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Introduction
Language is one of the phenomena of the human experience, our unique and
complex communication modes continue to distinguish us from our animal coun-
terparts. Human communication has expanded from a collection of tones and
sounds to prose, poetry, and studies. In the recent decades there have been nu-
merous studies addressing the origins and evolution of language. Some scientists
theorize that human language is a result of how human’s brains have evolved over
time, proposing that the development of parietal, occipital, and temporal lobe
provided humans with the tools for ”conceptual structure” (Wilkins and Wake-
field [1995]). Other studies link the evolution of human language to the unique
stages of life, in other words ontogeny (Locke and Bogin [2006]). The work of
Locke and Bogin suppose that the unique patterns of the human life cycle namely
childhood and adolescence contribute to the evolution of human language (Locke
and Bogin [2006]). As we continue to explore the origin of language we too leave
a trail for future understanding of human behavior and knowledge. Artifacts
from language have expanded exponentially with the new age of data, document-
ing many of the processes which allow our society to continue to function. This
richness of data has drawn me not only to linguistics but to the processing of
linguistic data particularly for the life sciences. In the following chapter I will
discuss my motivation for this thesis and outline the tools and concepts that were
necessary for me to complete this body of work.
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1. Thesis Introduction

1.1 Thesis Motivation
The search for knowledge for better understanding is essential for progression.
This philosophical principle can be applied to any discipline and is indisputable.
In the discipline of information extraction and Natural Language Processing, in-
sight can be gained through a multitude of mechanisms. In my own work, there
has been a need for gaining insight into unstructured data. As an engineer and
modeler of practices for information extraction, I am fully informed in the usage
of information extraction in the biomedical/pharmaceutical domain. Some of the
use cases in the highly regulated and exploratory industry involve detection of
documents necessary for anonymization due to the sensitive data contained, ex-
ploring new chemical or biological structures, and general information extracting,
to name a few. One of the tasks necessary for the aforementioned processes is
a Named Entity Recognition, namely a domain specific tool. Biomedical mark-
ers and correlations are critical for growth in the field for the understanding of
bio-processes and interactions between biomedical entities, such as diseases and
drugs or genes and diseases. There is currently a plethora of information on-
line in the scientific and biomedical domain. In this thesis I will be focusing on
the database resources from The National Center for Biotechnology Information
(NCBI) (Wheeler et al. [2007]). The NCBI has a number of tools and resources
for biomedical information, of which one reliable source that researchers utilize
is PubMed Central, as it is a readily available archive with a focus on journals
of biomedical and life sciences. In order to compensate for the generality of the
current state of the art named entity recognizers and not rely on the static ontolo-
gies sourced from gazetteers, a bio-medically trained entity recognizer is proposed
using PubMed data for training and a deep learning approach using LSTM varia-
tions is examined (Hochreiter and Schmidhuber [1997b]). The goal of this thesis
is to:

• examine the current neural network approaches to named entity recognition
of the biomedical domain using recurrent networks

• explore the influences of word embeddings in regards to the NER task

• investigate the effects of word embeddings on ambiguous text.

1.2 Linguistic Background
Language is a phenomenon of human communication and interaction. It allows
for humans to distinguish themselves amongst other species and is incredibly
diverse in its form and structure. Linguistics is the study of language, its compo-
nents, and how humans communicate. Linguistics attempts to analyze the form,
meaning, and contextual importance of language. In order to understand this
thesis, some key ideas in linguistics must be defined. Context, an abstract con-
cept for information sharing, is a frame that captures a focal event and equips the
listeners with the appropriate resources for the understanding and interpretation
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of the shared information. Focal events are a critical part of encoding informa-
tion in human interaction and are the highlighted events in the exchange. Thus
focal events (focus) and context share a complementary relationship (Duranti
and Goodwin [1992], Krifka [2008]). Focus and contexts are critical sub-units
in information structure, a component of language in which speakers package
information to their interlocutors. Language cannot merely be broken into sub-
units and in order to understand its complexity we must also recognize the levels
in which language functions. Linguists have described the levels of language as
language stratification (Halliday and Matthiessen [2013]). Apart from context

context

content: semantics

content: lexicogrammar

expression: phonology

expression:
phonetics

Figure 1.1: Language stratification, adapted from Halliday and Matthiessen
[2013]

Halliday and Matthiessen expand the content of language as semantics and lex-
icogrammar (Halliday and Matthiessen [2013]). The lexicogrammar includes the
grammar and vocabulary, and the semantics carries the meaning of the content.
The strata or ’levels’ that provide us with the ability to make such expressions are
phonology the manner in which we organize sounds into structure and phonetics,
the physical properties necessary for human speech (Halliday and Matthiessen
[2013]). These stratal planes will be useful for understanding the ways that we
approach language from a non human perspective.

1.3 Natural Language Processing
Natural language processing (NLP) as defined by Jurafsky and Martin is the in-
terdisciplinary field which aims to use computers to perform tasks which involve
human language (Jurafsky and Martin [2008]). As human interaction is complex,
some the tasks related to natural language understanding and processing have
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proven to be equally complex. Some tasks in NLP include speech generation,
machine translation, and information extraction. There are several approaches
to solving NLP tasks, they can be grouped into four categories: symbolic, statis-
tical, connectionist, or combination of aforementioned categories (Liddy [2001]).
The symbolic approach previously dominated natural language processing ap-
proaches, it uses information about the language to perform deep analysis of
the language (Dale [2000]). Some examples of symbolic approaches include rule
based systems and semantic networks and its techniques include decision trees, K
nearest neighbor algorithms and conceptual clustering (Liddy [2001]). Statistical
approaches to NLP don’t require facts about the language and instead use math-
ematical techniques to model large data sets of language called corpora. These
corpora contain many samples of real world text and are used a basis for models
to generalize the language patterns. More information about the techniques used
in statistical NLP will be discussed in later chapters. The last distinct approach
to NLP is the connectionist approach, which much like the statistical approach
builds models based on generalizations from large data sets, the main difference
between the two is that connectionist models also use different theories of rep-
resentation (Liddy [2001]). One of the most common connectionist approaches
consist of a network of computing units. These units contain input and outputs
and can be connected to other units in the model with weights, each unit is
also assigned a numerical value called the activation level (Selman [1989]). More
information about the connectionist approach will also be discussed in further
chapters. The last approach combines the previous approaches to create a hybrid
approach to natural language processing. Each of the approaches can come with
its drawbacks so combining different models can create leverage.

1.3.1 Biomedical Natural Language Processing
Biomedical natural language processing or BioNLP combines the NLP approaches
to the biomedical field to help aid some of the processes that researchers and clin-
icians currently face. Using NLP techniques for solving biomedical issues isn’t
a new phenomena, the interdisciplinary field of bio-informatics has been intro-
ducing methods from NLP during conferences and in scientific journals (Blaschke
et al. [2002]). The idea that we could use information retrieval to gain insights
from existing public was proposed by Don Swanson, his ideas about ”undiscovered
public knowledge” helped create the model which BioNLP still uses today, which
supposes that within our current knowledge bases there exists ”new knowledge”
which has yet to be discovered (Swanson [1986b]). Swanson used the principle
of ”new knowledge” to drive the development of hypothesis for treatments for
Reynaud’s syndrome as well as create hypothesis for links between migraine and
magnesium (Swanson [1986a], Swanson [1988]). Swanson’s defined the paradigm
called the ABC model, which investigates the idea that information A is linked
to information B in one source and another may link B to information C, if
the connection between A and C has not yet been reported we can regard the
”hidden” connection as new knowledge, which can be further explored Blaschke
et al. [2002]. Mining scientific literature has become one of the most common use
cases in BioNLP, text mining can provide a method for making this process more
automated. Text mining uses several NLP techniques to extract information:
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information retrieval, information extraction, and data mining (Ananiadou et al.
[2006]). The three techniques mentioned above allow for the collection of rele-
vant information, the extraction of specific information, and the development of
connections and associations within texts (Ananiadou et al. [2006]). Hypothesis
generation, a task which was Swanson modeled using text mining and eventually
used successfully to generate hypothesis, can use text mining in the framework
mentioned by Ananiadou et al. Hypothesis generation is just one of tools which
gives researchers in the biomedical field a helping hand, it can allow for quicker
discovery and can redirect the time spent manually connecting information from
large scientific repositories. Knowledge discovery using text mining isn’t the only
NLP process being used in the biomedical domain, QA (question answering sys-
tems), text summarization, machine translation for translating documents into
a target language, and even sentiment analysis (Friedman and Elhadad [2014],
Zucco et al. [2017]). While much of the work in BioNLP is using the algorithms on
data within the biomedical domain, another large effort in the BioNLP commu-
nity is the generation of annotated corpus. Several corpora have served as source
for further experimentation in BioNLP, as many of the algorithms require training
data which needs to be annotated (Kim et al. [2003], Pyysalo et al. [2007]). Cor-
pora like the GENIA and others allow for there to be a standard within BioNLP
and named and are continually used and expanded (Makino et al. [2002], Cimiano
et al. [2006]).
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2. Named Entity Recognition
This chapter is an introduction to the key methods and concepts of this thesis. It
defines the current issues and solutions in named entity recognition. This chapter
has been divided into several sections and will describe the tasks, methods, and
evaluation of named entity recognition.

2.1 Named Entity Recognition Task
Information extraction is the sub-field of natural language processing that deals
with the automatic retrieval of information from unstructured data. Currently,
due to the digital age, there is a collection of large linguistic data, a critical re-
source for both academics and businesses using NLP. While the volume of data
to be analyzed is incredibly rich, often, the digital traces of human interactions
and records are unstructured and difficult to analyze. In order to identify key
information in the larger scope, researchers in information extraction identified
key information units, which they coined a ”named entity” (Nadeau and Sekine
[2007a]). Sample sentences with the named entities highlighted are displayed be-
low:
Bill Gates of Microsoft is said to be one of the greatest minds of our time.
The collaboration of the Association of Computation Linguistics and in-
dustry has been tremendous at this conference.
These key units are not limited to names of people but also include organiza-
tions, concepts, dates, locations, and can also include numerical values such as
unique identifiers, and monetary values. Named entity recognition is a sub-task
in information extraction that recognizes named entities. This task aims to lo-
cate and categorize the entities of interest (Mohit [2014]). In the above sample,
recognizing the entity can be seen as providing the index of the named entity, and
categorizing it would be providing the additional label of person, for Bill Gates.

2.2 Named Entity Recognition Methods
There are several approaches to named entity recognition, mainly this section will
discuss the different methods which have been used to the present day state of
the art approaches.

2.2.1 Dictionary Based Approaches
Dictionary based approaches for named entity recognition are the most simplis-
tic of the approaches. They are based on predefined lists of entities which are
often referred to dictionaries or gazetteers. The gazetteers are then used as the
source for string matching, which simply detects the terms, returning matches
in the text. Depending on the algorithm used, terms can be matched exactly or
partially using fuzzy matching. One string matching method that can be used
is the Aho-Corasick algorithm (Aho and Corasick [1975]). The Aho-Corasick
algorithm builds a finite state machine from the words in the dictionary. The
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input to the algorithm is the text, and the output is locations where keywords
occur within the text, if they exist. Algorithms such as the Aho-Corasick have
proven to be fast and efficient ways for string matching and can be run in O(n +
m + z) time, where n, m, z represents the length of the input string, the total
number of characters in each word, and the total number of occurrences of words
in each text, respectively. Another approach to dictionary based NER uses edit
distance to measure similarities between possible entities in the text to entries
in the dictionary, to account for misspellings and possible matches that are not
present in existing dictionaries (Wang et al. [2009]). Within the biomedical do-
main dictionary approaches have shown promising results and have been used
for protein and gene recognition (Egorov et al. [2004], Hirschman et al. [2002]).
Dictionary based methods still have a few requirements in order to be a reli-
able model. Data sources which dictionaries are built on must be reputable and
there is still typically a pipeline for processing the dictionary to filter it from
possible ambiguities and noise, like common words and short dictionary entry
removal. The text is also typically pre-processed before being ”matched” against
the dictionary. This pre-processing can include tokenization, lemmatization, and
normalizing the casing of text. There are many reputable knowledge sources in
the biomedical domain, such as the Open Biomedical Ontologies (OBO) Foundry
and the Unified Medical Language System (UMLS) which include a large num-
ber of biomedical vocabularies (Bodenreider [2004], Smith et al. [2007]). These
knowledge sources have become standards in the biomedical domain, but this
approach even with the best source dictionaries can be limited. One of the main
issues with the dictionary based approach is that it limits the entities only to
pre-existing entities, new unseen entities are not accounted for. The dictionary
approach can have good results but in order to create a promising system that is
dynamic other methods should also be employed.

2.2.2 Rule Based Approaches
One of the first approaches to named entity recognition was done by the use
of hand crafted rules and heuristics, this approach is generally regarded as the
rule base approach. A good example of this approach was presented by Lisa
Rau (1991), who used a series of rules based off of text casing, patterns that
are associated with the entity (in the case of company detection the presence
of suffixes such as Inc., Corp.), and some contextual heuristics regarding the
surrounding words (Rau [1991]). Another example of a rule based approach is
the FASTUS framework. FASTUS is a system that consists of four main steps
to recognize entities: triggering, recognizing phrases, recognizing patterns, and
merging incidents (Appelt et al. [1993]). First, for the given sentence input specific
words are identified as ”trigger” words, which are predefined for each entity.
In the next steps, critical word-class clusters are identified, for example, noun
phrases, verb phrases, and are input for pattern recognition. Relevant phrases
are then transformed into finite state machines, where the transition states are
represented as the grammatical phrases identified in the previous step. The final
step of the FASTUS process is merging and formatting the incidents to be unified
of the same type. Features of the text, include linguistic features, like the casing,
or presence of prefixes of suffixes in the words (Nadeau and Sekine [2007a]).
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Features can also include information about the entire document set, such as the
corpus frequency and the location of the entities in the entire document (Nadeau
and Sekine [2007a]). Features allow rule based models to make decisions beyond
simple pattern detection, and for easier understanding on how models operate.

2.2.3 Machine Learning Approaches
Machine learning methods attempt to solve some of the limitations of the rules
based model, as they attempt to learn the features of a specific entity of interest.
Machine learning methods frame the problem with a statistical model for pre-
dicting if a word in a sequence matches with an entity tag. There are two main
approaches to named entity recognition in regards to ML, the supervised and
unsupervised approach. In the supervised approach, we provide a model with an-
notated training data, methods to solve the issue, and test the methods on data
that have not been seen by the model (test data). Unsupervised approaches, on
the other hand, do not rely on annotated data and attempt to explore the under-
lying structure of the input data. Named entity recognition can then redefined in
the lens of machine learning as a classification algorithm, classifying if a sub-unit
is a member of an entity group or not.

Hidden Markov Models

One of the first transformations of NER into the machine learning domain is
based on the logic of Markov processes (Bikel et al. [1999]). It follows an HMM
model, which structurally consists of states and observations. The entities of
interest in an HMM NER model are represented as states, and the observations
are the sequence of words in a sentence (Bikel et al. [1999], Baum and Petrie
[1966]). An HMM consists of:

• a set of states of size N ; Q = q1q2...qN

• a matrix consisting of transition probabilities; A = a11...aij...aNN , each
representing the probabilities of moving from state i to state j

• a sequence of observations; O = o1o2...oT of T total observations, from a
vocabulary defined as V = v1v2...vV .

• a set of emission probabilities, expressing the likelihood of a particular ob-
servation ot from a particular state; B = bi(ot)

• initial probability distributions of states π = π1, π2, ..., πN

(Jurafsky and Martin [2008]).
The figure below shows the connections of the states of model HMM for NER.

Special states are introduced for sentence boundaries that have connections to
each entity state. Entity states also are reflexive and are fully connected to all
other entity states in the graph. The model mentioned in the paper is slightly
modified to contain an additional state for non-entities. The HMM model is
generative, such that it can create the sentence and the tags using Bayesian
principles.

P (E|W) = P (W, E)
P (W)
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Figure 2.1: Sample structure for HMM NER Model, adapted from (Bikel et al.
[1999]), Figure 3

Given a sequence of words W we can predict a sequence of entities E, using the
Viterbi algorithm we can iterate through the name classes to find

Max(P (E|W ))

(Viterbi [1967]). There is an additional layer of features in the model, which
gives us additional information about the word. In the model described, words
are transformed into a tuple of (word, feature). An example of some of the
features is word classes, special characters, and case descriptions. The features
described are language-specific but are only a small piece of the entire algorithm,
so the framework remains dynamic for other language uses. Training the model
is as follows, using a given sample, we get the probabilities based on the counts
of entities and words seen in the training data. We then find the probability
of the first word given the counts of the entity class and previous word counts.
Due to the nature of training data, some changes need to be made for the lack
of seen entities and words in training. For this purpose, they introduce back-off
models and smoothing into the model to correct the probabilities for unknown
input. While HMM models have shown favorable results, some of the drawbacks
include the performance dependency on the input data. If the language model
is similar to the one used in the paper, a bi-gram model, then it has a limited
window of information for entities. There is also the issue mentioned in the paper
of hierarchical entities, i.e., Bank of America, while it is a stand-alone entity, the
model described above only captures sub-units as entities in the case America
would be the only entity extracted.

Conditional Random Fields

The HMM model discussed in the previous section is an example of a genera-
tive model. This section will explore a discriminative approach to NER. The
key differences between the two are the approaches to such; generative methods
attempt to characterize the entities of interest by learning the distribution of the
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entire data set. Discriminative models focus on the boundaries between positive
and negative examples; this approach is limited to supervised machine learning
methods as the labeled data is key for the learning of that boundary. Conditional
Random Fields (CRFs) are an example of a discriminative approach to NER
(Sutton et al. [2012]). The input for a CRF, like HMM, is a sequence of data,
in our case, a sentence, and the output is a sequence of entities. Unlike HMM
models, the CRF is not limited to the current word and previous tag. Instead,
CRFs explore more features of the input using feature vectors . Each word in the
sequence can be represented as

xi = {x1, x2, . . . , xT}

A sample of some of the features that can be extracted for our task is the current
or previous word or words within a given window, orthographic features, and
prefixes/suffixes of the word. An important concept for understanding the notions
of CRFs is linear-chain CRFs. This distribution, given the input vectors x and y,
parameter weights θ = {θk} ∈ ℜK , and feature functions F = {fk(y, y′, xt)}K

k=1,
we can formalize the chain as:

P (y|z) = 1
Z(x)

T∏︂
t=1

exp{
K∑︂

k=1
θkfk(yt, yt−1, xt)}

where Z(x) is an input-dependent normalization function:

Z(x) =
∑︂

y

T∏︂
t=1

exp{
K∑︂

k=1
θkfk(yt, yt−1, xt)}

(Sutton et al. [2012]). CRFs have the ability to slightly more dynamic than the
aforementioned HMM models as the transition states remain static regardless of
input. In the CRF model, we can create a dependency between the transition
score and the current input vector features. For our task, this is especially useful
as entity recognition is highly contextual in nature, and the current observation
vector allows for a more specialized model. Many of the state-of-the-art NER tools
use CRFs because there are no assumptions from the model that the features are
independent and the model remains dynamic in the labeling process.

Neural Network Approaches

Neural networks are networks comprised of connected layers, which use activation
functions, processors, and weights to build estimates. Neural networks have been
a popular topic in machine learning, surpassing state-of-the-art performance in
many natural language processing tasks. This section will discuss the methods
and architectures of neural networks used for NER.

Long Short-Term Memory networks (LSTMs) have shown remarkable results
in named entity recognition (Hochreiter and Schmidhuber [1997a]). LSTMs are
a type of recurrent neural network (RNN), networks used for sequential data
(Pascanu et al. [2013]). RNNs operate on a sequence of vectors and, in turn,
output a sequence of vectors representative of information about the input data
at each step in the sequence. As information is propagated through a recurrent
neural network, previous time points are used as inputs to the next layer. At
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each layer, there is a cost function designed to weigh the error of the predicted
outcomes. In the simplest RNN architecture, each state ht is defined as ht =
f(ht−1, xt). The architecture for the network can be seen in Figure 2.2 below. The
output of the network is a prediction vector, which will be used in conjunction
with a function to propagate through the network and update the weights to
minimize the error. The backpropagation used in RNN, is called back-propagation
through time, (BPTT) it is a gradient based technique that traverses the network
through time using the inputs, outputs, and a set of parameters. The following
variables are defined for the original backpropagation algorithm:

• x: the input vector

• ŷ: the predicted target vector

• y: the target vector

• L: loss function

• waba: parameters used to compute the activation at each time step

• at: the activation function at a time step t

• wyby parameters used to compute ŷ

Figure 2.2: Architecture of recurrent neural network, adapted from Olah [2015]

Typically we will use cross-entropy loss Lt(ŷt, yt) = −yt log ŷt at a given time
t, thus the overall loss for the entire sequence as L(ŷ, y) = ∑︁T

t=1 Lt(ŷt, yt). Using
these inputs, we can compute losses for each step and compute their sums going
right to the left or ”backward” in time. Using the backpropagation algorithm but
starting from the error, we calculate the gradients by chain rule of differentiation
and sum up these gradients. The issue that we run into with traditional RNNs is
that with each stage, we are multiplying the inputs, and multiple passes lead to
the derivatives exploding or vanishing. While exploding gradients can be solved
by clipping the gradients with a threshold, the vanishing gradient presents a more
difficult issue. LSTMs provide a solution for the vanishing gradient problem, and
this is done by the architecture of the LSTM gradient itself. In figure 2.3, details
of how the cell retains its memory are shown.

In the figure above we still have the input xt and the output ht, and we also
have Ct−1 as well as Ct. Together these components represent the namesake of
the network and corresponds to both long and short terms. The cell contains four
gate functions, the forget gate Ft, the input date It, the candidate memory Ct,
and the output gate Ot. The σ represents a fully connected layer with activation
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Figure 2.3: LSTM Cell, adapted from Olah [2015]

function, and the tanh represents a tanh function whose values range from [-1,1].
The input, forget, and output are calculated in the same manner:

It = σ(xtwxi + ht−1whi + bi)

In the input gate calculation above wxi and whi represent weight parameters for
the input and bi as the bias parameters for the input I. Each of the gates have
their own weight and bias parameters thus wxf , whf , bf , and wxo, who, bo represent
the weights and bias parameters for the forget and output gates respectively. The
memory cell is a critical feature of LSTMs which function like a hidden state, but
are designed to remember additional information. Before being explicitly defined
a candidate memory cell is first constructed. Its calculation differs slightly from
the aforementioned gates, and follows the equation:

Ĉ = tanh (xtWxc + ht−1whc + bc)

, the function of Ĉ is to governs how much new data should influence the process.
Using the input, candidate memory and forget a new update equation is used
Ĉ = Ft ⊙ Ct−1 + It ⊙ Ct̂, where the ⊙ represents element wise product. Hidden
states are then computed as Ht = Ot ⊙ tanh Ct.

Understanding how the LSTM cell operates is critical for understanding the
currently used approaches to neural NER, as it will further build on the LSTM
structures. In the paper Neural Architectures for Named Entity Recognition,
Lample et al. combine both CRFs and a bidirectional LSTMs for a model for
NER, which is the approach that will also be used in this thesis work [Lample
et al., 2016]. The input sentence X is represented as (x1, x2, ..., xn), where each
word xi is a vector with a predefined dimension. This input is then propagated to
an LSTM that calculates a representation of the context on the left of a given the
word xi in the sequence. In order to gain insight into both the left and the right
context, another LSTM reads the input sequence in reverse to compute the right
context. The two left, and right representations are then concatenated to create
ht. In the previous section, CRFs usage is discussed as they are often the preferred
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statistical method for NER as they do not predict independently. Rather they
take into account the neighboring samples. The model’s final layer is then a CRF
tagging model that uses the input from the word representations. This is done
by using the information generated by the Bi-LSTMs, a matrix of n (number of
words in the sentence) by k the number of possible tags, the matrix can be read
as scoring of the word and tag combination. The prediction sequence Y , where
Y = (y1, y2, ..yn), is scored with its input X using the following equation:

s(X, y) =
n∑︂

i=0
Ayi,yi+1 +

n∑︂
i=1

Pi,yi

where Pi,j maps to the score of the jth tag of the ith word, and Ayi,yi+1 is the
transition score from the tag i to j. Pi,j are calculated by taking the dot product
of the word embedding and a previously defined tagging model scores, and then
finally are combined with the bi-gram probability scores (the models built by
Lample et al. only model bi-gram interactions). To calculate the probability of
the sequence Y a softmax over all of the possible tag sequences using the equation:

p(Y |X) = es(X,Y )∑︁
ŷ∈YX

es(X,Ŷ )
,

where YX is all of the possible tag combinations that X can represent. The
log-probability is maximized during training, using the equation

log(p(Y |X)) = s(X, Y )− log(
∑︂

ŷ∈YX

es(X,Ŷ ))

Figure 2.4: Architecture of the network, adapted from Lample et al. [2016], where
li and ri represent left and right contexts, and the contextual representation ci is
produced from the concatenation. This figure used the IOB tagging schema.

During the decoding, the prediction of the output sequence depends is chosen
by the sequence that has the maximum score y∗, where:

y∗ = argmaxŶ ∈YX
s(X, Ŷ ).
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Thus, the following are parameters for the model, the matrix A representing
bigram compatibility, the scores needed for the matrix P , linear weights, and the
word embeddings. The work not only proved to show improvements in F1 scores,
but the work also became a reliable and commonly used architecture for NER
tasks (Lample et al. [2016]).

2.2.4 Named Entity Recognition Evaluation Measures
It is important to be able to measure the quality of the models in any automated
system. In this section, we will discuss the evaluation measures for the perfor-
mance of the system. Precision and accuracy are two commonly used measures
for the evaluation of a system; we use these measures to calculate the performance
of the model. Precision is a measure that describes the number of correct positive
labels, and we can interpret the precision of the model as the consistency of the
model. In binary classification we define it formally as:

Precision = TP

TP + FP

where TP and FP represent true positives and false positives, respectably. Recall
is the measure of the positive classification, and is linked to the sensitivity of the
model. We can define recall as:

TP

TP + FN

. Accuracy is a measure of how close the model is to the truth; in binary classi-
fication, we can define it as:

Accuracy = TP + TN

TP + TN + FP + FN

where TN and FN represent true negatives and false negatives respectably. An-
other measure that is of importance is the F1score, which considers both accuracy
and precision. This measure is the harmonic mean, which takes a value between
0 and 1. When the model correctly classifies each value into the correct class we
have a F1 score, or F-measure, of 1 and we define it formally as:

F1 = 2× precision× recall

precision + recall

Precision and accuracy of the named entity recognizer are traditionally mea-
sured using hand-crafted data from linguists. Outside of traditional measures,
there are domain-specific measures for named entity recognition. We will briefly
discuss the techniques used in main NLP conferences. The Message Understand-
ing Conference (MUC),are one of the most commnly used standards used in NLP
for evaluating information extraction systems (Chinchor and Sundheim [1993]).
MUC evaluations separate the evaluations into two realms, one focuses on the
type and the other on the text. As systems tend to measure several entities types
at a time, the type focus is on matching the entity tag appropriately, for example,
in the sample sentence:

Charles University is a university located in Prague, Czech Republic.
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The first entity in the sample sentence should match the entity tag for organi-
zation and not, say, an entity for people. The second measure is based on the
boundaries of the entity that is being detected. For example, if the system recog-
nized in Prague, Czech Republic instead of the italicized entity in the sample,
it would be penalized in its performance (Nadeau and Sekine [2007b]). Other sys-
tems simply take into account if the match is an exact match, disregarding partial
matched or boundaries.

2.3 Issues in Named Entity Recognition
Now that we have a brief introduction to the task, the methods, and the evaluation
of NER, it is important to also survey the issues that one may face when building
and improving a NER system. One of the biggest challenges with named entity
recognition and machine learning approaches is the appropriate training data. In
order for machines to learn the diversity of entities and their meaning given their
context, systems need to be trained on a large amount of data. Data quality is
also a concern as training data needs to match the domain of interest. A large
amount of data is just the first part of the issue of data quality, the annotated data
must be reliable, and typically this means human linguists must spend laborious
hours tagging and evaluating this data before being put into the training stage.
The domain-specific training data, while improving performance in the specific
domain, sheds light on the limitations of NER systems, as there is no omniscient
recognizer for the myriad of tags a given text can contain.

2.3.1 Ambiguity
One of the biggest challenges of named entity recognition is named entity disam-
biguation. Entity disambiguation has been categorized into a machine learning
task of its own, with a multitude of systems solely dedicated to disambiguation.
This task can sometimes be referred to as entity linking, or when systems are
combined with named entity recognition, these systems are referred to as Named
Entity Recognition and Disambiguation (NERD). The issue of disambiguation
brings us back to the notions of understanding the linguistic principle of context.
An example sentence for entity disambiguation:

The Black Mamba scored the most 3-point shots in his career during the
championship game.

The entity Black Mamba should be linked to the famous basketball player Kobe
Bryant and not to the venomous snake found in sub-Saharan Africa. There are
many techniques to alleviate this issue; previous studies have tried to model
textual context by modeling the similarities between words and a probable entity
([Yamada et al., 2016]). Other approaches use word embeddings to capture the
nuances of language modeling context, which we will discuss in detail in the next
chapter. In the following sections, we will discuss some ways to alleviate the issue
of ambiguity in the task.
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Disambiguation with Deep Learning

Disambiguation using Deep Learning combines the components of the artifi-
cial neural networks mentioned previously. The Deep Learning approaches dis-
cuss here will describe the architecture of artificial neural networks which have
learned models for disambiguation or joint entity recognition and disambiguation
(NERD).

In the paper Modeling Mention, Context and Entity with Neural Networks for
Entity Disambiguation, researchers present a new model that acknowledges se-
mantic representations of mention, context, and entity and encodes the semantic
information into a continuous vector space to be used for disambiguation (Sun
et al. [2015]). The task in the paper is recast as ranking by comparing the similar-
ities of input and candidate entities. The proposed neural network is as follows, a
representation for the context sentence is encoded into a vector (minus the men-
tion) vc as well as the mention represented as the vector vm. The representation of
the context vector vc is modeled with a convolution neural network, whose inputs
include word embedding as well as position embedding, which is one of the main
contributions of the paper. This positional contribution is backed by the intuition
that closer context words may be of more value in terms of encoding information
about the entity. The mention vector is represented as word vectors, and when
there is a multi-word mention, the average of the word vectors is calculated. The
entity associated with the mention is encoded as two vectors wew (entity word
representation) and vec (entity class representation). The entity class and entity
words are created using words or phrases from the reference knowledge base and
the entity, respectively. Class entities are sourced from info-boxes in the knowl-
edge base, which are mapped in a continuous vector space. The two vectors vew
and vec and input to a tensor to create the vector ve, which represents the entity.
Meanwhile the vectors vm and vc are also input into a tensor to create the vector
representation of context and mention vmc. The two resulting vectors are then
compared for similarity using cos(vmc, ve). This measure is then applied to the
entity disambiguation task. The selection of the entity is simply calculated by
the entity with the closest entity using the previous calculation. For the training
of the model a loss function is defined as:

loss =
∑︂

(m,c)∈T

max(0, 1− sim(e, mc) + sim(e′, mc))

Where e is the correct entity, and e′ is a random entity, this is function assumes
that the correct entity is larger than the similarity score of a randomly selected
score from the knowledge base by a margin of 1. The results of the approach
described in this paper show improvements in accuracy when integrating the
semantic vectors from the previous state of the art by up to three points.

While many of the approaches to disambiguation contain an input text and an
entity, some deep learning approaches use the legacy concepts of graph elements.
In the paper Named Entity Disambiguation using Deep Learning on Graphs the
model combines an input graph and runs a consistency test of the input text and
the graph (Cetoli et al. [2018]). The graph is represented with nodes as with
Glove word vectors, using averages of the word vectors in multi-word instances.
The edges of the graph are also represented by averaging the word vectors in the
edge’s labels. The input text of the model is represented by a sequence of word
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vectors, which are fed into a bidirectional LSTM, resulting in a vector that is
weighted by a mask, a set of binary numbers that note the location of the entity
by 1, and 0 all other indices. This is combined with a recurrent neural network
to process the knowledge base triples. Using the aforementioned node vectors
for the graph input and input text vectors from the LSTM model, they apply a
hidden layer that produces a binary vector that provides information about the
consistency between the graph and the input text. The following architecture
is the first model, with successive models which increase the complexity of the
model by adding an attention mechanism or by changing the RNN representation
of triples into a graph convolutional network (GCN). The attention mechanism,
proposed by Bahdanau et al., originally for the task of machine translation, is a
mechanism that jointly learns alignment and translation by a linear combination
of encoder and decoding states. (Bahdanau et al. [2014]) In this task, the output
vectors of the LSTM are first weighted by the attention coefficient, then summed
and used for the creation of the graph vector representation. The graph is then
calculated as:

ygraph = N−1
triplets

Ntriplets∑︂
i=0

bizi

Where bi represents the attention coefficient, zi represent the output vectors of
the LSTM, b = softmax(c), and ci = ReLU(Wtripletszi + Wtextytext + btriplets).
W matrices and the vector b are learned during the training phase of the algo-
rithm. The intuition of this architecture is that the attention mechanism will
recognize relevant triples and place more weight on them as a result. The next
approach described in the paper is one that combines graph convolutional net-
works, originally proposed by Kipf and Welling. Graph convolution networks are
neural networks that, when given a graph, G = (V, E) (vertices and edges), the
network uses the input matrix, X, where X = N ∗ F 0 representative of the fea-
tures. The dimensions of X, where N = |nodes| and F 0 is the number of input
features for each node. An N ∗N matrix A, representative of the graph structure,
can be an adjacency matrix (Kipf and Welling [2016]). Hidden layers in the GCN
architecture can be defined as H i = f(H i−1, A), where H0 = X and f is a propa-
gation, for example f(Hi, A) = σ(AHiWi). The resulting architecture is then the
bidirectional LSTM and the GCN representing the triples, as well as the same
architecture with attention. Of the many architectures described in the paper
when analyzing the precision, recall, and F1 score, the best performing model
overall was the Text LSTM and RNN of a triple with attention and the same
model without the attention mechanism performing slightly worse. All of the
aforementioned models focus only on the task of entity disambiguation, but there
are many studies that attempt to jointly solve the recognition and disambiguation
of entities.

In the paper A Novel Ensemble Method for Named Entity Recognition and
Disambiguation based on Neural Network, the method, called Ensemble Nerd,
combines the responses of NERD extractors and employs two Deep Learning
networks to carry out the task (Canale et al. [2018]). The first of the two is
an ENNTR (Ensemble Neural Network for Type Recognition). This is done by
concatenating several inputs from the multiple NERD extractors. These features
include type features, score features, entity features, and surface features. Surface
form features are relative to the input text, which is split into tokens and assigned
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a word embedding computed using a pre-trained model. Type features represent
the entity type such as person, place, or organization and are mapped through
one-hot encoding. The features of the entity are used to identify similarities be-
tween Wikidata entities; this is done using a vector with several dimensions. The
first being a boolean to represent if the entities have the same URI, the second
uses Levenshtein distance to compare the labels of the entities, the third repre-
sents the TF-IDF Cosine similarity, the fourth specifically for the entity person
represents if the compared entities share the same occupation, the last dimen-
sion represents the structural similarity in the two entities. The simplest feature,
score features, are simply the confidence or saliency scores returned from each
of the entity extractors. The features are generated from each of the extractors,
are used as input to a dense layer, and finally into an output layer. The second
network, ENND (Ensemble Neural Network for Disambiguation), differs from the
latter and attempts to determine whether the result from one of the extractors in
the collection is correct or not. This is done using an architecture that also con-
catenates features from entity similarity and type features from the extractors.
The type features are similar to the previous network type features and are then
input to two dense layers to a single neuron output layer, with a sigmoid activa-
tion function. The importance of this work is that its approaches differ from the
Bi-LSTM approach and shift the perspective of neural network architecture.
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3. Word Embeddings
Neural networks have brought an array of new ideas and improvements in the
state-of-the-art performance in Natural Language Processing tasks. The models
previously discussed are similar as they use representations of the input language.
These representations, called word embeddings, have also been evolving alongside
the algorithms that use them. This thesis will also use several varieties of word
representations, and this chapter lays the framework of the pre-existing word
representations as well as the ones that are used in the practical implementation
of this thesis.

In its most simplistic definition, word embeddings are numerical representa-
tions of text. One hot encoding offers a straightforward representation of input
text. For the input sentence The quick brown fox jumps over the lazy dog, each
of the words in the language is mapped to a binary vector representing a word in
the language. We do this mapping by collecting all of the words in the language
and represent the index of the occurrence of the word as a true value and the rest
of the indices of the dictionary as false values. This results in a vector [0, 0, 0, 1, 0]
for each of the words. This representation of words, while straightforward, has
its limitations. Say that you want word embeddings to capture the essence of the
word and be able to map similarities between words and concepts. This idea of
identifying similar words is discussed in distributional semantics; this is driven
by the semantic theory that words used in similar contexts tend to have similar
meanings (Sun et al. [2015]). This is one of the many linguistic theories that has
been modeled further in the domain of NLP. Representing words as vectors isn’t
limited to the input of neural network models. Words as vectors have been used
in information retrieval tasks to model documents and queries for search engines.
This approach is very similar to the one-hot encoding mentioned above.

One of the most significant algorithms for modeling word embeddings is the
Word2vec model. The word embeddings returned from the Word2vec model are
considerably different from the one-hot encoding. The algorithm provides a dis-
tributed representation of words. This means that instead of the vector dimen-
sions representing the size of the dictionary N , it has a fixed vector length V where
each of the elements in the vector provides information about the words. The
paper Efficient Estimation of Word Representations in Vector Space offers new
techniques for distributed word representation and does so in two ways (Mikolov
et al. [2013]). The paper explores two neural network architectures: CBOW
(Continuous Bag-of-Words) and Skip-grams. The models adopt an architecture
similar to a language model, modeling the context of the words by their surround-
ing neighbors. In the CBOW architecture (in figure 3.1 below), the model loads
words preceding and following a given word in a certain time window (for exam-
ple, two words before and two after). Each of the context words is encoded into
one-hot vectors (thus, if the size of the dictionary is N , we have N dimensional
vectors). The context vectors are propagated to a single hidden layer and then to
an output layer. The skip-gram model is theoretically the inverse of this CBOW
architecture. Instead, it uses a single representation of a word (again one-hot
vector) which is propagated to a hidden layer, and target context words are rep-
resented in the output layer. While the work done by Mikolov et al. is comprised
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Figure 3.1: Architecture of Continuous Bag of Words network, adapted from
Mikolov et al. [2013] Figure 1.

of seemingly simple architectures, the results of their work are surprising. The
Word2vec embeddings can capture linguistic relations such as countries and their
capitals, male and female representations of words (for example, brother/sister),
comparative adverbial relations (such as small and smaller), verb tenses (walk
and walking). This is accomplished using arithmetic operations with the vector
representations. The Word2vec model offers hope for word representations, as
it captures semantic and grammatical relations of words. When evaluating the
overall performance of the model, it is important to note the disadvantages of
the model. In some of the semantic tasks, the logical analogies are not intuitive.
Rather they are indicative of the training data and their contextual bias, for ex-
ample, king:queen::man: returns woman as expected, but also returns Attempted
abduction. Word2vec has its advantages as it is open source and quite easy to ac-
cess; on the other hand, it cannot handle out of vocabulary words (OOV). There
are also no shared representations of subword units (such as inflectional infor-
mation) encoded into the vectors. Subwords (smaller units of words) can prove
very useful for handling OOV words and have also proved to be an interesting
approach for word embeddings. Another difficulty with the Word2Vec’s model
is its inability to handle ambiguity; for each word, there is one vector represen-
tation. In the next sections, I will outline some alternatives to Word2vec and
analyze in-depth the architecture of those used for this thesis work.

GloVe

The work on word embeddings led to breakthroughs that aimed to surpass the
performance of the Word2vec. Word2vec remains a popular option for NLP appli-
cations, but there are a few other contenders that also perform on the same level
and leverage other advantages. One of which is the GloVe shorthand for Global
Vectors. GloVe was developed by Jeffrey Pennington, Socher, and Christopher D.
Manning, members of the Computer Science Department at Stanford University.
Its NLP department continues to provide industry-standard tools for NLP, such
as the taggers, classifiers, and parsers. Much like Word2Vec, GloVe embeddings
derive the relations between words by using cosine distance. This makes the
above example about semantic relations between words such as queen::king also
applicable to the GloVe embeddings. GloVe embeddings also have the feature of
having words that are semantically similar being near to each other in the vector
space; thus, looking for k nearest neighbors of any word can result in synony-
mous or similar themed terms. GloVe embeddings also feature the ability to use
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arithmetic on the embeddings to get a sense of the meaning of the words. Thus
we can derive the Country:Capitol, singular:plural, and gendered representations
of words using some vector expressions.

The main difference between the Word2vec embeddings and the GloVe em-
beddings is their training methods. In the Paper GloVe: Global Vectors for
Word Representation by Pennington et al., they aim to identify the semantic
and syntactic regularities which didn’t have an apparent explanation of how they
are produced in the previous Word2vec model (Pennington et al. [2014]). The
method used for GloVe tries to take into account the global co-occurrences and
not just the local context as the former model does. To understand the logic
used, we must first examine how the methods of global matrix factorization differ
from the skip-gram and CBOW models. The global matrix factorization model
was first developed by Deerwester et al., originally for indexing and information
retrieval. In their paper Indexing by Latent Semantic Analysis, they identify the
need for users who are querying documents to have document retrieval based
on the conceptual topic being queried rather than the exact words in the query
(Deerwester et al. [1990]). The pre-existing models used a matrix that has doc-
uments along the y axis and the lexicon of terms along the x-axis. This is a
simplistic way to represent the documents, as one can just mark the terms in the
document using a binary value of 1 in the column where the term is present and
0 a zero when not present. Simplistically this representation would return the
relevant documents only if they contain the exact wording of the query document.
Deerwester et al. aim to gain an understanding of latent semantics i.e., what the
query means. Deerwester et. al use a document term matrix similar to the one
above, but whose rows correspond with the terms and the documents to columns,
with count occurrences instead of binary values. This structure coupled with the
Singular Value Decomposition (SVD) model aims to explore the underlying la-
tent structure. The SVD model decomposes the term x document matrix into a
product of three matrices

X = T0S0D
′
0

, where both T0 and D0 are orthonormal (perpendicular along a line) and the
matrix S0 is diagonal. (Deerwester et al. [1990]). The aim of the SVD is to
reduce and generalize the large matrix described above. The components of the
SVD model have the following dimensions:

• T0 = t x m

• S0 = m x m

• D′
0 = m x d,

where t represents the number of rows in X, d is the number columns, and m
is the rank of X (≤ min(t, d)) (Deerwester et al. [1990]). The matrices T0 and
D′

0 are unitary thus T⊤
0 T0 = T0 T⊤

0 = I. S0 is non-negative and in decreasing
magnitude, i.e. S0 = [σ1 ≥ σ2 ≥ σ3... ≥ 0]. We can refer to T0 as the right
singular vectors, and D0 as left singular vectors. S0 is also also in the order of
importance thus the first column of S0 has more importance that next and so
forth, we can reduce the matrix and take only the top k and set the rest to 0.
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This reduction of the matrix is then applied to vectors T0 and D0 resulting in a
new X. The updated matrix is defined as:

X ′ = TSD

, where X ′ = t x d, T = t x k, and D = k x d (Deerwester et al. [1990]).
The SVD model lays the groundwork on transforming a large sparse vector

into a more compressed vector while maintaining significant information. In ma-
trix factorization methods for word embeddings the matrix representation is not
of document and term but of terms and terms, representing the co-occurrence of
terms. Pennington et. al. define the matrix X, where the entry Xij represents
the number of time the word j occurs in the context of word i. They define Xi

= ∑︁
k Xik representing the amount of times any word occurs in the context of i,

and Pij = P (j|i), representing the probability that the work j occurs with the
context of the word i, and P (j|i) = Xij

Xi
(Pennington et al. [2014]). Instead of

using the raw probabilities for the co-occurrence matrix the authors introduce
probe words k. The intuition behind modeling the matrix this way is that these
ratios can better distinguish relevant terms from irrelevant ones, they generalize
the model as follows:

F (wi, wj, w′
k) = Pik

Pjk

, where w represents word vectors and w′ represents context word vectors (Pen-
nington et al. [2014]). The model is refined to take advantage of linear operations
and to enable an ease of intake into a neural network the authors take the dot
product of the components:

F ((wi − wj)⊤w′
k) = Pik

Pjk

. The authors note that the choice word vectors and context vectors w and w′

are arbitrary and the model should be symmetric for w ←→ w′ and XT , in order
to make this possible they require F to be a homomorphism between (R, +) and
(R+,×):

F ((wi − wj)⊤w′
k) = F (uT

i w′
k)

F (uT
j w′

k)
. The authors imply that the F is the exponential function, thus

wT
i w′

k = log(Pik) = log(Xik)− log(Xi)

, the last logarithm is independent from k and can be changed to a bias bi, in
order to maintain symmetry of the model a second bias bk is added, updating the
model to:

wT
i w′

k + bi + b′
k = log(Xik)

. The model has made a number of changes to account for the data but still has
the issues of divergence of the logarithm whenever the argument is 0, as well as
weighting all of the co-occurrences equally, this would be a major drawback as
rare word combinations create noise in the model and don’t enrich the model with
much information. Pennington et. al propose a weighted least squares model that
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aims to correct these problems, they introduce a weighting function f(Xij) and
define the model as:

J =
V∑︂

i,j=1
f(Xij)(wT

i w′
k + bi + b′

j − log Xij)2

, where V = size of the vocabulary and f is a weighting function which needs to
be 0 when Xij = 0 to ensure that the logarithm is defined well:

f(x) =
{︄

( x
xmax

)α ifx < xmax

1 else

, they define the cut-off parameter xmax = 100 and α = 3/4, thus the logarithm
of the co-occurrence matrix X is implicitly factorized. The resulting word em-
beddings have improved performance in NER tasks but still have the issue of
managing out of vocabulary words poorly. GloVe embeddings only have repre-
sentations of words that have been seen in the model already; thus, when testing
on new data, new words are often subscribed to a random or a null vector. In
the next section, I will discuss ways to manage this issue.

3.1 Sub-word Embeddings
Sub-words are linguistic units that are building blocks for languages. In morpho-
logically rich or polysynthetic languages, many morphemes, which can be syn-
onymous with sub-words, are the elements with meaning that are bound to one
word. In some instances, polysynthetic languages can be translated into many
words in their less synthetic counterpart language, such as English. This can
be problematic in word embeddings with a framework like Word2vec. The issues
with representing words without any consideration of their smaller units may also
present issues in languages like English still, as taking whole words irrespective
to smaller inflectional units or morphological derivations: girl and girls, hope and
hopeful for example have no similar underlying unit in this model). The work of
Sennrich et al. in Neural Machine Translation of Rare Words with Subword Units
demonstrates an algorithm for word segmentation, called byte pair encoding (Sen-
nrich et al. [2016]). Byte pair encoding, originally proposed by Philip Gage for
data compression (Gage [1994]), tokenizes subword units in the following manner:

1. Initialize the dictionary with all of the characters.

2. Represent each word as a sequence of characters with a special symbol to
represent the end of the word.

3. Iteratively count pairs of characters in all of the words.

4. Merge the most common pairs and add them as new entries to the dictio-
nary.

5. Repeat the merge operation until several merges have been met or a prede-
fined dictionary size is reached.
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The experiments conducted by Sennrich et al. confirmed that subword units
generated intelligently help improve the performance of machine translation and
create a framework that is closer to open vocabulary by representing words as a
sequence of subword units.

Character Embeddings

Word embeddings and subword units aimed to find methods to handle language in
small units; character embeddings ventures further into the smaller units of lan-
guage and simply use characters. In the paper Text Understanding from Scratch,
Xiang and Yann introduce a neural network that uses characters instead of words
(Zhang and LeCun [2015]). The study applies temporal ConvNets to several NLP
tasks, using characters as inputs and abstract properties of the word meaning as
output. Xiang and Yann hypothesize that the models are ”learning from scratch”
as the input lacks the knowledge of larger linguistic components (words), as well
as syntactical and semantic structures. ConvNets are convolution networks that
are typically used in computer vision. The architecture (with images as input)
uses three types of layers to build the network. Similar to previously discussed
architectures, ConvNets typically use an input layer (with images in mind this
will represent the raw pixel values), a convolutional layer to extract local features
of the image, a RELU layer (a max function(x,0)), a pooling layer for down-
sampling, and a fully connected layer. Xiang and Yann introduce a new convolu-
tional module specifically for the understanding of text. The component computes
a 1-D convolution between the input and output, first they suppose a discrete
input function g(x) ∈ [1, l] −→ R, and a discrete kernel function f(x) ∈ [1, k] −→ R,
and the convolution as h(y) ∈ [1, ⌊(l − k)/d⌋ + 1] −→ R between f(x) and g(x)
with a stride d defined as:

h(y) =
k∑︂

x=1
f(x) · g(y · d− x + c),

they define c = k−d+1 is used as an offset constant, (Zhang and LeCun [2015]).
Model has a set of kernel functions to use as parameters of the model fij(x),
where i = (1, 2, 3, .., m) and j = 1, 2, 3, .., n, which are referred to as weights on
the set of inputs. The outputs hj(y) are calculated by summing over i number
of convolutions between the input and fij(x). The model also differs from the
traditional convolution networks as it uses temporal max-pooling; this allows
them to have a 1-D pooling module. The model architecture accepts a sequence
of words as encoded characters as input which is then encoded into vectors. This
is done with a representation of the alphabet of size m and representing each of the
characters as a 1-of-m vector. The vectors are then concatenated and transformed
to a larger vector of a fixed length l; anything that doesn’t fit into the fixed size
is simply clipped. The model is then tested on various tasks, including sentiment
analysis, classification, with results that support that character embeddings are
a promising approach to representing words.

The idea that words along with their word components carry meaning sparked
different approaches in architectures of character embeddings. The CNN ap-
proach previously discussed introduced the benefits of the character embeddings,
but intuitively language problems are not spatial tasks; rather, they are sequen-
tial tasks. This is due to the nature of language as a sequence. While this
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doesn’t make the CNN approach wrong, rather, it provides a flip in perspective
and some promising results. The CNN architecture has resulted in some improve-
ments in NLP classification tasks, but the convolution and pooling information
may allow the model to forget information about the order of the input, which
is quite critical to NER and other NLP tasks. In the paper Comparing CNN
and LSTM character-level embeddings in BiLSTM-CRF models for chemical and
disease named entity recognition, by Zhai, Nguyen, and Verspoor, a thorough
comparison is conducted on the two for NER in the biomedical domain (Zhai
et al. [2018]). The architecture for the LSTM based character-level word repre-
sentations follows that from (Lample et al. [2016]). The character embeddings
correspond to the characters in the word and are input into a forward and back-
ward LSTM to represent the words from left to the right. This representation
from both left and right is then concatenated with a word representation from a
lookup table. Pretrained word embeddings are used as the initial scores lookup
table, which uses the skip-gram method, which is then fine-tuned during training.
If the word is not found in the lookup table, then a UNK embedding is used. The
intuition of using both forward and backward representations of the word is to
evoke the bias of the LSTM’s most recent inputs. Thus the forward LSTM pro-
vides a better representation of the suffix of the word, and the backward LSTM
better represents the prefix. Dropout training is used to improve the model as
well as to create a dependency on both character and word representation. The
dropout mask is applied to the final layer before going into the BiLSTM NER
model (the architecture is discussed in Chapter 2).

Figure 3.2: Architecture of BiLSTM with character embeddings, adapted from
Lample et al. [2016]

The results of this study show that both CNN and LSTM based character
embeddings perform similarly, whit the performance of LSTM models slightly
better. However, the study also shows that the CNN-based character embeddings
have reduced complexity as the number of parameters differs immensely. The
LSTM model increased the execution time of the Bi-LSTM CRF model by 115%
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while the CNN model only by 25%, thus for many, the CNN model would be
preferable for NER on biomedical entities.

3.2 Contextualized Embeddings
In the architectures previously discussed, contextual information was a part of
the architecture of the overall model. In this section, we explore the benefits,
architecture, and methodology of contextualized embeddings. Word2vec was one
of the breakthrough NLP technologies; it continues to perform well on many NLP
tasks. Using Word2vec, word embeddings are limited in their ability to handle
the nuances of languages, mainly ambiguity. For each word in the language,
the vector that corresponds to the word remains the same regardless of context.
Thus the vector for bank in the sentence She relied on the teller at the bank for
her financial statement and They had to bank up the snow to create a suitable
pathway remains the same even though the work bank is polysemous, thus has
different meanings, which can be understood based on its context. In contrast,
native speakers of a given language pick up the clues of context to distinguish the
meanings word embeddings typically do not. A new wave of word embeddings
has since been introduced, which model context using deep learning. Some of the
most notable contextualized word embeddings are BERT, ELMo, and GPT-2.

One of the recurring themes in contextualized word embeddings is the lan-
guage models and how they use them for training the word embeddings. A lan-
guage model represents the probability distribution over a sequence of words in a
given language. Given the sequence S = (w1, w2, w3, .., wm) the language model
then assigns a probability of the sequence using unigrams, bigrams, or in the case
of neural networks, multi-layer LSTMs. The language model task, though a sim-
ple approach, has allowed for word embeddings to learn the linguistic properties
of words and outperforms its predecessors in many tasks.

ELMo

In the paper Deep Contextualized word representations by Peters et. al, ELMo
(Embeddings from Language Models) are introduced as a solution to model the
syntax and semantic characteristics of word use as well as its nuanced meaning
differences to model polysemy (Peters et al. [2018]). ELMo differs from Word2vec
in such a way that each word representation is function that uses the entire input
sentence. The vectors are produced from Bi-LSTM that is trained with a language
model on a large corpus. The Bi-LSTM language model (BiLM) as the authors
refer to it, uses the input of a sequence of tokens t1, t2, t3, ..tN , where N is the
number of total tokens. A forward language model is then used to compute the
probability of a token tk given its history (left tokens) of t1, ...., tk−1, which is
computed by:

p(t1, t2, ..., tN) =
N∏︂

k=1
p(tk|t1, t2, ..., tk−1).

A context dependant token representation xLM
k is pushed through L layers of

the forward LSTM to create −→
h

LM

k,j
, where j = 1, ..., L, the layer of the output L

predicts the next token using a softmax layer. Intuitively the backward LM is
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very similar to the forward LM, except that the sequence is process in reverse:

p(t1, t2, ..., tN) =
N∏︂

k=1
p(tk|tk+1, tk+2, ..., tN)

each layer of the backward LM produces a complementary representation ←−
h

LM

k,j
.

The two language models are then combined with a formula that maximizes the
log likelihood of both the language models using the following formula:

N∑︂
k=1

(log p(tk|t1, t2.., tk−1; Θx,−→
Θ LST M

, Θs) + log p(tk|tk+1, .., tN ; Θx,←−
Θ LST M

, Θs)),

where Θx is the token representation and Θs is the softmax layer. ELMo specif-
ically is a task specific combination of the layers in between the biLM. For each
of the tokens, a biLM with L layers calculates 2L + 1 representations:

Rk = {xLM
k ,−→

h

LM

k,j
,←−

h

LM

k,j
|j = 1, ..., L}

= {hLM
k,j |j = 0, ..., L},

where hLM
k,0 represents the token layer and hLM

k,j = [−→
h

LM

k,j
;←−

h

LM

k,j
], for each layer

of the biLSTM. The model then collapses all of the layers into a single vector
representation, thus ELMok = E(Rk; Θe). The selection of the layer can be done
in two ways: simply by choosing the top layer or by weighing the all of layers on
a specific task:

ELMotask
k = E(Rk; Θtask) = γtask

L∑︂
j=0

stask
j hLM

k,j ,

where stask represent soft-max normalized weights, and γtask is a scalar parameter
that allows for the task model to scale the ELMo vector Peters et al. [2018].

ELMo and other deep contextualized models have outperformed the state-
of-the-art static word embeddings, but understanding how these dynamic word
embeddings can model polysemy and perhaps ambiguity is another question en-
tirely. Exploring how contextual these models are can expand our capabilities
and general knowledge on how to create even better representations of words
by learning its drawbacks. How Contextual are Contextualized Word Represen-
tations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings
examines the representations of contextualized word vectors within the vector
space. Surprisingly the vectors in contextualized word embeddings, and in par-
ticular ELMo context specificity increases in the upper layers and words in the
same sentence begin to have more similar representations (Ethayarajh [2019]). It
is important to note that in the case of ELMo, the models don’t explicitly learn
the word and all of its unique word senses. ELMo rather creates multiple rep-
resentations of the token, which are quite specific; thus, the token cat can have
multiple representations, even though this isn’t entirely what speakers may find
intuitive. With all things considered the author also notes that some of the words
that have the most context-specific representations are: and, of, ’s, the, and to
(Ethayarajh [2019]). ELMo and other word embeddings continue to improve NLP
downstream tasks, including those of domain-specific named entity recognition.
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Figure 3.3: Architecture of ELMo

BERT

ELMo’s representation of language rivals that of BERT (Bidirectional Encoder
Representations from Transformers), developed by researchers at Google AI Lan-
guage. The aim of the researchers was to provide improvements in the fine-tuning
of pre-trained language models which use a feature-based approach (ELMo) or a
fine-tuning approach (GPT). BERT aims to exploit the bidirectional properties
of the text and differs from ELMo in this manner. Recall the last section, which
explains that in order to consider both left and right contexts of the words, ELMo
uses right-to-left LSTM as well as a left-to-right LSTM and concatenates them to
represent left and right context. BERT is able to do so using two defining feature
transformers and a masked language model.

BERT’s use of a transformer model as opposed to the LSTM model has made
it stand out to the later models as it makes use of parallelization of the tasks
associated with sequence to sequence models. In the latter LSTM model, each
step in the sequence accounts for a step in time, making this process very time-
consuming for larger data sets. The original transformer model proposed by the
Google Research Team in their paper Attention Is All You Need, describes the
need for such an architecture (Vaswani et al. [2017]). The transformer architecture
has two key features the encoder and the decoder. The encoder encodes the
inputs and digests an input embedding as its first step. This embedding is the
representation of the entire sentence, not just a singular word. In order to retain
some positional information about the items in the sequence, Vaswani et al. use
a positional encoding mechanism in both the inputs and outputs. The position
encoding has the same dimension of the embeddings in order for them to be
summed, and the following two functions are used:

PEpos,2i = sin(pos/100002i/dmodel)

PEpos,2i+1 = cos(pos/100002i/dmodel)
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Figure 3.4: Transformer Architecture (Vaswani et al. [2017], Figure 1)

, where pos represents the position and i represents the dimension (Vaswani et al.
[2017]). The encoder stack has two additional components the multi-head atten-
tion mechanism and a position-wise fully connected feed-forward network. The
multi-head attention function is a critical part of this architecture and is built on
the basis of an attention function. Vaswani et al. describe the attention function
as a mapping from a ”query and a set of key-value pairs” to an output, nothing
that all of the values are represented as vectors. The attention aims to provide
the context needed for each of the subunits of the sequence since the inputs are
ingested at the same time, unlike LSTMs or RNNs. The attention blocks generate
attention vectors for each of the units in the sequence, representing the context
or how relative one word is to another in the sequence. The singular attention
mechanism in Figure 3.5 (Vaswani et al. [2017]) The inputs Q is a matrix repre-
senting a set of queries, V and Q are keys and value matrices respectively and
are computed as

Attention(Q, V, K) = softmax(QKT

√
dk

)V

, (Vaswani et al. [2017], pg. 4). The multi-head attention extends the logic of the
single head attention but aims to ”linearly project” each of the inputs h times
with different linear projections dk, dq, and dv dimensions (Vaswani et al. [2017],
pg. 4). The attention function is performed in parallel to the newly projected
versions of the matrices, attending to different positions in the sub-space at once.
The other distinguishing feature of the transformer model is the masked multi-
head attention. The masked multi-head attention is similar to the multi-head
attention above, but instead of getting all of the items in the input sequence, it
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Figure 3.5: Scaled Dot Product Attention and Multi-Head Attention (Vaswani
et al. [2017], Figure 2)

Figure 3.6: BERT Architecture (Devlin et al. [2018], Figure 1)

receives only the previous units of the sequence, and the units after are masked
and represented as zeros. This mechanism prevents the model from computing
the attention vectors for the upcoming words at each step.

This masked approach is important in the BERT model as it makes use
of a masked language model based on this logic. This is done by randomly
masking a percentage of the input tokens in an effort to predict the original
token only using its context. BERT also is tasked with ”next sentence pre-
diction”, which jointly pre-trains text-pair representations (Devlin et al. [2018],
pg. 2). BERT has two main steps, pre-training and fine-tuning. During the
pre-training, the model is trained using unlabeled data over a series of differ-
ent tasks. Fine-tuning entails initializing the model with pre-trained parame-
ters and then fine-tuning the parameters based on the particular downstream
task. The architecture is similar to the transformer architecture described in
Vaswani et al.’s Attention Is All You Need, and distinguish the base model
as BERTBASE and the larger model as BERTLARGE. The base model is de-
fined as (L = 12, H = 768, A = 12, P = 110M), and the large model as
(L = 24, H = 1024, A = 16, P = 340M) where L represents the layers (trans-
former blocks), H is the hidden size, A the number of attention heads, and P
the total number of parameters. The input of the model can be both a sentence
or a pair of sentences (for the question answering task). WordPiece embeddings
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are used as the input representation of the text. They are much like BPE and
segment words into subwords, i.e., playing → play and ##ing. Two new special
tokens are added to the model ([CLS]) denoting the start of the input sequence,
([MASK]) for the masked tokens, and ([SEP]) for separating the sentences in the
sequence. The final input representation is expressed as a sum of the token, seg-
ment, and position embeddings. This representation of the data coupled with the
transformer architecture and attention mechanisms allows for a model that has
a performance that exceeded state-of-the-art performance in several tasks. One
of the tasks where a significant improvement in performance was the General
Language Understanding Evaluation (GLUE), where BERTLARGE outperforms
ELMo by 11% (82.1% compared to ELMo’s 71.0%) (Devlin et al. [2018], pg. 6).
The ability and diversity of word embeddings are continually changing in the
advancement in the NLP field; this allows us to continue to explore and improve
the performance of many NLP tasks. In this section, I focus on the most crit-
ical at the moment and lay the groundwork for the representations used in the
experiments described in the next chapter.
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4. Methodology
This chapter will describe the data sets, experiments, and methods used for the
practical work of this thesis.

Motivation

During the start of this thesis I found that in my professional work in the biomedi-
cal domain I had to access vendors which were offering IE tools. Often times these
tools did not use machine learning approaches, rather they focused on specially
curated ontologies and used these as the base for the dictionary based approach
to named entity recognition. Through this work I grew knowledgeable about the
industry standard of ontologies and the vast amount of resources available in the
biomedical domain as reference data. Initially I wanted to use only biomedical
”gold” standard data for training the neural networks, but found that while there
were many sources, even the most reputable contained about 400,000 words (Kim
et al. [2003]). I wanted to explore if I could use a carefully curated dictionary
from ontologies that were industry standard to create training data from large
data sets that are not annotated but publicly available to be used for a neural
network as training data.

4.1 Modules and Tools
To run the experiments related to this thesis several tools and packages were
needed. These tools were critical for running the experiments and allowed me
to use pre-existing components to build the architectures described in the above
chapters. This subsection will describe the tools and modules used for the exper-
iments described in the later sections.

Python

All of the code associated with this thesis is written in Python. Python is a pro-
gramming language that is easy to work with and relatively fast. Its performance
in speed is not that of C++ or Java but due to widespread use and its number
of libraries I chose this programming language. Python is well documented and
is used frequently for NLP tasks.

Keras

Keras is a machine learning and deep learning framework and a library in Python
that allows for the implementation of machine learning algorithms. It is one of the
most common deep learning frameworks and is running on top of another machine
learning framework TensorFlow. Keras allows for execution on GPU, CPU, and
TPU, which is one of the reasons I chose to use this library for the Bi-LSTM model
as well as the Bi-LSTM Character model. Keras is also well documented and
provides examples for some of the most popular deep learning architectures more
information on such tutorials can be found at https://keras.io/guides/. Keras
has built-in modules for LSTM, Bidirectional layers, CRF layers, as well as all
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of the other components necessary to build a Bidirectional LSTM with a CRF
layer. The parameters used for the models are described in depth below.

XML

To read the sources in from the XML format another built-in Python library xml.
Specifically, I used the ElementTree API to allow for a smooth process of parsing
the source files used for training data.

SpaCy

To have the data formatted for the models below the data needs to be pre-
processed and enriched with additional data. To run tokenization, sentence split-
ting, and POS tagging I used the Python library SpaCy. Spacy is an industry-
standard NLP library, it allows for out-of-the-box models for named entity recog-
nition, text classification, and linguistic processes for NLP pipelines. Namely,
SpaCy is linguistically motivated and relies on rule-based models for its linguistic
processes, it is comparable to standard libraries such as nltk.

Pronto

Pronto is another Python library licensed by MIT for browsing, creating, and
parsing ontologies in OBO and OWL formats. I chose to use this parser for the
knowledge bases in this thesis because it implements specifications for the Open
Biomedical Ontologies, which are the relevant ontologies for this thesis. More
information about the format and the Open Biomedical ontologies can be found
at http://owlcollab.github.io/oboformat/doc/obo-syntax.html.

Google Colab

One of the most critical components of this thesis is Google Colab. All of the
experiments in this thesis were run in Google Colab. Google Colaboratory (Colab)
is a Google product from the Google Research team. It allows for the execution
of Python code as well as a connection to the Google-provided storage drive.
Colab functions very much like an interactive Python notebook but stands out
in its ability to perform due to its access to GPU and TPU hardware. All of my
experiments were run using the GPU virtual machines as training neural networks
would otherwise be very time and space-consuming.

Flair

Flair is an NLP framework developed by the Zalando Research group for state-
of-the-art language models, sequence labeling, and text classification. Flair has
developed their embeddings as well which can be used and stacked with BERT,
ELMo, and other word representations. In the background, this Python library
has access to another critical NLP library called HuggingFace which is a large
repository of pre-trained models which organization such as Google AI, Allen
Institute for AI, and other organizations that are top contributors to the NLP
community. This framework aims to allow for word embeddings to be combined
with minimal effort (Akbik et al. [2019]). Frameworks like Keras and TensorFlow
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tend to focus on one of the embeddings for a given model architecture, and com-
bining them requires many changes to any specific model. Flair was particularly
attractive for this thesis for this reason. The experiment section below on ELMo
and BERT describes the model architectures in-depth used by this framework.

4.2 Sources

4.2.1 PubMed
The Data used for this thesis was sourced from the PubMed API. PubMed is
a database that contains over 30 million abstracts of biomedical and scientific
nature. PubMed is comprised of three components, MEDLINE, PubMed Central,
and Bookshelf. MEDLINE is the U.S. National Library of Medicine database
that contains journal articles of life sciences, MEDLINE is unique as each of
the records has Medical Subject Headings (MeSH), which can be used when
querying the PubMed API. PubMed Central, an archive of texts of the biomedical
domain at the National Institutes of Health’s National Library of Medicine. The
last component of PubMed is the bookshelf, which is a collection of books and
documents in the healthcare domain, this isn’t used for this thesis as it focuses
on abstracts. PubMed is accessible via an API but is also available for download
bulk data sets from their website.

Data Preprocessing

Due to the need for large training sets, bulk downloads were used for this thesis.
The downloads are in the format of compressed eXtensible Markup Language
(XML). The XML representation allows for smooth traversing of the elements of
the XML file, it includes information about the authors, the journal, the country
it was written in, metadata regarding the central topics or themes of the paper,
the abstract, as well as the previously discussed MeSH data. A sample of the
input XML is below.

<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE PubmedArticleSet SYSTEM "http://sample_pubmed.link">
<PubmedArticleSet>

<PubmedArticle>
<MedlineCitation Status="MEDLINE" Owner="NLM">

<PMID Version="1">1</PMID>
<DateCompleted>

<Year>2002</Year>
<Month>01</Month>
<Day>16</Day>

</DateCompleted>

The code sample above is simplified, but the XML may allow for nested structures,
lists, and missing elements. To prepare the data for training, many of the elements
in the original tree are ignored, and we focus on two elements the element that
represents the abstract and the element that represents the title of the article.
Full articles are difficult to access and limit the number of documents that we
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can access, thus the abstracts are sufficient for the experiments. To traverse the
XML library described above, and ran the pre-processing of the raw text data
to split the sentences, tokenize, and get the appropriate part of speech for each
word.

The resulting processes produced two data sets for training, the disease, and
the gene tab-separated table. The data for diseases consisted of 59,714 sentences.
This included 1,151,798 tokens, of which there were 8,240 tokens identified as dis-
eases, and 1,143,558 tokens identified as non-diseases. The gene training data con-
sisted of the same number of sentences but 1,135,267 tokens, of which 1,119,461
were identified as non-entities, 6,835 were identified as biological processes, 5,063
were recognized as molecular functions, and 3,908 were recognized as cellular
components.

4.2.2 NCBI Disease Corpus
The NCBI Disease corpus is a corpus that is a collection of PubMed articles that
are annotated with disease name and concepts (Dogan et al. [2014]). It contains
793 PubMed abstracts that were manually annotated. This data set is used for the
evaluation of the disease models that were a part of the experiments below. The
data set was available as a part of the data repository for the paper A Neural Net-
work Multi-task learning approach to Biomedical named entity recognition and is
available at the link here https://github.com/cambridgeltl/MTL-Bioinformatics-
2016/tree/master/data/NCBI-disease-IOB (Crichton et al. [2017]). This corpus
allows for an appropriate assessment of the model performance.

4.3 Ontologies
To reduce the manual work of tagging entities of interest, the process of tagging
the entities was automated using the ahocorasick library in Python. To pro-
cess the ontologies from OBO format to a simplified representation the pronto
package described above is used. I also used another Python library that simply
implements the Aho-Corasick algorithm, a string matching algorithm that locates
instances of the entities of interest using a trie-like structure, which has increased
speed over the look-up table. To build the Gazetteer for tagging the entities on-
tologies are used as the knowledge base. An ontology is a set of concepts within
a particular domain, they consist of instances of objects, attributes, classes, and
allows us to manage knowledge in a structured way. For the work of this thesis,
we focus on two classes of entities, genes and their classes (mainly biological pro-
cesses that interact with genes, and anatomical locations), and diseases. Gene
detection and genomics have been a field that is advancing rapidly, and our un-
derstanding of genes and their interactions continues to be an area of interest
in the biomedical domain. Disease detection is typically done by ontologies or
knowledge bases due to their nature of being a relatively closed class of entities,
but can often be incorrectly identified, for example, AIDS and aids whose cas-
ing changes the meaning entirely. Two ontologies are used for this thesis, the
Gene Ontology and the Human disease ontology (DOID) (Schriml et al. [2018],
Ashburner et al. [2000], Consortium [2020]).
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Gene Ontology

The Gene ontology contains three types of classes, (concepts which interact with
other concepts in the ontology):

1. Molecular functions - this class describes activities that operate at a molec-
ular level and are performed by gene products some examples of molecular
functions are transporter activity or protein kinase activity

2. Cellular components - this class is relative to cellular structures and loca-
tions of the cell where a gene performs a function, an example would be
mitochondrion or

3. Biological Process - this class describes the processes carried out by molec-
ular activities, an example is DNA Repair

The Gene Ontology not only offers the terms from the classes mentioned above,
but metadata about the terms, including the relations between different entities
of the ontology. This allows for us to have a graph like representation of the
terms, with a loose hierarchy of parent and child terms.

[Term]
id: GO:0000048
name: peptidyltransferase activity
namespace: molecular_function
def: "Catalysis of the reaction: peptidyl-tRNA(1) + .."
synonym: "peptidyl-tRNA:aminoacyl-tRNA N-peptidyltransferase .."
xref: EC:2.3.2.12
xref: MetaCyc:PEPTIDYLTRANSFERASE-RXN
xref: Reactome: ..
is_a: GO:0016755 ! transferase activity, transferring amino-acyl
relationship: part_of GO:0006412 ! translation

In the above sample (slightly altered with ellipsis to fit on the page), a term
with all of the metadata as it is represented in the ontology. The term contains a
specific ID from the ontology, is enriched with synonyms, references to external
ontologies, and a descriptor providing more information about the term. This
ontology is easily accessible but also under a constant state of revision by the
scientific community and is regularly updated by domain experts.

Human Disease Ontology

The Human Disease Ontology (also known as DOID) is an ontology that focuses
on standardized terms for human disease. The DOID integrates MeSH terms,
the National Center for Biotechnology(NCBI) thesaurus, SNOMED (Systemized
Nomenclature of Medicine), and OMIM (Online Mendelian Inheritance in Mane).
Much like the Gene Ontology, the DOID defines relations, attributes, and dis-
ease concepts by using a knowledge network to represent the semantic relations
between the entries. A sample entry in the ontology is seen below.

[Term]
id: DOID:0050672

40



Figure 4.1: Sample Input of formatted sentences

name: dyskinetic cerebral palsy
def: "A cerebral palsy that is caused by damage to the .."
synonym: "Athetoid Dyskinetic Cerebral Palsy" EXACT []
is_a: DOID:1969 ! cerebral palsy

Both of these ontologies share the same OBO format, with entries being de-
fined as terms and generally have to the same structure. Due to its rich structure,
only the term name and term synonyms are used as input for the gazetteer. The
input data is representative of the keywords is also modified so that they exclude
noise. This is done using a list of common words in English generated by Google,
more information about this list can be found at https://github.com. Some of
the entries that could lead to noise in the training model are removed. I also kept
track of the words removed to make sure that no entities of interest were being
deleted from the model. It is important to note that to track overlapping entries,
the sting matching method only considers the longest matching entry as a match
for example if the sentence contains lung cancer the string matching algorithm
will only tag lung cancer and not tag both cancer and lung cancer. After being
processed and tagged the entries started as compressed XML the input data are
converted into CSV format.

4.4 Experiments
Several different models were implemented using PubMed abstracts as the input
data, the first architecture if the bidirectional LSTM model with a CRF layer and
simple word embeddings, the second is an LSTM architecture with character em-
beddings generated from an LSTM, and the last experiments use a BiLSTM net-
work with ELMo and BERT word embeddings, (separately not combined). Each
experiment is run twice to represent each of the ontologies that were discussed
earlier. The models consist of implementations from the first two experiments
in Keras and the latter in Flair. The intuition is that while BiLSTM may show
promising results the experiments with character embeddings and contextualized
word embeddings will improve the model and its ability to handle OOV words
and ambiguous terms. The input data for the Keras model was first split into
two data sets with the test representing 20% of the data, the resulting data is
then split so that the validation set represents 25% of the test set, resulting in
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train, test, and validate (this is done simply by using the sklearn library). For the
Flair models, they require their training, testing, and validation to be split before
running the model, thus I split the data in half using the first half for training
and the second half was further split for testing and validation, respectively. The
training, testing and validation set for the Flair models are 25,034, 27,434, 4,328
for the gene model (respectively) and 38,860, 29,016, and 21,532 for the disease
model. Initially I was tracking the overall performance using accuracy, but this
measure can be misleading, for example one model performed an overall accuracy
of 98%, but on the classes it performed in the 60th percentile, because most of
the words are not entities it was weighting this score highly. Below I report the
accuracy during training as the other measures aren’t explicitly available during
training, but for the overall performance precision, recall, and F1 are used as they
are more descriptive on the model performance on each of the entities. All of the
code can be found on github at this link https://github.com/shadasha-will/thesis,
note that none of the source PubMed articles are here, they are rather large and
can be found at https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/. I used the first
10 files as the data for this experiment.

Bi-LSTM CRF

For this model the input data needs to be updated so that all inputs are the
same length, we apply padding at the end of the sentence of the length 50 and
also apply this padding to the outputs. The input of the model then takes on
the length of the padding and is pushed to an embedding layer. The embedding
layer has the dimensions of the set of words N + 1. The embedding layer is then
used as input to the bidirectional LSTM layer, which has 50 units and a recurrent
dropout of 0.1. The next layer is the dense layer, with a ReLU activation that is
then pushed to a CRF layer that is the size of the tags. The model uses an Adam
optimizer combines the themes in RMSProp and stochastic gradient descent with
momentum. The model was then trained on 22,307 samples and tested on 3,000
samples for 15 epochs. The model was then tested and validated on the validation
and test set, both of which consisted of 8,263 samples.

Entity Precision Recall F1 Score
disease 0.86 0.60 0.58

cellular-component 0.70 0.62 0.66
biological-process 0.66 0.56 0.61
molecular-function 0.77 0.74 0.75

Table 4.1: BiLSTM-CRF Model Performance during validation

LSTM with Character Embeddings

The next experiment is adapted from the experiments conducted by Lample et.
al. It is very similar to the architecture in Figure 3.2, but instead of just using
character embeddings, word embeddings are also used. The character embedding
is generated by an LSTM model as described in Chapter 3. This model was
trained on 20 epochs and used an Adam optimizer. Due to the complexity of the
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Entity Precision Recall F1 Score
disease 0.54 0.57 0.55

cellular-component 0.71 0.62 0.66
biological-process 0.57 0.54 0.55
molecular-function 0.76 0.73 0.75

Table 4.2: BiLSTM-CRF Model Performance during test
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Figure 4.2: Accuracy during training of the gene model after tuning parameters
and increasing the data
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Figure 4.3: Accuracy during training of the disease model after tuning parameters
and increasing the data

model more epochs were necessary to achieve a suitable score, the results show
the results after training from 20 epochs using 35,000 samples and validated on
3,900 samples.

Figures 4.6 and 4.7 are somewhat similar to the first experiments and follow
the trend of growth. Although this trend of growth could also be linked to model
over-fitting as it was seen in the first two experiments. The results for the disease
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Figure 4.4: Accuracy during training of the disease model using character em-
beddings
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Figure 4.5: Accuracy during training of the gene model using character embed-
dings

model are slightly worse than the model with just simple word representations.

Entity Precision Recall F1 Score
disease 0.71 0.66 0.69

cellular-component 0.65 0.69 0.67
biological-process 0.64 0.66 0.65
molecular-function 0.76 0.65 0.65

Table 4.3: BiLSTM-CRF with Character Embeddings Model Overall Perfor-
mance
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BiLSTM-CRF with ELMo Embeddings

Images 4.10 and 4.11 show the performance during testing for the BiLSTM model
based on the architecture from flair. In total four experiments were run the
standard ELMo word embeddings trained on domain-free text and one represen-
tation of ELMo trained on PubMed articles. The only difference between the
two architecture types is the ELMo embeddings. Both experiments make use
of Flair’s stacked embeddings and use several word embeddings in combination.
The first embedding is the GloVe embedding, the second a character embedding,
and the last and ELMo embedding. The three embedding representations are
concatenated and this represents a single vector after the stacking. The stacked
embedding is then used as input to Flair’s sequence tagger model. The model
is a bidirectional LSTM model with a CRF layer that has a linear contains 256
hidden states, a dropout p = 0.5. The models were trained with the learning rate
= .1, a mini-batch size of 32, and for 20 epochs. Flair recommends the follow-
ing parameters except for the epochs for attaining state-of-the-art performance.
The state-of-the-art performance was achieved with 150 epochs. The epochs are
not fixed rather they represent a maximum variable and will be trained until the
learning rate becomes too small. During the testing stage of the models, I learned
that the model would train for 52 epochs on the data set of approximately 25, 000.
This took over 14 hours on a GPU-enabled notebook to run, thus I tested with
smaller epochs that attained similar performance. This is how I chose the end
epoch size of 20 for all of the Flair models. This ran for about 8 hours on the
GPU notebook and had good overall results, that were particularly promising
during training. In figures 4.8 and 4.9 the scores during training for the disease
model average in the 80% range and the upwards of 90% for the disease model.
The accuracy is sometimes a peek into the actual performance but the model
typically performs worse on the validation data. Overall the standard ELMo

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu
ra
cy

Figure 4.6: Accuracy during training of the gene model using the standard ELMo
embeddings

model nonetheless outperforms the earlier models that only use word or char-
acter representations. For the disease class, the improvement is minimal, only
1%, on the other hand, the performance for cellular components and molecular
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Figure 4.7: Accuracy during training of the disease model using the standard
ELMo embeddings

Entity Precision Recall F1 Score
disease 0.75 0.65 0.70

cellular-component 0.80 0.81 0.81
biological-process 0.84 0.75 0.79
molecular-function 0.77 0.92 0.83

Table 4.4: BiLSTM-CRF with ELMO (Standard) Embeddings Model Perfor-
mance

function had a moderate boost in performance and a meager improvement for
the biological processes. The second experiment is the ELMo model trained on
PubMed articles. These embeddings represent domain-specific embeddings and
my intuition is that these would outperform the standard ELMo representations.
The ”Bio”-ELMo embeddings do improve the F1 score of the model but also only
slightly.
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Figure 4.8: Accuracy during training of the gene model using biomedical ELMo
embeddings
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Figure 4.9: Accuracy during training of the disease model using biomedical ELMo
embeddings

Entity Precision Recall F1 Score
disease 0.73 0.73 0.73

cellular-component 0.76 0.90 0.82
biological-process 0.89 0.71 0.79
molecular-function 0.75 0.96 0.84

Table 4.5: BiLSTM-CRF with ELMO Biomedical Embeddings Model Perfor-
mance

BiLSTM-CRF with BERT Embeddings

The next set of models have the same architecture of the above models and use
BERT and BioBERT instead of the ELMo models. Much like the ELMo embed-
dings, the BioBERT embeddings are trained on PubMed abstracts. BioBERT
was pre-trained on the PubMed dataset for 23 days and has surpassed the per-
formance of biomedical named entity recognition at the time of its release of
62% (Lee et al. [2019]). The BERT model outperform the ELMo model in all
classes. The same observations for the previous ”Bio” embeddings are also present
here, as the BioBERT model outperforms the BERT model. In the planning of
this thesis, I theorized that the more complex a model’s architecture is the bet-
ter the performance of the model. It is with this assumption that I supposed
the BioBERT model would outperform the rest of the models, although the the
BERT that wasn’t trained on PubMed outperformed it slightly. The assumption
that domain-specific word embeddings outperform standard on the other hand
remains true, albeit just a slight improvement. BERT word embeddings trained
on PubMed was the best performing model and is with an F1 score in the 80th
percentile it is quite dependable.

4.4.1 Performance on Gold Standard
This section documents the performance of disease models on the NCBI Disease
validation data. Unfortunately I could there is not a corpus that represented
the concept classes in the Gene Ontology, as some standards such as GENIA
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Figure 4.10: Accuracy during training of the gene model using the standard
BERT base
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Figure 4.11: Accuracy during training of the disease model using the standard
BERT base

Entity Precision Recall F1 Score
disease 0.78 0.65 0.71

cellular-component 0.91 0.82 0.87
biological-process 0.95 0.71 0.82
molecular-function 0.89 0.89 0.89

Table 4.6: BiLSTM-CRF with BERT (base) Embeddings Model Performance

and focused on the sub-entities, but not the processes and functions the ontology
focuses on. In the below table we can see that in the models there is generally a
high precision and a very low recall. This shows that the model returns very few
results, but the results they do produce are mostly correct.
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Figure 4.12: Accuracy during training of the disease model using the BioBERT
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Figure 4.13: Accuracy during training of the gene model using the BioBERT

Entity Precision Recall F1 Score
disease 0.76 0.59 0.66

cellular-component 0.86 0.90 0.88
biological-process 0.87 0.73 0.80
molecular-function 0.80 0.94 0.86

Table 4.7: BiLSTM-CRF with BioBERT Embeddings Model Performance

4.5 Conclusions
The goal of this thesis was to examine the current approaches to named entity
recognition of the biomedical domain. In this thesis, I explored the architectures
of named entity systems and their components, namely word embeddings. In the
introduction I outlined three main goals of this thesis:

• examine the neural network approaches to named entity recognition using
recurrent networks
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Model Precision Recall F1 Score
disease(BERT) 0.91 0.21 0.35

disease(BioBERT) 1.00 0.36 0.53
disease(ELMo) 0.98 0.18 0.31

disease(BioELMo) 1.00 0.26 0.42
disease(LSTMChar) 0.87 0.17 0.28
disease(LSTMCRF) 0.82 0.14 0.23

Table 4.8: Model Performance on NCBI Disease Validation Data

• examine the influence of the performance of these models with different
word embeddings

• investigate the effects of word embeddings on ambiguous text.

Chapters 2 and 3 focus on the first goal of this thesis and are an in-depth exami-
nation of named entity recognition approaches. The experiments in this chapter
conclude that different word embeddings do have an influence on the model per-
formance and that on this specific data set with the set parameters ELMo is the
best performing when combined with a Bidirectional LSTM with a CRF layer.

The third goal which was identified in the official thesis statement was un-
fortunately not met. There are two main reasons for this, one is the manner of
the ambiguity of the entities that I focused on for this thesis. During the topic
exploration, I chose the ambitious goal of focusing on ambiguity in the text as
it is a known ”pain point” in the industry, and many approaches to ambiguity
are trivial and can revert to using a simple white list of terms to avoid for the
introduction of false positives. I aimed to find out how the approaches could be
applied to biomedical texts, assuming that much like ambiguous text of other
domains were similar to the ambiguous texts of this domain. While there is
no shortage of ambiguity in the biomedical domain the type of the ambiguity is
what makes this task extremely difficult to test. The entities of interest for this
thesis are of two types: the genetic domain and the bio-processes that interact
with genes, and diseases. In the genetic domain, the ambiguity is not entirely
polysemous, in other words, a representation for the gene NAP1, this one gene
representation can be mapped to 5 different genetic structures (Stevenson and
Guo [2010]). This kind of ambiguity would not be captured by this system as
it would recognize all of them in theory, the ambiguity is not the question of
identifying it as a gene class but rather mapping it to a specific gene using some
standard identifiers. The experiments I conducted only tag the data as one of the
classes in the ontology, it does not identify which entity it is using some unique
identifier. The disease on the other hand does have ambiguous text in the sense
that in this context the word is or is not a given disease two examples mentioned
earlier were AIDS/aids and cold/cold. These are two that are mentioned often
in literature when discussing ambiguity in the biomedical domain. I attempted
to come up with a longer list of such examples for diseases and found that very
few diseases have this type of ambiguity. This made it difficult to systematically
test the disambiguation of the text as with so few results it only sheds light on
this specific type of small case disambiguation. I have examined on the small
scale the performance of contextualized word embeddings on the two cases. All
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of the models do not detect the difference between the two colds, and do not
match AIDS at all. Cold is identified in the ontologies and during the tagging
this introduced both forms as entities (negative and positive hits), as the tag-
ging doesn’t discriminate based on context. The small scale evaluation does not
provide concrete conclusions about the performance of the contextualized word
embeddings on ambiguity, and this needs to be explored more in depth.

This thesis can be used as a survey to the approaches of named entity recog-
nition using neural networks. This thesis explored the the theme of biomedical
named entity recognition, and found that tagging data sets with a dictionary
yields to unsatisfactory performance on neural networks. While the performance
of the models where hopeful on the custom data sets they performed very poorly
on the standard test data, and are unable to capture many entities.

4.5.1 Future and Related Work
At the time of writing this thesis new language model representations were being
developed and would be useful extensions to the experiments conducted during
this thesis. ELECTRA, T5, and GPT3 are a few of the newer models which build
off of BERT and transfer learning which would make promising candidates for
improving the performance. I would also like to continue the work on ambiguity,
but would need a more reliable set of data to create models for this experiment.
This work was mainly an exploration to see if more semi-automated approaches
can be used as data for a neural network. The finding show poor performance,
and displays the need for appropriate training data. The work on this topic is
continual and as the members of the NLP community continue to make break-
throughs with the help of GPUs and TPUs we will see improvements in the field.
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