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některé podmı́nky na jednotlivé prvky matice, které jsou pro danou tř́ıdu splněny.
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Introduction
In 1968 mathematicians Cottle and Dantzig proposed the linear complementar-
ity problem, denoted LCP (M, q), where M is a matrix and q a vector. LCP is
used e.g. to characterize Nash equilibria of normal-form games. Another exam-
ple of where the LCP occurs is the optimal solution of quadartic programming
that can be expressed as a solution of some LCP (M, q). Later, in 1992, in [1]
Cottle et al. showed that LCP (M, q) has a unique solution for every vector q
if and only if M is a P-matrix, i.e. all its principal minors are positive. However,
this class of matrices is computationally complex to recognize. As shown by Cox-
son in [2], such task to verify given matrix on being a P-matrix is co-NP-complete.

This leads us to try and define some subclasses of P-matrices, that are easily
recognizable. Such classes are e.g. B-matrices, doubly B-matrices or BR

π -matrices,
which we will work with in this thesis. To add some subclasses that are not men-
tioned throughout this work, there are nonsingular M-matrices or positive defi-
nite matrices for an example. What more, the B-matrices and doubly B-matrices
found their use in localization of eigenvalues, as shown by Peña in [3] and [4].

Since the beginning of rigorous measurements, mathematicians had to deal
with inaccuracy in data or any form of uncetainty they may encounter. And an an-
swer emerged in a form of interval analysis, sometimes called interval computing
or interval mathematics as well. This answer is about enveloping the data into in-
tervals and then working with the resulting intervals instead of with the data
itself. With that we are not only able to overcome problems with measuring
equipement, which might give us inaccurate data because of its physical limits,
but even to tackle the problems of machines that manipulate our data, e.g. mod-
ern computers and their way of storing data, which has only finite precision
and often succumbs to rounding errors. By using an interval instead of the dis-
crete data points, we ensure that after the computation is done, we have our
desired result in the resulting interval.

It sure is interesting, that there exists a connection between interval analy-
sis and P-matrices, more precisely between regularity of interval matrices and
P-matrices, which is shown in [5] by Hlad́ık.

In this thesis we will generalize our special subclasses of P-matrices, namely
B-matrices, doubly B-matrices or BR

π -matrices into interval settings, thus inter-
connecting these two topics. We shall dive into real cases of our matrix classes
and try to deepen our understanding of them up to the point, where we will feel
comfortable enough with them to understand even their interval analogies, which
we will introduce and explore. We will lay grounds to recognizing the interval
variants through characterization, necessary conditions and sufficient ones. Also
we shall take a closer look at closure properties of theirs. And in the end, we
shall try to formulate methods to generate instances of some of these classes, so
it is easier for any following research to test and / or refute hypotheses.
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1. Preliminaries
Let us start by stating notation used throughout the thesis (Section 1.1) and in-
troducing interval computation (Section 1.2). In the end we will introduce some
matrix classes that are referred to throughout this work (Section 1.3).

1.1 Notation
Let us start by stating our notation of special sets. Let N be a set of natural
numbers, then for any n ∈ N by [n] we denote a subset of N, which is of a form
{1, 2, . . . , n}. By R we denote the set of all real numbers, whereas by IR we
denote the set of all real intervals. By Fm×n we denote a class of all matrices
of dimension m × n with its entries from F. Consequently Fn denotes a class
of vectors of length n over F.

For any two matrices A,B ∈ Fm×n and vectors u, v ∈ Fn′ , where on F there is
defined relation ≥ and a zero element 0, A ≥ 0 means that for every entry a of A:
a ≥ 0 (analogously for relation > and for v ≥ 0, v > 0), and A ≥ B is defined as
A−B ≥ 0 (analogously for relation > and for v ≥ u, v > u).

Let F be a set with defined relation ≥ and a zero element 0. Then F+ indicates
subset of F such that for its every element α: α > 0 and F+

0 designates subset of
F such that for its every element α: α ≥ 0.

Let F be a set with defined zero element 0. Then by o ∈ Fn we denote zero
vector, i.e. o = (0, . . . , 0)T .

Let A ∈ Fn×n for F with defined relation ≥. Then ∀i ∈ [n] : r+
i is defined

as max{0, aij|j ̸= i}.

1.2 Interval computation
In this section we will introduce some basics of interval analysis. For further infor-
mation, see [6], where the authors give reader a wide understanding of the topic,
or [7], which contains some more information, or [8] that is a handbook of results
in the field.

Let us start by defining of arrangement on intervals as follows. For any two real
intervals α,β ∈ IR, the notation of α ≥ β means that ∀α ∈ α,∀β ∈ β : α ≥ β
(analogously for >).

Definition 1.1 (interval matrix). An interval matrix A, denoted by A ∈ IRm×n

is defined as
A =

[︂
A,A

]︂
=
{︂
A ∈ Rm×n

⃓⃓⃓
A ≤ A ≤ A

}︂
,

where A,A are called lower, respectively upper bound matrices of A.
We can as well look at A as matrix, which has entries from IR, hence ∀i ∈

[m],∀j ∈ [n] : aij =
[︂
aij, aij

]︂
.

If we define matrices AC = 1
2

(︂
A+ A

)︂
and A∆ = 1

2

(︂
A− A

)︂
, then we can

define A alternatively as

A =
[︂
AC ± A∆

]︂
=
[︂
AC − A∆, AC + A∆

]︂
.
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Definition 1.2 (interval vector). An interval vector v ∈ IRn′ can be defined
as a special case of interval matrix for m = n′ and n = 1, just as ordinary vector.

Now let us take a look at how the interval arithmetic works. For any bi-
nary operation ∗ that is defined on the real numbers, we can define the interval
extension of the given operation as follows:

a ∗ b = {a ∗ b | a ∈ a, b ∈ b}
For our common operations we can rewrite this definition into an explicit formula:

• a + b =
[︂
a+ b, a+ b

]︂
• a − b =

[︂
a− b, a− b

]︂
• a · b = [min(S),max(S)], where S =

{︂
a · b, a · b, a · b, a · b

}︂
• a/b = [min(S),max(S)], where S =

{︂
a
b
, a

b
, a
b
, a
b

}︂
if 0 /∈ b

What is important to notice, is that if we have an arithmetic expression with
interval variables a we evaluate it using interval arithmetic, then if every variable
is present at most once, then what we get is the exact smallest interval containing
all the possible solutions. (Thus if the soultion is interval, then we get exactly
that one and nothing more.) This fact will see use e.g. in proofs of Propositions
3.5 or 5.5.

Often in interval computation, the problem of testing the interval for cer-
tain property is reduced to testing just finite number of instances of the interval
for the property, as can be seen for example in [9] or [10]. This method we will
use in subsections 3.1.1, 4.1.1 or 5.1.1.

1.3 Useful matrix classes
Here we shall introduce some later usefull matrix classes.
Definition 1.3 (P-matrix). Let A ∈ Rn×n. We say that A is a P-matrix, if all
its principal minors are positive.
Definition 1.4 (interval P-matrix). Let A ∈ IRn×n. We say that A is an interval
P-matrix, if ∀A ∈ A : A is a P-matrix.
Definition 1.5 (Z-matrix). Let A ∈ Rn×n. We say that A is a Z-matrix, if all
its off-diagonal elements are non-positive.
Definition 1.6 (interval Z-matrix). Let A ∈ IRn×n. We say that A is an interval
Z-matrix, if ∀A ∈ A : A is a Z-matrix.
Definition 1.7 (circulant matrix). Let A ∈ Rn×n. We say that A is a circulant
matrix, if all its rows are each cyclic permutations of the first row with offset
equal to the row index minus one, hence if it takes the following form:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 · · · cn−2 cn−1

cn−1 c0
. . . cn−2

... . . . . . . . . . ...
c2

. . . c0 c1
c1 c2 · · · cn−1 c0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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2. Real B-matrices and their
generalizations

2.1 B-matrices
In this section we will introduce real B-matrices. Subsection 2.1.1 shows us
possible characterizations derived by Peña in [3], while in subsection 2.1.2 we
will mention some fundamental properties of B-matrices and facts about them.
In the last subsection, 2.1.3 we will focus on closure properties of B-matrices.

Definition 2.1 (B-matrix). Let A ∈ Rn×n. Then we say that A is a B-matrix,
if ∀i ∈ [n] the following holds:

a)
n∑︂
j=1

aij > 0

b) ∀k ∈ [n] \ {i} : 1
n

n∑︂
j=1

aij > aik

Remark 2.2. From Definition 2.1 it can be deduced that every B-matrix A must
fulfill following condition for all i ∈ [n]:

aii > r+
i

2.1.1 Characterizations
Following results are taken from Peña [3], therefore we will not state the proofs,
those are shown in the original work.

Proposition 2.3. Let A ∈ Rn×n. Then A is a B-matrix if and only if ∀i ∈ [n]
the following holds:

n∑︂
j=1

aij > n · r+
i

Proposition 2.4. Let A ∈ Rn×n. Then A is a B-matrix if and only if ∀i ∈ [n]
the following holds:

aii − r+
i >

∑︂
j ̸=i

(︂
r+
i − aij

)︂

2.1.2 Fundamental properties
Following result is shown in Peña [3] as Corollary 2.6. However it is quite funda-
mental for the meaning of this thesis, so we will state it here as well:

Proposition 2.5. B-matrices are P-matrices as well.

Corollary 2.6. B-matrices are non-singular.

Proof. This is a corollary of Proposition 2.5. It comes from the fact that every
singular matrix has zero determinant, therefore it is not a P-matrix, therefore
it cannot be a B-matrix, because Proposition 2.5 tells us that every B-matrix is
P-matrix. ⊠
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Corollary 2.7. Let us have two B-matrices A,B ∈ Rn×n and let C ∈ Rn×n

matrix which satisfies the following:

∀i ∈ [n] : Ci∗ = Ai∗ ∨ Ci∗ = Bi∗

Then C is a B-matrix.

Proof. In Definition 2.1 we can see that there are no conditions intertwining
the rows, so each row is inspected on its own. The only thing needed to know,
is which of its element is diagonal, thus what row it is. Therefore every row is
independent on all the other rows, so if we combine some rows, which satisfy
the conditions (where rows of A and B clearly satisfy the conditions, because
the matrices are B-matrices), while keeping the order of the rows, hence ensuring
that elements that were diagonal still are, then we surely get a B-matrix. ⊠

Next we will introduce a result shown and proved in Peña [3] as Proposi-
tion 2.8:

Proposition 2.8. Let A ∈ Rn×n be a Z-matrix. Then the following is equivalent:

1) A is a B-matrix,

2) The row sums are positive.

3) A is strictly diagonally dominant by rows with positive diagonal entries.

2.1.3 Closure properties
Proposition 2.9. Let A,B ∈ Rn×n be B-matrices, α ∈ R+, D ∈ R+n×n be
a positive diagonal matrix. Then following holds:

a) A+B is a B-matrix,
b) αA is a B-matrix,
c) D · A is a B-matrix and
d) principal submatrices of A are B-matrices

Proof. Points a) and b) can be rather straightforwardly checked from Defini-
tion 2.1. Part c) holds from combination of part b) and Proposition 2.7. For proof
of d) see Peña [3], Proposition 2.5.

⊠

Remark 2.10. Of course, the B-matrices are not closed under the multiplication
by negative scalar, or zero, because then the diagonal would be non-positive,
which cannot be, as stated in 2.2.

Proposition 2.11. A matrix product of two B-matrices is not necessarily a B-
matrix.

Proof. Let

A =
(︄

1 1
4

−1
4 1

)︄
and B =

(︄
1 0
0 4

)︄
.
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It can be easily seen that both A and B are B-matrices. Nevertheless their
product, which is

AB =
(︄

1 1
−1

4 4

)︄
,

is not a B-matrix, where the problem is in the first row, which violates the b) con-
dition from the Definition 2.1.

⊠

Proposition 2.12. An inverse of a B-matrix is not necessarily a B-matrix.
Proof. Let

A =

⎛⎜⎝1 1
2

1
2

0 1 0
0 0 1

⎞⎟⎠ .
It can be easily seen that A indeed is a B-matrix. However its inverse, which is

A−1 =

⎛⎜⎝1 −1
2 −1

2
0 1 0
0 0 1

⎞⎟⎠ ,
is not a B-matrix, because of the first row, which violates the a) condition
from the Definition 2.1.

⊠

Proposition 2.13. A power of a B-matrix is not necessarily a B-matrix.
Proof. Let

A =

⎛⎜⎝1 1
2

1
2

0 1 1
2

0 0 1

⎞⎟⎠ .
It can be easily seen that A indeed is a B-matrix. But its second power, which is

A2 =

⎛⎜⎝1 1 5
4

0 1 1
0 0 1

⎞⎟⎠ ,
is not a B-matrix, because of the first row, which violates the b) condition
from the Definition 2.1.

⊠

2.2 Doubly B-matrices
This section will introduce real doubly B-matrices as defined in [4], in subsection
2.2.1 we will inspect some for us interesting properties and in subsection 2.2.2 we
will take a closer look at what closure properties they posses.
Definition 2.14 (doubly B-matrix). Let A ∈ Rn×n. Then we say that A is
a doubly B-matrix, if ∀i ∈ [n] the following holds:

a) aii > r+
i

b) ∀j ∈ [n] \ {i} :
(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

⎛⎝∑︂
k ̸=i

(︂
r+
i − aik

)︂⎞⎠⎛⎝∑︂
k ̸=j

(︂
r+
j − ajk

)︂⎞⎠
7



2.2.1 Fundamental properties
Proposition 2.15. Let A ∈ Rn×n. If A is a B-matrix, then A is a doubly
B-matrix.

Proof. If A is a B-matrix, then, from Proposition 2.4, the following holds for every
i ∈ [n]:

aii − r+
i >

∑︂
j ̸=i

(︂
r+
i − aij

)︂
≥ 0

From that follows that ∀i, j ∈ [n], j ̸= i:

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

⎛⎝∑︂
k ̸=i

(︂
r+
i − aik

)︂⎞⎠⎛⎝∑︂
k ̸=j

(︂
r+
j − ajk

)︂⎞⎠ ,
which is exactly the b) part of the Definition 2.14. The a) part of the definition
is obtained from Remark 2.2. Therefore A is a doubly B-matrix.

⊠

Remark 2.16. We can now show that the opposite implication does not hold.
As a counterexample we can take e.g. matrix

A =
(︄

1 −2
0 1

)︄
.

The matrix A is a doubly B-matrix, but it is not a B-matrix.

The following proposition is stated in Peña [4] as Theorem 2.5 where it is also
proved. Nevertheless it holds importance to the essence of this thesis, so we will
introduce it here too:

Proposition 2.17. Doubly B-matrices are P-matrices as well.

Corollary 2.18. Doubly B-matrices are non-singular.

Proof. This is a corollary of Proposition 2.17. It comes from the fact that every
singular matrix has zero determinant, therefore it is not a P-matrix, therefore it
cannot be a doubly B-matrix, because Proposition 2.17 tells us that every doubly
B-matrix is P-matrix. ⊠

Proposition 2.19. Let A ∈ Rn×n be a doubly B-matrix. Then exactly one
of the following applies:

a) Either A is a B-matrix, or

b) there exists a unique j ∈ [n] that

ajj − r+
j ≤

∑︂
m ̸=j

(︂
r+
j − ajm

)︂
and for every other i ∈ [n] \ {j} :

aii − r+
i >

∑︂
m ̸=i

(︂
r+
i − aim

)︂
.

(I.e. there is only one row that does not satisfy the condition stated in Corol-
lary 2.4.)
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Proof. Let a) hold, so A is a B-matrix and thus from Corollarty 2.4 ∀i ∈ [n] :

aii − r+
i >

∑︂
m̸=i

(︂
r+
i − aim

)︂
,

thus b) does not hold.
Now let a) not apply, so A is not a B-matrix. Then it contains a row,

which does not fulfills the condition stated in Corollary 2.4. (Else it would fulfill
the characterization stated ibidem, thus it would be a -matrix, hence we obtain
a contradiction.) We will show that there cannot exist two such rows.

For contradiction, let there be two such rows j and j′ that

ajj − r+
j ≤

∑︂
m̸=j

(︂
r+
j − ajm

)︂
and

aj′j′ − r+
j′ ≤

∑︂
m̸=j′

(︂
r+
j′ − aj′m

)︂
.

(It should be noted that because A is a doubly B-matrix, then from Definition
2.14 we get that 0 < ajj − r+

j and 0 < aj′j′ − r+
j′ .) Then

(︂
ajj − r+

j

)︂ (︂
aj′j′ − r+

j′

)︂
≤

⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠⎛⎝∑︂
m ̸=j′

(︂
r+
j′ − aj′m

)︂⎞⎠ ,
but that leads us to a contradiction with the Definition 2.14, because A should
have been a doubly B-matrix. Therefore such a row which breaks the condition
from Corollary 2.4 is exactly one, all the others have to satisfy this condition.

⊠

Definition 2.20 (proper doubly B-matrix). Let A ∈ Rn×n be a doubly B-matrix.
Then we say that A is a proper doubly B-matrix, if it is not a B-matrix.

The next proposition shows us easily testable class of both B- and doubly
B-matrices.
Theorem 2.21. Let A ∈ Rn×n be a circulant matrix. Then the following are
equivalent:

1) A is a B-matrix.

2) A is a doubly B-matrix.

3) a11 − r+
1 >

∑︁
j ̸=1

(︂
r+

1 − a1j
)︂

Proof. ”1) ⇒ 2)”: See Proposition 2.15.
”2) ⇒ 3)”: A is a doubly B-matrix, hence for arbitrary j ̸= 1 :

(︂
a11 − r+

1

)︂ (︂
ajj − r+

j

)︂
>

⎛⎝∑︂
k ̸=1

(︂
r+

1 − a1k
)︂⎞⎠⎛⎝∑︂

k ̸=j

(︂
r+
j − ajk

)︂⎞⎠ ⇔

⇔
(︂
a11 − r+

1

)︂2
>

⎛⎝∑︂
k ̸=1

(︂
r+

1 − a1k
)︂⎞⎠2

⇔

⇔
(︂
a11 − r+

1

)︂
>

⎛⎝∑︂
k ̸=1

(︂
r+

1 − a1k
)︂⎞⎠

9



The first equivalence holds, because the A is circulant, whereas the second one
comes from the fact that both sides of the resulting inequality are non-negative,
which is based on following:

For left side: A is doubly B-matrix ⇒ ∀i ∈ [n] : aii > r+
i (From condition a)

of Definition 2.14.)
For right side: From definition of r+

i : ∀i ∈ [n] ∀j ̸= i : r+
i ≥ aij.

Therefore the implication holds.
”3) ⇒ 1)”: Because A is circulant, the following implication holds:

a11 − r+
1 >

∑︂
k ̸=1

(︂
r+

1 − a1k
)︂

⇒ aii − r+
i >

∑︂
k ̸=i

(︂
r+
i − aik

)︂

Thus from Proposition 2.4 A is a B-matrix.
⊠

2.2.2 Closure properties
Unlike B-matrices, doubly B-matrices aren’t in general closed under the operation
of addition, however it can still be shown that they are closed under multiplication
by a positive scalar and that their principal submatrices are doubly B-matrices
too.

Proposition 2.22. Let A ∈ Rn×n be a doubly B-matrix, α ∈ R+. Then αA is
a B-matrix.

Proof. Let A ∈ Rn×n be a doubly B-matrix, α ∈ R+. First we should mention
that (αA)ij = α · aij and max{0, α · aij|j ̸= i} = α · max{0, aij|j ̸= i} = α · r+

i ,
so the property a) from Definition 2.14 holds. (Both sides of the inequality are
multiplied by the same positive number.) Then ∀i, j ∈ [n], j ̸= i:(︂

α · aii − α · r+
i

)︂ (︂
α · ajj − α · r+

j

)︂
=

= α2
(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

> α2

⎛⎝∑︂
k ̸=i

(︂
r+
i − aik

)︂⎞⎠⎛⎝∑︂
k ̸=j

(︂
r+
i − ajk

)︂⎞⎠ =

=
⎛⎝∑︂
k ̸=i

(︂
α · r+

i − α · aik
)︂⎞⎠⎛⎝∑︂

k ̸=j

(︂
α · r+

i − α · ajk
)︂⎞⎠ .

The inequality is obtained from the fact that A is a doubly B-matrix. Therefore
the b) condition of the definition of doubly B-matrices is satisfied as well. Ergo
αA is a doubly B-matrix.

⊠

Proposition 2.23. Let A ∈ Rn×n be a doubly B-matrix, then principal subma-
trices of A are doubly B-matrices too.

Proof. Let A ∈ Rn×n be a doubly B-matrix and let ˜︁A ∈ R˜︁n×˜︁n be its principal
submatrix. So ∃S ′ ⊂ [n] : ˜︁A was formed from A by deletion of rows and columns
indexed by the elements of S ′. Let S = [n] \ S ′. Then ∀i ∈ [˜︁n] ∃ a unique ki ∈ S
such that ˜︁Ai corresponds to the row Aki

(without the entries from the columns

10



from S ′). Then, because be removing elements from the set, we cannot increase
its maximum, ∀i ∈ [˜︁n] : ˜︁r+

i ≤ r+
ki
. Thus ∀i, j ∈ [˜︁n], j ̸= i :

(︂˜︁aii − ˜︁r+
i

)︂ (︂˜︁ajj − ˜︁r+
j

)︂
=

(︂
akiki

− ˜︁r+
i

)︂ (︂
akjkj

− ˜︁r+
j

)︂
≥

≥
(︂
akiki

− r+
ki

)︂ (︂
akjkj

− r+
kj

)︂
>

>

⎛⎜⎜⎝ n∑︂
m=1
m ̸=ki

(︂
r+
ki

− akim

)︂⎞⎟⎟⎠
⎛⎜⎜⎝ n∑︂
m=1
m ̸=kj

(︂
r+
kj

− akjm

)︂⎞⎟⎟⎠ ≥

≥

⎛⎜⎜⎝ ∑︂
m∈S
m ̸=ki

(︂
r+
ki

− akim

)︂⎞⎟⎟⎠
⎛⎜⎜⎝ ∑︂
m∈S
m ̸=kj

(︂
r+
kj

− akjm

)︂⎞⎟⎟⎠ ≥

≥

⎛⎜⎜⎝ ˜︁n∑︂
m=1
m̸=i

(︂˜︁r+
i − ˜︁aim)︂

⎞⎟⎟⎠
⎛⎜⎜⎝ ˜︁n∑︂
m=1
m ̸=j

(︂˜︁r+
j − ˜︁ajm)︂

⎞⎟⎟⎠
The third, strict inequality comes from A being a doubly B-matrix.

⊠

Proposition 2.24. A sum of two doubly B-matrices is not necessarily a doubly
B-matrix.

Proof. Let

A =
(︄

1 −2
0 1

)︄
and B =

(︄
1 0

−2 1

)︄
.

It is easy to check that these two matrices are doubly B- matrices. But their sum,
which is

A+B =
(︄

2 −2
−2 2

)︄
,

is not a doubly B-matrix, because it is singular and so, as stated in Remark 2.18,
cannot be one.

⊠

Proposition 2.25. A matrix product of two doubly B-matrices is not necessarily
a doubly B-matrix.

Proof. Let

A =
(︄

1 1
4

−1
4 1

)︄
and B =

(︄
1 0
0 4

)︄
.

It can be easily seen that both A and B are B-matrices, therefore also a doubly
B-matrices, as shown in Proposition 2.15. Nevertheless their product, which is

AB =
(︄

1 1
−1

4 4

)︄
,

is not a doubly B-matrix, because of the first row, which violates condition a)
from the Definition 2.14.

⊠
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Proposition 2.26. An inverse of a doubly B-matrix is not necessarily a doubly
B-matrix.
Proof. Let

A =
(︄

1 −2
−1

3 1

)︄
.

It can be easily seen that A indeed is a doubly B-matrix. However its inverse,
which is

A−1 =
(︄

3 6
1 3

)︄
,

is not a doubly B-matrix, once again because the first row violates condition a)
from the Definition 2.14.

⊠

Proposition 2.27. A power of a doubly B-matrix is not necessarily a doubly
B-matrix.
Proof. Let

A =

⎛⎜⎝1 1
2

1
2

0 1 1
2

0 0 1

⎞⎟⎠ .
It can be easily seen that A is a B-matrix, therefore also a doubly B-matrix,
as shown in Proposition 2.15. But its second power, which is

A2 =

⎛⎜⎝1 1 5
4

0 1 1
0 0 1

⎞⎟⎠ ,
is not a doubly B-matrix, because of the first row, which violates the a) condition
from the Definition 2.14.

⊠

2.3 BR
π -matrices

In this section we shall introduce real BR
π -matrices as defined in [11]. Subsection

2.3.1 will show us a characterization of BR
π -matrices, in subsection 2.3.2 we shall

inspect some for us interesting properties and in subsection 2.3.3 we will focus
on the closure properties of BR

π -matrices.
Definition 2.28 (BR

π -matrix). Let A ∈ Rn×n, let π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤

1 and let R ∈ Rn be a vector formed by the row sums of A (hence ∀i ∈ [n] : Ri =∑︁n
j=1 aij). Then we say that A is a BR

π -matrix, if ∀i ∈ [n] :

a) Ri > 0
b) ∀k ∈ [n] \ {i} : πk ·Ri > aik

Remark 2.29. We can observe that for π =
(︂

1
n
, . . . , 1

n

)︂T
the previous definition

gives us B-matrices, thus, just as the doubly B-matrices, the BR
π -matrices are

in a certain sense a generalization of the class of B-matrices.
Now that we established a relation between B- and BR

π -matrices, we might
want to do the same for BR

π - and doubly B-matrices. But for that we might need
a characterization stated in Proposition 2.30.

12



2.3.1 Characterizations
The following proposition is stated and proved in [11] as Observation 3.2, yet it
shows us a characterization of which matrices A ∈ Rn×n are BR

π -matrices for some
π and its proof shows us a way to find such a π ∈ Rn, thus we will state both.

Proposition 2.30. Let A ∈ Rn×n be a square matrix with positive row sums
and let R ∈ Rn be a vector formed by the row sums of A (hence ∀i ∈ [n] : Ri =∑︁n
j=1 aij > 0). Then there exists a vector π ∈ Rn satisfying 0 < ∑︁n

j=1 πj ≤ 1 such
that A is a BR

π -matrix if and only if
n∑︂
j=1

max
{︃
aij
Ri

⃓⃓⃓⃓
i ̸= j

}︃
< 1.

Proof. ”⇒”: A is a BR
π -matrix for some π satisfying the property, hence ∀j ∈

[n] : max
{︂
aij

Ri

⃓⃓⃓
i ̸= j

}︂
< πj. But then

n∑︂
j=1

max
{︃
aij
Ri

⃓⃓⃓⃓
i ̸= j

}︃
<

n∑︂
j=1

πj ≤ 1.

”⇐”: Let
ϵ = 1 −

n∑︂
j=1

max
{︃
aij
Ri

⃓⃓⃓⃓
i ̸= j

}︃
> 0

and for every j ∈ [n] set the πj = max
{︂
aij

Ri

⃓⃓⃓
i ̸= j

}︂
+ ϵ

n
. Then A is a BR

π -matrix.
⊠

Remark 2.31. As shown in the proof, if for any matrix A ∈ Rn×n the condition
from the Proposition 2.30 is satisfied, then we can construct a vector π ∈ Rn

satisfying 0 < ∑︁n
j=1 πj ≤ 1 such that A is a BR

π -matrix in the following manner:

1) We define ϵ ∈ R as

ϵ = 1 −
n∑︂
j=1

max
{︃
aij
Ri

⃓⃓⃓⃓
i ̸= j

}︃

and then

2) for every j ∈ [n] we define πj as

πj = max
{︃
aij
Ri

⃓⃓⃓⃓
i ̸= j

}︃
+ ϵ

n
.

Of course instead of ϵ
n

in the second step we can use any constant 0 < c ≤ ϵ
n
,

or we might use a vector ξ ∈ R+n such that 0 < ∑︁n
j=1 ξj ≤ ϵ and define πj as

πj = max
{︃
aij
Ri

⃓⃓⃓⃓
i ̸= j

}︃
+ ξj.

(It is easy to verify that this holds from Definition 2.28, because thus defined
π meets condition b) for the above mentioned definition and also satisfies that
0 < ∑︁n

j=1 πj ≤ 1.)
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Now let us return and show the relation of BR
π -matrices to the class of doubly

B-matrices.
Remark 2.32. BR

π -matrices and doubly B-matrices are two distinct classes of ma-
trices, even though with nonempty intersection (at least B-matrices are in the in-
tersection). Let us show the following two examples of why this holds:
Example. Doubly B-matrix, that is not a BR

π -matrix:(︄
1 −2
0 1

)︄

(It does not have positive row sum of the first row, and therefore it cannot be
a BR

π -matrix.)
Example. BR

π -matrix, that is not a doubly B-matrix:(︄
1 1
0 1

)︄

(It fulfills the Definition 2.28 for π = (1
3 ,

2
3)T , hence is a BR

π -matrix, but it is not
a doubly B-matrix, because it does not fulfill the condition a) from Definition
2.14, which is that ∀i ∈ [n] : aii > max{0, aij|j ̸= i}.)

2.3.2 Fundamental properties
The following proposition is stated in [12] as Theorem 1. Nevertheless it holds
importance to the essence of this thesis, so we will introduce it here too:

Proposition 2.33. BR
π -matrices with π ≥ 0 are P-matrices as well.

Remark 2.34. We can show an example of BR
π -matrix with some πi < 0, which is

not a BR
ψ -matrix for any ψ > 0. (To verify this fact, reader may use the properties

of BR
π -matrices stated in the next proposition, more precisely part 1).)

Example.

A =
(︄

3
2 −1
2 −1

2

)︄

It is easy to check that A is a BR
π -matrix for π = (2,−1)T . (And, for interest, is

clearly not a P-matrix nor doubly B-matrix.)
Ergo for the purpose of this thesis, we are interested only in such BR

π -matrices
that have π ≥ 0. What does it mean for example for Proposition 2.30? Almost
nothing, just that not only do we have to calculate the characterization, but we
also have to check, which exact π is the certificate of the matrix being a BR

π -matrix
(as shown in Remark 2.31). Even though we will continue to state and prove
the results for general π, from now on in places where it will seem to be needed
we will state how is the given result related to the subclass of BR

π -matrices with
π ≥ 0.

The next proposition and its corollary, which are stated and proved in [13]
as Proposition 2.1 and Corollary 2.2, show us some properties that relates entries
of π with that of a corresponding BR

π -matrix.

14



Proposition 2.35. Let π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤ 1 and let A ∈ Rn×n be

a BR
π -matrix, where R ∈ Rn is the vector of row sums of A. Then the following

holds:

1) ∀i ∈ [n] : aii > πi ·Ri,

2) ∀i, j ∈ [n], j ̸= i : πi ≥ πj ⇒ aii > aij,

3) let k = argmax{πi | i ∈ [n] }, then ∀j ̸= k : akk > akj and

4) ∀i, j ∈ [n], j ̸= i : πj ≤ 0 ⇒ aij < 0.

Corollary 2.36. Let π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤ 1 with π1 = . . . = πn = r

and let A ∈ Rn×n be a BR
π -matrix, where R ∈ Rn is the vector of row sums of A.

Then the following holds:

1) ∀i, j ∈ [n], j ̸= i : aii > aij and

2) trA > r ·
n∑︁
i=1

Ri.

The following result was shown alongside its proof in [13] as Theorem 2.3.

Proposition 2.37. Let A ∈ Rn×n be a Z-matrix and let π ∈ R+n such that
0 < ∑︁n

j=1 πj ≤ 1. Then the following is equivalent:

1) A is a BR
π -matrix,

2) the row sums of A are positive,

3) A is strictly diagonally dominant by row with positive diagonal entries and

4) A is a B-matrix.

The next two propositions were again introduced and proved in [13] as Propo-
sition 2.5 and 2.6, respectively.

Proposition 2.38. Let π ∈ Rn such that 0 <
∑︁n
j=1 πj ≤ 1 and let A ∈ Rn×n

be a BR
π -matrix. If α ∈ Rn such that 0 <

∑︁n
j=1 αj ≤ 1 and α ≥ π, then A is

a BR
α -matrix.

Proposition 2.39. Let P = perm(i1, . . . , in), where i1, . . . , in = [n] be the per-
mutation matrix of order n defined by

P = (pm1m2); pm1m2 =
{︄

1 if m2 = im1 ,
0 otherwise.

Let π ∈ Rn such that 0 <
∑︁n
j=1 πj ≤ 1 and let A ∈ Rn×n be a BR

π -matrix. Let
α = (πi1 , . . . , πin)T . Then PAP T is a BR′

α -matrix.

15



2.3.3 Closure properties
In this section we will inspect what closure properties the BR

π -matrices posses.
And because in this thesis we are interested in P-matrices, we will try to show
eventual counterexamples from the subclass of BR

π -matrices for π ≥ 0.
The following closure properties are shown and proved in [13] as Theorem 2.7,

Corollaries 2.8 and 2.9 and Proposition 2.12.

Proposition 2.40. Let α, β ∈ Rn such that 0 < ∑︁n
j=1 αj ≤ 1 and 0 < ∑︁n

j=1 βj ≤
1 and let π ∈ Rn defined by ∀i ∈ [n] : πi = max{αi, βi}. Let A,B ∈ Rn×n

be a BR
α -matrix and a BQ

β -matrix, respectively. If ∑︁n
j=1 πj ≤ 1, then A + B is

a BR+Q
π -matrix.

Remark 2.41. We can see that for α, β ≥ 0, we again get π ≥ 0, therefore even
the subclass of BR

π -matrices for π ≥ 0 is closed in the same manner as above.

Corollary 2.42. Let π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤ 1 and let A,B ∈ Rn×n be

a BR
π -matrix and a BQ

π -matrix. Then A+B is a BR+Q
π -matrix.

Corollary 2.43. Let π ∈ Rn such that 0 <
∑︁n
j=1 πj ≤ 1 and let s, t ∈ R+

0
with s + t > 0. Let A,B ∈ Rn×n be a BR

π -matrix and a BQ
π -matrix, respectively.

Then s · A+ t ·B is a BsR+tQ
π -matrix.

Proposition 2.44. Let π ∈ Rn such that 0 <
∑︁n
j=1 πj ≤ 1 and let A ∈ Rn×n

be a BR
π -matrix. Let D ∈ Rn×n be a positive diagonal matrix. Then D · A is

a BR′
π -matrix.

The next corollary can be derived from multiple previous statements, more
precisely from Corollary 2.43 and Proposition 2.44

Corollary 2.45. Let α ∈ R+, π ∈ Rn such that 0 <
∑︁n
j=1 πj ≤ 1 and let

A ∈ Rn×n be a BR
π -matrix. Then α · A is a BαR

π -matrix.

Now what about other operations:

Proposition 2.46. An inverse of a BR
π -matrix is not necessarily a BR

ψ -matrix
for any ψ.

Proof. Let

A =

⎛⎜⎝1 1
2

1
2

0 1 0
0 0 1

⎞⎟⎠ .
It can be easily seen that A indeed is a BR

π -matrix (it satisfies Proposition 2.30),
its π might be, for example, (1

6 ,
5
12 ,

5
12)T . However its inverse, which is

A−1 =

⎛⎜⎝1 −1
2 −1

2
0 1 0
0 0 1

⎞⎟⎠ ,
is not a BR

ψ -matrix for any ψ, because of the first row, which violates the a) con-
dition from Definition 2.28.

⊠
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Proposition 2.47. A power of a BR
π -matrix is not necessarily a BR

ψ -matrix
for any psi.

Proof. Let

A =
(︄

1 −1
2

0 1

)︄
.

It can be easily seen that A indeed is a BR
π -matrix for example for π = (1

2 ,
1
2)T .

But its second power, which is

A2 =
(︄

1 −1
0 1

)︄
,

is not a BR
ψ -matrix for any ψ, because of the first row, which violates the a) con-

dition from Definition 2.28.
⊠

Corollary 2.48. A matrix product of two BR
π -matrices does not have to neces-

sarily be a BR
ψ -matrix for any ψ.

Corollary 2.49. A matrix product of a BR
π -matrix and a BR

ψ -matrix is not nec-
essarily a BR

φ -matrix for any φ.
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3. Interval B-matrices
In this chapter we will generalize B-matrices into interval B-matrices. In section
3.1 we shall introduce some characterizations, whereas in section 3.2 we will
try to derive necessary conditions and sufficient ones to help us recognize this
matrix class even more efficiently. And in section 3.3 we will take a closer look
at which operations are the interval B-matrices closed under.

Definition 3.1 (interval B-matrix). Let A ∈ IRn×n. Then we say that A is
an interval B-matrix, if ∀A ∈ A: A is a (real) B-matrix.

Remark 3.2. Because for every interval B-matrix A holds that ∀A ∈ A: A is
a B-matrix, thus even matrix A′, defined as

A′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n

... ... . . . ...

a(n−1)1 · · · a(n−1)(n−1) a(n−1)n
an1 · · · an(n−1) ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

is a B-matrix, thus it must hold (from Remark 2.2) that

∀i ∈ [n] : aii > max{0, aij|j ̸= i}.

Next we should mention a simple corollary of Proposition 2.5 and our defini-
tion:

Corollary 3.3. Every interval B-matrix is an interval P-matrix.

Proof. It holds for every instance, hence it holds for whole interval matrix.
(Every instance is P-matrix by Proposition 2.5 and that is exactly the defini-

tion of interval P-matrix.)
⊠

Corollary 3.4. Let us have two interval B-matrices A,B ∈ Rn×n and let C ∈
Rn×n matrix which satisfies the following:

∀i ∈ [n] : Ci∗ = Ai∗ ∨ Ci∗ = Bi∗

Then C is an interval B-matrix.

Proof. From Definition 3.1 and from Corollary 2.7 we can see that it holds for ev-
ery instance, thus it holds for whole interval matrix. ⊠
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3.1 Characterizations
Let us start with stating a few characterizations to help us with recognition
of interval B-matrices in finite time. Thereafter in subsection 3.1.1 we will try
to derive a characterization through reduction of Definition 3.1 to finite number
of instances to check for the property of being a B-matrix.

Theorem 3.5. Let A ∈ IRn×n. Then A is an interval B-matrix if and only if
∀i ∈ [n] the following two properties hold:

a)
n∑︂
j=1

aij > 0

b) ∀k ∈ [n] \ {i} :
∑︂
j ̸=k

aij > (n− 1) · aik

Proof. The most important thing, we need for the following proof, is to realize
that for every interval [α, α] and every α ∈ [α, α] the following applies: α ≤ α ≤ α.

As shown in Definition 2.1, square real matrix A is a B-matrix, if for its every
row i holds that the row sums are positive (marked as condition a)) and every
non-diagonal element of the ith row is bounded above by the corresponding row
mean (b) condition).

The a) condition is surely satisfied ∀A ∈ A, because of the a) condition of
Proposition, whereas the a) condition of Proposition always holds true for an in-
terval B-matrix A because A ∈ A, thus A is a B-matrix and fulfills the condition
a) of Definition 2.1

Now let’s take a look at conditions b). The b) condition of the Definition 2.1
can be for every k ̸= i rewritten as follows:

1
n

n∑︂
j=1

aij > aik ⇔

⇔
n∑︂
j=1

aij > naik ⇔

⇔
∑︂
j ̸=k

aij > (n− 1) · aik

In the last inequality, we can see there is no element twice. Consequently, if we use
intervals in this inequality, by substitution (of specific values from the intervals)
we obtain exact values, not a superset. So now we can see that the condition b)
of real case applies for every A ∈ A iff it holds for aij on the left side and aik
on the right side, which is exactly the b) condition of Proposition.

⊠

Remark 3.6. This characterization has time complexity O(n2), which is the same
as the time complexity of the characterization for real case from Definition 2.1.
(And even though there are characterizations like the one in Proposition 2.3,
which might seem to have O(n) complexity, it is vital to realize that for every
i ∈ [n] we have to compute sum of n elements, therefore the complexity is O(n2)
as well.)

Corollary 3.7. Let A ∈ IRn×n. Then A is an interval B-matix iff A with the di-
agonal fixed on lower bounds (aii = aii) is an interval B-matrix.
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Proof. In the characterization given in Theorem 3.5 we see that every time any aii
occures, it occures in form of aii, hence we are not interested in any other value
of aii. (So the reduced matrix has to fulfill exactly the same conditions as the ma-
trix A)

⊠

Corollary 3.8. Let A ∈ IRn×n and let

S =
{︂
(i, j) | i, j ∈ [n] : ∃k ∈ [n] \ {i, j} : aij ≤ aik ∧ aij ≤ aik

}︂
.

We have that A is an interval B-matix iff A with every element, whose indices
are in S, set to its lower bound (∀(i, j) ∈ S : aij = aij) is an interval B-matrix.

Proof. The only time, when for every i and j ̸= i the aij occures in Theorem 3.5,
is the b) condition. Let us show that in the case that (i, j) ∈ S this condition is
not necessary and is substituted by one of the others.

Let (i, j) ∈ S arbitrary and let k ∈ [n] \ {i} : aij ≤ aik ∧ aij ≤ aik.
Because (i, j) ∈ S, then surely such k exists. Then:∑︂

m ̸=j
aim ≥

∑︂
m ̸=k

aim > (n− 1) · aik ≥ (n− 1) · aij

First inequality is obtained from aij ≤ aik and the third from aij ≤ aik. The sec-
ond one holds, if condition b) holds for (i, k), so we see that if the condition holds
for (i, k), then it holds for (i, j) as well. Thus the implication ”⇐” holds.

The second implication is trivial, because A is a superset of the reduced
matrix.

⊠

Although the next corollary is obtained rather straightforwardly from the pre-
vious proposition, we will state it, as it will prove to be a useful step in the deriva-
tion of characterization of interval B-matrices that will help us clarify the relation
between interval B- and doubly B-matrices.

Corollary 3.9. Let A ∈ IRn×n. Then A is an interval B-matrix if and only if
∀i ∈ [n] the following holds:

∀k ∈ [n] \ {i} :
n∑︂
j=1

aij > max{0, (n− 1) · aik + aik}

Proof. ”⇒”
A is interval B-matrix, so A satisfies both conditions from Theorem 3.5.

Thus for arbitrary k ̸= i: ∑︂
j ̸=k

aij > (n− 1) · aik ⇔

⇔
n∑︂
j=1

aij > (n− 1) · aik + aik

And combined with condition a) from Theorem 3.5 we get that this implication
clearly holds.

”⇐”
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We will show that if matrix fulfills condition stated in this corollary, then it
fulfills the conditions of Theorem 3.5 as well.

The condition a) holds trivially.
b) condition:

∀k ̸= i :
n∑︂
j=1

aij > max{0, (n− 1) · aik + aik} ≥ (n− 1) · aik + aik

⇒ ∑︂
j ̸=k

aij > (n− 1) · aik

So the b) condition holds too.
Thus this implication also holds.

⊠

By realignment of the previous corollary, we get subsequent one.

Corollary 3.10. Let A ∈ IRn×n. Then A is an interval B-matrix if and only if
∀i ∈ [n] the following holds:

a)
n∑︂
j=1

aij > 0

b) ∀k ∈ [n] \ {i} : aii − aik >
∑︂
j ̸=i

(︂
aik − aij

)︂
Proof. Obtained by realignment of inequalities from Corollary 3.9.

⊠

Or we might realign it in a different way and obtain our future connection
to interval doubly B-matrices.

Corollary 3.11. Let A ∈ IRn×n. Then A is an interval B-matrix if and only if
∀i ∈ [n] the following holds:

a)
n∑︂
j=1

aij > 0

b) ∀k ∈ [n] \ {i} : aii − aik >
∑︂
j ̸=i
j ̸=k

(︂
aik − aij

)︂

Proof. Obtained by realignment of inequalities from Corollary 3.9.
⊠

3.1.1 Characterization through reduction
Proposition 3.12. Let A ∈ IRn×n and let Ai be matrices defined as follows:

Ai = (am1m2); am1m2 =
{︄
am1m2 if m1 ̸= i,m2 = i,
am1m2 otherwise.

Then A is interval B-matrix if and only if ∀i ∈ [n] : Ai is a B-matrix.
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Proof. ”⇒” This holds trivially, because ∀i ∈ [n] : Ai ∈ A
”⇐”
a)∀i ∈ [n] : ∑︁n

j=1 aij > 0, because Ai is a B-matrix and (Ai)i,∗ = (A)i,∗, thus
the row sums of A are positive.

b)∀i ∈ [n] ∀k ̸= i : Ak is a B-matrix ⇒ (From Proposition 2.3:)

aik +
∑︂
j ̸=k

aij =
n∑︂
j=1

(Ak)ij > n · r+
i ≥ n · (Ak)ik = n · aik

⇒ ∑︂
j ̸=k

aij > (n− 1) · aik

⇒ A fulfills the conditions of Theorem 3.5 ⇒ A is an interval B-matrix.
⊠

Proposition 3.13. The characterization of interval B-matrices through reduction
given by Proposition 3.12 is minimal in inclusion.

Proof. If we ditched any Ai for arbitrary i ∈ [n], then we can construct a coun-
terexample, e.g. a unit matrix with interval [0, 1] on position (j, i) for arbitrary
j ̸= i. Then ∀k ̸= i : Ak = In, which surely is a B-matrix, but Ai does not fulfill
b) condition from Definition 2.1 in jth row. (Sum of the jth row is equal to 2, so
we get 2/n > 1 = (Ai)ji, which does not hold for n ≥ 2.)

⊠

Remark 3.14. This reduction reduces the problem of verifying, whether any given
interval matrix is an interval doubly B-matrix, into testing n matrices, whether
they are real doubly B-matrices.

3.2 Necessary or sufficient conditions
Here in this section we will derive a few necessary or sufficient conditions that
might help us with even quicker recognition of a class of interval B-matrices.

First, we will introduce a simple consequence of Remark 3.2:

Corollary 3.15. Let A ∈ IRn×n. We have that A is an interval B-matrix only
if ∀i ∈ [n] : aii > max{0, aij|j ̸= i}.

Theorem 3.16. Let A ∈ IRn×n be an interval Z-matrix. Then the following is
equivalent:

1) A is an interval B-matrix,

2) ∀i ∈ [n] :
n∑︁
j=1

aij > 0,

3) ∀i ∈ [n] : aii >
∑︁
j ̸=i

|aij|.

4) A is a B-matrix.
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Proof. ”1) ⇒ 2)”: From Theorem 3.5
”2) ⇔ 3) ⇔ 4)”: From Proposition 2.8.
”3) ⇒ 1)”: ∀A ∈ A : ∀i ∈ [n] :

aii ≥ aii ∧ ∀j ∈ [n] \ {i} : |aij| ≤ |aij|
⇒

aii ≥ aii >
∑︂
j ̸=i

|aij| ≥
∑︂
j ̸=i

|aij| ≥ 0

⇒
A is strictly diagonally dominant with positive diagonal. Thus, according

to Proposition 2.8, A is a B-matrix.
And because that applies ∀A ∈ A ⇒ A is an interval B-matrix.

⊠

The following results hold both, an information about some properties of in-
terval B-matrices, as well as a necessary condition for B-matrices.
Proposition 3.17. Let A ∈ IRn×n be an interval B-matrix. Then ∀i ∈ [n]
the following two properties hold:

1) aii >
∑︁
j∈S |aij|, where S = {j ∈ [n] | aij < 0} and

2) ∀j ∈ [n] \ {i} : aii > max{|aij|, |aij|}.
Proof. 1) Let us distinguish the following two cases for arbitrary i ∈ [n]:

I. ∀j ∈ [n] \ {i} : aij ≤ 0
Then it follows directly from Theorem 3.5, condition a). (Because it
holds that ∀j ∈ [n] \ {i} : −aij = |aij|.)

II. ∃j ∈ [n] \ {i} : aij > 0
Let us take k ∈ argmax

{︂
aij|j ̸= i

}︂
. Then, according to Corollary 3.10,

the following applies:
aii − aik >

∑︂
j ̸=i

(︂
aik − aij

)︂
.

And because
aii > aii − aik ∧ ∀j ̸= i : aik − aij ≥ 0

(because of the presumption of this case and definition of k), then

aii > aii − aik >
∑︂
j ̸=i

(︂
aik − aij

)︂
≥
∑︂
j∈S

(︂
aik − aij

)︂
>
∑︂
j∈S

−aij =
∑︂
j∈S

|aij|.

2) For arbitrary j ̸= i, let us distinguish two cases:

I. |aij| ≥ |aij|
⇒ aij ≤ 0, thus from property 1. of this proposition:

aii >
∑︂
k∈S

|aik| ≥ |aij|,

because j ∈ S.

II. |aij| > |aij|
⇒ aij > 0, thus from Remark 3.2 ⇒ aii > aij = |aij|.

⊠
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3.3 Closure properties
In this section, we shall expand our understanding of what operations the class
of B-matrices is closed under into interval environment, plus we will add how it
is with multiplication of B-matrix by positive interval.

So let us start with an extension of facts already known from section 2.1.3:

Corollary 3.18. Interval B-matrices are closed under following operations:

1) matrix addition,

2) multiplication by positive scalar and

3) matrix multiplication from the left by a real positive diagonal matrix.

Also it holds that for interval B-matrices, their principal submatrices are interval
B-matrices as well.

Proof. All four properties of interval B-matrices come directly from Proposition
2.9 and Definition 3.1. For example we will show the proof of closure under matrix
addition, the rest is analogous:

Let A,B ∈ IRn×n be interval B-matrices. Then ∀A ∈ A,∀B ∈ B : A + B is
B-matrix, by Proposition 2.9. Therefore A + B is an interval B-matrix.

⊠

Remark 3.19. Because the real B-matrices are not closed under the following
operations (see Propositions 2.11, 2.12 and 2.13), then surely even interval B-
matrices are in general not closed under them. Such operations are:

• matrix product,

• matrix inverse and

• matrix power.

Now, that we have dealt with the legacy of real B-matrices, comes time
for the interesting part, which is a behaviour of a multiplication of B-matrices
by intervals.
Remark 3.20. As direct corollary of Remark 2.10, we can see that multiplying
by an interval containing non-positive number can not be an operation that in-
terval B-matrices might be closed under.

Proposition 3.21. Interval B-matrices are in general not closed under multipli-
cation by positive interval.

Proof. Let

A =
(︄

2 1
1 2

)︄
and α = [1, 2]. It is easy to verify that such A is an interval B-matrix. But matrix

α · A =
(︄

[2, 4] [1, 2]
[1, 2] [2, 4]

)︄
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contains a (singular) non-B-matrix instance, namely matrix(︄
2 2
2 2

)︄
.

⊠

Well that was rather anticlimactic. But let us try to derive some conditions,
under which B-matrices, or rather interval B-matrices will be closed under a pos-
itive interval multiplication.

Lemma 3.22. Let A ∈ IRn×n be an interval B-matrix and α ∈ IR+ be an inter-
val, such that:

1) ∀i ∈ [n] :
α ·

∑︂
j:aij>0

aij > α ·
∑︂

j:aij<0
−aij

and

2) ∀i ∈ [n] ∀k ∈ [n] \ {i} :

α ·
∑︂

j:aij>0
j ̸=k

aij + α ·
∑︂

j:aij<0
j ̸=k

aij >

{︄
α · (n− 1) · aik if aik > 0,
α · (n− 1) · aik otherwise.

Then matrix α · A is also an interval B-matrix.

Proof. We can observe that the first condition can be rewritten as
n∑︂
j=1

(α · A)
ij
> 0

and the second one as ∑︂
j ̸=k

(α · A)
ij
> (n− 1) · (α · A)ik.

Consequently, interval fulfills exactly those conditions, thanks to which α · A
still meets the characterization shown in Theorem 3.5.

⊠

Lemma 3.23. Let A ∈ IRn×n be an interval B-matrix and α ∈ IR+ be an inter-
val, such that:

1) ∀i ∈ [n] :
α ·

∑︂
j:aij>0

aij > α ·
∑︂

j:aij<0
−aij

and

2) ∀i ∈ [n] ∀k ∈ [n] \ {i} :

aik > 0 ⇒ α ·
∑︂

j:aij>0
j ̸=k

aij + α ·
∑︂

j:aij<0
j ̸=k

aij > α · (n− 1) · aik.
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Then matrix α · A is also an interval B-matrix.
Proof. We will prove this lemma by showing that its conditions are equivalent
to those stated in Lemma 3.22. Then if for a given interval B-matrix an in-
terval fulfills the condition of this lemma, we know that it fulfills the condition
of the previous lemma as well, so we know that the interval times the matrix is
an interval B-matrix.

What we can observe is that the conditions in this lemma are subset of con-
ditions from Lemma 3.22. So let us see, what is different:

The first condition of this lemma is the same as in the previous case, so that
one is trivial. Now for the second one. If aik > 0, then the condition is again
the same. If aik ≤ 0, then necessarily even aik ≤ 0. In addition, let us WLOG
assume that the first condition holds. (Otherwise it is unnecessary to check
the second one...) Then:

α ·
∑︂

j:aij>0
j ̸=k

aij + α ·
∑︂

j:aij<0
j ̸=k

aij ≥

≥ α ·
∑︂

j:aij>0
aij + α ·

∑︂
j:aij<0

aij >

> 0 ≥ α · (n− 1) · aik
The first inequality holds, because we are adding a non-positive number to the left
side. The second inequality holds because of the first condition of this lemma
and the last one is a result of aik ≤ 0 and α being positive.

Thus α implicitly meets even the last condition from Lemma 3.22.
Therefore, from the above mentioned lemma, α · A is an interval B-matrix.

⊠

Proposition 3.24. Let A ∈ IRn×n be an interval B-matrix and α ∈ IR+ be
an interval, such that:

α/α > max

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

∑︁
j:aij<0

−aij∑︁
j:aij>0

aij

⃓⃓⃓⃓
⃓⃓⃓⃓ i ∈ [n]

⎫⎪⎪⎬⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︁
j:aij<0
j ̸=k

−aij + (n− 1) · aik

∑︁
j:aij>0
j ̸=k

aij

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓ i ∈ [n], k ∈ [n] \ {i} : aik > 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎠ .

Then matrix α · A is also an interval B-matrix.
Proof. The condition is obtained by rearranging and grouping of the conditions
from Lemma 3.23. (Because for interval B-matrix always holds that ∀i ∈ [n] :
aii > 0, then ∀i ∈ [n] :∑︂

j:aij>0
aij ≥

∑︂
j:aij>0
j ̸=k

aij ≥ aii > 0.

Thus the expressions in the definitions of the sets are correct, because we never
divide by zero.)

⊠
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Now Proposition 3.24 gives us for every interval B-matrix a ratio of boundaries
of interval, which, if it is sufficed by any given interval, guarantees that the interval
B-matrix multiplied by the interval is still an interval B-matrix. That may come
in handy, if we have one of the boundaries given, respectively fixed, and want
to found an interval, which we can multiply given interval B-matrix by, while still
remaining in space of interval B-matrices.

Next we shall show a second approach to the problem: We have a given
(positive) center of the interval and for a given matrix want to find out the possible
width of the interval.

Lemma 3.25. Let A ∈ IRn×n be an interval B-matrix and α =
[︂
αC ± α∆

]︂
∈

IR+, such that:

1) ∀i ∈ [n] :

αC ·
n∑︂
j=1

aij > α∆ ·
n∑︂
j=1

|aij|

and

2) ∀i ∈ [n] : ∀k ∈ [n] \ {i} :

αC ·

⎛⎝∑︂
j ̸=k

aij − (n− 1) · aik

⎞⎠ > α∆ ·

⎛⎝∑︂
j ̸=k

|aij| + (n− 1) · |aik|

⎞⎠ .
Then matrix α · A is also an interval B-matrix.

Proof. In the proof we just need to realize the following fact: ∀β ∈ R : β ·[︂
γC ± γ∆

]︂
= [β · γC ± |β| · γ∆]

Now if we count in Theorem 3.5, we get our conditions. Because if we want
the a) condition of Theorem 3.5 to hold for α · A, then our first condition must
hold. (Because (α · A)

ij
=
(︂
α · aij

)︂
= αC · aij − α∆ · |aij|.)

Analogically, if the b) condition should hold, then our second condition have
to hold. ((α · A)

ij
= αC · aij − α∆ · |aij| ∧ (α · A)ik = αC · aik + α∆ · |aik|.)

⊠

Proposition 3.26. Let A ∈ IRn×n be an interval B-matrix and α =
[︂
αC ± α∆

]︂
∈

IR+, such that:

α∆ < min

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
αC ·

n∑︁
j=1

aij

n∑︁
j=1

|aij|

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ i ∈ [n]

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αC ·

(︄∑︁
j ̸=k

aij − (n− 1) · aik
)︄

∑︁
j ̸=k

|aij| + (n− 1) · |aik|

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ i ∈ [n], k ∈ [n] \ {i}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎠ .

Then matrix α · A is also an interval B-matrix.

27



Proof. Obtained by rearranging and grouping of conditions from Lemma 3.25.
(Because for interval B-matrix always holds that ∀i ∈ [n] : aii > 0, then ∀i ∈ [n] :

n∑︂
j=1

|aij| ≥
∑︂
j ̸=k

|aij| ≥ |aii| > 0.

Thus the expressions in the definitions of the sets are correct, because we never
divide by zero.)

⊠

Now we have shown how to ensure, that after multiplication of a B-matrix
by positive interval, we still have a B-matrix. Next we will show that something
similar applies to multiplying just one row of the matrix by an interval. For that
we shall use the previous propositions as well as Corollary 3.4.

Proposition 3.27. Let A ∈ IRn×n be an interval B-matrix, i ∈ [n] and α ∈ IR+

be an interval, such that:

α/α > max

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩

∑︁
j:aij<0

−aij∑︁
j:aij>0

aij

⎫⎪⎪⎬⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑︁
j:aij<0
j ̸=k

−aij + (n− 1) · aik

∑︁
j:aij>0
j ̸=k

aij

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓ k ∈ [n] \ {i} : aik > 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎠ .

Let A(α, i) be defined as follows:

A(α, i)i∗ = α · Ai∗ ∧ ∀j ∈ [n] \ {i} : A(α, i)j∗ = Aj∗

Then A(α, i) is also an interval B-matrix.

Proof. Let us define I(Ai∗, i) as follows:

I(Ai∗, i)i∗ = Ai∗ ∧ ∀j ∈ [n] \ {i} : I(Ai∗, i)j∗ = (In)j∗

Surely I(Ai∗, i) is an interval B-matrix. (It is trivial to verify that In is a B-matrix
and because A is an interval B-matrix from assumtion, then from Corollary 3.4
it follows that I(Ai∗, i) is an interval B-matrix too.)

Now let us take a look at what the conditions from Proposition 3.24 on interval
α and matrix I(Ai∗, i) are:

α/α > max

⎛⎜⎜⎝
⎧⎪⎪⎨⎪⎪⎩0,

∑︁
j:aij<0

−aij∑︁
j:aij>0

aij

⎫⎪⎪⎬⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0,

∑︁
j:aij<0
j ̸=k

−aij + (n− 1) · aik

∑︁
j:aij>0
j ̸=k

aij

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓ k ∈ [n] \ {i} : aik > 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎟⎠ ,
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where the zeros in both sets are what we get for rows j ̸= i. We can observe
that the fact that our α fulfills the conditions from assumption is equivalent to α
fulfilling these conditions. (Among other things because α = [α, α] ∈ IR+, so
necessarily α ≥ α > 0) Thus α · I(Ai∗, i) is an interval B-matrix.

Now what remains is to realize that A(α, i)i∗ can be defined even as follows:

A(α, i)i∗ = (α · I(Ai∗, i))i∗ ∧ ∀j ∈ [n] \ {i} : A(α, i)j∗ = Aj∗,

hence it is combination (in the meaning of Corollary 3.4) of rows of the two
B-matrices, therefore it itself is an interval B-matrix.

⊠

Proposition 3.28. Let A ∈ IRn×n be an interval B-matrix, i ∈ [n] and α =[︂
αC ± α∆

]︂
∈ IR+ be an interval, such that:

α∆ < min

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩
αC ·

n∑︁
j=1

aij

n∑︁
j=1

|aij|

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αC ·

(︄∑︁
j ̸=k

aij − (n− 1) · aik
)︄

∑︁
j ̸=k

|aij| + (n− 1) · |aik|

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ k ∈ [n] \ {i}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎠ .

Let A(α, i) be defined as follows:

A(α, i)i∗ = α · Ai∗ ∧ ∀j ∈ [n] \ {i} : A(α, i)j∗ = Aj∗

Then A(α, i) is also an interval B-matrix.

Proof. Let us define I(Ai∗, i) as follows:

I(Ai∗, i)i∗ = Ai∗ ∧ ∀j ∈ [n] \ {i} : I(Ai∗, i)j∗ = (In)j∗

Surely I(Ai∗, i) is an interval B-matrix. (It is trivial to verify that In is a B-matrix
and because A is an interval B-matrix from assumtion, then from Corollary 3.4
it follows that I(Ai∗, i) is an interval B-matrix too.)

Now let us take a look at what are the conditions from Proposition 3.24
on interval α and matrix I(Ai∗, i):

α∆ < min

⎛⎜⎜⎜⎝
⎧⎪⎪⎪⎨⎪⎪⎪⎩α

C ,

αC ·
n∑︁
j=1

aij

n∑︁
j=1

|aij|

⎫⎪⎪⎪⎬⎪⎪⎪⎭

∪

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩α
C ,

αC ·
(︄∑︁
j ̸=k

aij − (n− 1) · aik
)︄

∑︁
j ̸=k

|aij| + (n− 1) · |aik|

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓ k ∈ [n] \ {i}

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

⎞⎟⎟⎟⎟⎠ ,

where the αC in both sets is what we get for rows j ̸= i. We can observe that
the fact that our α fulfills the conditions from assumption is equivalent to α
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fulfilling these conditions. (Among other things because α =
[︂
αC ± α∆

]︂
∈ IR+,

so necessarily α∆ < αC) Thus α · I(Ai∗, i) is an interval B-matrix.
Now what remains is to realize that A(α, i)i∗ can be defined even as follows:

A(α, i)i∗ = (α · I(Ai∗, i))i∗ ∧ ∀j ∈ [n] \ {i} : A(α, i)j∗ = Aj∗,

hence it is combination (in the meaning of Corollary 3.4) of rows of the two
B-matrices, therefore it itself is an interval B-matrix.

⊠
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4. Interval doubly B-matrices
In this chapter we shall generalize real doubly B-matrices into interval doubly
B-matrices. In section 4.1 we shall introduce some characterizations, whereas
in section 4.2 we will try to derive necessary conditions and sufficient ones to help
us recognize this matrix class even more efficiently. That comes quite handy here,
because the characterization of interval doubly B-matrices has time complexity
O(n4). And in section 4.3 we will take a closer look at which operations are the in-
terval doubly B-matrices closed under.

Definition 4.1 (interval doubly B-matrix). Let A ∈ IRn×n. Then we say that
A is an interval doubly B-matrix, if ∀A ∈ A: A is a (real) doubly B-matrix.

Corollary 4.2. Every interval doubly B-matrix is an interval P-matrix.

Proof. It holds for every instance, thus it holds for whole interval matrix.
(Every instance is P-matrix by Proposition 2.17 and that is exactly the defi-

nition of interval P-matrix.)
⊠

4.1 Characterizations
Let us start with introducing a characterization to help us recognize interval dou-
bly B-matrices in finite time. Thereafter in subsection 4.1.1 we will try to derive
a characterization through reduction of Definition 4.1 to finite number of instances
to check for the property of being a doubly B-matrix.

Theorem 4.3. Let A ∈ IRn×n. Then A is an interval doubly B-matrix if and
only if the following two properties holds:

a) ∀i ∈ [n] : aii > max{0, aij|j ̸= i} and

b) ∀i, j ∈ [n], j ̸= i,∀k, l ∈ [n], k ̸= i, l ̸= j :

I.
(︂
aii − aik

)︂(︂
ajj − ajl

)︂
>⎛⎜⎝max

⎧⎪⎨⎪⎩0, ∑︁
m ̸=i
m̸=k

(︂
aik − aim

)︂⎫⎪⎬⎪⎭
⎞⎟⎠
⎛⎜⎝max

⎧⎪⎨⎪⎩0, ∑︁
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂⎫⎪⎬⎪⎭
⎞⎟⎠

II. aii
(︂
ajj − ajl

)︂
>

(︄
max

{︄
0,− ∑︁

m̸=i
aim

}︄)︄⎛⎜⎝max

⎧⎪⎨⎪⎩0, ∑︁
m̸=j
m̸=l

(︂
ajl − ajm

)︂⎫⎪⎬⎪⎭
⎞⎟⎠

III. aii · ajj >
(︄

max
{︄

0,− ∑︁
m ̸=i

aim

}︄)︄(︄
max

{︄
0,− ∑︁

m̸=j
ajm

}︄)︄

Proof. Let us recall the Definition 2.14, which we will be using in this proof:
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Let A ∈ Rn×n. Then we know that A is a real doubly B-matrix, if ∀i ∈ [n]
the following holds:

a) aii > r+
i

b) ∀j ∈ [n] \ {i} :
(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

⎛⎝∑︂
k ̸=i

(︂
r+
i − aik

)︂⎞⎠⎛⎝∑︂
k ̸=j

(︂
r+
j − ajk

)︂⎞⎠
”⇒” ∀A ∈ A : A is (real) doubly B-matrix, hence:
Our ”interval” condition a) holds because of ”real” condition a) from Defini-

tion 2.14 for matrix A′ ∈ A with all diagonal elements set on their lower bounds
and all the off-diagonal elements set on their upper bounds.

As for ”interval” condition b) let us fix arbitrary i, j ∈ [n], j ̸= i, and arbitrary
k ̸= i, l ̸= j. Then:

I. Let A ∈ A, such that

am1m2 =

⎧⎪⎨⎪⎩
aik if (m1,m2) = (i, k),
ajl if (m1,m2) = (j, l),
am1m2 otherwise.

Then for this A :(︂
aii − aik

)︂(︂
ajj − ajl

)︂
≥

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
r+
j − ajm

)︂⎞⎠ ≥

≥

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=i
m ̸=k

(︂
aik − aim

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=j
m̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

The first inequality comes trivially from aik ≤ r+
i and analogically for j and l.

The second one is obtained from the fact that A is a doubly B-matrix (because
A ∈ A and A is an interval doubly B-matrix). The third and last inequality
is a direct result of the following facts: ∀m ̸= i : aim ≤ r+

i (from the definition
of r+

i ), so r+
i − aim ≥ 0, thus whole ∑︁m ̸=i

(︂
r+
i − aim

)︂
is non-negative. Another

fact is that what we drop from the sum, i.e. the ”k member”, is a non-negative
element of the sum. And finally r+

i ≥ aik = aik ∧ aim ≥ aik. Again, for j, l it is
analogous.

II. Let A ∈ A, such that

am1m2 =
{︄
ajl if (m1,m2) = (j, l),
am1m2 otherwise.

Then for this A :

aii
(︂
ajj − ajl

)︂
≥

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠ ≥

≥

⎛⎝max
⎧⎨⎩0,−

∑︂
m̸=i

aim

⎫⎬⎭
⎞⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
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The second inequality comes from the same fact as above, i.e. A is a doubly
B-matrix. And the last one holds as well because of similar reasons as above
plus because, in case of ”i part” of the expression, we drop n · r+

i , which is some
non-negative quantity.

III. Let A = A ∈ A. Then for this A :

aii · ajj ≥
(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠ ≥

≥

⎛⎝max
⎧⎨⎩0,−

∑︂
m̸=i

aim

⎫⎬⎭
⎞⎠⎛⎝max

⎧⎨⎩0,−
∑︂
m ̸=j

ajm

⎫⎬⎭
⎞⎠

Again these inequalities hold from the reasons stated above.
Ergo this implication holds.
”⇐” Let A ∈ A.
Condition a) from Definition 2.14 follows trivially from our ”interval” condi-

tion a).
Let us pick arbitrary i, j ∈ [n], j ̸= i. Now let us distinguish the following

cases:

1) r+
i , r

+
j > 0

Then ∃k ̸= i, ∃l ̸= j : r+
i = aik ∧ r+

j = ajl. So(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
≥

(︂
aii − aik

)︂(︂
ajj − ajl

)︂
>

>

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m ̸=i
m̸=k

(︂
aik − aim

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ =

=

⎛⎜⎜⎝∑︂
m̸=i
m ̸=k

(︂
aik − aim

)︂⎞⎟⎟⎠
⎛⎜⎜⎝∑︂
m̸=j
m̸=l

(︂
ajl − ajm

)︂⎞⎟⎟⎠ ≥

≥

⎛⎜⎜⎝∑︂
m̸=i
m ̸=k

(︂
r+
i − aim

)︂⎞⎟⎟⎠
⎛⎜⎜⎝∑︂
m̸=j
m̸=l

(︂
r+
j − ajm

)︂⎞⎟⎟⎠ =

=
⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠
The second inequality holds because A ∈ A (thus because of the assump-
tions of the implication, more specificaly because of point I. of condition
b)). The next equality follows from aik ≥ r+

i ≥ aim ≥ aim, for m ̸= i,
because that implies that the sums are non-negative. (Analogically for j
and l.) The same chain of inequalities can be used to verify the fourth in-
equality. And the last equality arises from the fact that r+

i = aik∧r+
j = ajl.

Thus from Definition 2.14, A is a doubly B-matrix.

2) r+
i = 0 ∧ r+

j > 0
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Then ∃l ̸= j : r+
j = ajl. So(︂

aii − r+
i

)︂ (︂
ajj − r+

j

)︂
=

= aii
(︂
ajj − r+

j

)︂
≥ aii

(︂
ajj − ajl

)︂
>

>

⎛⎝max
⎧⎨⎩0,−

∑︂
m ̸=i

aim

⎫⎬⎭
⎞⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=j
m̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ =

=
⎛⎝−

∑︂
m̸=i

aim

⎞⎠
⎛⎜⎜⎝∑︂
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂⎞⎟⎟⎠ ≥

≥

⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠
⎛⎜⎜⎝∑︂
m̸=j
m̸=l

(︂
r+
j − ajm

)︂⎞⎟⎟⎠ =

=
⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
r+
j − ajm

)︂⎞⎠
The reasoning for the ”j part” of the expressions in the inequalities is
the same as in the previous case, so let us focus on the ”i part”: The third
inequality holds, because A ∈ A, so the point II. of condition b) applies.
The fourth equality comes from the following: ∀m ̸= i : aim ≤ aim ≤ r+

i =
0 ⇒ −∑︁

m̸=i aim ≥ 0. Therefore again from Definition 2.14 A is a doubly
B-matrix.

3) r+
i > 0 ∧ r+

j = 0
By swapping i for j we get the previous case.

4) r+
i , r

+
j = 0

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
≥ aii · ajj >

>

⎛⎝max
⎧⎨⎩0,−

∑︂
m ̸=i

aim

⎫⎬⎭
⎞⎠⎛⎝max

⎧⎨⎩0,−
∑︂
m̸=j

ajm

⎫⎬⎭
⎞⎠ =

=
⎛⎝−

∑︂
m̸=i

aim

⎞⎠⎛⎝−
∑︂
m ̸=j

ajm

⎞⎠ ≥

≥

⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
r+
j − ajm

)︂⎞⎠
Now the logic behind this chain of inequalities is the same as in the previous
cases. Thus once again from Definition 2.14 A is a doubly B-matrix.

Ergo this implication holds as well.
⊠
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Remark 4.4. This characterization has time complexity O(n4), which is two or-
ders of magnitude higher then for the real case, given the O(n2) complexity
of the characterization from Definition 2.14.

Corollary 4.5. Let A ∈ IRn×n. We have that A is an interval doubly B-matix iff
A with diagonal fixed on lower bounds (aii = aii) is an interval doubly B-matrix.

Proof. In the characterization given in Theorem 4.3 we see that every time any aii
occures, it occures in a form of aii, hence we are not interested in any other
value of aii. (So the reduced matrix has to fulfill exactly the same conditions
as the matrix A)

⊠

Corollary 4.6. Let A ∈ IRn×n and let

S = {(i, j)|i, j ∈ [n] : ∃k ∈ [n] \ {i} : aij ≤ aik} .

We have that A is an interval doubly B-matix iff A with every element, whose
indices are in S, set to its lower bound (∀(i, j) ∈ S : aij = aij) is an interval
doubly B-matrix.

Proof. The only time, when for every i and k ̸= i the aik occures in Theorem
4.3, are some of the inequalities ”I.” in the b) condition. (And symmetrically
as (j, l) in ”II.” and ”III.” in the b) condition, but that is analogous, so we will
prove just the first case, where it pops up as (i, k).) Let us show that in the case
that (i, k) ∈ S the inequalities ”I.” are not necessary to check because they are
substituted by some of the others.

Let (i, k) ∈ S arbitrary and let k′ = argmax{aim|m ∈ [n] \ {i}}. Because
(i, k) ∈ S, then surely aik ≤ aik′ . (And thus even aik ≤ aik′ and aik ≤ aik′ .) Let
us take any arbitrary j, l ∈ [n], l ̸= j. Then:(︂

aii − aik
)︂(︂
ajj − ajl

)︂
≥

(︂
aii − aik′

)︂(︂
ajj − ajl

)︂
>

>

⎛⎜⎜⎜⎝max

⎧⎪⎪⎪⎨⎪⎪⎪⎩0,
∑︂
m̸=i
m ̸=k′

(︂
aik′ − aim

)︂⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ ≥

≥

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m ̸=i
m ̸=k

(︂
aik − aim

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=j
m̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

So the inequality ”I.” for (i, k) holds only if the inequality ”I.” for (i, k′) holds.
(The last inequality in the previous chain of inequalities holds, because aik ≤ aik′

and aik′ ≥ aik, so we subtract more and add less.)
The second implication is trivial, because A is a superset of the reduced

matrix.
⊠

Proposition 4.7. Let A ∈ IRn×n. If A is an interval B-matrix, then it is an in-
terval doubly B-matrix as well.
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Proof. It holds for every instance, therefore it holds for whole interval matrix.
(Every instance is doubly B-matrix by Proposition 2.15 and that is exactly

the definition of an interval doubly B-matrix.)
⊠

Proposition 4.8. Let A ∈ IRn×n be an interval doubly B-matrix. Then exactly
one of the following applies:

a) Either A is an interval B-matrix, or

b) there exists a unique j ∈ [n] that j-th row breaks the condition stated
in Corollary 3.11 while for all others i ∈ [n] \ {k} this condition holds.
In other words there exists a unique j, for which holds either

n∑︂
m=1

ajm ≤ 0

or
∃k ∈ [n] \ {j} : ajj − ajk ≤

∑︂
m̸=j
m ̸=k

(︂
ajk − ajm

)︂
,

and for all the others i ∈ [n] \ {j} hold both
n∑︂

m=1
aim > 0

and
∀k ∈ [n] \ {i} : aii − aik >

∑︂
m̸=i
m ̸=k

(aik − aim) ,

Proof. Let a) hold, so A is an interval B-matrix and thus from Corollarty 3.11
∀i ∈ [n] :

n∑︂
m=1

aim > 0

and
∀k ∈ [n] \ {i} : aii − aik >

∑︂
m ̸=i
m ̸=k

(aik − aim) ,

thus b) does not hold.
Now let a) not apply, so A is not an interval B-matrix. Then it contains

a row, which does not fulfills the condition stated in Corollary 3.11. (Otherwise
it would fulfill the characterization stated ibidem, thus it would be an interval
B-matrix → contradiction.) We will show that there cannot exist two such rows.
For contradiction, let there be two such rows j and j′ that breaks the condition.
Let us distinguish the following cases:

1) Let it hold that
n∑︂

m=1
ajm ≤ 0
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and
n∑︂

m=1
aj′m ≤ 0.

Then
ajj ≤ −

∑︂
m̸=j

ajm ∧ aj′j′ ≤ −
∑︂
m̸=j′

aj′m

and because A is an interval doubly B-matrix, then
∀i ∈ [n] : aii > max{0, aim|m ̸= i} ≥ 0⎛⎝⇒ 0 < ajj ≤ −

∑︂
m̸=j

ajm ∧ 0 < aj′j′ ≤ −
∑︂
m ̸=j′

aj′m

⎞⎠
(see Theorem 4.3, part a)) and so the following is true:

ajj · aj′j′ ≤

⎛⎝−
∑︂
m ̸=j

ajm

⎞⎠⎛⎝−
∑︂
m ̸=j′

aj′m

⎞⎠ =

=
⎛⎝max

⎧⎨⎩0,−
∑︂
m̸=j

ajm

⎫⎬⎭
⎞⎠⎛⎝max

⎧⎨⎩0,−
∑︂
m ̸=j′

aj′m

⎫⎬⎭
⎞⎠

But that is a contradiction with the assumption that A is an interval doubly
B-matrix, because it violates the b) condition, part III. of characterization
of interval doubly B-matrices stated in Theorem 4.3.

2) Let it hold that
n∑︂

m=1
ajm ≤ 0

and
∃k ∈ [n] \ {j′} : aj′j′ − aj′k ≤

∑︂
m̸=j′

m ̸=k

(︂
aj′k − aj′m

)︂
.

Then
ajj ≤ −

∑︂
m̸=j

ajm

and because A is an interval doubly B-matrix, then
∀i ∈ [n] : aii > max{0, aim|m ̸= i}⎛⎜⎜⎜⎝⇒ 0 < ajj ≤ −
∑︂
m̸=j

ajm ∧ 0 < aj′j′ − aik ≤
∑︂
m ̸=j′

m̸=k

(︂
aj′k − aj′m

)︂⎞⎟⎟⎟⎠
(see Theorem 4.3, part a)) and so the following is true:

ajj
(︂
aj′j′ − aj′k

)︂
≤

⎛⎝−
∑︂
m ̸=j

ajm

⎞⎠
⎛⎜⎜⎜⎝∑︂
m ̸=j′

m̸=k

(︂
aj′k − aj′m

)︂⎞⎟⎟⎟⎠ =

=
⎛⎝max

⎧⎨⎩0,−
∑︂
m ̸=j

ajm

⎫⎬⎭
⎞⎠
⎛⎜⎜⎜⎝max

⎧⎪⎪⎪⎨⎪⎪⎪⎩0,
∑︂
m ̸=j′

m̸=k

(︂
aj′k − aj′m

)︂⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠
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But that is a contradiction with the assumption that A is an interval doubly
B-matrix, because it violates the b) condition, part II. of characterization
of interval doubly B-matrices stated in Theorem 4.3.

3) Let it hold that

∃k ∈ [n] \ {j} : ajj − ajk ≤
∑︂
m ̸=j
m̸=k

(︂
ajk − ajm

)︂

and
n∑︂

m=1
aj′m ≤ 0.

Then by swapping j and j’ we convert it to the previous case.

4) Let it hold that

∃k ∈ [n] \ {j} : ajj − ajk ≤
∑︂
m ̸=j
m̸=k

(︂
ajk − ajm

)︂

and
∃k′ ∈ [n] \ {j′} : aj′j′ − aj′k′ ≤

∑︂
m ̸=j′

m̸=k′

(︂
aj′k′ − aj′m

)︂
.

Then because A is an interval doubly B-matrix, then

∀i ∈ [n] : aii > max{0, aim|m ̸= i}

⎛⎝ ⇒ 0 < ajj − ajk ≤
∑︂
m ̸=j
m̸=k

(︂
ajk − ajm

)︂
ajm

∧ 0 < aj′j′ − aik ≤
∑︂
m ̸=j′

m̸=k

(︂
aj′k − aj′m

)︂⎞⎠

(see Theorem 4.3, part a)) and so the following is true:(︂
ajj − ajk

)︂(︂
aj′j′ − aj′k′

)︂
≤

≤

⎛⎜⎜⎝∑︂
m̸=j
m ̸=k

(︂
ajk − ajm

)︂⎞⎟⎟⎠
⎛⎜⎜⎜⎝ ∑︂
m̸=j′

m ̸=k′

(︂
aj′k′ − aj′m

)︂⎞⎟⎟⎟⎠ =

=

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m ̸=j
m ̸=k

(︂
ajk − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
⎛⎜⎜⎜⎝max

⎧⎪⎪⎪⎨⎪⎪⎪⎩0,
∑︂
m ̸=j′

m̸=k′

(︂
aj′k′ − aj′m

)︂⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠

But that is a contradiction with the assumption that A is an interval doubly
B-matrix, because it violates the b) condition, part I. of characterization
of interval doubly B-matrices stated in Theorem 4.3.
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Thus, we have shown that there exists exactly one row, which breaks the con-
dition from Corollary 3.11, which finishes the proof.

⊠

Definition 4.9 (proper interval doubly B-matrix). Let A ∈ IRn×n be an interval
doubly B-matrix. Then we say that A is a proper interval doubly B-matrix, if it
is not an interval B-matrix.

4.1.1 Characterizations through reduction
Proposition 4.10. Let A ∈ IRn×n for n ≥ 4 and let us define A(i,k),(j,l) ∈ Rn×n

as follows:

A(i,k),(j,l) = (am1m2) ; am1m2 =

⎧⎪⎨⎪⎩
aik if (m1,m2) = (i, k),
ajl if (m1,m2) = (j, l),
am1m2 otherwise.

Then A is an interval doubly B-matrix if and only if ∀i, j ∈ [n], j > i, ∀k, l ∈
[n], k ̸= i, l ̸= j : A(i,k),(j,l) is a doubly B-matrix.

Proof. ”⇒” Trivial, for all such matrices: A(i,k),(j,l) ∈ A.
”⇐” We will prove that the conditions of Theorem 4.3 hold:
a) ∀i ∈ [n],∀k ̸= i : aii > max{0, aik}, because for any arbitrary j, l the ma-

trix A(i,k),(j,l) is a doubly B-matrix. Thus ∀i ∈ [n] : aii > max{0, aik|k ̸= i}.
b) Let us fix arbitrary i, j ∈ [n], j ̸= i and arbitrary k, l ∈ [n], k ̸= i, l ̸= j.

WLOG j > i. (If j < i, we swap their values and we swap the values of k and l
too.) Let A = A(i,k),(j,l). Then:

I. (︂
aii − aik

)︂(︂
ajj − ajl

)︂
≥

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
r+
j − ajm

)︂⎞⎠ ≥

≥

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=i
m ̸=k

(︂
aik − aim

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=j
m̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

The second inequality holds, because A is a doubly B-matrix.
II.

aii
(︂
ajj − ajl

)︂
≥

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠ ≥

≥

⎛⎝max
⎧⎨⎩0,−

∑︂
m̸=i

aim

⎫⎬⎭
⎞⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

The second inequality holds because of the fact that even A(x,y),(j,l) for any x ̸= i
and y ̸= x is a doubly B-matrix.
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III.

aii · ajj ≥
(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠ ≥

≥

⎛⎝max
⎧⎨⎩0,−

∑︂
m̸=i

aim

⎫⎬⎭
⎞⎠⎛⎝max

⎧⎨⎩0,−
∑︂
m ̸=j

ajm

⎫⎬⎭
⎞⎠

The second inequality holds because of the fact that even A(x,y),(u,v) for any
x, y, u, v, such that x ̸= i, x ̸= j, y ̸= x, u ̸= i, u ̸= j, u ̸= x and v ̸= u is
a doubly B-matrix.

So, as we have shown, the A fulfills both the conditions of Theorem 4.3,
therefore it is an interval doubly B-matrix.

⊠

Remark 4.11. Proposition 4.10 could work even for n ≥ 3, but we would have
to add requirement that A is a doubly B-matrix too. Or it could work even
for n ≥ 2, but again we would have to add requirements that A is a doubly
B-matrix and ∀j ∈ [n], l ̸= j : A(j,l) is a doubly B-matrix, where

A(j,l) = (am1m2);
{︄
ajl if (m1,m2) = (j, l),
am1m2 otherwise. .

These requirements are needed for proof of ”II.” and ”III.” of b) condition
of the second (right-to-left) implication. But we can show an example that they
are not just formal requirements:

Example. Let A ∈ IR3×3, such that Aij =
{︄

[1, 1] = 1 if i = j,
[−1

2 , 0] otherwise.
Then ∀A(i,k),(j,l) : ∀z, z′ ∈ [3], z′ ̸= z : r+

z = r+
z′ = 0, so:(︂

azz − r+
z

)︂ (︂
az′z′ − r+

z′

)︂
= 1 · 1 = 1

and ⎛⎝∑︂
m̸=z

(︂
r+
z − azm

)︂⎞⎠⎛⎝∑︂
m ̸=z′

(︂
r+
z′ − az′m

)︂⎞⎠ ≤ 1
2 · 1 = 1

2 .

Thus every A(i,k),(j,l) is a doubly B-matrix.
But for A : ∀z, z′ ∈ [3], z′ ̸= z :(︂

azz − r+
z

)︂ (︂
az′z′ − r+

z′

)︂
= 1 · 1 = 1

and ⎛⎝∑︂
m̸=z

(︂
r+
z − azm

)︂⎞⎠⎛⎝∑︂
m̸=z′

(︂
r+
z′ − az′m

)︂⎞⎠ =
(︃1

2 + 1
2

)︃2
= 12 = 1.

So A is not a doubly B-matrix, thus A cannot be an interval doubly B-matrix.

Proposition 4.12. The characterization of interval doubly B-matrices through
reduction given by Proposition 4.10 is minimal in inclusion.
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Proof. If we ditched A(i,k),(j,l) for any arbitrary i, j, k, l ∈ [n], j ̸= i, k ̸= i, l ̸= j,
then we can construct a counterexample, e.g. a unit matrix with interval [0, 1

2 ]
on positions (i, k) and (j, l). Then ∀x, y, u, v ∈ [n], u ̸= x, y ̸= x, v ̸= u, such
that (x, y, u, v) ̸= (i, k, j, l) : A(x,y),(u,v) is a doubly B-matrix. That holds because
∀z, z′ ∈ [n], z′ ̸= z : (︂

azz − r+
z

)︂ (︂
az′z′ − r+

z′

)︂
≥ 1

2
and ⎛⎝∑︂

m̸=z

(︂
r+
z − azm

)︂⎞⎠⎛⎝∑︂
m̸=z′

(︂
r+
z′ − az′m

)︂⎞⎠ = 0.

But A(i,k),(j,l) is not a doubly B-matrix, because
(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
= 1

2 · 1
2 = 1

4

and⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠ =

(︃(︃1
2 − 1

2

)︃
+ (n− 2) ·

(︃1
2 − 0

)︃)︃2
=
(︃
n− 2

2

)︃2

and for n ≥ 3 it does not hold that 1
4 >

(︂
n−2

2

)︂2
. (And in Proposition we assume

n ≥ 4.)
Hence the whole interval matrix cannot be an interval doubly B-matrix.

⊠

Whereas the previous proposition, Proposition 4.10, reduces the Definition 4.1
to O(n4) matrices (more precisely for its basic version for n ≥ 4 it reduces
the problem to

(︂
n
2

)︂
· (n − 1)2 real instances), the following uses a bit different

approach and achieves to reduce the definition to O(n3) (respectively to O(n3) +
O(n2), and even more precisely to n2 · (n− 1) + n2 = n3) matrices.

Proposition 4.13. Let A ∈ IRn×n and let us define A(i,k),(∗,l) and
i
A(∗,l) ∈ Rn×n

as follows:

A(i,k),(∗,l) = (am1m2) ; am1m2 =

⎧⎪⎨⎪⎩
aik if (m1,m2) = (i, k),
am1l if m2 = l ∧m1 ̸= i ∧m1 ̸= l,
am1m2 otherwise.

and

i
A(∗,l) =

(︂
a′
m1m2

)︂
; a′

m1m2 =
{︄
am1l if m2 = l ∧m1 ̸= i ∧m1 ̸= l,
am1m2 otherwise.

Then A is an interval doubly B-matrix if and only if ∀i, l ∈ [n] : (
i
A(∗,l) is a doubly

B-matrix ∧ ∀k ∈ [n] \ {i} : A(i,k),(∗,l) is a doubly B-matrix).
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Proof. ”⇒” Trivial, for all such matrices are in A.
”⇐” We will prove that the conditions of Theorem 4.3 hold:
a) ∀i ∈ [n],∀k ̸= i : aii > max{0, aik}, because for any arbitrary l the matrix

A(i,k),(∗,l) is a doubly B-matrix. Thus ∀i ∈ [n] : aii > max{0, aik|k ̸= i}.
b) Let us fix arbitrary i, j ∈ [n], j ̸= i and arbitrary k, l ∈ [n], k ̸= i, l ̸= j :
I. Let us take A = A(i,k),(∗,l). Then:(︂

aii − aik
)︂(︂
ajj − ajl

)︂
≥

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
r+
j − ajm

)︂⎞⎠ ≥

≥

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=i
m ̸=k

(︂
aik − aim

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=j
m̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

II. Let us take A =
i
A(∗,l). Then:

aii
(︂
ajj − ajl

)︂
≥

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠ ≥

≥

⎛⎝max
⎧⎨⎩0,−

∑︂
m̸=i

aim

⎫⎬⎭
⎞⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

III. Let us take A =
i
A(∗,j). Then:

aii · ajj ≥
(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠ ≥

≥

⎛⎝max
⎧⎨⎩0,−

∑︂
m̸=i

aim

⎫⎬⎭
⎞⎠⎛⎝max

⎧⎨⎩0,−
∑︂
m ̸=j

ajm

⎫⎬⎭
⎞⎠

So, as we have proved, the A fulfills both the conditions of characterization stated
in Theorem 4.3, thus it is an interval doubly B-matrix.

⊠

4.2 Necessary or sufficient conditions
Here, in this section, we will derive a few necessary or sufficient conditions
that might help us with even quicker recognition of a class of interval doubly
B-matrices.

Let us start with two necessary conditions, one through reduction to some
instances, the other through properties the matrix must have.
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Proposition 4.14. Let A ∈ IRn×n,∀i ∈ [n] : ki ∈ argmax{aij|j ̸= i} and let us
define iAmax ∈ Rn×n as follows:

iAmax = (am1m2) ; am1m2 =
{︄
am1km1

if m1 ̸= i ∧m2 = km1 ,
am1m2 otherwise.

Then A is an interval doubly B-matrix only if A and ∀i ∈ [n] : iAmax are doubly
B-matrices.

Proof. It holds that A ∈ A ∧ ∀i ∈ [n] : iAmax ∈ A. ⊠

Proposition 4.14 gives us quite nice necessary condition through reduction,
but to compute it, we have to verify n + 1 matrices whether they are doubly
B-matrices, which takes us verifying O(n2) inequalities for each. Hence together
the time complexity would be O(n3). So let us state an equivalent condition
with better time complexity, more precisely with O(n2) complexity.

Proposition 4.15. Let A ∈ IRn×n. Then A is a doubly B-matrix only if the fol-
lowing hold:

a) ∀i ∈ [n] : aii > max{0, aij|j ̸= i} and

b) ∀i, j ∈ [n], j ̸= i, k ∈ argmax{aim|m ̸= i}, l ∈ argmax{ajm|m ̸= j} :

I. (aik > 0 ∧ ajl > 0) ⇒
(︂
aii − aik

)︂(︂
ajj − ajl

)︂
>

⎛⎜⎝ ∑︁
m ̸=i
m ̸=k

(︂
aik − aim

)︂⎞⎟⎠
⎛⎜⎝ ∑︁
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂⎞⎟⎠
II. (aik ≤ 0 ∧ ajl > 0) ⇒

aii
(︂
ajj − ajl

)︂
>

(︄
− ∑︁

m ̸=i
aim

)︄⎛⎜⎝ ∑︁
m̸=j
m̸=l

(︂
ajl − ajm

)︂⎞⎟⎠
III. (aik ≤ 0 ∧ ajl ≤ 0) ⇒

aii · ajj >
(︄

− ∑︁
m̸=i

aim

)︄(︄
− ∑︁

m̸=j
ajm

)︄

Proof. We asssume that ∀A ∈ A : A is a doubly B-matrix. Therefore our condi-
tion a) follows from condition a) from the Definition 2.14 for A ∈ A :

A = (am1m2); am1m2 =
{︄
am1m1 if m1 = m2,
am1m2 otherwise.

To prove condition b), let us take arbitrary i, j ∈ [n], j ̸= i and let k ∈
argmax{aim|m ̸= i}, l ∈ argmax{ajm|m ̸= j}. Then:

I. Let aik > 0, ajl > 0. Let us take such A ∈ A, that

A = (am1m2); am1m2 =

⎧⎪⎨⎪⎩
aik if (m1,m2) = (i, k),
ajl if (m1,m2) = (j, l),
am1m2 otherwise.
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Then r+
i = aik, r

+
j = ajl, so the following holds:(︂
aii − aik

)︂(︂
ajj − ajl

)︂
=

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠ =

=

⎛⎜⎜⎝∑︂
m̸=i
m ̸=k

(︂
aik − aim

)︂⎞⎟⎟⎠
⎛⎜⎜⎝∑︂
m̸=j
m̸=l

(︂
ajl − ajm

)︂⎞⎟⎟⎠
The last equality arises from the fact that aik = r+

i , so r+
i − aik = 0, and that

∀m ̸= i : r+
i ≥ aim. (And of course analogies of that hold for j as well.)

II. Let aik ≤ 0, ajl > 0. Let us take such A ∈ A, that

A = (am1m2); am1m2 =
{︄
ajl if (m1,m2) = (j, l),
am1m2 otherwise.

Then r+
i = 0, r+

j = ajl, so the following holds:

aii
(︂
ajj − ajl

)︂
=

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠ =

=
⎛⎝−

∑︂
m ̸=i

aim

⎞⎠
⎛⎜⎜⎝∑︂
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂⎞⎟⎟⎠
III. Let aik ≤ 0, ajl ≤ 0. Let us take A = A ∈ A. Then r+

i = 0, r+
j = 0, so

the following holds:

aii · ajj =
(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
>

>

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠ =

=
⎛⎝−

∑︂
m ̸=i

aim

⎞⎠⎛⎝−
∑︂
m ̸=j

ajm

⎞⎠
Thus if A is an interval doubly B-matrix, then our conditions hold.

⊠

Remark 4.16. The above mentioned semantic equivalence between Propositions
4.14 and 4.15 can be seen from the fact that in the proof of the second one we
can use the matrices defined in the first:

In proof of the point I. of the b) condition: For given i, j, if we had taken
xAmax for some x ̸= i, x ̸= j instead of the matrix that we used, it would have
worked even so. (If we restrict our view on the two rows i and j, which we are
interested in, the two matrices are the same.)

The same reasoning applies for the case that in the point II. of the b) condition
for given i, j we would have used iAmax.
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And as for the last part, the point III. of the b) condition, there we are
already using one of the matrices from Proposition 4.14 and that is A.

Ergo it can be seen that the conditions of Proposition 4.15 are together exactly
just the rewritten condition of the real case (from Definition 2.14) for the matrices
from Proposition 4.14.

Now let us take a closer look on varied sufficient conditions for being an in-
terval doubly B-matrix.

First, let us demonstrate, for which matrices are the previous necessary con-
ditions sufficient ones too. Then we shall look at a link between interval B-
and doubly B-matrices, which will be analogous to Proposition 2.15. And af-
ter that we will show that for interval Z-matrices, it is quite easy to recognize,
whether they are or are not interval doubly B-matrices.

Proposition 4.17. Let A ∈ IRn×n, n ≥ 3, such that it fulfills the following
condition:

∀i ∈ [n] ∃ki ∈ [n] \ {i} ∀j ∈ [n] \ {i, ki} : aij ≤ aiki

Then A is an interval doubly B-matrix if and only if it fulfills the necessary
condition stated in Proposition 4.14.

Proof. ”⇒” Trivially from Proposition 4.14.
”⇐” ∀i ∈ [n] be ki from the assumption. Then ∀A ∈ A∀i ∈ [n] : (r+

i > 0 ⇒
r+
i ≤ aiki

∧ r+
i = aiki

).
Let A ∈ A arbitrary.
a) From assumption it holds that ∀i ∈ [n] : aii ≥ aii > max{0, aij|j ̸= i} ≥

max{0, aij|j ̸= i}.
b) Let us take arbitrary i, j ∈ [n], j ̸= i. Let us distinguish the following cases:

1) r+
i > 0 ∧ r+

j > 0
Thus from assumption, 0 < aiki

, 0 < ajkj
, r+
i = aiki

, r+
j = ajkj

and so, be-
cause xAmax for some x ̸= i, x ̸= j is a doubly B-matrix from the assumption
of this implication, the following applies.(︂

aii − r+
i

)︂ (︂
ajj − r+

j

)︂
≥

(︂
aii − aiki

)︂(︂
ajj − ajkj

)︂
>

>

⎛⎜⎜⎝ ∑︂
m̸=i
m̸=ki

(︂
aiki

− aim
)︂⎞⎟⎟⎠

⎛⎜⎜⎜⎝ ∑︂
m ̸=j
m ̸=kj

(︂
ajkj

− ajm
)︂⎞⎟⎟⎟⎠ ≥

≥

⎛⎜⎜⎝ ∑︂
m̸=i
m̸=ki

(︂
r+
i − aim

)︂⎞⎟⎟⎠
⎛⎜⎜⎜⎝ ∑︂
m̸=j
m̸=kj

(︂
r+
j − ajm

)︂⎞⎟⎟⎟⎠ =

=
⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
r+
j − ajm

)︂⎞⎠
2) r+

i = 0 ∧ r+
j > 0

Thus from assumption, aiki
≤ 0, 0 < ajkj

, r+
j = ajkj

and so, because iAmax
is a doubly B-matrix from the assumption of this implication, the following
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applies. (︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
≥ aii

(︂
ajj − ajkj

)︂
>

>

⎛⎝−
∑︂
m ̸=i

aim

⎞⎠
⎛⎜⎜⎜⎝ ∑︂
m̸=j
m̸=kj

(︂
ajkj

− ajm
)︂⎞⎟⎟⎟⎠ ≥

≥

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠
⎛⎜⎜⎜⎝ ∑︂
m ̸=j
m ̸=kj

(︂
r+
j − ajm

)︂⎞⎟⎟⎟⎠ =

=
⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠
3) r+

i > 0 ∧ r+
j = 0

By swapping i for j we get the previous case.

4) r+
i = 0 ∧ r+

j = 0
Thus from assumption, aiki

≤ 0, ajkj
≤ 0 and so, because A is a doubly

B-matrix from the assumption of this implication, the following applies.(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
≥ aii · ajj >

>

⎛⎝−
∑︂
m̸=i

aim

⎞⎠⎛⎝−
∑︂
m̸=j

ajm

⎞⎠ ≥

≥

⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
r+
j − ajm

)︂⎞⎠
Therefore we have shown that in each case the matrix A is a doubly B-matrix,

thus A is an interval doubly B-matrix.
⊠

Theorem 4.18. Let A ∈ IRn×n interval Z-matrix. Then A is an interval doubly
B-matrix if and only if A is a doubly B-matrix.

Proof. ”⇒” Trivially, because A ∈ A.
”⇐” Let A ∈ A. Then
a) From assumption it holds that ∀i ∈ [n] : aii ≥ aii > max{0, aij|j ̸=

i} = 0 = max{0, aij|j ̸= i} ≥ max{0, aij|j ̸= i}, because A is a doubly B-matrix
and also a Z-matrix.

b) Let i, j ∈ [n], j ̸= i arbitrary.(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
≥

(︂
aii − 0

)︂(︂
ajj − 0

)︂
>

>

⎛⎝∑︂
m̸=i

(︂
0 − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
0 − ajm

)︂⎞⎠ ≥

≥

⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠
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The first inequality uses just the fact that r+
i = 0, r+

j = 0 and that ∀i, j ∈ [n] :
aij ≥ aij, the second one holds, because A is a doubly B-matrix and because it is
a Z-matrix too. And the last inequality is again completely trivial using the same
facts, as the first one.

Hence we have proved that every A ∈ A is a doubly B-matrix, therefore A is
an interval doubly B-matrix.

⊠

Next we will take a look, what sufficient conditions are there for non-negative
interval doubly B-matrices, and then we shall try to at least partially generalize
them to general interval matrices.

Proposition 4.19. Let A ∈ IR+
0
n×n

,∀i ∈ [n] : ki ∈ argmax{aij|j ̸= i} and let us
define ˜︁A ∈ IRn×n as follows:

˜︁A = (˜︁am1m2) ; ˜︁am1m2 =

⎧⎪⎨⎪⎩
am1km1

if m2 = km1 ,
am1m1 if m2 = m1,
0 otherwise.

If ˜︁A is a doubly B-matrix, then A is an interval doubly B-matrix.

Proof. Let A ∈ A, i, j ∈ [n], j ̸= i arbitrary. Then the a) condition of Definition
2.14 is satisfied trivially (aii > max{0, aiki

} = aiki
) and as for the b) condition:(︂

aii − r+
i

)︂ (︂
ajj − r+

j

)︂
≥

(︂
aii − aiki

)︂(︂
ajj − ajkj

)︂
=

=
(︂˜︁aii − ˜︁r+

i

)︂ (︂˜︁ajj − ˜︁r+
j

)︂
>

⎛⎝∑︂
m ̸=i

(︂˜︁r+
i − ˜︁aim)︂

⎞⎠⎛⎝∑︂
m ̸=j

(︂˜︁r+
j − ˜︁ajm)︂

⎞⎠ =

=

⎛⎜⎜⎝ ∑︂
m ̸=i
m ̸=ki

aiki

⎞⎟⎟⎠
⎛⎜⎜⎜⎝ ∑︂
m ̸=j
m ̸=kj

ajkj

⎞⎟⎟⎟⎠ =
(︂
(n− 2) · aiki

)︂(︂
(n− 2) · ajkj

)︂
≥

≥
(︂
(n− 2) · r+

i

)︂(︂
(n− 2) · r+

j

)︂
≥

⎛⎝∑︂
m ̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m ̸=j

(︂
r+
j − ajm

)︂⎞⎠
(Where ˜︁r+

i is r+
i due to the matrix ˜︁A.)

The third inequality holds, because of the assumption that the ˜︁A is a dou-
bly B-matix. The last inequality arises from the assumption that A ∈ IR+

0
n×n

and from the consequential fact that ∀i ∈ [n]∃li ̸= i : aili = r+
i . Plus the aiki

is
the largest off-diagonal element in its row, so r+

i ≤ aiki
.

Hence we have shown that every A ∈ A is a doubly B-matrix, thus A is
an interval doubly B-matrix.

⊠

Proposition 4.20. Let A ∈ IR+
0
n×n

, ∀i ∈ [n] : ki ∈ argmax{aij|j ̸= i} and
∀i ∈ [n] : k′

i ∈ argmin{aij|j ̸= i}. Let us define ˜︁A ∈ IRn×n as follows:

˜︁A = (˜︁am1m2) ; ˜︁am1m2 =

⎧⎪⎨⎪⎩
am1km1

if m2 = km1 ,
am1m1 if m2 = m1,
am1k′

m1
otherwise.

If ˜︁A is a doubly B-matrix, then A is an interval doubly B-matrix.
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Proof. Let A ∈ A, i, j ∈ [n], j ̸= i arbitrary. Then the a) condition of Definition
2.14 is satisfied trivially (aii > max{0, aiki

} = aiki
) and as for the b) condition:(︂

aii − r+
i

)︂ (︂
ajj − r+

j

)︂
≥

(︂
aii − aiki

)︂(︂
ajj − ajkj

)︂
=

=
(︂˜︁aii − ˜︁r+

i

)︂ (︂˜︁ajj − ˜︁r+
j

)︂
>

⎛⎝∑︂
m ̸=i

(︂˜︁r+
i − ˜︁aim)︂

⎞⎠⎛⎝∑︂
m ̸=j

(︂˜︁r+
j − ˜︁ajm)︂

⎞⎠ =

=

⎛⎜⎜⎝ ∑︂
m̸=i
m̸=ki

(︂
aiki

− aik′
i

)︂⎞⎟⎟⎠
⎛⎜⎜⎜⎝ ∑︂
m ̸=j
m̸=kj

(︂
ajkj

− ajk′
j

)︂⎞⎟⎟⎟⎠ =

=
(︂
(n− 2) ·

(︂
aiki

− aik′
i

)︂)︂ (︂
(n− 2) ·

(︂
ajkj

− ajk′
j

)︂)︂
≥

≥

⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
r+
j − ajm

)︂⎞⎠
(Where ˜︁r+

i is r+
i due to the matrix ˜︁A.)

The third inequality holds, because of the assumption that the ˜︁A is a dou-
bly B-matix. The last inequality arises from the assumption that A ∈ IR+

0
n×n

and from the consequential fact that ∀i ∈ [n]∃li ̸= i : aili = r+
i plus from the def-

inition of k′
i and ˜︁A. Plus the aiki

is the largest off-diagonal element in its row, so
r+
i ≤ aiki

.
Hence we have shown that every A ∈ A is a doubly B-matrix, thus A is

an interval doubly B-matrix.
⊠

Proposition 4.21. Let A ∈ IR+
0
n×n

,∀i ∈ [n] : ki ∈ argmax{aij|j ̸= i} and let us
define ˜︁A ∈ IRn×n as follows:

˜︁A = (˜︁am1m2) ; ˜︁am1m2 =

⎧⎪⎨⎪⎩
am1km1

if m2 = km1 ,
am1m1 if m2 = m1,
min{am1m2 , am1km1

} otherwise.

If ˜︁A is a doubly B-matrix, then A is an interval doubly B-matrix.

Proof. Let A ∈ A, i, j ∈ [n], j ̸= i arbitrary. Then the a) condition of Definition
2.14 is satisfied trivially (aii > max{0, aiki

} = aiki
) and as for the b) condition,
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let ∀i ∈ [n] : li ∈ argmax{aim|jm ̸= i}, then aili = r+
i and:(︂

aii − r+
i

)︂ (︂
ajj − r+

j

)︂
≥

(︂
aii − aiki

)︂(︂
ajj − ajkj

)︂
=

=
(︂˜︁aii − ˜︁r+

i

)︂ (︂˜︁ajj − ˜︁r+
j

)︂
>

⎛⎝∑︂
m ̸=i

(︂˜︁r+
i − ˜︁aim)︂

⎞⎠⎛⎝∑︂
m ̸=j

(︂˜︁r+
j − ˜︁ajm)︂

⎞⎠ =

=

⎛⎜⎜⎝ ∑︂
m̸=i
m̸=ki

(︂
aiki

− min{aim, aiki
}
)︂⎞⎟⎟⎠

⎛⎜⎜⎜⎝ ∑︂
m ̸=j
m̸=kj

(︂
ajkj

− min{ajm, ajkj
}
)︂⎞⎟⎟⎟⎠ ≥

≥

⎛⎜⎜⎝∑︂
m̸=i
m̸=li

(︂
aili − aim

)︂⎞⎟⎟⎠
⎛⎜⎜⎜⎝∑︂
m̸=j
m̸=lj

(︂
ajlj − ajm

)︂⎞⎟⎟⎟⎠ =

=
⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
r+
j − ajm

)︂⎞⎠
(Where ˜︁r+

i is r+
i due to the matrix ˜︁A.)

The third inequality holds, because of the assumption that the ˜︁A is a doubly
B-matix. The fifth inequality is quite trivial too, it relies only on the following two
facts: aiki

≥ aili and for m = li : aim = min{aim, aiki
} ≤ aiki

≤ aiki
. And the last

equality holds, because ∀i : aili = r+
i .

Hence we have shown that every A ∈ A is a doubly B-matrix, thus A is
an interval doubly B-matrix.

⊠

Theorem 4.22. Let A ∈ IRn×n,∀i ∈ [n] : ki ∈ argmax{aij|j ̸= i} and ∀i ∈ [n] :
k′
i ∈ argmax{aij|j ̸= i}. Let us define ˜︁A ∈ IRn×n as follows:

˜︁A = (˜︁am1m2) ; ˜︁am1m2 =

⎧⎪⎨⎪⎩
am1km1

if m2 = km1 ,
am1m1 if m2 = m1,
min{am1m2 , am1km1

} otherwise.

If ∀i ∈ [n] : aik′
i

≥ 0 and ˜︁A is a doubly B-matrix, then A is an interval doubly
B-matrix.

Proof. Let A ∈ A, i, j ∈ [n], j ̸= i arbitrary. Then aiki
≥ 0, because aiki

≥ aik′
i

≥
0 from the assumption and the definition of ki (analogically for j). And so the a)
condition of the Definition 2.14 is satisfied trivially (aii > max{0, aiki

} = aiki
)

and as for the b) condition, let ∀i ∈ [n] : li ∈ argmax{aim|m ̸= i}, then, because
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max{aim|m ̸= i} ≥ aik′
i

≥ 0, it holds that aili = r+
i . Hence:

(︂
aii − r+

i

)︂ (︂
ajj − r+

j

)︂
≥

(︂
aii − aiki

)︂(︂
ajj − ajkj

)︂
=

=
(︂˜︁aii − ˜︁r+

i

)︂ (︂˜︁ajj − ˜︁r+
j

)︂
>

⎛⎝∑︂
m ̸=i

(︂˜︁r+
i − ˜︁aim)︂

⎞⎠⎛⎝∑︂
m ̸=j

(︂˜︁r+
j − ˜︁ajm)︂

⎞⎠ =

=

⎛⎜⎜⎝ ∑︂
m̸=i
m̸=ki

(︂
aiki

− min{aim, aiki
}
)︂⎞⎟⎟⎠

⎛⎜⎜⎜⎝ ∑︂
m ̸=j
m̸=kj

(︂
ajkj

− min{ajm, ajkj
}
)︂⎞⎟⎟⎟⎠ ≥

≥

⎛⎜⎜⎝∑︂
m̸=i
m̸=li

(︂
aili − aim

)︂⎞⎟⎟⎠
⎛⎜⎜⎜⎝∑︂
m̸=j
m̸=lj

(︂
ajlj − ajm

)︂⎞⎟⎟⎟⎠ =

=
⎛⎝∑︂
m̸=i

(︂
r+
i − aim

)︂⎞⎠⎛⎝∑︂
m̸=j

(︂
r+
j − ajm

)︂⎞⎠
(Where ˜︁r+

i is r+
i due to the matrix ˜︁A.)

The third inequality holds, because of the assumption that the ˜︁A is a doubly
B-matix. The fifth inequality is quite trivial too, it relies only on the following
two facts: aiki

≥ aili ≥ 0 and for m = li : aim = min{aim, aiki
} ≤ aiki

≤ aiki
.

And the last equality holds, because ∀i : aili = r+
i .

Hence we have shown that every A ∈ A is a doubly B-matrix, thus A is
an interval doubly B-matrix.

⊠

Remark 4.23. Propositions 4.19, 4.20 and 4.21 are gradually stronger variations
of one another. Each deals with non-negative interval matrices, but each uses
a better matrix, in the meaning that it is closer to being an instance of the exam-
ined interval matrix, then the former one. Proposition 4.19 uses such a matrix,
whose examination whether it is a doubly B-matrix is computationally simple,
but which can be rather distant from any instance of original interval matrix.
Proposition 4.20 uses a bit better matrix, which can be however quite simple
to examine too, because in every row almost all the elements are the same even
though not necessarily zero, as in the first case. And the third proposition,
Proposition 4.21, then uses much better matrix, although it can be a bit harder
to examine, because now in every row, every element can be different.

And then there is one more result, Theorem 4.22, which takes the approach
of Proposition 4.21 and generalizes it for much wider range of matrices, where
instead of complete non-negativity, we just require the existence of a non-diagonal
element, which is always non-negative, thus which is a non-negative interval.

Now, what we could be interested in, is for what matrices is the sufficient
condition from Theorem 4.22 characterization as well. So let us take a look
at that.

Proposition 4.24. Let A ∈ IRn×n such that ∀i ∈ [n] ∃ki ∈ [n] \ {i} : aiki
=

max{aij|j ̸= i} ∧ aiki
= max{0, aij|j ̸= i}. Then the sufficient condition stated

in Theorem 4.22 is a characterization for A.
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Proof. ” ˜︁A is a doubly B-matrix, then A is an interval doubly B-matrix”: Follows
from Theorem 4.22.

”A is an interval doubly B-matrix, then ˜︁A is a doubly B-matrix”: From con-
struction of ˜︁A and from assumtions of this proposition it follows that ˜︁A ∈ A.

⊠

Next we will show that if lower and upper bound matrices of an interval matrix
are circulant, then some nice properties applies.

Theorem 4.25. Let A ∈ IRn×n such that A and A are circulant. Then the fol-
lowing is equivalent:

1) A is an interval doubly B-matrix

2) A is an interval B-matrix

3) It holds that

a) a11 > −
∑︂
j ̸=1

a1j

b) ∀k ∈ [n] \ {1} : a11 − a1k >
∑︂
j ̸=1
j ̸=k

(︂
a1k − a1j

)︂

Proof. ”1) ⇒ 2)” A is a doubly B-matrix, thus it satisfies the characterization
given in Theorem 4.3. Let i ∈ [n] and k ̸= i arbitrary. Se let us choose

j =
{︄
i+ 1 if i < n,
1 if i = n.

and l =
{︄
k + 1 if k < n,
1 if k = n.

(Then aii = ajj and aik = ajl, because both A and A are circulant.) Hence,
because A is an interval doubly B-matrix:

aii · ajj >

⎛⎝max
⎧⎨⎩0,−

∑︂
m̸=i

aim

⎫⎬⎭
⎞⎠⎛⎝max

⎧⎨⎩0,−
∑︂
m̸=j

ajm

⎫⎬⎭
⎞⎠ ⇔

⇔ a2
ii >

⎛⎝max
⎧⎨⎩0,−

∑︂
m ̸=i

aim

⎫⎬⎭
⎞⎠2

⇒

⇒ aii = |aii| >

⃓⃓⃓⃓
⃓⃓max

⎧⎨⎩0,−
∑︂
m ̸=i

aim

⎫⎬⎭
⃓⃓⃓⃓
⃓⃓ = max

⎧⎨⎩0,−
∑︂
m ̸=i

aim

⎫⎬⎭ ≥ −
∑︂
m ̸=i

aim ⇒

⇒
n∑︂

m=1
aim > 0

Therefore the a) condition of Corollary 3.11 is satisfied. Let us take a look
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at the second one, the b) condition:(︂
aii − aik

)︂(︂
ajj − ajl

)︂
>

>

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=i
m ̸=k

(︂
aik − aim

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠
⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=j
m̸=l

(︂
ajl − ajm

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ ⇔

⇔
(︂
aii − aik

)︂2
>

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=i
m̸=k

(︂
aik − aim

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠

2

⇒

⇒ aii − aik = |aii − aik| >

⃓⃓⃓⃓
⃓⃓⃓⃓max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=i
m ̸=k

(︂
aik − aim

)︂⎫⎪⎪⎬⎪⎪⎭
⃓⃓⃓⃓
⃓⃓⃓⃓ =

= max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m ̸=i
m ̸=k

(︂
aik − aim

)︂⎫⎪⎪⎬⎪⎪⎭ ≥
∑︂
m̸=i
m ̸=k

(︂
aik − aim

)︂
⇒

⇒ aii − aik >
∑︂
m ̸=i
m̸=k

(︂
aik − aim

)︂

Hence A fulfills the characterization of an interval B-matrix as stated in Corollary
3.11, thus it is an interval B-matrix.

”2) ⇒ 3)” A is an interval B-matrix, so it satisfies the characterization given
in Corollary 3.11. Hence for i = 1 it follows from condition a) of the corollary
that our condition a) holds, and the same goes for the b) conditions.

”3) ⇒ 2)” From our a) condition we know that row sum of the first row
of matrix A is positive. And because A is circulant, all the row sums of this
matrix are the same, thus positive. ⇒ ∀i ∈ [n] : ∑︁n

j=1 aij > 0
And because both A and A are circulant and from our condition b), we get

∀i ∈ [n] ∀k ̸= 1 ∃ki ̸= i :
a11 − a1k = aii − aiki

∧
∑︂
j ̸=1
j ̸=k

(︂
a1k − a1j

)︂
=
∑︂
j ̸=i
j ̸=ki

(︂
aiki

− aij
)︂
.

⇒ ∀i ∈ [n] ∀k ̸= i : aii − aik >
∑︁

j ̸=i
j ̸=k

(︂
aik − aij

)︂
Therefore A is an interval B-matrix, because it fulfills the conditions of char-

acterization shown in Corollary 3.11.
”2) ⇒ 1)” Trivial (see Proposition 4.7).

⊠

4.3 Closure properties
In this section, we will extend our understanding of what operations the class
of B-matrices is closed under into interval environment.
Corollary 4.26. Interval doubly B-matrices are closed under the multiplication
by a positive scalar.
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Proof. It holds for every instance, so it holds for whole interval matrix.
(Every instance multiplied by positive scalar is an interval doubly B-matrix

by Proposition 2.22 and that is exactly the definition of interval doubly B-matrix.)
⊠

Corollary 4.27. Principal submatrices of interval doubly B-matrices are interval
doubly B-matrices as well.

Proof. It holds for every instance, so it holds for the whole interval matrix.
(From Proposition 2.23.)

⊠

Remark 4.28. Because the real doubly B-matrices are not closed under the fol-
lowing operations (see Propositions 2.24, 2.25, 2.26 and 2.27), then surely even
interval doubly B-matrices are in general not closed under them. Such operations
are:

• matrix sum,

• matrix product,

• matrix inverse and

• matrix power.

Remark 4.29. As direct corollary of Definition 2.14, condition a), we can see that
multiplying by an interval containing non-positive number can not be an opera-
tion that interval doubly B-matrices might be closed under.

Proposition 4.30. In general, interval doubly B-matrices are not closed under
multiplication by positive interval.

Proof. Let

A =
(︄

2 1
1 2

)︄
and α = [1, 2]. It is easy to verify that such A is an interval doubly B-matrix.
But matrix

α · A =
(︄

[2, 4] [1, 2]
[1, 2] [2, 4]

)︄
contains a (singular) non-doubly B-matrix instance, namely matrix(︄

2 2
2 2

)︄
.

⊠
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5. Interval BR
π -matrices

In this chapter we will generalize BR
π -matrices into interval BR

π -matrices. In sec-
tions 5.1 and 5.2 we shall introduce some characterizations, whereas in section
5.3 we will try to come to understanding of some fundamental properties of in-
terval BR

π -matrices. Then in section 5.4 we will take a look at closure properties
of interval BR

π -matrices.

Definition 5.1 (homogeneous interval BR
π -matrix). Let A ∈ IRn×n, π ∈ Rn

such that 0 < ∑︁n
j=1 πj ≤ 1 and R ∈ IRn. Then we say that A is a homogeneous

interval BR
π -matrix, if ∀A ∈ A: ∃R ∈ R such that A is a (real) BR

π -matrix.

Here, the R in the definition can be perceived as the vector with its entries
corresponding to the intervals of row sums of matrices A ∈ A, but in the interval
settings it is more of a symbol, than of any greater significance (unlike in the real
case). That is because if we have two interval BR

π -matrices A and B, we cannot
say that any two A ∈ A and B ∈ B are real BR

π -matrices for the same R.
(Moreover in general it is much more likely that the vectors of the row sums of A
and B are different.)

Corollary 5.2. Every homogeneous interval BR
π -matrix with π ≥ 0 is an interval

P-matrix.

Proof. It holds for every instance, hence it holds for whole interval matrix.
(Every instance is P-matrix by Proposition 2.33 and that is exactly the defi-

nition of interval P-matrix.)
⊠

Definition 5.3 ((heterogeneous) interval BR
Π-matrix). Let A ∈ IRn×n and R ∈

IRn. Then we say that A is a (heterogeneous) interval BR
Π-matrix, if ∀A ∈ A:

∃R ∈ R, ∃π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤ 1: A is a (real) BR

π -matrix.

Corollary 5.4. Every homogeneous interval BR
π -matrix is an interval BR

Π-matrix.

Proof. Trivially follows from the definitions.
⊠

5.1 Characterizations of homogeneous interval
BR
π -matrices

Let us start with stating a characterization that will help us with recognition
of the class of homogeneous interval BR

π -matrices in finite time. Thereafter,
in subsection 5.1.1, we will try to derive a characterization through reduction
of Definition 5.1 to finite number of instances to check for the property of being
a real BR

π -matrix.

Theorem 5.5. Let A ∈ IRn×n, let π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤ 1 and R ∈

IRn be a vector of intervals of the individual row sums in matrix A. Then A is
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a homogeneous interval BR
π -matrix if and only if ∀i ∈ [n] the following properties

hold:

a) Ri > 0
b) ∀k ∈ [n] \ {i} :⎛⎝πk > 1 ⇒

∑︂
j ̸=k

aij >
(︃ 1
πk

− 1
)︃

· aik

⎞⎠ ∧

∧

⎛⎝0 < πk ≤ 1 ⇒
∑︂
j ̸=k

aij >
(︃ 1
πk

− 1
)︃

· aik

⎞⎠ ∧

∧

⎛⎝πk = 0 ⇒ 0 > aik

⎞⎠ ∧

∧

⎛⎝πk < 0 ⇒
∑︂
j ̸=k

aij <
(︃ 1
πk

− 1
)︃

· aik

⎞⎠
Proof. For any A ∈ Rn×n to be a BR

π -matrix, it must, according to Definition
2.28, fulfill the following two conditions for every i ∈ [n]:

a) Ri > 0
b) ∀k ∈ [n] \ {i} : πk ·Ri > aik

Thus A ∈ IRn×n is a homogeneous interval BR
π -matrix if and only if ∀A ∈ A:

A fulfills the conditions above. From here we get that condition a) evaluated
for every A ∈ A is equivalent to Ri > 0. And as for the b) condition, it can be
for every k ̸= i modified as follows (while notting that πk ·Ri = πk ·∑︁n

j=1 aij):

1) πk > 1:

πk ·
n∑︂
j=1

aij > aik ⇔

⇔
n∑︂
j=1

aij >
1
πk

· aik ⇔

⇔
∑︂
j ̸=k

aij >
(︃ 1
πk

− 1
)︃

· aik

We can observe that, because when πk > 1, then
(︂

1
πk

− 1
)︂
< 0, the biggest

value of
(︂

1
πk

− 1
)︂

· aik is obtained by the lower bound of the aik. Ergo
the condition above holds for every A ∈ A if and only if the following
condition holds: ∑︂

j ̸=k
aij >

(︃ 1
πk

− 1
)︃

· aik
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2) 0 < πk ≤ 1:

πk ·
n∑︂
j=1

aij > aik ⇔

⇔
n∑︂
j=1

aij >
1
πk

· aik ⇔

⇔
∑︂
j ̸=k

aij >
(︃ 1
πk

− 1
)︃

· aik

We can observe that, because when 0 < πk ≤ 1, then
(︂

1
πk

− 1
)︂

≥ 0,
the biggest value of

(︂
1
πk

− 1
)︂

·aik is obtained by the upper bound of the aik.
Ergo the condition above holds for every A ∈ A if and only if the following
condition holds: ∑︂

j ̸=k
aij >

(︃ 1
πk

− 1
)︃

· aik

3) πk = 0:

πk ·
n∑︂
j=1

aij > aik ⇔

⇔ 0 > aik

The condition above holds for every A ∈ A if and only if the following
condition holds:

0 > aik

4) πk < 0:

πk ·
n∑︂
j=1

aij > aik ⇔

⇔
n∑︂
j=1

aij <
1
πk

· aik ⇔

⇔
∑︂
j ̸=k

aij <
(︃ 1
πk

− 1
)︃

· aik

We can observe that, because when πk < 0, then
(︂

1
πk

− 1
)︂
< 0, the smallest

value of
(︂

1
πk

− 1
)︂

· aik is obtained by the upper bound of the aik. Ergo
the condition above holds for every A ∈ A if and only if the following
condition holds: ∑︂

j ̸=k
aij <

(︃ 1
πk

− 1
)︃

· aik

⊠

Remark 5.6. This characterization has time complexity O(n2), which is, surpris-
ingly, the same as a characterization from the definition of the real case, Definition
2.28 (although the interval case has undoubtedly higher implementational com-
plexity).
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Let us now introduce an analogy of Proposition 2.30 for homogeneous interval
BR
π -matrices.

Theorem 5.7. Let A ∈ IRn×n be an interval square matrix with positive row
sums intervals (hence ∀i ∈ [n] : ∑︁n

j=1 aij > 0). Then there exists a vector π ∈ Rn

satisfying 0 < ∑︁n
j=1 πj ≤ 1 such that A is a homogeneous interval BR

π -matrix if
and only if

n∑︂
j=1

max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m ̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ < 1.

Proof. ”⇒”: A is a BR
π -matrix for some π satisfying the property, hence every

A ∈ A is a BR
π -matrix, thus even matrix A′ ∈ A defined as follows:

A′ = (a′
m1m2); a′

m1m2 =

⎧⎪⎨⎪⎩
am1m2 if j = m2 ∧ am1j

am1j+
∑︁

m ̸=j

am1m
>

am1j

am1j+
∑︁

m ̸=j

am1m
,

am1m2 otherwise.

Therefore (if we denote R′ the vector of row sums of A′) it holds that

∀j ∈ [n] : max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ = max
{︄
a′
ij

R′
i

⃓⃓⃓⃓
⃓ i ̸= j

}︄
< πj.

But then

n∑︂
j=1

max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m̸=j
aim

,
aij

aij + ∑︁
m ̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ <
n∑︂
j=1

πj ≤ 1.

”⇐”: Let

ϵ = 1 −
n∑︂
j=1

max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ > 0

and for every j ∈ [n] set the πj = max
⎧⎨⎩ aij

aij+
∑︁

m ̸=j

aim
,

aij

aij+
∑︁

m ̸=j

aim

⃓⃓⃓⃓
⃓⃓ i ̸= j

⎫⎬⎭+ ϵ
n
. Then

A is a homogeneous interval BR
π -matrix. That is because for any A ∈ A

max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m ̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ ≥

≥ max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m̸=j
aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ ≥ max

⎧⎪⎪⎨⎪⎪⎩
aij
n∑︁

m=1
aim

⃓⃓⃓⃓
⃓⃓⃓⃓ i ̸= j

⎫⎪⎪⎬⎪⎪⎭ ,
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thus for every A ∈ A and for every k, j ∈ [n], j ̸= k, it holds that

akj
Rk

= akj
n∑︁

m=1
akm

≤ max

⎧⎪⎪⎨⎪⎪⎩
aij
n∑︁

m=1
aim

⃓⃓⃓⃓
⃓⃓⃓⃓ i ̸= j

⎫⎪⎪⎬⎪⎪⎭ ≤

≤ max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ <

< max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭+ ϵ

n
= πj,

ergo πk ·Rk > akj. Therefore every A ∈ A is a BR
π -matrix

⊠

Remark 5.8. And once again, analogously to what is shown in Remark 2.31
for the real case of BR

π -matrices (and partly just as shown in the proof of The-
orem 5.7), if for any matrix A ∈ IRn×n the condition from the Theorem 5.7 is
satisfied, then we can construct a vector π ∈ Rn satisfying 0 < ∑︁n

j=1 πj ≤ 1 such
that A is a homogeneous interval BR

π -matrix in the following manner:

1) We define ϵ ∈ R as

ϵ = 1 −
n∑︂
j=1

max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m ̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭
and then

2) for every j ∈ [n] we define πj as

πj = max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭+ ϵ

n
.

Of course instead of ϵ
n

in the second step we can use any constant 0 < c ≤ ϵ
n
,

or we might use a vector ξ ∈ R+n such that 0 < ∑︁n
j=1 ξj ≤ ϵ and define πj as

πj = max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m̸=j
aim

,
aij

aij + ∑︁
m ̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭+ ξj.

(It is easy to verify that this holds from Theorem 5.5, because thus defined π
meets condition b) for the above mentioned definition and also satisfies that 0 <∑︁n
j=1 πj ≤ 1.)

And just as in section 2.3, the fact that we are interested in such homogeneous
interval BR

π -matrices that have π ≥ 0 means only that in addition to checking
the property from the characterization, we should try to find the corresponding
π (using the method stated in Remark 5.8) and verify whether it is nonnegative.
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5.1.1 Characterization through reduction
Proposition 5.9. Let A ∈ IRn×n, let π ∈ Rn such that 0 <

∑︁n
j=1 πj ≤ 1

and R ∈ IRn be a vector of intervals of the individual row sums in matrix A. Let
∀i ∈ [n] : Ai ∈ Rn×n defined as follows:

1) if πi > 1, then:
Ai = A

2) else if 0 ≤ πi ≤ 1, then:

Ai = (am1m2); am1m2 =
{︄
am1m2 if m1 ̸= i,m2 = i,
am1m2 otherwise.

3) else if πi < 0, then:

Ai = (am1m2); am1m2 =
{︄
am1m2 if m1 = i,
am1m2 otherwise.

Then A is a homogeneous interval BR
π -matrix if and only if ∀i ∈ [n] : Ai is

a BR
π -matrix, where R ∈ Rn is a vector of values corresponding to the row sums

of Ai.

Proof. ”⇒” This holds trivially, because ∀i ∈ [n] : Ai ∈ A (and the corresponding
R ∈ R).

”⇐”
a)∀i ∈ [n] : Ri > 0, because Ai is a BR

π -matrix and (Ai)i,∗ = (A)i,∗, thus
the entries of R are positive.

b)∀i ∈ [n] ∀k ̸= i : Ak is a BR
π -matrix ⇒ (From Definition 2.28:)

1) πk > 1:

πk ·
n∑︂
j=1

(Ak)ij > (Ak)ik ⇔

⇔ πk ·
n∑︂
j=1

aij > aik ⇔

⇔
∑︂
j ̸=k

aij >
(︃ 1
πk

− 1
)︃

· aik

2) 0 < πk ≤ 1:

πk ·
n∑︂
j=1

(Ak)ij > (Ak)ik ⇔

⇔ πk ·

⎛⎝aik +
∑︂
j ̸=k

aij

⎞⎠ > aik ⇔

⇔
∑︂
j ̸=k

aij >
(︃ 1
πk

− 1
)︃

· aik
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3) πk = 0:

πk ·
n∑︂
j=1

(Ak)ij > (Ak)ik ⇔

⇔ 0 ·

⎛⎝aik +
∑︂
j ̸=k

aij

⎞⎠ > aik ⇔

⇔ 0 > aik

4) πk < 0:

πk ·
n∑︂
j=1

(Ak)ij > (Ak)ik ⇔

⇔ πk ·
n∑︂
j=1

aij > aik ⇔

⇔
∑︂
j ̸=k

aij <
(︃ 1
πk

− 1
)︃

· aik

⇒ A fulfills the conditions of Theorem 5.5 ⇒ A is an interval B-matrix.
⊠

Remark 5.10. This reduction reduces the problem of verifying, whether any given
interval matrix is a homogeneous interval BR

π -matrix, into testing n matrices,
if they are real BR

π -matrices.

5.2 Characterizations of interval BR
Π -matrices

In this section we intend to show one major claim and that is the fact, that,
in a sense, the classes of the interval BR

Π-matrices and the homogeneous interval
BR
π -matrices are the same.

Proposition 5.11. Let A ∈ IRn×n. Then A is an interval BR
Π-matrix only if it

has positive row sums intervals, ergo ∀i ∈ [n] : ∑︁n
j=1 aij > 0.

Proof. A is a BR
Π-matrix, hence every A ∈ A is a BR

π -matrix for some π satisfying
the property, thus even matrix A ∈ A. And from Definition 2.28, part a) we get
that ∀i ∈ [n] : ∑︁n

j=1 aij > 0.
⊠

Proposition 5.12. Let A ∈ IRn×n. Then A is an interval BR
Π-matrix only if

n∑︂
j=1

max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m ̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ < 1.

Proof. A is a BR
Π-matrix, hence every A ∈ A is a BR

π -matrix for some π satisfying
the property, thus even matrix A′ ∈ A defined as follows:

A′ = (a′
m1m2); a′

m1m2 =

⎧⎪⎨⎪⎩
am1m2 if m2 = j ∧ am1j

am1j+
∑︁

m ̸=j

am1m
>

am1j

am1j+
∑︁

m ̸=j

am1m
,

am1m2 otherwise.

60



Therefore (if we denote R′ the vector of row sums of A′) it holds that

∀j ∈ [n] : max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ = max
{︄
a′
ij

R′
i

⃓⃓⃓⃓
⃓ i ̸= j

}︄
< πj.

But then

n∑︂
j=1

max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m̸=j
aim

,
aij

aij + ∑︁
m ̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ <
n∑︂
j=1

πj ≤ 1.

⊠

Corollary 5.13. Every interval BR
Π-matrix is a homogeneous interval BR

π -matrix
for some π fulfilling 0 < ∑︁n

j=1 πj ≤ 1.

Proof. Let A ∈ IRn×n be an interval square matrix with positive row sums in-
tervals. From the previous proposition, Proposition 5.12, we get the following
implication:

A is an interval BR
Π-matrix ⇒

⇒
n∑︂
j=1

max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m ̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ < 1.

And from the equivalence from Theorem 5.7 we might use the following im-
plication:

n∑︂
j=1

max

⎧⎪⎨⎪⎩ aij
aij + ∑︁

m ̸=j
aim

,
aij

aij + ∑︁
m̸=j

aim

⃓⃓⃓⃓
⃓⃓⃓ i ̸= j

⎫⎪⎬⎪⎭ < 1 ⇒

⇒ ∃π : 0 < ∑︁n
j=1 πj ≤ 1 ∧ A is a homogeneous interval BR

π -matrix.
Ergo we can compose these two implications (because from Proposition 5.11

we get that if A is an interval BR
Π-matrix, then it has positive row sums intervals

as well, therefore fulfilling the assumptions of Theorem 5.7) and thus obtain
the following:

A is an interval BR
Π-matrix ⇒ ∃π : 0 < ∑︁n

j=1 πj ≤ 1 ∧ A is a homo-
geneous interval BR

π -matrix.
⊠

What we now obtained is the second inclusion we need to show the equality
among our two interval matrix classes, the class of the homogeneous interval
BR
π -matrices and that of the interval BR

Π-matrices.

Theorem 5.14. Let A ∈ IRn×n be an interval square matrix with positive row
sums intervals. Then A is an interval BR

Π-matrix if and only if ∃π ∈ Rn such
that 0 < ∑︁n

j=1 πj ≤ 1 and that A is a homogeneous interval BR
π -matrix.

Proof. Follows from combining Corollaries 5.4 and 5.13. ⊠
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So we have proved that the two classes we have defined at the beginning of this
chapter are the same, hence it does not make any sense to differentiate the two.
Thus from now on we will refer to them as ”interval BR

π -matrices”.

Definition 5.15 (interval BR
π -matrix). Let A ∈ IRn×n and π ∈ Rn such that 0 <∑︁n

j=1 πj ≤ 1. Then we say that A is an interval BR
π -matrix if it is a homogeneous

interval BR
π -matrix.

Corollary 5.16. Every interval BR
π -matrix with π ≥ 0 is an interval P-matrix.

Proof. Direct corollary of Corollary 5.2.
⊠

Remark 5.17. Because of this definition, the characterizations of the interval
BR
π -matrices (and because of Theorem 5.14 even of the BR

Π-matrices) are the same
as the characterizations of the homogeneous interval BR

π -matrices, thus we may
use those stated in section 5.1

5.3 Fundamental properties
In this section let us take a look at some fundamental properties the interval
BR
π -matrices posses, be it conditions their entries fulfill or some their interesting

subclasses, like an interval BR
π -matrices that are interval Z-matrices as well.

Proposition 5.18. Let π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤ 1 and let A ∈ IRn×n be

an interval BR
π -matrix. Then the following holds:

1) ∀i ∈ [n] : aii > max
{︄
πi ·

(︄
aii + ∑︁

j ̸=i
aij

)︄
, πi ·

(︄
aii + ∑︁

j ̸=i
aij

)︄}︄
,

2) ∀i, j ∈ [n], j ̸= i : πi ≥ πj ⇒ aii > aij,

3) let k = argmax{πi | i ∈ [n] }, then ∀j ̸= k : akk > akj and

4) ∀i, j ∈ [n], j ̸= i : πj ≤ 0 ⇒ aij < 0.

Proof. Let A ∈ IRn×n be an interval BR
π -matrix for some π ∈ Rn such that

0 < ∑︁n
j=1 πj ≤ 1.

1) Let A1, A2 ∈ Rn×n be defined as follows:

A1 = A

A2 = (am1m2); am1m2 =
{︄
aii if m1 = m2 = i,
am1m2 otherwise.

Because A1, A2 ∈ A, they are both BR
π -matrices, thus from Proposition

2.35, part 1) we get that this point holds.

2) Let A′ ∈ Rn×n be defined as follows:

A′ = (a′
m1m2); a′

m1m2 =
{︄
aii if m1 = m2 = i,
am1m2 otherwise.

Because A′ ∈ A, it is a BR
π -matrix, thus from Proposition 2.35, part 2) we

get that this point holds.
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3) Direct consequence of the previous point.

4) Because A ∈ A, it is a BR
π -matrix, thus from Proposition 2.35, part 4) we

get that this point holds.

⊠

Corollary 5.19. Let π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤ 1 with π1 = . . . = πn = r

and let A ∈ IRn×n be an interval BR
π -matrix. Then the following holds:

1) ∀i, j ∈ [n], j ̸= i : aii > aij and

2) trA > r ·
n∑︁
i=1

(︄
aii + ∑︁

j ̸=i
aij

)︄
.

Proof. 1) Direct corollary of Proposition 5.18, part 2).

2) Direct corollary of Proposition 5.18, part 1). What is good to notice (even
though not that important) is that for r = πi > 0 (which must hold,
if 0 < ∑︁n

j=1 r) it applies that

max
⎧⎨⎩πi ·

⎛⎝aii +
∑︂
j ̸=i

aij

⎞⎠ , πi ·

⎛⎝aii +
∑︂
j ̸=i

aij

⎞⎠⎫⎬⎭ =

= πi · max
⎧⎨⎩aii +

∑︂
j ̸=i

aij, aii +
∑︂
j ̸=i

aij

⎫⎬⎭ = πi ·

⎛⎝aii +
∑︂
j ̸=i

aij

⎞⎠ .
⊠

Theorem 5.20. Let A ∈ IRn×n be an interval Z-matrix and let π ∈ R+n such
that 0 < ∑︁n

j=1 πj ≤ 1. Then the following is equivalent:

1) A is an interval BR
π -matrix,

2) A is an interval B-matrix,

3) ∀i ∈ [n] :
n∑︁
j=1

aij > 0,

4) ∀i ∈ [n] : aii >
∑︁
j ̸=i

|aij|.

5) A is a B-matrix.

Proof. ”1) ⇔ 2)”: From Proposition 2.37, we get that ∀A ∈ A : A is a BR
π -matrix

⇔ A is a B-matrix. Hence our equivalence holds.
”2) ⇔ 3) ⇔ 4) ⇔ 5)”: Follows from Theorem 3.16.

⊠

Proposition 5.21. Let π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤ 1 and let A ∈ IRn×n be

an interval BR
π -matrix. If α ∈ Rn such that 0 < ∑︁n

j=1 αj ≤ 1 and α ≥ π, then A
is interval BR

α -matrix.

Proof. It holds for every instance of the interval matrix (see Proposition 2.38),
thus it holds for the whole interval matrix.

⊠
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Proposition 5.22. Let P = perm(i1, . . . , in), where i1, . . . , in = [n] be the per-
mutation matrix of order n defined by

P = (pm1m2); pm1m2 =
{︄

1 if m2 = im1 ,
0 otherwise.

Let π ∈ Rn such that 0 <
∑︁n
j=1 πj ≤ 1 and let A ∈ IRn×n be an interval BR

π -
matrix. Let α = (πi1 , . . . , πin)T . Then PAP T is a BR′

α -matrix.

Proof. It holds for every instance of the interval matrix (see Proposition 2.39),
therefore it holds for the whole interval matrix.

⊠

5.4 Closure properties
In this section, we shall establish our understanding of what closure properties
the class of interval BR

π -matrices posses.

Proposition 5.23. Let α, β ∈ Rn such that 0 < ∑︁n
j=1 αj ≤ 1 and 0 < ∑︁n

j=1 βj ≤
1 and let π ∈ Rn defined by ∀i ∈ [n] : πi = max{αi, βi}. Let A,B ∈ IRn×n be
an interval BR

α -matrix and an interval BQ
β -matrix, respectively. If ∑︁n

j=1 πj ≤ 1,
then A + B is an interval BR+Q

π -matrix.

Proof. It holds for every pair of instances of A,B (see Proposition 2.40), thus it
holds for whole interval matrix A + B.

⊠

Remark 5.24. Just as in the real case, we can see that for α, β ≥ 0, we again
get π ≥ 0, therefore even the subclass of interval BR

π -matrices for π ≥ 0 is closed
in the same manner as above.

Corollary 5.25. Let π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤ 1 and let A,B ∈ IRn×n

be an interval BR
π -matrix and an interval BQ

π -matrix. Then A + B is an interval
BR+Q
π -matrix.

Proof. Direct corollary of the previous proposition, Proposition 5.23.
⊠

Proposition 5.26. Let π ∈ Rn such that 0 <
∑︁n
j=1 πj ≤ 1 and let s, t ∈ R+

0
with s + t > 0. Let A,B ∈ IRn×n be an interval BR

π -matrix and an interval
BQ
π -matrix, respectively. Then s · A + t · B is an interval BsR+tQ

π -matrix.

Proof. It holds for every pair of instances of A,B (see Proposition 2.43), thus it
holds for whole interval matrix s · A + t · B.

⊠

Proposition 5.27. Let π ∈ Rn such that 0 < ∑︁n
j=1 πj ≤ 1 and let A ∈ IRn×n

be an interval BR
π -matrix. Let D ∈ IRn×n be a positive interval diagonal matrix.

Then D · A is an interval BR′
π -matrix.

Proof. It holds for every pair of instances of D and A (see Proposition 2.44),
thus it holds for whole interval matrix D · A.

⊠
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Corollary 5.28. Let α ∈ R+, π ∈ Rn such that 0 <
∑︁n
j=1 πj ≤ 1 and let

A ∈ IRn×n be an interval BR
π -matrix. Then α · A is an interval BαR

π -matrix.

Proof. Direct corollary of Proposition 5.26 or Proposition 5.27 ⊠

Remark 5.29. Because the real BR
π -matrices are not closed under the following

operations (see Propositions 2.46, 2.47, 2.48 and 2.49), then surely even interval
BR
π -matrices are in general not closed under them. Such operations are:

• matrix inverse,

• matrix power and

• matrix product.

In addition even a matrix product of an interval BR
π -matrix and an interval

BR
ψ -matrix is not necessarily an interval BR

φ -matrix for any φ.
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6. Generating interval B-matrices
and interval doubly B-matrices
The time may come when we might find ourselves in a need for some arbitrary
interval B- or doubly B-matrices, be it for testing our hypothesis or anything else.
So here, in this chapter, we shall introduce a mean to generate them.

6.1 Generating interval B-matrices
Let us imagine the following situation. We have a real B-matrix A and we want
to inflate it, so it becomes an interval B-matrix. Then the solution is simple. Let
A = [A,A]. Then we are searching for such α > 0, that A and [1 ± α] fulfill
the conditions of Proposition 3.26.

Now let us assume, we don’t have any real instance, but want to generate
brand new interval B-matrix. First, we will generate a real B-matrix A, next we
will choose a positive real number α and decide, which way we want to inflate
this instance. Either we choose α ·A to be a center of our new interval B-matrix,
thus using Proposition 3.26, or we determine α · A to be a lower / upper bound
of the interval B-matrix, thus using Proposition 3.24.

How do we generate some real B-matrix for this usage? First we might realize
that later we will scale it using α, so we might just focus on matrices with non-
diagonal entries in absolute value less than or equal to 1. (Then by choice of α
we are able to get values of any arbitrary magnitude.) Hence let us introduce
the following lemmata:

Lemma 6.1. Let n ∈ N. Let N ∈ R, N ≥ 2n − 1 arbitrary and let A ∈ IRn×n

defined as follows:

A = (aij); aij =
{︄

[2n− 1, N ] if i = j,
[−1, 1] if i ̸= j.

Then A is an interval B-matrix.

Proof. We will show, that A satisfies the conditions of the characterization stated
in Theorem 3.5:

a)
n∑︂
j=1

aij = (n− 1) · (−1) + (2n− 1) = n > 0

b) ∀k ̸= i :∑︂
j ̸=k

aij = (n− 2) · (−1) + (2n− 1) = (n+ 1) > (n− 1) = (n− 1) · aij

⊠
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Lemma 6.2. Let n ∈ N, n ≥ 2. Let N ∈ R, N ≥ n arbitrary and let A ∈ IRn×n

defined as follows:

A = (aij); aij =
{︄

[n,N ] if i = j,
[−1, 1

n−1 ] if i ̸= j.

Then A is an interval B-matrix.

Proof. We will show, that A satisfies the conditions of the characterization stated
in Theorem 3.5:

a)
n∑︂
j=1

aij = (n− 1) · (−1) + n = 1 > 0

b) ∀k ̸= i :

∑︂
j ̸=k

aij = (n− 2) · (−1) + n = 2 > 1 = (n− 1) · 1
n− 1 = (n− 1) · aij

⊠

Lemma 6.3. Let n ∈ N, n ≥ 2. Let N ∈ R, N ≥ n arbitrary and let A ∈ IRn×n

defined as follows:

A = (aij); aij =
{︄

[n,N ] if i = j,
[ −1
n−1 , 1] if i ̸= j.

Then A is an interval B-matrix.

Proof. We will show, that A satisfies the conditions of the characterization stated
in Theorem 3.5:

a)
n∑︂
j=1

aij = (n− 1) ·
(︃ −1
n− 1

)︃
+ n = (n− 1) > 0

b) ∀k ̸= i :

∑︂
j ̸=k

aij = (n− 2) ·
(︃ −1
n− 1

)︃
+ n = n2 − 2n+ 2

n− 1 >

>
n2 − 2n+ 1

n− 1 = (n− 1) = (n− 1) · aij

⊠

Therefore, because of Definition 3.1, we proved that in case we want to gener-
ate an interval B-matrix we can take any matrix A ∈ Rn×n, which is of either one
of the following forms:

A = (aij); aij ∈
{︄

[2n− 1,∞) if i = j,
[−1, 1] if i ̸= j.
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or
A = (aij); aij ∈

{︄
[n,∞) if i = j,
[−1, 1

n−1 ] if i ̸= j.

or
A = (aij); aij ∈

{︄
[n,∞) if i = j,
[ −1
n−1 , 1] if i ̸= j.

or whose rows are taken from such matrices and combined (see Remark 2.7),
and use the process mentioned above.

Now let us try to define an even more general approach. Instead of using
Propositions 3.24, 3.26 and one interval to multiply the whole matrix by, we will
use Propositions 3.27 and 3.28 and a different interval for each row.

So let us start by taking any real B-matrix A ∈ Rn×n. (We can take any one we
already have or use one defined above.) Next for every i ∈ [n] we randomly choose
αi ∈ R+ and decide, whether we want the αi · Ai∗ to be center of the i-th row
of our generated matrix, or its lower / upper bound. Then we use Propositions
3.27 and 3.28 to obtain the respective intervals αi and generate interval B-matrix
by multiplying the rows of A by relevant intervals. (I.e. i-th row by interval αi.)

6.2 Generating interval doubly B-matrices
As stated in Proposition 4.8, if we want a doubly B-matrix, we can either have
a B-matrix, or almost a B-matrix, in the meaning that only one row does not fulfill
the conditions of B-matrix. Let us start our generation by random choice, whether
we will generate an interval B-matrix, or a proper interval doubly B-matrix.
In the first case we will use the process described in the previous section. So
from now on, let us consider only generation of proper interval doubly B-matrices.

The approach we shall choose in attempt to generate proper interval doubly B-
matrices is the following. First we shall generate an interval B-matrix, for example
using methods stated in section 6.1. Then we will choose a random i ∈ [n], which
will be the index of row that we are going to tweak in such a way that we might
possibly break its conditions on being a B-matrix. So let us assume we already
have an interval B-matrix A ∈ IRn×n and i ∈ [n] and let us show, how to tweak
an i-th row.

Let x, x ∈ Rn be two vector variables and let A(x, x, i) ∈ IRn×n defined
as follows:

A(x, x, i)i∗ =
[︂
Ai∗ + xT , Ai∗ + xT

]︂
∧ ∀j ∈ [n] \ {i} : A(x, x, i)j∗ = Aj∗.

We will construct such a linear program which gives us the most interesting values
for both x and x (in the meaning that it has the maximum possible ∑︁n

m=1 xm −∑︁n
m=1 xm while both xi and xi are zero, hence it does not change the diagonal

entry (otherwise we could increase the diagonal entry up to infinity) but results
in the biggest possible overall change) from whose results we can construct such
vectors x, x that A(x, x, i) is an interval doubly B-matrix:
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maximize
n∑︁

m=1
xm −

n∑︁
m=1

xm

subject to xk ≤ aii − aik for k ̸= i

− ∑︁
m ̸=i

xm ≤ aii·ajj

−
∑︁

m ̸=j

ajm
+ ∑︁

m ̸=i
aim for j ̸= i :

− ∑︁
m̸=j

ajm > 0

− ∑︁
m ̸=i

xm ≤ aii(ajj−ajl)∑︁
m ̸=j
m ̸=l

(ajl−ajm) + ∑︁
m̸=i

aim for j ̸= i, l ̸= j :

∑︁
m̸=j
m̸=l

(︂
ajl − ajm

)︂
> 0

⎛⎝ ajj

−
∑︁

m ̸=j

ajm
+ (n− 2)

⎞⎠ · xk − ∑︁
m̸=i
m̸=k

xm ≤

≤

(︂
aii−aik

)︂
ajj

−
∑︁

m ̸=j

ajm
− ∑︁

m ̸=i
m ̸=k

(aik − aim) for k ̸= i, j ̸= i :

− ∑︁
m̸=j

ajm > 0

⎛⎜⎜⎜⎜⎝ (ajj−ajl)∑︁
m ̸=j
m̸=l

(ajl−ajm) + (n− 2)

⎞⎟⎟⎟⎟⎠ · xk − ∑︁
m ̸=i
m ̸=k

xm ≤

≤

(︂
aii−aik

)︂
(ajj−ajl)∑︁

m ̸=j
m ̸=l

(ajl−ajm) − ∑︁
m̸=i
m̸=k

(aik − aim) for k ̸= i, j ̸= i, l ̸= j :

∑︁
m̸=j
m̸=l

(︂
ajl − ajm

)︂
> 0

xi = 0
xi = 0
x ≥ 0
x ≤ 0

Theorem 6.4. Let x∗, x∗ be the output of the previous linear program, thus its
optimum. Then for any 0 < ϵ ≤ 1 the matrix A(x∗ · (1 − ϵ), x∗ · (1 − ϵ), i) is still
an interval doubly B-matrix.

Proof. We will show that for any pair of x, x which is a feasible solution of the lin-
ear program, the matrix A(x · (1− ϵ), x · (1− ϵ), i) is an interval doubly B-matrix.

69



First we need to remember that if x, x is a feasible solution, then it fulfills
the conditions of the linear program. And if we take a closer look at what it
means for vectors x · (1−ϵ), x · (1−ϵ), we discover that those satisfy strictly sharp
versions of the conditions from the linear program (by which we mean the same
conditions, but with < instead of ≤), except for the last four, which are satisfied
in the original form.

Ergo we will show, that we can transform sharp versions of the conditions
of the linear program into subset of conditions on A(x, x, i) from the characteriza-
tion stated in Theorem 4.3, where x, x fulfill the sharp versions of our conditions.
(Plus there are some conditions which just tell us something about a shape of fea-
sible solutions, but we do not have to care about those here. They just ensure,
that A ⊆ A(x, x, i).) So what we are interested in, are the first five conditions
of the linear program. But first, we should mention some observations, which
come from the fact, that A is an interval B-matrix, more respectively from Re-
mark 3.2: ∀j ∈ [n] : ajj > max{0, ajk|k ̸= j}, thus ∀j ∈ [n] : ajj > 0 ∧ ∀k ̸=
j : aii − ajk > 0.

Now let us take a look at the sharp versions of the conditions of our linear
program.

1) xk < aii − aik for k ̸= i.

This we can rearrange to

∀k ̸= i : aik + xk < aii = aii + xi,

because xi(= xi) = 0 for any feasible solution. But that is equal to

∀k ̸= i : A(x, x, i)ik < A(x, x, i)
ii
.

And because A(x, x, i)
ii

= aii and A is an interval doubly B-matrix, hence
aii > 0, then we get

A(x, x, i)
ii
> max

{︂
0,A(x, x, i)ik|k ̸= i

}︂
,

which is condition a) of Theorem 4.3 for i-th row of A(x, x, i). (The resting
rows fulfill the a) condition as well, because ∀j ̸= i : A(x, x, i)j∗ = Aj∗
and A is an interval doubly B-matrix.)

2) − ∑︁
m̸=i

xm <
aii·ajj

−
∑︁

m̸=j

ajm
+ ∑︁

m ̸=i
aim for j ̸= i such that − ∑︁

m̸=j
ajm > 0.

This we can rearrange to ∀j ̸= i :

−
∑︂
m̸=j

ajm > 0 ⇒ aii · ajj >

⎛⎝−
∑︂
m ̸=i

(aim + xm)
⎞⎠⎛⎝−

∑︂
m̸=j

ajm

⎞⎠ .
But that is equivalent to ∀j ̸= i : − ∑︁

m̸=j
A(x, x, i)

jm
> 0 ⇒

⇒ A(x, x, i)
ii

· A(x, x, i)
jj
>

>

⎛⎝−
∑︂
m ̸=i

A(x, x, i)
im

⎞⎠⎛⎝−
∑︂
m ̸=j

A(x, x, i)
jm

⎞⎠ .
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And because ∀j ∈ [n] : A(x, x, i)
jj

= ajj > 0 it leads to ∀j ̸= i :

A(x, x, i)
ii

· A(x, x, i)
jj
>

>

⎛⎝max
⎧⎨⎩0,−

∑︂
m ̸=i

A(x, x, i)
im

⎫⎬⎭
⎞⎠⎛⎝max

⎧⎨⎩0,−
∑︂
m̸=j

A(x, x, i)
jm

⎫⎬⎭
⎞⎠ .

(If either of the sums is non-positive, then the product of the two maxima
is 0, which is surely less then the product of (positive) diagonal elements.
The remaining case holds as direct implication of the condition from the lin-
ear program.)
This is exactly condition b) of Theorem 4.3, part III. for i-th and any other
row j of A(x, x, i). (The resting rows fulfill this part of the b) condition
as well as we will show in the conclusion of the proof.)

3) − ∑︁
m̸=i

xm <
aii(ajj−ajl)∑︁
m̸=j
m̸=l

(ajl−ajm) + ∑︁
m ̸=i

aim

for j ̸= i, l ̸= j such that ∑︁
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂
> 0.

This we can rearrange to ∀j ̸= i,∀l ̸= j : ∑︁
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂
> 0 ⇒

⇒ aii
(︂
ajj − ajl

)︂
>

⎛⎝−
∑︂
m ̸=i

(aim + xm)
⎞⎠
⎛⎜⎜⎝∑︂
m ̸=j
m ̸=l

(︂
ajl − ajm

)︂⎞⎟⎟⎠
But that is equivalent to ∀j ̸= i,∀l ̸= j :∑︂

m ̸=j
m ̸=l

(︃
A(x, x, i)jl − A(x, x, i)

jm

)︃
> 0 ⇒

⇒ A(x, x, i)
ii

(︃
A(x, x, i)

jj
− A(x, x, i)jl

)︃
>

>

⎛⎝−
∑︂
m̸=i

A(x, x, i)
im

⎞⎠
⎛⎜⎜⎝∑︂
m̸=j
m̸=l

(︃
A(x, x, i)jl − A(x, x, i)

jm

)︃⎞⎟⎟⎠ .
And because ∀j ∈ [n] : A(x, x, i)

jj
= ajj > 0 and ∀j ̸= i, ∀l ̸= j :

A(x, x, i)
jj

− A(x, x, i)jl = ajj − ajl > 0 it leads to ∀j ̸= i,∀l ̸= j :

A(x, x, i)
ii

(︃
A(x, x, i)

jj
− A(x, x, i)jk

)︃
>

>

⎛⎝max
⎧⎨⎩0,−

∑︂
m ̸=i

A(x, x, i)
im

⎫⎬⎭
⎞⎠ ·

·

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=j
m̸=l

(︃
A(x, x, i)jl − A(x, x, i)

jm

)︃⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ .
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(If either of the sums is non-positive, then the product of the two maxima
is 0, which is surely less then the product of (positive) diagonal elements.
The remaining case holds as direct implication of the condition from the lin-
ear program.)
This is exactly one part of the condition b) of Theorem 4.3, part II. for i-th
and any other row j of A(x, x, i). (The resting rows fulfill this part of the b)
condition as well as we will show in the conclusion of the proof.)

4) ⎛⎜⎝ ajj
− ∑︁

m̸=j
ajm

+ (n− 2)

⎞⎟⎠ · xk −
∑︂
m̸=i
m ̸=k

xm <

<

(︂
aii − aik

)︂
ajj

− ∑︁
m̸=j

ajm
−
∑︂
m ̸=i
m̸=k

(aik − aim)

for k ̸= i, j ̸= i : such that − ∑︁
m ̸=j

ajm > 0.

This we can rearrange to ∀k ̸= i,∀j ̸= i : − ∑︁
m ̸=j

ajm > 0 ⇒

⇒ ajj
(︂
aii − (aik + xk)

)︂
>

>

⎛⎝−
∑︂
m ̸=j

ajm

⎞⎠
⎛⎜⎜⎝∑︂
m ̸=i
m ̸=k

(︂
(aik + xk) − (aim + xm)

)︂⎞⎟⎟⎠ .
But that is equivalent to ∀k ̸= i,∀j ̸= i :

−
∑︂
m̸=j

A(x, x, i)
jm
> 0 ⇒

⇒ A(x, x, i)
jj

(︂
A(x, x, i)

ii
− A(x, x, i)ik

)︂
>

>

⎛⎝−
∑︂
m̸=j

A(x, x, i)
jm

⎞⎠
⎛⎜⎜⎝∑︂
m ̸=i
m̸=k

(︂
A(x, x, i)ik − A(x, x, i)

im

)︂⎞⎟⎟⎠ .
And because ∀j ∈ [n] : A(x, x, i)

jj
= ajj > 0 and ∀k ̸= i : A(x, x, i)

ii
>

A(x, x, i)ik (see the first condition), thus ∀k ̸= i : A(x, x, i)
ii

−A(x, x, i)ik >
0, it leads to ∀k ̸= i,∀j ̸= i :

A(x, x, i)
jj

(︂
A(x, x, i)

ii
− A(x, x, i)ik

)︂
>

>

⎛⎝max
⎧⎨⎩0,−

∑︂
m ̸=j

A(x, x, i)
jm

⎫⎬⎭
⎞⎠ ·

·

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=i
m̸=k

(︂
A(x, x, i)ik − A(x, x, i)

im

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ .
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(If either of the sums is non-positive, then the product of the two maxima
is 0, which is surely less then the product of (positive) diagonal elements.
The remaining case holds as direct implication of the condition from the lin-
ear program.)
This is exactly the second yet missing part of the condition b) of Theo-
rem 4.3, part II. for any row j ̸= i and the i-th row of A(x, x, i). (The rest-
ing rows fulfill this part of the b) condition as well as we will show in the con-
clusion of the proof.)

5)
⎛⎜⎜⎜⎜⎜⎝

(︂
ajj − ajl

)︂
∑︁
m̸=j
m̸=l

(︂
ajl − ajm

)︂ + (n− 2)

⎞⎟⎟⎟⎟⎟⎠ · xk −
∑︂
m̸=i
m ̸=k

xm <

< −

(︂
aii − aik

)︂ (︂
ajj − ajl

)︂
∑︁
m̸=j
m ̸=l

(︂
ajl − ajm

)︂ +
∑︂
m ̸=i
m̸=k

(aik − aim)

for k ̸= i, j ̸= i, l ̸= j such that ∑︁
m̸=j
m̸=l

(︂
ajl − ajm

)︂
> 0.

This we can rearrange to ∀k ̸= i,∀j ̸= i, ∀l ̸= j : ∑︁
m̸=j
m̸=l

(︂
ajl − ajm

)︂
> 0 ⇒

⇒
(︂
aii − (aik + xk)

)︂(︂
ajj − ajl

)︂
>

>

⎛⎜⎜⎝∑︂
m ̸=i
m ̸=k

(︂
(aik + xk) − (aim + xm)

)︂⎞⎟⎟⎠
⎛⎜⎜⎝∑︂
m̸=j
m ̸=l

(︂
ajl − ajm

)︂⎞⎟⎟⎠
But that is equivalent to ∀k ̸= i,∀j ̸= i, ∀l ̸= j :

∑︂
m ̸=j
m̸=l

(︃
A(x, x, i)jl − A(x, x, i)

jm

)︃
> 0 ⇒

⇒
(︂
A(x, x, i)

ii
− A(x, x, i)ik

)︂(︃
A(x, x, i)

jj
− A(x, x, i)jl

)︃
>

>

⎛⎜⎜⎝∑︂
m ̸=i
m ̸=k

(︂
A(x, x, i)ik − A(x, x, i)

im

)︂⎞⎟⎟⎠ ·

·

⎛⎜⎜⎝∑︂
m̸=j
m̸=l

(︃
A(x, x, i)jl − A(x, x, i)

jm

)︃⎞⎟⎟⎠ .
And because ∀k ̸= i : A(x, x, i)

ii
> A(x, x, i)ik (see the first condition), thus

∀k ̸= i : A(x, x, i)
ii

− A(x, x, i)ik > 0, and ∀j ̸= i, ∀l ̸= j : A(x, x, i)
jj

−
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A(x, x, i)jl = ajj − ajl > 0 it leads to ∀k ̸= i, ∀j ̸= i, ∀l ̸= j :

(︂
A(x, x, i)

ii
− A(x, x, i)ik

)︂(︃
A(x, x, i)

jj
− A(x, x, i)jl

)︃
>

>

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m̸=i
m̸=k

(︂
A(x, x, i)ik − A(x, x, i)

im

)︂⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ ·

·

⎛⎜⎜⎝max

⎧⎪⎪⎨⎪⎪⎩0,
∑︂
m ̸=j
m ̸=l

(︃
A(x, x, i)jl − A(x, x, i)

jm

)︃⎫⎪⎪⎬⎪⎪⎭
⎞⎟⎟⎠ .

(If either of the sums is non-positive, then the product of the two maxima
is 0, which is surely less then the product of (positive) diagonal elements.
The remaining case holds as direct implication of the condition from the lin-
ear program.)
This is exactly condition b) of Theorem 4.3, part I. for i-th and any other
row j of A(x, x, i). (The resting rows fulfill this part of the b) condition
as well as we will show in the conclusion of the proof.)

Now if we take any rows j, j′ ̸= i of matrix A(x, x, i), then, because they are
both the same as in the original matrix A and because A is an interval B-matrix,
thus an interval doubly B-matrix, the whole condition b) (all three parts) holds
for them.

Hence we have shown that for any feasible x, x,matrix A(x∗·(1−ϵ), x∗·(1−ϵ), i)
fulfills all the conditions of characterization stated in Theorem 4.3, therefore it is
an interval doubly B-matrix.

⊠

Proposition 6.5. The above formulated linear program has a non-empty set
of feasible solutions.

Proof. As stated in the proof of the previous theorem, Theorem 6.4, by rear-
ranging the conditions from the linear program, we get a subset of conditions
on A(x, x, i) being an interval doubly B-matrix from Theorem 4.3 (plus four
conditions on domain of values of x and x, but which are all satisfied by o).
Moreover, we know that A(o, o, i) = A and that A is an interval B-matrix, thus
even an interval doubly B-matrix (Proposition 4.7). Hence it must fulfill the con-
ditions from characterization of interval doubly B-matrices stated in Theorem 4.3.
Therefore o is a feasible solution of the linear program.

⊠

Remark 6.6. Using this method, we have nothing to guarantee us, that what we
get in the end is a proper interval doubly B-matrix, it still might be an interval
B-matrix. But still, from the procedure it seems highly plausible, that if it is
possible to create a proper interval B-matrix from the specific A by tweaking
the specific row i, then this method will achieve it.
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Conclusion
The main goal of this thesis was to achieve some understanding of a few easily
recognizable subclasses of P-matrices and to build on that to generalize these
subclasses into interval settings, i.e. to find their characterizations, necessary
conditions and sufficient ones and to inspect their properties.

Results of the thesis
We have achieved to widen our understanding of classes of B-matrices, dou-
bly B-matrices and BR

π -matrices (Chapter 2), which are polynomially verifiable
subclasses of P-matrices. We introduced classes of interval matrices analogous
to these, them being interval B-matrices (Chapter 3), interval doubly B-matrices
(Chapter 4) and two classes corresponding to real BR

π -matrices, homogeneous in-
terval BR

π -matrices and (heterogeneous) interval BR
Π-matrices, but for them we

have proved, that they are, in a certain sense, one and the same, and desig-
nated them as one class of interval BR

π -matrices (Chapter 5). Thus what we
attained is a widening of a group of polynomially recognizable subclasses of in-
terval P-matrices.

Not only have we found characterizations, but managed to state necessary
conditions as well as the sufficient ones (mosty for the class of interval doubly
B-matrices, which has computationally the most complex recognition). On top
of that, we inspected what operations these matrix classes are closed under
and what general properties they posses.

And as an icing on the cake we have derived methods to generate interval
B-matrices and interval doubly B-matrices too, which might, for example, help
to test some hypotheses one may have.

Open problems
There are several paths a curious mind might want to explore in order to expand
our knowledge in this region. One way is to inspect more properties to interval
case, for example try to adapt those introduced in [14], or to look into sub-direct
sums of BR

π -matrices as shown in [13] and to analyze their analogies in the inter-
val settings. Another possibility is to generalize our three classes even further,
into parametric matrices, otherwise known as linearly dependent, shown for ex-
ample in [15]. Or one might want to generalize another subclass of P-matrices,
which might be, for example, so called mimes, which stands for ”M-matrix and In-
verse M-matrix Extension”, as they are introduced in [16].
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