
BACHELOR THESIS

Filip Rechtorík

Creati - Game Development Platform

Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D.

Study programme: Computer Science

Specialization: General Computer Science

Prague 2021

1

I declare that I carried out this bachelor thesis independently, and only with the cited
sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act No.
121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles
University has the right to conclude a license agreement on the use of this work as a
school work pursuant to Section 60 paragraph 1 of the Copyright Act.

In…...... date............ signature

2

3

Title: Creati - Game Development Platform

Author: Filip Rechtorík

Department / Institute: Department of Distributed and Dependable Systems

Supervisor of the bachelor thesis: Mgr. Pavel Ježek, Ph.D., Department of
Distributed and Dependable Systems

Abstract: The goal of the thesis is to create a game engine based on entity component
system. The game engine should include editor, which would allow developers to
create their own components, link custom assets to these components, create world
from these components, and have them visualized in the editor. Editor will also
provide tools for real-time debugging. By default the engine should contain graphics
system, input system, simple physics system, and user interface system. As a final
step the engine should support exporting the project as a standalone game.

Keywords: Game Engine 3D Rendering DirectX .NET

4

Contents
Contents 5

1. Introduction 10

1.1. What is a game engine? 10

1.2. Goals 10

2. Implementation Analysis 11

2.1. Programming Languages 11

2.2. Game objects 12

2.3. System creation 15

2.4. Game Loop 15

2.5. Rendering 20

2.6. Graphical components 23

2.7. User Interface 23

2.8. Physics 24

2.9. Editor 24

2.10. Assets 27

2.11. Serialization 30

2.12. Inspecting 34

2.13. Scripting 35

2.14. Exporting 36

3. Developer Documentation 37

3.1. Compilation 38

3.2. Creati projects 38

3.3. Editor 41

3.4. Rendering 43

3.5. WPF Window 44

3.6. Input 44

3.7. User Interface 44

3.8. Assemblies 45

3.9. Inspecting 47

3.10. Assets 48

4. User documentation 48

4.1. Creating game objects programmatically 48

4.2. Component lifetime 49

4.3. Finding components 49

4.4. Finding other game objects 50

4.5. Scenes 51

4.6. Simple behavior inside components 51

4.7. Working with assets 55

5

4.8. Understanding rendering process 57

4.9. Creating new graphics 64

4.10. Existing shaders and programs 67

4.11. Working with the inspector 67

4.12. Editor gizmos 69

4.13. Creating custom systems 73

4.14. Input 74

4.15. User interface 74

4.16. Physics 75

4.17. Serialization 75

4.18. Editors 77

4.19. Components 83

4.20. Debug 83

5. Demo tutorial 83

5.1. Demo walkthrough 83

5.2. Ship 84

5.3. Skybox 86

5.4. Controls 87

5.5. Physics 87

5.6. Camera 88

5.7. Controlling the ship 89

5.8. Health 90

5.9. Damage sources 90

5.10. Lasers 91

5.11. Asteroid 92

5.12. User Interface 93

5.13. Scenes 93

5.14. Explosions 94

5.15. Finishing 94

6. Conclusion 96

7. Bibliography 97

8. Attachments 98

6

1. Introduction

1.1. What is a game engine?
A Game Engine is defined as being a set of software tools or API's built to
optimize the development of a video game. This will typically include a game
loop or at the very least a 2D or 3D rendering engine.

— https://gamescrye.com/blog/what-is-a-game-engine/ [1]

Creating a game from scratch is a lot of work. The programmer has to create a
rendering system, handle input, figure out user interface, create a world editor or
instantianiate the whole world using text. It also requires a lot of additional
knowledge about rendering, working with the GPU, and general game engine
architecture. For that reason, it is standard to use an existing game engine when
creating a new game.

We would like to create a game engine that can compete with modern game engines
such as Unity and Unreal Engine. The game engine should be fully modifiable by the
developer and should also include novel features such as CLSL, which stands for C#
Shading Language. CLSL would then allow developers to write shaders for DirectX
directly in C# rather than having to learn and use HLSL.

Modern game engines include an overwhelming amount of features, far exceeding
the scope of this thesis. For that reason we chose to create a usable core of a game
engine with an editor that can later be expanded on by a follow up thesis (for
example the CLSL).

1.2. Goals
1. Create a fully extendable game engine core with the following features:

a. Extendable game object system
b. Ability to create new systems
c. Extendable rendering system
d. Extendable physics system
e. User interface system
f. Input system
g. Asset cache supporting custom resource types
h. Saving and loading of scenes

2. Create an editor with sufficient features for basic game development allowing
us to:

a. Create and edit scenes, game objects, and components
b. Debug the game and inspect the properties of our game objects and

components while debugging
c. Easily define a custom user interface for editing components
d. Link resources and game objects
e. Create custom resources from classes
f. Write custom scripts that can extend any part of the game engine
g. Export the game as a standalone app

7

2. Implementation Analysis

2.1. Programming Languages
First we need to choose programming languages for the project. We need a
programming language for the game engine itself, a programming language for the
rendering system, and a programming language for scripting. The languages we will
consider are: C#, C++, Rust [2], and Lua [3].

The first language, C++, is a very high performance programming language with
manual memory management and access to a huge amount of libraries. The C++ is
however slower to develop in because it is a lower level programming language. The
language is also unsafe because it is easy to create dangerous bugs such as memory
leaks.

A safer, but still a very high performance language is Rust. Rust is a newer
programming language similar to C++ but significantly safer. Because the language
is newer, it doesn’t have as many libraries as C++.

C# is a programming language with a pretty good performance, although not as good
as C++. One of the reasons why C# is slower than C++ is because it uses a garbage
collector. Garbage collector can be problematic in games because it can cause
stuttering when the garbage collector is collecting. The compiler also cannot perform
as many optimizations as for C++. However, C# is a very mature programming
language with many libraries. C# is also the only language from the ones mentioned
that supports reflection.

Lastly we have a scripting language Lua. From the languages mentioned, Lua is the
easiest to learn. However, because it is a scripting language, the performance is
significantly worse than that of the other languages.

Because we will need to inspect arbitrary game objects, we pretty much need
reflection, so C# is an easy choice for both the core engine and scripting. The
rendering engine could be in either C#, C++, or Rust. All of the languages have
libraries for working with the GPU (DirectX or OpenGL). If we chose C++ or Rust,
we would have a slightly higher performance. However, by using C#, we can
integrate the rendering code more directly in the game engine’s core. The author is
also most familiar with this programming language which is why it has been chosen
for the rendering code.

8

2.2. Game objects

Pretty much all games are composed from a number of game objects. Take a game
like Portal 2 [4] for example.

Figure 2.1: A screenshot from game Portal 2

In the figure 2.1, we can see several game objects. Player is a game object. Each of
the buttons is a separate game object. Even the portals are their own game objects.

In games, different game objects can have different properties. A patch of grass on
the ground is only a graphical game object and the player can pass through it. A
house is a game object that cannot move but is rendered and other objects can collide
with it. A car is a game object that is rendered, other objects can collide with it, and
is also affected by physics. The player character is also controlled by pressing keys
on the keyboard. On top of that, some game objects will need to have scripted
behaviors.

To deal with those arbitrary game objects, there are two main strategies – inheritance
and composition.

Inheritance works by having some base class, e.g. GameObject, which we then
extend by the functionality we want. The GameObject class typically only knows its
position in the world. When we want our game object to get rendered in the world,
we would create a new class GraphicalGameObject, inheriting the original
GameObject. Then if we wanted the GraphicalGameObject to behave physically, we
would create a class PhysicalGameObject, inheriting the GraphicalGameObject and
implementing the physical behavior.

This approach is however quite problematic. As more and more functions the game
objects can have, the hierarchy becomes less and less clear, and eventually forces
the developer to either duplicate code or to create a diamond dependency [5]. On top
of that, diamond dependency is not even supported in C#.

9

figure 2.2: Game objects creating a diamond hierarchy

For example, consider the class hierarchy in figure 2.2. We can clearly see that it
creates a diamond dependency. If we wanted to avoid it, we could for example
extend only one of the classes (e.g. PhysicalGameObject) and then implement the
whole functionality of the other subclass (AnimatedGameObject) all over again,
duplicating code.

An alternative approach to this is the composition. In the context of game engines,
composition is commonly called the Entity Component Framework [6]. The Entity
Component Framework has a base class called Entity or GameObject. This class
contains a collection of components. Each Component gives a specific functionality
to the game object. For example, to create the problematic
AnimatedPhysicalGameObject, we would simply create a new game object with
components Mesh, MeshAnimator, and PhysicalBehavior. For physics, there would
also be some collider component, defining the physical shape of the game object for
collisions.

The Entity Component Framework is clearly a much cleaner and extensible
approach, so we decided to use that approach in our game engine.

In our game engine, game objects are stored inside a class called Scene. We can
freely switch between multiple scenes – for example from Main Menu scene to the
Level 1 scene. Each Scene then contains a collection of game objects. Each
GameObject is then composed of many components, giving it functionality.
Furthermore, game objects can create a hierarchy. If one game object (e.g. player) is
under a different game object (e.g. ship), then moving the top game object will also
move the game objects under it. This means that the player would move together
with the ship.

2.3. System creation
A system is a collection of classes that give functionality to a set of components. We
will need to create several systems throughout the game engine and we need a
unified strategy for creating them. There is going to be a graphical system, physical
system, input system, user interface system, and then user defined systems.

10

For a system to give functionality to the components, it must know about them and
hold them in some collection. All systems also need to distinguish between different
scenes because game objects from different scenes should not affect each other in
any way. All of the systems will also need to be updated in a specific order. For
example, we need to update physics and move our objects before we can render
them.

There are three options for creating systems.
1. Have the system be a component
2. Create a special collection of systems inside each scene
3. Make the system a static class and remember the collection of components

per scene

To make the following text more clean, we will assume our system is called Physics
and our components are called RigidBody.

In (1), we would create a component called Physics that would manage RigidBodies.
Assuming that every component has some Update() method called every frame, we
would override that method and do the calculations there. We would then call
something like Scene.GameObjects[“Physics”].Component<Physics>() to access
our system. The problem is that there is no clear way to make sure the components
get updated in the correct order.

In (2), each scene would have a collection of systems. The systems could be lazily
initialized when we first create them. To access it, we would call something like
Scene.System<Physics>(). Each system would have a virtual method called
Update(). To make sure the systems get updated in the right order, we could have our
game loop retrieve the systems in their respective order and call the Update() on
them.

In (3), we would have a static class Physics containing the collection of RigidBodies.
Accessing the static class would be super easy. To update the systems in the right
order, we just have to call their respective Update() methods in the game loop. The
only problem here is that RigidBodies from multiple scenes get mixed together. To
solve that, we will have to keep multiple collections of RigidBodies, one per each
scene. Doing that in every system, and especially user defined systems, would be
quite annoying. We can however use a trick to make this process easier. We can
create a class1 that holds multiple copies of the same type and always gives us the
one for the current scene.

We will definitely not use strategy (1) because of its ugliness and the difficulty with
ensuring the correct update order. Strategies (2) and (3) are both pretty much equal in
their effectiveness and the choice comes down to preference. The game engine uses
the strategy (3).

1In the game engine, this corresponds to the generic class SceneStatic<T>.

11

Component collections
Every system needs to have at least one collection that holds all the relevant
components. We will now discuss the problematic of adding and removing these
components from the collections.

When we create a new component, we have two options of how to add it to the
relevant collection.

1. Let every system react to some event called every time a component is added
or removed.

2. Let the components add themselves to the systems.

If we use strategy (1), then every time a new component is created, every system will
react to the event and check if the component belongs there. This will clearly create
some unnecessary overhead every time components are created.

The strategy (2) on the other hand doesn’t have any overhead. It simply accesses the
collection through the static class of the system.

However, removing components using this strategy is problematic. If we (or the
user) forget to remove the dead component, then the dead component will remain in
the collection and might interfere with the other objects there. It isn’t even possible
to detect that and throw an exception to notify the user. This problem is solved in the
game engine by using a smart collection, which checks if the component is dead
every iteration, and if it is, it removes the component from the collection.

2.4. Game Loop
Every game has a game loop at its core. An example of a simple look is in the figure
2.3. This loop processes the input, updates the game, and draws the world. Real game
loop would be more complicated and have more items. We will use our game loop to
update the systems in the correct order.

while (running)
{
 Input();
 Update();
 Draw();
}

Figure 2.3: Simple game loop

Having a game loop similar to the one in the figure 2.3 would be very inflexible
which goes against our goal of extensibility. Since systems can be created by the
user, we require that those systems have the access to the same system creation tools
as the integrated systems.

12

In other words, we require a dynamic game loop that can be modified by the user. To
do that, the game loop in the game engine is stored as a list of actions (class Action in
C#) representing that loop. We can then modify the game loop by calling
Loop.ModifyGameLoop(...) method, which gives us access to that list.

The default game loop looks like this:
1. Manage game objects1

2. Update game time
3. Update input
4. Call EarlyUpdate2

5. Call Update2

6. Update physics
7. Call LateUpdate2

8. Render the scene
9. Present the scene in the window
10. Update WPF

The game loop in the game engine uses cooperative multitasking [7]. That means
that each method is expected to perform one step and then return the control to the
main program.

2.5. Rendering
For rendering, we can either use an API that communicates directly with the GPU
(like DirectX or OpenGL), or we can use an existing rendering engine (like OGRE
[8] or Urho3D [9]).

Using an existing rendering engine would make the writing of the graphical system
much easier. It would also give us a lot of features for free. However, all external
libraries store the information about the scene in their own structure. That means that
we have to keep updating the that to match the scene in the game and that would cost
us performance. Not only the cost of having to update the position, rotation, and
scale of each object every frame, but also by making it more difficult for the cache to
keep up as we keep accessing memory in many different locations. The bigger issue
is that keeping the rendering structure of the library udpated while editing the
corresponding component in the editor can be difficult and lead to unexpected issues.
Using an external library could also lead to problems later on, when some particular
feature is not supported in the library3. For the reasons mentioned, the graphical
system will use either DirectX or OpenGL. Since the game engine is not cross
platform, we are not forced to use OpenGL. The author of this thesis is familiar with
DirectX, so that is the API used for the graphical system. The library used for
working with the DirectX from C# is SharpDX [10]

1This first activates newly created game objects and calls the method Start() on their
components. Then it removes all destroyed game objects and calls the method
Destroy() on their components.
2EarlyUpdate, Update, and LateUpdate are events that the components can subscribe
to to define their behavior.
3Neither OGRE nor Urho3D allow us to use DirectX API directly.

13

Displaying the render output
The common way to display the resulting image from our rendering in the window is
by connecting it with a Form from Windows Forms [11]. It is also the only well
documented way.

However, there also exists a way to connect SharpDX with WPF using the WPF
DirectX Extensions repository [12]. It is not well documented but it allows us to
display our renders in the WPF window, which in turn allows us to use the powerful
WPF system to create user interface both in the editor and in the game.

Rendering pipeline
There are two main rendering strategies for rendering using DirectX, forward
rendering and deferred rendering [13]. While forward rendering is more
straightforward and allows for better performance, the deferred rendering enables us
to render an unlimited amount of lights. The reason for this is that in forward
rendering, we can only put a limited amount of lights inside pixel shader. On the
other hand in deferred rendering, we can calculate the physical properties of each
pixel first and then calculate all the lights one by one. But that doesn’t mean that
deferred rendering is simply superior, forward rendering is better suited for graphical
objects that do not depend on light and is used to create special. Since there is a use
for both approaches, the graphical system implements both.

In the rendering, the game engine first performs surface rendering, which renders the
surface properties on the so-called G-Buffer [14]. The G-Buffer is a set of textures,
each for one property of the surface. The G-Buffer remembers the position, color,
normal vector, emission color, alpha, and reflection properties of each pixel. Then
the light rendering uses the G-Buffer textures as its input and calculates the effect of
each light on each pixel as a color and adds them all together. We perform the
forward rendering last because we want to also use it for special effects that might
override some parts of the result from light rendering.

The surface rendering is used for all the rendering of meshes while the forward
rendering is used for things like skyboxes and particle generators.

Performance
We also need to consider the performance of our rendering. One thing that affects
rendering a lot is repeatedly setting the state of the GPU. Imagine if we are rendering
two objects with the same material. If we were to simply render them one after
another, we would set shaders, textures, constant buffers, samplers, other DirectX
states, and then call the DirectX Draw() [15] method. We would then do the same
thing for the other object. All of those are API calls to the GPU which are very
expensive. The important thing is that those secondary calls are completely
unnecessary and if there are even more similar objects, the number of unnecessary
expensive API calls will grow even more.

14

One way to solve this issue is to hold a copy of the GPU’s state in the RAM and only
perform the API calls when an actual change is made. This would work well if it
wasn’t for the fact that the objects are not obligated to be sorted well. The objects
with shared states might simply not be next to each other.

Another way to solve this is by creating some sort of material system. A material
system would group objects that share some rendering calls together under a
material. Typically a material is split between its material type, which holds the state
changes common between all instances of that material, and then a material instance,
which holds the state changes only for this particular instance of the material. Each
graphical object would then be composed of its material and some Render() method
which would usually just set the mesh and call the DirectX Draw() method. The
problem with this material system is that it is quite inflexible. Who says there only
have to be 2 steps in the material?

Rendering graph
For this reason, the game engine uses a special material system where materials can
be composed of any number of rendering steps. Each such rendering step can then be
entered and exited. On entering, it sets the necessary DirectX states and on exiting it
reverts some of the them1. The rendering steps are kept inside a tree structure called
RenderingGraph. This material serves as a user-defined heuristic because the
developer can split the rendering process into parts they thinks are likely to be shared
between different objects or groups of objects.

To understand the rendering graph, we look at the figure 2.4 where we see two
objects with different rendering steps (yellow and orange). After we insert both of
them inside the rendering graph, we can see that they form a tree by sharing the first
step (figure 2.5). In the figure 2.6, we can then see how the rendering process works.
The green arrows mean we are entering the state on the right and the red arrows
mean we are exiting the state on the right. The order is indicated by the numbers on
the arrows.

Figure 2.4: Two graphical objects sharing the same first step

Figure 2.5: Two graphical objects with shared first step inside the RenderingGraph

1Not all changes need to be reversed. For example, setting a pixel shader doesn’t
need to be reversed because the next material is guaranteed to override it.

15

Figure 2.6: The rendering order of the RenderingGraph

The rendering steps might look like this:
1. Set material type
2. Set material instance
3. Set the geometric data
4. Draw

The material type step (1) would set the shaders and one of the textures for example,
then the material instance step (2) would set the remaining textures and constant
buffers with the parameters. The geometric data step (3) would set the vertex buffers
and index buffers. And lastly, the draw step (4) would call the DirectX Draw()
method.

Each of the individual renderers uses a rendering graph to hold the objects we want
to render. The graphical objects added into the rendering graph are defined as a set of
rendering steps.

Rendering extra information inside editor
Sometimes we would like to render a little bit more in the editor than in the game.
We would like to see the shapes of our otherwise invisible colliders, some indicators
for where the invisible light source is, the shape of camera frustum, and so on.

In other words, we would like an extra pass inside our rendering pipeline that gets
only performed when we are in the editor. This is achieved by the combination of
two things. First, a special EditorRendering class which contains a rendering graph
for the editor-only graphical elements. Second is the special EditorCamera which
has a modified rendering pipeline to include the EditorRendering. Because the
special gizmos we want to draw might want to overlay the result of the other
rendering, we render the EditorRendering last.

Whenever a component wants to render special information in the editor, it creates a
rendering program from the rendering steps and adds it to the EditorRendering’s
rendering graph.

We would also like to display the extra information conditionally. For example the
camera preview and camera frustum (figure 2.7) should only be visible when the
game object containing that camera is selected. If it wasn’t, it would create a lot of
visual clutter inside the editor. Other information, such as colliders, we would only
like to see when we are hovering with our mouse over the particular component.

16

Figure 2.7: Camera frustum being rendered inside the editor

Shaders and rendering programs
A rendering program is a set of shaders making up the rendering process.

We need a consistent way across the game engine to access shaders and rendering
programs. Only with a good and consistent design can we avoid thinking about the
particular shader implementations while using the shaders.

First, shaders. All shaders reside in a static class with the name of the shader prefixed
by “Ps”, “Vs”, “Gs”, “Hs”, or “Ds”, depending on the type of shader. Each shader
class then contains a method Set(...), taking a single parameter of a DirectX
DeviceContext [16]. This method sets up the shader on the GPU so it can be used.
Second method is SetParameters(...), which takes arbitrary parameters depending on
the particular shader and sets them on the GPU. The Set(...) method is meant to only
be called once while the SetParameters(...) method can be called multiple times, for
example per material instance. Some shaders can also contain the method Reset(...),
which resets some of the DirectX state to avoid interference.

On top of shaders are built rendering programs. All programs should reside in a
singleton class with the suffix “Program”. This class must inherit the RenderingStep
class which allows it to be used as part of the rendering process. Whenever the
rendering step is entered, it should call the Set(...) method of all the shaders it uses,
plus potentially some additional setup. Whenever the rendering step is exitted, it
should call Reset(...) on all the shaders that have the method and reset whatever other
DirectX states it might’ve set on entering.

The rendering program then also includes a SetParameters(...) method which then
transitively sets the parameters for all of the shaders. Optionally, the program can
also contain an Instance subclass, also inheriting the rendering step, which
encompasses all the parameters and sets them on entering.

17

2.6. Graphical components
In this chapter we will discuss the design of existing graphical components.

When creating graphical components, we will almost always want to use two special
rendering steps. First is a rendering step that sets up the geometrical data. For this
reason, the game engine includes the GeometryDataStep. Second is the last rendering
step which calls the DirectX Draw() method.

The last rendering step is actually even more interesting, because in order to remove
the destroyed components from the rendering graph, the last step has to know if the
component has died. At the same time, the last rendering step tends to have a
different implementation per component. Since the implementation differs per
component, we would like to use either a lambda function or a method inside the
component. If the method is inside the component, we can find the component from
it and then figure out if the component is alive or not. Because of that, the game
engine contains a special rendering step called DrawMethod which takes a method
inside the same component as its only parameter. When the component later dies, the
DrawMethod uses its reference to the component to notify the rendering graph that it
should get removed.

Mesh
Meshes are the most common thing rendered using the game engine. For that reason,
we would like to make mesh rendering as simple as possible.

First thing we can simplify is the way we set up our vertex buffers and input layout
[17]. Different vertex shaders need different buffers to be set up in a different layout.
However, by using reflection on the vertex shader we can deduce what the desired
input layout is. We can then use that information to extract the vertex buffers from
the mesh in the correct order. In practice, this is split into two parts. First, when we
load our vertex shader into MeshVertexShader, the analysis is done using reflection
and a Descriptor is generated. Descriptor is a lambda method that takes as input the
mesh and returns the list of vertex buffers in the correct order. Whenever we are
setting our vertex shader, we have to set the current descriptor inside a static
variable. The second part is inside the rendering step called MeshInput. This
rendering step gets initialized with a mesh and then sets up the mesh vertex buffers
correctly on the GPU using the current Descriptor.

The last thing we can do is to create a flexible but simple to use material system.
Each material corresponds to all of the settings of the rendering pipeline [18] with
the exception of the geometrical data. We want to use the materials assets so the base
material class is marked with the [AssetClass] attribute. A material is just one
instance of a class, however, it logically corresponds to two rendering steps. This is
apparent because each material instance will have some DirectX settings that are
shared between all instances (e.g. shaders), while other data like textures will depend
on the particular instance.

To turn one class into two rendering steps, we have done two things. First thing is
that we made the material class be a rendering step in itself. Second thing is that we
added an abstract getter returning a rendering step that sets the shared part of the

18

material settings (called Program). We will typically use a singleton to define the
program.

The game engine includes a component MeshRenderer which uses this material
system. In particular, the rendering steps to render the mesh are:

1. Material program (shared part)
2. Material instance
3. MeshInput
4. DrawMethod

There are 2 materials provided in the game engine but the user can easily create more
by extending the Material class. The first material provided is the SimpleMaterial,
which only uses color and emission. The second material is called ComplexMaterial
and uses textures for color, normal, binormal, emission, and reflective properties.

Camera
Every rendering system naturally needs cameras. By having the camera be a
component, we can move it together with game objects (for example follow a car).
What properties should a camera have? The obvious properties are field of view,
view and projection matrices used for rendering, and perhaps a background color.
Then we might want to have a viewport rectangle so that we can render the camera
only on a part of the screen. This viewport rectangle needs to have a relative size
(from 0 to 1) so that it scales together with the window resizing.

A question is what to do if there are multiple cameras? The game engine solves this
by first allowing every camera to either be active or inactive (which can be used for
switching cameras) and then by giving each camera a Depth property. The cameras
are then rendered in such an order that the shallowest camera is on top.

Sometimes we also want to use a special rendering pipeline and the camera is an
intuitive place for it. By replacing the rendering pipeline, we can change how and
which objects get rendered. For example in the editor, we add an extra step that
renders editor-specific graphics.

Image renderer
Inside the editor we needed a way to render 2D pictures in 3D space. This
functionality was necessary to show floating icons for lights and cameras to indicate
their position, as otherwise they would be invisible. And since the functionality was
already implemented, it was also added as a standalone component.

Particle generator
Often in games we want to create particle effects. Particle effects are created by
simulating a large number of points and then rendering them. For the points to be
stored efficiently, we only store the center point of each particle. When we later want
to render the particles, we use the geometry shader to turn each particle into a quad
that faces the camera.

The particles are stored in a cyclic array of a constant size, which is then mirrored as
a vertex buffer on the GPU. If we were to update these positions every frame, we
would perform a lot of API calls to DirectX which would cost us a lot of

19

performance. For that reason, the particles remember their starting position and their
velocity and only get sent to the GPU once. When rendering, the current position of
each particle is calculated from the original position, velocity, and the time that
passed since its creation.

Lastly, we would like the appearance of our particles to be customizable. For this
purpose there is an asset class ParticleMaterial which remembers the pixel shader
together with 2 textures.

Skybox
Pretty much all games use some sort of skybox 19. Skybox renders a constant image
around the player giving the illusion of some sky or terrain infinitely far away.
Looking back at the figure 2.7, we can see a skybox of a space being rendered.

Point light
The most common type of light in games is a point light [20]. A point light originates
from a single point and falls off with distance. Typically, the fall of is modeled using
three factors: ConstantFactor, LinearFactor, and QuadraticFactor. The intensity
given distance d is then calculated using the formula in the figure 2.8.

Figure 2.8: Formula for light intensity

To render our lights efficiently and minimize the amount of pixels that need to be
calculated inside the pixel shader, we render our light only in the approximate sphere
it affects. For lights that are far away, this minimizes the number of pixels rendered
from a ~2,000,000 pixels (in full HD) to several thousands or sometimes even
hundreds.

The rendering model used in our game engine is the phong reflection model [21]
because of its simplicity.

Ambient light
Lastly, in almost all scenes there will be some ambient light. A light that is spread
throughout the whole scene with no particular source. Without an ambient light,
objects not directly facing the light source would be pitch black, which is unrealistic.

2.7. User Interface
User interface systems are typically implemented by either using a library that
renders the interface using the DirectX, or by creating a custom user interface library
from scratch using the DirectX. However, since the game engine connects directly to
a WPF window, we can use the WPF itself to create a user interface system. The
advantage of this is that the user is likely to be already familiar with the WPF. The
WPF is also really powerful and allows us to create any user interface we might
want.

The implementation of this is done by having a WPF ContentPresenter [22] on top
of the window and allowing us to place a WPF Grid [23] containing the user
interface on top of it.

20

2.8. Physics
To implement a physical system, we can choose between several libraries that
perform real time physical simulations. The libraries we have available are Bullet
Physics [24], PhysX [25] and Havok [26].

Havok’s licence prevents it from being used for commercial use. This could cause
issues for the users of our game engine so we decided to not use it. Between Bullet
Physics and PhysX, the main difference is that Bullet Physics runs on the CPU while
PhysX runs on the GPU. Not everyone has a good GPU and if we used PhysX, it
could cause problems for people who rely on an integrated GPU. Performance wise,
Bullet Physics seems to be comparable to PhysX. On top of that, Bullet Physics is
open source, so we will use Bullet Physics for our game engine.

The Bullet Physics contains a class World which holds all of the rigid bodies and
simulates their interaction over time. We will create a class PhysicalSimulation
which will roughly correspond to this world.

Then we will provide a RigidBodyComponent corresponding to the rigid body from
Bullet Physics. Our component will also remember the key properties of the
underlying Bullet Physics rigid body to allow us to set it through the editor. Lastly,
our component will also provide an interface to access the underlying rigid body to
make the physics extensible.

Together with RigidBodyComponent, our basic physics system will provide a
BoxCollider, SphereCollider, and a way to create more colliders by extending the
class ColliderComponent and implementing a method that returns a shape from
Bullet Physics.

2.9. Editor
We need to decide on how our editor will look. In particular – what panels should it
have?
We will certainly need:

1. A central window that displays the world
2. A scene explorer – a panel with a tree structure of game objects inside the

scene
3. An inspector – a panel for editing the currently selected game object and its

components.
4. An asset browser – a panel that shows a file hierarchy with our resources so

that we can assign them to our objects.

Looking at the popular game engines such as Unity [27] and Unreal Engine [28], we
can see that they also have similar panels. Figure 2.9 shows a screenshot of the Unity
editor and figure 2.10 shows a screenshot of the Unreal Engine editor. Lastly we can
see a screenshot of our editor with the same panels (figure 2.11).

21

Figure 2.9: Unity user interafce

2.10: Unreal Engine user interface

22

Figure 2.11: Creati Editor user interface

2.10. Assets
All games and game engines have to handle assets somehow. Assets are things like
textures, shaders, etc. We need to be able to load files into classes and we need to
ensure that each file gets only loaded once, otherwise we would waste a lot of space.
Advanced caches can also automatically load objects beforehand and unload them
when no longer necessary. This is however not needed in the game engine core yet as
there are not enough features to expect games created in it to take up gigabytes of
space.

To work with assets, we will use a single central class Assets. The class Assets will
provide an interface to look at our files as if they were instances of classes. Since we
don’t want to lock a certain resource type (or file extension) into only one possible
type, we will allow the resources to be loaded into multiple types at once, and if
possible, have the share some data with each other. Logically, we then need to index
our resources by both the url and the class type.

Logically, we need a class that can load certain resource types into a specific class
type. For example, we could have a resource loader that loads all the image types
(.png, .jpg, etc.) to some Texture class. For this, there is the class AssetLoader<T>.
Since one asset loader will always load into one class type, it makes sense to make it
a generic class. This class will get a url of the file, load it into an instance of the
class, and return that instance.

Our Assets class will need to know of all the AssetLoaders to be able to use them for
loading. To avoid coupling and to make this process cleaner and easier for the user,
the Assets class uses reflection to locate all the AssetLoaders in all the assemblies.

In most games, when an asset is not loaded, it uses some default value. When a
model is not loaded, it shows a 3D text saying “ERROR” (figure 2.12), when a

23

texture is not loaded, a checkerboard of white and pink is used instead. This is done
so the developer can easily notice that something is wrong. If instead the mesh didn’t
get rendered at all, the developer might not notice that something is wrong.

Figure 2.12: Error text being displayed after loading of a model failed

To set the default value, we will use a similar approach as with the AssetLoaders.
The game engine contains a class AssetDefault<T>. By inheriting that class, we can
define the default value for any class type. This class is then also collected using
reflection.
Lastly, we would like to make it easier for the user to make custom assets. For
example, let’s say we have some material class. It would make sense to treat this
class as an asset. There are several reasons to treat it as an asset. Assets can be more
easily shared between different game objects and no game object is their “owner”.
We can also share the material class between different projects this way.

Having any class be an asset only makes sense if we can create instances of this ass
and edit them inside the editor. To do that, we need to let the editor know that a
particular class should be treated that way. In the game engine this is done by using
the attribute [AssetClass].

Resources
Which resource types should the game engine support by default? Resources used by
the systems that are currently implemented. Most of those resources are thus related
to graphics.

First of all, we need to load shaders (.hlsl). There is an AssetLoader for each shader
type – vertex shader, geometry shader, hull shader, domain shader, and pixel shader.
Vertex shader and geometry shader could also benefit from having an analysis
performed on them using DirectX reflection [29]. The analysis performed is about
the input layout of the shaders, because by knowing the input layout, we can
automatically connect shaders with our meshes and simplify working with shaders

24

for the user. The analysis results are kept inside a class called MeshVertexShader.
The shaders are compiled using D3DCompiler [30].

Second type of resource we need are textures. Logically, textures are loaded as
Texture2D [31]. However, to assign the texture to the GPU, we need to put it inside a
ShaderResourceView [32]. Here we use a trick by letting the AssetLoader for
ShaderResourceView use the Texture2D from the Texture2D AssetLoader. The
textures are loaded using Windows Imaging Component (WIC) [33].

Lastly we need to load meshes. But first, we need to decide how we will even
structure our mesh. Mesh is a list of vertices where each vertex can have various
properties such as position, normal, tangent, bitangent, color, uv, and more.
However, most shaders don’t need all of this information; each shader needs a
different subset. For that reason, all the information is split between multiple arrays.
E.g. one array for position, one array for normals, one array for colors, and so on.
After we have our Mesh loaded, we still can’t use it. That is because all the
information is on the CPU and not on the GPU. For that reason, each Mesh also
holds a reference to MeshDx, which mirrors the same information but in buffers on
the GPU.

The meshes are loaded using AssimpNET [34]. AssimpNET is a library that can load
tens of 3D model formats. It is also the only good library that is usable in C#.

25

2.11. Serialization
Our game engine needs to be able to serialize various files. We need to serialize our
scenes with all the game objects and components so we can save our project and then
load it later, we can also use this feature to save the current state of the game. We
also need to be able to serialize all the asset classes mentioned at the end of chapter
2.9. Assets.

First, we need to decide on a file format to serialize into. The options we have are the
following:

1. A binary format
2. XML [35]
3. JSON [36]

By using the binary format (1), our files would have the smallest size. However, a
binary format is not human readable and so it makes the development more difficult.
Furthermore, most of the data is efficiently stored in the actual resource files so using
a larger format won’t increase the size that much.

The choice is between XML (2) and JSON (3) [37]. The advantage of XML is that
the structure of XML supports more features, such as comments, attributes, and more
data types1. On the other hand, JSON files are smaller, faster to parse, and easier to
read by humans. Since the extra features are not necessary, the game engine uses
JSON as its format of choice.

The options for libraries for JSON serialization and deserialization in C# are pretty
much only Json.NET [38] and the new namespace integrated inside the standard
library System.Text.Json [39]. The problem is that neither of the serializers supports
cycles. Furthermore, we want to use custom rules and attributes to decide which
members get serialized. We also want the serializer to recognize assets and serialize
them only as a relative url of the file it originates from. Because of the problems
mentioned, the game engine uses a custom built serializer.

In order to make our asset classes equivalent to the regular assets, it makes sense that
the serialization is accessed through the Assets class. In particular, the loading of
regular assets and asset classes are both accessed through the same method.

For serialization it’s only natural to use reflection.

1The JSON data types are limited to booleans, strings, and numbers.

26

Serialization rules
We need to decide which fields and properties should get serialized and which
should not. Usually, fields hold the actual data while properties act as accessors to
these data, so we will only serialize fields. Furthermore, private fields often contain
some internal state that has nothing to do with the properties of the class itself, for
that reason we will only serialize public fields by default but allow the user to mark
private fields with the attribute [SerializeField] to force the serializer to serialize that
field.

We will need to format following types of data:
1. Value types
2. Structs
3. Arrays
4. Class instances that are being serialized for the first time
5. Class instances that were already serialized
6. Class instances that originated from assets

Value types (1) like string, int, long, and bool, will be serialized directly as their
respective value.

Structs (2) will get recursively serialized using the same process.

Arrays (3) will get serialized as regular JSON arrays.

When we are serializing the instance of a class for the first time (4), we will serialize
it recursively the same way we would serialize structs. However, we also need to
include some additional data. Since a field of type A could store any subtype of class
A, we have to add a tag remembering that class type. This tag looks like “.type”:
“Creati.GameObject”. Second, we need to remember some id for the class instance
so we can refer to it from the consequent occurrences. The id will be an int and look
like this: “.id” : 5.

Repeated occurrences of class instances (5) will be serialized as a reference to the
first occurrence. If the id of the first occurrence is 5, the serialized reference will look
like this: “.ref”: 5.

Lastly we serialize assets (6). When a class originates from an asset, we don’t want
to serialize the whole asset again but we just want to serialize a url of that asset. So
instead that whole class, we will just serialize a tag holding that url, which will look
like this: .asset”: “creati\\models\\cube2x2x2.obj”.

Some classes need special care after they get deserialized. To allow classes to “fix
themselves” after deserializing, the game engine contains the interface
IDeserializable with a method that gets called after deserializing.

27

In figure 2.13 we can see an example of a serialized scene.

{
 ".id": 0,
 ".type": "Creati.Scene",
 "gameObjects": [
 {
 ".id": 1,
 ".type": "Creati.GameObject",
 "Scene": {
 ".ref": 0
 },
 "components": [
 {
 ".id": 2,
 ".type": "Creati.Transform",
 "Position": {
 "X": 7,
 "Y": 5,
 "Z": 29
 },
 "Scale": {
 "X": 1,
 "Y": 1,
 "Z": 1
 },
 "Rotation": {
 "X": 0.08248053,
 "Y": 0,
 "Z": 0,
 "W": 0.9965927
 },
 "rotationVector": {
 "Ya": 0,
 "Pi": 0,
 "Ro": 0
 },
 "gameObject": {
 ".ref": 1
 }
 },
 ...
}

Figure 2.13: Example of a scene serialized by the custom serializer

28

2.12. Inspecting
The integral part of the editor is the inspector. The inspector needs to be able to
display and allow us to edit the properties of all components of the selected game
object. To do that, we will naturally use reflection. We will iterate over all the
components, generate a user interface for each component separately, and then add
them all up together.

Now the problem is reduced to generating a user interface for each component. We
would like to be able to generate the user interface without the user having to do
anything, but we would also like to be able to generate a completely custom user
interface. To do that, we simply allow the user to override the method Inspect(...),
which generates the user interface. The user interface generated is in the form of a
FrameworkElement [40].

However, most of the time, we would like the editor to generate the user interface.
For example, take a MeshRenderer, a component class that renders meshes. This
class contains 4 fields: boolean visible, mesh, material, and origin (vector). What we
want is to generate an editor for each of those properties and join them together. We
would like to generate a checkbox for the boolean value visible, some asset selectors
for the mesh and material, and then some numerical editors for the origin, like we
can see in the figure 2.14.

Figure 2.14: Editor for a MeshRenderer

The editor that we generate clearly depends on the type of the property. Booleans
will always want a checkbox, numbers will almost always want a numerical textbox,
and structures will most likely want to be recursively deconstructed into editors.
However, we might sometimes want to generate a different editor for the property
without writing the whole interface code. For example, sometimes it makes more
sense for the numerical value to be edited using a slider, like we see in the figure
2.16.

The obvious solution for this is to use attributes. Using attributes will be very
intuitive for the user. If we define the whole editor class as an attribute, we can even
use the whole editor as the attribute for defining the editor, like in the figure 2.15.

29

[FloatSliderEditor(Min = 1, Max = 179, DecimalPlaces = 1)]
public float FieldOfView;

Figure 2.15: Specifying the editor to be used inside the attribute

Figure 2.16: FieldOfView using a slider instead of a textbox

Editor
In particular, there is a class Editor, which can generate a user interface if we give it
the information necessary for accessing the property. As mentioned before, this class
inherits the class Attribute to allow us to assign particular instances of the Editor
subclasses to various properties. Since often we want the Editor to be used for all
properties of a certain type, we can also mark the Editor class the attribute
[DefaultFor(type)].

We will also need the editor to provide a default Editor for certain types. Logically,
we want pretty much all of the primitive types to have a default editor, since these
types will be used very often in user defined components. These types are: all
numerical types (int, long, etc.), string, bool, and all enum subtypes. There are also
certain structs that will be used commonly, most of them belonging to the library
SharpDX. These types are mostly vectors and Color. The user might also want to
link game objects together by having some components hold a reference to a
different game object. Thus we will also need a game object editor. Since we don’t
want to create those game objects, we will just have the user drag and drop them
from the game object hierarchy in the editor.

Lastly, we need to handle resources somehow. Assuming we know how to load a
resource, we can borrow the idea from the game object editor and also make it drag
and drop. The problem that arises with this is that all classes can potentially be
resources. There is no telling if the class can be loaded from some file. On top of
that, the classes that can be loaded might change if the user adds an AssetLoader for

30

a new class type. This is solved by having the editor generate an editor for each type
that can currently be loaded.

Not all members should have an editor for them. By default, we only want to edit
members that will get serialized, i.e. public fields and private fields with
[SerializeField] attribute. Editing members whose information will inevitably get
lost would not make any sense. However, we might want to generate an editor for
properties for example because their underlying field will get serialized. The game
engine provides attributes [ShowEditor] and [HideEditor] to override the default
behavior. Furthermore, if a member has an attribute of type ValueEditor (like in the
figure 2.16), we will also generate an editor.

Whenever we change a value of a class using the editor, we need to notify the class.
For example if we change the material of the MeshRenderer, the MeshRenderer
needs to update the rendering graph. Sometimes we might also want to reset the
component to its default value. To do that, we allow all classes to implement the
interface IInspectable which has methods Validate() and Reset(). Validate() is called
every time the editor changes any value. Reset() is called everytime we want to reset
the class to the default value. The IInspectable interface also contains the method
Inspect(...) allowing the user to override the user interface generated for that class.

Besides components, we also want to be able to inspect the asset classes (classes with
the attribute AssetClass). The process of generating the editor is the same as for game
objects and components.

Lastly, it would also be nice if we could call methods on the classes from the editor.
Calling methods with parameters wouldn’t be impossible but it would be difficult to
implement. Since this feature is not crucial, we only implemented calling of
parameterless methods. Whenever we mark a parameterless method with
[ShowEditor], a button which calls that method gets generated inside the editor
(figure 2.17).

Figure 2.17: An editor for a method being generated as a button

ValueContext
One question we didn’t answer is how do we connect editors with the various fields
and properties inside classes?

31

The game engine solves this by using a class ValueContext. This class serves as an
interface to manipulate with a value inside some field or property. Internally, this
class contains a getter and setter for the particular member of the particular instance
of a class. ValueContexts for a class create a tree mirroring the hierarchical structure
of the class. This tree is then used to distribute events between the root and the
leaves.

The game engine solves this by using a class ValueContext. This class serves as an
interface to manipulate with a value inside some field or property. To manipulate the
value of some class we need two things. First is an event (UpdateVisual) that occurs
every time the value in the corresponding class gets changed and the visual element
needs to be updated to match it. Second we need a method (ValueChanged(...)) to
update the value inside the class after the corresponding visual element changes.

Internally, this is done by remembering a setter and a getter for the member, together
with the instance of the underlying class. These ValueContexts are then arranged in a
tree mirroring the hierarchical structure of the class we are editing, with the instance
of that class at the root. This tree structure is needed to distribute events about
changes between the leaves and the root. When we change a value in the editor, we
need to bubble an event saying that we need to call the Validate() method. Figuring
out whether the underlying class was changed or not is complicated and unnecessary,
we can simply bubble down an event every frame saying to update the visual
representation to match the new values.

2.13. Scripting
Any serious game engine needs a way for the developer to create their own
components or even modify the game engine itself. To do this, when a project in the
editor is created, a new visual project is generated together with it.

The idea is that the user will program their own components and then build the
project. Afterwards, the game engine reloads1 the game assembly and includes all the
new components and behaviors created by the user. It would be unacceptable for the
user to have to reload the whole editor to load the scripts.

Because after reloading the assembly, the components are different internal types and
might not have matching fields, we need to somehow transfer the old components
with old fields into new components with new fields. This is solved by having the
game engine save the scene in a temporary file, unload the scene, reload the
assemblies, and then load the scene again from the temporary file. Loading the scene
after some of the component’s fields changed causes it to only load the fields that
have the same name. New fields will not get loaded and old fields that no longer
exist will get discarded. This is nonetheless the desired behavior.

1Reloading the assembly is done through the menu option Other → Reload.

32

We need a way to load and unload dlls without restarting the game engine. There
exists a class AssemblyLoadContext [41] which provides the behavior we want. We
just create an AssemblyLoadContext for our dll and use Load() and Unload() to load
and unload it.

By loading the dll, we are keeping the file open. This would prevent us from building
the game project and updating it. To avoid this we simply copy the dll file and
everything else necessary to a temporary directory.

2.14. Exporting
The last step of any game development process is to export the game so it can be run
outside of the game engine. Since the game engine already knows how to load
external dlls and run the game, we can create a launcher that does the exact same
thing, just without the editor.

Using this idea, the game engine exports the game by creating a new output
directory, copying the launcher with all the dlls there, and then putting the game dll
on an expected place. The launcher will then simply open the game dll from the
expected location and start a scene. The scene that will be started is always a scene
called startup.scene.

33

3. Developer Documentation
The thesis comes in two visual studio solutions:

● Creati – containing the actual game engine
● game – containing the demo

The architecture is depicted in the figure 3.1.

Figure 3.1: Project dependencies

Creati is the game engine core. All other projects reference the project Creati. The
output of this project is a dll file Creati.dll.

Creati Editor actual editor application. The editor is written in WPF. The output of
this project is the main output of the thesis – the executable Creati Editor.exe.

Launcher is a small project for the game launcher. It tries to load the game from the
relative path game/game.dll and launch the scene game/assets/startup.scene.

Game is a demo game made using the Creati Editor to create a tutorial for using the
game engine and editor.

Licence
All of the projects in this thesis are provided under the MIT licence. More details can
be found in LICENCE.TXT in the root directory of the attached CD.

34

3.1. Compilation
When compiling the Creati Editor project, directories project template and export
template get copied in the same directory.

Project template
The directory project template has a file structure from figure 3.1.

assets/
 (assets and scenes for our game)
creati/
 (assets provided by the game engine and needed by the editor)
references/
 Creati.dll
 (other dlls referenced by the project)
ConstantForce.cs
game.csproj
game.sln

Figure 3.2: Project template file structure

Export template
The directory export template has a file structure from figure 3.3.

runtimes/
 (more dlls)
Creati.dll
Launcher.dll
Launcher.exe
(other necessary dlls)

Figure 3.3: Export template file structure

3.2. Creati projects

Creating and loading projects
When creating a project, two things are done. First the project template directory gets
copied to the target location. Then a file called with the extension of .creatiproject is
created inside the project directory. This file is completely empty.

When opening a project, we show a dialog for selecting a project file with the
.creatiproject extension. This file only serves as an “anchor” to set the working
directory for the project and locate the assets/startup.scene and bin/.../game.dll
relative to that directory.

Creating and loading projects is done using the commands [42] NewProject and
OpenProject.

35

Updating projects
When the game engine project gets updated, the projects don’t see it because they are
still using the outdated dlls, i.e. Creati.dll. For that reason, whenever a project is
being loaded in the editor, it performs an update. The update is done using the
command Update, which copies all the .dll and .xml files from the editor directory to
the creati project directory. After that, it also copies all of the new assets inside the
creati directory.

Exporting projects
When a creati project is being exported, the editor first clears the output directory
and then copies the contents of the export template (figure 3.2) inside of it.
Afterwards, the directories assets and creati from the project directory get copied
inside the output directory.

We can see the resulting file structure in figure 3.4. The Launcher.exe always
expects the startup.scene and game.dll to be at these exact locations.

Launcher.exe
(dlls)
game/
 assets/
 startup.scene
 (other assets)
 creati/
 (engine assets)
 game.dll

Figure 3.4: Folder structure of the exported game

3.3. Editor

Architecture
The editor follows the MVVM pattern [42]. The main editor window class is the
EditorWindow. This EditorWindow uses a singleton EditorViewModel as its
DataContext [43]. The individual panels of the EditorWindow, with the exception of
the world renderer, are then stored in their own respective files: AssetExplorer.xaml,
Inspector.xaml, and SceneHierarchy.xaml.

Most interactions with the EditorViewModel are done through commands [44]. The
class EditorViewModel contains a static property for each command it supports. The
only exception to this is the method Init(projectDirectory : string); this method is
called to load the creati project after we have selected the project directory.

The EditorViewModel also holds the current logical state of the editor. That means
the reference to the currently edited scene, selected game object, opened asset
directory and the inspected object.

36

Editor loop
Instead of using the game loop, the editor uses its own custom loop and only
switches to the actual game loop when debugging. This loop is stored in the class
EditorLoop. This loop manages the WPF window and renders the special
EditorCamera.

Debugging
To enter the debug mode, the editor first saves all the changes that were made in our
files. The currently opened scene is serialized as temp.scene and the scene object is
stored away in a temporary variable. The editor then loads the temp.scene it just
saved and sets it as the active scene. Then the game engine’s loop is run. When the
debugging ends, the scene used for debugging is discarded and the original scene
object we stored away is used again.

The game engine’s loop that is run is modified to include the
EditorViewModel.Update() method, which keeps the inspector updated.

Editor camera
The editor uses a special camera which exists outside of the scene and uses the
EditorPipeline for rendering. This EditorPipeline extends the BasicPipeline by also
rendering the EditorRendering class.

When rendering the EditorRendering class using the Render(...), we have to give it a
reference to the currently inspected game object as well as the component that our
mouse is hovering over. This information is then used to give users the functionality
of conditional rendering by calling EditorRendering.Selected(...) and
EditorRendering.Hovered(...).

3.4. Rendering

Rendering
On top of all rendering is the static class Rendering. This class has a static method
RenderAllCameras() which is called every frame at the end of the loop.

The class Rendering additionally provides two utility methods:
● RenderCamera(camera : ICamera) – renders a particular camera over the

whole screen. This is used in the EditorLoop to circumvent the usual
rendering process.

● RenderCameraPreview(camera : ICamera, scale : float) – renders a camera
preview scaled down at the bottom right corner. This is called in the
EditorLoop whenever we select a game object with a camera.

The rendering process for each camera is the following:
1. Set static variables related to the camera
2. Generate the viewport
3. Update the constant buffer for camera
4. Call Clear(...) and Render(...) on the camera’s rendering pipeline

37

In the first step (1) we set some static properties inside the static class Rendering so
they can be later accessed in the rendering process. These properties are:

● Viewport : Viewport
● View : Matrix
● Projection : Matrix
● CurrentlyRenderedCamera : ICamera

The viewport (2) inside the camera is in normalized units (0,0) to (1,1) and we need
to convert it to pixels.

The ConstantBuffers.Camera (3) which is used in various shaders for light rendering
needs to be updated with each camera.

The last step (4) is to clear the viewport so it’s ready for rendering and then to render
it using whichever rendering pipeline the camera uses.

Rendering pipeline
Interface IRenderingPipeline defines two methods that get called during the
rendering:

1. Clear(viewport : Viewport)
2. Render(viewport : Viewport, background : Color)

The clear method (1) should clear the part of the screen defined by the viewport. We
don’t want to clear the whole screen because if we are rendering multiple cameras at
the same time, clearing the whole screen would discard the rendering results of the
previous cameras.

The render method (2) controls the rendering process. The actual rendering is split
between static classes SurfaceRendering, LightRendering, ForwardRendering and
EditorRendering. This method simply calls the Render(...) method on each of them
in the correct order and with the correct parameters. Each of these rendering classes
contains a RenderingGraph containing all the graphical components that need to be
rendered.

Rendering settings
Here we will discuss the special settings that each of these rendering classes needs to
set.

● SurfaceRendering sets a list of textures (G-Buffer) as its rendering output.
● LightRendering sets the output textures from the SurfaceRendering as its

input and also changes the BlendState to additive so that all the light
contributions get added together.

● ForwardRendering and EditorRendering sets a blend state that enables
transparency through the use of alpha.

Rendering graph
Rendering is done through the use of so called RenderingGraph. Objects that the
RenderingGraph can render are a collection of rendering steps. Each RenderingStep
can be entered through the method Draw(context : DeviceContext) and exited
through the method Exit(context : DeviceContext).

38

RenderingGraph holds these individual graphical objects in a tree structure where
each node corresponds to a RenderingStep. Rendering of the rendering graph is done
recursively. When we are rendering a node, we first call the Draw(...) method, then
we iterate through all the children and recursively draw them, and afterwards we call
the Exit(...) method on the rendering step associated with the node.

A node of the rendering graph is under the class StateLayer. The StateLayer actually
keeps the leaf nodes and the children nodes separated, and whenever it enters a leaf
node, it checks whether the underlying RenderingStep is dead. A rendering step dies
when the corresponding component gets destroyed.

To recognize whether the corresponding component is destroyed, the rendering step
DrawMethod must be used as the last rendering step. When we initialize a
DrawMethod with a method inside of our component, the DrawMethod extracts the
underlying component from the method and then uses it to determine whether the
rendering step is dead.

DirectX classes
This chapter discusses the lower level DirectX classes used throughout the game
engine.

Most DirectX classes are kept inside a static class called Devices. This class contains
Direct3D11Device, Direct3D11DeviceContext, Direct2DDevice,
Direct2DDeviceContext, Direct2DFactory, DirectWriteFactory, and
WICImagingFactory. All of these are initialized inside the static constructor.

There are also several static classes that hold commonly used DirectX states of the
type in the class name. These are again initialized inside the static constructor.

● BlendStates
● DepthStencilStates
● RasterizerStates
● SamplerStates

There exist two utility classes for loading DirectX resources: TextureLoader and
ShaderCompiler. These classes are then used directly by the respective asset loaders.

Lastly, there is a class RenderingTexture, which couples together Texture2D and the
views on that texture, such as RenderTargetView, ShaderResourceView, and
DepthStencilView. This class allows us to resize all of the views at once using the
method ResetTexture(newTexture : Texture2D). It is used commonly throughout the
renderers.

Shader analysis
To analyze the shaders, the game engine uses the class ShaderAnalysis. The class
ShaderAnalysis uses DirectX reflection to figure out useful information about
shaders. The information provided by the shader analysis is:

1. Indices of textures, constant buffers, and samplers
2. Input semantics
3. Formats of input elements
4. Primitive topology (for geometry shaders)

39

This shader analysis is then used inside MeshVertexShader, VertexShaderView, and
GeometryShaderView.

3.5. WPF Window
In this chapter we will talk about the two classes that allow us to connect the DirectX
with the WPF

WPF
Class WPF contains a single static method ProcessMessages(). This method
processes the messages that windows is sending to the WPF. By calling this method
periodically, we can have our own loop that controls the WPF, not the other way
around.

The WPF.ProcessMessages() is called periodically inside the game loop.

Game surface
Class GameSurface abstracts the idea of the WPF window and connects selected
ContentPresenter with the DirectX rendering output.

To use the GameSurface class, we need to initialize it by calling the static method
Initialize(window : Window, target : ContentPresenter). This method initializes a
directx render target from Microsoft.WPF.Interop.DirectX namespace inside the
ContentPresenter.

On top of that, it also adds two grids to it. The UIGrid and the UIPreviewGrid. The
UIGrid is used by our user interface system to display the user interface. The
UIPreviewGrid is used to show a preview of the user interface in the editor.

The GameSurface class manages presenting the render output inside our
ContentPresenter and also holds a Texture2D of the backbuffer we will be rendering
into. It also facilitates all of the communication with the WPF – keyboard events,
mouse events, querying the window size, and resize event.

3.6. Input

VirtualKey
The enum VirtualKey contains key codes for all the keyboard keys, mouse buttons,
and even mouse wheel.

Input
All of the input management is done inside class Input. All keys are hidden behind a
string name.

When a new key binding is registered using the method SetBinding(name : string,
key : VirtualKey), it creates a class of type KeyBinding and inserts it to an internal
dictionary with the key of name.

40

Each KeyBinding remembers whether it’s up, down, or pressed.This information is
updated every frame. A key is pressed if it is down but was up the previous frame.
The information about the state of the key is updated by querying the static classes
Keyboard and Mouse. These classes belong to the namespace System.Windows.Input.

3.7. User Interface
To display the user interface, the game engine uses the static class GameSurface
which contains a grid over the rendering target. We can add elements to this grid
using the property GameSurface.UIElements : UIElementCollection.

To create custom interfaces, the users inherit the class GridComponent. The
GridComponent works by adding itself into the aforementioned collection inside the
Start() method and removing itself from it in the Destroy() method.

Because the GridComponent needs to inherit the class Grid, we can’t inherit the base
Component class but we must instead implement the IComponent interface all over
again.

3.8. Assemblies
Class AssemblyManager is used for two things: loading the game dll and
enumerating types for reflection.

Game assembly
The property AssemblyManager.GameDllPath contains the path of the game dll
used. This property is set at the beginning of the program runtime by either the
Creati Editor or the Launcher.

Before loading the dll, the AssemblyManager always copies into a directory temp/N,
where the N is the lowest available number. This is necessary because sometimes the
assembly does not get unloaded successfully and then we cannot delete it.

AssemblyManager also provides a method that reloads the dll called
ReloadGameDevelopmentAssembly(). It first unloads the current dll and tries to
delete as many temporary files as possible. Then it creates a new directory temp/N
and copies the dll file together with all the dependencies there. Lastly it loads the dll
using the class AssemblyLoadContext.

Reflection
Whenever the game engine needs to use reflection, it uses one of the following
enumerators on the class AssemblyManager:

● RelevantAssemblies – returns all relevant assemblies, which are the assembly
of Creati and the assembly of the game dll

● RelevantTypes – returns all relevant types, which are all types of the relevant
assemblies

Since the game assembly will get reloaded many times, it also provides the event
AssembliesChanged, which is triggered every time the game assembly is reloaded

41

3.9. Inspecting

Value context
The core of the inspecting model is a class ValueContext. This class provides us with
an interface to manipulate a particular field or property of an object.

Event UpdateVisual is called every time the editor wants us to update the visual
element to match the visual components. This event gives us an object containing the
new value of our field or property.

Method ValueChanged(newValue : object) should be called every time the user edits
the value inside of the editor. Calling this method causes the underlying field or
property to get updated to this value.

The ValueContexts create a tree structure mirroring the hierarchy of the object we are
editing. The ValueContext in the root corresponds to the object itself. This tree
allows us to bubble events down from root to the leaves and up from the leaves to the
root.

The value context also contains additional information which can be used to create
the editors:

● Type : Type – type of the underlying field or property
● DisplayName : string – name of the underlying field or property
● Level : int – the depth inside the ValueContext tree

Value editor
ValueEditor is a class used to generate FrameworkElement from a ValueContext to
edit a field or property. Classes inheriting the ValueEditor must implement a single
method: EditValue(context : ValueContext), which returns the FrameworkElement
for editing.

Editor lookup
To automatically find suitable value editors for the field or property, the editor uses
the class Editor. The class Editor contains following methods:

● EditContext(context : ValueContext) – this method find the suitable
ValueEditor for the particular ValueContext

● EditMember(parentContext : ValueContext, memberName : string) – this
method finds a suitable ValueEditor for a member of the class or structure of
the parentContext with the particular memberName.1

● EditViableMembers(context : ValueContext) – returns a list of editors, one for
each member that should have an editor

1If we have a ValueContext that is used to access an instance of Vector3, we can call
EditMember(ValueContext, “X”) to get an editor that edits the Vector3.X value.

42

Editor selection works in the following way:
1. Check for the attribute of type ValueEditor and use that if possible
2. Check the dictionary of Type → ValueEditor. This dictionary is generated

using reflection by looking up value editors with the [DefaultFor(type)]
attribute and stored inside EditorDatabase.

3. If it’s enum, use the enum editor
4. If it’s observable collection, use the collection editor
5. If it’s a method, generate a button
6. If it’s a struct, recursively generate editor for each field and property

The EditViableMembers(...) will generate an editor for a member if:
1. The member does not have the [HideEditor] attribute and
2. The member has the [ShowEditor] attribute or
3. The member has a ValueEditor as attribute or
4. The member is a public field or
5. The member is a private field with the [SerializeField] attribute

IInspectable
Interface IInspectable has three methods:

● Reset() – this method is called when we reset the object inside the inspector
● Validate() – the method that is called every time a value is changed inside the

editor which allows the objects to return themselves to a defined state
● Inspect() – returns the FrameworkElement for inspecting the class. By

default, this method calls the Editor.EditViableMembers(...).

Class Component implements this interface with virtual methods.

Inspector
Whenever the user clicks on a game object in the scene hierarchy, the editor needs to
inspect it. To do that, it generates a textbox for the game object's name and then an
inspector for each component.

The Inspector class holds a ValueContext and a FrameworkElement which define it.
It then provides methods: UpdateVisual(), TryValidate(), and TryReset(), which will
bubble down the ValueContext tree and call the appropriate methods.

EditorHelper
The method EditorHelper.NameWrap(...) wraps a FrameworkElement together with
a label. This label is automatically determined using the ValueContext. When name
wrapping the element, the EditorHelper checks the depth of the component. If the
depth inside the ValueContext is at least 2, it inlines the editor next to the label. If the
depth is 1, it creates padding.

3.10. Assets
All access to assets is done through the static class Assets. This class uses reflection
to look up all the asset loaders and asset defaults. When loading a file, the Assets
class first looks at the extension of the file. If the extension is either .asset or .scene,
it uses the JSON deserializer. Otherwise it tries to find a relevant asset loader for that
type and extension.

43

Class Assets provides access to the list of all types it can load using the method
AssetTypes(). Furthermore, it registers a drag and drop editor for each supported
Type.

Lastly, the class Assets provides method GetAssetSource(asset : object), which
checks if the object got loaded through the Assets class, and if it did, returns the
original uri.

Serialization
Serialization is done through the class Serializer, which internally creates and uses
instances of classes JsonFileSerializer and JsonFileDeserializer.

When JsonFileSerializer tries to serialize an object, it calls the
Assets.GetAssetSource(object) to see if the object originated from an asset. If the
object originated from an asset, it will serialize it as an asset and include only the url.
If the object didn’t originate from an asset, it uses an internal dictionary to remember
if they have already been serialized and under which id.

JsonFileDeserializer does the exact opposite of what JsonFileSerializer does. When
deserializing an object that is said to be an asset, it uses the Assets.Get<T>(url) to
load the object. For other objects, it remembers which id corresponds to which object
so it can assign the same reference for repeated occurrences.

4. User documentation

4.1. Creating game objects programmatically
To add a new game object to the scene, we call the method:

scene.AddGameObject(name : string);

To add a component to the game object, we call the method:

gameObject.AddComponent<ComponentType>();

To destroy a game object, we call the method:

gameObject.Kill();

We can also destroy a particular component on the game object by calling

component.Destroy();

An example code for initializing the whole game object from code:

// Create a new game object in the scene
var go = scene.AddGameObject("Lightbulb");

// Set the transform component, using the property shortcut, to
the position we want

44

go.Transform.Position = new Vector3(0, 0, 5);
var transform = go.AddComponent<Transform>();

// Add an ambient light component, which makes it emit light, and
set its color
var ambient = go.AddComponent<AmbientLight>();
ambient.Color = new SharpDX.Color(0.1f, 0.4f, 0.3f);

4.2. Component lifetime
To create a new component, we create a new class inheriting the base class
Component. This class must have a parameterless constructor. The constructor
should be in almost all cases empty as the component is in an undefined state at that
point. It doesn’t even belong to the game object yet.

To initialize our component, we can override the method Start().

protected override void Start() {...}

Any code that should be performed when the component gets destroyed, we override
the method Destroy().

protected override void Destroy() {...}

After a new game object is created, the method Start() is always called at the
beginning of the game loop for all added components. That means that if we
programmatically initialize a game object, the components will see each other when
the Start() method gets called on them. However, the order in which the Start()
method gets called is undefined. The Destroy() method gets called at the same point
in the game loop for all the destroyed components.

To figure out whether a GameObject or Component is alive, we can use the property
Alive.

4.3. Finding components
Each component holds a reference to its game object inside the property
GameObject. We can use this property to access components inside the same
component using the following methods:

// get all components of the type RigidBody
rigidBodies = GameObject.GetComponents<RigidBody>();

// get a component of type RigidBody if it exists, otherwise null
rigidBody = GameObject.TryGetComponent<RigidBody>();

// add a new component of type RigidBody and return it
rigidBody = GameObject.AddComponent<RigidBody>();

// return the first component of type RigidBody, and if it doesn’t

45

exist, create it
rigidBody = GameObject.Component<RigidBody>();

The class Component also contains a shortcut method corresponding to the
GameObject.Component<RigidBody>():

rigidBody = C<RigidBody>();

The only exception is the Transform component which is always present and
accessed through the property of Component and GameObject called Transform.

4.4. Finding other game objects
Sometimes we want to find other game objects on the same scene. We can access the
scene of the game object using the property Scene on either GameObject or
Component.

46

To enumerate over all game objects on the scene, we can use the property
GameObjects:

foreach (var go in Scene.GameObjects) { ... }

// We can also enumerate over the whole Scene for the same effect
foreach (var go in Scene) { ... }

Because game objects exist in hierarchy, we can use the enumerator
GameObjectsUnpacked to enumerate over all game objects, including children:

foreach (var go in Scene.GameObjectsUnpacked) { ... }

Lastly, when we want to find a game object with a particular name, we can access
the Scene indexed by the name:

// This also finds game objects deeper in the hierarchy
// Only the first game object with that name is returned
var playerGo = Scene["Player"];

4.5. Scenes
The class SceneManager manages the active scene. It contains a single property
Active, pointing to the active scene, and an event ActiveChanged, called every time
the active scene gets changed.

To change the active scene, we simply change the value in the SceneManager.Active
property. Typically we will load the scene from a file, resulting in following code:

// If we want to use the same instance of the scene
SceneManager.Active = Assets.Get<Scene>("assets\\scene2");

// If we want to reload the scene
SceneManager.Active = Assets.LoadAgain<Scene>("assets\\scene2");

4.6. Simple behavior inside components
The simplest way to create a behavior is to subscribe to one of the periodic event
functions. Static class Events contains 3 events we can use.

1. EarlyUpdate
2. Update
3. LateUpdate

EarlyUpdate and Update are called in sequence, then the physical simulation gets
updated, and then LateUpdate gets called. To subscribe the event, we first create our
event handler method like this:

private voice Update() {...}

And then register it as the event handler for the Update event like this:

Events.Update += Update;

47

At some point, we might want to get the current time information about the scene.
For this exists the class Time. Class Time contains a property Total, which tells us the
total time of the game running, and a property Scene, which tells us the time of the
current scene only. The time we get inside a struct called GameTime, which contains
both the Total time elapsed and the Delta since the last scene.

We can can access these time properties in the following way:

Time.Scene.Total; // returns TimeSpan
Time.Scene.Delta; // returns TimeSpan
Time.Scene.TotalSecond; // returns float
Time.Scene.DeltaSeconds; // returns float

4.7. Working with assets
The access to all assets goes through the static class Assets. This class has 3 methods
for working with resources:

1. Get<T>(url : string)
2. LoadAgain<T>(url : string)
3. Save<T>(object : T, url : string)

When we use the Get<T>(url : string) method (1), the cache first checks if we have
already loaded this object, and if we have, it returns it. If we haven’t loaded this
object yet, it tries to find an asset loader for that type. If even that fails, it returns the
default value for that type.

LoadAgain<T>(url : string) (2) does the same thing as Get<T>(url : string), except
it doesn’t look in the cache and always loads the file again.

Lastly, the method Save<T>(object : T, url : string) uses the JSON serializer to save
the object we give it.

Serialized resources
All classes that have been serialized using the JSON serializer (by calling
Assets.Save<T>(...)) have either the extension “.asset” or “.scene”. All such files can
in turn be loaded back using Assets.Get<T>(...) or Assets.LoadAgain<T>(...).

Shaders
All DirectX shader classes can be loaded directly from the hlsl files into the
corresponding shader classes (PixelShader, VertexShader, etc.).

Class GeometryShaderView stores the geometry shader (property Shader) plus the
PrimitiveTopology discovered through the DirectX reflection.

Class VertexShaderView stores the vertex shader (property Shader) plus the original
ShaderBytecode under the property Bytecode.

48

Class MeshVertexShader uses DirectX reflection to perform a thorough analysis of
the input layout. It has properties:

● Shader – the vertex shader
● InputLayout – the input layout of the vertex shader
● Descriptor – a delegate that takes MeshDx on input and extracts the

VertexBufferBinding[] matching the input layout of the shader.

Meshes
We can load the class Mesh from all file formats supported by the Assimp library
[45]. The Mesh class contains the following data:

● Positions : Vector3[]
● Normals : Vector3[]
● TexCoordChannels : Vector2[][]
● ColorChannels : Color[][]
● TangentBasis : (Vector3 tangent, Vector3 bitangent)[]
● BoneWeights : Vector4[]
● Indices : unit[]
● Dx : MeshDx

Most of these are arrays of various types of data for each vertex. The Mesh will only
contain the subset of these arrays that are present in the actual file. A vertex is
defined by its index. For example, the vertex with index 3 has a position of
Positions[3] and a normal of Normals[3].

MeshDx is a class that mirrors this data on the GPU. It contains the same fields
converted to the corresponding GPU buffers:

● Positions : VertexBufferBinding
● Normals : VertexBufferBinding
● TextCoordChannels : VertexBufferBinding[]
● ColorChannels : VertexBufferBinding[]
● Tangents : VertexBufferBinding
● Binormals : VertexBufferBinding
● BoneWeights : VertexBufferBinding
● Indices : Buffer – the index buffer

MeshDx also contains method Update() which updates all the GPU buffers to
correspond to the underlying Mesh.

Textures
We can load textures from pretty much any image format. The textures can be loaded
either as Texture2D or ShaderResourceView.

Lastly we can load textures as a TextureImage, which contains has the following
properties:

● Texture2D
● ShaderResourceView
● Width and Height
● NormalSize : Vector2 – the size scaled down so that NormalSize.Length() = 1

49

Custom asset loaders
To teach the game engine how to load a new type of resource, we create a new class
extending the AssetLoader<T> base class.

● First we implement the method Load(url : string). This method gets an url
and returns an instance of type T. If there was a problem during the loading
process, this method should return null.

● Second we implement the property Extensions. This property should return a
list of all file extensions that are supported by this loader (a list of strings).

All we have to do is to define the class. Once it’s defined, the game engine will find
it using reflection. The only condition is that our asset loader must have a default
constructor.

Custom default values
Similarly to the AssetLoader<T> we can implement the class AssetDefault<T>. For
AssetDefault<T>, we only have to implement the method Get(url : string). Even
though this method gets the url, it’s not supposed to load it.

This class also only needs to have a parameterless constructor so it can be found and
used by the game engine.

4.8. Understanding rendering process

Rendering steps
A rendering process is defined as a list of rendering steps. A RenderingStep is a class
containing an abstract method Draw(context : DeviceContext) and a virtual method
Exit(context : DeviceContext). Performing all of the rendering steps in succession
should render the graphical object. If two graphical objects share some steps, those
steps are going to be entered only once.

Inside the Draw(...) method, the rendering step uses the DirectX API to set the GPU
state.

The Exit(...) method is then supposed to revert any changes to the GPU we made.
However, we don’t need to reset most state changes, because most state changes get
later overridden by other rendering steps. In particular, we don’t need to reset pixel
shaders, vertex shader, textures, constant buffers, and sampler states. On the other
hand, we have to reset all other changes and change any other GPU settings back to
the original state.

We can see an example of a rendering step in the figure 4.1. This rendering step gets
an index buffer and a list of vertex buffers and sets them in the Draw(...) method.

50

public class GeometryDataStep : RenderingStep
{
 VertexBufferBinding[] vertexBufferBindings;
 Buffer indexBuffer;

 public GeometryDataStep(
 Buffer indexBuffer, params
 VertexBufferBinding[] vertexBufferBindings)
 {
 this.vertexBufferBindings = vertexBufferBindings;
 this.indexBuffer = indexBuffer;
 }

 public override void Draw(DeviceContext1 context)
 {
 // Set the index buffer and vertex buffer on the GPU
 context.InputAssembler.SetIndexBuffer(
 indexBuffer, Format.R32_UInt, 0);
 context.InputAssembler.SetVertexBuffers(
 0, vertexBufferBindings);
 }
}

Figure 4.1: Geometry data step

Rendering graph
To render our rendering steps, we have to add them inside a rendering graph.

In the game engine, there are 4 rendering graphs. SurfaceRendering.Graph,
LightRendering.Graph, ForwardRendering.Graph, and EditorRendering.Graph.

The choice of our rendering graph depends on the phase in which we want the
rendering program to be performed.

The rendering is done in 4 phases:
1. Surface rendering
2. Light rendering
3. Forward rendering
4. Editor rendering

Surface rendering (1) renders on 7 output textures, each corresponding to a property
of a physical surface. The textures correspond to the output hlsl structure in the
figure 4.2. This is also the structure that is expected to be outputted by the surface
rendering pixel shaders.

51

struct PsOut
{
 float3 position : SV_Target0;
 float3 albedo : SV_Target1;
 float3 normal : SV_Target2;
 float3 emission : SV_Target3;
 float specular : SV_Target4;
 float gloss : SV_Target5;
 float alpha : SV_Target6;
};

Figure 4.2: The output structure for the surface rendering

Light rendering (2) is for rendering lights. It takes the output from surface rendering
and applies light equations on it. In particular, it sets the textures as indicated in the
figure 4.3 for the pixel shader. Light rendering has an additive blend state which
means that output colors are added together per each pixel.

Texture2D positionTexture : register(t0);
Texture2D albedoTexture : register(t1);
Texture2D normalTexture : register(t2);
Texture2D emissionTexture : register(t3);
Texture2D specularTexture : register(t4);
Texture2D glossTexture : register(t5);
Texture2D alphaTexture : register(t6);

Figure 4.3: Textures inside pixel shaders for the light rendering

Forward rendering (3) is a straight forward rendering where the pixel shaders output
the pixel color directly on the back buffer.

Lastly, the editor rendering (4) is the same as forward rendering, with the only
exception that it is only performed by the editor camera.

Graphics binding
To add our steps to the RenderingGraph, we call the method CreateNode(...) on the
rendering graph. This method adds the rendering steps to the rendering graph and
returns an instance of class GraphicsBinding. The CreateNode(...) method takes a
RenderingStep[] as its input. Here we can see an example usage of the
CreateNode(...) method from the MeshRenderer class:

binding = SurfaceRendering.Graph.CreateNode(
 material.Program,
 material,
 new MeshInput(Mesh.Dx),
 new DrawMethod(Draw));

52

GraphicsBinding contains two properties. Property Graph returns the
RenderingGraph that was used to create it. Property Steps returns the current
rendering steps.

To update our rendering steps, we call method UpdateSteps(steps : RenderingStep[])
on our GraphicsBinding. In the following code, we can see how class MeshRenderer
updates its binding:

binding.UpdateSteps(
 material.Program,
 material,
 new MeshInput(Mesh.Dx),
 new DrawMethod(Draw));

4.9. Creating new graphics
In this chapter we will explain how to create new graphical components from
scratch.

We will assume the developer understands and knows how to use DirectX for this
part.

Shaders
First we write our .hlsl shader. For simplicity, let’s use the color.hlsl shader from the
figure 4.3. This shader has one constant buffer for color and paints all the pixels of
the mesh with that color.

struct PsIn
{

float4 position : SV_Position;
};

cbuffer ColorBuffer
{

float4 color;
};

float4 Main(PsIn input) : SV_Target
{

return color;
}

Figure 4.4: Pixel shader color.hlsl

Together with that shader, we will create a static class PsColor (figure 4.5).
Whenever we are creating a class for a shader, we prefix it with “Ps”, “Vs”, “Gs”,
“Hs”, or “Ds”. This class will have a static method Set(...), which takes the DirectX
DeviceContext as its parameter, and prepares the GPU for rendering using this
shader. This means setting the actual shader and also things like constant buffers.

53

When rendering multiple objects with this shader, we expect the Set(...) method to be
only called once.

Optionally, our class can also contain the method SetParameters(...) which can take
arbitrary parameters that might be needed by our shader. In the example, the only
parameter of our shader is the color.

If necessary, we can also include a method Reset(...) which resets the DirectX state
changes it made. Most of the API calls are not needed to be reverted. For more
information, refer to the documentation for RenderingStep.

public static class PsColor
{
 // load the .hlsl pixel shader asset
 public static PixelShader Shader =
 Assets.Get<PixelShader>("creati\\shaders\\ps\\color.hlsl");

 // create a new buffer corresponding to the color buffer
 public static Buffer ColorBuffer = new Buffer(
 Devices.Device3D, sizeof(float) * 4, ResourceUsage.Dynamic,
 BindFlags.ConstantBuffer, CpuAccessFlags.Write,
 ResourceOptionFlags.None, 0);

 // set the pixel shader using the DirectX API
 public static void Set(DeviceContext1 context)
 {
 context.PixelShader.Set(Shader);
 context.PixelShader.SetConstantBuffer(0, ColorBuffer);
 }

 // set the parameters for the pixel shader (color buffer)
 public static void SetParameters(
 DeviceContext1 context, Color4 color)
 {
 context.MapSubresource(
 ColorBuffer, MapMode.WriteDiscard,
 MapFlags.None, out var stream);
 stream.Write(color);
 context.UnmapSubresource(ColorBuffer, 0);
 }
}

Figure 4.5: Static class PsColor

Programs
When we bundle all of the shaders classes we need for our rendering, we create a
rendering program. A rendering program is a singleton class inheriting the
RenderingStep class. This class should always have the suffix “Program”.

54

This program should override the Draw(...) method and call Set(...) methods on the
respective shaders. Additionally, we do any remaining GPU setup there. If any of the
shaders also define the Reset(...) method, we need to override the Exit(...) method of
the RenderingStep and call it there.

If the respective shaders have any parameters, we define a static method
SetParameters(...) which will transitively call the SetParameters(...) on each shader
class. Optionally, we can also define a nested class called Instance which will call
this SetParameters(...) method inside its Draw(...) method.

We can see the resulting program in figure 4.6.

public sealed class SimpleProgram : RenderingStep
{
 // create the singleton instance
 private SimpleProgram() { }
 public static readonly SimpleProgram Instance = new
 SimpleProgram();

 public override void Draw(DeviceContext1 context)
 {
 // set additional rendering settings
 context.InputAssembler.PrimitiveTopology = ...;

 // set the respective shaders
 VsSimple.Set(context);
 PsColorSurface.Set(context);
 }

 public static void SetParameters(DeviceContext1 context, ...)
 => PsColorSurface.SetParameters(context, ...);
}

Figure 4.6: Class SimpleProgram

Constant buffers
There are a few constant buffers that are going to be used throughout most shaders.
To make it easy, there is a static class ConstantBuffers containing them.

First constant buffer is the Transform, which corresponds to the hlsl cbuffer in figure
4.7. The viewProjection corresponds to the currently rendered camera.

cbuffer TransformBuffer
{

float4x4 world;
float4x4 viewProjection;

};

Figure 4.7: Transform buffer definition inside shader files

55

Second constant buffer is the CameraBuffer which corresponds to the hlsl cbuffer in
figure 4.8. The camera is the world position of the currently rendered camera.

cbuffer CameraBuffer : register(b0)
{
 float3 camera;
};

Figure 4.8: Camera buffer definition inside shader files

The constant class ConstantBuffers also contains the method
UpdateTransform(transform : Matrix), which updates the TransformBuffer. The
values from the cameras are updated automatically during the rendering process.

Draw method
The last step of our rendering process should be the DrawMethod. A draw method
might do a few DirectX API calls and then call DirectX Draw(...) method. We can
see an example of a draw method in figure 4.9.

public void Draw(DeviceContext1 context)
{
 if (!Visible || Mesh == null || material == null) return;

 ConstantBuffers.UpdateTransform(
 Context,
 Matrix.Translation(-origin) * Transform.World);

 context.DrawIndexed(Mesh.IndexCount, 0, 0);
}

Figure 4.9: Draw method

The only requirement for the draw method is that it is a method of the Component,
not a lambda function.

We would create the corresponding DrawMethod like this:

ForwardRendering.Graph.CreateNode(...
 new DrawMethod(Draw));

Geometry data step
Pretty much always we need to set the geometry data on the GPU. To do that, we can
use the RenderingStep called GeometryDataStep. GeometryDataStep takes an index
buffer (class Buffer) and an array of VertexBufferBindings. We can use it like this:

ForwardRendering.Graph.CreateNode(...
 new GeometryDataStep(indexBuffer, vertexBufferBindings),
 ...);

56

Mesh input
When we are rendering a mesh, we can use the RenderingStep MeshInput. In order
for MeshInput to work, a Descriptor must be set. To get the Descriptor, we need to
load a vertex shader as MeshVertexShader. To set the Descriptor, we call the
following method:

context.InputAssembler.SetDescriptor(Shader.Descriptor);

When we have our descriptor set, we can create the MeshInput like this:

ForwardRendering.Graph.CreateNode(...
 new MeshInput(mesh.Dx),
 ...);

Putting it all together
Now we should have all the knowledge necessary to create a graphical component.

First, we add the rendering steps to RenderingGraph and get the GraphicsBinding.
(figure 4.10)

protected override void Start()
{
 binding = ForwardRendering.Graph.CreateNode(
 ColorProgram,
 new MeshInput(Mesh.Dx),
 new DrawMethod(Draw));
}

Figure 4.10: Create a rendering binding inside the Start() method

Then we define the Draw method. (figure 4.11)

public void Draw(DeviceContext1 context)
{
 // first check if we should even render the graphical object
 if (!Visible || Mesh == null) return;

 // then update the constant buffers so our object
 // gets rendered at the correct place
 ConstantBuffers.UpdateTransform(context, Transform.World);

 // update the parameters of our ColorProgram
 ColorProgram.SetParameters(context, color);

 // and draw the mesh
 context.DrawIndexed(Mesh.IndexCount, 0, 0);
}

Figure 4.11: A draw method definition

57

Now our graphical component is going to be visible in-game. It is not, however,
going to be visible in the editor yet. The reason is that we only add our rendering
steps to the rendering graph in the Start() method, which is not getting called in the
editor.

To show our graphical component in the editor, we will use the method
Component.Validate() which is guaranteed to be called at least once. We can see how
this is done in the figure 4.12.

public override void Validate()
{
 // Because Validate() might get multiple times,
 // we make sure to only create the binding once
 // by using the ?? operator.
 binding = binding ?? ForwardRendering.Graph.CreateNode(
 ColorProgram,
 new MeshInput(Mesh.Dx),
 new DrawMethod(Draw));
}

Figure 4.12: Using validate method to register graphical objects in the rendering
graph

Class Rendering
If we need to find the exact information about the current window and other
rendering settings, we use the static class Rendering. This class provides us with the
following interface:

● Width : int
● Height : int
● Aspect : float – width / height
● Projection : Matrix – the Projection matrix of the currently rendering camera
● View : Matrix – the View matrix of the currently rendering camera
● Viewport : Viewport – current DirectX viewport used for rendering
● event Resized – triggered every time the window gets resized
● Output : RenderingTexture – the backbuffer that will be displayed on screen

after the rendering is completed
● ScreenDepthBuffer : RenderingTexture – the depth buffer used together with

the depth buffer
● CurrentlyRenderedCamera : ICamera – camera that is currently rendering

the scene

RenderingTexture is a class that holds a Texture2D together with its various DirectX
views such as RenderTargetView, DepthStencilView, and ShaderResourceView..
RenderingTexture contains a single method ResizeTexture(newTexture : Texture2D),
allowing us to automatically regenerate the views whenever the texture changes.

58

Custom rendering pipeline
In rare cases, we might want to create a custom rendering pipeline. To do this, we
create a class that implements the IRenderingPipeline interface. To implement this
interface, we have to write two methods:

● Clear(viewport : Viewport) – when rendering, first the method Clear(...) gets
called. This method is supposed to clear the viewport provided as the
parameter.

● Render(viewport : Viewport, background : Color) – after the viewport is
cleared, the method Render(...) gets called. It receives the same viewport and
a background color from the camera. This method will typically call
Render(...) methods on the static classes SurfaceRendering, LightRendering,
and ForwardRendering.

To better understand how the methods Clear(...) and Render(...) should look, we look
at figure 4.13.

59

public void Clear(Viewport viewport)
{
 GBuffer.Clear();
 Devices.Context3D.ClearDepthStencilView(
 Rendering.ScreenDepthBuffer.DepthStencilView,
 DepthStencilClearFlags.Depth | DepthStencilClearFlags.Stencil,
 1f, 0);

 // we use the utility class ViewProgram to clear the rendering
 // output only in the area specified by the viewport
 ViewportProgram.Clear(
 Devices.Context3D, Rendering.ClearColor, viewport,
 Rendering.ScreenDepthBuffer.DepthStencilView,
 Rendering.Output.RenderTargetView);
}

public virtual void Render(Viewport viewport, Color background)
{
 // first we extract the data types we want from the
 // G-Buffer textures
 var gbufferTargets = GBuffer.RenderingTextures.Select(
 rt => rt.RenderTargetView).ToArray();
 var gbufferSources = GBuffer.RenderingTextures.Select(
 rt => rt.ShaderResourceView).ToArray();
 // we call the Render(...) static methods in the correct order
 SurfaceRendering.Render(viewport,
 Rendering.ScreenDepthBuffer.DepthStencilView, gbufferTargets);
 LightRendering.Render(viewport,
 Rendering.ScreenDepthBuffer.DepthStencilView,
 Rendering.Output.RenderTargetView);
 // we use the utility class ViewportProgram to draw a background
 // in the specified viewport
 ViewportProgram.Background(Devices.Context3D, viewport, background,
 Rendering.ScreenDepthBuffer.DepthStencilView,
 Rendering.Output.RenderTargetView);
 ForwardRendering.Render(viewport,
 Rendering.ScreenDepthBuffer.DepthStencilView,
 Rendering.Output.RenderTargetView);
}

Figure 4.13: A code defining the BasicPipeline

4.10. Existing shaders and programs
In this chapter we will look at the existing shader and program classes that can be
used in our rendering.

VsFullscreenPlus
Perhaps the most useful one is the VsFullscreenPlus. This vertex captures the whole
screen and doesn’t need any input data. The output of this vertex shader is the
structure in figure 4.14.

60

struct VsOut
{
 float4 position : SV_Position;
 float2 rel_uv : TEXCOORD; // uv relative to the viewport
 float2 abs_uv : TEXCOORD1; // uv relative to whole screen and
not just viewport
};

Fogire 4.14: Vertex shader output for the VsFullscreenPlus

VsDirect
This vertex shader takes only the input position (Vector3) and passes them directly to
the next shader stage without changing it.

VsSimple
This vertex shader takes position and normal and transforms it using the
ConstantBuffers.TransformBuffer to the next stage. For exact input and output
information, see the creati/shaders/vs/simple.hlsl.

VsSimple
This vertex shader takes position, normal, uv, tangent, and binormal, and transforms
them using the ConstantBuffers.TransformBuffer to the next stage. For exact input
and output information, see the creati/shaders/vs/complex.hlsl.

PsColor and PsColorSurface
These two pixel shaders simply color all the pixels to the color specified by its
respective SetParameters(...) methods. The difference between the two is that the
PsColor is for forward rendering while the PsColorSurface is for surface rendering
and requires additional information from the previous stage (world position and
normal).

PsTexture
This pixel shader requires uv coordinates from the previous stage and then renders
the texture set by its SetParameters(...) method.

GizmoProgram and QuadProgram
Lastly there is a GizmoProgram and QuadProgram. The tutorial for them is in
chapter 4.10. Editor gizmos.

4.11. Working with the inspector
There are two methods that the editor might call on the component (or any
IInspectable class).

First is the method Reset(). Reset() is called when a component is first added through
the inspector and whenever the user right-clicks the component and selects Reset.
The implementation of Reset() should put the object in some default state.

61

Second is the component Validate(). Validate() is called whenever any value of the
component is changed through the editor. Validate() should ensure that the
component is in a stable state. Validate() is also called whenever the object is first
created or when the object gets deserialized. That means that Validate() is guaranteed
to get called at least once while in the editor.

Components are sorted under various menu items in the inspector. To control which
menu item our component goes under, we can use the attribute [GroupName(name :
string)]

4.12. Editor gizmos
When we want to render some additional information only in the editor, we add the
rendering steps to the EditorRendering.Graph. Because this is only rendered while in
the editor, it would be pointless to add it inside the Start() method.

Gizmos
To create gizmos, we use the class GizmoMeshBuilder. This class builds a mesh with
only Positions and Colors.

The GizmoMeshBuilder has following methods and properties:
● Append(position : Vector3) – adds a new vertex with at the specified position
● NextCurve() – ends the current curve and starts building a new curve (cuts the

mesh)
● BrushColor : Color – sets the color that the new vertices will have
● Finish() – constructs the Mesh and returns it

An example of a Mesh being built inside a GizmoMeshBuilder is in figure 4.15.

GizmoLinesBuilder builder = new GizmoLinesBuilder();

builder.BrushColor = Color.Red;
builder.Append(Vector3.Zero);
builder.Append(Vector3.UnitX);

builder.NextCurve();

builder.BrushColor = Color.Green;
builder.Append(Vector3.Zero);
builder.Append(Vector3.UnitY);

builder.NextCurve();

builder.BrushColor = Color.Blue;
builder.Append(Vector3.Zero);
builder.Append(Vector3.UnitZ);

Axis = builder.Finish();

Figure 4.15: Generating a gizmo mesh using the GizmoMeshBuilder

62

To render our gizmo Mesh, we use the following program in figure 4.16.

public override void Validate()
{
 gizmo = gizmo ?? EditorRendering.LateGraph.CreateNode(
 GizmoProgram.Lines,
 Settings.Override, // an optional rendering step
 new MeshInput(Axis.Dx),
 new DrawMethod(Gizmo));
}

public void Gizmo(DeviceContext1 context)
{
 // check if the this Component’s GameObject is selected
 // in the editor
 if (!EditorRendering.Selected(this)) return;

 // update the position of where our gizmo will be rendered
 ConstantBuffers.UpdateTransform(context, Transform.World);
 // draw the gizmo
 context.DrawIndexed(Axis.IndexCount, 0, 0);
}

Figure 4.16: Rendering the gizmo mesh

First we notice the line Gizmo.Lines – this is the actual rendering program. There are
three rendering programs for gizmos: Gizmo.Lines, Gizmo.Meshes, and
Gizmo.Points.

Next we will notice the rendering step Settings.Override. This step is optional and
causes our gizmo to be drawn on top of everything else.

Lastly we notice the EditorRendering.Selected(this). This method returns true only
when the game object is selected by the editor. Alternatively there also exists a
method EditorRendering.Hovered(this), which only returns true when the component
is being hovered over by the mouse inside the inspector. We can use these two
methods to draw our gizmo conditionally.

As a result we get the image in figure 4.17. The gizmo is the green, red, and blue line
showing it’s position in space.

63

Figure 4.17: Gizmo that shows a center of our game object

Floating images
We can also create gizmos from 2D images that will turn towards the camera.
Creating these kinds of gizmos is easier. First, we define the rendering steps as in the
figure 4.18.

64

static TextureImage gizmoImage = Assets.Get<TextureImage>("...");

public override void Validate()
{
 gizmo = gizmo ?? EditorRendering.Graph.CreateNode(
 QuadProgram.Instance,
 new DrawMethod(Gizmo));
}

public void Gizmo(DeviceContext1 context)
{
 if (gizmoImage == null)
 return;

 // simply set the parameters
 QuadProgram.SetParameters(context,
 gizmoImage.ShaderResourceView, // the image
 Transform.World.TranslationVector, // the position
 gizmoImage.NormalSize); // the size
 // and draw
 context.Draw(4, 0);
}

Figure 4.18: Using the QuadProgram

Using this rendering program is pretty straight forward. The most difficult part is the
QuadProgram.SetParameters. As a result we will get something like in the image
4.19.

Figure 4.19: The result of the QuadProgram

65

4.13. Creating custom systems
Let's say we want to create a system that manages all Health components and for
example shows them sorted on the screen.

First, we create a static class that will act as the manager. Let’s call it HealthSystem.

public static class HealthSystem {...}

Scene static properties
Let’s say we want some information to be static per scene. We will use the class
SceneStatic<T> to achieve that. Class SceneStatic<T> holds a value of type T per
each scene. We can then use the property Current to retrieve the value for the current
scene. The constructor for SceneStatic<T> takes a Function<T> which is used to
initialize the internal variable for each scene.

As an example, let’s create an integer which holds the sum of all health points left.
To create that, we would write something like in figure 4.20. First, we create our
SceneStatic<T> property. This property should be defined as static and private. We
will set the initial value to 0. Together with that, we create a public static accessor
that uses the property Current of the class SceneStatic to retrieve the value
corresponding to the current scene. By using the accessor pattern, we have created a
property that appears to be static but is actually scene static.

static SceneStatic<int> totalHealth = new SceneStatic<int>(
 () => 0);
public static int TotalHealth => totalHealth.Current;

Figure 4.20: Defining a scene static variable

Component collections
First, we need to store our components in some collection. We will use the class
UnorderedComponentList<T> to hold the components. It is a collection that extends
the List<T>. The type argument T must always be a subclass of the Component
class. This collection adds 2 useful methods:

1. RemoveFast(value : T) – this method finds the value in the collection and
then removes it. To remove it, it swaps it with the last element and reduces
size by one. This destroys the ordering, hence “unordered”.

2. FilterAlive() – this enumerates over all components which are alive. During
the enumeration it also removes all the dead components from the list. This
allows us to simply iterate over FilterAlive() every frame and not do any
additional management.

Alternatively we could also use regular List<T> and use the extension methods that
provide the two same functions for all collections. The only difference is that the
FilterAlive() extension method needs a Function<bool> as its parameter to
determine whether the element is dead or not.

66

using HL = UnorderedComponentList<HealthComponent>;
...
static SceneStatic<HL> components = new SceneStatic<HL>(
 () => new HL());
public static int Components=> components.Current;

Figure 4.21: Scene static collection of HealthComponents

We will define our component collection using the UnorderedComponentList<T>.
We will make this collection scene static because we want each scene to only have
one. The resulting code might look like the code in figure 4.21.

Scene static events
Let’s say we want to create an event that gets triggered when the total health goes
down to 0. To do that we will use the class CreatiEvent. CreatiEvent comes in 2
variants: non-generic and generic. The non-generic variant calls event handlers
without any parameters. The generic variant (CreatiEvent<T>) calls event handlers
with one parameter of the type T.

The CreatiEvent has the following interface:
● AddHandler(handler : delegate)
● RemoveHandler(handler : delegate)
● Invoke(invocation : Action<T>) – the invocation is a method that takes our

handler delegate and invokes it
● Invoke() – we can only use this method in the non-generic variant

The CreatiEvent is smart. Whenever we try to invoke it, it checks whether the
components holding the event handler delegates are alive, and if they are not, it
removes them. This only works if the event handler delegate is a method directly
inside a component.

When we create the event, we will use a similar accessor pattern as we have used for
the previous two scene static variables, except for events.

private static SceneStatic<CreatiEvent> allDead
 = new SceneStatic<CreatiEvent>(() => new CreatiEvent());

public static event Action AllDead
{
 add => allDead.Current.AddHandler(value);
 remove => allDead.Current.RemoveHandler(value);
}

Accessing scene static properties and events
Accessing scene static properties and events is really simple. For example, let’s say
we want our health components to add themselves to the HealthComponents
collection. We can simply use the code in figure 4.22 to do that. Additionally, this
code also shows how to react to our custom event.

67

protected override void Start()
{
 HealthSystem.Components.Add(this);
 HealthSystem.AllDead += AllDead;
}

void AllDead()
{
 ...
}

Figure 4.22: Adding the HealthComponent to the HealthSystem and registering an
event handler for the CreatiEvent

Modifying our game loop
To integrate our HealthSystem directly to the game loop, we will call the method
Loop.Modify(...). This method takes as a parameter a delegate which receives the list
of actions of the loop and performs the modifications on it.

To know how exactly we want to modify our loop, we need to know how the original
game loop knows. The original game loop is shown in the figure 4.23.

private static readonly List<Action> loop = new List<Action>()
{
 SceneManager.ManageGameObjects,
 Time.Update,
 Input.Update,
 Events.CallEarlyUpdate,
 Events.CallUpdate,
 Physics.Update,
 Events.CallLateUpdate,
 Rendering.RenderAllCameras,
 GameSurface.Present,
 Wpf.ProcessMessages,
};

Figure 4.23: Default game loop

Now that we know how our game loop works, we decide that we want to update our
HealthSystem after the Events.CallUpdate. First we will write our static Update
method inside of the HealthSystem and then we will add it to the place we chose. The
code for this is shown in the figure 4.24. To perform the modification exactly once,
we call it inside the static constructor

68

static HealthSystem
{
 Loop.Modify(loop => loop.Insert(
 loop.IndexOf(Events.CallUpdate), // where to insert
 Update)); // the method to insert
}

public static void Update()
{
 // update the sum of healths
 // if it's zero call the event
}

Figure 4.24: Modifying the game loop

4.14. Input
For input we use the static class Input. The class Input abstracts away the physical
key presses under string names. It provides us with the following interface:

● SetBinding(name : string, key : VirtualKey) – This method binds a VirtualKey
to a string name. The VirtualKey is an enumeration of all possible keyboard
and mouse keys and buttons (including scroll wheel).

● RemoveBinding(name : string) – removes the key binding
● IsKeyDown(name : string) – returns true if the key is currently down
● IsKeyUp(name : string) – returns true if the key is currently up
● IsKeyPressed(name : string) – returns true if the key got just pressed
● MouseInBounds() – returns true if the mouse is inside the window
● MousePixelPosition() – returns the position of mouse in pixels, relative to

bottom left corner
● NormalMousePosition() – returns the position of the mouse relative to the

center of the window. Center of the window being (0,0), top right corner
being (1,1), and bottom left corner being (-1, -1).

● NextKeyPress – is an event that gets triggered the next time any key is
pressed. After the event gets triggered, it unbinds all the event handlers.

The key bindings are typically going to be set using the InputMap component.

4.15. User interface
To create a custom interface, we create a new user control in visual studio. We then
change the underlying class of both files (.xaml and .xaml.cs) to the
Creati.GridComponent. In the xaml file, we also have to add a reference to the
Creati namespace. Figure 4.25 shows the partial declarations of those classes.

69

// OurUI.xaml.cs
public partial class OurUI : GridComponent {...}

// OurUI.xaml
<creati:GridComponent x:Class="game.OurUI"
 xmlns:creati="clr-namespace:Creati;assembly=Creati"
 ...>

Figure 4.25: Creating a custom GridComponent

Now we just create the user interface we want using the visual studio xaml editor.
Because the GridComponent inherits the Component, we can override methods such
as Start(), Validate(), etc. We can work with it like with a regular component.

4.16. Physics
Class PhysicalSimulation contains the current physical simulation using the Bullet
Physics library. We can access the PhysicalSimulation for the current scene using the
scene static property Physics.Simulation.

The PhysicsSimulation provides the following interface:
● Step : TimeSpan – the step of the simulation
● Gravity : Vector3 – the gravitational force of the simulation; default is a

downward force of 9.807f
● BeforeSimulation : CreatiEvent – gets called every frame before the

simulation
● AfterSimulation : CreatiEvent – gets called every frame after the simulation
● BeforeStep : CreatiEvent – gets called before every simulation step
● World : DiscreteDynamicsWorld – the underlying Bullet Physics simulation
● AddRigidBody(body : RigidBody) – adds a BulletPhysics.RigidBody to the

simulation
● RemoveRigidBody(body : RigidBody) – removes a rigid body from the

simulation

4.17. Serialization
By default, the serializer serializes only public fields. If we wish to serialize private
fields, we can use the attribute [SerializeField].

The interface IDeserializable allows us to implement a custom behavior after
deserializing. The interface contains a single method called Deserialized(). If any
class implementing the interface gets deserialized, the method Deserialized() gets
called.

70

4.18. Editors
The game engine provides a default editor for primitive types such as strings, bools,
enums, and numerical types. It provides a default drag and drop editor for the class
GameObject and for all the classes that can be loaded from assets. It also contains
special editors for structures Vector3, RectangleF, Color, and for the enum
VirtualKey. For collection there is the ObservableCollectionEditor. All structures
that don’t have their special editor will have their editor generated recursively.

By default, only public fields have an editor inside the inspector. We can change this
by adding [ShowEditor] or [HideEditor] attributes to our class members. We can use
these attributes on fields, members, and even parameterless methods.

If we use the [ShowEditor] on a parameterless method, the inspector generates a
button that calls that method on press. This could be used for example for various
randomized components (e.g. terrain generator).

Using properties as views

// Hide the actual data
[SerializeField, HideEditor]
private PointLightProgram.Data data = new PointLightProgram.Data();

// Provide an interface to access the data through property editors
[ShowEditor]
public Color Color
{
 get => new Color(data.Color);
 set => data.Color = value.ToColor3();
}
[ShowEditor]
public float ConstantFactor
{
 get => data.C1;
 set => data.C1 = value;
}
[ShowEditor]
public float LinearFactor
{
 get => data.C2;
 set => data.C2 = value;
}
[ShowEditor]
public float QuadraticFactor
{
 get => data.C3;
 set => data.C3 = value;
}

Figure 4.26: Using properties as views

71

We can use properties to change the way we look at our data through editors. For
example in the figure 4.26, we have a structure called data, but we create direct
assessors Color, ConstantFactor, LinearFactor, and QuadraticFactor. These direct
assessors also rename the fields which would otherwise be inappropriate.
Furthermore, the color accessor changes the type of color from Color3 to Color,
which is the one we have a default editor for.

Another example of this is inside the class Camera, where the internal property for
field of view is in radians but the FieldOfView property used as a view is in degrees.

Overriding editors
If we are not happy with the default editor for the type, we can override it by
instantiating the editor inside the attribute for the class member whose editor we
want to change. Doing this will also force the editor to be generated for that member.

An example of this is in the figure 4.27. The only editors provided by the game
engine which are not set as the default editor are the slider editors. There is a slider
editor for each numerical type.

[IntSliderEditor(Min = 0, Max = 500)]
public int Health;

Figure 4.27: Overriding the default editor

Creating custom editors
To create a custom editor, we extend the class ValueEditor and implement the
method EditValue(context : ValueContext). This method takes a ValueContext as a
parameter and returns a FrameworkElement of the editor.

ValueContext is a class that allows us to get and set the value of arbitrary fields and
properties of classes and structs. The ValueContext provides the following interface:

● Type : Type – the type of the field or property
● DisplayName : string – the name of the field or property
● event UpdateVisual – an event that gets called when the underlying value has

changed and our editor should update the visual elements to reflect that. A
parameter of this event is the new value in the form of an object

● ValueChanged(newValue : object) – a method that we call whenever the user
changed the value inside the editor and we want this value to get transferred
to the underlying object

Optionally, we can also mark our editor with the [DefaultFor(type)] attribute so that
it is used by default for all fields and properties of that type.

We can see how such an editor might look in figure 4.29.

72

[DefaultFor(typeof(bool))]
public class BoolEditor : ValueEditor
{
 public override FrameworkElement EditValue(ValueContext context)
 {
 var checkBox = new CheckBox();
 checkBox.VerticalAlignment = VerticalAlignment.Center;
 checkBox.LayoutTransform = new ScaleTransform(1.2, 1.2);

 checkBox.Checked += (s, e) => context.ValueChanged(true);
 checkBox.Unchecked += (s, e) => context.ValueChanged(false);
 context.UpdateVisual += (v) => checkBox.IsChecked = (bool)v;

 return EditorHelper.NameWrap(checkBox, context);
 }
}

Figure 4.29: BoolEditor implementation

4.19. Components
In this chapter we will discuss the components included in the game engine.

Transform
Transform is the only component default to all game objects. We can access the
transform component using the property Transform on either GameObject or
Component. It is single handedly the most important component.

Transform has the following properties:
● Position : Vector3
● Scale : Vector3
● Rotation : Quaternion
● RotationVector : YawPitchRoll – this property can only be set in the editor or

when first creating the game object. That is because the Quaternion Rotation
gets initialized inside the Start() using this value.

● Forward, Back, Up, Down, Left, Right : Vector3 – properties that return
directions relative to the current rotation.

The YawPitchRoll of the rotation vector is a simple structure with float properties Ya,
Pi, and Ro. This structure is structurally equivalent to Vector3. The only purpose for
its existence is to rename the element names inside the editor.

Camera
First is the Camera component. Camera has properties the following properties:

● FieldOfView : float
● Background : Color
● Near, and Far : float
● ViewportRectangle – controls where the camera gets rendered on the screen

in normalized units, i.e. from (0,0) to (1,1)
● Depth – controls the order in which cameras get rendered; lowest Depth

camera gets rendered on top

73

● RenderingPipeline : IRenderingPipeline – the rendering pipeline that the
camera will use for rendering

Point light
PointLight creates a point light source on the scene. The color and intensity is
controlled by the property Color. The falloff factor is controlled by properties
ConstantFactor, LinearFactor, and QuadraticFactor.

Ambient light
Component AmbientLight creates a source of ambient light on the scene. Each scene
should have exactly one AmbientLight component. AmbientLight has a single
property Color which controls its color and intensity.

Skybox
Component Skybox renders a skybox around the sphere. The skybox contains a single
property Image, which corresponds to the skybox. The skybox gets rendered on a
sphere around the player and the skybox image should look like in the picture 4.30.

Figure 4.30: Image used for skybox

Image renderer
Component ImageRenderer renders a 2D image in 3D space, always facing the
player. It has properties Image and Size.

Mesh renderer
Component MeshRenderer can render meshes. It has following properties:

● Mesh
● Material : Material
● Origin : Vector3 – controls the position of the mesh relative to the center

point of the object

Material controls the shaders and other DirectX settings in the rendering process of
the mesh.
Class Material inherits the RenderingStep class and contains a single property called
Program : RenderingStep. The Program rendering step should set the DirectX
settings common for all instances of this material, such as shaders. The Material

74

RenderingStep itself should set all the material instance settings, i.e. things that differ
between different instances of the material, such as textures and constant buffers.
The material will be rendered inside the SurfaceRenderer. We can see an example of
a simple material in figure 4.31.

public sealed class SimpleMaterial : Material
{
 public Color color = Color.White;
 public Color emission = Color.Black;

 [FloatSliderEditor(DecimalPlaces = 2, Min = 0, Max = 1)]
 public float gloss = 0f;

 [FloatSliderEditor(DecimalPlaces = 2, Min = 0.01, Max = 512)]
 public float specularPower = 64f;

 public override RenderingStep Program =>
 SimpleProgram.Instance;

 public override void Draw(DeviceContext1 context)
 {
 SimpleProgram.SetParameters(context,
 color.ToColor3(),
 emission.ToColor3(),
 Gloss,
 specularPower);
 }
}

Figure 4.31: SimpleMaterial implementation

This program uses the SimpleProgram as the base program while the SimpleMaterial
itself sets the data unique to each instance of the material, such as color, emission,
gloss, and specularPower.

Particle generator
Component ParticleGenerator can generate particles. It has the following settings:

● ParticleSize : float
● ParticleLifeTime : float – particle lifetime in seconds
● Velocity : Vector3 – controls the base velocity of particles
● VelocityVariance : Vector3 – adds a random vector within a box defined by

corners -VelocityVariance and VelocityVariance to the Velocity
● Spread : Vector3 – the particles will get spawned in a box defined by corners

-Spread and Spread around the game object’s position
● EmitPerSecond : float – how many particles will the particle generator emit

per second
● Material : ParticleMaterial

75

To spawn our particles, we have two options. First, we can control the
EmitPerSecond property and second we can call the method
EmitRandomParticles(amount : int).

The ParticleMaterial of the ParticleGenerator is simpler than the material for
meshes. It only contains properties Texture1, Texture2 and PixelShader. When the
particle generator is being rendered, the textures and pixel shader used for the
rendering. If no pixel shader is provided, a default pixel shader which simply draws
the first texture fading away is used.

The pixel shader must output a single color and take as an input the structure in
figure in figure 4.32. The fade is a value between 0 and 1, the fade starts as 0 at the
particle’s lifetime and slowly changes to 1 as the particle dies.

struct PsIn
{

float4 position : SV_Position;
float4 worldPos : WORLDPOS;
float2 uv : TEXCOORD;
float fade : FOG;

};

Figure 4.32: Input structure for the pixel shader used in the ParticleMaterial

Rigid body
Component RigidBody creates a Bullet Physics rigid body (further referenced to as
BPRB) and attaches it to the physical simulation. The BPRB can be directly accessed
through the property BulletRigidBody.

The component RigidBody also contains following properties:
● Mass : float
● Friction : float
● RollingFriction : float
● Bounciness : float
● GhostObject : bool – when GhostObject is true, the rigid body still registers

collisions but doesn’t get affected by them. This can be used for example to
define areas that trigger some action when the player enters.

● InitialVelocity : Vector3 – a simple way to set an initial velocity for the rigid
body

● DragConst, DragLinear, DragQuadratic : float – these properties control the
drag generated by the object, making it slow down over time

● AngularDragConst, AngularDragLinear, AngularDragQuadratic – these
properties control the rotational drag generated by the object spinning,
making the object stop spinning over time

The RigidBody component also contains two methods for manipulating it.
ApplyForce(force : Vector3) and ApplyTorque(torque : Vector3). These methods do
exactly that – apply force and torque to the rigid body.

76

Collider components
When the Start() method is called on the RigidBody component, it tries to find any
components on the same game object inheriting the abstract class
ColliderComponent. ColliderComponent must implement a single method
GetShape(), which returns a shape from Bullet Physics. The RigidBody component
then uses that shape inside the physical simulation for collisions.

The ColliderComponent also provides us with an event Collision, which is triggered
every time the rigid body collides with another object. This event provides
information about the other ColliderComponent as well as the world position of the
collision.

There are 2 colliders provided by the game engine: BoxCollider and SphereCollider.
Both of those colliders contain a property Origin that controls the center point of the
collider. On top of that, the SphereCollider contains a Radius : float property while
the BoxCollider contains a Box : Vector3 property. Hovering over these collider
components in the inspector will show their respective collision shapes.

Input map
The component InputMap allows us to easily map real keys (enum VirtualKey) to the
string names used by the InputClass. It doesn’t have any public properties but
provides a great editor interface for setting up the key bindings as we can see in
figure 4.33.

Figure 4.33: InputMap in the editor

Look at
A simple utility component LookAt has a single property Target : GameObject. This
component will simply keep turning towards the Target’s position.

Follow on string
The utility component FollowOnString has two properties. Target : GameObject and
MaximumDistance : float. Whenever the distance between the current game object
and the target game object is larger than the maximum distance, it will move towards
the target game object’s position to make it equal to that maximum distance.

77

4.20. Debug
To debug our scripts, we open the game project in Visual Studio, select the Debug →
Attach to Process… (Ctrl + Alt + P), and then find the editor in the list of projects.
After we have done that, we can use breakpoints and all other debugging tools inside
the visual studio.

78

5. Demo tutorial
In this chapter, we will look at how to create the demo provided together with the
game engine.

5.1. Demo walkthrough
Inside the demo we fly a ship and try to shoot asteroids while avoiding getting hit by
them. We can see a screenshot of the demo in the picture 5.1. We have a total of 3
health.

Figure 5.1: A screenshot from the demo

We control the ship with the following keys:
● W, S, A, D, Q, E - rotate ship in various directions
● Space, Ctrl - thrust forward or back
● X - shoot laser

When we lose all of our health, the demo will take us to the game over screen,
showing the score and giving a button to restart the game (figure 5.2).

79

Figure 5.2: Game over screen

Now we will talk about how to create such a game. Code snippets will be shown
throughout the tutorial. It would be however impractical to show all of the code. For
better experience, the reader can follow the demo game code in the included demo.

5.2. Ship
First we create a game object named “Player”. We add a mesh renderer and set the
mesh to our ship by dragging the mesh file from the asset browser to the Mesh
property. Since our mesh is way too large, we scale it down by changing the Scale to
0.05 in all dimensions.

Next we set the ship’s center of mass to the proper place. To do that we play around
with the origin property of the MeshRenderer until the ship is positioned around the
center of mass in a way we want.

Then we create a material for our ship. We right click in the asset browser and select
ComplexMaterial. By double clicking the asset, we can rename it and set up the
textures prepared for the ship.

Lastly we set the material for the ship’s MeshRenderer using the drag and drop
functionality.

Figure 5.3 shows how our ship currently looks in the inspector and figure 5.4 shows
how the ship looks in the editor’s world renderer.

80

Figure 5.3: Player game object in the inspector

Figure 5.4: Player game object in the world renderer

Next we create 3 children objects under the ship. First game object is for the thruster
and the other 2 are for the cannons. By manipulating the Transform component we
place them in the desired location. We want the children's objects to be at the place
where the thruster will generate particles and where the cannons will shoot from.
Figure 5.5 shows the resulting object hierarchy.

81

Figure 5.5: Game object hierarchy

Next we add a particle generator under the Thruster game object. First we create a
new ParticleMaterial asset and set the first texture to an image of a fire particle.
Next we click Play to debug our game and play around with the ParticleGenerator
until the thruster looks good. The debugging process is depicted at the picture in
figure 5.6.

Figure 5.6: Thruster debugging

5.3. Skybox
Next step is to add a skybox to the game. We create a game object named “Skybox”
and put a single component of type Skybox inside. We will use the skybox texture
provided by the game engine with the path creati/textures/starmap_4k.png. With the
skybox, our world render will look like this (figure 5.7).

82

Figure 5.7: Skybox

5.4. Controls
Next we need to make our ship controllable. First we use the component InputMap to
set up the key bindings. It doesn’t matter where we place this component so we
might as well put it under the “Player” game object. We will set up our keybindings
like shown in the picture 5.8.

Figure 5.8: Input map with the keybindings for our demo

5.5. Physics
In order for our ship to fly, we need to make it a physical object. To do that, we first
add a component RigidBody to the “Player” game object. We set the mass to 5
because we want the ship to be a little bit heavier than the asteroids we will later
generate with mass 1. We also set all the *Drag properties to 1 so our ship doesn’t
fly off into infinity. The ship slowing down will also make it more intuitive to
control.

We also add a BoxCollider to the ship and play around with its size until it fits our
mesh well enough. We can hover over the BoxCollider component in the inspector to

83

see the collision shape. The settings of the rigid body and the collider are shown in
the picture 5.9.

Figure 5.9: Rigid body and box collider around our ship

5.6. Camera
Now we will need to make our camera follow our ship. Since the asteroids will
always come only from one side, we will make the camera always point to that
direction.

For the camera controller we will need to create a new script. In the menu, we click
Project → Open solution in visual studio. We then create a new component class
ShipCamera and set the group name to “Custom” (class attribute
[GroupName(“Custom”)].

We want the camera to follow our “Player” game object so we add a field
TargetObject : GameObject. We don’t want this field to be accessible from outside
so we make it private and add the attribute [SerializeField] so it gets serialized and
shown in the editor.

The idea is that the camera will always face in the same direction (forward) and
smoothly follow the position defined by fields Height and Distance. Lastly we will
add a field smoothSpeed : float, which will control how much of the camera
smoothing is done.

We want to update the camera position every frame after the physical simulation gets
updated. For that there we will use the event called LateUpdate. The code for the
LateUpdate can be seen in figure 5.10.

Lastly we will write our own Validate() method that will lock the camera’s position
to the desired position while we are in the editor.

84

protected override void Start()
{
 Events.LateUpdate += LateUpdate;
}

private void LateUpdate()
{
 // Skip if not attached properly
 if (TargetTransform == null) return;
 // Calculate the desired position (constant offset)
 Vector3 desired = CalculateDesiredPosition();
 // Smooth out the camera movement
 Vector3 smoothPosition = Vector3.Lerp(
 Transform.Position, desired,
 smoothSpeed * Time.Scene.DeltaSeconds);
 Transform.Position = smoothPosition;
 // Set a constant rotation for the camera
 Transform.Rotation = Quaternion.LookAtRH(Vector3.Zero,
 Vector3.ForwardRH, Vector3.Up);
}

Figure 5.10: Using the Events.LateUpdate inside our camera

5.7. Controlling the ship
Next we will create a component PlayerController which will react to the key
presses and control the player’s ship. This component will need a reference to the
RigidBody component in the same game object so it can apply forces to it. It will also
need a reference to the ParticleGenerator inside the children game object which we
called “Thruster”. Figure 5.11 shows the code inside the Start() method that does
exactly that.

rigidBody = C<RigidBody>();

thruster = GameObject.Children.FirstOrDefault(
 x => x.Name == "Thruster")?.TryGetComponent<ParticleGenerator>();
...
Events.Update += Update;

Figure 5.11: PlayerController.Start()

Inside the Update() method, we will check for the key presses and control the ship
using them by applying the proper forces, torques, and controlling the thruster
particle generator. Extract from the Update() method is shown in figure 5.12.

85

// Go forward if we are pressing the “forward” button
if (Input.IsKeyDown("forward"))
{
 rigidBody.ApplyForce(Transform.Forward * ForwardSpeed);
 thruster.EmitPerSecond = 300;
}
else
 thruster.EmitPerSecond = 0;
...
// Roll to the left if we are pressing the “rollLeft” button
if (Input.IsKeyDown("rollLeft"))
 rigidBody.ApplyTorque(Transform.Back * RollSpeed);
...
// Limit the speed
var vel = rigidBody.BulletRigidBody.LinearVelocity.ToSharpDX();
var len = vel.Length();
if (len > MaxSpeed)
 rigidBody.BulletRigidBody.LinearVelocity *= MaxSpeed / len;

Figure 5.12: Controlling the ship inside the PlayerComponent.Update()

With the camera and player controller finished, we can try the scripts out. First we
build the game project and then we reload the scripts by selecting Other → Reload
scripts in the menu. All we need to do is to add the ShipCamera under the “Camera”
game object and PlayerController under the “Player” game object. When we press
Play, we should be able to control our ship and fly around.

5.8. Health
Next we will need some simple way to damage and destroy objects. We create a
component class Damageable containing a field Health : int. We will also add events
Damaged and Dead, corresponding to receiving any damage and the health getting to
zero. Lastly we add a Despawn : bool field, which if set to true, will destroy the
game object when health goes down to zero.

We will add a method Damage(damage : int) that will subtract the damage from the
remaining health. Whenever the component receives damage, it will trigger the event
Damaged, and if the health goes down to zero, it will trigger the event Dead.

We will add this component to the “Player” game object and set the health to 150.
We will later set asteroids to deal 50 damage which will mean the player can
effectively withstand 2 hits and dies with the third.

5.9. Damage sources
Next we will add two component classes which will deal damage on collision. We
will call them Asteroid and Shot. Asteroid will only deal damage to the player while
Shot will deal (lethal) damage to the asteroids.

86

In order for the classes to deal damage, then try to find a ColliderComponent on the
same game object and register a handler for the Collision event. When a collision
occurs, the components will simply check if the name of the game object is “Player”
and decide whether they should damage it based on that. Lastly, the Asteroid
component will also register a handler for the Dead event so it can explode as it gets
shot down. Figure 5.13 shows the Start() method of the Asteroid component.

protected override void Start()
{
 // try to find the collider component
 var collider = GameObject.Components.FirstOrDefault(
 x => x is ColliderComponent) as ColliderComponent;
 // and subscribe to the Collision event if we found it
 if (collider != null)
 collider.Collision += Collision;

 // subscribe to the Dead event of Damageable component.
 // if the game object doesn’t have the Damageable component,
 // this will create it
 C<Damageable>().Dead += Dead;
}

Figure 5.13: Start() method of the Asteroid component

5.10. Lasers
Now we want our ship to shoot lasers.

First we will prototype a game object for the shot. We give it a mesh renderer with
some cylindrical mesh and create a new SimpleMaterial called red which will use the
Emission property to shine in red. For collisions we will set up a simple BoxCollider
matching the size of the laser. The prototyped laser is shown on the picture 5.14.

Figure 5.14: Laser prototype

87

Now to shoot the lasers, we will add a component class Cannon. This cannon will
have a method Shoot() that will generate the laser shot and set it flying forward. This
Shoot() method will simply instantiate the shot with the properties we have
prototyped plus the Shot component and a RigidBody component with the initial
speed in the forward direction. Lastly we will create a new component called
DistanceDespawn which will destroy a component if it gets too far away from the
player, otherwise the number of components would keep constantly increasing.

As for the Cannon component, we add it to the respective children game objects
under the “Player” game object. We will then locate those Cannon components
inside the PlayerController so that we can call the Shoot() method on them. We will
use the code in figure 5.15 to get the cannons and then we will add the code in figure
5.16 to the Update() method to shoot from them.

leftCannon = GameObject.Children.FirstOrDefault(
 x => x.Name == "LeftCannon")?.TryGetComponent<Cannon>();
rightCannon = GameObject.Children.FirstOrDefault(
 x => x.Name == "RightCannon")?.TryGetComponent<Cannon>();

Figure 5.15: Finding cannons inside of the Start() method

if (Input.IsKeyPressed("shoot"))
 if (shot++ % 2 == 0)
 leftCannon?.Shoot();
 else
 rightCannon?.Shoot();

Figure 5.16: Shooting from the cannons inside of the Update() method

5.11. Asteroid
Next we will add asteroids. We will create a component class AsteroidSpawner that
will keep sending asteroids towards the player. This AsteroidSpawner will have the
following parameters used to control the spawning:

● SpawnFrequency : float – spawn frequency of asteroids batches per second
● SpawnAmount : int – how many asteroids should be spawned each batch
● ForwardSpeed and SpeedSpread : float – each asteroid will fly with the speed

of ForwardSpeed ± SpeedSpread
● SpawnDistance and SpawnRange : float – the asteroids will spawn

SpawnDistance far away from the player in a square of length SpawnRange
● MinScale and MaxScale : float – the size of the asteroids
● DespawnDistance : float – how far away from the player the asteroid has to

be to despawn
● Inaccuracy : float – asteroids will fly towards a sphere centered around

player with this value as a radius

We subscribe to the Update event so that we can keep spawning the asteroids.

88

For the asteroids that will get spawned, we will use the same strategy as with the
shot. We will first prototype the asteroid in the editor and then copy the properties in
our generator. In particular, the components that will make up each asteroid are:
MeshRenderer, RigidBody, Collider, Damageable, Asteroid, and DistanceDespawn.

5.12. User Interface
Our game is almost finished, we just need to create a user interface. First we add a
new UserControl in the visual studio and name it UserInterface. We then change the
base class for the component from UserControl to GridComponent. We have to do
this both in the .xaml and the .xaml.cs file. Note that to set the GridComponent as a
base class in the .xaml file, we have to define the Creati namespace. How to do this
is shown in the figure 5.17.

// UserInterface.xaml.cs
public partial class UserInterface : GridComponent {...}

// UserInterface.xaml
<creati:GridComponent x:Class="game.UserInterface"
 xmlns:creati="clr-namespace:Creati;assembly=Creati"
 ...>

Figure 5.17: Creating a user interface class

To make it simple, we create a global variable for the number of asteroids and for the
health left. In the user interface we add a label and a progress bar for the healthy and
a label for the asteroids shot down. We then register an Update() method to simply
keep these values up to date.

We will also create a second user interface called NewGame. This user interface will
show the score achieved and a button to restart the game. We can see both of those
user interfaces in chapter 5.1. Demo walkthrough.

5.13. Scenes
When we lose, we would like to switch to a different scene that only shows the
NewGame user interface. This screen should show up when the player dies, so we
react to that event and then switch the scene. Actually, we would like the scene
switching to be a little bit delayed. To do that, we create a new component class
called DelayedSceneChange which will wait a set amount of time and then switch
the scene. This class will have two properties:

● ScenePath : string – the path to the new scene
● TimeSeconds : float – the time in seconds, controlling the delay

Then when the player game object dies, we will create a new game object with a
single component of DelayedSceneChange. To change the active scene, we will
simply assign our new scene to the property SceneManager.Active.

We also want to start a new game when we click the restart button in the NewGame
interface. For this, we can simply register an event handler to the button click like we
would in a normal WPF application and make it switch the scene.

89

To switch the scene, we have to be careful about one thing – if we use
Assets.Get<Scene>(”assets\\startup.scene”), we will get the scene with the already
destroyed ship. We want to load this scene again from the scene file. For this, we can
use the method Assets.LoadAgain<T>(...) used in figure 5.18.

SceneManager.Active =
 Assets.LoadAgain<Scene>(@"assets\startup.scene");

Figure 5.18: Reloading the startup scene

5.14. Explosions
As a last detail, it would be nice if the asteroids and the ship exploded after death.
We can do this by reacting to the Dead event and then creating a new game object in
the place of the dead game object. This new game object will have a single
component ParticleGenerator. We will make this ParticleGenerator generate all the
particles at once by calling the EmitRandomParticles(count : int) on it. After the
particles disappear, we need to clean up the game object. We will create a simple
component class TimeToLive, which will destroy the game object after a set amount
of time.

5.15. Finishing
With all of that, we have the demo finished. We can now play it in the debug mode
by pressing Play or export it and play it in the game launcher.

90

6. Conclusion
In chapter 1.2. Goals we have set goals for our thesis. We will now evaluate the
fulfillment of those goals:

1. Create a fully extendable game engine core with the following features:
a. Extendable game object system – the game engine supports the

creation of custom components capable of doing the same things as
the integrated components

b. Ability to create new systems – we are able to use the same tools as
integrated systems. The game engine gives us tools to create new
systems such as the classes SceneStatic, UnorderedComponentList,
and CreatiEvent. The game engine also contains a game loop that we
can modify to integrate our system directly into the game engine.

c. Extendable rendering system – the game engine gives us a number of
ways to extend the rendering system. We can create custom materials
for meshes, write custom graphical components using custom
rendering steps, or even create a whole new rendering pipeline.

d. Extendable physics system – the physical system included in the game
engine is pretty basic. However we are given access to the underlying
Bullet Physics objects which allows us to extend it rather easily.

e. User interface system – users can create user interfaces using WPF by
implementing the GridComponent.

f. Input system – users can react to all keyboard key presses and mouse
buttons as well as the mouse movements themselves.

g. Asset cache supporting custom resource types – class Assets can load
various types of resources. Users can extend classes AssetLoader and
AssetDefault to teach the game engine how to load any possible type.

h. Saving and loading of scenes – the game engine implements a custom
serializer that can serialize all objects while cooperating with the asset
cache to avoid unnecessarily serializing objects loaded using asset
cache

2. Create an editor with sufficient features for basic game development allowing
us to:

a. Create and edit scenes, game objects, and components – the editor can
create and edit scenes, edit the game object hierarchy, add and remove
components inside game objects, and edit the values inside the
components in the inspector.

b. Debug the game and inspect the properties of our game objects and
components while debugging – the editor can debug the game by
pressing the play button while keeping the ability to inspect and edit
game objects and components.

c. Easily define a custom user interface for editing components – we can
define a custom editor for any data type. We can easily choose which
editor should be used for our fields and properties, or even generate a
whole interface from scratch. Our components can also react to the
changes made in the editor either through the Validate() method or by
defining custom editor buttons.

d. Link resources and game objects – we can drag and drop game objects
and assets into members of components of the appropriate type to
easily link them together.

91

e. Create custom resources from classes – we can mark class with the
attribute [AssetClass] and then create instances of that resource inside
the editor and assign that resource to various components

f. Write custom scripts that can extend any part of the game engine – the
editor creates a visual studio together with the creati project and
allows us to write custom classes, components, editors, asset loaders,
and more. We can then compile our project and then use the new
components and other classes inside of the editor.

g. Export the game as a standalone app – the editor has a menu option
Export which exports the game created in our editor together with a
launcher so it can be launched without the editor.

All of the goals were successfully completed.

Future work
This project only implements the core of a game engine and can benefit a lot from
future improvements. Such improvements might include:

● Implementing the CLSL mentioned in chapter 1.1. What is a game engine?
● Improving the graphical system by adding more components and features,

improving the performance, or integrating special graphical editors in the
Creati Editor.

● Improving or reworking the physical system
● Implementing a sound engine
● Implementing a system for AI
● Adding a support for multiplayer games

92

7. Bibliography
1 What is a game engine? https://gamescrye.com/blog/what-is-a-game-engine/.
2 Rust programming language. https://www.rust-lang.org/.
3 Lua programming language. https://www.lua.org/.
4 Portal 2. https://store.steampowered.com/app/620/Portal_2/.
5 Multiple inheritance in C++ and the Diamond problem.

https://www.freecodecamp.org/news/multiple-inheritance-in-c-and-the-diamond-
problem-7c12a9ddbbec/.

6 Jason Gregory. Game Engine Architecture 3rd edition.
7 Cooperative multitasking.

https://en.wikipedia.org/wiki/Cooperative_multitasking.
8 Ogre3D. https://www.ogre3d.org/.
9 Urho3D. https://urho3d.io/.
10 SharpDX. http://sharpdx.org/.
11 System.Windows.Forms.Form.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form?
view=net-5.0.

12 WPF DirectX Interop. https://github.com/microsoft/WPFDXInterop.
13 Brent Owens. Forward rendering vs deferred rendering.

https://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-deferred-
rendering—gamedev-12342.

14 Justin Stenning. Direct3D Rendering Cookbook.
15 DeviceContext.Draw.

https://docs.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-
id3d11devicecontext-draw.

16 Direct3D Devices.
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-
direct3d-11-devices-intro.

17 Getting started with the Input-Assembler Stage. https://docs.microsoft.com/en-
us/windows/win32/direct3d11/d3d10-graphics-programming-guide-input-
assembler-stage-getting-started.

18 Direct3D 11 Graphics pipeline.
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-
direct3d-11-graphics-pipeline1.

19 Skybox tutorial. https://ogldev.org/www/tutorial25/tutorial25.html.
20 Point lights. https://www.braynzarsoft.net/viewtutorial/q16390-17-point-lights.
21 Phong reflection model. https://en.wikipedia.org/wiki/Phong_reflection_model.
22 System.Windows.Controls.ContentPresenter.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentpre
senter?view=net-5.0.

23 System.Windows.Controls.Grid. https://wpf-tutorial.com/panels/grid/.
24 Bullet Physics. https://pybullet.org/wordpress/.
25 PhysiX. https://developer.nvidia.com/gameworks-physx-overview.
26 Havoc Physics. https://www.havok.com/havok-physics/.
27 Unity. https://unity.com/.
28 Unreal Engine. https://unrealengine.com.
29 DirectX Shader Reflection.

https://docs.microsoft.com/en-us/windows/win32/api/d3d11shader/nn-.d3d11sha
der-id3d11shaderreflection

93

https://www.braynzarsoft.net/viewtutorial/q16390-17-point-lights
https://wpf-tutorial.com/panels/grid/
https://ogldev.org/www/tutorial25/tutorial25.html
https://docs.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-input-assembler-stage-getting-started
https://docs.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-input-assembler-stage-getting-started
https://docs.microsoft.com/en-us/windows/win32/direct3d11/d3d10-graphics-programming-guide-input-assembler-stage-getting-started
https://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-deferred-rendering--gamedev-12342
https://gamedevelopment.tutsplus.com/articles/forward-rendering-vs-deferred-rendering--gamedev-12342
https://www.freecodecamp.org/news/multiple-inheritance-in-c-and-the-diamond-problem-7c12a9ddbbec/
https://www.freecodecamp.org/news/multiple-inheritance-in-c-and-the-diamond-problem-7c12a9ddbbec/
https://gamescrye.com/blog/what-is-a-game-engine/
https://docs.microsoft.com/en-us/windows/win32/api/d3d11shader/nn-d3d11shader-id3d11shaderreflection
https://docs.microsoft.com/en-us/windows/win32/api/d3d11shader/nn-d3d11shader-id3d11shaderreflection
https://unrealengine.com/
https://unity.com/
https://www.havok.com/havok-physics/
https://developer.nvidia.com/gameworks-physx-overview
https://pybullet.org/wordpress/
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentpresenter?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.windows.controls.contentpresenter?view=net-5.0
https://en.wikipedia.org/wiki/Phong_reflection_model
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline1
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-graphics-pipeline1
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-devices-intro
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-devices-intro
https://docs.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-draw
https://docs.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11devicecontext-draw
https://github.com/microsoft/WPFDXInterop
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.windows.forms.form?view=net-5.0
http://sharpdx.org/
https://urho3d.io/
https://www.ogre3d.org/
https://en.wikipedia.org/wiki/Cooperative_multitasking
https://store.steampowered.com/app/620/Portal_2/
https://www.lua.org/
https://www.rust-lang.org/

30 D3DCompiler. http://sharpdx.org/wiki/class-library-api/d3dcompiler/.
31 How to create a texture.

https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-
direct3d-11-resources-textures-create.

32 ID3D11Device::CreateShaderResourceView.
https://docs.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-
id3d11device-createshaderresourceview.

33 Windows Imaging Component.
https://docs.microsoft.com/en-us/windows/win32/wic/-wic-about-windows-
imaging-codec.

34 AssimpNet. https://www.nuget.org/packages/AssimpNet.
35 XML. https://www.w3.org/standards/xml/core#:~:text=What%20is%20XML

%3F,more%20suitable%20for%20Web%20use.
36 JSON. https://www.json.org/json-en.html.
37 Mariana Berga. JSON vs XML. https://www.imaginarycloud.com/blog/json-vs-

xml/.
38 Json.NET. https://www.newtonsoft.com/json.
39 System.Text.Json. https://docs.microsoft.com/en-us/dotnet/api/system.text.json?

view=net-5.0.
40 System.Window.FrameworkElement.

https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement?
view=net-5.0.

41 System.Runtime.Lader.AssemblyLoadContext. https://docs.microsoft.com/en-
us/dotnet/api/system.runtime.loader.assemblyloadcontext?view=net-5.0.

42 Jay Strawn. Design patterns by tutorials: MVVM.
https://www.raywenderlich.com/34-design-patterns-by-tutorials-mvvm.

43 Using the DataContext. https://wpf-tutorial.com/data-binding/using-the-
datacontext/.

44 WPF ICommand in MVVM.
https://www.c-sharpcorner.com/UploadFile/e06010/wpf-icommand-in-mvvm/.

45 Assimp file formats.
https://en.wikipedia.org/wiki/Open_Asset_Import_Library#:~:text=Assimp
%20currently%20supports%2057%20different,functionality%20for%20some
%20file%20formats.

94

https://wpf-tutorial.com/data-binding/using-the-datacontext/
https://wpf-tutorial.com/data-binding/using-the-datacontext/
https://www.imaginarycloud.com/blog/json-vs-xml/
https://www.imaginarycloud.com/blog/json-vs-xml/
https://docs.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11device-createshaderresourceview
https://docs.microsoft.com/en-us/windows/win32/api/d3d11/nf-d3d11-id3d11device-createshaderresourceview
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-resources-textures-create
https://docs.microsoft.com/en-us/windows/win32/direct3d11/overviews-direct3d-11-resources-textures-create
https://www.c-sharpcorner.com/UploadFile/e06010/wpf-icommand-in-mvvm/
https://www.raywenderlich.com/34-design-patterns-by-tutorials-mvvm
https://en.wikipedia.org/wiki/Open_Asset_Import_Library#:~:text=Assimp%20currently%20supports%2057%20different,functionality%20for%20some%20file%20formats
https://en.wikipedia.org/wiki/Open_Asset_Import_Library#:~:text=Assimp%20currently%20supports%2057%20different,functionality%20for%20some%20file%20formats
https://en.wikipedia.org/wiki/Open_Asset_Import_Library#:~:text=Assimp%20currently%20supports%2057%20different,functionality%20for%20some%20file%20formats
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.loader.assemblyloadcontext?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.loader.assemblyloadcontext?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.windows.frameworkelement?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.json?view=net-5.0
https://docs.microsoft.com/en-us/dotnet/api/system.text.json?view=net-5.0
https://www.newtonsoft.com/json
https://www.json.org/json-en.html
https://www.w3.org/standards/xml/core#:~:text=What%20is%20XML%3F,more%20suitable%20for%20Web%20use
https://www.w3.org/standards/xml/core#:~:text=What%20is%20XML%3F,more%20suitable%20for%20Web%20use
https://www.nuget.org/packages/AssimpNet
https://docs.microsoft.com/en-us/windows/win32/wic/-wic-about-windows-imaging-codec
https://docs.microsoft.com/en-us/windows/win32/wic/-wic-about-windows-imaging-codec
http://sharpdx.org/wiki/class-library-api/d3dcompiler/

8. Attachments
Contents of the attached CD:

• /Sources – contains the visual studio solution containing all the projects
• /Sources/Creati – the game engine project
• /Sources/Creati Editor – the editor project
• /Sources/Game – the launcher project
• /Demo – the demo project built inside the Creati Editor
• /Creati Editor – the release build of the Creati Editor
• LICENCE.txt – file containing the licence
• Thesis.pdf – file containing this thesis
• README.txt – file describing the content of the CD

95

