems we consider.

Since all modal logics we consider here are known to be PSPACE-complete ([33],(13]),
we could use an assumption PSPACEZNP /poly to derive the existence of modal tau-
tologies that have not polynomial size proofs. The point of using feasible interpola-
tion instead, however together with some complexity assumptions, is that it enables
to construct concrete examples of hard modal tautologies.

We can use either Razborov’s [42] method and obtain lower bounds under assump-
tion that there exist pseudorandom generators, or the method from {7] and obtain
lower bounds under assumption that factoring is hard to compute.

We present here a simple argument based on ideas of Mundici [36, 37], Krajicek [29]
and taken from Pudlék [40]. It uses a cryptographical assumption that there are two
disjoint NP sets which cannot be separated by a set in P/poly (this assumption follow
e.g. from the one that factoring is not in P). Mundici used his argument to conclude
that not all Craig interpolants in classical propositional logic are of polynomial size.
Modifying his argument using Krajitek’s idea we may use it to conclude that not all
tautologies have polynomial size proofs.

Corollary 4.3.3. Let L be one of modal logics K, T, K4, 84, GL, K{Grz, S4Grz.
Suppose NPNco—NP ¢ P/poly. Then there are tautologies which do not have proofs
in G of size polynomial in the size of the proved formula.

Proor OF COROLLARY 4.3.3. Suppose there are two NP disjoint sets X and Y
which cannot be separated by a set in P/poly. Let n be a natural number. Now define
the disjoint sets X N {0,1}* and y N {0, 1}"* by {a|3b—A(a,b)} and {a|Ic~A;(a,¢)}
where Ay, A, are propositional formulas of size polynomial in n. Since the sets are
disjoint, Ag V A, is a classical tautology and the sequent (@ = Ao(Z,7) V A1(Z, Z)) is
provable in G. By Lemma 4.3.2, the sequent

Oz VO-a, ..., 0z, V O~z = DAO(Q—;a g) v DA1(£3 2)

is provable in Gy. If it had a polynomial size proof, we would have by Theorem 4.3.1
a polynomial size circuit separating X N {0,1}" and Y N {0, 1}", which is a contra-
diction. QED

Another consequence of feasible interpolation theorem is a speed-up between clas-
sical propositional calculus and modal calculi. Such a speed up would follow already
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from the assumption that PSPACEZNP/poly but without concrete examples of tau-
tologies that separate the two systems in this sense.

Corollary 4.3.4. Let L be one of modal logics K, T, K4, 84, GL, K4{Grz, S4{Grz.
Then, assuming that factoring is not computable 1n polynomial time, there is more
then polynomial speed-up between proofs in propositional classical calculus and proofs
in L.

PrROOF OoF COROLLARY 4.3.4. In [7], concrete examples of propositional tautolo-
gies are constructed that have polynomial size proofs in classical propositional logic
and cannot have polynomial size proofs in any system admitting feasible interpolation
theorem. QED

4.3.2 Concluding remarks

Since feasible disjunction property for a wide class of modal logics, so called extensible
logics, has been proved by Jefdbek [27] using Frege proof systems, feasible interpola-
tion theorem and its consequences automatically apply to all these logics as well.

Our results also relate to intuitionistic logic using well known translations from
intuitionistic logic to logics S4, S4Grz which can be found e.g. in [13]. We only use
the following form of the translation:

e p"=0p; 1"= 1L

e (AAB)P = (A" A BY)

e (AV B)® = (0A" vOB"Y)
e (A— B)P =0(4° — BP)

The sequent calculi we have chosen are, from the complexity point of view, as
general as possible. In particular, they polynomially simulate various other structural
formulations of sequent calculi (e.g. versions with atomic axioms, with multisets
instead of sets, cut free versions), as well as appropriate standard Frege systems. It
has been shown by Jetdbek [27] that all Frege systems for a wide class of modal logics,
called extensible logics, are polynomially equivalent. So our results apply to most of
proof systems for modal logics that are used.

A natural and desired next step would be to prove a monotone version of feasible
interpolation theorem.

From our proof of uniform interpolation, one cannot guess how the circuit looks
like. We only use the fact that polynomial time computations can be treated by
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polynomial size circuits (see e.g. [?]). So we did not go further to investigate the pos-
sibility to prove monotone feasible interpolation theorem using the same method,
where a monotone circuit of polynomial size is required to be extracted from a proof.
This would enable to remove complexity assumptions from lower bounds statement.

However, it has been shown in much recent work of Hrubes [26] using a different
method that modal logics K, K4, S4, GL satisfy monotone feasible interpolation
theorem, and concrete examples of hard tautologies has been presented that require
Frege proofs with exponential number of proof lines.
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Errata.
e p. 25 Proof of Corollary 2.2.14. the removed symbol should be ”|”.
e p. 94 the missing reference reads:
C. Papadimitriu, Computational complezity, Addison-Wesley, 1994.
e p. 91 OA(Z, %) vV OA; (7, 2) should be OAy(Z,§) vV OA1(Z, Z) instead.



