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Abstract 

 The present thesis deals with the phenomenon of additional sex chromosomes in Cimex 

lectularius (Hemiptera: Heteroptera: Cimicidae) using genome size analysis combined with the 

classical cytogenetic approach. Also, five other cimicid species and 12 species from the family 

Nabidae were analysed identically for comparative purposes. The thesis also pursues a 

description of methodical approaches of cytogenetics and flow cytometry in the study of C. 

lectularius. 

 Recently analysed European specimens of C. lectularius from human host exhibited 12 

distinct cytotypes, with a variable number of chromosomes X from two to 20 (2n♂ = 26+X1X2Y 

to 26+X1-20+Y). The fragmentation hypothesis of C. lectularius additional chromosomes X origin 

was established in the second half of the 20th century. However, the present genome size 

measurements suggest that various chromosomal rearrangements as duplication or deletion 

besides the fragmentation could occur. Males with basic cytotype 2n = 26+X1X2Y had average 

genome size of 2C = 1.94 pg, in contrast male with 2n = 26+X1-7+Y yielded 2C = 2.26 pg and 

also specimens with genome size decrease 2C = 1.69 pg appeared. The most informative turned 

up to be the relative genome size of sperm cells n = 13+X1X2 and n = 13+Y, where specimens 

with higher chromosome number showed relative genome size increase in sperm cells with 

chromosomes X. 

 The similar cytogenetic and genome size analysis of the other five cimicid species brought 

the new record of variability in sex chromosome number of C. lectularius from bat hosts and C. 

pipistrelli, 2n = 26+X1X2(X3)Y and 2n = 28+X1X2(X3)Y respectively. However, in comparison 

with C. lectularius from human, these additional chromosomes X originated mostly by 

fragmentation and both cytotypes possessed specimens with very similar genome size. Moreover, 

genome size of all five species analysed was measured for the first time: C. hemipterus 2C = 1.47 

pg, C. hirundinis 2C = 1.61 pg, C. lectularius from bats 2C = 1.80 pg, C. pipistrelli 2C = 1.68 pg 

and Paracimex cf. chaeturus 2C = 1.22 pg. 

 Genome size analysis in family Nabidae supported the autosomal polyploidization theory, 

currently sidelined. Himacerus species with 2n = 32+XY reached twice as much nuclear DNA 

content (2C = 9–10 pg) than Nabis species with 2n = 16+XY (2C = 4–6 pg). Besides genome 

size data for all nabid species studied, also the karyotype of N. biformis, N. maoricus 2n = 16+XY 

and 2n = 26+XY for Prostemma aeneicolle was recorded for the first time.  

 

 



Abstrakt 

 Předkládaná dizertační práce představuje návrh vysvětlení původu nadpočetných 

pohlavních chromosomů štěnice Cimex lectularius (Hemiptera: Heteroptera: Cimicidae) pomocí 

kombinace analýzy velikosti genomu a klasické cytogenetiky. Pro srovnávací účely bylo 

obdobně analyzováno dalších pět příbuzných druhů z čeledi Cimicidae a 12 druhů z čeledi 

Nabidae. Práce zahrnuje i popisy metodik zpracování vzorků C. lectularius, cytogeneticky a 

průtokovou cytometrií.  

 Současné evropské populace C. lectularius z lidských hostitelů vykázaly 12 rozdílných 

cytotypů s rozdílným počtem pohlavních chromosomů X, od dvou do 20 (2n♂ = 26+X1X2Y až 

26+X1-20+Y). Hypotéza o původu nadpočetných pohlavních chromosomů X C. lectularius 

pomocí fragmentace byla formulována ve druhé polovině 20. století. Nicméně analýza velikosti 

genomu naznačuje, že by se mohlo jednat spíše o směs chromosomálních přestaveb typu 

duplikace či delece, které fragmentaci provázejí. Samci se základním cytotypem 2n = 26+X1X2Y 

měli velikost genomu 2C = 1,94 pg, naproti tomu samec s 2n = 26+X1-7+Y dosáhl 2C = 2,26 pg, 

ale objevili se i jedinci se sníženou velikostí genomu 2C = 1,69 pg. Nejdůležitější se však ukázala 

být relativní velikost genomu spermií n = 13+X1X2 a n = 13+Y, kdy jedinci s vyšším počtem 

chromosomů vykazovali navýšení relativní velikosti genomu pouze u spermií nesoucích X 

chromosomy. 

 Obdobná analýza chromosomů a velikosti genomu dalších pěti druhů z čeledi Cimicidae 

přinesla nové záznamy variability počtu pohlavních chromosomů u štěnice C. lectularius 

z netopýřích hostitelů 2n = 26+X1X2(X3)Y a C. pipistrelli 2n = 28+X1X2(X3)Y. Avšak 

v porovnání se situací u C. lectularius z člověka tyto nadpočetné chromosomy vznikaly převážně 

jen fragmentací pohlavních chromosomů X a jedinci z obou cytotypů měli velmi podobné 

velikosti genomu. Mimo to, velikost genomu všech pěti druhů byla zaznamenána vůbec poprvé: 

C. hemipterus 2C = 1,47 pg, C. hirundinis 2C = 1,61 pg, C. lectularius z netopýrů 2C = 1,80 pg, 

C. pipistrelli 2C = 1,68 pg and Paracimex cf. chaeturus 2C = 1,22 pg. 

 Analýza velikosti genomu zástupců čeledi Nabidae podpořila v současnosti 

neakceptovanou teorii o autosomové polyploidizaci. Druhy rodu Himacerus s 2n = 32+XY 

dosáhly dvojnásobku jaderné DNA (2C = 9–10 pg) oproti druhům rodu Nabis s 2n = 16+XY (2C 

= 4–6 pg). Vedle velikosti genomu studovaných zástupců čeledi Nabidae, byl poprvé popsán i 

karyotyp N. biformis, N. maoricus 2n = 16+XY a 2n = 26+XY pro Prostemma aeneicolle.  
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1. INTRODUCTION 

1.1. Overview of the most important parasitic Heteroptera  

 The hemipteran suborder Heteroptera (Fig. 1) as one of the largest hemimetabolous taxa 

consists of more than 42,347 species (Henry 2017). Its astounding diversity is reflected by the 

ability of heteropteran species to colonise all types of habitats (terrestrial, freshwater, or even the 

surface of the sea) and also unique sucking mouthparts, common for all Hemiptera, enables 

Heteroptera to evolve many various life histories (Krenn & Aspöck 2012, Schuh & Weirauch 

2020). The most recent common ancestor of Heteroptera used this type of feeding apparatus for 

predator way of living, but in heteropteran evolution, many feeding strategy shifts occurred. 

Herbivory originated several times independently and also the hematophagous parasites 

emerged, however, many mixed feeding transitional strategies exist (Weirauch et al. 2019). For 

example, accidental blood-feeding in the tribe Cleradini (Pentatomomorpha: 

Rhyparochromidae). These Heteroptera are able to feed on blood taken from their engorged 

triatominae prey or even facultatively suck on vertebrate hosts (e.g. Torres et al. 2000). 

 

Figure 1. Cladogram of seven Heteroptera infraorders with sister taxa Coleorrhyncha as 

outgroup according to Weirauch et al. (2019). 

 

 But the obligatory parasites from infraorder Cimicomorpha (Fig. 1) are the best known. 

Family Reduviidae (Fig. 2) with more than 6,878 worldwide species (Henry 2017) comprises 

mainly predaceous species, but subfamily Triatominae, kissing bugs, represents 140 strictly 

hematophagous parasitic species, some of them transmit the infamous Chagas disease in South 

America (e.g. Bardella et al. 2008, Panzera et al. 2010, 2012). Another parasitic cimicomorphan 



- 2 - 
 

family is Polyctenidae, bat bugs, 32 species. They are rare viviparous permanent wingless 

parasites of bats in tropical areas of Old World (subfamily Polycteninae) and New World 

(subfamily Hesperocteninae) (e.g. Maa 1964, Schuh et al. 2009, Calonge-Camargo & Pérez-

Torres 2018). However, the true cimicomorphan “superstar” among obligatory vertebrate blood-

feeding insect ectoparasites is the family Cimicidae (Fig. 2) with 110 species in six subfamilies 

(Henry 2017). Cimex lectularius Linnaeus, 1758 from temperate climate zone and tropical C. 

hemipterus Fabricius, 1803, both from subfamily Cimicinae, are the only broadly distributed 

cimicid species obligatorily connected to human as a host. 

 

Figure 2. Simplified cladogram of main cimicomorphan superfamilies and families according to 

Weirauch et al. (2019). H = family includes hematophagous parasitic species. 

 

 Cimex lectularius originally parasitized bats and probably shifted to humans in caves, 

nowadays there exist two strains which parasitize either human or bat as specific hosts. The gene 
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flow between these two strains is limited and rather asymmetric with direction from human- to 

bat-parasitizing populations, therefore, strains differ slightly in morphology and also some 

genetic differences were detected (e.g. Balvín et al. 2012).  

 It is noteworthy that ancestral cimicids were probably not host generalist (parasitize more 

taxa), but specialist (parasitize particular genus) (Roth et al. 2019), therefore the hematophagy 

supposedly did not evolve from facultative blood-feeding of predaceous bugs as in Anthocoridae 

(Štys 1973, Krinsky 2019) as proposed Weirauch et al. (2019). The opinion, that the original 

cimicid host were bats (Usinger 1966), were also doubted by Roth et al. (2019) because the fossil 

of extinct heteropteran family Vetanthocoridae related to Cimicidae (Yao et al. 2006, Engel 

2008) dated phylogeny tree of cimicids as more than 30 million years older than oldest known 

bat fossil (Simmons et al. 2008). However, cimicid species parasitizing humans are considered 

as generalists, and also shifts of ancestral bed bugs to bat and bird hosts occurred several times 

(Roth et al. 2019). 

 Despite the fact, that human parasitizing cimicids have not naturally transmitted any 

pathogen on humans so far (e.g. Burton 1963, Blow et al. 2001, Doggett 2018), they are a true 

worldwide scourge, which causes large economic damage in form of expenses for its eradication 

from human dwellings and psychic trauma to infested dwellings inhabitants (Reinhardt & Siva-

Jothy 2007, Doggett et al. 2018). Cimicids were targeted by numerous types of research effort, 

for example: public health (Hwang et al. 2005), sociology (Reinhardt et al. 2008), behavioral 

biology and semiochemical analysis (Weeks et al. 2011a, b), population dynamics (Balvín et al. 

2012, Zorrilla-Vaca et al. 2015), pyrethroid insecticides resistance (Romero et al. 2007, Lilly et 

al. 2015), genomics (Benoit et al. 2016), evolution of host switches (Roth et al. 2019) and also 

cytogenetics (Grozeva et al. 2010, 2011, Sadílek et al. 2013, 2019a, b). 

 

1.2. Cimex lectularius cytogenetic features 

 Cimicidae, as well as all Heteroptera, share a peculiar cytogenetic phenomenon – 

holokinetic chromosomes. This chromosome type with large/numerous kinetochores covering 

their surface enables its owners to go by a very different way of karyotype evolution than other 

species with the single localized kinetochore (centromere) on chromosomes. For example, 

chromosomal rearrangements like fragmentation and fusion are not necessarily lethal and 

therefore are quite frequent in organisms with holokinetic chromosomes. Fused chromosomes 

cannot become dicentric and pieces of fragmented chromosomes also do not have any problems 
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to connect to the spindle fibres during the division of nucleus, therefore they are not lost (e.g. 

Mandrioli & Manicardi 2003, Papeschi & Bressa 2006, Schvarzstein et al. 2010). 

 The very extensive fragmentations were recorded in Cimicidae species, especially in 

human bed bug C. lectularius by Darlington (1939), Slack (1939), and Ueshima (1966). The 

basic cytotype, the most frequent and with the lowest chromosome number, of C. lectularius 

male is 2n = 26+X1X2Y, however, a unique continuum of specimens with cytotype up to 2n = 

26+X1-15Y was recorded (Darlington 1939, Slack 1939, Ueshima 1966). The majority of the 

analysed Heteroptera species did not exhibit variability in sex chromosome number, on the other 

hand, the sex determination systems with a stable number of multiple (more than two) sex 

chromosomes occurs across the whole Heteroptera (e.g. Papeschi & Bressa 2006, Kuznetsova et 

al. 2011). 

 The additional chromosomes of C. lectularius were supposed to be the chromosome X 

fragments according to the observation of the specific, also called postreductional or inverted 

(Viera et al. 2009), meiotic division of the sex chromosomes, where the X and Y chromosomes 

segregate reductionally as late as in the second meiotic division (Ueshima 1966, 1979). 

Additional chromosomes were also discussed as B chromosomes (Ueshima 1966), however, their 

behaviour in meiosis, non-random distribution, and isochromatic staining suggest the sex 

chromosome origin in C. lectuarius (Sadílek et al. 2013). Moreover, sometimes they do not even 

increase the nuclear genome size (Sadílek et al. 2019a). 

 

1.3. Insect genome size analysis 

 Genome size analysis by flow cytometry method (FCM) is a very frequently used 

technique in botany, especially for the ploidy determination (e.g. Leitch & Bennet 2004). In 

zoology, the use of FCM is not so common and it is mostly used only for indicative genome size 

measurements (e.g. Hanrahan & Johnston 2011, Jacobson et al. 2013, Gregory 2020). However, 

FCM information value is greatly elevated in combination with cytogenetical research (e.g. 

Morgan-Richards 2005, Novotná et al. 2011, Sadílek et al. 2019a, b, manuscript). 

 An interesting pattern of the genome size constrains is observable among all insects 

analysed so far. Holometabolous insect genome size is pushed down by the necessity of abrupt 

development during the pupal stage, therefore the maximum is around 2C = 4 pg (2C = genome 

size of diploid cell, i.e. two sets of chromosomes). In the contrast, hemimetabolous insects can 

afford, due to its gradual metamorphosis during larval stages, to have a much broader genome 
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size range, up to 2C = 34 pg, recorded so far (e.g. Gregory 2002, 2020, Hanrahan & Johnston 

2011). A similar feature, when species with fast reproduction or short life span possess small 

genome size is suggested also for annual plants or parasitic insets in general (Gregory 2002, 

Johnston et al. 2004). 

 Heteroptera genome size research is quite deficient in comparison with other large insect 

orders as Coleoptera, Hymenoptera, and Diptera (Gregory 2020). The most explored genome 

sizes among Heteroptera (Table S1) come from 25 species of family Reduviidae, due to intensive 

research of South American Triatominae which spread the infamous Chagas disease (Bargues et 

al. 2006, Panzera et al. 2010). Only very few species, 15 in total, from other families were 

analysed (Gregory 2020): Belostomatidae (Papeschi 1988, 1991), Cimicidae (Benoit et al. 2016), 

Miridae (Hanrahan & Johnston 2011, He et al. 2016), Pentatomidae (Hanrahan & Johnston 2011) 

and Pyrrhocoridae (Bier & Muller 1969, Maddrell et al. 1985). Unfortunately, all genome size 

studies of 31 Pentatomidae species conducted by Schrader & Hughes-Schrader (1956, 1958) and 

Hughes-Schrader & Schrader (1956, 1957) (Table S2) content only sample/standard ratio of 

studied species and unknown standard (“frog” and “mantid”). Such results are therefore 

incomparable with any other study focusing on genome size. 

 The overall genome size range of all analysed Heteroptera is the same as in analysed 

species of family Reduviidae 2C = 0.52–5.8 pg, however, biochemical analysis of Lagowski et 

al. (1973) reported doubtful genome size of Oncopeltus fasciatus (Dallas, 1852) (Lygaeidae) as 

2C = 9.3–12.3 pg. Besides Reduviidae only two other families have more than one or two species 

analysed: Belostomatidae with six species of 2C = 1.06–3.86 pg (Papeschi 1988, 1991) and 

Miridae with four species of 2C = 0.7–1.8 pg (Hanrahan & Johnston 2011, He et al. 2016). 

 

2. RESEARCH METHODS 

2.1. Basic methodical approaches to chromosome study 

 Two main techniques of chromosome slides preparation can be met in the recent 

cytogenetic literature: squashing and spreading (also called hot plate spreading). Both techniques 

have their own pros and cons. The squashing, widely used in the second half of the 20th century 

(e.g. Sáez 1950, Leston 1957, Piza 1957, Ueshima 1963, Bressa et al. 2003, Poggio et al. 2006, 

Grozeva et al. 2010, Yang et al. 2012) is very difficult to perform in the field, but analysed 

specimens could be fixed (3:1 ethanol or methanol: acetic acid) and the own squashing procedure 

can be conducted later in the laboratory conditions. On the other hand, the newer spreading 
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method, adapted by Crozier (1968) and Traut (1976), can be performed under the field conditions 

with a minimum of technical difficulties. The only crucial requirement is the fresh material 

because fixed cells cannot be spread well. This technique was used for the analysis of 

chromosomes of various arthropod taxa later at the turn of 20th and 21st century (e.g. Šťáhlavský 

& Král 2004, Bressa et al. 2009, van’t Hof et al. 2011, Forman et al. 2013, Sadílek et al. 2013, 

2015, 2019a, b, manuscript, Adilardi et al. 2014, Chirino et al. 2015).  

 The squashing technique is proceeded usually with fixed specimens and dissected, mostly 

very fragile, gonads are squashed in a drop of 45% acetic acid by a cover slip. The slip is removed 

with a razorblade after freezing on solid CO2 (e.g. Kuznetsova & Maryańska-Nadachowska 2000, 

Grozeva et al. 2010, Kuznetsova et al. 2015) or in liquid nitrogen (e.g. Bardella et al. 2010). Then 

slides should be dehydrated in fresh fixative, (which was found as the most tricky step in my test 

run of this method, insufficiently described in the literature), air-dried and, stained with Giemsa. 

 Sadílek et al. (2016) described in detail the optimization of the spreading technique for 

the holokinetic chromosome preparation from the C. lectularius and also other related species of 

cimicids (Sadílek et al. 2019b). This exact approach was suitable also for chromosome analysis 

of other Heteroptera, for example Nabidae (Sadílek et al. manuscript) or Enicocephalidae 

(Sadílek unpublished). Chromosome slides of Coleoptera from family Hydrophilidae (Angus et 

al. manuscript) and Androctonus scorpions from family Buthidae (Sadílek et al. 2015) prepared 

by this approach were also very successful.  

 

2.2. Suitable tissue selection for the chromosome study 

 The selection of suitable tissue for the chromosome slides preparation is very important 

and in general, the tissues with the highest mitotic index (abundance of dividing cells) are 

preferably utilized. In studies of Heteroptera chromosomes, male gonads, where all stages of 

meiosis can be recorded, are predominantly used. Testes were found also as the best tissue for 

analysis of human parasitizing C. lectularius and other cimicids. Ovaries showed some mitotic 

chromosome plates as well, but in much lower abundances than in testes (Sadílek et al. 2013, 

2016, 2019a, b). Cimicid males of subadult 5th nymph instar regularly showed all various stages 

of meiosis and mitosis (Sadílek et al. 2016). In contrast to acyclic C. lectularius living in human 

dwellings, predaceous Heteroptera from family Nabidae strictly stick to some reproductive cycle 

and the nymphs or adults could be captured during the particular season only, temperate zone 

concerned. Adult females of nabids provided much more mitotic chromosomes in better 
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condition than adult males, however, all studied 5th instar subadult males from New Zealand 

showed very abundant chromosomes in meiosis (Sadílek et al. manuscript). It is therefore 

suggested, that the age of the Nabidae male specimens is a crucial factor to receive high quality 

chromosomes and the main meiotic spermiogenesis occurs in the 5th instar subadults. The use of 

ovaries from adult female nabids to get mitotic chromosomes is also highly recommended. 

 Other tissue types usually used for chromosome analysis are mesentheron (midgut) and 

eggs/embryos. These tissues processed by spreading technique were successfully used in several 

studies focused on Heteroptera from families Notonectidae (Angus et al. 2004), Nabidae (Angus 

et al. 2008), and Corixidae (Waller & Angus et al. 2005). Embryonic tissues were successfully 

used also for chromosome preparations in studies focused on Coleoptera from the family 

Hydrophilidae (Angus 1982, Shaarawi & Angus 1991). But no mitotic metaphases were received 

from cimicid midgut and embryonal tissue slide analysis (Sadílek et al. 2016). This feature was 

then partially explained by Rost-Roszkowska et al. (2017). In the detailed histological study of 

C. lectularius and C. pipistrelli Jenyns, 1839 midgut, nor cell division nor differentiation of 

regenerative cells was observed. It was therefore suggested, that the proliferation of these “stem” 

cells, which in cimicids are distributed individually and do not form any regenerative nests or 

crypts, occur probably only after the beginning of digestive cells degeneration.  

 

2.3. FISH 

 The very frequently used advanced cytogenetic approach to study large gene clusters 

position on the chromosomes is the fluorescent in situ hybridization (FISH). The principle of 

FISH in brief: target gene sequence is multiplied by polymerase chain reaction (PCR) from 

genomic DNA, fragmented and labelled for example with biotin (also called indirect FISH). The 

labelled sequence is then attached (hybridized) to the complementary region on the chromosomes 

and the signal is amplified by the use of more “layers” of an antibody with a fluorescent stain. 

Chromosomes are at the end counterstained with 4',6-Diamidino-2-Phenylindole (DAPI). The 

target sequence is visualized as the region on chromosome/s with a different spectrum of 

excitation than DAPI after the laser beam illumination. Basic and the most commonly used 

molecular marker in chromosomal studies with FISH is 18S rDNA. It is the part of the large 

tandem repetition for ribosomal gene 45S RNA (28S + 5.8S + 18S). This marker gene is a very 

useful tool to study holokinetic chromosomes which are commonly lack of any other traits for 

differentiation. Variation can be found also among closely relative species: 18S rDNA can be 

positioned on sex chromosomes only (e.g. Grozeva et al. 2010, Sadílek et al. manuscript), solely 
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on autosomes or even on a mix of autosomes and X chromosome as in reduviid Triatoma 

delpontei Romana & Abalos, 1947 (e.g. Panzera et al. 2012). 

 Grozeva et al. (2010) already showed the position of 18S rDNA on X and Y chromosomes 

of C. lectularius with a basic cytotype of 2n = 26+X1X2Y. However, our pilot FISH experiments 

with the use of this gene probe on C. lectularius were successful only with basic-cytotyped 

specimens 2n = 26+X1X2Y, and experiments with specimens which possessed additional 

chromosomes were not with clearly positive results. Signal was not definitely localized on 

additional chromosomes and it was rather scattered around them (Sadílek unpublished), thus we 

decided to investigate the phenomenon of C. lectularius additional chromosomes with a different 

methodical approach. The combination of classic cytogenetics and FCM. In spite of unclear FISH 

results in C. lectularius with additional chromosomes, studied Nabidae (Sadílek et al. 

manuscript) and Buthidae scorpions (Sadílek et al. 2015) exhibited clearly localised 18S rDNA 

signals on their chromosomes. 

 

2.4. FCM tissue selection 

 Authors of recent insect FCM studies mentioned that they used for analysis mainly neural 

tissues (e.g. Johnston et al. 2004, Hanrahan & Johnston 2011, Benoit et al. 2016). But in fact, 

they used a whole head capsule which comprises many more tissue types, which could make the 

analysis much worse (higher coefficient of variation) as described in Hanrahan & Johnston 

(2011). Within the study of C. lectularius genome size (Sadílek et al. 2019a), also the suitability 

of specific tissues or entire body parts for genome size measurements were tested – gonoducts 

with sperm cells, eggs/embryos, whole gut, fat body, and head/thorax/abdomen respectively. 

 The analysis of different tissues can reveal also cells with different ploidy (e.g. Johnston 

et al. 2004) as 8C (octaploid) cell peaks in samples of C. lectularius abdominal tissue and 

gonoduct with sperm or 1C (haploid) cells in direct sperm cell analysis (Sadílek et al. 2019a). 

Sperm cells and the mixture of several embryos in eggs (diploid cells) analyses also exhibit 

clearly observable “male/female” double peaks and therefore the distinct DNA content 

differences of C. lectularius sex chromosomes (Sadílek et al. 2019a). The larger difference 

between particular peaks of a double peak, the higher number of additional sex chromosomes 

presented. 

 All tissues/body parts tested provided 2C (diploid) genome size and the only exception 

were gut tissue samples, they showed no results and therefore were evaluated as unsuitable for 
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FCM analysis of C. lectularius (Sadílek et al. 2019a). Another highly interesting peculiarity was 

the impossibility to stain C. lectularius sperm cells with propidium iodide (PI), while all other 

tissues/body parts showed peaks after either DAPI or PI staining. Sperm cells showed double 

peaks only with DAPI stain, therefore only relative genome size could be measured in that case, 

due to DAPI stain AT basis affinity.  

 

2.5. FCM sample treatment 

 The basic procedure of FCM insect sample preparation was adopted from plant sample 

preparation (e.g. Doležel & Bartoš 2005, Doležel et al. 2007) and a similar procedure was used 

also for genome study of aphids (Novotná et al. 2011), tree wetas (Morgan-Richards 2005) and 

spittlebugs (Rodrigues et al. 2016). Sadílek et al. (2019a) performed several tests to select a 

suitable standard from several vertebrate, insect, and plant model organisms. The optimal 

standard genome size should not be larger than 2-fold from the studied sample (Suda & Leitch 

2010). Genome size around 2C = 7 pg of human and Xenopus laevis (Daudin, 1802) was too 

large, Drosophila melanogaster Meigen, 1830 genome size of 2C = 0.36 pg was too small and 

Pyrrhocoris apterus (Linnaeus, 1758) genome size of 2C = 2.44 pg was too similar (Gregory 

2020) to genome size of studied C. lectularius. As the result, plant Solanum pseudocapsicum L. 

with 2C = 2.61 pg (Temsch et al. 2010) was selected as the primary standard for C. lectularius 

and other cimicids (Sadílek et al. 2019a, b) genome size analyses, as the secondary standard was 

selected Bellis perennis L. 2C = 3.51 pg (Schönswetter et al. 2007). Larger genome sizes in nabid 

species (Sadílek et al. manuscript) were measured primarily with B. perennis and S. 

pseucapsicum was used as a secondary standard in measurements of Nabis maoricus Walker, 

1873 due to overlapping of sample and primary standard peaks in FCM analysis. 

 The next test was the stability of genome size of samples at –20°C with increasing time 

(Sadílek et al. 2019a). PI stained samples showed a 2% decrease of genome size and DAPI 4.7% 

after 42 days at –20°C. But repeatedly melted samples measurability decreased significantly and 

only 50% of samples were measurable after three defrosting events. However, samples of some 

specimens were clearly measurable even after 1,078 days at –20°C. Therefore, the uninterrupted 

storing of tissue samples at –20°C was suggested as a suitable way of storage and transport as 

reported by Hanrahan & Johnston (2011). Samples fixed by ethanol or air-dried showed in FCM 

analysis no results, but Panzera et al. (2004) successfully analysed also tissues fixed in ethanol: 

acetic acid (3:1). 
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 Also dividing each sample into two parts and staining one with DAPI and the second with 

PI was highly recommended (Sadílek et al. 2019a) because the different affinity of both stains 

reveals the AT/GC ratio of the basis contained in the genome, the GC content (e.g. Šmarda et al. 

2008, Sadílek et al. 2019 a, b, manuscript). DAPI stain binds preferentially to the surface of AT-

rich regions of DNA and expresses relative genome size, but the PI stain intercalates into DNA 

without any preferences and therefore express the true genome size (e.g. Doležel & Bartoš 2005, 

Kolář et al. 2013). The GC content could be, besides genome size, an additional FCM feature 

determining species, which is clearly demonstrated in the case of Himacerus apterus (Fabricius, 

1798) and H. mirmicoides (O. Costa, 1834) (Sadílek et al. manuscript). In these very closely 

related species is the pattern of GC content completely different, sample/standard ratio of H. 

apterus stained with DAPI and PI yielded a large difference (3.12 and 2.80), but in H. 

mirmicoides were DAPI and PI sample/standard ratio values almost the same (2.60 and 2.58). 

 

3. CYTOGENETICS AND CYTOMETRIC RESULTS 

3.1. Distribution of Cimex lectularius cytotypes today and in the past 

 After a rapid decrease of C. lectularius numbers by the massive use of DDT in the middle 

of the 20th century the bed bugs started to re-emerge in all developed countries of the temperate 

climate zone together with the increasing mobility of their hosts at the end of the 90s (Reinhardt 

& Siva-Jothy 2007). Sadílek et al. (2013), based on data from the Master degree´s thesis of 

Sadílek (2012) and extended with two cytotypes of 2n = 2n = 26+X1-9Y and 2n = 26+X1-13Y, 

published the list of analysed cytotypes within the randomly collected bedbugs of central Europe. 

This screening showed the present situation of 21st century C. lectularius cytotypes distribution 

in this region compared to findings of Darlington (1939) and Slack (1939) in Great Britain before 

the huge bottleneck caused by DDT use. 

 Sadílek et al. (2013) distinguished 12 cytotypes from 2n = 26+X1X2Y to 26+X1-10Y,  

26+X1-13Y, 26+X1-15Y, and 26+X1-20+Y chromosomes within 116 specimens from 61 localities 

and showed very similar findings as in studies of Darlington (1939) and Slack (1939) conducted 

74 years ago. The range of cytotype variability remained almost unchanged, but the percentage 

of individuals within different cytotypes in samples shifted distinctly. Darlington (1939) recorded 

just a few individuals with basic 2n = 26+X1X2Y chromosomes and most of his analysed 

specimens (from seven populations only) possessed derived cytotype with more chromosomes 

up to 2n = 26+X1-14Y, moreover, Slack (1939) in his three populations, with up to  
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2n = 26+X1-15Y, recorded no specimen with the basic chromosome number. In contrast Sadílek 

et al. (2013) presented 44% of analysed specimens with basic 2n = 26+X1X2Y, 20% with 2n = 

26+X1X2X3Y and 11% with 2n = 26+X1-4Y, other cytotypes were represented with one to five 

specimens, 0.9–4% respectively, i.e., the higher number of chromosomes in cytotype, the fewer 

specimens recorded. All populations (except one) presented by studies of Darlington (1939) and 

Slack (1939) also exhibited specimens from several cytotypes, but Sadílek et al. (2013) recorded 

mostly populations where all specimens possessed the same cytotype – only 25% of populations 

provided more cytotype variants. Sadílek et al. (2013) also recorded the single C. lectularius 

male specimen with extreme cytotype 2n = 26+X1-20Y (the highest number of X chromosomes 

among Cimicidae or even all Heteroptera known so far) from a population with mixed cytotypes 

of high chromosome numbers 2n = 26+X1-8Y, 26+X1-15Y and 26+X1-20+Y. It is not a big surprise 

that the distribution of C. lectularius cytotypes appears random, and did not show any consistent 

geographic or phylogenetic pattern, due to the way of dispersion of these parasites (Sadílek et al. 

2013). 

 

3.2. Chromosome variability in other cimicids 

 In the family Cimicidae were cytogenetically analysed 53 species with diverse variants 

of XX/XY sex chromosome system based on differences of X chromosome count. Three species 

possess a constant basic XY system, four species possess three X chromosomes (X1X2X3Y) and 

two species four X chromosomes (X1-4Y), but the majority (44 species) of cimicids analysed 

possess two X chromosomes (X1X2Y) (summary in Ueshima 1979, Kuznetsova et al. 2011, 

Sadílek et al. 2016). Interestingly, only the group with X1X2Y sex determination includes species 

where the variable number of chromosome X was recorded. 

 Studies presented in this thesis recorded additional chromosomes in three cimicid species 

or strains respectively: C. lectularius from human 2n = 26+X1X2Y to 26+X1-20Y (Sadílek et al. 

2013, 2019a), C. lectularius from bats 2n = 26+X1X2Y or 26+X1X2X3Y and C. pipistrelli 2n = 

28+X1X2Y to 28+X1-4Y (Sadílek et al. 2013, 2019b). Paracimex cf. chaeturus Ueshima, 1968 

showed a high chromosome number of 2n = 41, however, it was not possible to determine 

karyotype precisely. On the other hand, all so far analysed species of Paracimex Kiritshenko, 

1913 possess 36 autosomes, therefore estimated karyotype could be with multiple X 

chromosomes (2n = 36+X1-4Y) similarly as P. borneensis Usinger, 1959 (2n = 36+X1X2Y and 

36+X5–9Y) or P. capitatus Usinger, 1966 (2n = 36+X2–6Y) (Ueshima 1968, 1979). Other cimicid 
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species studied in Sadílek et al. (2019b) – C. hemipterus and C. hirundinis Lamarck, 1816 

showed only a basic karyotype of 2n = 28+X1X2Y without any variability.  

 

3.3. Genome size of cimicid cytotypes 

 FCM technique was found as a very efficient tool for chromosome number variability 

research in C. lectularius (Sadílek et al. 2019a). The genome size analysis in various C. 

lectularius cytotypes (especially with more chromosomes than basic 2n = 26+X1X2Y) indicated 

the mix of additive and deleterious chromosome rearrangements besides sole chromosome 

fragmentation. Various cytotypes showed specimens with a distinct decrease or increase of 

nuclear DNA content together with specimens of average DNA content. If only fragmentation 

would be present, as supposed in former studies (e.g. Ueshima 1966, Grozeva et al. 2010), the 

genome size would be in all cytotypes the same or at least very similar regardless of the number 

of chromosomes. 

 The presence of supernumerary B chromosomes as additional chromosomes would be 

indicated by a consecutive increase of DNA content in each cytotype with more chromosomes 

(Gregory 2002, Poggio et al 1998), which was not observed (Sadílek et al. 2019a). Therefore, it 

seems that this hypothesis of additional chromosome origin in C. lectularius was finally falsified. 

 Sadílek et al. (2019a) also verified that the additional chromosomes are most probably 

really the sex chromosomes through the FCM analysis of C. lectularius sperm cells. Direct 

analysis of haploid cells reflected very fine differences in relative DNA content (DAPI- stained), 

which clearly presented an increase of the relative nuclear DNA content of sperm cells bearing 

X chromosomes together with an increase of chromosome number of specimens. Whereas the 

sperm cells bearing the Y chromosome demonstrated the stable relative nuclear DNA content in 

all cytotypes analysed. 

 Sadílek et al. (2019b) presented the genome size of five cimicid species and compared 

the results with human bed bug C. lectularius from Sadílek et al. (2019a). Average diploid 

genome size value for males with the basic karyotype of all cimicid species studied: C. lectularius 

from human 2C = 1.94 pg, C. lectularius from bats 2C = 1.80 pg, C. hemipterus from human 2C 

= 1.47 pg, C. pipistrelli from bats 2C = 1.68 pg, C. hirundinis from swallows 2C = 1.60 pg and 

Paracimex cf. chaeturus from swifts 2C = 1.20 pg. A peculiar finding is the different pattern of 

additional sex chromosome origin. In human parasitizing C. lectularius prevailed additive or 

deleterious rearrangements, but in other species with additional chromosomes presented (C. 
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lectularius from bats and C. pipistrelli) are probably dominant sole fragmentation events (Sadílek 

et al. 2019b).  

 

3.4. Comparative research of the family Nabidae  

 Family Nabidae with 386 species (Henry 2017) was selected as closely related to the 

cimicids, Naboidea is the sister taxon to Cimicoidea (Fig. 2) (Weirauch et al. 2019), to compare 

cytogenetic features and genome size. There are two main studied groups within European nabids 

with distinct chromosome number, Nabis Latreille, 1802 with 2n = 16+XY and Himacerus 

Wolff, 1811 with 2n = 32+XY (with data for 22 and four species respectively) (Kuznetsova & 

Maryańska-Nadachowska 2000, Kuznetsova et al. 2011, Sadílek et al. manuscript). In contrast 

to cimicid species, where the intraspecific variability is conducted by a different number of sex 

chromosomes (e.g. Sadílek et al. 2013, 2019a, b), the source of nabid variability is mostly 

proposed as autosomal fragmentation or B chromosomes (Grozeva & Nokkala 2003, Kuznetsova 

et al. 2011). However, Sadílek et al. (manuscript) recorded also a single N. rugosus (Linnaeus, 

1758) male with stable additional sex chromosome in all cells 2n = 19.  

 A very interesting feature showed the FISH analyses with the 18S rDNA probe (Sadílek 

et al. manuscript). In C. lectularius were recorded two signals, on the X and Y chromosome 

(Grozeva et al. 2010), the very same pattern as in Nabidae species (Grozeva et al. 2019, Sadílek 

et al. manuscript). But Nabidae showed also species with the doubled signal on X (N. biformis 

(Bergroth, 1927)) or Y (N. pseudoferus Remane, 1949 and N. rugosus) chromosome, moreover, 

the 18S rDNA signal was completely absent on the Y chromosome in N. maoricus (Sadílek et al. 

manuscript). It seems that the 18S rDNA position on nabid sex chromosomes is quite variable 

and also can be presented even on autosomes as in Arachnocoris trinitatus (Bergroth, 1916), 

where the NOR (nucleolus organiser region, traditionally indicated by silver nitrate staining – 

colocalise with 18S rDNA signal from FISH) was detected on the largest pair of autosomes 

(Kuznetsova et al. 2007, Kuznetsova & Grozeva 2008). 

 Very peculiar data was obtained also from FCM analyses of Nabis and Himacerus species 

(Sadílek et al. manuscript) which suggested the solution between two competing hypotheses. The 

first hypothesis considers the karyotype of 2n = 32+XY as derived from ancestral 2n = 16+XY 

by polyploidy of whole autosomal set (Leston 1957, Ueshima 1979, Thomas 1996, Kuznetsova 

& Maryańska-Nadachowska 2000), however, the second hypothesis suggests karyotype of 2n = 

32+XY as ancestral and 2n = 16+XY as derived by fusions of all autosomes (Kuznetsova et al. 
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2004, 2007, Grozeva et al. 2005, Nokkala et al. 2007). Recently Sadílek et al. (manuscript) 

presented two Himacerus species (2n = 32–36+XY) with twice as large genome size as 2C = 9–

10 pg in contrast to five Nabis species (2n = 16+XY) which showed only 2C = 4–6 pg. Therefore, 

the autosomal polyploidy event was suggested as the most probable tool of differentiation in the 

karyotype evolution of these two genera of Nabidae. 

 

3.5. Comparative research of the Androctonus scorpions 

 Holokinetic chromosomes were described in many species of arachnids, insects, 

nematodes, and plants (Melters et al. 2012), and due to its vast dispersion among different taxa 

it is suggested their independent origin up to 19 times (e.g. Ubinski et al. 2018). From insects, 

the Heteroptera is the typical taxon possessing the holokinetic chromosomes and from arachnids 

are typical scorpions from the family Buthidae. The different origin event of holokinetic 

chromosomes of these taxa caused also the different way of their karyotype evolution.  

 Scorpions of basal and the most diversified family Buthidae with 1,214 species (Rein 

2020) are cytogenetically unique by the possession of holokinetic chromosomes within the whole 

order Scorpiones - other families have monocentric chromosomes (e.g. Melters et al. 2012, 

Sadílek et al. 2015, Ubinski et al. 2018). They exhibit a completely different type of chromosome 

number variation in comparison to holokinetic chromosomes of Cimicidae or Nabidae. In 

mentioned Heteroptera very probably dominate fragmentation and duplication resulting in 

intraspecific chromosome number polymorphism (Sadílek et al. 2019a, b, manuscript) but in 

studied buthid scorpions of genus Androctonus Ehrenberg, 1828 (also in other buthid scorpions) 

chromosome fissions and fusions resulted in heterozygous translocation and assembly of 

multivalents, which can be quite extensive (e.g. Moustafa et al. 2005, Sadílek et al. 2015, 

Almeida et al. 2019). Intraspecific variability of chromosomes in Cimicidae species is 

exclusively through variation of additional sex chromosomes (Sadílek et al. 2013, 2019a, b), in 

closely related Nabidae are additional chromosomes mainly autosomes and occasionally are 

involved also sex chromosome rearrangements (Sadílek et al. manuscript). However, in 

Scorpiones sex chromosomes are not well morphologically differentiated from autosomes and 

therefore cannot be distinguished easily (e.g. Mattos et al. 2013, Sadílek et al. 2015), although, 

Adilardi et al. (2016) suggested the scorpion sex determination system with homomorphic cryptic 

XY/XX. In Androctonus scorpions was found very stable genome organisation, i.e. rigid 

chromosome number of 2n = 24, on the other hand, many other buthid genera show vast 

intraspecific variability (Schneider et al. 2009), for example, species of genera Gint Kovařík, 
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Lowe, Plíšková & Šťáhlavský, 2013 with 2n = 18–45, Hottentotta Birula, 1908 with 2n = 14–28, 

Parabuthus Pocock, 1890 with 2n = 16–36 and Tityus C.L.Koch, 1836 with 2n = 5–32 (e.g. 

Kovařík et al. 2018, 2019, Mattos et al. 2018, Rein 2020). 

 

4. CONCLUSIONS 

• 12 cytotypes from 2n = 26+X1X2Y to 26+X1-20+Y were recorded within recent European 

Cimex lectularius strain from a human host  

• Intraspecific variability in the number of chromosomes X in C. lectularius from bats and C. 

pistrelli was revealed, 2n = 26+X1X2(X3)Y and 2n = 28+X1X2(X3)Y respectively 

• Genome size for six species/strains of Cimicidae (males) was stated: C. hemipterus 2C = 

1.47 pg, C. hirundinis 2C = 1.61 pg, C. lectularius from bats 2C = 1.80 pg, C. lectularius 

from human 2C = 1.94 pg, C. pipistrelli 2C = 1.68 pg and Paracimex cf. chaeturus 2C = 

1.22 pg 

• Genome size measurements revealed the most probably chromosomal rearrangements 

(duplication and deletion) besides plain fragmentation in C. lectularius from human, 

however, C. lectularius from bats and C. pistrelli showed fragmentation as the most common 

rearrangement 

• Karyotype of 2n = 16+XY for Nabis biformis and N. maoricus and 2n = 26+XY for 

Prostemma aeneicolle was revealed 

• Origin of Himacerus species karyotype through autosomal polyploidy from ancestral 

karyotype presented in Nabis species was suggested and genome size for 12 nabid species 

(males) was stated: Himacerus species 2C = 9–10 pg, Nabis species 2C = 4–6 pg, Prostemma 

species 2C = 7–8 pg 

• FISH did not detect 18S rDNA signal on additional sex chromosomes in C. lectularius, but 

in Nabidae this method revealed species-specific pattern with two, one, or zero 18S rDNA 

signals on sex chromosomes. 

• Various methodical aspects of C. lectularius chromosome slide preparation, as well as a 

methodical approach to genome size measurements, were stated 
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6. SUPPLEMENT 

Supplementary table 1. The list of genome sizes of all Heteroptera studied so far. Template list 

excerpted from an online genome size database (Gregory 2020) and completed by data from 

several more original articles which are missing in the database (reference with asterisk).  

Method: BCA = biochemical analysis, FCM = flow cytometry, FD = Feulgen densitometry. 

Cell type: BR = brain, S = sperm, TR = trachea, TS = testes, WB = whole body/body parts. 

Standard: AC = Allium cepa, BeP = Bellis perennis, BP = Bufo paracnemis, DM = Drosophila 

melanogaster, DV = Drosophila virilis, GD = Gallus domesticus, HS = Hommo sapiens, SP = 

Solanum pseudocapsicum. 

1C = genome size of one set of chromosomes (haploid), 2n = diploid chromosome number, - = 

details were not given by original authors 

 

Taxon 1C (pg) Sex 2n Method Cell type Standard Standard 1C (pg) Reference 

Infraorder NEPOMORPHA         

BELOSTOMATIDAE         

Belostoma bifoveolatum 1.21 M 29 FD TS GD 1.25 *Papeshi 1991 

B. dentatum 1.93 M 29 FD TS GD 1.25 *Papeshi 1991 

B. elegans 1.55 M 29 FD TS GD 1.25 *Papeschi 1988 

B. elegans  1.46 M 29 FD TS GD 1.25 *Papeshi 1991 

B. martini 1.11 M 29 FD TS GD 1.25 *Papeshi 1991 

B. micantulum 0.88 M 16 FD TS GD 1.25 *Papeschi 1988 

B. oxyurum 0.53 M 8 FD TS GD 1.25 *Papeschi 1988 

Infraorder CIMICOMORPHA         

REDUVIIDAE         

Dipetalogaster maximus 1.29 M 22 FCM TS HS 3.50 Panzera et al. 2007 

Eratyrus cuspidatus 1.26 M 23 FCM TS HS 3.50 Panzera et al. 2007 

Panstrongylus geniculatus 1.42 M 23 FCM TS HS 3.50 Panzera et al. 2007 

P. herreri 0.61 M 23 FD TS BP 3.79 *Schreiber et al. 1972 

P. megistus 0.59 M 21 FD TS BP 3.79 *Schreiber et al. 1972 

P. rufotuberculatus 1.44 M 23 FCM TS HS 3.50 Panzera et al. 2007 

Rhodnius colombiensis 0.58 M 22 FCM TS HS 3.50 Diaz et al. 2014 

R. ecuadoriensis 0.72 M 22 FCM TS HS 3.50 Panzera et al. 2007 
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Taxon 1C (pg) Sex 2n Method Cell type Standard Standard 1C (pg) Reference 

R. pallescens 0.73 M 22 FCM TS HS 3.50 Gómez-Palacio et al. 2012 

R. prolixus 0.86 - 22 FD TR GD 1.15 *Maddrell et al. 1985 

R. prolixus 0.26 - 22 - - - - Petitpierre 1996 

R. prolixus 0.75 M 22 FCM TS HS 3.50 Panzera et al. 2007 

R. prolixus 0.59 - 22 FD S DM 0.18 Gregory (unpub. data) 

Triatoma barberi 1.23 M 23 FCM TS HS 3.50 Panzera et al. 2007 

T. brasiliensis 1.09 M 22 FCM TS HS 3.50 Panzera et al. 2007 

T. delpontei 1.80 M 22 FD - AC 16.50 Panzera et al. 1995 

T. delpontei 2.90 M 22 FCM TS HS 3.50 Bargues et al. 2006  

T. dimidiata 0.92–1.07 M 23 FCM TS HS 3.50 Panzera et al. 2006 

T. infestans 0.82 M 22 FD TS BP 3.79 *Schreiber et al. 1972 

T. infestans 1.03 M 22 FD - AC 16.50 Panzera et al. 1995 

T. infestans 1.70 M 22 FCM TS HS 3.50 Panzera et al. 2004 

T. infestans 1.44–1.98 M 22 FCM TS HS 3.50 Bargues et al. 2006  

T. longipennis 0.91 M 23 FCM TS HS 3.50 Panzera et al. 2007 

T. maculata 1.09 M 22 FCM TS HS 3.50 Panzera et al. 2007 

T. melanosoma 1.53 M 22 FCM TS HS 3.50 Bargues et al. 2006  

T. nitida 1.35 M 21 FCM TS HS 3.50 Panzera et al. 2007 

T. platensis 0.70 M 22 FD TS BP 3.79 *Schreiber et al. 1972 

T. platensis 0.87 M 22 FD - AC 16.50 Panzera et al. 1995 

T. platensis 1.33 M 22 FCM TS HS 3.50 Bargues et al. 2006  

T. pseudomaculata 0.57 M 22 FD TS BP 3.79 *Schreiber et al. 1972 

T. pseudomaculata 1.13 M 22 FCM TS HS 3.50 Panzera et al. 2007 

T. rubrovaria 0.54 M 22 FD - AC 16.50 Panzera et al. 1995 

T. rubrovaria 1.17 M 22 FCM TS HS 3.50 Bargues et al. 2006  

T. ryckmani 1.10 M 23 FCM TS HS 3.50 Panzera et al. 2007 

T. sordida 1.12 M 22 FCM TS HS 3.50 Bargues et al. 2006  

T. vitticeps 0.89 M 24 FD TS BP 3.79 *Schreiber et al. 1972 

NABIDAE         

Himacerus apterus 4.96 F 38 FCM WB BeP 1.76 *Sadílek et al. manuscript 

H. apterus 4.86 M 38 FCM WB BeP 1.76 *Sadílek et al. manuscript 

H. mirmicoides 4.54 M 34 FCM WB BeP 1.76 *Sadílek et al. manuscript 

Nabis ferus 2.40 F 18 FCM WB BeP 1.76 *Sadílek et al. manuscript 
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Taxon 1C (pg) Sex 2n Method Cell type Standard Standard 1C (pg) Reference 

N. ferus 2.24 M 18 FCM WB BeP 1.76 *Sadílek et al. manuscript 

N. maoricus 2.08 F 18 FCM WB SP 1.31 *Sadílek et al. manuscript 

N. maoricus 1.87 M 18 FCM WB SP 1.31 *Sadílek et al. manuscript 

N. pseudoferus 2.94 F 18 FCM WB BeP 1.76 *Sadílek et al. manuscript 

N. pseudoferus 2.67 M 18 FCM WB BeP 1.76 *Sadílek et al. manuscript 

N. punctatus 2.65 F 18 FCM WB BeP 1.76 *Sadílek et al. manuscript 

N. punctatus 2.43 M 18 FCM WB BeP 1.76 *Sadílek et al. manuscript 

N. rugosus 3.18 F 18 FCM WB BeP 1.76 *Sadílek et al. manuscript 

N. rugosus 2.97 M 18 FCM WB BeP 1.76 *Sadílek et al. manuscript 

Prostemma guttula 3.78 F 28 FCM WB BeP 1.76 *Sadílek et al. manuscript 

P. guttula 3.57 M 28 FCM WB BeP 1.76 *Sadílek et al. manuscript 

CIMICIDAE         

Cimex hemipterus 0.78 F 32 FCM WB SP 1.31 *Sadílek et al. 2019b 

C. hemipterus 0.74 M 31 FCM WB SP 1.31 *Sadílek et al. 2019b 

C. hirundinis 0.86 F 32 FCM WB SP 1.31 *Sadílek et al. 2019b 

C. hirundinis 0.80 M 31 FCM WB SP 1.31 *Sadílek et al. 2019b 

C. lectularius- human host 0.88 F 30 FCM BR DV 0.34 *Benoit et al. 2016 

C. lectularius- human host 0.84 M 29 FCM BR DV 0.34 *Benoit et al. 2016 

C. lectularius- human host 0.98 F 30 FCM WB SP 1.31 *Sadílek et al. 2019a 

C. lectularius- human host 0.97 M 29 FCM WB SP 1.31 *Sadílek et al. 2019a 

C. lectularius- bat host 0.90 F 30 FCM WB SP 1.31 *Sadílek et al. 2019b 

C. lectularius- bat host 0.90 M 29 FCM WB SP 1.31 *Sadílek et al. 2019b 

C. pipistrelli 0.78 F 32 FCM WB SP 1.31 *Sadílek et al. 2019b 

C. pipistrelli 0.84 M 31 FCM WB SP 1.31 *Sadílek et al. 2019b 

Paracimex cf. chaeturus 0.60 M 41 FCM WB SP 1.31 *Sadílek et al. 2019b 

MIRIDAE         

Apolygus lucorum 0.90 M - FCM BR DM 0.18 He et al. 2016 

Cyrtorhinus lividipennis 0.36 F - FCM BR DM 0.18 He et al. 2016 

C. lividipennis 0.35 M - FCM BR DM 0.18 *He et al. 2016 

Pseudatomoscelis seriatus 0.61 F - FCM BR DV 0.34 *Hanrahan & Johnston 2011 

P. seriatus 0.57 M - FCM BR DV 0.34 *Hanrahan & Johnston 2011 

Tytthus chinensis 0.41 F - FCM BR DM 0.18 He et al. 2016 
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Taxon 1C (pg) Sex 2n Method Cell type Standard Standard 1C (pg) Reference 

Infraorder PENTATOMOMORPHA         

PENTATOMIDAE         

Brochymena cariosa 1.26 - - FCM BR DM 0.18 Hanrahan & Johnston 2011 

PYRRHOCORIDAE         

Dysdercus fasciatus 1.40 M 16 FD TR GD 1.15 *Maddrell et al. 1985 

Pyrrhocoris apterus 1.22 - 23 FD S DM 0.18 Bier & Müller 1969 

P. apterus 1.32 F 23 FCM WB BeP 1.69 *Sadílek (unpub. data) 

P. apterus 1.19 M 23 FCM WB BeP 1.69 *Sadílek (unpub. data) 

LYGAEIDAE         

Oncopeltus fasciatus 4.65–6.15 - 16 BCA WB - - Lagowski et al. 1973 

 

 

Supplementary table 2. Four genome size analysing studies of Schrader & Hughes-Schrader 

from the '50s presented results only in form of sample/standard ratio. Standard species was not 

specified, standard genome size was not given, therefore genome size cannot be expressed in 

picograms. 

Method: FD = Feulgen densitometry 

Cell type: TS = testes 

2n = diploid chromosome number 

 

Taxon 

Sample/standard 

ratio Sex 2n Method Cell type Standard Reference 

Infraorder PENTATOMOMORPHA        

PENTATOMIDAE        

Acrosternum hilaris 3.81 M 14 FD TS frog Hughes-Schrader & Schrader 1957 

A. marginatum 3.65 M 14 FD TS frog Hughes-Schrader & Schrader 1957 

A. pennsylvanicum 4.02 M 14 FD TS frog Hughes-Schrader & Schrader 1957 

A. scutellatum 3.61 M 14 FD TS frog Hughes-Schrader & Schrader 1957 

Acrosternum sp. 3.13 M 14 FD TS mantid Hughes-Schrader & Schrader 1956  

Arvelius albopunctatus 2.19 M 14 FD TS mantid Schrader & Hughes-Schrader 1956 

Banasa bidens 1.53 M 26 FD TS frog Schrader & Hughes-Schrader 1958 

B. calva 1.46 M 26 FD TS frog Schrader & Hughes-Schrader 1958 
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Taxon 

Sample/standard 

ratio Sex 2n Method Cell type Standard Reference 

B. dimidiata 1.10 M 16 FD TS frog Schrader & Hughes-Schrader 1958 

B. euchlora 1.53 M 16 FD TS frog Schrader & Hughes-Schrader 1958 

B. lenticularis 1.07 M 16 FD TS frog Schrader & Hughes-Schrader 1958 

B. minor 1.56 M 26 FD TS frog Schrader & Hughes-Schrader 1958 

B. panamensis 1.43 M 14 FD TS frog Schrader & Hughes-Schrader 1958 

B. panamensis 1.43 M 14 FD TS frog Hughes-Schrader & Schrader 1957 

B. rutifrons 1.44 M 26 FD TS frog Schrader & Hughes-Schrader 1958 

B. zeteki 1.31 M 26 FD TS frog Schrader & Hughes-Schrader 1958 

Coenus delius 2.52 M 14 FD TS mantid Hughes-Schrader & Schrader 1956  

Euschistus crassus 2.32 M 12 FD TS mantid Hughes-Schrader & Schrader 1956  

E. obscurus 2.58 M 14 FD TS mantid Hughes-Schrader & Schrader 1956  

Loxa flavicollis 2.27 M 14 FD TS mantid Hughes-Schrader & Schrader 1956  

Mormidia lugens 2.24 M 14 FD TS mantid Hughes-Schrader & Schrader 1956  

Murgantia histrionica 1.82 M 14 FD TS mantid Hughes-Schrader & Schrader 1956  

Nezara viridula 2.39 M 14 FD TS frog Hughes-Schrader & Schrader 1957 

Pallaea stictica 2.24 M 14 FD TS frog Hughes-Schrader & Schrader 1957 

Peribalus imbolarius 1.80 M 14 FD TS mantid Hughes-Schrader & Schrader 1956  

Thyanta antiguensis 0.89 M 14 FD TS mantid Schrader & Hughes-Schrader 1956 

T. calceata 0.93 M 27 FD TS mantid Schrader & Hughes-Schrader 1956 

T. calcea x T. pallidovirens  0.84 M 22 FD TS mantid Schrader & Hughes-Schrader 1956 

T. custator 0.88 M 16 FD TS mantid Schrader & Hughes-Schrader 1956 

T. custator x T. pallidovirens  0.92 M 16 FD TS mantid Schrader & Hughes-Schrader 1956 

T. pallidovirens 0.98 M 16 FD TS mantid Schrader & Hughes-Schrader 1956 

T. perditor 1.10 M 14 FD TS mantid Schrader & Hughes-Schrader 1956 

T. pseudocasta 0.94 M 14 FD TS mantid Schrader & Hughes-Schrader 1956 

Trichopepla semivittata 1.69 M 14 FD TS mantid Hughes-Schrader & Schrader 1956  
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