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Abstract 
Stress reaction is usually activated by the brain, when homeostasis is or perceived to be 

threatened. The stress signals are transmitted from the brain by two main branches; the 

sympathoadrenomedullary and the hypothalamo-pituitary-adrenal (HPA) axes and employ neural, 

humoral and immune pathways to cope with the stressor. Because of its potency, the stress reaction 

has to be precisely regulated. The HPA axis is regulated by feedback loops where its end product, 

corticosterone in laboratory rat and mouse, inhibits its activity. The effect of corticosterone does 

not depend only on the concentration of corticosterone but also on local metabolism of 

glucocorticoids via oxo-reduction catalyzed by the enzyme 11β -hydroxysteroid dehydrogenase 1 

(encoded by the Hsd11b1 gene), which intracellularly regenerates active corticosterone from 

inactive 11-dehydrocorticosterone, or by extra-adrenal de novo steroidogenesis of glucocorticoids. 

We focused on analysis of stress response in experimental animals differing in HPA axis 

responsivity (Fischer 344 rats (F344) vs. Lewis rats (LEW) and germ-free (GF) vs. specific 

pathogen free mice (SPF)) with special emphasis on regulation of stress response, glucocorticoid 

regeneration and influence of gut microbiota. We found that stress modulated local regeneration of 

glucocorticoids in the limbic structures involved in HPA axis regulation but not in the canonical 

structures of HPA axis. F344 and LEW rats showed differences in stress-dependent changes of 

expression of genes involved in HPA axis regulation in limbic areas. Similarly, psychosocial stress 

upregulated regeneration of corticosterone in lymphoid organs and this effect was more 

pronounced in LEW than F344 rats. Similarly, inflammatory stress elevated glucocorticoid 

regeneration in specific microanatomical compartments of the murine gut immune system and 

expression of 11hsdb1 correlated with the expression of Tnfα as well as other cytokines. Microbiota 

modulated behavior in social conflicts and the response of the HPA axis, colon and mesentery 

lymph nodes to chronic psychosocial stress. We also demonstrated that microbiota impact the 

response of the pituitary, adrenals and intestine to acute restraint stress. Together we can conclude 

that local regeneration of glucocorticoids plays an important role in central feedback regulation of 

HPA axis response and in local restriction of immune system. The microbiota are involved in 

modulation not only the HPA response to stress but also behavior and local extra-adrenal 

glucocorticoid regeneration and de-novo synthesis.  



 
 

Abstrakt 
Mozek aktivuje stresovou odpověď v situacích, kdy je nebo se zdá být ohrožena 

homeostáza. Informace o stresu jsou vedeny z mozku dvěma hlavními větvemi; 

sympatoadrenálním systémem a osou hypothalamus-hypofýza-nadledviny (HPA), které aktivují 

neurální, humorální a imunitní dráhy, určené pro zvládání stresových situací. Protože se jedná o 

velmi účinný mechanismus, musí být stresová odpověď přesně řízena. HPA osa je regulována 

zpětnovazebným systémem, kdy její konečný produkt, kortikosteron u laboratorních potkanů a 

myší, tlumí její aktivitu. Efekt kortikosteronu nezávisí pouze na jeho koncentraci, ale také na 

lokálním metabolismu glukokortikoidů katalyzovaném enzymem 

11β-hydroxysteroiddehydrogenázou 1 (kódovanou genem Hsd11b1), který obnovuje kortikosteron 

z 11-dehydrokortikosteronu uvnitř buňky; nebo de novo syntézou glukokortikoidů. V naší práci 

jsme se zaměřili na zkoumání stresové odpovědi u pokusných zvířat lišících se reaktivitou HPA 

osy ((potkani kmene Fischer 344 (F344) proti potkanům kmene Lewis (LEW) a bezmikrobní (GF) 

myši proti myším bez specifického patogenu (SPF)), se zaměřením na regulaci stresové odpovědi, 

regeneraci glukokortikoidů a vliv mikrobioty. Zjistili jsme, že stres moduluje lokální regeneraci 

glukokortikoidů v limbických oblastech zapojených do řízení HPA osy, ale nemá vliv 

v jednotlivých složkách samotné HPA osy. Kmeny potkanů F344 a LEW vykazovaly různé stresem 

indukované změny genů podílejících se na regulaci HPA osy v limbických oblastech. Obdobně, 

stres zvýšil regeneraci glukokortikoidů v lymfatických orgánech a toto zvýšení bylo více zřetelné 

u kmene LEW než u kmene F344. Regenerace glukokortikoidů byla také zvýšena zánětem ve 

specifických mikroanatomických kompartmentech myšího střevního imunitního systému a exprese 

Hsd11b1 korelovala s expresí Tnfα a některých dalších cytokinů. Mikrobiota modulovala chování 

v sociálním konfliktu a odpověď HPA osy, tlustého střeva a mezenteriálních lymfatických uzlin 

při vystavení chronickému psychosociálnímu stresu. Mikrobiota rovněž ovlivňovala odpověď 

hypofýzy, nadledvin a střev na akutní stres znehybněním. Celkově lze uzavřít, že lokální 

regenerace glukokortikoidů hraje důležitou roli v centrální zpětnovazebné regulaci odpovědi HPA 

osy na stres a v lokální regulaci imunitního systému. Mikrobiota se účastní nejenom na modulaci 

odpovědi HPA osy při stresu, ale také chování a lokální extra-adrenální regenerace glukokortikoidů 

a jejich syntézy de novo.  



 
 

List of abbreviations 
The proteins are written in capital letters, genes are written in italics with the first capital 

letter followed by small letters. Abbreviation of genes are stated only, when the name of the gene 

differs from name of the protein. 

11HSD1 11β-hydroxysteroid dehydrogenase type 1  
11HSD2 11β-hydroxysteroid dehydrogenase type 2  
3βHSD  3β-hydroxysteroid dehydrogenase 
5-HT seretonin 
ACTH adrenocorticotropic hormone  
AG adrenal glands 
BBB blood-brain barrier 
BLA  basolateral amygdala 
BNST bed nucleus of stria terminalis 
CA2 cornu Ammonis 2 subfield of the hippocampus 
CA3 cornu Ammonis 3 subfield of the hippocampus 
CCE colonic crypt epithelium  
CeA central amygdala 
CRH corticotropin-releasing hormone 
CRHR1 corticotropin-releasing hormone receptor 1 
CRHR2 corticotropin-releasing hormone receptor 2 
CVOs circumventricular organs 
CYP11A1 cholesterol side-chain cleavage enzyme (P450scc) 
CYP11B1 11β-hydroxylase (P450c11b1) 
CYP17 17α-hydroxylase (or P450 17A1) 
CYP21 steroid 21-hydroxylase (P450c21) 
Dax-1 dosage-sensitive sex reversal, adrenal hypoplasia critical region 
DBD DNA-binding domain  
dCA1 dorsal portion of cornu Ammonis 1 subfield of the hippocampus 
ENS enteric nervous system 
F344 Fischer 344 rat strain 
FKBP5 FK506 binding protein 51 
FST forced swim test 
GF germ free 
GR glucocorticoid receptor 
GRE glucocorticoid response element 
HPA hypothalamo-pituitary-adrenal 
Hsd11b1 gene encoding 11β-hydroxysteroid dehydrogenase type 1  
Hsd11b2 gene encoding 11β-hydroxysteroid dehydrogenase type 2  



 
 

IL interleukin 
ILF isolated lymphoid follicles  
ilPFC infralimbic prefrontal cortex 
LA lateral amygdala 
LBD ligand-binding domain  
LEW Lewis rat strain 
LPS lipopolysacharides 
LRH-1 liver receptor homolog-1 
LTP long-term potentiation 
MC2R melanocortin 2 receptor (Receptor for ACTH)  
ME median eminence 
MLN mesenteric lymph node 
mPFC medial prefrontal cortex 
MR mineralocorticoid receptor 
nGRE negative Glucocorticoid response element 
Nr3c1 gene encoding the glucocorticoid receptor 
NTD amino-terminal domain  
NTS nucleus of the solitary tract (nucleus tractus solitarii) 
OXT oxytocin 
P450 17A1 17α-hydroxylase (or CYP17)  
P450c11b1 11β-hydroxylase (CYP11B) 
P450c21 steroid 21-hydroxylase (CYP21) 
P450scc  cholesterol side-chain cleavage enzyme (CYP11A1) 
PAC1 receptor for PACAP 
PACAP pituitary adenylate cyclase activating polypeptide 
PFC prefrontal cortex 
plPFC prelimbic prefrontal cortex 
POMC pro-opio-melanocortin 
PVN paraventricular nucleus of hypothalamus 
PVT paraventricular nucleus of the thalamus 
SAM sympathoadrenomedullary  
SDRs short-Chain Dehydrogenases/Reductases 
SF-1 steroidogenic factor 1 
SPF specific pathogen free 
StAR steroidogenic Acute Regulatory Protein  
TNF tumor necrosis factor 
TRFs transcriptional regulatory factors 
UCN urocortin 
V1B vasopressin receptor type V1B also called V3 
vCA1 ventral portion of cornu Ammonis 1 subfield of the hippocampus 
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1 Introduction 
1.1 General introduction 

To successfully survive and procreate in unpredictable world, animals (as well as humans) 

have to cope with various challenges including predators, shortage of nutrients, intra-species rivals, 

bad weather, infections etc. To do so, the organisms evolved mechanisms to maintain homeostasis 

in dynamic environment, the stress response. The founder of stress as a scientific concept, Hans 

Selye defined stress response as the nonspecific response of the body to any demand (Selye 1950). 

However, later it was shown, that different stressors evoke distinct central neurochemical and 

peripheral neuroendocrine patterns of response (Pacak et al., 1998). Recently, the stress response 

was defined as a reaction of the organism to stimulus (stressor) that threatens homeostasis (or is 

perceived as a threat to the homeostasis by the organism) and is aimed to regain homeostasis 

(Chrousos 2009; Pacak and Palkovits 2001). Stress is often regarded as something pathological 

however, it is important to realize that acute stress response represents a physiologically important 

emergency tool, which is designed to apply powerful means when the organism’s health or 

existence are at stake. The ability of the organism to actively maintain homeostasis in changing 

environment is called the “allostasis”. The adverse effects of stress come to play, when stressors 

remain for longer periods of time and/or individual management of the stress response is impaired. 

The cost of wear and tear of the stress reaction is referred to as allostatic load (McEwen and 

Gianaros, 2011).  

The stress response originates in the brain and employs all systems needed to fight for 

survival, including cardiovascular, metabolic and immune systems. The stress signals are 

transmitted from the brain by two main branches; the sympathoadrenomedullary (SAM) axis and 

the hypothalamo-pituitary-adrenal (HPA) axis. The response of the SAM axis is employed within 

seconds after stressor insult and comprises elevated heart rate, increased blood pressure, increased 

glycaemia etc. and is accompanied by the elevation of catecholamines. The HPA axis response is 

slower, however its effectors (corticosterone in rodents, cortisol in humans) have longer plasma 

half-life. Both axes are aimed to maintain and restore homeostasis and cover energy expenditure 

needed to escape from dangerous situation (Ulrich-Lai and Herman, 2009). 

The stress response is primarily aimed on survival, thus applying such powerful mechanism 

is not without consequences. The founder of the term “stress”, Hans Selye, has described that 
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severe and long lasting stressors result in adrenal hypertrophy, atrophy of thymus (and lymph 

nodes) and erosions of gastrointestinal tract (gastroduodenal ulcers) (Selye, 1950; Szabo et al., 

2017). Since that time, extensive research of the effects of stressors on organisms has revealed, that 

over-activation of stress response can contribute to the development of neuropsychiatric and 

cardiovascular disorders and disturbances of immune system (Bellavance and Rivest 2014; 

Dhabhar, 2014; Elenkov and Chrousos, 2002; McEwen, 2006; Steptoe and Kivimaki, 2012).  

The stress response is governed by brain and also greatly affects the brain itself in several 

aspects. The brain evaluates the danger using external and internal signals, as well as anticipatory 

response. In return, the stress related signals influence brain and can alter memory formation and 

store contextual memories to avoid dangerous situations in future (Roozendaal et al., 2009). It is 

known from experience, that small to medium levels of stress could be sometimes beneficial to 

promote learning, growth and adaptation. In older literature it was referred to as “Eustress” and the 

damaging stress was called “Distress” (Selye, 1975). The effect of stressors on performance is 

usually displayed as inverted U-shaped curve, sometimes called the Yerkes-Dodson Law. The 

performance increases with higher stress, motivation or anxiety to a certain point, from which 

further increasing of stress, motivation or anxiety interfere with cognitive processes and leads to 

decreased performance (Chrousos, 2009). However, this paradigm is valid only for more complex 

tasks. For easy tasks, the curve reaches plateau and does not fall (Figure 1) (Diamond et al., 2007). 

 

Figure 1. Relationship between arousal and cognitive performance. Generally accepted view (a) of U-shaped curve 
(Chrousos, 2009) that usually neglects relationship between stress and performance for easy tasks and original (and still valid) 
observation by Yerkes and Dodson (1908) (b), that in simple tasks high emotionality can enhance performance and that interference 
between high emotionality and performance is valid only for more complex task. From Diamond et al., 2007. 

It is proposed that in stressful situation, the brain shifts from higher order (hippocampal) to 

habitual (striatum based) responses (Goldfarb and Phelps, 2017), and thus easy tasks are still 
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manageable. Regarding harmful effects of stress, recent findings emphasized the role of perceived 

controllability and predictability of the stressor in adaptation and perceived severity of the stressor 

(Koolhaas et al. 2011). It is also is known, that the same stressor may not have the same effect on 

all individuals. This individual variability in susceptibility to stressors is probably due to the 

tradeoff between traits. The unpredictability of environment and evolutionary pressure maintains 

variability between traits. The relative advantage of a trait usually depends on many variables, such 

as food availability, population density or predators and climatic disturbances. Different conditions 

requires different traits in order to successfully cope with these conditions, and it is not possible to 

say, that one trait is universally ideal. For example, an individual that is hyper-reactive to stress, 

will have advantage in its readiness to escape dangerous environment, but at the cost of allostatic 

load and possible exhaustion. On the other hand, hypo-reactive animals could be endangered by 

autoimmune or inflammatory diseases (Bellavance and Rivest, 2014; Korte et al., 2005; Sternberg 

et al., 1989, 1992). The genetically determined predisposition to stress reactivity can also be 

modulated by many external factors such as previous experiences of stress exposure, sleep, diet, or 

microbiome composition. Microbiome was identified as one of the factors shaping both endocrine 

and behavioral responses to stressors (Cryan and Dinan 2012; Foster et al. 2017). Therefore it is 

important to study the stress response and dissect the mechanisms of its action in order to improve 

therapy and prevention of stress related diseases. 

1.1.1 Overview of the HPA axis 

The hypothalamo-pituitary-adrenal (HPA) axis is the principal endocrine component of 

stress response and a self-regulatory pathway that utilizes its end-products (cortisol and 

corticosterone) to control its own activation and responsiveness through a negative feedback 

mechanism (Figure 2). The initiation of HPA axis activation is controlled by the parvocellular 

neurons located in the paraventricular nucleus (PVN) of the hypothalamus. However, PVN is 

influenced by central stress excitatory and inhibitory circuits that integrate stress-related signals 

from both intrahypothalamic and extrahypothalamic structures (Ulrich-Lai and Herman, 2009). 

When activated, the release of corticotrophin-releasing hormone (CRH) in the median eminence 

(ME) is employed and production of CRH is initiated in the medial parvocellular neurons of the 

PVN (Aguilera and Liu, 2012).  
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CRH released from ME is transported via portal blood stream to the anterior pituitary, 

where it binds to the corresponding receptor (CRHR1) activating adenylate cyclase, which leads to 

the release of adrenocorticotropic hormone (ACTH). Binding of CRH also increases the expression 

of the pro-opio-melanocortin (POMC) gene. Its gene product is a large preprohormone, which is 

subsequently cleaved by prohormone convertase 1 in several peptides: resulting in the production 

of N-terminal peptide, joining peptide, ACTH, β-endorphin, and β-lipotropin. Action of CRH in 

the anterior pituitary is enhanced by arginine-vasopressin, which is co-released with CRH in ME 

and activates via arginine-vasopressin 1B receptors (V1B) the protein kinase C in anterior pituitary. 

Activation of POMC transcription and subsequent release of ACTH are contingent on the type of 

stressor that causes the initial stress response (Herman et al. 2016).

 

Figure 2: Regulation of the HPA axis. (A) The HPA axis is inhibited by its end-products glucocorticoids at several levels 
of HPA axis including pituitary and PVN (adapted from Herman et al., 2016). (B) Control of the HPA axis by the limbic system. 
The hormones of the HPA-axis coordinate information processing and promote connectivity between amygdala, prefrontal cortex 
and hippocampus to facilitate behavioural adaptation. Projections from the limbic structures innervate the PVN network and regulate 
trans-synaptically the activity of the HPA-axis (Groeneweg et al., 2011).  

ACTH released to the blood stream is transported to adrenal glands (AG), where it activates 

melanocortin 2 receptors (MC2R). In contrast to other melanocortin receptors, MC2R is activated 

exclusively by ACTH and is expressed predominantly in zona fasciculata and reticularis of adrenal 

glands (Gantz and Fong 2003). Binding of ACTH to MC2R results in activation of cAMP-protein 

kinase A signaling pathway, which leads to acute increase of expression and function of the 
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steroidogenic acute regulatory protein (StAR), a protein which facilitates movement of cholesterol 

(precursor of glucocorticoids) from outer to inner mitochondrial membrane (Clark, 2016; Miller 

and Auchus 2011). As StAR is produced de novo after trophic hormone stimulation of the target 

cells, the StAR-mediated transport of cholesterol represents one of the rate limiting steps of 

glucocorticoid production (Clark et al. 1994). The cytochrome P450scc (cholesterol side chain 

cleavage enzyme) located in the mitochondrial matrix, catalyzes the conversion of cholesterol to 

pregnenolone and represents another rate-limiting step in steroidogenesis. P450scc is encoded by 

the CYP11A1 gene whose expression is hormonally regulated (Miller and Auchus, 2011). 

Pregnenolone is further converted into progesterone by 3β-hydroxysteroid dehydrogenase 

(3βHSD). Another enzyme from cytochrome P450 family, steroid 21-hydroxylase (P450c21; 

CYP21) catalyzes hydroxylation of progesterone to 11-deoxycorticosterone. The last step in rats 

and mice is β-hydroxylation of 11C leading to corticosterone, which is catalyzed by 

11β-hydroxylase (P450c11b1; CYP11B1) (Payne and Hales 2004). In human adrenals, the enzyme 

17α-hydroxylase (P450 17A1; CYP17) is present and thus pregnenolone is converted to 17α-

hydroxypregnenolone and progesteron to 17α-hydroxyprogesterone, which is further converted by 

CYP21 and CYP11B1 to cortisol (Payne and Hales, 2004).  

 

1.1.1.1 Metabolism of glucocorticoids 

In plasma, corticosterone or cortisol are bound to transcortin (cortisol-binding globulin, 

CBG) and to lesser extent to albumin. Only about 5 – 10 % of cortisol is free and available for 

physiological activity and metabolic degradation. The plasma half-life of cortisol in humans is 60 

– 90 min (Hall et al. (2010). In contrast, the plasma half-life of total corticosterone in rats is 25 min 

(Sainio et al. 1988). The major site of glucocorticoid degradation is the liver, although other tissues 

of the body are also capable of cortisol catabolism. The end-products of degradation are conjugated 

with glucuronic acid. About 25 % of degraded glucocorticoids are excreted into the bile and then 

feces, the remaining conjugates formed by the liver enter the circulation and as highly soluble 

substances they are filtered readily in the kidneys and excreted into the urine.  

1.1.1.2 Receptors for glucocorticoids  

The glucocorticoids, corticosterone in rodents and cortisol in humans, acts on 

glucocorticoid receptor (GR). Together with mineralocorticoid receptor (MR), progesterone 
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receptor, estrogen receptor and androgen receptor, GR belong to the superfamily of nuclear 

receptors activated by ligands, which operate as transcription factors (Heitzer et al., 2007). The 

GRs are expressed ubiquitously throughout the body and orchestrate intracellular responses leading 

to the changes in metabolism, immune system, vascular tone and central nervous system (Revollo 

and Cidlowski 2009). It is estimated that there are between 1,000 and 2,000 genes that are subject 

to GR-mediated regulation, with some studies stating that up to 20 % of all genes are GR-

responsive (Galon et al., 2002; Weikum et al. 2017). The importance of these receptors for survival 

has been shown by deletion of GRs, which leads to the developmental abnormalities and death 

shortly after birth (Cole et al. 1995). The GR is a modular protein, which comprised the amino-

terminal domain (NTD), the DNA-binding domain (DBD), and the C-terminal ligand-binding 

domain (LBD). The protein is encoded by Nr3c1 gene and can be subjected to splicing and post-

translational modification including phosphorylation, sumoylation, ubiquitylation, acetylation and 

nitrosylation (Figure 3) (Timmermans et al., 2019; Weikum et al., 2017). 

The mature GRs are found in cytoplasm in a monomeric state bound to complexes of 

accessory proteins and the whole complex participates in translocation of activated GR to the 

nucleus (Timmermans et al., 2019). The ligand-activated receptor binds to the glucocorticoid 

response element (GRE), usually in the form of dimers, to induce transactivation (GRE) or 

transrepression (nGRE). GR can also regulate gene activity independent of DNA binding via 

protein–protein interactions with other transcription factors (Scheschowitsch et al., 2017). 
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Figure 3. GR singnalling and DNA binding. Linear domain structure of glucocorticoid receptor (GR). (a) GR comprises 
of the amino-terminal domain (NTD), DNA-binding domain (DBD), hinge region and ligand-binding domain (LBD). (b) Overview 
of signaling mediated by natural GR ligand cortisol. Activating ligand interacts with monomeric GR associated with molecular 
chaperone-containing complexes in the cytosol. This induces local and remote allosteric changes that potentiate nuclear transport 
and other activities. Within the nucleus, GR nucleates multi-component transcription regulatory complexes containing various other 
transcriptional regulatory factors (TRFs) and transcriptional co-regulators at different glucocorticoid response elements (GREs) to 
activate or repress transcription of particular target genes. GRE1 and GRE2 represent distinct GREs within the genome, Gene X 
and Gene Y represent the genes under the control of GRE1 and GRE2, respectively. From Weikum et al., 2017 
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Some glucocorticoid-induced responses are too fast to be associated with genomic effect. 

Membrane-bound glucocorticoid receptors that promote non-genomic actions of glucocorticoid 

and their function are currently discussed (Deng et al., 2015; Groeneweg et al., 2011; Strehl and 

Buttgereit, 2014; Tasker et al., 2006). 

The glucocorticoids also activate the MRs. These receptors have higher affinity to 

glucocorticoids than GR and thus the activation of MR by glucocorticoids is protected in 

mineralocorticoid target tissues by intracrinic modulation of glucocorticoid signals by the enzyme 

11β-hydroxysteroid dehydrogenase type 2 (11HSD2) (see chapter 1.1.2.1). 

In brain, the GRs are expressed ubiquitously, whereas MRs are expressed predominantly in 

limbic areas (amygdala, hippocampus). MRs have ten times higher affinity for glucocorticoids than 

GRs (Reul and deKloet 1985) and expression of 11HSD2 is generally low in the brain. Thus, the 

MRs are predominantly occupied by glucocorticoids at basal conditions, whereas GRs respond to 

circadian and stress-induced peaks of corticosterone (deKloet et al., 2005; Mifsud and Reul, 2018). 

Both GRs and MRs participate in HPA axis regulation and stress-induced memory and behavior 

(McEwen, 2007). The importance of intact glucocorticoid signalling in brain was demostrated by 

the deletion of GR in the forebrain (regions encompassing the cerebral cortex, hippocampus, 

nucleus accumbens, caudate–putamen, basolateral and basomedial amygdala, and bed nucleus of 

the stria terminalis) which was accompanied by number of physiological and behavioral 

abnormalities that mimic depressive disorders (Boyle et al., 2006). 

1.1.1.3 Effects of glucocorticoids  

As their name suggests, glucocorticoids are known for their effect on carbohydrate 

metabolism. Glucocorticoids stimulate hepatic gluconeogenesis, increase mobilization of amino 

acids from other tissues and mobilization of fatty acids. This leads to mild increase of glycaemia 

and subsequent stimulation of insulin secretion, which, if prolonged, can lead to insulin resistance. 

Moreover, glucocorticoids have permissive effect for other hormones such as catecholamines and 

glucagon. Metabolic effects are important not only after stressful challenges but also in basal state; 

the diurnal fluctuation of glucocorticoids controlled by circadian clock and prepares organism for 

regular peaks of activity (Dickmeis, 2009). Glucocorticoids are also known for their 

immunomodulatory and immunosuppressive properties. High levels of glucocorticoids are used in 

clinical practice for their anti-inflammatory actions. Glucocorticoids modulate production of pro-
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inflammatory cytokines (including IL-1B, TNFa, IL-6, IL-8, IL-12, and IL-18 etc.) and modulators 

(eg. COX-2, iNOS). They also increase expression of other transcriptional regulators, such as 

glucocorticoid-induced leucine zipper, which regulates immune response at several levels, 

including inhibition of translocation of pro-inflammatory factor NF-kB, restraining skin 

inflammation mediated by IL-17 and participation in apoptosis of neutrophils (Petrillo 2017). 

Glucocorticoids are shifting immune response towards humoral (Th2) immunity by participating 

in maturation and function of IL-10 producing T-cells and directly enhancing IL-10 secretion by 

macrophages and dendritic cells (Franchimont 2004). 

1.1.2 Regulation of the HPA axis 

There is a negative feedback regulation mediated by glucocorticoids at all levels of the HPA 

axis (Figure 2). In the PVN, corticosterone inhibits both synthesis and secretion of CRH (Aguilera 

et al., 2007, Harbuz and Lightman 1989). Increased expression and secretion CRH in PVN and 

exaggerated CRH response to minor stressor was described in adrenalectomized rats (Ma and 

Aguilera 1999). The exact mechanism of glucocorticoid action on CRH neurons is not clear. 

Negative GRE was found in vitro using AtT-20 cells transfected with the human CRH gene 

(Malkoski and Dorin, 1999) but the feedback mechanism is at least partially maintained also by 

membrane glucocorticoid receptors of CRH neurons in PVN that mobilize the synthesis of 

endocannabinoids. Endocannabinoid release then causes presynaptic inhibition of glutamate 

release, which reduces the neural activity of parvocellular neurons (Di et al., 2003, Tasker et al., 

2006). 

In pituitary, the glucocorticoids activate their receptors, which bind to the nGRE on the 

promoter of POMC gene and, thus inhibits POMC transcription. Moreover, glucocorticoids 

promote translocation of Annexin1, which inhibits CRH-induced ACTH secretion. In addition, 

several other mechanisms of glucocorticoids inhibition of ACTH synthesis and secretion were 

proposed (Deng et al., 2015; Gjerstad et al., 2018). 

1.1.2.1 Intracellular modulation of glucocorticoid activity 

The response of target tissue depends not only on the concentration of glucocorticoids and 

density of receptors, but also on the pathways how glucocorticoid signal can be modified inside 

the cells. The FK506 binding protein 51 (FKBP5) is a co-chaperone of HSP 90 and belongs to 

immunophilin family. When bound to the glucocorticoid receptor complex, it decreases its affinity 



23 
 

to glucocorticoids and GR translocation to the nucleus. FKBP5 is part of ultra-short negative 

feedback loop, where activation of GR increases expression of FKBP5 decreasing thus GR activity. 

Overexpression of FKBP5 and subsequent decreased glucocorticoid feedback is associated with 

depressive behavior (Binder 2009, Gjerstad et al., 2018). 

The amount of glucocorticoids available for GR or MR can be influenced by enzyme 

11β-hydroxysteroid dehydrogenase (11HSD). This enzyme belongs to the Short-Chain 

Dehydrogenases/Reductases (SDRs) superfamily, catalyzing NAD(P)(H)-dependent 

oxidation/reduction reactions (Figure 4). The coenzyme binding is located to the N-terminal part, 

while the substrate binding is located to the C-terminal part (Persson et al., 2003). Two isoform of 

this enzyme have been characterized: 11β-hydroxysteroid dehydrogenase type 1 (11HSD1) and 

type 2 (11HSD2). It was shown that 11HSD1 has both dehydrogenase and reductase activity 

however, in vivo when the cells are not disrupted, it has predominantly reductase activity 

(Tomlinson et al., 2004). The 11HSD1 is located in the endoplasmic reticulum and amplifies 

intracellular glucocorticoid action by converting biologically inactive 11-oxo-steroids (cortisone, 

11-dehydrocorticosterone) to biologically active cortisol and corticosterone (Tomlinson et al., 

2004; Wyrwoll et al., 2011). This enzyme is expressed in the brain (Holmes and Seckl, (2005); 

Wyrwoll et al., 2011), pituitary gland (Hanafusa et al., 2002), adrenal gland (Shimojo et al., 1996) 

and many other peripheral organs (Tomlinson et al., 2004). The potential of 11HSD1 in regulation 

of glucocorticoid signal in brain was demonstrated by application of 11HSD1 inhibitor, which 

prevented stress-induced suppression of hippocampal synaptic potentiation and impaired 

contextual, but not tone-cue fear conditioning (Sarabdjitsingh et al., 2014). We found that Hsd11b1 

expressoin is up-regulated by stress in limbic areas of brain and participates in the control of HPA 

axis activity, but not in the HPA axis itself (Ergang et al., 2015; Vodička et al., 2014).  

On the other hand, 11HSD2 catalyzes the oxidation of cortisol and corticosterone to inactive 

cortisone and 11-dehydrocorticosterone (Figure 5) and reducing the local glucocorticoid signals 

(Wyrwoll et al., 2011). It is expressed predominantly in kidney, placenta, salivary and sweat glands. 

These tissues are target for mineralocorticoids or could be potentially harmed by glucocorticoid 

excess (Tomlinson and Stewart, 2001). 11HSD2 was also found in moderate amounts in brain loci 

involved in regulation of sodium appetite and blood pressure regulation, such as NTS and some 

hypothalamic nuclei (Wyrwoll et al. 2011).  
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Figure 4. Quaternary association of 11β hydroxysteroid dehydrogenase type 1 (11HSD1) subunits and associated 
interactions and conformational changes. Overall topology of the 11HSD1 interface-closed (left) and interface-open (right) 
tetramers. From Hosfield et al. 2005 

 

Figure 5. Conversion of inactive GCs to active GCs. Inactive cortisone (human) and 11-dehydrocorticosterone (mouse) 
are activated to active cortisol and corticosterone by 11β hydroxysteroid dehydrogenase type 1 (11HSD1), and inactivated again by 
11HSD2. Timmermans et al. 2019. 

 

1.1.3 Central regulation of HPA axis  

As the primary controller of HPA axis, the PVN integrates variety of information from 

external and internal sources. The information coming to the PVN can be divided to systemic and 

psychogenic responses. The systemic response represents sensory signals from the body (including 

somatic and visceral pain), neural homeostatic signals (chemoreceptors, baroreceptor, 

osmoreceptors), humoral signals (glucose, leptin, insulin, renin-angiotensin etc.), humoral 

inflammatory signals (IL-1, IL-6, TNF-a and others), whereas the psychogenic responses originate 

from higher order cognitive areas and are based on innate responses (predators, unfamiliar 
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environments, social challenges) and memory-generated (conditioned) triggers 

(Herman et al., 2003). Both systemic and psychogenic stimuli are processed in multiple limbic 

areas, including prefrontal cortex, amygdala and hippocampus (Figure 2). In general, the limbic 

system is involved in emotional and motivational processing, learning, memory and coordination 

of behavioral responses to stress and participates in the HPA axis regulation (Herman 2013, 

Morgane et al., 2005). Although missing direct projections to PVN, the output of these limbic 

structures converges on crucial subcortical relay sites; most notably nucleus tractus solitarii and 

bed nucleus of stria terminalis; which allow further downstream processing of limbic information 

(Ulrich-Lai and Herman, 2009).  

1.1.3.1 Medial prefrontal cortex 

The medial prefrontal cortex (mPFC), interconnected with the hippocampus and the 

amygdala, plays an important role in coordination of behavioral and physiological stress responses 

across multiple temporal and contextual domains (McKlveen et al., 2015; Ulrich-Lai and Herman 

2009). Acute stressors activate c-fos expression in mPFC (Cullinan et al. 1995; Morrow et al., 

2000; Ostrander et al., 2003) while chronic stress as well as high glucocorticoids lead to changes 

in dendritic architecture of the mPFC (Cook and Wellman, 2004; Radley et al., 2004, 2005 

Wellman et al., 2001). Intact mPFC is important for negative HPA axis feedback and corticosterone 

implants to mPFC regions decrease corticosterone levels (Akana et al., 2001; Diorio et al., 1993). 

In addition, specific roles of dorsal and ventral sub-regions of mPFC were shown in the regulation 

of HPA axis during stress (Radley et al. 2006). It seems that glucocorticoids play important role in 

this process, as knockdown of GR in prelimbic prefrontal cortex (plPFC) led to hyperresponsivity 

to acute stress, whereas GR knockdown in infralimbic prefrontal cortex (ilPFC) resulted in hyper-

responsiveness both to acute and chronic stressors (McKlveen et al. 2013). The inhibitory role of 

ilPFC in regulation of the HPA axis in both acute and chronic stress is dependent on glutamate 

output (Myers et al., 2017). 

1.1.3.2 Amygdala 

Amygdala is a complex of nuclei, which are best known for involvement in fear responses 

and memory consolidation and are tightly related to stress. Moreover, it is also considered as a key 

node for stress integration thanks to its involvement in autonomic regulation. Amygdala is a 

complex structure with numerous downstream targets that modulate autonomic and 
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neuroendocrine stress responses (Davis, 1992; Roozendaal et al. 2009, Ulrich-Lai 2009). 

Amygdala is also considered as one of the brain areas involved in stressor/modality specific 

response (Dayas et al., 2001; Figueiredo et al., 2003; Prewitt and Herman, 1997). In contrast to 

PVN, where glucocorticoid exerts negative feedback, the glucocorticoids increase the activity of 

amygdalar CRH system (Kovacs 2013; Makino et al., 1994; Zalachoras et al., 2016). The effect of 

amygdala on PVN is mediated mostly via the bed nucleus of the stria terminalis (BNST) (Choi et 

al. 2007). 

1.1.3.3 Hippocampus 

Based on anatomical, molecular and behavioral data, the hippocampus can be divided into 

two functionally distinct parts. The dorsal portion performs mostly cognitive tasks, for example 

spatial navigation and memory, whereas the ventral part is related to emotions, stress and affect 

(Fanselow and Dong, 2010). The hippocampus is also important for inhibition of the HPA axis. 

GRs and MRs are involved in this process. MRs exert tonic inhibitory influence on the activity of 

the PVN neurons in the hypothalamus and GR are responsible for negative feedback action of 

glucocorticoid hormones (de Kloet et al., 2005; Reul et al., 2015). The effect of hippocampus on 

HPA axis inhibition is most pronounced during the recovery phase of stress-induced glucocorticoid 

secretion, implicating the hippocampus in the regulation of termination of stress-initiated HPA 

responses. The signals from hippocampus to PVN are driven trans-synaptically and preferentially 

through distinct populations of GABA-ergic neurons in the BNST (Herman 2003; Ulrich-Lai and 

Herman 2009). 

1.1.3.4 Neuromodulation of the HPA axis 

Distinct neuronal circuits can be influenced by various neurotransmitters, neuromodulators 

and stress mediators, which are released during stress. As summarized by Joëls and Baram (2009), 

numerous neuropeptides are released by stress in specific populations of neuronal cells and 

contribute to the activation of the stress response or counteract it. CRH, the principal peptide in 

HPA axis activation, is expressed in the PVN of the hypothalamus. Besides the hypothalamus, 

CRH is widely distributed in extrahypothalamic circuits of the brain where it, together with other 

peptides of “the CRH family” (urocortins UCN1, UCN2 and UCN3), functions as a 

neuromodulator establishing and integrating a complex humoral and behavioral system that 

regulates multiple aspects of the stress response (Inda et al. 2017). Receptors for CRH, (CRHR1 
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and CRHR2) are expressed in PVN and amygdala and they play important role in the regulation of 

stress response (Jamieson et al., 2006; Tanaka et al., 2003). CRHR1 binds CRH and UCN1 with 

higher affinity, whereas CRHR2 preferably binds UCN2 and UCN3 (Bale and Vale, 2004). 

Another peptide that is released by stress and is involved in the HPA axis regulation is oxytocin 

(OXT), which reduces physiological and behavioral indices of stress (Engelmann et al. 2004; Lee 

et al., 2009; Winter and Jurek, 2019). The pituitary adenylate cyclase-activating polypeptide 

(PACAP), is a pleiotropic neuropeptide that represents an important regulator of neuroendocrine 

stress response pathways in the brain (Lezak et al., 2014; Stroth and Eiden, 2010), pituitary 

(Hirabayashi et al., 2018) and in the adrenal gland (Eiden et al., 2018). In the brain, the greatest 

accumulation of PACAP-containing cell bodies can be found in hypothalamic and brainstem 

nuclei. Intensive accumulation of PACAP-immunoreactive (-IR) nerve fibers were observed 

throughout the hypothalamus, in the amygdaloid and extended amygdaloid complex, in the anterior 

and paraventricular thalamic nuclei, in the intergeniculate leaflet, in the pretectum, and in several 

brainstem nuclei, such as the parabrachial nucleus, the sensory trigeminal nucleus, and the nucleus 

of the solitary tract. The widespread distribution of PACAP in the brain and spinal cord suggests 

that PACAP is involved in the control of many autonomic and sensory functions as well as higher 

cortical processes (Hannibal, 2002).  

1.1.4 Stress as a research tool 

Based on the differences in neurochemical responses, two major categories of stressors are 

recognized, the “physical” or “reactive” and “psychogenic” or “anticipatory” stressors. The first 

category comprises homeostatic challenges such as changes in cardivascular tone, respiratory 

distress, visceral or somatic pain, and elevated levels of cytokine or chemokine factors in blood 

signaling infection or inflammation. The second category covers situations, where the responses 

are centrally generated in the absence of a physiological challenge. These responses are based on 

past experiences (memory, context) or are innate by species (fear of predators, heights or open 

spaces). These responses represent an effort of the organism to prepare a glucocorticoid response 

in anticipation of, rather than as a reaction to, homeostatic disruption. (Herman et al., 2003). In this 

context, the experimental stressors used in this work are considered psychogenic, however, the 

physical component is also present.  
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1.1.4.1 Restraint 

One of most common experimental stressor is the restriction of free movement of an 

experimental animal (Buynitsky and Mostofsky, 2009). The stressor is mostly psychological 

stressor in its nature. Two major sub-forms of hypokinetic stress procedures evolved over time; the 

Immobilization and Restraint. Immobilization is usually achieved by taping the limbs of the animal 

to a platform (Kvetnansky and Mikulaj., 1970; Marti et al., 2001; Ubeda-Contreras et al., 2018). 

During Restraint the animal is placed to a restrainer which prevents movement. Nowadays plastic 

tubes equipped with ventilation holes are mostly used as restrainers, but mesh wire or other types 

of restrainers were used in the past. The rat or mouse is placed into the restrainer, which does not 

allow the animal to turn around (Buynitsky and Mostofsky, 2009; Zimprich et al., 2014). Both 

types of stressor produce appropriate neuroendocrine response, including elevated ACTH, 

corticosterone and catecholamines (Garcia et al., 2000; Jeong et al., 2000; Kvetnansky et al., 1979) 

and activation of the respective brain areas (Cullinan et al., 1995; Ubeda-Contreras et al., 2018). 

Immobilization usually elicits stronger and longer lasting response of stress hormones than restraint 

and is thus considered a more severe stressor (Marti et al., 2001). However, immobilization is more 

complicated to perform and experience and skill are needed to prevent animals from self-injury 

(Ubeda-Contreras et al. 2018). Restraint stress is easier to apply with minimal risk of injury in both 

rats and mice (Buynitsky and Mostofsky, 2009; Zimprich et al. 2014).  

1.1.4.2 Elevated platform 

Being exposed to brightly lit, open spaces is considered a stressor for mice and rats, 

considering their natural habitat and inherent time of activity. When placed on an elevated platform, 

rats manifest neuroendocrine and behavioral signs of stress (Degroot et al., 2004; Xu et al., 1997, 

1998). Exposure to elevated platform inhibits long-term potentiation (LTP) in hippocampus and 

blocks the LTP in basolateral amygdala-prefrontal cortex pathway (Maroun and Richter-Levin, 

2003). 

1.1.4.3 Social defeat  

Together with crowding, maternal separation, social isolation, chronic subordination, social 

instability, the social defeat belongs to the category of psychosocial stressors. Disruption of social 

hierarchy is potent and ethologically relevant stressor and thus bears potential for translation 

research between rodents and humans (Chaouloff, 2013). Indeed, social conflicts are accompanied 
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by sympathetic activation and increase of heart rate, blood pressure and body temperature in both 

rodents and primates (Miczek et al., 2008). Klaus Miczek was one of the first introducing Social 

defeat in rodents as an experimental stressor (Miczek, 1979). The social defeat, sometimes called 

the resident-intruder, is based on the observation, that adult male rodents have a strong motivation 

to defend their territory against unfamiliar males. Therefore when a conspecific intruder is 

introduced to resident’s cage, he is defeated and displays submissive postures (Figure 6) (Miczek 

et al., 2004). Older, heavier and sexually experienced males, who protect their territory, are selected 

as residents. This is often strengthened by keeping resident’s bedding unchanged for a week prior 

interaction with intruders (Chaouloff, 2013; Hammels et al., 2015). The interaction between 

resident and intruder results in elevated ACTH, glucocorticoids, blood pressure and heart rate 

(Miczek et al., 2008). However the recovery in losers (intruders) is much longer than in winners 

(residents) probably due to lack of control of the situation by intruders (Koolhaas et al. 2011). The 

insufficient control over situation could be an explanation for observed lack of adaptation of 

cardiovascular responses to repeated defeats (Sgoifo et al., 2001; Tornatzky and Miczek, 1993). 

The physical interaction between resident and intruder must be carefully monitored by the 

researcher and terminated if there is a risk of serious injury. To prolong the stressor, resident and 

intruder are separated by mesh or perforated Plexiglas partition, thus animals stay in olfactory, 

visual and auditory contact, but the risk of injuries is eliminated (Hammels et al., 2015). To further 

decrease the possibility of habituation in chronic defeat experiments, the intruder is faced with new 

resident every day (Berton et al., 2006). 
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Figure 6. (a) The characteristic defeat posture by an intruder mouse that has been attacked by a resident. (b) The submissive-supine 
posture by an intruder rat as displayed in reaction to an aggressive posture by an aggressive resident rat. From Miczek et al. 2004 

1.1.4.4 Forced Swimming: 

Forced swimming (FST) was first introduced by Porsolt et al., (1977) and shown to be 

sensitive to antidepressants. Later, the application of FST in research was focused on investigation 

of the coping strategies when facing inescapable stressor (Molendijk and deKloet, 2019). However, 

swimming alone can be used as stressor because forced swimming elicits robust secretion of stress 

hormones (Abel, 1993; Rittenhouse et al., 2002). Since swimming has strong physical component 

there were discussions whether FST has to be considered physical or psychological stressor. Based 

on studies comparing activation of immediate early genes in brain, forced swimming is considered 

as primarily psychological stressor, as c-fos activation pattern is similar to restraint and white noise 

stress (Dayas et al., 2001). However, the physical component has also to be taken to account, 

especially as there is strong adaptation of the metabolic and neuroendocrine response to repeated 

swimming (Koolhaas et al., 2011). 

1.1.4.5 Duration, adaptation, sensitization and combination of stressors 

When a stressor, which is not inherently harmful, persists for a longer time, it is beneficial 

for the organisms to adapt by decreasing the response of the HPA axis (Grissom and Bhatnagar, 

2009). Organisms adapt to repeated homotypic stressors by decreasing neuroendocrine and 

autonomic readings of stress response in habituation-like manner (Benini et al., 2019), although 

the adaptation of the HPA axis to repeated stressor does not seem to match all criteria for 
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habituation (Benini et al., 2019; Rabasa et al., 2015). However, even if the organism is adapted to 

certain homotypic stressor, the exposure to a novel stressor will induce disproportionately large 

HPA axis stress response as compared to acutely stressed controls (Herman, 2013). This 

phenomenon is called sensitization and maintains response flexibility to new threats. Distinct brain 

areas are involved in adaptation and sensitization processes (Herman, 2013) (Figure 7). 

Sensitization can also be induced by the exposure to single severe stressor such as immobilization 

or footshock (Belda et al., 2008; 2012; Rabasa et al., 2015). The adaptation or sensitization depends 

on several factors including severity of the stressor, individual coping capacity and the 

predictability and controllability of the stressor (Koolhaas et al., 2011). Therefore in some 

experimental setups a combination of stressors is used in order to avoid habituation to repeated 

stressors and to elicit stronger stress response (Ilin and Richter-Levin, 2009; Tsoory and Richter-

Levin, 2006).  

1.1.5 Animal model for studying innate differences in stress reactivity  

When studying biological phenomena it is often advantageous to use experimental animals 

that show some „abnormality“ in studied characteristics. This is also the case of two rat strains 

differing in the reactivity to stress, the hypo-responsive Lewis (LEW) rats and the hyper-responsive 

Fischer 344 (F344) rats. The F344 and LEW rats are histocompatible inbred strains that provide a 

comparative model for investigating interactions between nervous, endocrine and immune systems 

(Dhabhar et al., 1993). The difference between F344 and LEW rats became apparent in experiments 

with immunological challenges. LEW rats are known for their susceptibility to experimentally 

induced arthritis, as they fail to exhibit glucocorticoid-induced immunosuppression to 

inflammatory stimuli, caused by blunted activity of hypothalamo-pituitary-adrenal (HPA) axis 

(Sternberg et al., 1992; Wilder et al., 1987). On the other hand, F344 rats showed resilience to 

Figure 7. Stress habituation and facilitation. Repeated exposure to the same
stressor results in progressive diminution of response magnitude, thought to be
mediated by structures such as the prefrontal cortex (PFC) and paraventricular
thalamus (PVT). Exposure to a new stressor after either homotypic or hetertypic
stressors causes a larger than normal (“sensitized' or “facilitated' response), which
may be mediated by enhanced drive from the basolateral amygdala (BLA), PVT or
locus coeruleus. From Herman 2013. 
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experimentally induced arthritis at the cost of hyper-reactive HPA axis. The response of the HPA 

axis to stressor is higher in F344 rats compared to other rat strains (Armario et al., 1995; Dhabhar 

et al., 1993; Herman et al., 1999). Together F344 and LEW rats are used for studying differences 

in HPA axis reactivity. It is well established, that F344 rats has greater HPA axis response to 

various forms of acute (Dhabhar et al., 1995, 1997; Moncek et al., 2001; Sternberg et al., 1992), as 

well as chronic stressors than LEW rats (Dhabhar et al. 1997, Ergang et al., 2015, Vodička et al., 

2020). The differences in stress reactivity are interesting in context of other stress-related diseases, 

therefore F344 and LEW rats are used in research of behavioral aspects of stress-reactivity on drug 

addiction, (Cadoni, 2016; Kosten and Ambrosio 2002) and anxiety-related disorders, such as Post-

traumatic stress disorder (Cohen et al., 2006). Moreover, F344 rats are often used in studies of 

aging (Mabry et al. 1995; Gardner et al., 2020). 

1.2 Connection between gut, brain and HPA axis 
It has long been recognized that stress affects the digestive system. However, in recent 

years, evidence is highlighting the bidirectional communication between gut and brain. Moreover, 

the digestive system, as well as other surfaces of the organism, is colonized by commensal 

microorganisms, which interact with mucosal cells and can influence the immune system (Belkaid 

and Naik, 2013). The gut microbiota play a substantial role not only in the regulation of intestinal 

physiology, but participate in complex physiological regulation, where the (microbiome)- gut-brain 

axis provides a bidirectional homeostatic pathway of communication, which includes the 

autonomic nervous system, enteric nervous system, neuroendocrine signaling pathways and 

neuroimmune systems (Grenham et al., 2011).  

The gut microbiota are forming a complex ecosystem of microorganisms that consists 

mainly of bacteria, but also yeast, archaea, viruses, fungi and parasites may be present (Gaci et al., 

2014; Scarpellini et al., 2015; Williamson et al., 2016; Zoetendal et al., 2006). It is usually stated, 

that there are more than 1013-1014 microorganisms in human gut (Dinan and Cryan 2012; Ley et al. 

2006; Savage, 1977; Sekirov et al., 2010), but these numbers have been revised down lately (Sender 

et al., 2016). Bacteriodetes and Firmicutes are the most abundant bacterial phyla in human as well 

as in murine gut (Ley et al., 2006). The individual composition of microbiota depends on diet (De 

Filippo et al., 2010), genetic factors and age (Dinan and Cryan, 2017; Lozupone et al., 2012). 

Disturbances in microbial community can have impact on whole body homeostasis and even on 

the brain. The first and well known link are comorbidities in gut and brain diseases. For example, 
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patients suffering with irritable bowel disease are at higher risk of anxiety or depression (Choi et 

al., 2019). Similarly, altered microbiota have been implicated in pathophysiology of brain-related 

disorders such as depression (Valles-Colomer et al., 2019, Parkinson disease (de Vos and de Vos, 

2012) and autism (Mayer et al., 2015; Sekirov, 2010). Potential routes of communication between 

microbiota, gut and brain will be discussed in next chapter. 

1.2.1 Gut-brain communication 

The gut is a highly innervated organ. For instance, there are 200 to 600 millions of neurons 

in the human enteric nervous system (ENS), which is equal to the number of neurons in the spinal 

cord (Furness 2006). The neurons are organized into ganglions and plexuses, the submucosal 

(Meissner’s) plexus and the myenteric (Auerbach’s) plexus forming complex neural circuits. The 

ENS is capable of independent regulation of basic gastrointestinal functions, motility, mucous 

secretion, and blood flow. Central control of gut functions is provided by vagal and, to a lesser 

extent, spinal motor inputs that serve to coordinate gut functions with the general homeostatic state 

of the organism (Mertz, 2003; Furness, 2006). The afferent neurons that innervate the gut are 

divided into extrinsic (spinal and vagal afferents) as well as several classes of intrinsic, primary 

afferents. Both intrinsic and extrinsic primary afferents show mechano- and chemosensitivity to 

both physiological and noxious mechanical stimuli. Both extrinsic and intrinsic primary afferents 

provide input to multiple reflex loops to optimize gut function and maintain gastrointestinal 

homeostasis during internal perturbations (Mayer, 2011). 

The majority of signals from the gut are transduced to the brain by the vagus nerve. Vagus 

nerve is a principal component of parasympathetic nervous system and is composed of 80% of 

afferent and 20% of efferent fibers. All layers of the digestive wall are innervated by vagal 

afferents; however, vagal nerve endings are not in direct contact with microbiota, because the nerve 

endings do not cross the epithelial layer (Bonaz et al., 2018). The contact with gut lumen is 

mediated by enteroendocrine cells that release gut hormones (i.e., cholecystokinin, GLP-1, peptide 

YY, ghrelin, orexin, serotonin etc.) and gut immune cells that release immune-related signaling 

molecules (cytokines, histamine) to activate receptors on vagal afferents (Mayer 2011). Vagal 

afferents can also detect some microbial products such as butyrate (Lal et al. 2001) and 

lipopolysaccharides (LPS) (Gaykema et al., 1998) directly by their own receptors. 
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The majority of vagal sensory afferents projects to the NTS and it was shown, that infection 

by pathogenic bacteria Campylobacter jejuni increased c-fos expression in the NTS and vagal 

ganglia (Gaykema et al., 2004, Goehler et al., 2005). NTS has bidirectional connections with PVN 

and receives input from many limbic areas including amygdala and infralimbic cortex (Ulrich-Lai 

and Herman, 2009), therefore it is important not only for sensing the inner homeostasis and 

coordination of autonomic stress response, but it also affects the response of the HPA axis (Herman, 

2018). Experiments with vagotomy showed that probiotic treatment reduced anxiety-like behavior 

and HPA axis response in mice with experimental colitis and this effect was dependent on vagal 

integrity (Bravo et al., 2011; Bercik et al., 2011a). On the other hand, changes in behavior and 

hippocampal expression of brain-derived neurotrophic factor induced by antibiotic treatment were 

not abolished by vagotomy (Bercik et al., 2011b). These data imply the importance of other routes 

of communication between gut and brain. As mentioned above, the enteroendocrine cells express 

receptors for microbial products and can produce many hormones and neurotransmitters. Similarly, 

some bacterial strains are able to produce hormones and signaling molecules (Clarke et al., 2014; 

Strandwitz, 2018) and thus increase their plasma levels. Although most of the hormones and 

signaling molecules do not cross the blood brain barrier (BBB), still they may influence the central 

nervous system by influencing organs outside the BBB (such as pituitary gland, immune organs, 

kidney, adrenals etc.) (Clarke et al., 2014). Many of these molecules can also reach the brain and 

partially exert their effects via circumventricular organs (CVOs), where the BBB is reduced and 

which contain sensory receptors for many of these signaling molecules including LPS, 

glucocorticoids, prostaglandins etc. (Sisó et al., 2010). Gut microbiota also have a profound effect 

on tryptophan metabolism. As much as 95 % of body serotonin is produced in gastrointestinal 

system and microbiota alter metabolic pathways of 5-HT precursor tryptophan towards the 

kynurenine pathway and thus influence not only the tryptophan availability, but also products of 

kynurenine pathway, which may affect the CNS (Kennedy et al., 2017). 

70-80 % of body immune cells are located in the gut-associated lymphatic tissue. The 

immune cells are relatively hypo-responsive to commensal bacteria, but maintain responsiveness 

under pathological conditions. Vagal afferents in the proximity of mucosal immune cells contain 

receptors for signaling molecules (proteases, histamine, serotonin, CRH and cytokines) produced 

by immune cells in Peyer’s patches and cells within gut epithelium (Mayer et al., 2011). Cytokines 

can also enter the brain via CVOs and/or through BBB via specific receptors (Dantzer et al., 2008). 
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1.2.2 GF mice model 

There are several tools for studying the role of microbiota in the physiology of the host. 

Antibiotic treatment, probiotics or mildly pathogen bacteria are typical experimental approaches to 

alter gut microbiota (Kennedy et al., 2018). However, it is important to be aware of the fact that all 

of them have some limitations. For example, antimicrobial treatment using antibiotics, does not 

lead to total depletion of microbiota, but mostly to shift in relative abundance of phyla depending 

on the antibiotics used (Rakoff-Nahoum et al., 2004). Another possibility to dissect the impact of 

microbiota on organism’s physiology is to study animals without microbiota also known as the 

germ-free (GF) animals. Mice are the most frequently used GF animals but other organisms 

including rats, piglets and Drosophila were used. GF mammals are delivered by Caesarean section 

and kept under sterile condition throughout entire life or can be also generated by breeding GF 

together. The sterility is regularly checked by Schwabs cultivation and sentinel mice are sacrificed 

usually every 2 week and examined for bacterial presence.  

 

1.2.3 GF mice and stress 

Several studies have shown that the HPA response to stress is affected by composition of 

microbiota. GF mice show exaggerated HPA response to acute restraint stress and this effect can 

be reversed by monoassociation with probiotic bacteria Bifidobacterium infantis and the 

normalization of stress response was also dependent on age at colonization (Sudo et al., 2004). 

Exaggerated response of HPA axis to psychological stress was confirmed by us and others (Clarke 

et al., 2013; Crumeyrolle-Arias et al., 2014; Vagnerová et al., 2019).  

Stress is often regarded as contributing factor for anxiety-related disorders (McEwen et al., 

2003), but GF mice do not display anxiety-like behavior. The majority of studies reported 

decreased anxiety-like behavior in GF mice, but the results depended on strains and tests used 

(summarized in Luczynski et al., (2016)). The importance of microbiota in anxiety development 

was nicely illustrated in work from Prof. Bercik’s lab. Anxiety-like behavior was induced by 

maternal separation in SPF mice. In GF mice no anxiety was observed after the same treatment. 

Interestingly, the anxiety phenotype was induced by colonizing GF maternally separated mice with 

microbiota from SPF non-separated mice. On the other hand, simply colonizing GF mice with 

microbiota from maternally separated SPF mice did not lead to anxiety-like phenotype (DePalma 
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et al., 2015).  It had also been shown, that manipulation with microbiota (treatment with antibiotics 

or probiotics) can alter anxiety-like behavior (Bercik et al., 2011b; Desbonnet et al., 2015; Savignac 

et al., 2014). Several studies also highlighted microbiome-dependent changes in neurotransmitters 

and/or their receptors in brain structures involved in the regulation of HPA axis or anxiety. Chronic 

stress has been shown to alter composition of microbiota, however severe stress protocols have to 

be applied (Bharwani et al., 2016; Galley et al., 2014; Wong 2016). 
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2 Aims 
It is clear from previous text, that stressors are naturally inseparable from life. However, 

the individual responses to certain stressors vary greatly. Therefore, it is important to study the 

stress response and dissect mechanisms of its action in order to improve therapy and prevention of 

stress-related diseases. The topic of this thesis is focused on the analysis of stress response in 

animals differing in HPA axis responsivity (F344 and LEW rats and GF vs. SPF mice) with special 

emphasis on the regulation of HPA axis, glucocorticoid regeneration and influence of gut 

microbiome. In the first project, we studied the effect of various stress paradigms on the expression 

of genes encoding proteins involved in central and peripheral regulation of glucocorticoid signaling 

and in regulation of HPA axis responsiveness using hyper-reactive Fisher 344 and the hypo-

reactive LEW rats, which represent two ends of a spectrum of HPA axis responsiveness to stress 

and vulnerability to immune diseases. The second project was focused on the role of microbiota in 

shaping stress response. Microbiota are capable of modulating the reactivity of the HPA axis and 

GF mice show exaggerated response of HPA axis to psychological stressors. Therefore, we focused 

on interaction between stress and gut microbiota, i.e. how microbiota shape the response of HPA 

axis to stress. Specifically, the following aims were investigated: 

1. The impact of short-term and chronic stress on activation of the HPA axis and 

glucocorticoid metabolism in the structures of the HPA axis in brain regions 

participating in HPA axis regulation in stress hyper-reactive Fischer 344 and 

hypo-reactive Lewis rats. 

2. The effect of chronic stress on local metabolism and regeneration of 

glucocorticoids in lymphoid organs  

3. The effect of microbiota on activation of the HPA axis by acute and chronic stress  

4. The effect of microbiota and stress on regulatory pathways in the intestine. 

5. Assessment of microbiota-dependent differences in behavioral phenotype in 

resident-intruder paradigm 
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3 Methodological approaches 
The methods are described in detail in enclosed publications. 

3.1 Stress procedures 
3.1.1 Social defeat 

Social defeat paradigm was used in both rat and mice experiments. Specifically, 65-day-old male 

Fisher 344 rats were used as residents and intruders. Residents were housed individually for one 

week before the experiment, whereas the intruders were housed in groups of three or four. 

Following the seven-day isolation period of the residents, the social encounter was performed for 

seven consecutive days, and arranged to ensure that each intruder rat met each of the corresponding 

residents for 30 minutes. The animals were sacrificed after the last resident-intruder session. 

(Publication A). In experiments with F344 and LEW rats we used almost identical protocol with 

following alteration. The intruder F344 or LEW rat was exposed to older male retired breeder of 

aggressive Long Evans rats and the confrontation with the resident lasted 15 min once daily for ten 

consecutive days (Publication E). 

In the case of murine experiments two-month-old (GF) and (SPF) male BALB/c mice were 

used. GF animals were kept under sterile conditions in Trexler-type isolators since birth. One 

month before the beginning of the experiments, the SPF mice were transferred to similar isolators 

to ensure identical conditions for all groups during the experiments. Animals were housed in groups 

of 4–5 per cage. Retired male breeders (7-months to 1-year-old) of the BALB/c strain were used 

as residents. Resident mice were housed individually for 7 days before the experiment without a 

change of bedding (to enhance territoriality and aggression). On the days of testing, each intruder 

was removed from his home cage and placed into the home cage of a resident. Following the 10 min 

interaction, the mice were divided by a steel mesh to preserve sensory contact between the mice 

for the next 50 min. Thus, the intruder was subjected to continuous psychological stress due to 

sensory interaction with the resident. This procedure was repeated for 5 consecutive days with 

different residents to prevent any habituation to the resident. Following the last stress session, the 

animals were removed from the isolator and anesthetized with isoflurane vapor (Publication C). 
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3.1.2 Three-day variable stress protocol (Publication B) 

Male F344 and LEW rats that were 60–65 days old at the beginning of the experiments 

were used On Day 1, the animals were exposed to forced swim for 15 min (water temperature 22 

± 1 °C). On Day 2, the animals were placed on an elevated platform (12 cm × 12 cm at a height of 

70 cm above floor level) in brightly lit room for 30 min. This trial was repeated three times, with a 

60 min interval between trials. On day 3, the rats underwent a 2-h restraining stress in an opaque 

plastic box that prevented the free movement of the animal. These protocols were applied 

simultaneously to all rats in the cage. The rats were sacrificed immediately after termination of the 

last stressor. 

3.1.3 Acute restraint stress (Publication D) 

The adult GF and SPF male mice were subjected to a single 2-hour restraint stress in 50-ml 

conical centrifuge tubes equipped with multiple ventilation holes. 

3.1.4 Acute inflammatory stress (Publication F) 

Acute colitis was induced in male Balb/c mice (six to seven weeks old) by administering 

2% dextran sodium sulfate in drinking water for a five-day period. 

3.2 Laser capture microdissection 
3.2.1 Brain areas (Publication A and B) 

Coronal brain sections (20 µm) were serially cut with a cryostat at −19°C. The sections of 

the studied structures were mounted onto slides coated with polyethylene naphthalate membrane 

fixed in 95% ethanol, stained with 4% cresyl violet acetate and washed three times in 95% ethanol.  

The PVN, central (CeA) and lateral amygdala (LA), prelimbic prefrontal (plPFC) and infralimbic 

prefrontal cortex (ilPFC), hippocampal CA2 and CA3 regions, and ventral (vCA1) and dorsal 

(dCA1) parts of CA1 region, were identified based on standard anatomical landmarks and 

stereotaxic coordinates according to Paxinos and Watson (2007). The studied brain structures were 

dissected using a LMD6000 Laser Microdissection System and captured into the caps of the 

microcentrifuge tubes. Microdissected tissues were homogenized in 75 µl RLT buffer (Qiagen, 

Hilden, Germany) and stored at −80°C until RNA isolation. 

3.2.2 Colon and MLN (Publication F) 

The 20-μm tissue sections were cut from frozen blocks of the colon and MLN, and 

transferred to polyethylene-naphtalate membrane slides. The tissues were dehydrated and stained 
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with cresyl violet acetate and eosin B. Immediately after staining, the tissues were dissected using 

the Leica LMD 6000 Laser Microdissection System. Staining allowed for the identification of 

functionally different compartments in the gut (isolated lymphoid follicles (ILF), lamina propria, 

colonic crypt epithelium (CCE)) and MLN (cortex, paracortex, medulla).  

3.3 mRNA expression analysis 
Total RNA was isolated using an RNeasy Micro Kit from the captured microsamples and 

using a GeneElute Mammalian Total RNA Miniprep Kit from macrosamples. Single-strand cDNA 

was prepared from total RNA isolated from tissue microsamples and macrosamples using random 

hexamers and either Enhanced Avian Reverse Transcriptase or High Capacity cDNA Reverse 

Transcription Kit. The cDNA samples were analyzed by real-time PCR using TaqMan Assays 

specific for the studied transcript 

3.4 Hormone measurement 
Plasma corticosterone levels were determined by a commercially available Corticosterone 

rat/mouse ELISA (Publication D) or RIA (Publications A, B and E). 

Plasma ACTH levels were determined by ACTH ELISA kit (Publication E) 
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4 Summary of main results 
4.1 Effect of short term and chronic stress on HPA axis activation and local 

glucocorticoid metabolism in the components of the HPA axis and in brain 
areas involved in HPA axis control in rat strains differing in HPA axis 
reactivity 

Chronic psychosocial stress upregulated expression of Hsd11b1 in F344 rats in brain 

regions involved in HPA axis regulation, notably plPFC, CeA, LA, and CA1 and CA2 hippocampal 

subfields. On the other hand, stress exposure had no effect on Hsd11b1 expression in effector 

regions of the HPA such as the PVN, pituitary, adrenal cortex and adrenal medulla (Vodička et al., 

2014/Publication A).  

The three-day stress protocol was accompanied with similar pattern of Hsd11b1 expression 

as chronic psychosocial stress however the effect was strain-dependent. In F344 rats, the Hsd11b1 

was elevated by stress in CeA, vCA1 and CA2 hippocampal subfields whereas in LEW rats, stress 

stress upregulated Hsd11b1 expression in plPFC and LeA. No stress induced changes of Hsd11b1 

expression were observed in canonical components of the HPA axis (PVN, pituitary, adrenal 

cortex, adrenal medulla). Stress also stimulated the expression of neuropeptides Oxt, Crh, Ucn3 

and Pacap in PVN of both strains but expression of amygdalar Crh was elevated only in LEW and 

Ucn2/Ucn3 in F344 rats, respectively. Stress also upregulated expression of enzymes of adrenal 

synthesis of catecholamine, the Th and Pnmt, and this upregulation was more pronounced in F344 

rats (Ergang et al., 2015/Publication B). 

4.2 The effects of chronic stress on local metabolism and glucocorticoid 
regeneration in lymphatic organs  

Chronic psychosocial stress increased the expression of Hsd11b1 in mesenteric lymphatic 

nodes (MLN) and spleen of F344 rats (Ergang et al., 2015/Publication B). Similarly, the identical 

stress paradigm upregulated the regeneration of corticosterone from 11-dehydrocorticosterone in 

the thymus, spleen and (MLN) of both F344 and LEW rats. Compared with the F344 strain, the 

LEW rats showed higher corticosterone regeneration in splenocytes of unstressed rats and in 

thymocytes and MLN mobile cells of stressed animals but corticosterone regeneration in the stroma 

of all lymphoid organs was similar in both strains (Ergang et al., 2018/Publication E).  

Similarly to psychosocial stressor in rat, the inflammatory stress in mice represented by 

dextran sulfate sodium induced colitis, led to increased Hsd11b1 expression in specific 
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microanatomical compartments of the mucosal immune system. More specifically, colitis 

increased Hsd11b1 expression in the colonic crypt epithelium, isolated lymphatic follicles and 

cortex of MLN cortex but not in the lamina propria of colon and paracortex and medulla of the 

MLN. Expression of Hsd11b1 positively correlated with Tnfα (Ergang et al., 2017/Publication F). 

4.3 Role of microbiota in HPA axis activation in acute and chronic stress 
Plasma corticosterone response to acute restraint stress was higher in GF than in SPF mice. 

In pituitary, acute stress and microbiota downregulated the expression of Crhr1 and microbiota 

downregulated Pomc expression. Microbiota upregulated expression of genes Cyp11a1, Hsd3b1 

and Cyp21a1 encoding steroidogenic enzymes in adrenals (Vagnerová et al., 2019/Publication D). 

Chronic psychosocial stress and the absence of microbiota increased expression of regulatory co-

chaperon Fkbp5 in pituitary and expression of adrenal enzymes involved in synthesis of 

catecholamines Th and Pnmt (Vodička et al., 2018/Publication C). 

4.4 Role of microbiota in glucocorticoid regulation in colon 
Both acute restraint stress and microbiota modulated the expression of some steroidogenic 

genes in colon, especially Nr5a2, which encodes the crucial transcriptional regulator of intestinal 

steroidogenesis LRH-1 and Hsd3b2, both genes were decreased by stress and absence of 

microbiota. Interaction between stress and microbiota was found in expression of Cyp11a1, and 

Hsd3b1; genes encoding steroidogenic enzymes in colon (Vagnerová et al. 2019/Publication D). 

Chronic psychosocial stress downregulated the expression of Hsd11b1 and dampened the 

expression of a panel of cytokines depending on the presence or absence of gut microbiota 

(Vodička et al. 2018/Publication C). 

4.5 Assessment of behavioral changes in relationship to microbiota in chronic 
psychosocial stress 

GF intruder mice spent less time in total defensive behavior during interaction with 

residents. This effect was mainly caused by escape/flight behavior. No difference in offensive 

behavior was found between GF and SPF residents (Vodička et al. 2018/Publication C). 
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5 Discussion 
This thesis is focused on the effect of stress on regulation of the HPA axis and regeneration 

of glucocorticoids. The first section is focused on the effects of stress on mRNA expression of 

enzymes involved in glucocorticoid regeneration and selected neuropeptides linked to HPA axis 

regulation in the regulatory brain areas as well in the peripheral parts of the HPA axis in stress 

hyper-reactive F344 and stress hypo-reactive LEW rats. The second section is dedicated to 

dissecting the role of microbiota in shaping the response in peripheral components of the HPA axis 

in SPF and GF mice challenged to acute and chronic stressors. The third section addresses the 

effects of various stressors on local glucocorticoid metabolism in peripheral organs with respect to 

HPA axis reactivity. 

5.1 The effect of various stress paradigms on expression of genes involved in 
central and peripheral regulation of glucocorticoid signaling and HPA axis 
regulation in stress hyper-reactive F344 rats and stress hypo-reactive LEW rats 

5.1.1 The impact of chronic psychosocial stress on mRNA expression of the enzyme 11- 

hydroxysteroid dehydrogenase type 1 in the components of the HPA axis and in brain 

areas in stress hyper-reactive Fischer 344 rats. 

The first study (Vodička et al., 2014/Publication A), was focused on effect of chronic 

psychosocial stress on Hsd11b1 expression in brain areas involved in HPA axis regulation in F344 

rats. We evaluated the effect of repeated psychosocial stressor on expression of enzymes regulating 

local concentration of glucocorticoids and peptides associated with the regulation of the HPA axis 

in stress hyper-reactive F344 rats in principal components of the HPA axis and in brain areas 

involved in the HPA regulation. Disruption of social hierarchy by repeated resident-intruder 

paradigm resulted in increased physiological stress markers (plasma corticosterone, ACTH, Crh 

expression in the PVN) in both residents and intruders. All stress markers were significantly higher 

in residents compared to intruders. Additionally, intruders spent less time displaying social 

behaviors compared to residents. 

The enzyme 11HSD1 acts to increase active form of glucocorticoids intracellularly due to 

conversion of inactive 11-oxo derivatives of glucocorticoids to active hormones. The expression 

of 11HSD1 was previously detected in the PVN, anterior pituitary, adrenal glands and limbic brain 

regions (Sakai et al., 1992; Shimojo et al., 1996, Hanafusa et al., 2002). Therefore, we were 
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interested whether the expression of Hsd11b1 is affected by repeated social stress. Glucocorticoids 

act as feedback inhibitors on HPA axis, but several days of social stress did not have an effect on 

Hsd11b1 expression in either PVN, pituitary, adrenal cortex or adrenal medulla. Adrenal medulla 

is not a part of HPA axis, but glucocorticoids are essential for epinephrine production by 

chromaffin cells (Zuckerman-Levin et al. 2001). On the other hand, social interaction between 

resident and intruder increased expression of Hsd11b1 in central and lateral nuclei of amygdala, 

prelimbic cortex and vCA1 and CA2 fields of the hippocampus, i.e. in brain areas activated by 

psychological stressors and associated with HPA axis regulation (Ulrich-Lai and Herman, 2009; 

deKloet at al., 2005). Presented data are in line with the known role of limbic structures in HPA 

axis regulation, which is, at least partially mediated by glucocorticoids. Prelimbic cortex inhibits 

the HPA axis (Herman et al., 2003) and its stimulation is sufficient to trigger the inhibition of HPA 

axis response to psychogenic stress (Jones et al. 2011). GR knockdown in this region leads to 

increased HPA responses to acute stress (McKlveen et al., 2013). 

Amygdala plays an important role in glucocorticoid-mediated regulation of the HPA axis. 

Corticosterone application to amygdalar region prolonged HPA axis response (corticosterone) to 

single stressor (Shepard et al., 2003). Interestingly, the overexpression of MRs in basolateral 

amygdala led to reduced glucocorticoids secretion after acute stressor and decreased anxiety (Mitra 

et al., 2009a). The high-affinity MRs are heavily occupied during basal conditions, whereas low-

affinity GRs are heavily occupied only by stress levels of glucocorticoids, suggesting the 

importance of local glucocorticoid modulation by 11HSD1. 

The hippocampus exerts predominantly an inhibitory tone on the HPA axis response and 

expresses high levels of glucocorticoid receptors (deKloet et al., 1998). The increase of Hsd11b1 

following stress in the vCA1 and CA2 regions of the hippocampus is in agreement with previously 

published study showing the effect of arthritic stress in rats on the whole hippocampus (Low et al., 

1994) but not with the effect of chronic psychosocial stress on hippocampus in tree shrews 

(Jamieson et al., 1997). This difference may underlie not only in species-specific differences in 

control of 11HSD1 but also in the time and duration of stress applied. It was previously shown that 

intact hippocampal cells show reductase activity and thus reactivate inert 11-dehydrocorticosterone 

to corticosterone and this activity was inducible by glucocorticoid excess (Rajan et al., 1996). The 

increased expression of Hsd11b1 after social stress might increase the glucocorticoid signal in 
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hippocampus and enhance the inhibitory effect of hippocampus on PVN. It is known that the 

hippocampus can be functionally divided to dorsal and ventral portion, where dorsal part is 

primarily involved in cognitive functions, whereas ventral part is associated with emotional control 

(Faneslow and Dong, 2010). Nevertheless it is problematic to match the distinctive changes of 

Hsd11b1 expression observed in hippocampal subfields to specific hippocampal functions after 

social stress. However, it seems that the inhibition of HPA axis is at least partially mediated via 

ventral hippocampus, since bilateral lesion of ventral subiculum increased response to 

psychological stressors (Herman et al., 1998) and corticosteroids have been shown to act as 

structural and functional modulators of limbic areas, including learning and memory (deKloet et 

al., 2005; Herbert et al., 2006). Our findings suggest that upregulation of Hsd11b1 and 

amplification of the glucocorticoid signal might be a relevant mechanism in feedback regulation of 

stress responses in limbic structures. 

The glucorticoid signal in brain is largely conveyed via intracellular receptors. The MRs 

have high affinity for corticosterone and thus are occupied even if glucocorticoid concentration is 

low. Lower affinity GRs are occupied when glucocorticoid levels are elevated, for example at 

circadian peaks of plasma glucocorticoids or during stress (deKloet et al. 2005, Herbert et al., 

2006). Therefore, we studied the effects of chronic psychosocial stress also on the expression of 

Nr3c1 encoding the GR. This expression was not affected by chronic psychosocial stress in any of 

examined brain areas except for vCA1 of hippocampus. Minimal changes in Nr3c1 expression 

together with elevated expression of Hsd11b1 in structures crucially involved in the regulation of 

stress-related behavior and modulation of hippocampal functions (Herbert et al., 2006; Ulrich-Lai 

and Herman, 2009), suggest that adaptive reaction of these limbic structures to chronic 

psychosocial stress is based rather on the changes in 11HSD1 than GR expression. 

Interestingly, stress does not elevate expression of Hsd11b1 in PVN, pituitary or adrenal 

glands, the principal components of the HPA axis, although all of these structures express 11HSD1. 

Collectively, it can be assumed that (1) the upregulation of Hsd11b1 in prelimbic cortex, amygdala 

and some hippocampal fields might enhance the glucocorticoid signal by converting 11-

dehydrocorticosterone to corticosterone, and (2) lack of changes in Nr3c1 expression suggests that 

local modulation of glucocorticoid feedback signal in limbic areas is conveyed by 11HSD1 rather 

than GR.  
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5.1.2 The effect of three-day variable stress on expression of Hsd11b1 and peptides involved 

in regulation of the central and peripheral parts of the HPA axis in the stress hyper-

reactive F344 rats and stress hypo-reactive LEW rats 

The second study (Publication B/Ergang et al., 2015) was aimed at the differences between 

the stress hyper-reactive F344 rats and the stress hypo-reactive LEW rats in short-term stress 

protocol. This combination of three different stressors within three day was originally designed to 

mimic traumatic events in early life as it elicits strong stress response and minimizes habituation 

(Tsoory et al., 2006; Ilin and Richter Levin, 2009). We applied this protocol to assess the effect of 

stress on HPA axis response in the periphery and to evaluate mRNA expression of genes encoding 

11HSD1 and neuropeptides CRH, UCN2 and UCN3, OXT and PACAP in the brain regions 

modulating the HPA axis activity. 

As expected, the HPA axis was activated in both strains after 3 days of variable stress. At 

the end of the last stress session the F344 rats had greater corticosterone levels compared to LEW 

counterparts. It is difficult to categorize the three-day variable stress protocol in terms of acute or 

chronic. Regardless of stress duration, previous studies showed higher corticosterone levels, 

indicating activation of HPA axis in F344 compared to LEW rats following both acute and chronic 

stress regimes (Dhabhar et al., 1993; 1997; Elenkov et al., 2008; Moncek et al., 2001; Sternberg et 

al., 1989) and our study was in accordance with these studies. Similarly, the expression of enzymes 

crucial for catecholamine synthesis in adrenal medulla, the Th and Pnmt (Kvetnansky et al., 2009), 

was upregulated by stress regime and this upregulation was more pronounced in F344 rats, which 

corresponded to elevated plasma catecholamines in F344 rats following stress compared to LEW 

rats (Elenkov et al., 2008).  

The stress protocol also upregulated the expression of Hsd11b1 in brain areas involved in 

the regulation of the HPA axis (deKloet et al., 2005; Ulrich-Lai and Herman, 2009). On the other 

hand, three-day variable stress protocol did not upregulate the expression of Hsd11b1 in the main 

components of the HPA axis (PVN, pituitary and adrenals), which is in agreement with our 

previous study using psychosocial stress (Vodička et al., 2014/ Publication A). Distinct areas of 

the prefrontal cortex, amygdala and vCA1 and CA2 regions of the hippocampus were activated in 

strain-specific manner because the application of stressors led to increased expression of Hsd11b1 

in CeA, vCA1 and CA2 of F344 rats and in prelimbic PFC, infralimbic PFC, and LA of LEW rats. 
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The strain-dependent changes might be related to several factors such as ceiling effect in F344 rats 

and the role of specific brain areas in glucocorticoid feedback regulation. LEW rats had lower basal 

Hsd11b1 expression in the prefrontal cortex, vCA1 and CA3 than the F344 strain. Stress never 

stimulated Hsd11b1 expression in the brain of LEW rats to a higher level than in stress-stimulated 

F344 strain. The prefrontal cortex plays an important role in inhibiting the HPA axis and this effect 

is, at least to some extent, mediated by glucocorticoids as corticosterone implantation to medial 

PFC reduced glucocorticoid secretion after stress (Diorio et al. 1993). A more recent study 

investigating particular parts of the prefrontal cortex has shown that GR knockdown confined to 

the ilPFC caused acute stress hyper-responsiveness, sensitization of stress responses, whereas GR 

knockdown in plPFC increased hypothalamic-pituitary-adrenocortical axis responses to acute but 

not chronic stressors (McKlveen et al., 2013). High basal Hsd11b1 expression in ilPFC of F344 

rats together with the inability of F344 rats to further increase Hsd11b1 expression in stress and 

increase glucocorticoid signal may lead to insufficient activation of prefrontal inhibitory feedback 

loop leading to increased activity of the HPA axis. Together with GRs in prefrontal cortex, GRs in 

amygdala and hippocampus are also involved in HPA axis regulation (Herman et al., 2003). It has 

been shown that prefrontal, amygdalar and hippocampal GRs are necessary for negative feedback 

after both mild and robust acute psychogenic stressors but not after hypoxia, a systemic stressor 

(Furay et al., 2008).  

We observed differences in hippocampal Hsd11b1 expression between F344 and LEW rats; 

stress induced upregulation of Hsd11b1 in vCA1 and CA2 subfields of the hippocampus only in 

F344 rats. Hippocampus is important for regulation of the HPA axis response and ventral pole of 

the hippocampus plays a prominent role as it is involved in HPA axis inhibition and processing of 

anxiety, due to its abundant connection with amygdala and prefrontal cortex (Fanselow and Dong, 

2010). In addition, the response of the ventral part of the hippocampus to glucocorticoids differs 

from that of the dorsal hippocampus (Maggio and Segal, 2009). The possibility that increased 

hippocampal Hsd11b1 expression may be relevant to stress regulation can be supported by several 

findings. First, the ratio of corticosterone/11-dehydrocorticosterone can dynamically change in the 

brain cortex, amygdala and hippocampus (Cobice et al., 2013). Second, experiments with 

hippocampal explants demonstrated that intact hippocampal cells reactivates inactive 11-

dehydrocorticosterone to active corticosterone (Rajan et al., 1996). In summary, the three-day 

stress protocol induced the upregulation of Hsd11b1 in the majority of examined brain regions but 
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only sporadic changes in expression of Nr3c1. Thus, we can hypothesize that stress might intensify 

the glucocorticoid signal in limbic structures mainly due to the conversion of local 

11-dehydrocorticosterone to corticosterone but not via upregulation of GR. 

On the other hand, we did not observe any stress-induced elevation of Hsd11b1 in the main 

components of the HPA axis: the PVN, pituitary and adrenal glands either in F344 or LEW rats. 

These results extend our previous study, where we observed similar pattern after chronic 

psychosocial stress in F344 rats (Vodička et al., 2014). Even though we did not find any changes 

to stress, we demonstrated strain-dependent differences in Hsd11b1 expression. The lower pituitary 

expression of Hsd11b1 in F344 rats was accompanied by lower expression of Nr3c1 gene encoding 

the GR, which might contribute to differences in glucocorticoid negative feedback on HPA axis 

between F344 and LEW rats (Gomez et al., 1998; Simar et al. 1997). We found strain-specific 

differences in expression of Hsd11b1 and Hsd11b2 in adrenal cortex and in the case of Hsd11b2 

also in adrenal medulla. Increased 11HSD1 in adrenal cortex of F344 rats could be one of the 

factors behind ACTH-independent elevation as a response to novel stressor following prolonged 

stress (Dhabhar et al., 1997). Although it has been previously demonstrated that inhibitors of 

11HSDs in adrenals reduced the expression of the glucocorticoid-dependent enzyme PNMT in 

adrenal medulla (Shimojo et al., 1996), we did not observe any stress-induced effect on Hsd11b1 

and Hsd11b2 expression in adrenal medulla. Moreover, the expression of glucocorticoid-

independent Th and glucocorticoid-dependent Pnmt in our experiment showed similar expression 

pattern, therefore we consider any intracrine regulation being unlikely. Stress also upregulated 

expression of 11HSD2 in adrenal cortex in both strains and this upregulation was more pronounced 

in F344 rats. This finding is in line with previous work showing higher adrenal corticosterone level 

in stressed LEW than in stressed F344 rats (Moncek et al., 2001). 

The extent of the stress response depends also on the activity and appropriate regulation of the 

CRH signaling system, which has been well described both in vitro and in vivo. Nevertheless, the 

data regarding central regulation of CRH pathway in F344 and LEW rats are scarce. In the PVN 

the three-day stress upregulated the expression of Crh and Oxt similarly in both strains. In contrast, 

Crh expression in amygdala was higher in basal conditions in stress hyper-reactive F344 rats than 

in LEW rats and stress led to increased expression of Crh only in LEW rats. This observation is in 

agreement with the previous study showing that overexpression of Crh in CeA is associated with 
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HPA axis hyperactivity (Flandreau et al., 2012). We have shown that expression of other members 

of the Crh family in the brain, Ucn2 and Ucn3, is region- and strain-specific. In the PVN, stress 

increased in both strains the expression of Ucn3, but not Ucn2, whereas in amygdala stress 

upregulated both Ucn2 and Ucn3, but only in F344 rats. It was previously shown that 

glucocorticoids upregulate UCN2 expression (Chen et al., 2003; Tillinger et al., 2013) and thus we 

can hypothesize the higher stress-induced glucocorticoid levels, together with upregulation of 

Hsd11b1 in CeA of stressed F344 rats might reinforce the stress-dependent elevation of Ucn2 in 

this strain. The expression of CRH in the PVN can also be modulated by the neuropeptide PACAP 

(Stroth et al., 2011). The Pacap expression was upregulated by stress in the PVN and LA, but not 

in CeA in both strains and similar expression pattern was previously observed in Sprague-Dawley 

rats after chronic variable stress (Hammack et al., 2009). The effects of studied neuropeptides 

depend on their receptors, therefore we looked for stress-related changes in mRNA expression of 

Pac1, the receptor for Pacap, the receptor Crhr1, which has the highest specificity for Crh, and 

Crhr2 with higher specificity for Ucn2 and Ucn3. Our stress paradigm increased expression of 

Pac1 in CeA, LaA and PVN and expression of Crhr2 in the PVN and decreased expression of 

Crhr1 in pituitary; all changes were observed in both strains. In the case of pituitary Crhr1 and 

Pac1 we found also the effect of strain. We did not observe changes in Crhr1 expression in 

amygdala and did not detect Crhr2 by our method. Increased CRHR2 expression in PVN without 

changes in paraventricular and amygdalar CRHR1 was reported previously (Zohar and Weinstock, 

2011). We observed stress-induced upregulation of Pac1 in amygdala, which is in contrast to study 

of Hammack et al. (2009) who found no changes in Pac1 expression in amygdala after one week 

of chronic variable stress. This discrepancy may be related to longer stress protocol, because stress-

induced upregulation of PAC1 was found in “extended amygdala” in bed nucleus of the stria 

terminalis (Hammack et al., 2009). 

5.2 The role of microbiota in shaping stress response 
The second project was aimed at environmental factors influencing the HPA axis. The 

microbiota are known to modulate neuroendocrine, immune and behavioral response of the 

organisms. The GF and SPF mice were challenged with chronic psychosocial or acute restraint 

stressor and responses of genes involved in regulation of glucocorticoids were determined. 
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5.2.1 The influence of microbiota on expression of genes participating in HPA axis 

regulation in chronic psychosocial stress 

The first study (Vodička et al., 2018/Publication C) was focused on the determination how 

gut microbiota may affect behavior and HPA axis reactivity during the exposure to repeated social 

defeat. The commensal microbiota affect brain functioning, emotional behavior and ACTH and 

corticosterone responses to acute stress, therefore we focused our attention on how microbiota 

shapes behavioral, HPA axis and gut responses in chronic social defeat stress. We observed distinct 

behavioral profiles in GF and SPF mice subjected to chronic resident-intruder stress. The GF mice 

showed less total defensive behavior than SPF mice and this difference was caused mainly by 

difference in escape/flight behavior. Escape behavior might be provoked by higher aggression of 

residents, therefore we compared GF and SPF residents and found no differences in offensive 

behavior. No studies have compared behavior of GF and SPF mice in resident-intruder paradigm 

yet, but it has been demonstrated that germ-free status can modify social preference in mice 

(Arentsen et al., 2015, Desbonnet et al., 2014). On the other hand, many studies focusing on 

anxiety-like behavior have been carried out and majority of them observed diminished anxiety 

behavior in GF mice (Arentsen et al., 2015, Clarke et al., 2013, Crumeyrolle-Arias et al., 2014, De 

Palma et al., 2015, Diaz Heijtz et al., 2011, Neufeld et al., 2011, Nishino et al., 2013). In our 

experimental setup the escape/flight behavior can be classified as anxiety-like behavior, suggesting 

that GF mice exhibit less anxiety-like behavior in repeated psychosocial stress. 

We observed multiple stress and/or microbiota dependent changes in HPA axis. Stress 

increased expression of Pomc but not Crhr1 and microbial status did not have any effect on Pomc, 

and Crhr1 in the pituitary. Our data agree with previous observation demonstrating that chronic 

immobilization for 8 and 15 days increased pituitary Pomc expression (Rabadan-Diehl et al., 1996). 

The absence of any effect of repeated psychosocial stress on Crhr1 is in line with our previous 

report in analogous stress paradigm in F344 rats (Vodička et al., 2014). Corresponding results are 

reported in Raone et al. (2007), where repeated unavoidable stress exposure did not lead to changes 

in pituitary CRHR1 (Raone et al., 2007). 

It has been shown repeatedly, that absence of microbiota enhances the HPA response to 

psychological stressors (Ait-Belgnaoui et al., 2012; Clarke et al., 2013; Crumeyrolle-Arias et al., 

2014; Sudo et al., 2004). The question remains, where this difference is located. Some authors 
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focused on GF and SPF mice differences in neurochemistry of brain areas involved in HPA axis 

regulation (Clarke et al., 2013, Neufeld et al., 2011, Sudo et al., 2004). The second possible 

mechanism is alteration of negative feedback in the HPA axis. Although we found no significant 

effect of microbiota in pituitary Crhr1 and Pomc, the expression of Fkbp5 was upregulated in the 

GF mice. FKBP5 acts as a co-chaperone that exerts an inhibitory role on GR signaling (Bekhbat et 

al., 2017) and therefore it is possible that higher Fkbp5 expression in the pituitary gland of GF mice 

might decrease efficiency of the negative feedback via GR and contribute to increased HPA activity 

in GF mice observed by others. This possibility is further supported by findings that, the expression 

of Fkbp5 and the cytoplasmic level of GR are elevated by mild chronic stress in rats (Guidotti et 

al., 2013), and that the expression of Fkbp5 in mice was augmented by chronic treatment with 

corticosterone (Lee et al., 2010). The FKBP5 protein represents fast inhibitory feedback loop and 

is directly activated by corticosterone. Considering the fact that taking mice out of the isolator is a 

stressful procedure, elevated basal Fkbp5 expression might reflect higher response of GF mice to 

this unavoidable handling stress. 

Even though  is known that  microbiota play a role in shaping emotionality, regulation of 

brain neurochemistry and HPA axis response, we were the first showing the effect of microbiota 

on adrenal glands under the conditions of repeated psychosocial stress. Our result show that the GF 

status is associated with upregulation of genes encoding key proteins involved in glucocorticoid 

and catecholamine synthesis in adrenal gland. On the other hand, stress affected only genes 

involved in the synthesis of epinephrine, but not corticosterone synthesis. These findings are in line 

with previous report showing the absence of the chronic subordinate colony housing, another form 

of psychosocial stress, on expression of key steroidogenic enzymes StAR and CYP11a1 (Uschold-

Schmidt et al., 2012). By contrast, microbiota was shown to affect degradation and biosynthesis of 

catecholamines in brain, but available results are contradictory (Crumeyrolle-Arias et al., 2014; De 

Palma et al., 2015; Diaz Heijtz et al., 2011; Nishino et al., 2013) and this makes comparisons 

between the brain and the adrenal gland difficult.  

Despite the fact, that glucocorticoids are heavily involved in the regulation of PNMT 

expression (Kvetnansky et al., 2009), we do not consider that increased Hsd11b1 in adrenals of GF 

animals might substantially participate in up-regulation of Pnmt, because glucocorticoid-dependent 
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Pnmt and glucocorticoid-independent Th show similar expression pattern. Further studies will be 

necessary to understand the pathway how microbiota might affect the adrenal gland functions. 

In summary, we demonstrated that the microbiota substantially affected behavior in social 

conflict and the expression profiles of genes associated with the peripheral metabolism of 

glucocorticoids and function and regulation of HPA and SAM axes. Our study expands on the 

previous works by showing for the first time in repeated stress, that the microbiota modulate the 

response of pituitary, adrenal gland and metabolism of glucocorticoids in peripheral tissues to 

repeated psychosocial stress. 

5.2.2 The effects of microbiota on pituitary, adrenal gland and intestine exposed to acute 

restraint stress  

Previous studies have shown that absence of microbiota is associated with exaggerated 

HPA axis response to psychological stressors and these changes are at least partly mediated by 

changes in brain neurochemistry (Clarke et al., 2013; Crumeyrolle-Arias et al., 2014; Sudo et al., 

2004). In line with these observations, we showed (Vagnerová et al., 2019/Publication D) increased 

corticosterone response to acute restraint in GF mice and expanded this finding by demonstration 

that the microbiota affects also peripheral components of the HPA axis. 

The acute restraint did not induce higher expression of Pomc in the pituitary, although we 

and others demonstrated the increase in pituitary Pomc expression after various chronic stress 

protocols (Aguilera et al., 1994; Vodička et al., 2018). This inconsistency could be due to distinct 

time points and stressors investigated, since POMC was upregulated after 15 min of restraint in rat 

pituitary (Ginsberg et al., 2006), but it returned to basal levels after 2 hours of restraint (Nemoto et 

al., 2013). On the other hand, downregulation of Crhr1 gene expression during acute stress is in 

line with previous findings in rats (Nemoto et al., 2013; Rabadan-Dieh et al., 1996). Moreover, 

microbiota decreased the expression of Pomc and Crhr1 in pituitary and had no effect on Nr3c1 

and Fkbp5 expression. These result are inconsistent with our previous study, which did not report 

any effect of microbiota on expression of Crhr1 and Pomc in pituitary, but showed effect of 

microbiota on Fkbp5 expression (Vodička et al., 2018/Publication C). This discrepancy seems to 

be attributed to changes in treatment of the control group resulting from the nature of the 

experiments in isolator environment. In the first study (Vodička et al., 2018) control animals were 

group housed (4-5 per cage) and simultaneously transferred from the isolator through sterilized 
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transfer port. Although this procedure is stressful and it was done in the same way for both control 

and experimental group basal levels of Fkbp5 might be activated by this unavoidable stress.  

In order to maintain homeostasis, glucocorticoids act as a feedback inhibitors of 

hypothalamic CRH and pituitary POMC synthesis and secretion (Gagner and Drouin, 1985). Hence 

the final extent of glucocorticoid response depends on synthesis and secretion of CRH in 

hypothalamus, synthesis and secretion of ACTH in pituitary and responsiveness of adrenal gland 

to ACTH. Moreover, all these processes are modulated by negative glucocorticoid feedback. This 

feedback depends besides GR and its ligand also on the co-chaperon FKBP5 that decreases GR 

sensitivity to corticosterone and its nuclear translocation (Bekhbat et al., 2017). Since we didn’t 

observe any effect of microbiota on Nr3c1 and Fkbp5 expression, we suggest that the microbiota 

does not influence the capacity of the negative feedback loop mediated by pituitary GRs in acute 

stress. On the other hand, the upregulation of pituitary Pomc and Crhr1 expression in GF animals, 

might contribute to exaggerated HPA response to stress in these animals.  

The production of glucocorticoids in adrenal cortex is mainly induced by ACTH and 

involves a cascade of enzymes that participate on the glucocorticoid biosynthesis. The expression 

of these enzymes needs to be effectively regulated and the nuclear steroidogenic factor 1 (SF1) 

stands as one of the key regulators of numerous steroidogenic enzymes in adrenal cortex (Miller 

and Auchus, 2011). Interestingly, even though the GF mice displayed higher reactivity of HPA 

axis, the expression of genes involved in ACTH signaling pathway in the adrenal gland such as 

Mc2r, Sf-1, and Star were not influenced by microbiota even if they were upregulated by restrain 

stress. Stress strongly upregulated the expression of Sf-1 and Star and weakly Cyp11a1, without 

any effect on other steroidogenic enzymes. This finding corresponds with recent studies reporting 

lack of responsiveness of some genes encoding steroidogenic enzymes to acute restraint stress 

(Fallahsharoudi et al., 2015; Løtvedt et al., 2017). The rapid upregulation of Star and slight increase 

in Cyp11a1 transcription are in line with current knowledge indicating the role of CYP11A1 in 

chronic maintenance of steroidogenesis (Miller and Auchus, 2011). 

Interestingly, data of others (Sudo et al., 2004) and our unpublished data concerning acute 

immune challenge indicate, that hyper-reactivity of the HPA axis in GF mice is limited to 

psychological, but not systemic stressors. These two of stressors categories employ different 
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neuronal pathways and this aspect represent very interesting possibility in revealing the 

mechanisms behind microbiota regulation of the HPA axis. 

5.3 Effect of stress and microbiota on extra-adrenal production of glucocorticoids 
Both main pathways stimulated by stress, the HPA and SAM axes are potent modulators of 

immune functions depending on the nature, intensity and duration of stress (McEwen et al., 1997). 

Chronic stress can lead to immunosuppression and increased susceptibility to diseases (Cohen et 

al., 2012) or can enhance immune reactivity and induce glucocorticoid resistance, which prevents 

glucocorticoid-induced suppression of inflammation (Silverman and Sternberg 2012). As 11HSD1 

locally alters the glucocorticoid availability, and thus may alter local immune responses, we also 

assessed the effect of various stressors on extra-adrenal corticosteroid production. 

5.3.1 Effect of stress on local metabolism of glucocorticoid in lymphoid organs in rats 

In stress hyper-reactive F344 rats, the expression of Hsd11b1 was increased in spleen and 

mesenteric lymph nodes (MLN) by chronic psychosocial stress (Vodička et al., 2014/Publication 

A). In subsequent study (Ergang et al., 2018/Publication E), we analyzed the effect of psychosocial 

stress on glucocorticoid regeneration in lymphatic organs of stress hyper-reactive F344 and stress 

hypo-reactive LEW rats. The hypo-reactivity of the HPA axis in LEW rats is associated with 

vulnerability to immune diseases, whereas the F344 are inflammation resistant (Sternberg et al., 

1992). We have shown that repeated social defeat increased the regeneration of corticosterone from 

11-dehydrocorticosterone in the thymus, spleen and MLN. Considering the regulatory effects of 

glucocorticoids in immune cells (Ashwell et al., 2000; Mittelstadt et al., 2012; Tuckermann et al., 

2007) and the expression of Hsd11b1 in lymphocytes and immune organs (Ergang et al., 2011; 

Zhang et al., 2005), the stress-induced upregulation of corticosterone regeneration in lymphoid 

organs might represent a novel intracrine regulatory pathway in immune cells/organs. Similar 

stress-induced increase of 11HSD1 was recently demonstrated in liver (Corona-Pérez et al., 2015) 

and murine macrophages (Sesti-Costa et al., 2012). Compared with the F344 strain, LEW rats 

showed higher corticosterone regeneration in splenocytes of unstressed rats and in thymic and 

MLN mobile cells after stress but corticosterone regeneration in the stroma of all lymphoid organs 

was similar in both strains. The well-known augmented vulnerability of LEW rats to 

immune/inflammatory challenge (Sternberg et al., 1989) might be connected with a higher 

regeneration of corticosterone in thymocytes and MLN mobile cells of LEW rats exposed to stress. 

Considering that glucocorticoids can antagonize the signal transduction delivered through T cell 
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receptors in lymphocytes (Jondal et al., 2004; Mittelstadt et al., 2012), differences in corticosterone 

regeneration might distinctly modulate the activation and survival of T cells in the immune organs 

of both strains, however, more studies will be required to confirm this hypothesis. Comparable 

with our data, stressed LEW rats show decreased glucocorticoid receptor binding in immune tissues 

compared to F344 rats, even if there are no strain differences in the total glucocorticoid receptor 

levels in most immune tissues (Dhabhar et al., 1995). LEW rats also display higher plasmatic TNFα 

levels after immune stress induced by LPS challenge (Elenkov et al., 2008). Higher stress-induced 

plasma TNFα might contribute to increased glucocorticoid regeneration in LEW rats as cytokines 

participate in 11HSD1 regulation (Ergang et al., 2011, 2017/Publication F; Vodička et al., 

2018/Publication C) 

5.3.2 Effect of stress on glucocorticoid regeneration and cytokine milieu in murine mucosal 

immune system 

Inflammation represents a potent stressor activating both HPA and SAM axes, which needs 

to be precisely regulated (McEwen et al., 1997). It was previously shown that colitis upregulates 

glucocorticoid regeneration in colon and MLN (Vagnerová et al., 2006). Here, we assessed the 

effect of experimental colitis on the expression of Hsd11b1 in specific microanatomical 

compartments of the mucosal immune system (Ergang et al., 2017/Publication F). Colitis increased 

Hsd11b1 expression in the colonic crypt epithelium (CCE), isolated intestinal lymphoid follicles 

(ILF), and MLN cortex, but not in the colonic lamina propria and the MLN paracortex and medulla. 

Colitis also upregulated the Hsd11b1 expression in T cells of the spleen and MLN. Together, these 

data demonstrate that Hsd11b1 expression is upregulated by inflammation both in the effector and 

inductive compartments of the colonic lymphoid tissue and in the secondary lymphoid organs. 

Each of the analyzed microanatomical compartments contain different cell types. The follicular 

subdivisions of the ILF and MLN cortex contain mainly B cells and stromal cells, but also 

populations of other cell types such as dendritic cells, follicle-associated epithelium and subsets of 

T cells. These subsets include T follicular regulatory cells and T helper cells, (Buettner and 

Lochner, 2016; Yu and Vinuesa, 2010). Our data do not provide information which cell types are 

responsible for upregulation of Hsd11b1 expression. However, a comparison of our data with other 

results suggests that Hsd11b1 was not increased in stromal or dendritic cells. Although the resident 

stromal cells are important in shaping a unique microenvironment in the lymph nodes (Ahrend et 

al., 2008), the absence of the stimulatory effect in the paracortex and medulla is in conformity with 
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the assumption that glucocorticoid metabolism is not upregulated in stromal cells. Moreover, in 

was shown that 11HSD1 activity operates at maximal rate in murine dendritic cells and is 

unaffected by additional stimuli (Soulier et al., 2013). On the other hand, we observed increased 

expression of Hsd11b1 in T cells in colitis and it was previously demonstrated that vitro activation 

of the splenic and lymph node T cells is associated with increased 11HSD1 activity (Zhang et al., 

2005).  

Colitis also increased the expression of Tnfα, Il-1β, Il-4, Il-10 and Il-21 in ILF and partially 

in the MLN cortex, with no effect on Ifnγ and Tgfβ. Hsd11b1 expression positively correlated with 

Tnfα and less strongly with Il-21, Il-1β, and Il-4. These data suggest that TNFα is the pivotal factor 

for Hsd11b1 upregulation even if the effects of other cytokines cannot be excluded. This conclusion 

is in agreement with the previously shown stimulatory effects of cytokines on Hsd11b1 expression 

in various in vitro experiments. 11HSD1 expression was shown to be upregulated by Th2/Th17 but 

not Th1 cytokines in airway mucosa and smooth muscle (Hu et al., 2006; Jun et al., 2014), 

fibroblasts (Hardy et al., 2006) and monocytes (Thieringer et al., 2001). 11HSD1 was also 

increased by the pleiotropic cytokines TNFα and IL-1β in a large variety of cell cultures of various 

origin (Ergang et al., 2011; Staab and Maser, 2010).  

Cytokine expression can also be altered by stress (Ait-Belgnaoui et al., 2012, Audet et al., 

2011, Gibb et al., 2011) and by the microbiota (Steinberg et al., 2014). In chronic psychosocial 

stress paradigm (Vodička et al., 2018/Publication C), we demonstrated that the presence of gut 

microbiota upregulated and stress downregulated the expression of cytokines in the colon 

irrespective of whether the cytokine belongs to the Th1, Th2 or Th17 pathway (Vodička et al., 

2018). Similar stress-dependent downregulation of cytokine expression was observed after acute 

restraint (Vagnerová et al., 2019/Publication D). The decreased colonic expression of cytokines in 

stressed animals, which is partially modulated by the microbiota, supports previously described 

stress-induced immune suppression (Reber et al., 2011). We found correlation between Hsd11b1 

and cytokine expression and thus we hypothesize that Hsd11b1 expression in colon is modulated 

by cytokine milieu and that the actions of cytokines are more potent in GF mice than in SPF mice. 

This conclusion is in agreement with the significantly increased expression of colonic Hsd11b1 in 

control unstressed GF mice than in their SPF counterpart. Moreover, we have previously shown 

that TNFα and IL-1β upregulated colonic Hsd11b1 in vitro (Ergang et al., 2011) and that the 
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expression of Hsd11b1 in vivo was positively correlated with TNFα in MLN (Ergang et al., 

2017/Publication F) The downregulation of colonic Hsd11b1 in stressed animals can be related to 

the decreased expression of colonic cytokines in socially defeated animals. Additionally, 

glucocorticoids that are secreted in response to stress and that suppress cytokine expression might, 

at least to some extent, contribute to this decrease. 

5.3.3 Regulation of local steroidogenesis by microbiota in colon  

As the role of microbiota in shaping systemic glucocorticoid response to psychological 

stressor is well established (Sudo et al., 2004, Clarke et al., 2013; Crumeyrolle-Arias et al., 2014), 

the possible involvement of microbiota in extra-adrenal modulation of glucocorticoid signal and 

steroidogenesis is not clear. Based on previous findings showing that acute inflammation stress 

increases the local de novo synthesis of corticosterone in the intestine by upregulation of 

steroidogenic enzymes Cyp11a1 and Cyp11b1 (Cima et al., 2004), we further investigated if acute 

restraint stress affects expression of enzymes encoding local steroidogenesis in intestine 

(Vagnerová et al., 2019/ Publication D). Detailed analysis of steroidogenic genes in the colon 

revealed that expression of several genes of steroidogenic cascade is modulated by stress and 

microbiota, notably Lrh-1, which encodes the liver receptor homolog-1 (LRH-1) protein, a 

transcriptional factor essential for intestinal glucocorticoid synthesis and homolog of adrenal 

transcription factor SF-1 (Mueller et al., 2006). However, both transcription factors reacted to acute 

restraint differently. Although the Sf-1 transcript was upregulated in the adrenal glands, expression 

of colonic Lrh-1 was downregulated by stress in both GF and SPF animals. In contrast to Lrh-1, 

the effect of stress and microbiota on Cyp11a1 showed interaction; stress downregulated the 

expression of Cyp11a1 but only in GF animals. These data do not fit with previous observations, 

which have demonstrated upregulation of the expression of Lrh-1, Cyp11a1, and Cyp11b1 in the 

intestine by acute inflammatory stress (Cima et al., 2004). This discrepancy probably reflects 

different quality of stress. Further experiments will be needed to dissect the exact mechanisms 

underlying the differences between acute restraint stress and inflammatory stress on intestinal 

synthesis of glucocorticoids. However, our results indicate that acute restraint stress might 

influence intestinal steroidogenesis and that this effect is modulated by microbiota. 
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6 Conclusions 
Stress is often presented as a risk factor for many diseases. However, the stress reaction is 

designed to deal with life threatening situation and the deleterious effects usually stems from the 

potency of stress-activated pathways. When the amount of stress is excessive or the reaction to 

stressor is deregulated, the harmful side-effects begin to manifest. Therefore, precise regulation of 

stress response and its components is crucial. Stress reactivity is modulated by several factors 

including genetic predisposition or the environment. This Thesis was aimed at dissecting the 

mechanisms involved in regulation of the HPA axis and local glucocorticoid metabolism. To 

achieve this goal, diverse stress categories and various animals differing in stress reactivity were 

used. The main conclusions are summarized in the following points: 

1. We assessed the impact of short-term psychological and chronic psychosocial stressor 

on activation of the HPA axis and glucocorticoid metabolism. Both stressor paradigms 

upregulated expression of Hsd11b1 in limbic brain areas involved in HPA axis 

regulation, but not in the HPA axis itself. We also observed strain-dependent differences 

in Hsd11b1 between F344 and LEW rats. Together with minimal stress-induced 

changes in Nr3c1, a gene encoding GR, we assume that 11HSD1 plays an important 

role in local regulation of glucocorticoid concentration and represents an important 

modulator of the HPA axis in limbic brain areas. (Publications A and B) 

2. We found that psychosocial stress increased Hsd11b1 expression in MLN and 11HSD1 

activity in thymus, spleen and MLN. The increase of glucocorticoid regeneration was 

greater in LEW than F344 rats. The Hsd11b1 expression was also elevated by 

inflammation in specific microanatomical compartments of the murine gut immune 

system and its expression correlated with the expression of Tnfα as well as other 

cytokines. Collectively, these results suggest that the increase of glucocorticoids 

mediated by 11HSD1 dampens the immune response locally and prevents it from 

overshooting. (Publications A, E and F) 

3. The absence of microbiota increased plasma corticosterone levels in acute stress. 

Expression of pituitary Pomc and Crhr1 and some genes encoding steroidogenic 

enzymes in adrenals were also modulated by microbiota. In chronic stress we showed 

stress- and microbiota-induced changes in expression of pituitary Fkbp5 and genes 
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encoding key adrenal enzymes for catecholamine synthesis TH and PNMT, which 

indicates that microbiota represent an important factor in shaping the stress response, 

but the specific mechanisms still remain to be elucidated. (Publications C and D) 

4. Both acute restraint stress and microbiota modulated the expression of some 

steroidogenic genes in colon, especially Nr5a2, which encodes  LRH-1, the crucial 

transcriptional regulator of intestinal steroidogenesis. In contrast, chronic psychosocial 

stress down-regulated the expression of Hsd11b1 and dampens the expression of a panel 

of cytokines depending on the presence or absence of gut microbiota. These results 

highlight the effect of microbiota on local extra-adrenal steroidogenesis and 

glucocorticoid metabolism. (Publications C and D) 

5. The GF mice showed less escape behavior during resident-intruder test compared to 

their SPF counterparts indicating less anxiety. Decreased anxiety-like behavior in GF 

mice was described previously, we were the first to demonstrate under the conditions 

of psychosocial stress. (Publication D) 

Together the results highlight the role of 11HSD1 in central feedback regulation of HPA axis 

response, local restriction of immune system and the importance of microbiota in regulating 

not only the HPA response to stress but also behavior and local extra-adrenal glucocorticoid 

metabolism. 
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