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Abstract: Trees are a key part of many virtual environments, thus there is a high
demand for realistic tree models. Creating such models by hand, including level
of detail, is very time consuming. However, the fractal-like structure of a tree
may appear complex, but it can be approximated by a set of simple rules. This
enables us to construct a tree generator and editor that can produce different tree
types using few parameters and produce any number of randomized instances of
a tree type. Furthermore, many applications such as games or VR/AR have
strict performance budgets, thus level of detail is needed. Different detail levels
also must be visually similar to hide runtime transitions between them, further
increasing the difficulty of creating such models by hand. We exploit a high-level
tree structure the generator provides to create versions of the tree with lower
geometrical complexity, mainly by replacing branches with their planar images.
This process is fully automatic. The work consists of a generator library capable
of creating trees with a highly customizable detail level and a tree editor that can
export generated meshes.
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1. Introduction
Trees are a common and integral part of the environment around us, and are

equally important in virtual environments that mimic the real world, creating
a need for high quality tree models 1. For the specific use case of interactive
applications, such as computer games, virtual reality and augmented reality, a
detailed model is not enough. Interactivity of these applications severely limits
the time that can be spent rendering a single frame, thus setting a limit on the
geometric complexity of displayed scenes.

This in turn means that we want to reduce the complexity of tree models for
such applications as much as possible, all the while maintaining the impression
of a highly detailed object. A key observation is that objects further away from
the observer need not be as detailed as nearby objects, and can be swapped for
a lower detailed version of themselves. This approach is called Level of Detail, or
LOD for short, and is a common technique in games. The variants of an object
with different detail levels are also called LODs.

Obtaining high quality tree models including all needed levels of detail requires
either a significant time investment to create them by hand, or a significant
monetary investment into proprietary tree generation software.

This is not viable for hobbyist game developers or small independent studios.
There are other options for obtaining tree models, but they come with their own
set of disadvantages:

• Freeware tree models. There are plenty of Creative Commons licensed
models on the internet, but they usually come only in a single detail level,
and the required tree species might not be available.

• Automatic level of detail generation from existing models. While
it works reasonably well for solid meshes, this is not the case for trees due
to their complex structure.

• Asset collections. These contain many different trees with LODs, but are
usually bound to a specific game engine.

• Freeware tree generators. Some generators exist, but they usually lack
the ability to generate a wide range of detail levels.

1.1 Our goals
The goal of this work is to provide a source of tree models that is freely

available, easy to use, capable of generating a wide range of detail levels of the
same tree instance and capable of generating different tree types. The target
audience of our application are hobbyist game developers.

A tree generator such as this still relies on realistic and detailed base textures
from external sources. However, obtaining free textures from the internet is

1In the context of this work a model refers to a collection of meshes and textures that make
up a virtual object.
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relatively easy, and is bound to become easier with the advancement of free
photogrammetry software.

The software will be divided into two main components:

• The generator, a library capable of generating tree meshes and producing
simple render commands for generation of additional textures 2.

• The editor, a program that uses the generator, capable of displaying and
modifying the resulting tree in a what-you-see-is-what-you-get manner.

This division allows the main tree generator library to also be used for runtime
tree generation, for example in a game with procedural world generation.

The generator will be able to create different tree types based on a small set
of input parameters. It will also be able to generate randomized instances of trees
defined by the same set of parameters.

Another set of input parameters will control geometric complexity of the re-
sulting meshes. This will be done by reducing the triangle count of base geometric
shapes from which the tree mesh will be assembled. Another, more significant
way of reducing geometric complexity will be by replacing entire branches with a
set of planes onto which the image of the original branch is mapped. This set of
planes will be referred to as polyplanes in the rest of the work. This approach of
simplifying vegetation geometry is commonly used in games, but implementing
it automatically is not trivial.

The editor will display the generated tree meshes and provide a user-friendly
way of tweaking input parameters of the generator library, with an easy way
of seeing the visual results of parameter changes. The editor will also include
options for exporting the generated meshes and textures.

1.2 Thesis structure
In chapter 2 we will provide wider context for our work. We will describe

various approaches to generating trees, discuss level of detail and describe our
technologies of choice. In chapter 3 we will provide details of our tree generator
in two parts: in section 3.2 we will describe the grower which handles procedural
generation of the high level tree structure, and in section 3.3 we will describe the
mesher which converts it into a tree mesh and handles polyplane generation.
In chapter 4 we will provide some details about the editor, which provides user
interface for control of our generator and also handles the final stage of polyplane
generation 3.

2Texture generation itself is not handled in the library in order to decouple it from a specific
graphics API. See section 3.1 for more details.

3The need to the editor to handle part of tree generation is explained in section 3.1.
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2. Analysis
Our tree generator is based on the principles described in the books The Al-

gorithmic Beauty of Plants by Prusinkiewicz and Lindenmayer [1] and Digital
Design of Nature by Deussen and Lintermann [2] and on personal consultation
with Jan Hovora [3]. In this chapter we will overview various methods of gener-
ating the structure of a tree detailed in those books and discuss the problem of
level of detail for trees. We will also describe what form should the resulting tree
model take and what technologies will be used to implement the tree generator
and editor. This will provide context for the following chapters, where we will
discuss the inner workings of our application. Note that we will only provide
brief and simplified explanation of the tree generation techniques. For formal
definitions, please refer to the referenced materials.

2.1 L-systems
Lindenmayer systems [1, ch.1.1], or L-systems for short, are a technique orig-

inally developed to model plant growth. Their key concept is that of rewriting,
where complex objects are constructed by iteratively replacing parts of an initial
simpler object. These replacements are defined by a set of rewriting rules or
productions.

An example of rewriting is the Koch snowflake. The initial object is a simple
equilateral triangle. In each step, every edge is replaced with a segmented line
forming a triangular spike. In the case of the Koch snowflake, the initial triangle
is called the initiator and the replaced segmented line the generator. See figure
2.1 for an example of the Koch snowflake.

Figure 2.1: The first four iterations of the Koch snowflake [4].

The self-similarity and increasing complexity with each iteration produced by
rewriting systems such as the Koch snowflake can also be observed in plants,
making them useful for modelling plant development.

L-systems themselves operate on a string of letters. They are similar to Chom-
sky grammars, where, in general, each production is defined by pair of letter
strings, the first being the original sequence and the second being what this se-

5



quence is to be replaced with 1. The difference is that while Chomsky grammars
apply a single production in each step, L-systems apply all possible productions
in parallel.

In their deterministic context-free variant, called DOL-systems [1, ch.1.2],
productions are defined by an original letter and a string that will replace this
letter.

Consider this example from The Algorithmic Beauty of Plants with letters
ar, al, br, bl, the starting letter ar and the following productions:

ar → albr

al → blar

br → ar

bl → al

The first few iterations of this L-system will generate these strings:

ar

albr

blarar

alalbralbr

blarblararblarar

This is not a mere arbitrary example. An L-system such as this one can be
used to simulate the development of various algae and the bacteria Anabaena
catenula [1, ch.1.2], where the letters a and b represent cell states and the sub-
scripts l and r the direction in which daughter cells will be produced.

2.1.1 Other types of L-systems
A major limitation of this basic form of L-systems is their inability to produce

sufficiently different instances of the same plant species. We can control the
number of iterations of the rewriting rules, however for a given starting letter and
iteration count the results will always be identical. For this reason, a randomized
extension of L-systems is useful. A stochastic OL-system [1, ch.1.7] is an L-system
where each production is assigned a probability. A single original letter may be
used in multiple productions and the sum of probabilities of these productions is
assumed to be one. When rewriting this letter, one of the productions is chosen
at random using the probabilities.

Another useful extension is called context-sensitive L-systems [1, ch.1.8], where
a production may only be applied if the original letter’s neighbourhood in the
string matches the required context of the production. This can be used to model
interactions between plant parts.

The final extension we will discuss is parametric L-systems [1, ch.1.10]. They
operate on strings of modules, where a module consists of a letter and a sequence

1We are omitting the full richness of Chomsky grammars for brevity.

6



of real numbers - the parameters. Productions can have a condition associated
with them, and are only applied if this condition is fulfilled. Productions can also
specify expressions that compute the parameters of resulting modules using the
parameters of the original module. Parametric L-systems may be either context
free or context sensitive.

2.1.2 Turtle interpretation of L-systems
So far, we have discussed the generation of self-similar strings using rewriting.

We will now examine converting the generated strings into a segmented line using
a LOGO-style turtle, as described in The Algorithmic Beauty of Plants [1, ch.1.3].

The turtle is an imaginary pen, drawing lines on a plane as it moves. Its state
is a position expressed as a 2D vector and orientation expressed as an angle. The
turtle can be given commands, such as “move forward one unit” and “rotate by
a specified angle”. And image can be generated from a string by interpreting the
letters as a series of commands. For example, the Koch snowflake and similar
curves can be generated this way.

Consider the following L-system, which starts with the string:

FRRFRRFRR

And has a single production:

F → FLFRRFLF

We may interpret the letters as turtle commands in the following manner:
F is “move forward one unit”, L is “rotate 60◦ to the left”, R is “rotate 60◦ to the
right”. With this interpretation, the L-system draws the Koch snowflake shown
in figure 2.1.

A turtle may also be used in three dimensions [1, ch.1.5]. Its state would
again include its 3D position and orientation, and instead of drawing lines, the
turtle would construct a series of tubes. An example of a structure that can be
generated with a 3D turtle is the Hilbert curve.

Our end goal is the branching structure of a tree, but strings are inherently
linear. In order to create branching structures with a turtle, we will extend it
with a stack, and push and pop commands for pushing and popping the turtle’s
state onto the stack. A production in an L-system may generate a branch by
inserting letters that represent push and pop commands. See figure 2.2 for an
example of turtle interpretation of a branching L-system.

Note that like stochastic L-systems, the turtle interpretation of the resulting
string can be randomized to achieve further variation. For example, the letter F
may represent the command to move forward by a random distance in a predefined
range.

2.2 Limitations of L-systems
The techniques mentioned above tend to operate on each branch separately

without taking into account the context of the entire tree. Each branch grows
independently of every other branch.
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Figure 2.2: An example of a branching L-system [5].

This has the unfortunate side effect of sometimes producing branches that
intersect other branches. These self-intersections could be avoided, however im-
plementing such behaviour would be complex and it would likely have great per-
formance impact. In practice, self-intersections are not too visible. Real plants
can be observed to fill available space in a mostly even manner, although some-
times two distinct branches may grow very near each other, creating something
akin to self-intersection.

Another limitation of omitting the context of the entire tree is that plants
tend to grow according to local lighting conditions. A tree will not grow as many
leaves and branches in areas that are in shadow. This shadow can be cast by the
tree itself. For example we can observe that trees do not generate small branches
and leaves near the trunk, where they are overshadowed by the wider crown.

Both of these limitations can be partly remedied by careful tuning of growth
parameters.

2.3 Space colonization
Another approach to tree generation, very different from L-systems, is that of

space colonization, as described by Runions et al. [6].
A volume is filled with attraction points, modelling the availability of empty

space. The tree itself is constructed iteratively from the root. In each step,
branch segments are added in the direction of nearby attraction points. Once
an attraction point is reached by the tree, it is removed. The process is stopped
when all attraction points are removed, or when another condition is fulfilled,
such the maximal number of iterations being reached.

The versatility of this method comes from modifying the distribution of at-
traction points. We can choose the shape of the filled volume to match our target
tree crown shape. We may cut this crown volume with a plane, removing all
attraction points on one side, simulating a tree growing next to a wall. Further-
more, the distribution of attraction points need not be uniform. More points can
be generated near the surface of the volume, simulating greater availability of
light. The set of attraction points may also change over time, for example we
can generate new points in the volume, which will cause new small twigs to be
generated from already established thick branches. Multiple trees may share the
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same attraction point volume to simulate the growth in a forest where trees are
competing for space and light.

The downside of this technique is its great computational complexity when
compared to L-systems.

2.4 Tree growth principles
In this section we will describe some of the principles behind tree growth.

Ideally, our generator will be able to emulate these behaviours in order to produce
a realistic tree structure.

Leonardo da Vinci formed a postulate which states that “all the branches of
a tree at every stage of its height when put together are equal in thickness to the
trunk below them.” [1, p.57] We will use this postulate to guide the thickness of
outgoing branches in a fork. Specifically, for each fork in the branching structure
it should hold that the sum of cross-sectional area of outgoing branches is equal
to the area of the original branch. We can think of the branching structure of a
tree as a system of tubes transporting some liquid. If the equality did not hold,
some part of the tube system would be larger or smaller in diameter than what
is optimal.

The book Digital Design of Nature by Deussen and Lintermann [2] describes
several other useful principles (based on the Telome Theory [2, ch.2.1]).

Instead of equal branching, a main axis may develop, which then produces
most other branches. This behaviour is called overtopping and can be observed
in most tree species. This can be brought to the extreme with reduction of
subsequent branches, producing trees with a straight trunk and small branches.

Several other behaviours are described, planation, webbing and bending, how-
ever they are mostly relevant to leaves and not the overall tree structure.

Another important behaviour is budding, as described in Digital Design of
Nature [2, ch.2.2]:

The bud is a propagation system, since each new branch begins in
a bud. We differentiate between terminal main buds and side buds
in the axis of carrying leaves (bud axis). The inside of the bud is
here protected by fast initial growth of the leaves. In leaf buds, for
example, it develops into a branch with leaves, and in the case of
flower buds to a bloom or bloom conditions.

Buds are a mechanism through which branches and leaves are generated, so
their distribution will have a large impact on the overall tree structure. A branch
will create leaves or subsequent branches at so-called nodes in regular intervals.
These intervals tend to be of a constant length. There are three main ways in
which side buds are generated [2, ch.2.2]:

• Distichy – a single leaf is created per node, and each subsequent node is
rotated by 180◦, creating two rows of leaves.

• Dispersion – similar to distichy, a single leaf is created per node, however
the rotation angle of the next node is smaller, approximating the angle
which minimizes the self-shadowing of the leaf formation (also called the
golden angle, about 137.5◦).
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• Decussation – two leaves are created per node, opposite of each other, and
subsequent node is rotated by 90◦.

Two types of branching are described [2, ch.2.3]. In monopodial branching,
the main axis is dominant, growing longer than the side branches. This behaviour
is repeated in a self-similar manner. In sympodial branching, side branches are
dominant, and the main branch terminates. Note, however, that the side branches
need not be equal in strength. Overtopping, or a “main trunk” may be generated
by both monopodial and sympodial branching.

These two branching types can be used to describe most tree species found in
temperate climate, however they cannot be used to model conifers [3].

Tropisms are another factor contributing to tree shape. In general they de-
scribe the tendency of trees to grow or bend branches in a certain direction based
on enviromental factors. Gravitropism [2, ch.2.5] is the tendency to grow away
from gravity, for example observed in the main axis - the trunk. Some parts of
the tree may also grow towards gravity, for example roots.

Phototropism describes the tendency to grow in a direction based on incident
light direction. Shoots may grow orthogonally to the light direction, or towards
the light [2, ch.2.5].

Another behaviour observed in real plants is apical dominance [3][7], where
the main trunk of a tree tends to grow upwards and dominate over side branches,
inhibiting their growth. Side branches dominate over second order side branches,
and so on.

2.4.1 Tree roots
Note that we have mostly not discussed generating the roots of a tree. Our

work will not cover tree roots at all, instead focusing on the above ground part
of a tree, since it is much more visible.

However generating the roots of a tree is in principle not at all different from
generating its above-ground body. The very same rules that govern the growth of
trunk and branches can be applied to roots, just with a different set of parameters.
Their geometry can also be generated in the very same way as trunk geometry.

2.5 Axial trees
The Algorithmic Beauty of Plants describes the concept of axial trees [1,

ch.1.6], which will be useful for our tree generator.
A rooted tree is a tree (graph) where one vertex is the designated root, and

edges are oriented in such a way that they form paths from the root to leaf
vertices. In the context of plants, an edge in such a tree is referred to as a branch
segment.

An axial tree is a rooted tree where for each vertex at most one of its outgoing
edges is labeled as a straight segment, and the rest are labeled as lateral or side
segments [1, ch.1.6].

An axis is a sequence of segments which either originates in the tree root, or
its first segment is a lateral segment, and each subsequent segment is a straight
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segment and its final vertex does not have an outgoing straight segment. An axis
can be thought of as a single branch.

In our generator, we will use a slightly modified concept of an axial tree.
Each non-leaf vertex of the tree graph will have exactly one outgoing straight
segment. The effect of this modification is that every axis must now terminate
in a leaf vertex. Decomposing the tree graph into such axes will be used in mesh
generation, where each axis will be converted into a bent tube geometry.

2.6 Level of detail
In order to achieve optimal performance, realtime applications that render

complex scenes use lower detail variants of far away objects. For example, it is
pointless to render several tens of thousands of polygons of something that will
be so far away that it only covers a few pixels. This approach is called Level of
Detail, or LOD for short. The same term also refers to the variants of an object
with different detail levels.

Let us analyze the ways in which we might reduce the detail level and perfor-
mance impact of a tree model.

2.6.1 Branch geometry
A tree model consists of two parts: the leaf cards, and the trunk and branches.

This geometry is highlighed in figure 2.3. The trunk and branch geometry is
mostly made of bent and connected tubes. We can easily customize the conversion
of these tubes into a triangle mesh, for example we can use varying number of
faces along the diameter of the tube to either increase or decrease its apparent
smoothness and triangle count.

Figure 2.3: A small branch with wireframe, highlighting leaf quads and faceted
branches.

Note that a tube or a cylinder does not need a high polygon count to achieve a
smooth look. Thanks to surface normal interpolation, even relatively low number
of faces can create the impression of a curved surface. The only case when low
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face number is plainly visible is when observing the silhouette of the cylinder’s
upper or lower edge, as can be seen in figure 2.4.

Figure 2.4: Trunk smoothness demonstration.
Trunk cylinder with high face count (top row) and low face count (bottom row), with

wireframe (middle column) and normals including a normal map (right column).
Note that the only distinguishable difference is at the intersection with the ground.

For trees, the top parts of branches will decrease in radius until they end with
a pointy tip and a leaf, hiding the angular nature of the tube geometry. However
the bottom end of branches will either intersect the ground, in which case it might
be hidden with grass, or intersect another branch, which will visually produce an
intersection of two visibly angular polyhedra.

The tree to ground intersection could be hidden with a root system, and
branch to branch intersection with a carefully modeled saddle geometry. But in
practice, the imperfect branch intersections and ground intersections are not too
visible. We omit roots from this work altogether, and we omit saddle generation
as well, since it would be a fairly complex task. Both root generation and saddle
geometry for branch intersections are a possible future direction to explore.

2.6.2 Leaves and textures
As for leaves, there isn’t anything we can do about their geometric complexity.

They already only consist of two triangles each. Using a single triangle would be
possible, however since we assume that alpha testing will be used for leaves, doing
so would lead to wasting many rasterized pixels and pixel shader invocations due
to a lot of the triangle surface missing the actual opaque leaf texture 2.

2For this same reason it may be beneficial to use more than two triangles for leaves and other
alpha tested planes to more closely match the image shape. The benefit of reducing wasted
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Reducing the number of leaves would visibly alter the tree, so this is not an
appropriate option.

We could also optimize the texture of the leaves (and the trunk) itself, perhaps
lower its resolution. This is also not needed in practice, since GPUs and game
engines already make heavy use of mip mapping, an approach that automatically
uses prefiltered lower resolution variants of original textures for surfaces where
details of the original would not be visible 3.

Using lower resolution textures could also improve memory usage. However,
modern game engines already employ complex techniques in order to only load
what is absolutely necessary, such as virtual texturing.

2.6.3 Polyplanes
Let us examine leaf cards. It is essentially a plane with an image of a leaf.

Why not model the leaf with actual geometry? It would certainly improve the
visual appearance of the leaves up close, however the increase in triangle count
would be immense, and most of the time the added detail would not even be
noticeable. So, instead of complex geometry, we use an image mapped onto a
plane made up of two triangles.

Why not apply this very same idea to entire branches? Or the entire tree?
Our primary way of reducing the geometric complexity of a tree will be re-

placing entire branches with a quad onto which an image of the original branch
is mapped. We will call this approach polyplanes, and the same term will be used
for the planar geometry we replace branches with.

This is a common technique in games, but as far as we can tell there isn’t a
freeware tree generator that employs it and allows adequate customization of the
way polyplanes are generated.

In practice polyplanes are a trade off between geometric complexity and tex-
ture memory usage. We will need to store each polyplane’s image in some sort
of a texture atlas 4, and do so in sufficient resolution for the model to remain
visually pleasing at its intended viewing distance.

For this reason, we will analyze ways of reducing polyplane memory usage.

2.6.4 Branch clustering
Let us consider a full-grown tree, where only the tips of branches are replaced

with polyplanes. These polyplanes might only contain a few twigs and about a
dozen leaves each. This scenario is common for highly detailed LOD levels.

A tree like this could easily contain hundreds of individual branches that are
replaced with polyplanes. Storing each one in sufficient resolution would consume
large amounts of memory that could be better spent elsewhere.

fillrate can outweight the increased face and vertex count.
3There is a lot more to mip mapping that what is mentioned here, for example it also

improves memory cache utilization and helps reduce aliasing and other artifacts.
4An atlas is preferable to multiple smaller textures. Switching textures introduces overhead

in most rendering applications, and multiple textures would also introduce complexity into the
mesh export process.
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Reducing the resolution of each branch image is not desirable, as it would
lead to a visually ugly tree model. A good solution would be to instead reduce
the number of images needed.

A key observation is that although we are replacing hundreds of unique
branches, they are very likely going to be visually very similar to each other,
as can be observed in figure 2.5.

We will group branches into clusters based on their similarity. Every cluster
will only generate one set of images (the polyplanes for a single branch may con-
tain multiple images, for example three images from three orthogonal directions).
Every branch in a cluster will use these images instead of generating their own.

In order to determine how similar two branches are, we will assign each branch
an imaginary position (often more than three-dimensional) based on the growth
parameters of its root tree graph vertex. We will then consider the euclidean
distance of two branches as their similarity – the closer two branches are, the
more similar they are.

Clustering branches based on their root vertex would work poorly if the
branches produced from two identical vertices could be vastly different due to
randomization, and a different clustering strategy would be required. However
root based clustering works reasonably well in our use case.

For a given atlas size, the amount of clusters presents a trade off. Few clusters
mean high image resolution, but they may capture the overall shape of the tree
poorly due to heavy image reuse. A good cluster count seems to be between 8
and 16.

Figure 2.5: An example of polyplane image atlas.
Note the large amount of different branches and their insignificant visual difference.

2.6.5 Sharing polyplane atlases
Since we are reusing images between branches of a tree, why not reuse them

across different trees as well?
In video games, a single model of a tree species is usually not enough. When
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creating a forest, multiple models of the same species are used for variety. Fur-
thermore, each of the tree models will have several LODs.

We might share the same polyplane atlas across several LODs of the same
tree model. This would however not work well in practice. It might ensure that
the images for high-detail branches are loaded even if the tree is far away and
only using low detail LODs.

But, more significantly, the main difference between LODs is going to be
the threshold at which a branch stops generating real geometry and becomes
a polyplane. This threshold will be a function of the branch radius. Thicker
branches will generate more child branches, which will in turn generate more
leaves. Thus branches of different LODs are going to be too dissimilar to place
them into a single cluster.

Sharing polyplane atlases across LODs would effectively result in each LOD
generating its own images and then combining them into the shared atlas, reduc-
ing the effective number of clusters per LOD.

A better way is sharing a polyplane atlas across the same LODs of different
tree models of the same tree species. Since the branches are likely to be cut
off at the same point, they will also contain similar number of child branches
and leaves, and be very similar overall. The main difference between different
instances of the same tree species will not be in the ends of tree branches, but in
the large-scale structure of the branches, which will still be covered by the unique
non-polyplane geometry of the models.

2.6.6 Consistency of different LODs
One major concern when creating LODs for any object, not just trees, is that

the different detail levels must still be visually similar. For example, swapping
between two levels where each has a different silhouette would be very visible.

Creating consistent tree LODs would be a very hard task for a human, but a
tree generator such as ours can handle it automatically, given the proper param-
eters. See figure 2.6 for an example of consistent tree LODs from out generator.

2.6.7 LOD parameters
Level of detail as we have described it leads us to several parameters we can

use to control it.
We will control the number of faces of branches by specifying the number of

vertices placed around the circumference of the branch. Furthermore, we will
specify this number in relation to the circumference of the branch. This way
thicker branches can use smoother geometry while small twigs can use fewer
polygons. We will specify:

• Maximal circumference

• Vertex count at maximal circumference

• Minimal circumference

• Vertex count at minimal circumference
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Figure 2.6: Tree level of detail demonstration.
An example of several different levels of detail of a single tree, with increasing detail
level from left (lowest detail) to right (highest detail). Bottom row displays the same
models, but with wireframe view enabled, to highlight their relative complexity. Total

face counts of each detail level are (from left to right): 6, 463, 1431, 5541, 20331,
938504.

Branches with higher that maximal circumference will use the vertex count
of maximal circumference, similarly for branches with lower than minimal cir-
cumference. Branches in between will use a rounded linearly interpolated vertex
count value.

To control polyplane generation, we need to specify when a real branch will be
replaced with a polyplane. We will specify this with the minimal allowed branch
radius. Once a branch radius falls below this value, real branch will be cut off
and the rest of it will be replaced with a planar image.

We will also specify the desired number of polyplane clusters, as well as the
polyplane atlas size.

2.7 The tree model
In our work, the tree model will be separated into a trunk mesh, leaf mesh

and a polyplane mesh, which helps with texturing, since each of these meshes will
only use a single set of textures (a color map and a normal map). This maps well
to traditional rendering pipelines that cannot use multiple texture sets per mesh.
This also helps with mesh export, since we can just generate three files and state
which file uses which textures instead of specifying this in the files themselves.

2.7.1 Leaf mesh
Generating the leaf mesh is straightforward: for every leaf, we append a leaf

card to the mesh. A leaf card consists of two triangles forming a rectangular
shape, and the leaf texture is mapped to its surface.

The leaf texture is assumed to contain an image of a single leaf, including the
alpha channel, which will be used along with alpha testing to only render pixels
that actually lie within the leaf and discard the rest of the pixels in the leaf quad.
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Note that if polyplanes are used, the final model will most likely not contain
any leaves at all, since they will all be replaced with (and included in) polyplanes.

2.7.2 Polyplane mesh
So far we have defined polyplanes as a branch replaced with a quad that

is textured with an image of the original branch. However, approximating a
three-dimensional structure of a branch with a single plane is not sufficient from
the aesthetic perspective, especially if the camera is near co-planar with the
polyplane, which reduces it to a thin line from the camera’s point of view.

For this reason, we will use three perpendicular planes instead, capturing the
original branch from three view points. This ensures that whatever the camera’s
position in relation to the polyplanes may be, at least one plane will always be
facing roughly in the camera’s direction, partly hiding the planar nature of the
structure.

Another key element of maintaining an illusion of a 3D branch is normals. In
the context of computer graphics, normals describe the orientation of a surface,
in particular the vector that is perpendicular to the surface. Normals are the
main property affecting lighting.

Normal vectors are usually stored along with each vertex of a mesh, and
pixels inside a triangle use interpolated normal calculated using the normals of
the triangle’s three vertices. To add further details to an object, textures that
encode normal vectors, usually called normal maps, are used. These textures
store relative normals in relation to the surface’s original normal. This enables
us to have varied lighting even on flat geometry.

For this reason normals can be used to greatly improve the appearance of
polyplanes, thus we will generate a normal map along with the color map of each
branch. These normal maps are demonstrated in figure 2.7.

2.8 Technologies
Both the generator and the editor will be implemented in C# using .NET

Core 3 5. Rendering will use the OpenGL graphics API through the OpenTK
library [8]. We have chosen these technologies primarily due to our familiarity
with them. Using .NET Core and OpenGL also enables us to run the resulting
application on non-Windows operations systems, at least in theory 6.

The editor will use the Dear ImGui library [9] for user interface, through the
ImGuiNET bindings [10]. ImGui is widely used in rendering-related applications
(though mostly for debugging purposes), and this project was a good opportunity
to familiarize ourselves with this library.

We will use Newtonsoft.Json library [11] for JSON serialization and deseri-
alization. We have chosen this library over the built-in solution in .NET Core
because it provides better control of the serialization and deserialization process.

Our GlobCore library [12] will be used for rendering, which is an OpenGL
helper library we have originally created for personal projects.

5.NET 5 was not available when we started working on this project.
6We have only tested our application on Windows 10.
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Figure 2.7: Polyplane consisting of three planes.
A demonstration of the three polyplane planes in the case where the entire tree is
replaced with a single polyplane set. Note that due to the use of normal maps, the

planar nature of the model is almost indistinguishable in a still image (left). Normals
are displayed on the right.
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3. Tree generator
In this chapter we will provide details about the design of our tree generator.

First, we will discuss the generation of the high-level tree structure, then we will
describe the process of converting it to a mesh.

3.1 Overview
Our generator should ultimately output finished tree meshes and polyplane

textures for a set of input parameters.
When creating an object with an L-System, one would first generate an ab-

stract representation of the object, a string of letters, and then produce the object
itself (an image or a mesh) using a turtle interpretation of said string. We choose
a similar approach. We separate tree generation into a grower that generates an
abstract tree representation and a mesher that interprets this representation and
creates the final tree model. Another advantage is that developing and debugging
a tree growth algorithm is easier when it is separated from mesh generation.

Rendering polyplanes will require access to the finished meshes of the branches
we are replacing with images, so it also makes sense to design the polyplane
renderer as a separate part of the generation pipeline.

Since one of our goals is for the generator library to be usable at run time
by other applications, all of the above steps should be implemented in a way
that is as portable as possible. This mostly limits the polyplane renderer. The
task of rendering a mesh into texture is a typical graphics workload and could
be implemented on the GPU. However this would require us to bind our library
to a single graphics API. OpenGL would be suitable for its portability and its
familiarity to the author, however many games choose Direct3D instead, or use
a third party engine.

Another option would be to avoid the GPU altogether and use a software
renderer, however implementing one that supports all required features, such as
texture mapping and shading, would be very time consuming. Software rendering
on the CPU is also not ideal performance wise.

For these reasons we have decided to not handle polyplane rendering in the
generator at all. Instead, the generator will provide its user with a set of render
commands that describe how the polyplane texture should be generated.

These commands carry enough information to make their execution a matter
of one for-loop and a few calls to the user’s preferred graphics API to set up
the required GPU state. In our work, the editor will handle render command
execution.

Thus, our generator will be divided into two parts:

• Generating the tree structure using a grower.

• Generating the mesh using a mesher.

In the first step, we will produce a high level representation of the tree. This
will also produce geometric information, such as the layout of tree branches and
their thickness. We will refer to this high level tree structure as the tree graph,
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since a graph is an ideal way of representing a tree. The vertices of this graph
will be referred to as tree vertices to distinguish them from mesh vertices.

The second step will consume the tree graph and produce the final tree mesh,
or rather several meshes, split according to texture usage, as described in section
2.7. One mesh will include all geometry with bark texture and will be referred to
as trunk mesh, another mesh containing leaf cards will be called leaf mesh and a
final mesh for polyplanes will be called polyplane mesh.

The third part of the generation pipeline, polyplane rendering, will be handled
by the application which uses the generator.

3.2 Grower
In our generator, we will use an approach that mostly matches a context-free

parametric L-system with a single complex rewriting rule (which includes some
randomization). However, we will use a different viewpoint. Instead of letters in
a string, we will operate on vertices in a tree (graph). In each step, we will apply
the production on every new vertex produced in the previous step. We begin
with a graph containing a single vertex, the root, and apply the production on
this vertex. If it creates any child vertices, we will apply the production on them,
then on their children and so on. The branching of the tree graph describes the
branching structure of the resulting tree model.

We chose this approach because a graph maps well to the structure of a
tree, unlike a string, and we don’t constrain ourselves to any particular type
of L-system. Instead we generate vertices with arbitrary code, which makes
implementation easier and gives us greater freedom than L-systems.

Note that every vertex is processed exactly once, and that the result of pro-
cessing a vertex is only dependent on its predecessors. This allows us to process
different branches of the tree in parallel.

The high-level tree growing code is in Treegen/Growing/Grower.cs.
Our production will consist of executing a sequence of growth modules. A

module takes an input vertex, modifies it and passes it to the next module.
During modification, it may also create child vertices. A module itself has a
number of parameters affecting its operation, and modules have a strictly defined
order in which they execute. These parameters are set before tree generation
and are not modified in the process. Tuning these parameters is the primary
mechanism through which the appearance and structure of generated trees is
controlled.

A vertex in this tree graph will be referred to as a tree vertex. Its code can be
found in Treegen/Growing/TreeVertex.cs and it consists of the following data:

• An array of generic floating point parameters called attributes.

• A collection of random number generators.

• Geometric information: the forward vector, the right vector (together de-
scribing the orientation of the branch at this point), the length of the branch
segment from the previous vertex and current branch radius.

• An array of child vertices.
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The vertices of a tree graph will form branches. The first child of a vertex
is always considered to be the continuation of the current branch, while other
children are the beginnings of new side branches. In other words, the edge to the
first child will always be considered to be the straight segment, as defined in axial
trees (described in section 2.5). A branch is similar to the concept of an axis in
axial trees.

The attributes correspond to various parameters used during tree generation.
They are used by growth modules, together with the random number generators.
Geometric information is used when converting the tree graph to a mesh.

Each leaf vertex of the tree graph will generate a leaf in the tree model.

3.2.1 Random number generation
In order to easily generate different instances of the same tree species, the

generation process has to be randomized. However it is also desirable for the
process to remain deterministic. For this reason, we use pseudo-random number
generators that are ultimately controlled by a single seed, which is set once per
tree instance.

Using a single random number generator per tree would have a number of
disadvantages. A single generator would produce a sequence of pseudo-random
numbers, and growth modules would consume this sequence as the tree is gen-
erated. This would mean that the order in which we process vertices affects the
pseudo-random numbers. While vertices in a single branch have a well defined or-
der of execution (from the root towards the leaf vertex), vertices of neighbouring
branches do not. And, as stated earlier, they may even be processed in parallel.

For this reason, each branch will use its own local random number generator.
Another requirement we have for randomization of tree growth is consistency.

Modifying one randomized aspect of tree generation should only affect this one
aspect, and everything else should still look the same. For example, modifying
the probability of a branch fork should not affect how many new branches are
randomly generated per fork. In a naive implementation, decreasing fork proba-
bility would lead to more vertices being generated between forks, and thus more
numbers from the pseudo-random sequence being consumed. This would mean
that once a fork is generated and a random number is queried to get the new
branch count, it would be read from a different location in the pseudo-random
sequence, thus possibly returning a different number, resulting in a visually very
different tree.

For this reason, a branch will not just have a single local random number
generator, but multiple generators, one for each purpose a random number could
fulfill. Each purpose has a value in the TreeRandomType enum.

As stated earlier, we want to control the random generation of a tree with a
single seed value. However, tree generation will use many generators that need
to be seeded.

To solve this problem, we introduced a TreeRandomRepository class, which
stores random generators for a single branch. The seed of a tree is used to seed
the repository for the main tree branch, starting with the tree root.

When a new repository is seeded, the seed is used to initialize a special random
generator that will only be used to seed new repositories (branches) that fork from
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the current one.
Purpose-specific random generators are seeded using a variation of the repos-

itory seed.
The code for seeding a repository is as follows:

public static TreeRandomRepository CreateNew(int seed)
{

TreeRandomRepository repo = new TreeRandomRepository();

// Seeding generator uses the seed directly
repo._seeding = new SimpleRandom(seed);

// Every other generator uses the seed
// XORed with the type name hash
// That way, even if new generator types are added,
// the old types remain unaffected
for (int i = 0; i < RandomCount; i++)
{

int localseed = seed;

unchecked
{

localseed = localseed ˆ SimpleRandom.HashString(
((TreeRandomType)i).ToString());

}

repo._randoms[i] = new SimpleRandom(localseed);
}

return repo;
}

This method is used both to initialize the root repository and a repository for
each new branch.

Note that seeds for purpose-specific random generators are generated using
the original seed and a hash of their purpose’s name. We could use the integer
enum value instead, but that could change if we inserted a new item into the
enum. Also note that we are using a custom string hash [13] instead of the
built-in .NET hash, which is not guaranteed to be stable over time.

The random generator itself (called SimpleRandom in code) is a linear con-
gruential generator adapted from a StackOverflow code snippet which is in turn
based on an article from Wikipedia [14].

Code related to random number generation can be found in the following files:

• Treegen/SimpleRandom.cs

• Treegen/Growing/TreeRandomRepository.cs
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3.2.2 Tree vertex attributes
Our goal is to algorithmically implement tree growth principles as they are

described in section 2.4. For this purpose we will store several attributes in each
vertex. Note that most of them are rather arbitrary and not based on real plants.
They are however useful in controlling tree structure.

• Age can be interpreted in multiple ways. It is the relative age of the tree
vertex, where the maximal value of 1.0 is a full-grown node, and values
close to zero are very young nodes. It can also be viewed as the nutrient
flow through a node. Ages of branches in a fork will fulfill the da Vinci
postulate described in section 2.4. Age is also directly related to branch
cross-sectional area at a given point, and thus also affects branch radius.
The effect of different starting age can be seen in figure 3.1.

• Dominance determines how “trunky” a branch is. Dominant branches
are affected by the imaginary “antigravitropism” described in section 3.2.3.
This behaviour is inspired by apical dominance described in section 2.4.

• Stiffness determines how easily the branch can bend. This only affects
gravitropism.

• BranchHormone is the intensity of an imaginary hormone which controls
when new branches are generated.

• Roll is a helper attribute used when orienting new branches.

• Gravitropism determines how much a branch bends towards gravity, or
away from gravity if it is negative.

• LastBranchRadius is a helper attribute used to smooth out branch forks.

Figure 3.1: A demonstration of the age vertex attribute.
The trees are identical except for their starting age, which is (from left to right)

0.125, 0.25, 0.5, 1.0.
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3.2.3 Growth modules
We will now list all growth modules in the order in which they are executed.

1. Root module is the first module to execute. Its only purpose is to set the
initial dominance parameter to a user specified value.

2. Gravitropism module computes the gravitropism attribute. Growth is
directed away from gravity for dominant branches, and towards it for non-
dominant branches.

3. Geometry module computes branch radius, branch segment length and
applies the gravitropism attribute.

4. Branching module has the greatest effect on tree structure. It controls
when and how branches are generated, when they are terminated, how
dominance and age are distributed in a branch fork and in what directions
new branches will grow. This module is responsible for creating new tree
vertices for both branch forks and normal branch growth.

Source code of all growth modules can be found in the Treegen/Growing
directory.

Note that in the source code of growth modules some parameters (properties)
have a GrowParamSlider attribute. This is used to specify that this parame-
ter should be controlled by a slider in the editor user interface, and minimal
and maximal values are specified as well. Properties without this attribute are
controlled by a text box that accepts the appropriate number types (integer or
floating point). An example of this attribute in GeometryModule is given below.

public float RadiusScale { get; set; } = 0.2f;
public float LengthScale { get; set; } = 0.5f;

[GrowParamSlider(0.05, 0.5)]
public float LengthPow { get; set; } = 0.35f;

[GrowParamSlider(0f, 0.999f)]
public float BranchRadiusTrailing { get; set; } = 0.5f;

3.2.4 Branching module
We will explain the inner workings of the branching module in greater detail,

as it is most important in determining the tree structure.
Parameters HormoneBuildUpMin, HormoneBuildUpMax and Hor-

moneThreshold control how often new branches are generated. This uses the
BranchHormone tree vertex attribute mentioned earlier. This attribute starts at
zero, and each new vertex added to the current branch increases this value by
a random number from the range specified by HormoneBuildUpMin and Hor-
moneBuildUpMax. Once this value reaches or exceeds the HormoneThreshold
value, new branches are generated and BranchHormone value is set to zero for
each of the child vertices, including the vertex that is the continuation of the
current branch.
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TripleBranchProbability controls the probability of a fork with three out-
going branches (including the current branch) being generated instead of a fork
with two outgoing branches.

BranchSlant is used to control the angle between the direction of original
branch growth and the direction of child branches. Note that the actual slant
angle of each child branch is dependent on their relative ages. Branches with
higher age will grow straighter and others will be pushed away.

BranchRoll is used to rotate each new set of child branches relative to the
previous set. This can be used to emulate distichy, dispersion and decussation
mentioned in section 2.4.

MaxLeafAge controls the smallest age allowed for a tree vertex. When age
falls below this threshold, the branch is terminated and a leaf is generated by the
mesher. Thus, no leaf can have an age larger than this value. This parameter
effectively controls how many leaves will the tree have. Lower values lead to more
leaves.

OriginalBranchAge controls what portion of the original age is kept in the
main branch at a fork. OriginalBranchAgeDeviation controls how much this
value will randomly deviate. This parameter can be used to control overtopping
mentioned in section 2.4.

DominanceInheritance controls how much dominance child branches in-
herit from the main branch during a fork.

DominanceForwardnessFactor controls the tendency of dominant
branches to continue growing in their original direction during a fork. If this value
is low, the original branch will be “pushed” to the side by its child branches.

MainTrunkForwardnessFactor works similarly to DominanceForward-
nessFactor, but is only applied to the main trunk, or more specifically, any branch
that has dominance above 0.99.

AgeSapping is used to simulate stress [3]. Stress causes imaginary nutrients
(the age attribute) to be partly consumed in each node.

3.3 Mesher
At this point in the generator pipeline we have “grown” a tree graph and are

ready to generate the meshes themselves.
A mesh will consist of a vertex buffer – an array of vertices, and an index

buffer – an array of indices, indexing into the vertex buffer. Each three succeeding
indices will form a triangle from the vertices they reference.

A single vertex will consist of a position, normal, texture coordinates and
tangent vector. The tangent vector is only required for rendering with normal
maps and is not present in exported meshes, as it can be easily computed from
normals and texture coordinates.

All code related to meshing can be found in the Treegen/Mesh directory.

3.3.1 Pipeline overview
If we were to only generate the trunk and leaf mesh with no polyplanes, the

mesh generation pipeline would be simple. We would first decompose the tree
graph into branches (similar to axes in axial trees described in section 2.5) and
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then generate tube geometry for each branch. Introducing polyplanes adds a
great deal of complexity to the mesh generation process, however this simplified
pipeline is still used to generate the meshes that are rendered into polyplanes.

The full pipeline is as follows:

1. Split the tree graph into branches. Terminate each branch at the point
where it should be replaced with a polyplane.

2. Gather the origin vertex of each polyplane – the tree graph vertex at which
the cutoff to a polyplane occured.

3. Generate clusters (described in section 2.6.4) from polyplane origin vertices.

4. Allocate polyplane images in the polyplane atlas.

5. Generate polyplane render commands and meshes.

6. Place polyplanes at polyplane origin vertex locations.

7. Generate tube geometry for each branch.

This is the pipeline for generating a single tree model. However the actual
generator is capable of generating multiple tree models at once. This is done to
enable sharing a single polyplane atlas among multiple tree instances of the same
species and the same LOD.

This only affects the pipeline slightly. The steps 3, 4, and 5 are simply done
for all trees at once, while the rest are done for each one separately.

Most code related to mesh generation can be found in the file
Treegen/Mesh/Mesher.cs.

3.3.2 Branch decomposition
A branch, as described in section 3.2, is a path through the tree graph, similar

to an axis of an axial tree, as described in section 2.5. For every vertex in a
branch except the first one it must hold that the next vertex in this branch must
be the main child of the current vertex. Breaking the tree graph down into
branches assists us with mesh generation, since each branch can be converted
into a continuous bent tube geometry. The tubes of child branches will simply
originate inside the geometry of their parent branch.

Note that tree vertices only store their position in relation to the previous
vertex. However we will need to obtain absolute world positions of each vertex
for mesh generation. For this reason, branches will also store the absolute position
of their starting vertex. This position will be zero for the root branch and vertex.

Decomposing the tree graph into branches is a simple recursive function. To
construct a branch, we begin at its starting vertex, add it to the branch and move
to the main child of this vertex. We repeat until we move into a leaf vertex, then
we terminate. We will also call this function recursively for every non-main child
vertex we encounter to construct their respective branches. We will also keep
track of the radius and absolute position of each processed vertex.

As we have specified in section 2.6.7, branches below a certain radius will be
cut off and replaced with polyplanes. Branch decomposition needs to be aware of
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this and will stop generating a branch if this polyplane condition is fulfilled. In
that case it will also generate a polyplane origin vertex. Note that the first vertex
the radius of which falls below the threshold is still included in the branch in order
to avoid a visually abrupt transition between real geometry and a polyplane.

Polyplane origin vertex consists of the first branch vertex the radius of which
fell below the threshold and of the absolute position of this vertex.

3.3.3 Clustering
Once we have gathered all the polyplane origin vertices, we will group them

into clusters based on their similarity.
A “position” vector (an array of floating point numbers) is generated for each

vertex. The lower the distance between position vectors of two vertices, the
more similar they are. This vector is directly constructed from the values of
the different tree vertex attributes, however some attributes have more weight
than others. For example the value of age is multiplied by a large number to
increase its influence on clustering. See the method GetClusteringVector in
Treegen/Growing/TreeVertex.cs for more details.

For clustering itself, we have chosen to implement the K-Means++ algorithm
[15] due to our familiarity with it. This algorithm produces cluster centers and
every vertex is assigned a cluster based on its nearest cluster center. However
these centers need not match any of the input vertices. For this reason, after
running K-Means++ we find the nearest real vertex to every cluster center, pro-
claim these vertices as the centers of their respective clusters and then reassign
the clusters of every vertex based on their proximity to the new cluster centers.
See figure 3.2 for an example of polyplane clustering.

3.3.4 Polyplane generation
At this point in the meshing pipeline we have already determined which poly-

plane origin vertices will actually generate polyplane images and which will just
reuse images from other origin vertices. We will now generate render commands
and polyplane card meshes. The process can be broken down into three steps:

1. Generate meshes for each cluster center and initialize render commands.

2. Allocate atlas space for each image.

3. Finalize render commands and generate polyplane card meshes.

In the first step, we generate meshes that will be rendered into images for each
polyplane. We use the same branch decomposition and branch mesh generation
that is used for full tree models, but we do not terminate branches if their radius
falls below polyplane threshold, like we would in normal mesh generation.

We will eventually pass those meshes to the polyplane renderer inside a render
command, which also consists of a transform matrix, the rendered region size and
viewport information about where the meshes are to be rendered in the polyplane
atlas.

We set the transform so that the mesh is oriented vertically in the direction of
growth at the polyplane cluster origin tree vertex. We also compute its rotated
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Figure 3.2: A tree with two polyplane clusters, visualized using yellow and purple
colors.

bounding box extents. Each polyplane consists of three images from the three
orthogonal directions. We use the bounding box extents to set the relative size
of the images.

In the second step, we pass the relative sizes of each polyplane image to an
atlaser, which will then allocate actual texture space for these images. This
process is described in section 3.3.5.

In the third step, we finish the render commands by including the atlas lo-
cations and sizes of the final images. We also generate a mesh containing three
cards for each polyplane cluster origin with the proper texture coordinates. This
mesh is oriented so that the polyplane origin is at zero in its coordinate space,
the increasing Y axis points along growth direction and X axis points along the
right vector of the original tree vertex.

When placing polyplane cards for each actual polyplane origin (not just cluster
origins), we simply append the proper polyplane card mesh to the final polyplane
mesh, rotated and translated according to the origin’s position.

3.3.5 Allocating atlas space
To allocate atlas space, we essentially need to pack several smaller rectangles

into a larger rectangle. This is known to be a NP-hard problem [16].
Furthermore, we may rotate the rectangles and we may also resize the larger
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atlas rectangle (uniformly in both directions). Changing the size of the atlas
rectangle can be thought of as resizing all the packed rectangles at once. This
is a sensible action, since we don’t care about the exact sizes of the packed
rectangles, but their relative sizes should be maintained. Otherwise, one branch
polyplane could have a high resolution image, while the next would be just a few
pixels, causing a visible discrepancy.

We implemented the following heuristic. We split the atlas space into rectan-
gular tiles of identical size, and place each image into one of these tiles. These
tiles need to be large enough to fit the largest image, but also small enough so
we can fit enough tiles into the atlas to cover all images. Due to our ability to
resize the tiles (or the atlas), we can simply find the largest image, and then find
the largest possible tile size that has the same aspect ratio and that can fit into
the atlas enough times to cover all images. We use a binary search algorithm to
do this. See figure 3.3 for an example of the result of our clustering algorithm.

This approach was originally intended as a quick and simple solution that
would allow us to develop and debug the polyplane generation process as a whole,
and was intended to be replaced with something more sophisticated. However,
this approach works reasonably well in our use case since polyplane branches are
cut off at the same radius, thus all polyplane images are likely to be of a similar
size. For this reason we have decided to keep using this approach although a
better solution could certainly be implemented in the future.

Figure 3.3: A visualization of the result of our atlaser.
Grey regions are included in actual polyplane images, black regions are unused.

3.3.6 Branch mesh generation
First, the branch vertices are passed through a filter that interprets them as a

control polygon of a cubic Bezier curve, and moves each vertex to its correspond-
ing position on the curve. This smooths the branch geometry, avoiding abrupt
growth direction changes that the grower produces. To generate a branch mesh
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we generate a vertex ring for each tree vertex of a branch, rotated according to the
right and forward vectors of the vertex. We then connect subsequent rings with
faces. However, each subsequent vertex ring is slightly rotated around the axis
of growth in order to place its vertices as near their counterparts in the previous
ring as possible. This helps us avoid twisting artifacts in the mesh.

Trunk texture coordinates are generated so that the texture always wraps
around the entire branch in the X axis. The texture X coordinate is also shifted
slightly along the branch length into a spiral pattern to hide texture repetition.
The Y texture coordinate is increased with unit of branch length, however the
distance the Y coordinate is moved is also divided by the current branch ra-
dius. This eliminates stretching artifacts for thin branches. See figure 3.4 for a
demonstration of trunk texture coordinates.

At the end of each branch we generate a leaf card, unless it is a branch that
ends with a polyplane.

Figure 3.4: A visualization of texture coordinates of the final mesh.
Red color channel corresponds to the X texture coordinate axis, green to the Y axis.

Note the twisting pattern visible in the trunk. Also note that the texture repeats
more often in the growth direction on thinner branches.
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4. Editor
The editor serves as a frontend for the tree generator, allowing the user to edit

trees interactively, save and load grower parameters or export final tree models.
The editor displays the currently edited tree including all its levels of detail. It
can also display multiple instances of the tree, where each instance can have a
different seed and a different starting age. These instances will share polyplane
atlases, as described in section 2.6.5.

The user can change growth parameters using several sliders and text boxes.
The regeneration of the tree must be triggered manually, either using an op-
tion in the menu or a keyboard shortcut. Automatic regeneration would not be
appropriate, since generating the trees can take several seconds or more.

The editor also contains a set of default trunk and leaf textures from ambi-
entGC [17].

A full user guide is included in docs/guide.md.
The TreeEditorState class stores everything about the edited trees. It stores

the current “project”. This class is serialized into JSON in order to save current
tree parameters. It consists of:

• Grower parameters

• Mesher parameters, including LOD parameters

• List of tree instances

• File names of used textures

Another notable class is the TreeBatch, which contains the state, manages
its loading and saving, model exporting and setting texture filenames. Most of
the editor logic itself is implemented in Editor.cs and menus are defined in
UserInterface/MenuGenerator.cs.

A notable feature is that user interface for growth modules is generated au-
tomatically using reflection. As mentioned in section 3.2.3, parameters of a
growth modules may be decorated with an attribute specifying that the param-
eters should be represented with a slider. See figure 4.1 for an example of the
auto-generated UI.

Selecting textures uses a file picker adapted from GitHub user prime31 [18].

4.1 Rendering
Editor uses a simple forward renderer implemented in OpenGL. Its features in-

clude a simple diffuse lighting (with no shadows), normal mapping, fake backscat-
tering for leaves, tonemapping [19] and gamma correction [20].

During rendering of alpha-tested geometry, a separate alpha texture is used 1

instead of the alpha channel of the diffuse texture.
1Having separate alpha makes it easier to process it separately from color, for example by

converting it to a signed distance field. In the end we decided not to do this as such preprocessing
is better left for the game engine that would consume our trees.
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The renderer uses a module based architecture, where each module takes care
of one part of the rendering pipeline. This is done mostly out of habit, as we use
this architecture in some of our other projects which have much more complex
renderers.

Shaders can be found in the Shaders directory. Note that shaders can be
edited at runtime and are automatically reloaded by the application. This be-
haviour is handled by our GlobCore library.

4.1.1 Polyplane renderer
Rendering polyplanes is similar to filling a g-buffer during deferred shading.

Diffuse, normal and alpha textures are all written to at once by the pixel shader
using multiple render targets.

First, a frame buffer object is bound, to which polyplane atlas textures are
attached (diffuse, normal and alpha textures). This framebuffer is cleared and
then render commands are executed. An orthogonal projection matrix is set
so that the viewport includes the command’s rendered region extents, and the
command’s transform is set as the world matrix. Command’s meshes are then
rendered, including the proper trunk and leaf textures.

The code is in TreeEditor/Rendering/PolyplaneRenderer.cs.

4.1.2 ImGui renderer
The ImGui renderer is adapted from a sample program for the ImGui.NET

library [21]. ImGui produces a list of render commands, similar to our polyplane
generator, that need to be executed by the application. The code can be found
in TreeEditor/Rendering/ImguiRenderer.cs. This class also handles passing
keyboard and mouse input to ImGui.

Figure 4.1: Auto-generated ImGui user interface for growth modules.
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5. Documentation
The user may interact with our work in several ways. For the user that

wants to use the editor to generate tree models we have prepared the user guide
described below in section 5.1. A brief overview of the inner workings of the
generator can also be found in docs/docs.md.

For the user that wants to integrate the library into their own program we
provide an overview of using our library in section 5.2 and we have also prepared
a sample program that uses the generator library.

The user that wants to modify or extend our library should refer to chapters
3 and 4 which describe the high level structure and workings of our generator.
Low level details can be found in the source code in the form of many comments.

5.1 User guide
An application such as this is ultimately aimed at hobbyist game developers.

These users may not necessarily be programmers, but will in general have a good
understanding of the principles and inner workings of video games. Thus there
is no need to explain concepts such as a “texture” or “vertex count” and a quick
tutorial with many descriptive images is sufficient. This tutorial can be found in
docs/guide.md.

The application comes with several demo tree “projects” included in the trees
directory.

5.2 Using the generator library

5.2.1 Public interface
Public interface of the library consists of:

• All growth modules, their base class, TreeVertex,
TreeRandomRepository and SimpleRandom. This allows the user to
create their own growth modules.

• Mesher and all related classes: MesherParams, MesherResult,
RenderCommand, Mesh, MeshVertex.

• ObjWriter to allow easy export of generated meshes.

5.2.2 Generating a tree
In order to generate a tree, one would:

1. Create an instance of the Grower class.

2. Add all required growth modules to the Modules list in the grower.
This step can be merged with the previous one by using the
Grower.CreateWithAllModules method, which creates a Grower instance
with all growth modules from the library already included.
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3. Create a root vertex for the tree using the TreeVertex.CreateRoot
method.

4. Grow a tree from this vertex using the Grower.Grow method. Set the root
vertex into the Root property of the GrowContext parameter.

5. Generate meshes from this vertex using Mesher.GenerateBatch with the
appropriate parameters. This method returns a MesherResult instance.

6. Execute the render commands provided in the MesherResult.

See the project TreeSample for a very simple example application that gen-
erates the default tree and saves it into a Wavefront .obj file.

The editor itself also serves as an example integration of the tree generation
library into an application. Please refer to the TreeBatch class which interfaces
with the generator, especially its constructor and the UpdateAll method.

An example of polyplane render command execution can be found in the file
TreeEditor/Rendering/PolyplaneRenderer.cs. Also refer to section 4.1.1.
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6. Conclusion
We have provided a generator capable of producing different tree types and

highly customizable LODs, scaling from just several polygons to detailed trees
with individual leaves. The generator may also be included in another application
to enable runtime tree generation. Furthermore, it is written in a multi platform
way, allowing it to run on non-Windows systems.

Our tree generation is based on “growing” a tree graph and mimics real plant
growth. It is inspired with L-systems and recreates self-similarity that can be
observed in real trees. Extensibility was not our primary goal, however the design
of the generator and editor allows for relatively easy extension of tree graph
generation with the addition of new growth modules. User interface of these new
modules is generated automatically as long as its parameters are of the supported
types.

The complexity of tree models comes mainly from their many individual leaves
and tiny twigs that connect them to the greater branch system. Our main strategy
is to replace this complex geometry with a card onto which the image of the
original branch is mapped. This process is fully automatic and can be controlled
with just four easy to understand parameters 1. Furthermore, we generate level
of detail in a way that preserves the tree silhouette, which helps with hiding LOD
transitions.

We feel that we have created a complete and useful tool despite the many
possible improvements listed in the next section.

See figure 6.1 for an example of our generated level of detail, figure 6.2 for a
screenshot of the editor with user interface and figure 6.3 for a screenshot of a set
of generated trees.

6.1 Future improvements
There are many ways our work could be extended in the future. We will list

some of these extensions below.

• Normal smoothing – using fake smoothed normals instead of real normals
can improve the appearance of trees. Tree crowns tend to have a spherical
shape which appears smooth from a distance, and both leaf and polyplane
normals could be adjusted to resemble the smoother surface of a sphere.

• Branch intersection improvements – branch intersections are just two
intersecting polyhedra in the mesh. A smoother saddle-like geometry could
be generated instead.

• Roots – support for generating tree roots could be added, likely using the
same growth modules, but with a different set of parameters.

• Voxelizer – voxel based video games and art are becoming increasingly
popular, likely due to the popularity of Minecraft and voxel editing software

1Branch radius at which it is replaced with a polyplane, number of polyplane clusters, width
and height of the image atlas.
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MagicaVoxel. By having a high level representation of a tree in the form
of the tree graph, our generator could produce accurate voxel tree models
with better results than voxelizing a tree mesh could produce, at least for
large voxel sizes. There is already an experimental implementation of a
voxelizer included in the source code, it is however not complete and not
made available to the user.

• Extended tree generation – the versatility of our tree grower could be
improved. We could provide much more control over tree growth to the
user by replacing scalar parameters with curves mapping current age to a
parameter value. Support for generating conifer trees is also missing.

• Improved atlaser – allocation of polyplane images from the atlas could
be improved by reducing the amount of wasted space, thus increasing the
resolution of polyplanes without increasing memory consumption. This
could be done by implementing a better algorithm, perhaps one that can
also resize polyplane images or rotate them.

• Animation – motion from wind is key in bringing a nature scene to life. We
could generate animation data during the mesh creation process automati-
cally. However creating an efficient tree animation system is not something
that can be done at the asset generation level, since it would need to handle
entire forests with hundreds of trees. A custom rendering pipeline would
be required to achieve good performance, but that would tie us to a single
rendering engine.

• Tree geometry editing – the editor could allow the user to modify the
tree graph by hand, for example by rotating growth direction, by translating
vertices or by inserting entirely new vertices. This could be used to produce
customized tree shapes, where the user would create the high-level branch
structure by hand, but everything else would still be generated procedurally.
This would combine the strengths of manual and procedural tree creation
while retaining automatic level of detail.

Figure 6.1: A demonstration of level of detail.
On the left there is a tree with individual leaves, other trees use polyplanes with

different radius cutoff. Wireframe is enabled for better visibility of polyplane
cards.
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Figure 6.2: A demonstration of the tree editor including UI.

Figure 6.3: A demonstration of the generated trees.
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A. Attachments
File or directory name Contents

docs/ Contains user guide and a brief documentation.
src/ The complete source code of the project,

including a Visual Studio solution.
textures/ Default bark and leaf textures.

trees/ Example tree files.
README.md Brief readme with basic instructions,

including compiling.

The repository with the same contents can also be found at https://gitlab.
com/Kvaleya/treegen at the time of writing 1.

The user tutorial can also be viewed at:
https://gitlab.com/Kvaleya/treegen/-/blob/master/docs/guide.md.
The project is compilable with Visual Studio 2019. Note that the final exe-

cutable must be run in the root directory of the repository. For example
it will look for shaders in src/Shaders.

12021-05-17. The repository contents may be updated in the future.

41

https://gitlab.com/Kvaleya/treegen
https://gitlab.com/Kvaleya/treegen
https://gitlab.com/Kvaleya/treegen/-/blob/master/docs/guide.md

	Introduction
	Our goals
	Thesis structure

	Analysis
	L-systems
	Other types of L-systems
	Turtle interpretation of L-systems

	Limitations of L-systems
	Space colonization
	Tree growth principles
	Tree roots

	Axial trees
	Level of detail
	Branch geometry
	Leaves and textures
	Polyplanes
	Branch clustering
	Sharing polyplane atlases
	Consistency of different LODs
	LOD parameters

	The tree model
	Leaf mesh
	Polyplane mesh

	Technologies

	Tree generator
	Overview
	Grower
	Random number generation
	Tree vertex attributes
	Growth modules
	Branching module

	Mesher
	Pipeline overview
	Branch decomposition
	Clustering
	Polyplane generation
	Allocating atlas space
	Branch mesh generation


	Editor
	Rendering
	Polyplane renderer
	ImGui renderer


	Documentation
	User guide
	Using the generator library
	Public interface
	Generating a tree


	Conclusion
	Future improvements

	References
	List of Figures
	Attachments

