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Introduction
Scheduling aims to allocate scarce resources to activities in order to satisfy certain
constraints and optimize specific objectives. The set of activities to be performed
is usually given or determined in advance in the planning stage. To increase the
flexibility of scheduling systems, the notion of optional activities was introduced.
An optional activity is such an activity that eventually may or may not be present
in the resulting schedule. Rather than planning which activities need to be per-
formed and scheduling them separately, integrating both activity selection and
time allocation in the same engine can improve flexibility and efficiency. Indeed,
such an approach has been implemented in a few Constraint Programming (CP)
solvers and exhibited great success in various scheduling problems. Moreover, as
we do in this thesis, the concept of optional activities can be applied to scheduling
problems that do not seem to involve optional activities.

We address a scheduling problem that emerges in the production of water
tubes of various sizes that require reconfiguration of the machines. The reconfig-
uration of the machines leads to the notion of sequence-dependent setup times
between tasks. These setups are often performed by a single person who cannot
serve more than one machine simultaneously, i.e., the setups must not overlap.
Although all the tasks in the problem are known and assigned to the machines,
the order of the tasks and, therefore, the setups to be performed are not known.
It must be decided in what order to execute the tasks on machines and in what
order to perform the resulting setups to minimize makespan.

To solve this problem with sequence-dependent non-overlapping setups, we
propose an efficient CP model using the optional activities to represent the se-
tups between tasks and imposing the no-overlap constraint over these optional
activities. For each pair of potentially consecutive tasks on a machine, an op-
tional activity is created whose presence is entailed from the order of tasks on the
machine. The results of this approach and other variants were elaborated in [1]
and [2].

We go even further and leverage the concept of optional activities even on
problems beyond the scheduling domain. In particular, another problem that we
address in this thesis is multi-agent path finding (MAPF), which aims to find a
collision-free path for a set of agents. The agents are located at nodes of a graph,
they can move over the arcs, and each agent has its destination node. Two agents
cannot be at the same node at the same time. The usual setting is that each
arc has a length of one, so at any time step, each agent either stays in the node
where it is or moves to one of its neighboring nodes.

We suggest modeling the MAPF problem using scheduling techniques.
Namely, nodes and arcs are seen as resources. The concept of optional activ-
ities is used to model which nodes and arcs an agent will visit. The significant
contribution of the scheduling model of MAPF is its capability to include other
constraints naturally. We study particularly the problems where the capacity of
arcs can be greater than one (more agents can use the same arc at the same
time), and the lengths of arcs can be greater than one (moving between different
pairs of nodes takes different times). These extensions make the model closer to
reality than the original MAPF formulation. This approach and its variants were

3



published in [3] and [4], and the dynamic version of MAPF, where agents appear
online, was investigated in [5].

The same idea from our approach to MAPF can also be applied to routing
and scheduling in communication networks, where the data flows are periodi-
cally transmitted from end-stations to other end-stations via network switches.
For real-time critical data traffic, the deterministic behavior and timeliness guar-
antees are achieved by time-triggered schedules. Calculating such a schedule
requires satisfying a lot of constraints, which in practice may be difficult due to
the increasing number of data flows in the networks. The routes of flows are
usually given or determined separately from the scheduling process in the current
approaches. If the routes of flows can be computed jointly with scheduling, more
flows can be scheduled.

To solve the problem of joint routing and scheduling, we propose a model
with optional activities that represent the transmissions of data frames on com-
munication links through which the data will be forwarded. Besides, one of the
specifics of time-sensitive networks is the usage of queues. However, the frames
of critical flows must not be stored in the same queue simultaneously. We model
this by optional activities representing waiting of frames in queues and imposing
the no-overlap constraint on these optional activities. Hence, the presence of op-
tional activities is selected according to where the flows will be forwarded, and
these activities, in turn, select one of its sub-activities to be present according to
in which queue the frame will be stored. This novel CP model brought a signif-
icant increase in the number of successfully scheduled instances (referred to as
schedulability) over the currently used solving methods. These results have been
published in [6]. We also developed an efficient heuristic algorithm that solves
the scheduling problems on large-scale networks (but disregards alternative rout-
ing options), which is published in [7]. Besides, we investigated a possibility to
improve schedulability and throughput by enhancing the hardware of switches
[8].

The rest of the thesis is organized as follows. In the first chapter, we briefly
introduce some important terminology. In Chapter 2, we solve the production
scheduling problem with sequence-dependent non-overlapping setups. In Chap-
ter 3, we tackle the problem of multi-agent path finding and its extended variant
with weighted and capacitated arcs. Finally, in Chapter 4, we address the problem
of joint routing and scheduling of time-triggered traffic in time-sensitive networks.
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1. Background and Terminology
In this chapter, we first describe specific exact techniques for solving combina-
torial optimization problems, and then we focus on the modeling formalism and
the solver that we use in this thesis.

1.1 Constraint Programming
A constraint satisfaction problem (CSP) [9] is a triple (X, D, C), where

• X = {x1, ..., xn} is a set of variables,

• D = {D1, ..., Dn} is a set of nonempty domains of values for each variable,

• C = {C1, ..., Cm} is a set of constraints.

Each variable xi can take on the values from the domain Di. Constraint
Cj involves some subset of variables and specifies the allowable combinations of
values for that subset of variables.

A state of the problem is an assignment (or an instantiation) of values to
some or all of the variables (xi = ai, xj = aj, ...). An assignment that does not
violate any of the constraints is called feasible or consistent. An assignment that
includes all variables is called complete. A solution of a CSP is a complete and
feasible assignment.

A constraint optimization problem (COP) is an extension of a CSP that in-
cludes an objective function. An optimal solution to a minimization (maximiza-
tion) COP is a feasible solution that minimizes (maximizes) the value of the
objective function.

Constraint Programming (CP) is a powerful paradigm for solving CSPs and
COPs that makes use of a wide range of techniques from artificial intelligence,
computer science, databases, programming languages, and operations research
[10]. CP solvers typically use a form of search. The most used techniques are
variants of backtracking to assign values to variables and constraint propagation
to prune the domains of variables.

In general, CP solvers usually find a high-quality solution quickly but some-
times struggle to prove optimality or infeasibility. The CP solver used in this the-
sis, which is the state-of-the-art proprietary CP solver, primarily for scheduling
applications, is IBM CP Optimizer [11]. Its success stems mainly from particular
global constraints modeling unary (disjunctive) resources and efficient filtering
algorithms for these constraints [12].

1.2 Integer Linear Programming
An integer linear programming (ILP) problem is a mathematical optimization
program in which the variables are restricted to be integers, the objective function
and the constraints are linear. More precisely, an ILP can be expressed as:
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maximize cT x
subject to Ax ≤ b

x ≥ 0
x ∈ Zn

where c and b are vectors and A is a matrix. An ILP can be conceived as
a special case of a COP, but every COP can be converted to an equivalent ILP
and vice versa. Note that relaxing the constraint x ∈ Zn to x ∈ Rn turns the
problem into a tractable linear programming problem.

If only some of the variables are constrained to be integers, while other vari-
ables are allowed to be non-integers, the problem is often referred to as mixed-
integer linear programming (MILP) problem.

The algorithms for solving ILPs are, for example, the cutting plane methods,
variants of the branch and bound methods, or a combination of both, such as
branch and cut [13].

ILP solvers appear to be very fast at proving the optimality of a solution
or estimating how far the solution is from the optimum. Currently the best
proprietary ILP solvers are deemed Gurobi [14] and CPLEX [15].

1.3 Boolean Satisfiability and Satisfiability
Modulo Theories

The problem of Boolean satisfiability (SAT) [16] is a problem of determining if
there exists an interpretation that satisfies a given Boolean formula. Most SAT
solvers today are still based on variations of the DPLL procedure [17]. However,
significant advances in SAT solving techniques were made in the last decades
thanks to better implementation techniques such as the two-watched literal ap-
proach for unit propagation [18] and conceptual improvements such as conflict-
driven clause learning and restarts [19, 20].

This progress made SAT solvers applicable also to solving CSPs in general [21].
In the lazy clause generation approach [22], a Boolean formula corresponding to a
finite domain CSP is lazily created during the computation. On the other hand,
the motivation of gaining the advantages of techniques used both in SAT solvers
and CP solvers leads to another hybrid approach, where some domain-specific
reasoning is implemented within an SAT solver: SAT Modulo Theories (SMT)
[23].

An SMT solver decides satisfiability of ground first-order logic formulae con-
cerning some background theories, which is usually linear integer arithmetic in
the case of scheduling applications. For example, a formula can contain clauses
such as v∨w∨ (x− y ≤ 5), where v and w are Boolean variables and x and y are
integer variables. During the computation, the theory solver checks whether the
current assignment is feasible and possibly infers new facts that are then passed
as clauses onto the SAT solver. Other background theories can be the theory of
real numbers, the theory of integers, and the theories of various data structures
such as lists, arrays, or bit vectors.
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Just like CSP has been extended to COP, SMT can also include optimization,
which is sometimes referred to as Optimization Modulo Theories (OMT). Opti-
mization in SMT is formalized as follows. A weighted Max-SMT instance is an
SMT instance where clauses may have an associated weight of falsification. Such
clauses are called soft clauses, whereas the ones without weight are called hard
clauses. A solution for this kind of instance must satisfy all hard clauses and
minimize the sum of the weights of the falsified clauses.

In general, SAT and SMT solvers seem to be extremely fast at proving infea-
sibility and attaining an unsatisfiable core. On the other hand, when it comes to
optimization, SMT solvers have the drawback that they either find an optimal
solution or do not find any solution at all in the given time limit. The most
efficient open-source SMT solvers are currently Z3 [24] and Yices [25].

1.4 Scheduling in IBM CP Optimizer
Recall that scheduling is a decision-making process where the goal is to allocate
scarce resources to activities that require the resources to be performed. The
allocation must be done in such a way that several constraints are satisfied to make
the resulting schedule feasible. The most typical constraint is that the resources,
whether machines or workers on the shop-floor, can perform one activity at a
time, which means that the activities must not overlap in time. This requirement
is referred to as unary-resource or disjunctive constraint.

In this thesis, we use mainly CP for modeling the problems, while the models
are solved using IBM CP Optimizer. The primary motivation is that the CP
Optimizer implements particular global constraints modeling unary resources and
efficient filtering algorithms [12]. CP works with so-called interval variables whose
start time and completion time are denoted by predicates StartOf and EndOf,
and the difference between the completion time and the start time of the interval
variable can be set using predicate LengthOf.

In addition, we use the concept of optional interval variables [26]. An optional
interval variable can be set to be present or absent. The predicate PresenceOf is
used to determine whether or not the interval variable is present in the resulting
schedule. Whenever an optional interval variable is absent, it plays no role in
most of the constraints, and predicates StartOf, EndOf, and LengthOf are set
to 0.

The typical unary-resource constraints are modeled by the NoOverlap con-
straint. The NoOverlap constraint on a set of interval variables states that it
constitutes a chain of non-overlapping interval variables, any interval variable in
the chain being constrained to be completed before the start of the following in-
terval variable in the chain. The interval variables that are absent do not affect
the constraint.

Other important constructs will be explained further in the text when needed.
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2. Optional Activities for
Non-overlapping Setups
The problem studied in this chapter is inspired by the continuous production of
plastic water tubes. In such productions, the factory brings in the material in the
form of plastic granulate that is being in-house processed. The manufacturer has
a stack of orders for manufacturing plastic tubes of various widths and lengths.
The production has 13 machines that can produce different tubes in parallel.
Different variants of tubes require different settings of the machines. Hence,
when switching from one type of tube to another, a machine setter is required to
visit the particular machine and make the tool adjustment. The goal is to process
all orders as fast as possible.

As the tool adjustment is done by a single machine setter, he or she is likely
to be the bottleneck of the production when the orders are not scheduled well.
Given the assignment of the orders to the machines, the basic idea is to cluster
similar tube variants next to each other, as these require little or no setup time
to adjust the tool.

We model the problem as a scheduling problem where the tasks are dedicated
to the machines and have sequence-dependent setup times. Each setup occupies
an extra resource that is assumed to be unary, hence setups must not overlap
in time. The goal is to minimize the makespan of the overall schedule. In this
chapter, we design an Integer Linear Programming (ILP) model, five Constraint
Programming (CP) models, and a heuristic algorithm.

cmaxcmax

tt

o1,2,3o1,2,3

o1,2,3o1,2,3 o2,1,3o2,1,3
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(a) Feasible schedule.
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(b) Infeasible schedule, setups are overlap-
ping.

Figure 2.1: An illustration of a schedule with three machines and three tasks to
be processed on each machine.

The main contributions of this chapter, which were presented in [1] and [2],
are:

• formal definition of a new problem with non-overlapping setups

• exact approaches based on ILP and CP formalisms

• a very efficient hybrid heuristic yielding optimal or near-optimal schedules
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2.1 Problem Specification
Informally speaking, the problem tackled in this chapter consists of a set of ma-
chines and a set of independent non-preemptive tasks, each of which is dedicated
to one particular machine where it will be processed. Also, there are sequence-
dependent setup times on each machine. In addition, these setups are to be
performed by a human operator who is referred to as a machine setter. Such
a machine setter cannot perform two or more setups at the same time. It fol-
lows that the setups on all the machines must not overlap in time. Examples
of a feasible and infeasible schedule with 3 machines can be seen in Figure 2.1.
Even though the schedule (Figure 2.1b) on the machines contains setup times,
the schedule is infeasible since it would require overlaps in the schedule for the
machine setter.

The aim is to find a schedule that minimizes the completion time of the latest
task. It is clear that the latest task is on some machine and not in the schedule
of a machine setter since the completion time of the last setup is followed by at
least one task on a machine.

2.1.1 Related Work
There is a myriad of papers on scheduling with sequence-dependent setup times or
costs [27], proposing exact approaches [28] as well as various heuristics [29]. But
the research on the problems where the setups require extra resource is scarce.

An unrelated parallel machine problem with machine and job sequence-
dependent setup times, studied by [30], considers also the non-renewable resources
that are assigned to each setup, which affects the amount of time the setup needs
and which is also included in the objective function. On the other hand, how
many setups may be performed at the same time is disregarded. The authors
propose a Mixed Integer Programming formulation along with some static and
dynamic dispatching heuristics.

A lotsizing and scheduling problem with a common setup operator is tackled in
[31]. The authors give ILP formulations for what they refer to as a dynamic capac-
itated multi-item multi-machine one-setup-operator lotsizing problem. Indeed,
the setups to be performed by the setup operator are considered to be scheduled
such that they do not overlap. However, these setups are not sequence-dependent
in the usual sense. The setups are associated to a product whose production is to
be commenced right after the setup and thus the setup time, i.e., the processing
time of the setup, does not depend on a pair of tasks but only on the succeeding
task.

A complex problem that involves machines requiring setups that are to be
performed by operators of different capabilities has been addressed in [32]. The
authors modeled the whole problem in the time-indexed formulation and solved
it by decomposing the problem into smaller subproblems using Lagrangian Re-
laxation and solving the subproblems using dynamic programming. A feasible
solution is then composed of the solutions to the subproblems by heuristics, and,
if impossible, the Lagrangian multipliers are updated using the surrogate subgra-
dient method as in [33]. The downside of this approach is that the time-indexed
formulation yields a model of pseudo-polynomial size. This is not suitable for our
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problem as it poses large processing and setup times.

2.1.2 Formal Definition
Let M = {M1, ..., Mm} be a set of machines and for each Mi ∈ M , let T (i) =
{Ti,1, ..., Ti,ni

} be a set of tasks that are to be processed on machine Mi, and let
T = ⋃

Mi∈M T (i) = {T1,1, ..., Tm,nm} denote the set of all tasks. Each task Ti,j ∈ T
is specified by its processing time pi,j ∈ N. Let si,j ∈ N0 and Ci,j ∈ N be start
time and completion time, respectively, of task Ti,j ∈ T , which are to be found.
All tasks are non-preemptive, hence, si,j + pi,j = Ci,j must hold.

Each machine Mi ∈M performs one task at a time. Moreover, the setup times
between two consecutive tasks processed on machine Mi ∈M are given in matrix
O(i) ∈ Nni×ni . That is, oi,j,j′ = (O(i))j,j′ determines the minimal time distance
between the start time of task Ti,j′ and the completion time of task Ti,j if task
Ti,j′ is to be processed on machine Mi right after task Ti,j, i.e., si,j′ −Ci,j ≥ oi,j,j′

must hold.
Let H = {h1, . . . , hℓ}, where ℓ = ∑

Mi∈M ni − 1, be a set of setups that are
to be performed by the machine setter. Each hk ∈ H corresponds to the setup
of a pair of tasks that are scheduled to be processed in a row on some machine.
Thus, function st : H −→ M × T × T is to be found. Also, sk ∈ N0 and Ck ∈ N
are start time and completion time of setup hk ∈ H, which are to be found.
Assuming hk ∈ H corresponds to the setup between tasks Ti,j ∈ T and Ti,j′ ∈ T ,
i.e., st(hk) = (Mi, Ti,j, Ti,j′), it must hold that sk +oi,j,j′ = Ck, also Ci,j ≤ sk, and
Ck ≤ si,j′ . Finally, since the machine setter may perform at most one task at any
time, it must hold that, for each hk, hk′ ∈ H, k ̸= k′, either Ck ≤ sk′ or Ck′ ≤ sk.

The objective is to find such a schedule that minimizes the makespan, i.e., the
latest completion time of any task:

min max
Ti,j∈T

Ci,j (2.1)

2.1.3 Complexity
We note that minimizing the makespan for each machine separately does not
guarantee a globally optimal solution. In fact, such a solution can be arbitrarily
bad. Consider a problem depicted in Figure 2.2. It consists of two machines,
M1 and M2, and two tasks on each machine, with processing times p1,1 = p2,1 =
1, p1,2 = p2,2 = d, where d is any constant greater than 2, and with setup times
o1,1,2 = o2,1,2 = d, o1,2,1 = o2,2,1 = d + 1. Then, an optimal sequence on each
machine yields a solution of makespan 3d + 1, whereas choosing a suboptimal
sequence on either of the machines gives optimal objective value 2d + 3.

It is easy to see that the problem with sequence-dependent non-overlapping
setups is strongly NP-hard even for the case of one machine, i.e., m = 1, which
can be shown by the reduction from the shortest Hamiltonian path problem.

Moreover, we showed in [2] that even the restricted problem where the task
sequences on each machine are fixed isNP-hard as well, suggesting another source
of hardness. The proof is based on the observation that the problem with fixed
sequences on machines is equivalent to 1|lij > 0, m n1, . . . , nm-chains|Cmax, i.e., a
single machine scheduling problem with minimum time lags, where the precedence
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(a) A problem instance where opti-
mal sequences on machines lead to
a sub-optimal solution.
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(b) Sub-optimal sequence on one
machine yields a globally optimal
solution.

Figure 2.2: Solving the problem greedily for each machine separately can lead to
arbitrarily bad solutions. The numbers depict the processing times of the tasks
and setups.

graph has a form of m chains of lengths n1, . . . , nm, followed by a single common
task. But this problem even with two chains, i.e., 1|lij > 0, m 2-chains|Cmax, is
known to be strongly NP-hard by the reduction from 3-partition problem [34].

In the following sections, we propose two exact approaches.

2.2 Integer Linear Programming Model
Antońın Novák proposed a formulation that models the problem with two parts.
The first part handles the scheduling of tasks on the machines using efficient rank-
based model [35]. This approach uses binary variables xi,j,q to encode whether task
Ti,j ∈ T (i) is scheduled on q-th position in the permutation on machine Mi ∈M .
Another variable is τi,q denoting the start time of a task that is scheduled on q-th
position in the permutation on machine Mi ∈M .

The second part of the model resolves the question, in which order and when
the setups are performed by a machine setter. There, we need to schedule all se-
tups H, where the setup time πk of the setup hk ∈ H is given by the corresponding
pair of tasks on the machine.

Let us denote the set of all natural numbers up to n as [n] = {1, . . . , n}. We
define the following function ϕ : H → M × [maxMi∈M ni] (e.g., ϕ(hk) = (Mi, q)),
that maps hk ∈ H to setups between the tasks scheduled at positions q and q + 1
on machine Mi ∈ M . Since the time of such setup is a variable (i.e., it depends
on the pair of consecutive tasks on Mi), rank-based model would not be linear.
Therefore, we use the relative-order (also known as disjunctive) model [36, 37]
that admits processing time given as a variable. Its disadvantage over the rank-
based model is that it introduces a big M constant in the constraints, whereas
the rank-based model does not. See Figure 2.3 for meaning of the variables.

The full model is stated as:

min cmax (2.2)
s.t.

cmax ≥ τi,ni
+

∑
Ti,j∈T (i)

pi,j · xi,j,ni
∀Mi ∈M (2.3)
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Figure 2.3: Meaning of the variables in the model.

∑
q∈[ni]

xi,j,q = 1 ∀Mi ∈M, ∀Ti,j ∈ T (i) (2.4)
∑

Ti,j∈T (i)

xi,j,q = 1 ∀Mi ∈M, ∀q ∈ [ni] (2.5)

sk + πk ≤ sl +M · (1− zk,l) ∀hl, hk ∈ H : l < k (2.6)
sl + πl ≤ sk +M · zk,l ∀hl, hk ∈ H : l < k (2.7)
πk ≥ oi,j,j′ · (xi,j,q + xi,j′,q+1 − 1)
∀hk ∈ H : ϕ(hk) = (Mi, q),∀Ti,j, Ti,j′ ∈ T (i) (2.8)

sk + πk ≤ τi,q+1 ∀hk ∈ H : ϕ(hk) = (Mi, q) (2.9)
sk ≥ τi,q +

∑
Ti,j∈T (i)

pi,j · xi,j,q ∀hk ∈ H : ϕ(hk) = (Mi, q) (2.10)

where
cmax ∈ R+

0 (2.11)
τi,q ∈ R+

0 ∀Mi ∈M,∀q ∈ [ni] (2.12)
sk, πk ∈ R+

0 ∀hk ∈ H (2.13)
xi,j,q ∈ {0, 1} ∀Mi ∈M,∀Ti,j ∈ T (i), ∀q ∈ [ni] (2.14)
zk,l ∈ {0, 1} ∀hk, hl ∈ H : l < k (2.15)

The constraint (2.3) computes makespan of the schedule while constraints
(2.4)–(2.5) states that each task occupies exactly one position in the permutation
and that each position is occupied by exactly one task. Constraints (2.6) and
(2.7) guarantee that setups do not overlap. M is a constant that can be set as
|H| ·maxi,j,j′ oi,j,j′ . Constraint (2.8) sets processing time πk of the setup hk ∈ H
to oi,j,j′ if task Ti,j′ is scheduled on machine Mi right after task Ti,j. Constraints
(2.9) and (2.10) are used to avoid conflicts on machines. The constraint (2.9)
states that a task cannot start earlier than its preceding setup finishes. Similarly,
the constraint (2.10) states that setup is scheduled after the corresponding task
on the machine finishes.

Notice that we can reduce the number of variables in the model due to the
structure of the problem. We fix values of some of the zk,l variables according to
the following rule. Let hk, hl ∈ H such that ϕ(hk) = (Mi, q) and ϕ(hl) = (Mi, v)
for any Mi ∈ M . Then, q < v ⇒ zk,l = 1 holds in some optimal solution. Note
that the rule holds only for setups following from the same machine.

The rule states that the relative order of setups on the same machine is deter-
mined by the natural ordering of task positions on that machine. See for example
setups o1,1,2 and o1,2,3 in Figure 2.1. Since these setups follow from the same ma-
chine, their relative order is already predetermined by positions of the respective
tasks. We note that the presolve of the solver was not able to deduce these rules
on its own.
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2.2.1 Formulation for a Single Machine
The problem with a single machine (Mi ∈M) reduces to the shortest Hamiltonian
path in the graph defined by setup time matrix O(i). To solve this problem, we
transform it to the Traveling Salesperson Problem by introducing a dummy task
Ti,0 ∈ T (i)′ = T (i) ∪ {Ti,0} that has zero setup times with all other tasks, i.e.,
oi,0,j = oi,j,0 = 0, ∀Ti,j ∈ T (i)′. Then, we use a well-known sub-tour elimination
[38, 39] ILP model to solve it:

min
∑

Ti,j∈T (i)′

∑
Ti,j′ ∈T (i)′

oi,j,j′ · yj,j′ +
∑

Ti,j∈T (i)′

pi,j (2.16)

s.t. ∑
Ti,j∈T (i)′

yj,j′ = 1 ∀Ti,j′ ∈ T (i)′ (2.17)

∑
Ti,j′ ∈T (i)′

yj,j′ = 1 ∀Ti,j ∈ T (i)′ (2.18)

∑
Ti,j ,Ti,j′ ∈S

yj,j′ ≤ |S| − 1 ∀S ⊂ T (i)′ (2.19)

where
yj,j′ ∈ {0, 1} ∀Ti,j, Ti,j′ ∈ T (i)′ (2.20)

The variable yj,j′ indicates whether task Ti,j is immediately followed by task Ti,j′ .
We solve the model in a lazy way, i.e., without constraints (2.19), that are lazily
generated during the solution by a depth-first search algorithm. Note that the
machine setter does not need to be modeled for the single machine problem.

2.2.2 Additional Improvements
We use the following improvements of the model that have a positive effect on
the solver performance.

1. Warm Starts. The solver is supplied with an initial solution. It solves
a relaxed problem, where it relaxes on the condition that setups do not
overlap. Such a solution is obtained by solving the shortest Hamiltonian
path problem given by setup time matrix O(i) independently for each ma-
chine Mi ∈ M , as described in Section 2.2.1. Since such a solution might
be infeasible for the original problem, we transform it in a polynomial time
into a feasible one. It is done in the following way. For each setup among
all machines, we set the start time of k-th setup on machine Mi, i ≥ 2,
to the completion time of k-th setup on machine Mi−1. For the setups on
machine M1, the start time of (k +1)-th setup is set to the completion time
of k-th setup on machine Mm.

2. Lower Bounds. We supply a lower bound on cmax variable given as the
maximum of all best proven lower bounds of model (2.16)–(2.20) among all
machines Mi ∈M (see Section 2.2.1).
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2.3 Constraint Programming Models
Another way how the problem at hand can be tackled is to use the modeling
approach based on the Constraint Programming (CP) formalism, which is intro-
duced in Sections 1.1 and 1.4.

The CP models are constructed as follows. We introduce interval variables
Ii,j for each Ti,j ∈ T , and the lengths of these interval variables are set to the
corresponding processing times:

LengthOf(Ii,j) = pi,j (2.21)
The sequence is resolved using the NoOverlap constraint (see Section 1.4).

In addition, the NoOverlap(I, O(i)) constraint is given a so-called transition dis-
tance matrix O(i), which expresses a minimal delay that must elapse between two
successive interval variables. More precisely, if Ii,j, Ii,j′ ∈ I, then (O(i))j,j′ gives a
minimal allowed time difference between StartOf(Ij′) and EndOf(Ij). Hence, the
following constraint is imposed, ∀Mi ∈M :

NoOverlap
( ⋃

Ti,j∈T (i)

{Ii,j} , O(i)
)

(2.22)

The objective function is to minimize the makespan:

min max
Ti,j∈T

EndOf(Ii,j) (2.23)

This model would already solve the problem if the setups were not required
to be non-overlapping. In what follows we describe five ways how the non-
overlapping setups are resolved. Constraints (2.21)–(2.23) are part of each of
the following model.

2.3.1 CP1: with Implications
Let us introduce Ist

i,j for each Ti,j ∈ T representing the setup after task Ti,j. There
is ∑Mi∈M ni such variables. As the interval variable Ist

i,j represents the setup after
task Ti,j, we use the constraint EndBeforeStart(I1, I2), which ensures that interval
variable I1 is completed before interval variable I2 can start. Thus, the following
constraint needs to be added, ∀Mi ∈M,∀Ti,j ∈ T (i):

EndBeforeStart(Ii,j, Ist
i,j) (2.24)

To ensure that the setups do not overlap in time is enforced through the
following constraint:

NoOverlap
( ⋃

Ti,j∈T

{Ist
i,j}
)

(2.25)

Notice that this constraint is unique and it is imposed over all the interval
variables representing setups on all machines. This NoOverlap constraint does
not need any transition distance matrix as the default values 0 are desired.

Since it is not known a priori which task will follow task Ti,j, the quadratic
number of implications determining the precedences and lengths of the se-
tups must be imposed. For this purpose, the predicate TypeOfNext is used.
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TypeOfNext(I) gives the type of the interval variable that is to be processed in
the chain right after interval variable I. In our case, since all tasks are in general
of different types, TypeOfNext(Ii,j) gives the index j′ of the task corresponding
to the interval variable Ii,j′ that is succeeding Ii,j. Thus, the following constraints
are added, ∀Mi ∈M, ∀Ti,j, Ti,j′ ∈ T (i), j ̸= j′:

TypeOfNext(Ii,j) = j′ ⇒ EndOf(Ist
i,j) ≤ StartOf(Ii,j′) (2.26)

TypeOfNext(Ii,j) = j′ ⇒ LengthOf(Ist
i,j) = oi,j,j′ (2.27)

Note that the special value when an interval variable is the last one in the
chain is used to turn the last setup on a machine into a dummy one.

2.3.2 CP2: with Element Constraints
Setting the lengths of the setups can be substituted by the element constraint,
which might be beneficial as global constraints are usually more efficient. More
precisely, this model contains also constraints (2.24), (2.25), and (2.26), but con-
straint (2.27) is substituted as follows.

Assume the construct Element(Array, k) returns the k-th element of Array,
(O(i))j is the j-th row of matrix O(i), and TypeOfNext(Ii,j) again returns the
index of the interval variable that is to be processed right after Ii,j. Then the
following constraint is added, for each Ist

i,j:

LengthOf(Ist
i,j) = Element

(
(O(i))j, TypeOfNext(Ii,j)

)
(2.28)

2.3.3 CP3: with Optional Interval Variables
In this model, we use the concept of optional interval variables (see Section 1.4).
We introduce optional interval variable Iopt

i,j,j′ for each pair of distinct tasks on the
same machine, i.e., ∀Mi ∈M, ∀Ti,j, Ti,j′ ∈ T (i), j ̸= j′. There are ∑Mi∈M ni(ni−1)
such variables. The lengths of these interval variables are set to corresponding
setup times:

LengthOf(Iopt
i,j,j′) = oi,j,j′ (2.29)

To ensure that the machine setter does not perform more than one task at
the same time, the following constraint is added:

NoOverlap
( ⋃

Ti,j ,Ti,j′ ∈T

j ̸=j′

{Iopt
i,j,j′}

)
(2.30)

In this case, to ensure that the setups are indeed processed in between two
consecutive tasks, we use the constraint EndBeforeStart(I1, I2), which ensures
that interval variable I1 is completed before interval variable I2 can start, but
if either of the interval variables is absent, the constraint is implicitly satisfied.
Thus, the following constraints are added, ∀Iopt

i,j,j′ :

EndBeforeStart(Ii,j, Iopt
i,j,j′) (2.31)
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EndBeforeStart(Iopt
i,j,j′ , Ii,j′) (2.32)

Finally, in order to ensure the correct presence of optional interval variables,
the predicate PresenceOf is used. Thus, the following constraint is imposed,
∀Iopt

i,j,j′ :

PresenceOf(Iopt
i,j,j′)⇔ TypeOfNext(Ii,j) = j′ (2.33)

Notice that each Ii,j (except for the last one on a machine) is followed by
exactly one setup. Thus, we tried using a special constraint called Alternative,
which ensures that exactly one interval variable from a set of variables is present.
However, preliminary experiments showed that adding this constraint is counter-
productive.

2.3.4 CP4: with Cumulative Function
In this model, the machine setter is represented as a cumulative function to avoid
the quadratic number of constraints of CP1 and CP2 or the quadratic number
of optional task variables of CP3. The definition of the non-negative cumulative
function has a linear number of terms.

Again, we use interval variables Ii,j for each Ti,j ∈ T to model the execution
of each task Ti,j ∈ T and Ist

i,j for each Ti,j ∈ T representing the setup after task
Ti,j. See Figure 2.4 for the illustration of main concepts.

I1,1I1,1 I1,2I1,2

I2,1I2,1 I2,2I2,2

Ist
1,1Ist
1,1Ist

2,1Ist
2,1

p1,1p1,1

o1,1,2o1,1,2

o2,1,2o2,1,2

00

11

M1M1

M2M2

tt

Figure 2.4: Illustration of variables and constraints for CP4. The length of I1,1
is greater than p1,1 as the completion of I1,1 must wait for the machine setter to
complete the setup Ist

2,1.

The idea now is that the lengths of the interval variables are not fixed. The
length of interval variables Ii,j is increased to wait for the machine setter if he
or she is busy on another machine, i.e., the length of interval variable Ii,j is at
least the processing time pi,j but may be prolonged until the machines setter is
available. Thus, the constraints (2.21) on the lengths of the interval variables Ii,j

are relaxed because they must only be greater than the corresponding processing
times:

LengthOf(Ii,j) ≥ pi,j (2.34)
The length of the setup executed by the machine setter will be determined by

the corresponding tasks. In particular, as the last setup on a machine becomes a
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dummy setup (of zero length), we merely set the length of the setup variables to
be at least zero:

LengthOf(Ist
i,j) ≥ 0 (2.35)

The cumulative function is built thanks to primitive Pulse(a, h) that specifies
that h unit of resource is used during interval a. The cumulative function is
composed of Pulse terms for each Ist

i,j representing the usage of a machine setter,
and the cumulative function must remain lower than 1 because there is a single
machine setter: ∑

Ti,j∈T

Pulse(Ist
i,j, 1) ≤ 1 (2.36)

What remains to be done is to synchronize start and completion times between
the tasks and setups. This is done using the constraint EndAtStart(I1, I2), which
ensures that interval variable I1 is completed exactly when interval variable I2
starts, and by StartOfNext(Ii,j), which gives the start time of the interval variable
that is to be processed right after Ii,j. Thus, the following constraints are added,
for each Ist

i,j:
EndAtStart(Ii,j, Ist

i,j) (2.37)

EndOf(Ist
i,j) ≥ StartOfNext(Ii,j) (2.38)

Note that the inequality in constraint (2.38) is necessary because StartOfNext
gives 0 for the last task on a machine and thus the completion time of the last
setup is equal to its start time (hence the length of the setup is 0). Also, note
that the setups cannot be shorter than required due to constraint (2.22).

2.3.5 CP5: without Setup Variables
This model exploits the same idea as CP4, but we can go even further and
completely omit the interval variables representing the setups. In this model, the
interval variables Ii,j are, again, relaxed because they must only be greater than
the corresponding processing times, i.e., constraint (2.34) is kept.

The main difference in this model is that the cumulative function only requires
the introduction of interval variables Si, one for each machine Mi. See Figure 2.5
for the illustration of main concepts. Variable Si starts with the first task of the
machine Mi and ends with the last task, which is enforced by the Span constraint:

Span
(
Si,

⋃
Ti,j∈T (i)

{Ii,j}
)

(2.39)

The cumulative function is now realized as follows:
∑

Mi∈M

Pulse(Si, 1)−
∑

Ti,j∈T

Pulse(Ii,j, 1) ≤ 1 (2.40)

The first term enforces that the cumulative function remains non-negative
when the first task Ti,j of the machine Mi starts and that the machine setter
is not required at the end of the last task Ti,j of the machine Mi. The second
term enforces that the machine setter is available when a task Ti,j ends, possibly
after a waiting time as allowed by constraints (2.34), and that the machine setter
becomes available again when a task Ti,j starts.
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Figure 2.5: Illustration of variables and constraints for CP5.

Despite the lowest number of variables, the main drawback of this model
is that the schedule of the machine setter becomes implicit which leads to less
filtering.

2.3.6 Additional Improvements
We use the following improvements:

1. Search Phases. Automatic search in the solver is well tuned-up for most
types of problems, leveraging the newest knowledge about variable selection
and value ordering heuristics. In our case, however, preliminary results
showed that the solver struggles to find any feasible solution already for
small instances. It is clear that it is easy to find some feasible solution, e.g.,
by setting an arbitrary order of tasks on machines and then shifting the
tasks to the right such that the setups do not overlap. To make the solver
find some feasible solution more quickly, we set the search phases such that
the sequences on machines are resolved first, and then the sequences of
setups for the machine setter are resolved. This is included in all the CP
models described.

2. Warm Starts. Similarly to improvement (1) in Section 2.2.2, we boost
the performance by providing the solver with a starting point. We do this
only for CP3 as the preliminary numerical experiments showed a slight
superiority of CP3.
More precisely, we first find an optimal sequence of tasks minimizing
makespan on each machine separately and then we set those interval vari-
ables Iopt

i,j,j′ to be present if Ti,j′ is sequenced directly after Ti,j on machine
Mi. This is all that we set as the starting point. Notice that unlike in Sec-
tion 2.2.2, we do not calculate the complete solution but we let the solver
do it. The solver then quickly completes the assignment of all the variables
such that it gets a solution of reasonably good objective value.
Note that the optimal sequences on machines are solved using ILP so it
can be seen as a hybrid approach. This model with warm starts is in what
follows referred to as CP3ws.
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2.4 Heuristic Approach
We propose an approach that guides the solver quickly towards solutions of very
good quality but cannot guarantee the optimality of what is found. There are
two main phases of this approach. In the first phase, the model is decomposed
such that its subproblems are solved optimally or near-optimally, and then the
solutions of the subproblems are put together so as to make a correct solution of
the whole problem. In the second phase, the solution found is locally improved
by repeatedly adjusting the solution in promising areas. More details follow.

2.4.1 Decomposition Phase
The idea of the model decomposition is as follows. First, again, we find an optimal
sequence of tasks minimizing makespan on each machine separately, as described
in Section 2.2.1. Second, given these sequences on each machine, the setups to
be performed are known, hence, the lengths of the setups are fixed as well as
the precedence constraints with respect to the tasks on machines. Thus, all that
needs to be resolved is the order of setups.

The pseudocode is given in Algorithm 1. It takes one machine at a time and
finds an optimal sequence for it minimizing the makespan. The time limit for the
computation of one sequence on a machine is given in such a way that there is a
proportional remaining time limit for the rest of the algorithm. OptimalSeq(i,
TimeLimit) returns the best sequence it finds on machine Mi ∈ M in the given
TimeLimit. The TimeLimit is computed using RemainingT ime(), which is the
time limit for the entire run of the algorithm minus the time that already elapsed
from the beginning of the run of the algorithm. In the end, the solution is found
using the knowledge of the sequences on each machine Mi ∈M .

Algorithm 1 Solving the decomposed model.
function SolveDecomposed

for each Mi ∈M do
TimeLimit← RemainingT ime()/(m− i + 2)
Seqi ← OptimalSeq(i, TimeLimit)

end for
Return Solve(Seq, RemainingT ime())

end function

2.4.2 Improving Phase
Once we have some solution to the problem, the idea of the heuristic is to improve
it by applying the techniques known as local search [40] and large neighborhood
search [41].

It is clear that in order to improve the solution, something needs to be changed
on the critical path, which is such a sequence of setups and tasks on machines that
the completion time of the last task equals the makespan and that none of these
tasks and setups can be shifted to the left without violating resource constraints
(see an example in Figure 2.6). Hence, we find the critical path first.
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Figure 2.6: An illustration of the critical path depicted by dashed rectangles.

The most promising place to be changed on the critical path could be the
longest setup. Hence, we find the longest setup on the critical path, then we pro-
hibit the two consecutive tasks corresponding to the setup from being processed
in a row again and re-optimize the sequence on the machine in question. Two
tasks are precluded from following each other by setting the corresponding setup
time to an infinite value. Also, we add extra constraint restricting the makespan
to be less than the incumbent best objective value found. The makespan on one
machine being equal to or greater than the incumbent best objective value found
cannot lead to a better solution.

After a new sequence is found, the solution to the whole problem is again re-
optimized subject to the new sequence. The algorithm continues this way until
the sequence re-optimization returns infeasible, which happens due to the extra
constraint restricting the makespan. It means that the solution quality deterio-
rated too much and it is unlikely to find a better solution locally at this state.
Thus, the algorithm reverts to the initial solution obtained from the decomposed
model, restores the original setup times matrices, and tries to prohibit another
setup time on the critical path. For this purpose, the list of nogoods to be tried
is computed once from the first critical path, which is just a list of setups on the
critical path sorted in non-increasing order of their lengths. The whole iterative
process is repeated until the total time limit is exceeded or all the nogoods are
tried.

The entire heuristic algorithm is hereafter referred to as LOFAS (Local Opti-
mization for Avoided Setup). The pseudocode is given in Algorithm 2.

Preliminary experiments confirmed the well-known facts that ILP using the
lazy approach is very efficient for searching an optimal sequence on one resource
and that CP is more efficient for minimizing makespan when the lengths of inter-
val variables and the precedences are fixed. Nevertheless, for instances with many
tasks, the solution involving ILP might be computationally infeasible. Hence,
we also propose to find a suboptimal sequence for each machine by a heuristic
method. Thus, in what follows, we distinguish the following two variants of the
algorithm

1. Exact subproblem. The sequence is found by ILP with lazy subtour
elimination, as described in 2.2.1. In the experiments below, we denote this
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Algorithm 2 Local Optimization for Avoided Setup
function LOFAS

Sinit ← SolveDecomposed
Sbest ← Sinit

Pcrit ← critical path in Sinit

nogoods ← H ∩ Pcrit

sort nogoods in non-increasing order of lengths
for each hk ∈ nogoods do

hk′ ← hk

while true do
(Mi, Ti,j, Ti,j′)← st(hk′)
oi,j,j′ ←∞
add: maxTi,j∈T (i) Ci,j < ObjV al(Sbest)
TimeLimit← RemainingT ime()/2
Seqi ← OptimalSeq(i, TimeLimit)
if Seqi is infeasible then

Revert to Sinit

Restore original O(i),∀Mi ∈M
break

end if
Snew ← Solve(Seq, RemainingT ime())
if ObjV al(Sbest) > ObjV al(Snew) then

Sbest ← Snew

end if
if RemainingT ime() ≤ 0 then

return Sbest

end if
Pcrit ← critical path in Snew

hk′ ← longest setup ∈ H ∩ Pcrit

end while
end for
return Sbest

end function
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variant as LOFAS.

2. Heuristic subproblem. The suboptimal sequence is found by Guided
Local Search algorithm implemented in Google’s OR-Tools [42]. Note that
this algorithm is a metaheuristic, hence, it consumes all the time limit
assigned even if the objective value is not improving for several iterations
(i.e., cannot prove optimality). In the experiments, we denote this variant
as LOFAS /w heur.

2.5 Experiments
For the implementation of the CP approaches, we used the IBM CP Optimizer
version 12.9 [11]. The only parameter that we adjusted is Workers, which is
the number of threads the solver can use and which we set to 1. In Google’s
OR-Tools, we only set LocalSearchMetaheuristic to GuidedLocalSearch.

For the ILP approach, we used Gurobi solver version 8.1 [14]. The parameters
that we adjust are Threads, which we set to 1, and MIPFocus, which we set to
1 in order to make the solver focus more on finding solutions of better quality
rather than proving optimality. We note that tuning the parameters with Gurobi
Tuning Tool did not produce better values over the baseline ones.

The experiments were run on a Dell PC with an Intel® Core™ i7-4610M
processor running at 3.00 GHz with 16 GB of RAM. We used a time limit of 60
seconds per problem instance.

2.5.1 Problem Instances
We evaluated the approaches on randomly generated instances of various sizes
with the number of machines m ranging from 1 to 50 and the number of tasks on
each machine ni = n, ∀Mi ∈ M , ranging from 2 to 50. Thus, we generated 50×
49 = 2450 instances in total. Processing times of all the tasks and setup times are
chosen uniformly at random from the interval [1, 50]. Instances are publicly avail-
able at https://github.com/CTU-IIG/NonOverlappingSetupsScheduling.

2.5.2 Scalability Results
Figure 2.7a shows the dependence of the best objective value found by CP models
within the 60s time limit on the number of machines, averaged over the various
number of tasks. Analogically, Figure 2.7b shows the dependence of the best
objective value on the number of tasks, averaged over the varying number of
machines.

The results show that the performances of CP models are almost equal (the
graphs almost amalgamate). However, it can be seen that the curve of CP5 is
not complete. It is because CP5 fails to find any solution for 88 of the largest
instances, despite having the lowest number of variables. We note that CP3 is the
best on average but the advantage is not significant. On the other hand, CP4 has
a better worst-case performance. We will no longer distinguish between the CP
models and we will use the minimum of all five CP models that will be referred
to as CPmin.
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Figure 2.7: Comparison of CP models.
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The comparison of CP3ws to ILPws (models with warm starts) is shown in
Figure 2.8. Recall that both the approaches get a warm start in a certain sense.
The results confirm the lower performance of the ILP approach. When the ILP
model did not get the initial solution as a warm start, it was not able to find
any solution even for very small instances (i.e., 2 machines and 8 tasks). In fact,
the objective value found by the ILPws is often the objective value of the greedy
initial solution given as the warm start (as described in Section 2.2.2).

Further, we compare the best objective value found by the heuristic algorithm
LOFAS and LOFAS /w heur. from Section 2.4 against CPmin and ILPws. The
results are shown in Figure 2.9. Note that we omit the results of CP3ws in
Figure 2.9 as the results were almost the same as those of LOFAS and the curves
amalgamated.

To obtain better insight into the performance of the proposed methods, we
compared the resulting distributions of achieved objectives from each method.
We took the results of each method for all instances and ordered them in a non-
decreasing way with respect to achieved objective value and plotted them. The
results are displayed in Figure 2.10. It can be seen that the proposed heuristics
are able to find the same or better solutions in nearly all cases. Furthermore, we
note that LOFAS /w heur. outperformed both CPmin and ILPws as well. For
the ILPws, one can notice a spike at around 65 % of instances. This is caused
by the fact that for some instances, the ILP solver was not able to improve upon
the initial warm start solution in the given time limit and these instances thus
contribute to the distribution with larger objective values.

A comparison of LOFAS to CP3ws on larger instances [1] showed a slight
superiority of LOFAS. However, LOFAS still did not find any solution to the
biggest instances because the time limit was exceeded during the decomposition
phase, i.e., during seeking an optimal sequence for a machine. This was the
motivation for developing LOFAS /w heur.

2.5.3 Effect of Exact/Heuristic Subproblem Solution
In this section, we compare solution quality produced by LOFAS heuristics
with different methods for solving the machine subproblem, i.e., the method
Seq(i, TimeLimit). The experiments were designed to assess if and how much
different objective values are achieved when using the heuristic solution of the
subproblem and if the heuristic variant scales better.

We have generated instances with m ∈ {5, 10, 15, 20} machines, the number
of tasks on each machine n ranging from 50 up to 1000. For each combination of
m and n, we have generated 10 instances. The results are reported in Table 2.1.
The column objective denotes the mean objective value if all instances were solved
in the given time limit. Otherwise, we report the number of instances that were
solved within the time limit. The results confirm the hypothesis that LOFAS
gives better solutions regarding the objective, whereas LOFAS /w heur. is able
to find some solutions for larger instances when LOFAS does not manage to find
any solution. More precisely, LOFAS scales only up to 300 tasks on 15 machines
or 350 tasks on 5 machines. A heuristic solution of the subproblem in LOFAS
/w heur. allows obtaining a solution for instances of up to 1000 tasks on 5 ma-
chines. However, with the increasing number of machines, the CP solver struggles

25



10 20 30 40 50
m machines [-]

2000

4000

6000

ob
je

ct
iv

e 
va

lu
e 

[-] CPmin
ILPws
LOFAS /w heur.
LOFAS

(a) Mean objective value for different number of machines m.

10 20 30 40 50
n tasks [-]

2000

4000

ob
je

ct
iv

e 
va

lu
e 

[-]

(b) Mean objective value for different number of tasks n.

Figure 2.9: Comparison of exact models and the heuristic algorithms.
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to produce any feasible solution to the whole problem, given the sequences on
machines. Therefore, LOFAS /w heur. did not find a solution for any instance
with 20 machines, starting from 400 tasks.

To provide further details into the behavior of the algorithm, we report two
other statistics. Dead ends shows how many times the algorithm hit an infeasible
subproblem (due to the constraint on the objective) and restarted to the original
solution, and improv. reports the number of iterations, where one iteration means
avoiding the largest setup on the critical path and solving the subproblem. It can
be clearly seen that these two numbers are significantly lower for LOFAS /w heur.
because it almost always wastes all the time allocated to a subproblem, whereas
LOFAS is able to save some time on smaller instances, which is efficiently used
for exploring more potential improvements. Note that for the instances that were
not solved, these numbers are always zero.

Table 2.1: Comparison of exact and heuristic subproblem solvers in LOFAS
heuristics.

LOFAS with exact subproblem LOFAS with heuristic subproblem
m n objective [–] dead ends [–] improv. [–] objective [–] dead ends [–] improv. [–]

5 50 1504.1 (±57.8) 64.6 (±2.4) 134.3 (±51.4) 1517.9 (±55.2) 0.0 (±0.0) 4.9 (±1.8)
10 50 1514.9 (±49.4) 91.4 (±43.4) 349.1 (±145.9) 1545.9 (±32.2) 0.0 (±0.0) 0.8 (±1.2)
15 50 1623.3 (±48.3) 0.0 (±0.0) 15.0 (±31.6) 1871.9 (±24.3) 0.0 (±0.0) 0.0 (±0.0)
20 50 2012.1 (±29.4) 0.0 (±0.0) 3.9 (±6.0) 2485.8 (±45.2) 0.0 (±0.0) 1.6 (±0.7)

5 100 2874.9 (±88.7) 72.2 (±46.2) 247.3 (±127.6) 2939.6 (±83.1) 0.0 (±0.0) 4.8 (±2.5)
10 100 2982.7 (±92.9) 67.9 (±52.0) 189.3 (±108.1) 3063.3 (±70.1) 0.0 (±0.0) 2.3 (±1.8)
15 100 2879.6 (±59.5) 17.9 (±17.1) 77.0 (±28.4) 3279.2 (±34.7) 0.0 (±0.0) 0.0 (±0.0)
20 100 2985.8 (±32.0) 0.0 (±0.0) 15.6 (±19.7) 4035.0 (±50.9) 0.0 (±0.0) 0.0 (±0.0)

5 150 4162.4 (±156.2) 66.5 (±36.1) 125.6 (±62.5) 4258.9 (±150.6) 0.0 (±0.0) 2.4 (±3.1)
10 150 4309.0 (±128.0) 25.5 (±16.8) 79.3 (±40.0) 4415.2 (±120.9) 0.0 (±0.0) 0.7 (±1.3)
15 150 4315.1 (±95.0) 6.4 (±7.2) 43.6 (±13.8) 4673.6 (±72.0) 0.0 (±0.0) 0.0 (±0.0)
20 150 4348.3 (±44.1) 5.6 (±7.3) 22.3 (±7.3) 5456.4 (±60.1) 0.0 (±0.0) 0.0 (±0.0)

5 200 5612.8 (±130.1) 39.6 (±22.8) 67.8 (±26.3) 5707.2 (±126.7) 0.0 (±0.0) 5.1 (±1.9)
10 200 5629.6 (±64.2) 5.6 (±10.2) 30.9 (±18.2) 5734.3 (±56.6) 0.0 (±0.0) 1.4 (±1.5)
15 200 5677.4 (±112.7) 7.6 (±5.4) 25.4 (±6.9) 6032.4 (±64.7) 0.0 (±0.0) 0.0 (±0.0)
20 200 5674.0 (±92.6) 3.4 (±3.6) 10.8 (±3.1) 7023.8 (±61.8) 0.0 (±0.0) 0.0 (±0.0)

5 250 6803.2 (±115.6) 27.6 (±12.4) 40.7 (±9.4) 6903.8 (±115.6) 0.0 (±0.0) 4.8 (±0.4)
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10 250 6958.9 (±131.7) 5.8 (±7.2) 19.0 (±5.5) 7100.1 (±125.5) 0.0 (±0.0) 0.6 (±1.3)
15 250 7011.9 (±177.1) 1.3 (±1.5) 7.2 (±3.9) 7417.1 (±45.5) 0.0 (±0.0) 0.2 (±0.4)
20 250 6999.8 (±58.8) 0.6 (±0.8) 2.1 (±1.6) 8339.4 (±107.6) 0.0 (±0.0) 0.0 (±0.0)

5 300 8129.7 (±99.2) 15.2 (±9.1) 20.9 (±11.6) 8246.7 (±91.4) 0.0 (±0.0) 2.3 (±2.5)
10 300 8237.6 (±92.3) 4.7 (±4.1) 8.6 (±4.2) 8384.7 (±54.9) 0.0 (±0.0) 0.6 (±1.0)
15 300 8361.0 (±61.4) 2.4 (±2.4) 5.1 (±2.8) 8707.8 (±61.1) 0.0 (±0.0) 0.0 (±0.0)
20 300 5/10 0.3 (±0.5) 0.4 (±0.5) 9883.1 (±131.9) 0.0 (±0.0) 0.0 (±0.0)

5 350 9719.8 (±177.5) 14.6 (±5.5) 16.3 (±4.3) 9822.0 (±177.5) 0.0 (±0.0) 4.6 (±0.5)
10 350 6/10 4.2 (±4.1) 4.6 (±4.3) 9785.4 (±51.6) 0.0 (±0.0) 1.1 (±1.2)
15 350 2/10 0.1 (±0.3) 0.1 (±0.3) 10417.9 (±96.9) 0.0 (±0.0) 0.0 (±0.0)
20 350 0/10 0.0 (±0.0) 0.0 (±0.0) 2/10 0.0 (±0.0) 0.0 (±0.0)

5 400 8/10 5.0 (±3.4) 6.0 (±4.3) 11234.6 (±96.3) 0.0 (±0.0) 3.4 (±1.3)
10 400 0/10 0.0 (±0.0) 0.0 (±0.0) 11113.3 (±113.8) 0.0 (±0.0) 0.4 (±0.5)
15 400 0/10 0.0 (±0.0) 0.0 (±0.0) 11770.8 (±85.4) 0.0 (±0.0) 0.0 (±0.0)
20 400 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 450 8/10 3.2 (±4.7) 3.2 (±4.7) 12276.4 (±157.3) 0.0 (±0.0) 3.2 (±1.7)
10 450 0/10 0.0 (±0.0) 0.0 (±0.0) 12498.1 (±131.5) 0.0 (±0.0) 1.0 (±0.7)
15 450 0/10 0.0 (±0.0) 0.0 (±0.0) 13095.3 (±77.9) 0.0 (±0.0) 0.0 (±0.0)
20 450 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 500 3/10 0.8 (±1.3) 1.0 (±1.7) 13910.3 (±226.5) 0.0 (±0.0) 3.3 (±1.3)
10 500 0/10 0.0 (±0.0) 0.0 (±0.0) 13888.2 (±188.1) 0.0 (±0.0) 0.7 (±0.8)
15 500 0/10 0.0 (±0.0) 0.0 (±0.0) 7/10 0.0 (±0.0) 0.0 (±0.0)
20 500 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 550 0/10 0.0 (±0.0) 0.0 (±0.0) 15077.0 (±150.9) 0.2 (±0.4) 2.9 (±0.7)
10 550 0/10 0.0 (±0.0) 0.0 (±0.0) 15196.8 (±197.6) 0.0 (±0.0) 0.2 (±0.4)
15 550 0/10 0.0 (±0.0) 0.0 (±0.0) 1/10 0.0 (±0.0) 0.0 (±0.0)
20 550 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 600 0/10 0.0 (±0.0) 0.0 (±0.0) 16528.5 (±260.3) 0.2 (±0.4) 3.0 (±1.2)
10 600 0/10 0.0 (±0.0) 0.0 (±0.0) 16706.7 (±327.2) 0.0 (±0.0) 0.2 (±0.4)
15 600 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)
20 600 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 650 0/10 0.0 (±0.0) 0.0 (±0.0) 17676.3 (±172.8) 0.2 (±0.4) 1.9 (±1.7)
10 650 0/10 0.0 (±0.0) 0.0 (±0.0) 18235.4 (±173.0) 0.0 (±0.0) 0.2 (±0.4)
15 650 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)
20 650 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 700 0/10 0.0 (±0.0) 0.0 (±0.0) 19114.6 (±317.8) 0.4 (±0.8) 3.2 (±0.4)
10 700 0/10 0.0 (±0.0) 0.0 (±0.0) 19532.0 (±198.8) 0.0 (±0.0) 0.0 (±0.0)
15 700 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)
20 700 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 750 0/10 0.0 (±0.0) 0.0 (±0.0) 20477.8 (±296.6) 0.1 (±0.3) 2.9 (±0.6)
10 750 0/10 0.0 (±0.0) 0.0 (±0.0) 20774.5 (±123.7) 0.0 (±0.0) 0.2 (±0.4)
15 750 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)
20 750 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 800 0/10 0.0 (±0.0) 0.0 (±0.0) 21762.7 (±179.1) 1.2 (±1.2) 2.8 (±2.1)
10 800 0/10 0.0 (±0.0) 0.0 (±0.0) 8/10 0.1 (±0.3) 0.5 (±0.7)
15 800 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)
20 800 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 850 0/10 0.0 (±0.0) 0.0 (±0.0) 23144.0 (±210.5) 1.5 (±1.8) 2.8 (±2.6)
10 850 0/10 0.0 (±0.0) 0.0 (±0.0) 9/10 0.0 (±0.0) 0.0 (±0.0)
15 850 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)
20 850 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 900 0/10 0.0 (±0.0) 0.0 (±0.0) 24555.4 (±316.8) 1.1 (±1.5) 2.7 (±1.8)

28



10 900 0/10 0.0 (±0.0) 0.0 (±0.0) 1/10 0.0 (±0.0) 0.0 (±0.0)
15 900 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)
20 900 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 950 0/10 0.0 (±0.0) 0.0 (±0.0) 25701.5 (±188.7) 0.5 (±0.7) 2.2 (±1.1)
10 950 0/10 0.0 (±0.0) 0.0 (±0.0) 3/10 0.0 (±0.0) 0.0 (±0.0)
15 950 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)
20 950 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

5 1000 0/10 0.0 (±0.0) 0.0 (±0.0) 27054.0 (±275.9) 1.7 (±1.6) 3.3 (±1.9)
10 1000 0/10 0.0 (±0.0) 0.0 (±0.0) 1/10 0.0 (±0.0) 0.0 (±0.0)
15 1000 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)
20 1000 0/10 0.0 (±0.0) 0.0 (±0.0) 0/10 0.0 (±0.0) 0.0 (±0.0)

2.5.4 Discussion
We have seen that the performances of the CP models are almost equal with CP3
being the best but its advantage is not significant. Further, the experiments have
shown that ILP without a warm start cannot find a feasible solution for instances
with n ≥ 8 tasks reliably, whereas with warm starts it performed better than
the best CP model without a warm start. The quality of the solutions from CP
with warm starts is much better than ILP with warm starts (even though the
warm start for CP is not a complete solution), as can be seen in Figure 2.8. As
expected, the heuristic algorithm LOFAS produced the best solutions among all
compared methods, although only slightly better than CP3 with warm starts.
Smaller instances evidenced that LOFAS achieves objective values quite close to
optimal ones. The advantage of LOFAS /w heur. can be seen in its scalability
capabilities as it can solve instances with up to 1000 tasks on 5 machines. On
the 50× 49 instance set from Section 2.5.1, LOFAS /w heur. rendered solutions
of objective value worse on average by 10.5 % than LOFAS.

2.6 Summary
In this chapter, we tackled the problem of scheduling on dedicated machines with
sequence-dependent non-overlapping setups. We suggested an ILP model, five
variants of a CP model, and a heuristic approach. The extensive experimental
evaluation showed that all exact models themselves are yielding solutions far from
optima within the given time limit of 60 seconds, which proved them inappropri-
ate mainly for larger instances. However, the proposed combination of ILP and
CP yields high-quality solutions in a very short computation time. The gist is
that we leveraged the strength of ILP in the shortest Hamiltonian path problem
and the efficiency of CP at sequencing problems with makespan minimization.

The results from this chapter were published in [1] and [2].
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3. Optional Activities in
Multi-agent Path Finding
There are many practical situations, where a set of agents (robots, cars, etc.) is
moving in a shared environment, while each agent is heading for its desired goal
position. The environment is usually represented by a graph, where agents can
occupy nodes and move along the arcs [43]. The agents are moving cooperatively
to avoid collisions and unsolvable congestions. The quality of the sequence of steps
leading each agent to the goal position can be measured by some cost function
such as makespan.

The problem described above is known as multi-agent path finding (MAPF)
[44]. Some examples, where the MAPF problem is useful, include traffic opti-
mization [45, 46], navigation [47], movement in computer games [48], etc.

The state-of-the-art algorithms for the MAPF problem assume that all of the
arc lengths are identical and that each node and arc can be occupied by at most
one agent at any time. These limitations on the solved problem do not correspond
to the reality in many cases. For example, some roads have a larger capacity than
others. In this chapter, we add new attributes to the problem specification that
bring it closer to the real world.

In particular, we model the MAPF problem in the Constraint Programming
(CP) formalism borrowing ideas from scheduling and routing problems. We see
the nodes and arcs as resources with limited capacity, which equals one in the
typical MAPF setting but can be larger in some applications. We use the mod-
eling concepts introduced in Section 1.4. The motivation is supporting richer (in
comparison to traditional MAPF) temporal and capacity constraints.

After formally introducing the classical MAPF problem, we will propose a
core scheduling model that allows each agent to visit each node at most once
(a single-layer model), as presented in [3]. Then, as in [4], we will extend this
model to support multiple visits of each node (a multi-layer model) that complies
with the classical MAPF formulation. After that, we will generalize the model
to support arcs of different lengths and capacities. While the extension of the
proposed scheduling-based model is straightforward for this extended setting, we
will also present the extension of the classical SAT-based model. The chapter
is concluded by an experimental comparison of scheduling-based and SAT-based
models with the goal to find how particular problem attributes influence the
efficiency of various models.

3.1 Problem Specification
The MAPF problem is formulated by a graph and a set of agents sitting at
certain nodes. The task is to find paths for agents from their origin nodes to
their destination nodes while satisfying some constraints, namely, no two agents
meet at the same node at the same time, and no two agents swap their positions
at one step.

Formally we can define an instance of MAPF as ordered 4-tuple
(G, A, orig, dest), where G = (V, E) is a directed graph and A is a set of agents.
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Functions orig : A→ V and dest : A→ V describe origin and destination nodes
of an agent. For each agent a ∈ A, we denote orig(a) ∈ V the origin location
(node) of the agent and dest(a) ∈ V its destination node.

The solution to a MAPF problem is a sequence of positions in time for each
agent that satisfies the conditions that no two agents meet at the same node at
the same time, and no two neighboring agents swap their positions at one step.
The moves of the agents are discrete and synchronous. In this work, we will focus
on solutions that are makespan optimal, i.e., the total time until the last agent
reaches its destination is minimized. This requirement of optimality makes the
MAPF problem NP-hard [49].

The classical MAPF is usually solved by algorithms that can be divided into
two categories:

1. Reduction-based solvers. Many solvers reduce MAPF to another known
problem such as SAT [50], ILP [51], and answer set programming [52].
These approaches are based on fast solvers that work very well with unit
cost parameters.

2. Search-based solvers. On the other hand, many recent solvers are search-
based. Some are variants of A* over a global search space (i.e., all possibil-
ities how to place agents into the nodes of the graph) [53]. Other make use
of novel search trees [54, 55, 56].

All of the above approaches to solving the MAPF problem are designed and
tested on graphs with unit-length arcs and unit-capacity arcs and nodes.

3.2 Scheduling Model
This section gives a scheduling-based model for the classical MAPF with unit
lengths and unit capacities.

3.2.1 Single-layer Models
We first propose three models restricted such that no agent can visit the same
node more than once. Then, we will show how to eliminate this restriction.

Flow Model

The Flow model is motivated by the model for the closely related problem of
multiple-origin multiple-destination problem [57]. The model consists of two
parts, a logical one and a numerical one. The logical part describes a valid path
for each agent using the idea of network flows. The numerical part describes
temporal and resource constraints, namely that paths for different agents do not
overlap in time and space.

For each agent a ∈ A and for each arc (x, y) ∈ E we introduce a Boolean
decision variable Used[x , y, a] that indicates whether or not arc (x, y) is used to
transport agent a. For each agent a ∈ A and for each vertex x ∈ V a Boolean
variable Flow[x , a] indicates whether or not the transport of agent a goes through
the vertex x.

31



To model a transport path for an agent, we specify the flow preservation
constraints. These constraints describe that each agent must leave its origin and
must arrive at its destination, and if the agent goes through some vertex then it
must enter the vertex and leave it (both exactly once). In the case of origin, the
agent only leaves it and, similarly, in the case of destination, the agent only enters
it. Formally, for each agent a ∈ A we introduce the following flow preservation
constraints (recall that domains of all the variables are Boolean, that is, {0, 1}):

∀(x , orig(a)) ∈ E : Used[x , orig(a), a] = 0 (3.1)
∀(dest(a), y) ∈ E : Used[dest(a), y, a] = 0 (3.2)

Flow[orig(a), a] = 1 (3.3)
Flow[dest(a), a] = 1 (3.4)

∀x ∈ V \ {orig(a)} :
∑

(y,x)∈E
Used[y, x , a] = Flow[x , a] (3.5)

∀x ∈ V \ {dest(a)} :
∑

(x,y)∈E
Used[x , y, a] = Flow[x , a] (3.6)

The numerical part specifies non-overlapping constraints, namely two agents
do not meet at the same node at the same time, and travel time between the
nodes that is expressed by lengths of arcs, which we now consider to be one. To
model the time interval when an agent a ∈ A stays in a node x ∈ V , we introduce
two numerical variables InT [x, a] and OutT [x, a] modeling the time when the
agent enters the node and when it leaves the node respectively. We can describe
the travel time of agent a between the nodes x and y through the arc a as follows:

Used[x , y, a]⇒ OutT [x , a] + 1 = InT [y, a] (3.7)

If agent a is going through node x, then the agent cannot enter the node before
it leaves it:

InT [x , a] ≤ OutT [x , a] (3.8)

Let sp(x, y) be the length of the shortest path from node x to node y. Then, in
order to prune the search space, we can (but do not need to) calculate bounds of
the time variables as follows:

∀x ∈ V \ {orig(a)} : Flow[x , a]⇒ OutT [orig(a), a] + sp(orig(a), x) ≤ InT [x , a]
(3.9)

∀x ∈ V \ {dest(a)} : Flow[x , a]⇒ OutT [x , a] + sp(x , dest(a)) ≤ InT [dest(a), a]
(3.10)

Let MKSP be the time when each agent must be in its destination, which cor-
responds to makespan of the schedule. Then we set the times in the origin and
destination of an agent as follows:

InT [orig(a), a] = 0 (3.11)
OutT [dest(a), a] = MKSP (3.12)

Finally, to model that two agents p1 and p2 do not meet at the same node x, we
need to specify that their times of visit do not overlap:

(Flow[x, a1] ∧ Flow[x, a2])⇒
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(OutT [x, a1] < InT [x, a2] ∨OutT [x, a2] < InT [x, a1]) (3.13)

To prohibit swapping the positions of two agents, i.e., to preclude agents from
going through the same arc in opposite directions at the same time, we add the
following constraint:

(Used[x, y, a1] ∧ Used[y, x, a2])⇒
(OutT [x, a2] < InT [x, a1] ∨OutT [y, a1] < InT [y, a2]) (3.14)

Proposition 1. The Flow model finds a solution to the MAPF problem where no
agent visits the same node more than once if and only if such a solution exists.

Proof. We prove that the Flow model is sound. That is, every consistent instan-
tiation of variables defines a solution to the MAPF problem. The constraints
(3.1)-(3.6) define a single path from origin to destination for each agent, i.e., the
variables Flow and Used are equal to one for nodes and arcs used on the path and
equal to zero for all other nodes and arcs. The origin and destination must be on
the path due to constraints (3.3) and (3.4). The path must continue from origin
due to (3.6) and must reach the destination due to (3.5). The path cannot start
and cannot finish in any other node due to constraints (3.5) and (3.6). The flow
constraints allow a loop to be formed in the graph, but such loops are forbidden
by temporal constraints (3.7) and (3.8). Each agent starts its tour at time zero
(3.11) and finishes at time MKSP (3.12). No two agents can meet at the same
node at the same time due to constraint (3.13), and neither can they swap their
positions due to constraint (3.14). Hence each solution to the above constraint
satisfaction problem defines conflict-free paths for all agents.

Path Model

The disjunctive non-overlap constraint (3.13) from the Flow model is a classical
expression of a unary (disjunctive) resource. Recall that in constraint program-
ming, these disjunctive constraints are known to propagate badly and special
global constraints modeling resources and efficient filtering algorithms have been
proposed [12]. Hence it seems natural to exploit such constraints in a model,
where the presence of an agent at a node is modeled as an activity. Activity can
be conceived as an interval variable (see Section 1.4). These activities must be
connected via temporal constraint to define a path from origin to destination.

Formally, for each agent a ∈ A and each node x ∈ V , we introduce an ac-
tivity N [x, a] describing time that the agent a spends in the node x. We denote
StartOf(N [x, a]) the start time of the activity, which corresponds to InT [x, a]
in the Flow model, and similarly EndOf(N [x, a]) denotes the end time of activ-
ity corresponding to OutT [x, a] in the Flow model. The start time of activity
corresponding to the origin of the agent is set to zero, while the end time of
activity corresponding to the destination of the agent is set to MKSP, which is
the makespan of the schedule:

StartOf(N [orig(a), a]) = 0 (3.15)
EndOf(N [dest(a), a]) = MKSP (3.16)
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To model the path from origin to destination, we will use a double-link model
describing predecessors and successors of activities. The real path will be com-
pleted to form a loop by assuming that the origin directly follows the destination.
The activities (nodes) that are not used in the path will form self-loops (the node
will be its own predecessor and successor).

Formally, for each agent a ∈ A and for each node x ∈ V we will use two
variables Prev[x, a] and Next[x, a] describing the predecessor and successor of
node x on the path of agent a. The domain of the variable Prev[x, a] consists of
all nodes y such that (y, x) ∈ E plus the node x. Similarly, the domain of variable
Next[x, a] consists of nodes y such that (x, y) ∈ E plus the node x. To ensure
that the variables are instantiated consistently, we introduce the constraint:

Prev[x , a] = y ⇔ Next[y, a] = x (3.17)

To close the loop, we will use the following constraints:

Prev[orig(a), a] = dest(a) (3.18)
Next[dest(a), a] = orig(a) (3.19)

It remains to connect information about the path with the activities over the path,
namely to properly connect times of the activities so they are ordered correctly
in time. This will be realized by the constraint:

EndOf(N [x , a]) + w(x , Next[x , a]) = StartOf(N [Next[x , a], a]), (3.20)

where w(x, y) is the length of arc from x to y, which is 1 for all arcs. However,
we set:

w(x, x) = −1 (3.21)
w(dest(a), orig(a)) = −MKSP (3.22)

In order to prune the search space, we can (but do not need to) add for all
x ∈ V \ {orig(a)} the following constraints:

Next[x , a] ̸= x ⇒ EndOf(N [orig(a), a]) + sp(orig(a), x) ≤ StartOf(N [x , a]),
(3.23)

and for all x ∈ V \ {dest(a)}, we add:

Next[x , a] ̸= x ⇒ EndOf(N [x , a]) + sp(x , dest(a)) ≤ StartOf(N [dest(a), a])
(3.24)

For each node x ∈ V , we add the following constraint encoding that the visits
of node x are not overlapping1:

NoOverlap(
⋃

a∈A
N [x , a]) (3.25)

Again, to preclude agents from swapping their positions, we need to add the
following constraint, for each arc and each pair of agents:

(Next[x, a1] = y ∧Next[y, a2] = x)⇒
(EndOf(N [x, a2]) < StartOf(N [x, a1]) ∨ (EndOf(N [y, a1]) < StartOf(N [y, a2])

(3.26)
1A more technical explanation on how the NoOverlap constraint is applied will be given in

the Opt model that is described next.
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Proposition 2. The Path model finds a solution to the MAPF problem where no
agent visits the same node more than once if and only if such a solution exists.
Proof. Any solution to the Path constraint model defines a solution of the MAPF
problem and vice versa. For each agent, each node (activity) has some predecessor
and successor and they are defined consistently thanks to constraint (3.17), i.e., if
x is a predecessor of y then y is the successor of x. It means that all nodes of the
graph are covered by loops. Moreover, the origin and destination nodes are part
of the same loop due to constraints (3.18) and (3.19). All other loops must be of
length one due to constraints (3.20) and (3.21). Note that durations of activities
are only restricted to be positive numbers and as regular arcs also have positive
lengths, the only way to satisfy the constraints (3.20) over the loop is to include
an arc with a negative length. Only the arcs (x, x) and (dest(a), orig(a)) have
negative lengths as specified in constraints (3.21) and (3.22). Finally, each path
starts at time zero (3.15) and finishes at time MKSP (3.16). No two paths overlap
at a node at the same time due to constraint (3.25), and no agents swap their
positions due to constraint (3.26). Note that activities that are not used at any
path (they are part of loops of length one) are still allocated to unary resource
modeling the node. The duration of such activities is one due to constraints
(3.20) and (3.21). However, as their start and end times are not restricted by
bounds 0 and MKSP, such activities can be shifted to future (after MKSP).

Opt Model

The previous model may seem a bit cumbersome in that it is not yet completely
devoid of the inefficient disjunctions due to constraint (3.26). This is a clear
motivation for the following model that exploits the concept of optional activities
(see Section 1.4). The succeeding and preceding nodes in a path of an agent will
be entailed by whether or not an activity corresponding to the arc and the agent
is present. The activities must be connected via temporal constraint to define a
path from the origin to the destination.

For each agent a ∈ A and each node x ∈ V , we introduce three optional
activities N [x, a], Nout [x, a], and N in[x, a]. The activity N [x, a] corresponds to
the time of an agent a spent at node x. The activities N in[x, a] and Nout [x, a]
describe the time spent in the incoming and outgoing arcs. Next, for each agent
a ∈ A and each arc (x, y) ∈ E, we introduce an optional activity A[x, y, a]. Notice
that all the activities in the model are optional. Finally, we introduce an integer
variable MKSP to denote the end of schedule (makespan).

The idea is that the path of an agent corresponds to the activities that are
present in the solution and that in turn correspond to the nodes and arcs in the
path. In the terminology of hierarchical scheduling, it can be conceived such that
each activity Nout [x, a] has activities A[x, y, a] corresponding to the arcs outgoing
from the node x as its children, and symmetrically, N in[x, a] has the activities
A[y, x, a] corresponding to the arcs incoming to the node x as its children. Hence,
each activity A[x, y, a] has two parents: Nout [x, a] and N in[y, a] because the arc
(x, y) is an outgoing arc for node x and an incoming arc for node y.

Formally, for each agent a ∈ A, the following logical constraints are intro-
duced:

PresenceOf(N [orig(a), a]) = 1 (3.27)
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PresenceOf(N [dest(a), a]) = 1 (3.28)
PresenceOf(N in[orig(a), a]) = 0 (3.29)

PresenceOf(Nout [dest(a), a]) = 0 (3.30)
∀x ∈ V \ {orig(a)} : PresenceOf(N [x, a])⇔ PresenceOf(N in[x, a]) (3.31)
∀x ∈ V \ {dest(a)} : PresenceOf(N [x, a])⇔ PresenceOf(Nout [x, a]) (3.32)

∀x ∈ V \ {orig(a)} : Alternative
(

N in[x, a],
⋃

(y,x)∈E

A[y, x, a]
)

(3.33)

∀x ∈ V \ {dest(a)} : Alternative
(

Nout [x, a],
⋃

(x,y)∈E

A[x, y, a]
)

(3.34)

The definition of the Alternative constraint, which gets an interval variable
as the first argument and a set of interval variables as the second argument, is
as follows. If the activity given as the first argument is present, then exactly one
activity from the set of activities given as the second argument is present. In
addition, it ensures that the start times and end times of the present activities
are equal. On the contrary, if the interval variable given as the first argument is
absent, then all the interval variables given as the second argument are absent too.
Nevertheless, we add the following implication constraints in order to speed-up
the search, for each agent a ∈ A:

∀(x, y) ∈ E : PresenceOf(A[x, y, a])⇒ PresenceOf(N in[y, a]) (3.35)
∀(x, y) ∈ E : PresenceOf(A[x, y, a])⇒ PresenceOf(Nout [x, a]) (3.36)

The durations of activities N , Nout , and N in are to be found, whereas the
durations of activities A[x, y, a] are fixed to 1, i.e., LengthOf(A[x, y, a]) = 1.
Thanks to the Alternative constraints, the processing times of activities Nout and
N in will span over the child activity A that will be present, and for the rest, the
following constraints need to be added, for each agent a ∈ A:

StartOf(N [orig(a), a]) = 0 (3.37)
EndOf(N [dest(a), a]) = MKSP (3.38)

∀x ∈ V \ {orig(a)} : StartOf(N [x, a]) = EndOf(N in[x, a]) (3.39)
∀x ∈ V \ {dest(a)} : EndOf(N [x, a]) = StartOf(Nout [x, a]) (3.40)

Note that the equality in constraint (3.38) is essential for the correctness of the
models. Changing it to an inequality (≤) would mean that the agent disappears
after reaching its destination, and thus other agents may use that node, which is
prohibited in MAPF.

We need to introduce the constraint precluding the agents from occurring at
the same node at the same time, that is, for each node x ∈ V , we add:

NoOverlap
( ⋃

a∈A
N [x , a]

)
(3.41)

Recall that the NoOverlap constraint on a set of activities states that it con-
stitutes a chain of non-overlapping activities, any activity in the chain being con-
strained to end before the start of the next activity in the chain. The NoOverlap
constraint uses non-strict inequalities. However, if an agent leaves a node at time
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t, another agent is allowed to enter the same node no sooner than at time t + 1.
In fact, the times spent by agents at nodes are mostly zero (agents go through
the nodes without waiting there). Hence, the NoOverlap constraint is given a
so-called transition distance matrix TDM , which expresses a minimal delay that
must elapse between two successive activities. More precisely, TDM(N1, N2)
gives a minimal allowed time difference between StartOf(N2) and EndOf(N1).
Thus, the constraint (3.41) is given a TDM containing value 1 for each ordered
pair of activities from the constraint, which ensures that the time distance be-
tween two consecutive visits of a node is at least one. The same construct is in
fact used in constraint (3.25).

To prevent agents from using an arc at the same time (swap), we add, for
each pair of distinct nodes x, y ∈ V connected by arc:

NoOverlap
( ⋃

a∈A
{A[x , y, a], A[y, x , a]}

)
(3.42)

In this case, the transition distance matrix is not needed at all because the
default values are 0.

Finally, the objective is to minimize the makespan, i.e., min MKSP.

Proposition 3. The Opt model finds a solution to the MAPF problem where no
agent visits the same node more than once if and only if such a solution exists.

Proof. The solution of the single-layer model consists of selection of activities and
their time allocation. The activities corresponding to origins and destinations of
agents must be selected due to constraints (3.27) and (3.28). The constraints
(3.31)-(3.36) ensure that if a node is used on some path then there must be
exactly one incoming and one outgoing arc selected (except for the origin, where
no incoming arc is used due to (3.29), and for the destination where no outgoing
arc is selected due to (3.30)). No activity outside the path is selected as such
activities would have to form a loop due to constraints (3.31)-(3.36), but that
would violate the temporal constraints (3.39) and (3.40). Each path starts at
time zero (3.37) and finishes at time MKSP (3.38). Finally, activities in nodes
are not overlapping (3.41), and agents cannot use the same arc at the same time
(3.42).

3.2.2 Multi-layer Model
Now we show how to get rid of the requirement that the agents cannot visit any
node more than once. Since in the experimental analysis of the proposed models,
which can be found in [3], the Opt model exhibited the most stable performance,
we work hereafter only with the Opt model.

In order to let the agents visit the same nodes repeatedly, we simply create a
copy of the original graph and add extra arcs to enable transitions between the
two graphs. The copies of the original graph will be henceforth referred to as
layers. Assuming there is a node in which an agent might want to occur ℓ times,
we create ℓ such layers. We will show later how ℓ is chosen.

Formally, all the activities in the model are extended with one dimension,
corresponding to the layer to which the activity belongs. Now we use N [x, a, k],
N in[x, a, k], Nout [x, a, k], and A[x, y, a, k], where k ∈ {1, . . . , ℓ} corresponds to
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the layer. To allow the transitions between two consecutive layers, we introduce
for k ∈ {1, . . . , ℓ − 1} : A[x, x, a, k], which corresponds to transiting an agent a
from a node x at layer k to the node x at layer k + 1. The duration of activity
A[x, x, a, k] is set to 0, that is, LengthOf(A[x, x, a, k]) = 0. Note that going
through arc A[x, x, a, k] is in fact not a move but merely a transition to another
layer. Due to the length 0, an agent can transit an arbitrary number of layers
instantly, which is necessary to reach the destination in the final layer ℓ (even if
the agent does not re-visit any node).

Also, we need to modify the constraints. The constraints (3.27)–(3.34) are
updated, for each agent a ∈ A, to the following constraints:

PresenceOf(N [orig(a), a, 1]) = 1 (3.43)
PresenceOf(N [dest(a), a, ℓ]) = 1 (3.44)

PresenceOf(N in[orig(a), a, 1]) = 0 (3.45)
PresenceOf(Nout [dest(a), a, ℓ]) = 0 (3.46)

∀x ∈ V, ∀k ∈ {1, . . . , ℓ}, x ̸= orig(a) ∨ k ̸= 1 :
PresenceOf(N [x, a, k])⇔ PresenceOf(N in[x, a, k]) (3.47)

∀x ∈ V, ∀k ∈ {1, . . . , ℓ}, x ̸= dest(a) ∨ k ̸= ℓ :
PresenceOf(N [x, a, k])⇔ PresenceOf(Nout [x, a, k])

(3.48)

∀x ∈ V, ∀k ∈ {1, . . . , ℓ} :
Alternative(N in[x, a, k], {A[x, x, a, k − 1]} ∪

⋃
(y,x)∈E

A[y, x, a, k])

(3.49)
∀x ∈ V, ∀k ∈ {1, . . . , ℓ} :

Alternative(Nout [x, a, k], {A[x, x, a, k]} ∪
⋃

(x,y)∈E

A[x, y, a, k]) (3.50)

Note that in order to ease the notational clutter, we neglect the special cases
where the transition arc is not defined, i.e., there is no transition arc incoming
to the first layer (A[x, x, a, 0]) and no transition arc outgoing from the layer ℓ
(A[x, x, a, ℓ]). Hence the transition arcs are used (added in the union in con-
straints (3.49) and (3.50)) only if they are defined.

Constraints (3.35) and (3.36) are modified, and extra implications for transi-
tions are added:

∀(x, y) ∈ E,∀k ∈ {1, . . . , ℓ} :
PresenceOf(A[x, y, a, k])⇒ PresenceOf(N in[y, a, k]) (3.51)

∀(x, y) ∈ E,∀k ∈ {1, . . . , ℓ} :
PresenceOf(A[x, y, a, k])⇒ PresenceOf(Nout [x, a, k]) (3.52)

∀x ∈ V, ∀k ∈ {1, . . . , ℓ− 1} :
PresenceOf(A[x, x, a, k])⇒ PresenceOf(N in[x, a, k + 1]) (3.53)
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∀x ∈ V, ∀k ∈ {1, . . . , ℓ− 1} :
PresenceOf(A[x, x, a, k])⇒ PresenceOf(Nout [x, a, k]) (3.54)

Constraints (3.37)–(3.40) are simply changed to the following constraints:

StartOf(N [orig(a), a, 1]) = 0 (3.55)
EndOf(N [dest(a), a, ℓ]) = MKSP (3.56)

∀x ∈ V, ∀k ∈ {1, . . . , ℓ}, x ̸= orig(a) ∨ k ̸= 1 :
StartOf(N [x, a, k]) = EndOf(N in[x, a, k]) (3.57)

∀x ∈ V, ∀k ∈ {1, . . . , ℓ}, x ̸= dest(a) ∨ k ̸= ℓ :
EndOf(N [x, a, k]) = StartOf(Nout [x, a, k]) (3.58)

Constraint (3.41) is updated as follows, for each node x ∈ V :

NoOverlap
( ⋃

a∈A
k∈{1,...,ℓ}

N [x , a, k]
)

(3.59)

And, finally, constraint (3.42) is updated as follows, for each pair of distinct
nodes x, y ∈ V connected by arc:

NoOverlap
( ⋃

a∈A
k∈{1,...,ℓ}

{A[x , y, a, k], A[y, x , a, k]}
)

(3.60)

Recall that the NoOverlap constraint over nodes was given the transition dis-
tance matrix TDM ensuring that the time distances between two consecutive
visits of a node are at least one. In this case, however, we need to distinguish the
time distance of two distinct agents, which must be at least 1, and the time dis-
tance of one agent in distinct layers, which must be allowed to be 0 in order for an
agent to be able to transit an arbitrary number of layers instantly. More precisely,
TDM(N [x, a, k1], N [x, a, k2]) = 0, and TDM(N [x, a1, k1], N [x, a2, k2]) = 1, for
a1 ̸= a2.

Constraint (3.60) does not need any transition distance matrix as the default
values 0 are desired.

3.2.3 Algorithm
We presented a constraint model of the problem for a given number of layers. We
will show now how to bound the number of layers for a given makespan and then
we will present an algorithm for finding the minimal makespan.

Number of Layers
Proposition 4. Let pmin be the shortest path from the origin node to the desti-
nation node of an agent, and let MB be an arbitrary upper bound on makespan
(can be the optimal makespan). Then, to solve correctly any instance of MAPF
problem, it suffices to construct the model with MB−pmin

2 + 1 layers. Moreover,
this bound cannot be improved.
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Figure 3.1: Illustration for the proof of Proposition 4.

Proof. The minimum number of nodes that every agent must go through (exclud-
ing its origin node) in order to reach its destination node is at least pmin. Hence,
the maximum number of steps that an agent can spend on repeating already vis-
ited nodes is MB−pmin. However, in order to visit the same node again, an agent
must go away from that node and go back to that node, which takes at least two
steps. Thus, to get the worst case, an agent has to do cycles of length two to keep
visiting the same node. Hence, in the worst case, an agent can revisit the same
node as many as MB−pmin

2 times. Since at least one layer is always required even
without repetitions, we obtain the upper bound MB−pmin

2 + 1 on the necessary
number of layers.

To show that this bound cannot be improved, we construct a problem such
that the necessary number of layers equals the bound (Figure 3.1). Consider an
agent 0 having its destination node equal to its origin node (orig(0) = dest(0)),
hence pmin = 0, and agent 1 passing that node so that the agent 0 has to jump
back and forth (out of his origin node and back). Then the agent 0 occurs in
the destination node (including the initial configuration) exactly MB−pmin

2 + 1 =
2−0

2 + 1 = 2 times.

When we know how many layers are needed, we can design the algorithm for
solving the MAPF problem. Because all the domains of variables in Constraint
Programming (CP) are finite, we need to first obtain an upper bound UB on
makespan. Hence, before constructing any model, we first run a polynomial-time
algorithm Push and Swap (PaS) [58], which finds arbitrary solution provided the
problem is solvable (and assuming |A| ≤ |V |−2), and thus we obtain a valid UB.
Now, we could calculate the necessary number of layers according to Proposition
4, but because UB obtained from PaS is very loose, the number of layers, as well
as the sizes of the domains, would be prohibitively large. That is why we start
with one layer and increase the number of layers until we find a solution. This
solution might not be makespan-optimal, but it provides better UB which is then
used in the final call of the solver that produces a makespan-optimal solution.

The pseudocode of our approach is depicted in Algorithm 3. Calling CP(UB,
ℓ) stands for the creation of a model for the problem with ℓ layers and with
the upper bound on makespan UB, and solving it with a CP solver. The result
of calling CP, as well as calling PaS, is the makespan of the solution, or fail if
infeasible. In case of CP, the solution is makespan-optimal with respect to the
number of layers.

Proposition 5. Algorithm 3 finds a makespan-optimal solution to the MAPF
problem if and only if a solution exists.
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Algorithm 3 Solving MAPF
1: function SolveMAPF
2: UB ← PaS
3: if UB = fail then
4: return infeasible
5: end if
6: ℓ← 1
7: RET ← CP(UB, ℓ)
8: while RET = fail do
9: ℓ← ℓ + 1

10: RET ← CP(UB, ℓ)
11: end while
12: ℓ← RET −pmin

2 + 1
13: return CP(RET , ℓ)
14: end function

Proof. Correctness and completeness follow directly from Proposition 3, using
the fact that the constraints for the multi-layer model are modified such that the
non-conflicting paths from the origin node of each agent, which corresponds to the
activity N [orig(a), a, 1], to its destination node, which corresponds to the activity
N [dest(a), a, ℓ], are found whenever a solution exists for the number of layers ℓ.
Since the CP solver always returns the makespan-optimal solution for a given
number of layers and using the fact that the problem is ultimately modeled with
the sufficient number of layers according to Proposition 4, the obtained solution
is optimal.

Note that we also tried different variants of the multi-layered model. For
example, we tested the models where the transitions of agents between layers
are synchronized, and hence the NoOverlap constraints are imposed only within
one layer instead of over all layers. However, these models turned out to be less
efficient in that they require a higher number of layers to maintain optimality.

3.3 Generalized MAPF
Recall that the main motivation for using the scheduling-based model was its
applicability to more general problems. One such generalization of MAPF is
labeling the arcs with lengths (weights), which determine the duration of going
from one node to another, and with capacities determining the number of agents
that can occur at one arc at the same time (referred to as occupancy). Now we
work with an arc-weighted graph G = (V, E, w, occ), where w(x, y) indicates the
duration of moving an agent over the arc (x, y), and occ({x, y}) stands for how
many agents can use the pair of arcs (x, y) and (y, x) at the same time.

Using non-directional occupancy allows us to model the original MAPF prob-
lem with prohibited swaps of agents (by setting occupancy to 1), which would
not be possible with directional capacities. The motivation is that a road ca-
pacity is shared in both directions, while the travel time can be different (e.g.,
uphill/downhill).
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Figure 3.2: Pathological example for SM-OPT.

3.3.1 Scheduling-Based Approach
We model the generalization of MAPF using the multi-layer model described
in the previous section, where the NoOverlap constraints over arcs (3.60) are
substituted with cumulative functions [26] with capacities set to corresponding
occ({x, y}), and the duration of activities corresponding to arcs are set to the
weights of arcs, i.e., LengthOf(A[x, y, a, k]) = w(x, y).

Let us refer to the Algorithm 3 using the model with these generalizations as
SM-OPT. It is easy to verify that the propositions from the previous section can
be used also for the generalized MAPF. Clearly, increasing occ can only improve
the makespan. However, the bound on makespan MB and the shortest path of
an agent pmin in Proposition 4 must be measured with respect to the lengths of
arcs. Measuring MB and pmin w.r.t. the number of arcs would be incorrect. To
see this, consider the situation in Figure 3.2.

Each origin node of any agent is directly connected to its destination node
with one arc of a very large length, say 1000, which is depicted in red. The other
black solid arcs are unit-length, while the dotted arrows P1 and P2 stand for
very long paths consisting of unit-length arcs (and the corresponding number of
nodes). Suppose the length of the shortest path from orig(i) to dest(i), for i ̸= 0,
is 500 (by the paths P1 and P2), and the length of the shortest path from orig(0)
to dest(0) is 496. Hence, pmin = 496, and the minimal makespan is 500, which is
achieved via paths P1 and P2 with the caveat that agent 0 reaches its destination
first and then he has to jump back and forth to the neighboring node so as to
clear the way for the other agents.

What we get from the PaS algorithm in this example is the solution where each
agent goes over the direct arc to the destination, hence the obtained makespan
is 1000. If we treated the result w.r.t. the number of arcs, that is, MB = 1 and
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pmin = 1, we would get 1−1
2 + 1 = 1, so that the algorithm would settle for the

solution with just one layer, which is far from optimum (we can set arbitrarily
long arcs instead of 1000).

Now, if we use the Proposition 4 correctly with the makespan bound MB
and shortest path pmin measured w.r.t. the length of arcs, we could compute the
number of layers as 500−496

2 +1 = 3, which is exactly the number that is necessary
because agent 0 occurs in its destination exactly three times. This example also
confirms that the bound on the number of layers is tight.

Nevertheless, since we obtain the solution of makespan 1000 from the PaS
algorithm as well as from the first run of CP(1000, 1), the SM-OPT computes
the final number of layers as ℓ = 1000−496

2 + 1 = 253, which is unnecessarily too
much. The question how to improve this bound remains open.

3.3.2 Heuristic Approach
The main problem with the generalized MAPF is that the number of layers calcu-
lated using the Proposition 4 may be very high. In order to observe the potential
of the scheduling-based approach, let us define SM-HEUR as Algorithm 3 modi-
fied such that it starts from one layer and increases the number of layers by one
only until a feasible solution is found and this solution is returned to the user.
Formally, the last call to the solver at line 13 is not realized and instead, the
algorithm returns RET calculated in the loop. Clearly, this does not guarantee
to find a makespan-optimal solution, and as the pathological case from Figure
3.2 shows, it can be arbitrarily far from the optimum.

3.3.3 SAT-Based Approach
While the generalizations described above are easy to implement in our
scheduling-based model, the same generalizations can be very challenging (both
in implementation and runtime) in other existing approaches. One of the most
popular approaches is reducing the MAPF problem to a SAT formula [50]. Jǐŕı
Švancara implemented such solver using the Picat language, which has been
showed to be comparable with the state-of-the-art SAT-based MAPF solver [59],
and also implemented a version for the generalized MAPF. A detailed description
of this approach can be found in [4].

3.4 Experiments
We implemented the scheduling approach in the IBM CP Optimizer version 12.8
[11]. The only parameter that we adjusted is Workers, which is the number of
threads the solver can use and which we set to 1. For the SAT-based approach,
we used the Picat language and compiler version 2.2#3 [59]. The experiments
were run on a PC with an Intel® Xeon™ CPU E5-2660 v2 running at 2.00 GHz
with 16 GB of RAM. We used a cutoff time of 1000 seconds per problem instance.
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3.4.1 Implementation Details
We first compute the all-pairs-shortest-path matrix sp using the Floyd-Warshall
algorithm [60] as the preprocessing phase. We set the lower bound on makespan
to be the maximum, over all agents, of the shortest paths from the origin node
to the destination node of the agent.

To represent the activities in the model, we use the interval variables of the
CP Optimizer, which are designed for the scheduling problems and support spe-
cialized constraints such as Alternative and NoOverlap. The bounds of the in-
tervals and other time variables are limited using the sp matrix, namely, ∀a ∈ A,
∀k ∈ {1, . . . , ℓ}, ∀x ∈ V , the lower bound on start time (EST) of N [x, a, k] is set
to sp(orig(a), x), and the upper bound on end time (LCT) of N [x, a, k] is set to
UB − sp(x, dest(a)). Further, if EST > LCT , it means that the node x cannot
be passed through by agent a, and thus we omit creating variables associated
with node x and agent a.

3.4.2 Problem Instances
The problem instances are created over strongly biconnected undirected graphs.
These types of graphs ensure that the instance is always solvable as long as there
are at least 2 agents less than the number of nodes [61]. To create the different
complexity of the instances, we incrementally increase the number of nodes in the
graph (from 20 nodes to 40 nodes with the increment of 5) as well as the number
of agents in the graph (from 2 to 9 agents). Both the origin and destination
positions of agents are randomly placed in the graph.

Further, we added lengths to the arcs. The length of each arc is chosen uni-
formly at random from the range [1, W ], where W ∈ {1, 50, 100, 200, 300}. Oc-
cupancy is a global attribute for the instance and is also incrementally increased
(from 1 to the number of agents in the instance). Altogether we generated 1100
instances.

3.4.3 Results
The charts show the number of problems solved (x-axis) within a given time
(y-axis). Hence, a curve that is closer to the bottom right represents a better
method. All of the charts have a logarithmic scale on the y-axis.

We compare three methods described above: SM-OPT, SM-HEUR, and the
SAT-based model (labeled as ”Picat”). Recall that SM-HEUR does not guarantee
to find an optimal solution.

The overall comparison of SM-OPT, SM-HEUR, and Picat is depicted in Fig-
ure 3.3. In Figures 3.4–3.8, we show comparisons for the given maximum length
of arcs W to see how the lengths of arcs affect the efficiency of the approaches.

It can be noted that when all arcs are unit-length, which is closest to the orig-
inal MAPF problem, Picat is positively faster than the scheduling-based methods
(Figure 3.4). However, with increasing upper bound on arc length (and thus in-
creasing the differences in individual arc lengths in an instance), the scheduling-
based methods are becoming faster. This can be seen with the maximum length
of 50 (Figure 3.5), where SM-OPT is comparable with Picat, and with the max-
imum length of 100 (Figure 3.6), where SM-OPT is faster than Picat.
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Figure 3.3: Comparison of all generated instances.

Figure 3.4: Instances with the maximum length of 1.
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Figure 3.5: Instances with the maximum length of 50.

Figure 3.6: Instances with the maximum length of 100.
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Figure 3.7: Instances with the maximum length of 200.

Figure 3.8: Instances with the maximum length of 300.
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max length 1 50 100 200 300
1 s 0.59 5.38 7.50 inf inf
10 s 0.89 1.47 2.73 3.88 4.00
100 s 0.94 0.94 1.15 1.29 1.73
1000 s 0.96 0.89 0.99 1.09 1.11

Table 3.1: Ratio of solved instances of SM-OPT to Picat within the given time
limit.

In addition, Table 3.1 shows the ratio of the number of solved instances by
SM-OPT to the number of solved instances by Picat, within the selected time
limit (1–1000 seconds), for the given upper bound on arc length. In the first row,
inf means that Picat did not solve any instance in one second.

The results clearly confirm the hypothesis that with the increasing length
of arcs, the advantage of SM-OPT over Picat is increasing, which is even more
apparent for lower time limits.

Figure 3.9 shows the comparison on instances with the maximum length of 1
and arc occupancy only of 1, which is the classical MAPF problem. The similarity
of the charts in Figure 3.9 and in Figure 3.4 shows that the occupancy parameter
does not have a significant impact on the efficiency of any approach.

The results also show that the SM-HEUR is by orders of magnitude faster than
SM-OPT, while the number of problems where it found a sub-optimal solution is
71 out of 860. However, the average (over these 71 sub-optimal answers) increase
in the makespan is by 25.34 % from the optimum. This should be an incentive
for further research on the number of re-visits of an agent at a node.

Another advantage of our technique over the SAT-based approach is that even
if it does not finish in time, it can find at least some solution. Out of the 240
instances that SM-OPT did not solve in the given time limit, it found a feasible
solution in 195 cases, i.e., it did not find any solution only for 45 instances. This
contrasts with Picat which either finds an optimal solution or nothing. Thus,
Picat did not find any solution for 230 instances.

3.5 Summary
We showed how to model a MAPF problem as a scheduling problem, where
nodes and arcs are seen as resources used by the agents. First, we modeled the
classical problem often used in the literature (unit lengths and capacities). Then
we extended this problem by introducing arc length and arc occupancy limits to
simulate real-world conditions. We showed that this extension is easy to model
in our scheduling approach, but it is more challenging for a classical SAT-based
approach.

We compared the discussed approaches experimentally. As expected, the clas-
sical SAT approach outperforms the scheduling-based methods on the classical
MAPF problem instances. However, with the increasing lengths of arcs, our
scheduling-based techniques outperform the SAT-based approach.

The hardness of the problem can be linked to the number of layers needed for
its solution. This is true for both the scheduling approach and the SAT approach.
One timestep is equivalent to one layer in the SAT approach and therefore we
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Figure 3.9: Instances with the maximum length of 1 and maximum arc occupancy
of 1.

cannot improve on the number of layers needed. On the other hand, the number
of layers in the scheduling approach is equivalent to the number of returns to a
single node. We created a formula that estimates the number of layers needed.
In many cases, however, this number is greatly overestimated.

The single-layer models were proposed and evaluated in [3], and the multi-
layer extension was presented in [4]. Further, we also investigated the dynamic
version of MAPF, where agents appear online [5].
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4. Optional Activities in
Time-Sensitive Networking
Real-time communication in automotive and industrial domains requires guar-
anteeing bounded jitter and end-to-end latency of the data being sent. The de-
terministic behavior of the communication network is achieved by time-triggered
(TT) schedules calculated off-line for critical data traffic. These schedules are re-
quired to satisfy several constraints, e.g., flow precedence constraints or resource
constraints. Omitting some constraints would yield communication schedules
that would be impossible to realize (execute). Further, as elaborated in [62] or
[8], it is also necessary to consider the frame isolation constraint, which basically
means that there can never be more than one frame of TT traffic stored in a queue
at any time. Otherwise the deterministic behavior would not be guaranteed since
a loss of one frame could cause delays in the delivery times of other frames.

In practice, it is often desired to increase the number of communication flows
while maintaining the network size. Hence, crafting a schedule for all the commu-
nication flows such that all the constraints are satisfied is often impossible. In the
current approaches to scheduling TT communication, the routes of flows are al-
most always fixed or computed before the scheduling process. If this assumption
is relaxed and the routes are to be determined jointly with scheduling, more flows
could likely be scheduled as shown in [63]. In this chapter, motivated to increase
the schedulability and throughput of the networks, we address the problem of
joint routing and scheduling (JRaS) in IEEE 802.1Qbv Time-Sensitive Networks
(TSN). We focus on the isochronous type of traffic [64], where zero-jitter and
deadline requirements must be met.

Suppose an optimal solution to scheduling TT traffic in the Ethernet-based
networks (including TSN) is desired. In that case, the problems are usually mod-
eled in Satisfiability Modulo Theories (SMT) formalism or sometimes as Integer
Linear Programs (ILP). In this chapter, we propose two models based on Con-
straint Programming (CP). All these three modeling paradigms are described
in Chapter 1. Next, we deduce approaches based on Logic-Based Benders De-
composition and pruning the search space by restricting the scheduling problem.
Finally, we give an extensive experimental evaluation of the proposed methods
and the existing methods from the literature that we further improved.

The main contributions of this chapter, which were presented in [6], are:

• two CP models: one with simple disjunctions and one with optional interval
variables that represent waiting of frames in queues,

• application of the Logic-Based Benders Decomposition on the proposed
models, as well as on the state-of-the-art models,

• benchmarking and experimental evaluation of the suggested solution tech-
niques, showing the superiority of the proposed CP models, especially in
combination with the Logic-Based Benders Decomposition, increasing the
schedulability by more than 50 % over the state-of-the-art methods.
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4.1 Related Work
The need to solve routing and scheduling jointly emerges in various domains,
e.g., in healthcare [65], vehicle routing with cross-docking [66], ship routing of
oil companies [67], school bus routing [68], and so on. However, the proposed
methods cannot be applied to the problem at hand due to its periodicity and
other specific constraints.

The work that considers JRaS of TT traffic in TSN networks is scarce. Caddell
[69] proposed an SMT model for JRaS and gave an experimental evaluation of
the implementations of the model in SMT (using Z3) and ILP (using CPLEX).
However, this model does not consider the issue of isolation of frames.

JRaS in automotive TT networks is addressed in [70]. The authors model
the problem as a set of pseudo-boolean constraints, which are then solved by
pseudo-boolean solver SAT4J, but the frame isolation is neglected.

Falk et al. [71] propose an ILP model for JRaS, enforcing the no-wait con-
straint, i.e., the frames are not allowed to wait at switches in the queues at all,
which is more restrictive than necessary. The model considers the decision prob-
lem without any objective, and the experiments evaluate the computation time
of the solver.

The routing algorithms for TSN TT communication and their impact on
schedulability are investigated by Nayak et al. [72]. In this case, again, the
scheduling algorithms treat the problem as no-wait packet scheduling where the
frames are not allowed to wait in the queues at all [73].

Atallah et al. [74] focus on calculating multicast routes and schedules also
enforcing the no-wait constraint. The authors propose a time-indexed formulation
in ILP. This model is incorporated in the iterated scheduling approach, where the
flows for consecutive scheduling iterations are grouped such that the degree of
conflict among the groups is minimized.

Another ILP model for multicast routing and scheduling is presented by Yu
and Gu [75]. This model is somewhat similar to that of [69], but the optimization
objective is to balance the traffic load in the network. The authors propose link
grouping of the complete subgraphs in the network as a pre-processing phase
and splitting it back to the original topology when not schedulable as a post-
processing phase. However, the ILP model is invoked iteratively, always adding
just one new flow without having the option to modify already scheduled flows.

JRaS of TT traffic on TTEthernet is addressed by Schweissguth et al. [63].
The authors showed that considering routing and scheduling jointly in one model
may schedule problem instances with high utilization that are otherwise un-
schedulable when routing is fixed first, but then showed that it is counterpro-
ductive in some cases due to the significant increase of the search space. The
same authors [76] updated their approach to address JRaS of TT traffic for TSN,
where the model is extended to allow for multicast routing. However, the paper
seems to disregard some concepts of TSN, such as the usage of FIFO queues.

TT traffic on TTEthernet along with Audio Video Bridging (AVB) traffic is
considered by Pop et al. [77]. First, the authors take the same frame scheduling
model as in [62] and implement it in ILP solver CPLEX. Once the schedule for
TT messages is fixed, the authors propose a heuristic algorithm for optimizing
the routes of AVB flows, where the objective concerns minimization of worst-case
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delay. The heuristic, which was initially presented in [78] without considering TT
traffic, is based on Greedy Randomized Adaptive Search Procedure (GRASP)
[79].

The combination of AVB and TT traffic in TSN is studied by Gavrilut et al.
[80]. The authors use a classical decomposed approach to JRaS where routing
and scheduling TT flows are solved separately, both by heuristic approaches.
While scheduling is done by GRASP, routing is done using the K-Shortest Paths
algorithm [81] to acquire a reduced set of potential paths, from which the least
utilized path is then selected. A greedy heuristic approach taking the least utilized
paths to balance the traffic load is also investigated by Ojewale and Yomsi [82].

The issue of routing has also been studied by Nayak et al. [83, 84]. The
authors address a time-sensitive software-defined network (TSSDN), a network
architecture based on software-defined networking (SDN), compliant with IEEE
802.3 standard. Data transmissions in TSSDN are scheduled only on the end-
stations and not on the switches in the whole network. The authors propose
several variants of ILP formulations that solve the combined problem of routing
and scheduling [83] and online scheduling ILP-based algorithms for computing
incremental schedules at runtime [84].

4.2 Problem Specification
Switches compliant with the IEEE 802.1Qbv standard (Figure 4.1) contain first-
in-first-out (FIFO) queues where the frames are saved before they are forwarded.
Each such queue is linked to a gate that is open or closed. When the gate is
closed, the sending of frames from the linked queue is disabled. When the gate
is open, the frames are sent to the egress port in the same order as they have
been enqueued (that is, FIFO). If more gates are open simultaneously, the so-
called time-aware shaper (TAS) transfers the frames from the queue of the highest
priority. The static periodic schedule stipulating the intervals when the gates are
closed or open is called gate control list (GCL).

Opening exclusively one queue at a time results in a time-deterministic per-
formance of the network. Instead, we calculate a GCL such that at any time,
either one queue for the TT traffic is open and all the other queues are closed, or
all the queues are open, but the queues for the TT traffic are closed. The classes
of non-scheduled traffic are then prioritized by TAS. In this method, there is no
intrusion of the non-scheduled traffic into the TT traffic as all the other queues
are blocked whenever it comes to sending a TT frame. Thus, the deterministic
execution and satisfaction of application constraints (such as latencies and jitter)
for the TT traffic are guaranteed.

The aim is to obtain a GCL, a list of time intervals during which the timed
gate is open, for each queue on each egress port. We focus on the scheduling
of the TT traffic, and we adhere to the strategy as in [62], which is to find the
transmission offsets for each frame as well as the assignment to which queue the
frame is saved. The GCLs are then calculated in the postprocessing phase.
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Figure 4.1: Scheme of an IEEE 802.1Qbv TSN switch.

4.2.1 Network Model
We model the network as a graph G = (V , E), where set of nodes V embodies the
switches and the end-stations (such as sensor, actuator, camera, or programmable
controller), and set of edges E embodies the physical connections (Ethernet links)
between the nodes. Link (a, b) ∈ E expresses one direction of the communication,
hence, a pair of links (a, b), (b, a) ∈ E embodies the full-duplex physical connection
between nodes a and b. From the scheduling point of view, these two links
comprise two distinct resources.

Each link (a, b) ∈ E is characterized by its speed ca,b, the number of queues
available for TT traffic qa,b, and link delay da,b, which is the propagation delay
on the medium and can be calculated as the wire length divided by the speed of
light. Each switch a ∈ V is also specified by its switching delay da.

We assume all the devices in a network are time-synchronized. The worst-case
synchronization error, i.e., the maximum difference between the local clocks of
any two devices in the network, is denoted as δ.

4.2.2 Application Model
Communication in the network is realized using the notion of flows. A flow is
a periodic data transmission from one end-station to another end-station. The
set of flows is denoted as F . Each flow i ∈ F is specified by talker ti, which is
the end-station ID that is sending the data, listener li, which is the end-station
ID that receives the data, payload pi in bytes, period (data cycle) Ti, relative
deadline d̃i, which is the maximum time till when the listener must receive the
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data, and relative release date ri, which is the minimum time when the talker
can start sending the data. It must hold that 0 ≤ ri ≤ d̃i ≤ Ti. The reason
why the deadline of a flow cannot exceed the period of the flow is linked to the
functionality of a controller driving a physical plant. The cycle of such a controller
consists primarily of two parts: calculation and receiving input or sending output
data. Both these parts must be finished in the period of the corresponding flow.

Each flow is assumed to transmit no more data than what can fit into one
Ethernet frame of the Maximum Transmission Unit (MTU) size (1542 bytes).
The flows may have different periods, which may end up with the hyperperiod
(network cycle) larger than the period of any flow. Let us denote hyperperiod HP
as the least common multiple (lcm) of the periods of all flows: HP = lcm{Ti | i ∈
F}. Hence, one flow may occur more than once in the hyperperiod. These
occurrences of a flow on a link are referred to as frame occurrences.

We assume that zero jitter (strictly periodic schedule) is required, i.e., the
time distance of every subsequent frame occurrence of flow i ∈ F is always equal
to Ti. Zero jitter is a standard requirement in systems with feedback control
where input or output signals are propagated with equidistant signal sampling.

Table 4.1: Notation

symbol meaning

V set of switches and end-stations
E set of links
ca,b speed of link (a, b)
qa,b number of queues available on the egress port of link (a, b)
da,b delay of link (a, b)
da switching delay of switch a
δ maximum synchronization error
F set of flows
ti talker of flow i
li listener of flow i
pi payload of flow i
Ti period of flow i

d̃i deadline of flow i
ri release date of flow i
Li,a,b transmission duration of a frame of flow i on link (a, b)
HP hyperperiod
ρi,a,b true if flow i is routed through link (a, b) (variable)
ϕi,a,b transmission offset of the first frame occurrence of flow i on link (a, b) (variable)
λi,a,b queue ID to which the frame occurrences of flow i on link (a, b) are stored (variable)

We introduce, ∀i ∈ F ,∀(a, b) ∈ E :

1. boolean variable ρi,a,b indicating whether or not flow i is routed through
link (a, b),

2. integer variable ϕi,a,b representing the transmission offset of the first frame
occurrence of flow i on link (a, b), and

3. integer variable λi,a,b representing the queue ID to which all the frame oc-
currences of flow i on link (a, b) are stored.

Note that variables ϕi,a,b and λi,a,b are relevant only if variable ρi,a,b is true.
Finally, let Li,a,b be the time it takes to transmit any frame occurrence of flow i ∈
F over link (a, b), which is referred to as transmission duration and is calculated
as Li,a,b = 8·pi

ca,b
. The notation is summarized in Table 4.1.
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4.2.3 Example
To elucidate the problem at hand, consider the following problem instance. As
illustrated in Figure 4.2, the network consists of nodes V = {1, 2, 3, 4, 5, 6, 7, 8}
and links E = {(1, 6), (6, 1), (2, 6), (6, 2), (3, 7), (7, 3), (4, 8), (8, 4), (5, 8),
(8, 5), (6, 7), (7, 6), (6, 8), (8, 6), (7, 8), (8, 7)}.
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1
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Figure 4.2: Illustration of the network and the flows. Network nodes are depicted
by rounded squares, links by solid black edges between the nodes, and flows by
dashed lines.

For each link (a, b) ∈ E , the number of available queues for TT traffic is
qa,b = 1 and the propagation delay is da,b = 0.17µs, and for each node a ∈ V , the
switching delay is da = 0.5µs. The maximum synchronization error is δ = 0.1µs.
All the time units are in microseconds so we henceforth omit writing ”µs”.

The parameters of the flows from the set of flows F = {1, 2, 3} are listed in
Table 4.2. An example of a routing and a schedule to be found by the solver
is represented by a Gantt chart in Figure 4.3. The periods of flows result in
hyperperiod HP = lcm{150, 100, 100} = 300. Hence, flow 1 occurs twice in the
hyperperiod whereas flows 2 and 3 occur three times in the hyperperiod. Notice
that we also depicted the feasible routing of flows in Figure 4.2.

Table 4.2: Parameters of the flows from the illustrative example

i ti li Li,a,b ri d̃i Ti

1 1 5 35 0 150 150
2 2 4 24 0 100 100
3 3 4 24 0 100 100

4.2.4 Scheduling Constraints
The goal of the solver is to instantiate the variables subject to the following
constraints.

Routing Constraint

This constraint ensures that each flow is routed through a path from the talker to
the listener. To ease the description, we assume that each end-station is connected
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Figure 4.3: Illustration of a schedule with hyperperiod HP = 300. Each rectangle
represents a frame transmission on the corresponding link, the numbers inside the
rectangles are flow IDs, and the numbers by the edges of rectangles are the time
points. The first frame occurrences are white, the second occurrences are light
gray, and the third occurrences are dark gray.

to exactly one switch. Thus, let (ti, t′
i) and (l′

i, li) denote the first and the last,
respectively, link of the routed path of flow i.

∀i ∈ F : ρi,ti,t′
i

= 1
∀i ∈ F : ρi,l′i,li

= 1
∀i ∈ F ,∀a ∈ V \ {ti, li} :

∑
(x,a)

ρi,x,a =
∑
(a,y)

ρi,a,y ≤ 1 (4.1)

The solution to the problem instance from the example in Section 4.2.3 de-
picted in Figure 4.3 constructed the routing such that ρ1,1,6 = ρ1,6,8 = ρ1,8,5 =
ρ2,2,6 = ρ2,6,7 = ρ2,7,8 = ρ2,8,4 = ρ3,3,7 = ρ3,7,8 = ρ3,8,4 = 1 and all other routing
variables are set to 0, which satisfies the routing constraints.

Release and Deadline Constraint

This constraint ensures that transmitting a frame on the first link of the routed
path cannot start before the release date and must be completed on the last
link before the deadline. Let (ti, t′

i) and (l′
i, li) denote the first and the last,

respectively, link of the routed path of flow i.

∀i ∈ F : ϕi,ti,t′
i
≥ ri

∀i ∈ F : ϕi,l′i,li
≤ d̃i − Li,l′i,li

− dl′i,li
(4.2)

Note that the relative release times and deadlines given by flow parameters
ri and d̃i are for the first frame occurrence of the flow. The release times and
deadlines of other occurrences are deduced by adding a corresponding multiple of
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the flow period Ti. However, thanks to the zero-jitter requirement, the satisfaction
of release time and deadline for the first frame occurrence implies satisfaction for
all frame occurrences.

The solution from Figure 4.3 satisfies all release and deadline constraints.
For example, for flow 2, it holds that 0 = ϕ2,2,6 ≥ r2 = 0 and 75 = ϕ2,8,4 ≤
d̃2 − L2,8,4 − d8,4 = 100− 24− 0.17 = 75.83.

Resource Constraint

Any two transmissions on a link are not allowed to overlap. More precisely, for
each pair of distinct frames on the same link, the transmission of one frame must
finish before the transmission of the other frame can start, or vice versa. This
constraint must consider all frame occurrences in the hyperperiod. Thanks to
the zero-jitter requirement, the transmission offset of the k-th frame occurrence
of flow i ∈ F on link (a, b) ∈ E is equal to ϕi,a,b +(k−1) ·Ti. With ∧ representing
the logical conjunction and ∨ representing the logical disjunction, the resource
constraint can be written as follows.

∀i, j ∈ F , i < j,∀(a, b) ∈ E ,

∀α ∈ {0, . . . ,
lcm{Ti, Tj}

Ti

− 1},∀β ∈ {0, . . . ,
lcm{Ti, Tj}

Tj

− 1} :(
ρi,a,b = 1 ∧ ρj,a,b = 1

)
⇒(

ϕi,a,b + α · Ti ≥ ϕj,a,b + β · Tj + Lj,a,b

)
∨
(
ϕj,a,b + β · Tj ≥ ϕi,a,b + α · Ti + Li,a,b

)
(4.3)

In the schedule from Figure 4.3, it can be easily seen from the Gantt chart that
all the resource constraints are satisfied since there are no overlapping rectangles.
We need to check all the occurrences of flows 2 and 3 on links (7, 8) and (8, 4).
For illustration, the transmission of the first frame occurrence of flow 2 on link
(7, 8) starts at time ϕ2,7,8 + 0 · T2 = 50 + 0 · 100 = 50, which is right after the
transmission of the first frame occurrence of flow 3 on link (7, 8) is completed,
which is at time ϕ3,7,8 + 0 · T3 + L3,7,8 = 26 + 0 · 100 + 24 = 50.

Precedence Constraint

This constraint models the precedence relations, that is, a frame can be trans-
mitted from a switch only after the frame is fully delivered to the switch and
processed. Note that the implication is added for each pair of links through
which the path can be consecutively routed.

∀i ∈ F ,∀(x, a), (a, b) ∈ E :(
ρi,x,a = 1 ∧ ρi,a,b = 1

)
⇒
(
ϕi,a,b ≥ ϕi,x,a + Li,x,a + dx,a + da + δ

)
(4.4)

The schedule from Figure 4.3 satisfies all precedence constraints. For example,
for flow 1, it holds that 78 = ϕ1,6,8 ≥ ϕ1,1,6 + L1,1,6 + d1,6 + d6 + δ = 42 + 35 +
0.17 + 0.5 + 0.1 = 77.77.
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Frame Isolation Constraint

If a frame is lost, another frame may be dispatched from the queue, which can
cause delays in the delivery times of other frames, as elaborated in [62] or [8].
To avoid this situation, Craciunas et al. [62] proposed adding the frame isolation
constraint. It isolates two different frames such that one frame can arrive in a
shared queue only after the other frame is dispatched from the queue.

x

y

a b

i

j

i j

Figure 4.4: Illustration for the frame isolation constraint.

The disjunction on the right-hand side of the implication consists of three
disjuncts (see Figure 4.4). The first one states that the (α+1)-th frame occurrence
of flow i on link (a, b) is dispatched from the switch before the (β + 1)-th frame
occurrence of flow j on link (y, a) is delivered to switch a, the second one states
that the (β + 1)-th frame occurrence of flow j on link (a, b) is dispatched before
the (α + 1)-th frame occurrence of flow i on link (x, a) is delivered to switch a,
and the third one states that the frames are saved in different queues.

∀i, j ∈ F , i < j,∀(a, b), (x, a), (y, a) ∈ E ,

∀α ∈ {0, . . . ,
lcm{Ti, Tj}

Ti

− 1},∀β ∈ {0, . . . ,
lcm{Ti, Tj}

Tj

− 1} :(
ρi,a,b = 1 ∧ ρj,a,b = 1 ∧ ρi,x,a = 1 ∧ ρj,y,a = 1

)
⇒((

ϕi,a,b + α · Ti ≤ ϕj,y,a + β · Tj + Lj,y,a + dy,a − δ
)
∨(

ϕj,a,b + β · Tj ≤ ϕi,x,a + α · Ti + Li,x,a + dx,a − δ
)
∨(

λi,a,b ̸= λj,a,b

))
(4.5)

Note that in contrast to [62], we assume that the frame is saved in a queue
after it is entirely received by the switch, which is why the constraint includes
the transmission duration.

One can verify that the schedule from Figure 4.3 satisfies the frame isolation
constraint. For illustration, let us take a look again on the first frame occurrences
of flows 2 and 3 on link (7, 8). The frame isolation constraint is satisfied since the
first frame occurrence of flow 3 on link (7, 8) is first dispatched from the queue
and then the first frame occurrence of flow 2 on link (6, 7) is stored to the queue.
That is, 26 = 26 + 0 · 100 = ϕ3,7,8 + 0 · T3 ≤ ϕ2,6,7 + 0 · T2 + L2,6,7 + d6,7 − δ =
25 + 0 · 100 + 24 + 0.17− 0.1 = 49.07.
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Queue Usage Bounds

This constraint ensures a correct assignment of a queue on each egress port for
each frame.

∀i ∈ F ,∀(a, b) ∈ E : ρi,a,b = 1⇒ (λi,a,b ≥ 1)
∀i ∈ F ,∀(a, b) ∈ E : ρi,a,b = 1⇒ (λi,a,b ≤ qa,b) (4.6)

We are indexing the queues from 1 to qa,b instead of from 0 to qa,b − 1. This
helps to realize the objective function as we can thus distinguish egress ports
where no frame is transmitted (and thus no queue is used) from the egress ports
where at least one frame is transmitted (and thus at least one queue is used).

In the example, the number of available queues on each link is qa,b = 1, hence,
all variables λi,a,b, for which ρi,a,b = 1, are assigned to 1 and the queue usage
bounds are satisfied.

Objective

The objective function that we consider is to minimize the accrued sum of the
number of queues used per egress port. The motivation is to keep as many queues
as possible for other classes of traffic. As explained in [62], the other types of
traffic may then profit from a greater number of queues in the post-analysis, for
which techniques like network calculus [85, 86] or trajectory approach [87] are
employed. The latency bounds of non-scheduled flows can be greater with the
decreasing number of available queues. Hence, reducing the number of queues
used by the TT traffic can enhance the timeliness properties and flexibility for
the non-scheduled traffic.

Another objective often considered in practice is the minimization of the max-
imum end-to-end delay related to the flow period. As motivated by [88], this
objective, sometimes referred to as response time, is a prevalent objective in TT
scheduling, especially on TTEthernet. In our case, however, the end-to-end delays
are handled through release times and deadlines, which impose more stringent
requirements on the time properties. That is why we opt for optimizing the num-
ber of used queues, which appears to have a more considerable motivation in TSN
networks.

Formally, let us first introduce auxiliary integer variables κa,b, ∀(a, b) ∈ E , rep-
resenting the number of queues used on link (a, b) ∈ E , thus, κa,b ∈ {0, . . . , qa,b}.
The objective is then realized as follows.

min
∑

(a,b)∈E
κa,b

∀i ∈ F ,∀(a, b) ∈ E : (ρi,a,b = 1)⇒ (λi,a,b ≤ κa,b) (4.7)

Notice that if there is no flow routed through link (a, b), then κa,b = 0, oth-
erwise κa,b ≥ 1. In the example, each link from the Gantt chart in Figure 4.3
uses one queue for TT traffic, whereas the links in the opposite direction (such
as (8, 6)) do not use any queue for TT traffic (thus κ8,6 = 0). Hence, the total
number of used queues is 8.

It can be seen that if flow 2 was routed through its shortest path, i.e., links
(2, 6), (6, 8), and (8, 4), one queue that is used on link (6, 7) would be saved.
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However, this routing cannot lead to a feasible solution, i.e., any exact scheduler,
given this routing, would report ”infeasible”. It can be verified that in this case,
the resource constraint on link (6, 8) would be violated as the flows 1 and 2 would
overlap. Indeed, consider that flow 1 is transmitted at its latest possible time
so that the transmission of flow 1 on link (6, 8) starts at 78 as in the figure and
that flow 2 is transmitted at its earliest possible time so that the transmission of
flow 2 on link (6, 8) starts at 25 (just as on link (6, 7) in the figure). But then
the transmission of the second occurrence of flow 1 starts at time ϕ1,6,8 + 1 · T1 =
78 + 1 · 150 = 228, while the transmission of the third occurrence of flow 2 starts
at ϕ2,6,8 + 2 · T2 = 25 + 2 · 100 = 225 and is completed at 249, thereby causing
the overlap. To avoid this overlap, we can try sending flow 1 earlier so that the
transmission of second occurrence of flow 1 is completed at time 225, that is,
starts at time 190, but then the first occurrence of flow 1 starts at time 40, while
the first occurrence of flow 2 is completed at time 49, thereby causing the overlap
again. We can also try, oppositely, to send flow 1 as early as possible and flow
2 as late as possible. But then the resource constraint is violated directly by
the first occurrences of the flows since the transmission of the first occurrence of
flow 1 starts at time 36 and completes at time 71, while the transmission of the
first occurrence of flow 2 starts at time 50 and completes at time 74, yielding the
overlap again.

The example shows that routing the flows through their shortest paths may
prevent finding a feasible solution. There have been attempts in the literature
to find an alternative criterion for the routing to increase the chance of finding
a feasible solution, e.g., minimizing the maximum scheduled traffic load [63, 72].
However, this criterion would route flow 2 also through its shortest path as we
will explain later in Section 4.3.6. Hence, whether the flows are routed through
their shortest path or using some other more involved criterion, it may always
happen that it does not yield a feasible solution. Notice that this phenomenon
happens even in our simple exemplary problem instance that is special in that
ri = 0 and d̃i = Ti, for each flow i. This confirms the motivation to study the
JRaS problem.

4.3 Solution
In this section, we explain how we model JRaS in CP. Thanks to particular
constructs in CP (see Section 1.4), we propose two models to handle the frame
isolation constraint: one with simple disjunctions and one modeling waiting of
frames in queues. Then we describe further improvements applied to the models
(4.3.3), an approach based on restricting the problem (4.3.4), and, most impor-
tantly, the Logic-Based Benders Decomposition (4.3.5) along with various routing
criteria (4.3.6).

We start with the description that is valid for both proposed CP models.
First, instead of variables ϕi,a,b and ρi,a,b, we introduce optional interval variable
Ia,b

i,k for each frame occurrence, i.e., ∀i ∈ F ,∀(a, b) ∈ E ,∀k ∈ {0, ..., HP
Ti
− 1}, Ia,b

i,k

represents (k + 1)-th frame occurrence of flow i on link (a, b).
First, we need to ensure the zero jitter. Constraint StartAtStart(I1, I2, t)

enforces that the difference between the start times of interval variable I2 and
interval variable I1 is exactly t time units, but if any of the interval variables is
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absent, the constraint is implicitly satisfied. Hence, we add:

∀i ∈ F ,∀(a, b) ∈ E ,∀k ∈ {1, ...,
HP

Ti

− 1} : StartAtStart(Ia,b
i,k−1, Ia,b

i,k , Ti) (4.8)

Also, we need to ensure that all the frame occurrences in the hyperperiod of
the same flow are either present or absent. Thus, we add:

∀i ∈ F ,∀(a, b) ∈ E ,∀k ∈ {1, ...,
HP

Ti

− 1} :

PresenceOf(Ia,b
i,k−1)⇔ PresenceOf(Ia,b

i,k ) (4.9)

Constraint (4.1) is realized using the Alternative constraint. The definition of
the Alternative constraint, which gets an interval variable as the first argument
and a set of interval variables as the second argument, is as follows. If the interval
variable given as the first argument is present, then exactly one interval variable
from the set of interval variables given as the second argument is present, and
the others are absent. Besides, it ensures that the start times and completion
times of the present interval variables are equal. On the contrary, if the interval
variable given as the first argument is absent, then all the interval variables given
as the second argument are absent too. Thus, to realize constraint (4.1), we first
set I

ti,t
′
i

i,0 and I
l′i,li
i,0 to be present. Then, we introduce interval variables N−

i,a and
N+

i,a and add the following constraints:

∀i ∈ F ,∀a ∈ V \ {ti, li} :

Alternative
(

N−
i,a,

⋃
(x,a)∈E

Ix,a
i,0

)
(4.10)

Alternative
(

N+
i,a,

⋃
(a,y)∈E

Ia,y
i,0

)
(4.11)

PresenceOf(N−
i,a)⇔ PresenceOf(N+

i,a) (4.12)

Constraint (4.2) is done simply by setting the lower bound and upper bound
of the domains when declaring the interval variables. The lengths of the interval
variables are also set at the declaration.

Constraint (4.3) is realized using the NoOverlap constraint:

∀(a, b) ∈ E : NoOverlap
( ⋃

i∈F
k∈{0,..., HP

Ti
−1}

{Ia,b
i,k }

)
(4.13)

Constraint (4.4) is realized using constraint StartBeforeStart(I1, I2, t), which
ensures that the difference between the start times of interval variable I2 and
interval variable I1 is at least t time units. However, if either of the interval
variables is absent, the constraint is implicitly satisfied. This is done for each
pair of consecutive links through which a flow can be routed.

∀i ∈ F ,∀(x, a), (a, b) ∈ E : StartBeforeStart(Ix,a
i,0 , Ia,b

i,0 , Li,x,a+dx,a+da+δ) (4.14)

Constraint (4.6) and objective (4.7) are already in the shape that can be
passed to the CP solver.
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4.3.1 CP1: Model with Disjunctions
The first way to handle constraint (4.5) is in the form of disjunctions, using
multiplication with the predicate PresenceOf as follows:

∀i, j ∈ F , i < j,∀(a, b) ∈ E ,∀α ∈
{

0, . . . ,
lcm{Ti, Tj}

Ti
− 1
}

,∀β ∈
{

0, . . . ,
lcm{Ti, Tj}

Tj
− 1
}

:(
PresenceOf(Ia,b

i,0 ) ∧ PresenceOf(Ia,b
j,0 ) ∧ λi,a,b = λj,a,b

)
⇒((

StartOf(Ia,b
i,0 ) ≤

∑
(y,a)∈E

PresenceOf(Iy,a
j,0 ) · (StartOf(Iy,a

j,0 ) + Lj,y,a + dy,a + β · Tj − α · Ti − δ)
)

∨
(

StartOf(Ia,b
j,0 ) ≤

∑
(x,a)∈E

PresenceOf(Ix,a
i,0 )·(StartOf(Ix,a

i,0 )+Li,x,a+dx,a+α·Ti−β ·Tj−δ)
))

(4.15)

We refer to this model as CP1.

4.3.2 CP2: Model with Interval Variables
Another option to handle constraint (4.5) is to model waiting of frames in queues
by interval variables. More precisely, we introduce extra interval variables repre-
senting the time intervals when the switch is precluded from receiving and stor-
ing frames to a queue. If a frame arrived during this time interval, two frames
would share the queue, thereby violating the frame isolation constraint. Imposing
NoOverlap constraints over these interval variables, as will be done by equation
(4.23), will ensure the isolation of frames.

We introduce interval variables W x,a,b
i representing the time interval since the

frame occurrence represented by Ix,a
i,0 is enqueued at switch a until it is transmitted

on egress port (a, b). As we do not know the routing of the flows in advance, W x,a,b
i

is optional, and we add the following constraints to ensure the correct timing and
selection according to the routing:

∀i ∈ F ,∀(x, a), (a, b) ∈ E :
StartAtStart(Ix,a

i,0 , W x,a,b
i , Li,x,a + dx,a − δ) (4.16)

EndAtStart(W x,a,b
i , Ia,b

i,0 , 0) (4.17)
PresenceOf(W x,a,b

i )⇔ (PresenceOf(Ix,a
i,0 ) ∧ PresenceOf(Ia,b

i,0 )) (4.18)

Further, we do not know to which queue the frame will be enqueued. And since
the flows may be separated by being assigned to distinct queues, we introduce
optional interval variables W

x,a,b

i,q,k representing the same time interval W x,a,b
i but

with the distinction that the (k + 1)-th frame occurrence of flow i going through
links (x, a) and (a, b) is stored in queue q. The correct selection of the queue is
made by Alternative constraint:

∀i ∈ F ,∀(x, a), (a, b) ∈ E : Alternative
(

W x,a,b
i ,

⋃
q∈{1,...,qa,b}

W
x,a,b
i,q,0

)
(4.19)

The zero jitter and correct presence of all the occurrences is ensured in the
same way as for interval variables Ia,b

i,k , and also we must ensure the equal length
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for all the occurrences:

∀i ∈F ,∀(x, a), (a, b) ∈ E ,∀k ∈ {1, ...,
HP

Ti

− 1},∀q ∈ {1, . . . , qa,b} :

PresenceOf(W x,a,b

i,q,k−1)⇔ PresenceOf(W x,a,b

i,q,k ) (4.20)

LengthOf(W x,a,b

i,q,k−1) = LengthOf(W x,a,b

i,q,k ) (4.21)

StartAtStart(W x,a,b
i,q,k−1, W

x,a,b
i,q,k , Ti) (4.22)

Constraint (4.5) is realized by adding suitable NoOverlap constraints:

∀(a, b) ∈ E ,∀q ∈ {1, . . . , qa,b} : NoOverlap
⎛⎝ ⋃

(x,a)∈E
i∈F

k∈{0,..., HP
Ti

−1}

W
x,a,b
i,q,k

⎞⎠ (4.23)

Last but not least, the selection of optional interval variables must correspond
to the correct assignment of queues to frames:

∀i ∈ F ,∀(a, b) ∈ E :
PresenceOf(Ia,b

i,0 )⇒ λi,a,b =
∑

(x,a)∈E
q∈{1,...,qa,b}

q · PresenceOf(W x,a,b

i,q,0 ) (4.24)

We refer to this model as CP2.

4.3.3 Basic Implementation Improvements
It is easy to notice that a lot of variables and constraints are added unnecessarily.
For example, links outgoing from the listener and links incoming back to the
talker can never be selected in a feasible solution. Thus, we preprocess routes
such that we enumerate all potential paths from the talker to the listener for
each flow and introduce variables Ia,b

i,k and λi,a,b only if there exists a path for flow
i ∈ F going from ti to li through link (a, b) ∈ E . Although the number of paths
in a general graph is known to grow exponentially, the time consumed by the
preprocessing phase in our case is not an issue.

Furthermore, we calculate, ∀i ∈ F ,∀(a, b) ∈ E , the earliest possible transmis-
sion offset esti,a,b and the latest possible transmission offset lsti,a,b, which is done
as follows. All values esti,a,b are initially set to ∞ and lsti,a,b are set to −∞.
Then, for each flow and each enumerated path, we first check whether the path
is short enough so that the flow can be delivered through the path respecting its
release date and deadline but disregarding all other flows in the problem instance.
If yes, the values of esti,a,b are updated in the order of links in the path starting
from the talker, prec(a) denoting the preceding node of a in the path:

esti,ti,t′
i
← ri (4.25)

esti,a,b ← min{esti,a,b, esti,prec(a),a + Li,prec(a),a + dprec(a),a + da + δ} (4.26)

Notice that the min function is used as more alternative paths can go through
the same link, then we need to take the smallest value of esti,a,b from these paths.
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Analogically, the values of lsti,a,b are updated in the reversed order of links in
the path starting from the listener, succ(a) denoting the succeeding node of a in
the path:

lsti,l′i,li
← d̃i − Li,l′i,li

− dl′i,li
(4.27)

lsti,a,b ← max{lsti,a,b, lsti,b,succ(b) − Li,a,b − da,b − db − δ} (4.28)

After the bounds are calculated, it is clear that if esti,a,b > lsti,a,b then there
is no feasible path of flow i going through link (a, b). Hence, we introduce the
corresponding variables if and only if esti,a,b ≤ lsti,a,b. Besides, we tighten the
bounds of the interval variables such that the minimum and the maximum start
time are at least esti,a,b and at most lsti,a,b, respectively.

4.3.4 Restricting Queues to one
Recall that the models just described are minimizing the overall sum of used
queues. Another option to tackle the problem is to solve the restricted variant
such that the number of queues for each egress port is confined to 1. The search
space thus becomes much smaller. This way, some problem instances can be
deemed infeasible that would be solved with more than one queue on some egress
ports. On the other hand, we do not need variables λi,a,b, and the constraints in
the models thus simplify significantly. More precisely, constraint (4.6), objective
(4.7), and the last disjunct from constraint (4.5) are omitted.

This approach will be referred to as with one queue and labeled by 1Q, whereas
the approach optimizing the number of queues used will be labeled as OPT.

4.3.5 Logic-Based Benders Decomposition
In the models described so far, the routes of the flows and transmission offsets
of frames are to be found simultaneously. Here we propose to decompose the
problem in two phases: first, compute the routes of the flows, that is, assign
values to variables ρi,a,b, and second, schedule the routes, that is, assign values
to variables ϕi,a,b and λi,a,b. After the second phase, go back to the first phase to
find another routing and repeat. In general, this technique is referred to as Logic-
Based Benders Decomposition and has been widely used on various combinatorial
optimization problems (e.g., [89]). The scheme applied to JRaS is illustrated in
Figure 4.5.

More precisely, we first build a model for the routing problem consisting of
variables ρi,a,b, Constraints (4.1), and a criterion function that will be described
further. Note that to distinguish the objective function in the routing problem
from the objective function of JRaS, which is the minimization of the number
of used queues, we call the objective function in the routing problem a criterion
function.

If the routing model reports ”infeasible”, there is no solution to the problem.
If it finds a feasible routing, we construct a scheduling subproblem based on the
routing. The scheduling subproblem is composed of variables ϕi,a,b and λi,a,b, and
Constraints (4.2)–(4.7). However, as we already know the values of all ρi,a,b, we
add only the constraints that are not trivially valid, i.e., a constraint is added
when all the routing variables on the left-hand side of the implication are true.
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Figure 4.5: Workflow of the Logic-Based Benders Decomposition.

For our CP models, it means, for example, that only interval variables Ia,b
i,k are

created for which ρi,a,b = true, and these interval variables are no longer optional,
but present.

When the run of the scheduling subproblem is finished, regardless of whether
it found a feasible schedule or not, we proceed to try another routing. To make
sure the new routing has not yet been tried, we add a nogood (a new constraint)
to the routing problem model. If the scheduling subproblem found a feasible
schedule, we add a nogood such that the new solution must be different. If the
scheduling subproblem is infeasible, we try to retrieve a set of constraints that
cannot be satisfied together and build the nogood such that some variable involved
in the set of constraints must be changed. After adding the nogood to the routing
problem, the solver is invoked again. This process is repeated until the time limit
is reached or there is no other routing to try. Finally, the best-found solution is
reported.

To illustrate how the nogood is created, let us consider the example from
Section 4.2.3 and assume all flows are routed through their shortest paths. After
the run of the scheduling subproblem, suppose (and it is strictly hypothetical
just for the sake of explanation) the set of constraints that cannot be satisfied
together looked as follows:

ϕ1,1,6 ≥ r1

ϕ1,8,5 ≤ d̃1 − L1,8,5 − d8,5

ϕ2,6,8 ≥ ϕ2,2,6 + L2,2,6 + d2,6 + d6 + δ(
ϕ1,6,8 + 1 · T1 ≥ ϕ2,6,8 + 2 · T2 + L2,6,8

)
∨
(
ϕ2,6,8 + 2 · T2 ≥ ϕ1,6,8 + 1 · T1 + L1,6,8

)
(4.29)

Then the nogood would be constructed as follows:

ρ1,1,6 + ρ1,8,5 + ρ2,6,8 + ρ2,2,6 + ρ1,6,8 ≤ 4 (4.30)
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To find the set of constraints that cannot be satisfied together, we use the CP
method called conflict refiner. It directly finds the set of variables that cannot
be consistently instantiated altogether. Note that the set of constraints that
cannot be satisfied together is in SMT referred to as unsatisfiable core and in ILP
as irreducible inconsistent subsystem. Most solvers usually provide a method to
retrieve this set.

In the experiments, to solve the scheduling subproblem, we evaluated both
models CP1 and CP2, as well as all the baseline approaches. The routing problem,
however, is solved by ILP, but it could be equally solved by any other method
as the runtime for the routing problem is negligible compared to the scheduling
subproblem.

For the 1Q approach, the algorithm terminates as soon as it finds the first
feasible schedule. For the OPT approach, the objective value of the best incum-
bent solution can be used in the scheduling subproblem such that we enforce that
the objective value of the new solution to the scheduling subproblem can only be
better than that of the best incumbent solution. As confirmed by the prelimi-
nary results, adding an extra constraint to enforce the objective value to improve
the best incumbent solution is beneficial for SMT but slightly detrimental for
ILP and CP. Hence, we did not include this extra constraint in the experimental
evaluation of CP. In ILP, however, the solver provides an extra parameter called
cutoff, which states that we are interested only in solutions not worse than the
value of cutoff, and this value is efficiently used by the solver.

To distinguish this approach from the global models, it is in what follows
referred to as decomposed model or decomposition and labeled with suffix D,
whereas the global approaches are labeled with suffix G. Note that the decompo-
sition does not prune out any solution as all the possible routings would be tried
if given enough time. Hence, if given infinite time, the results of the global and
decomposed approaches would be equal.

4.3.6 Routing Problem Criteria
We investigate three fundamental criterion functions for the routing problem.
The importance of the routing and its impact on the schedulability and the com-
putation time was studied in [90].

Shortest Paths (SP)

The traditional criterion for the routing is minimizing the total length of paths in
the number of hops, that is:

min
∑
i∈F

(a,b)∈E

ρi,a,b (4.31)

In the first set of experiments, we use SP as the criterion function for the
routing problem, whereas the second set of experiments compares various other
criteria.
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Load Balancing (LB)

Another criterion that appears in the literature is minimizing the maximum sched-
uled traffic load on a link. This criterion was proposed by [63] and [72] and is
realized as follows: A continuous variable υ is introduced to represent the maxi-
mum utilization of all links by adding the following constraints:

∀(a, b) ∈ E :
∑
i∈F

ρi,a,b ·
Li,a,b

Ti

≤ υ (4.32)

Then the criterion function is added as such:

min υ (4.33)

In our example from Section 4.2.3, this criterion would route flow 2 through
its shortest path since the maximum traffic load would be on link (6, 8) of value
L1,6,8

T1
+ L2,6,8

T2
= 35

150 + 24
100 = 142

300 , which is lower than if flow 2 is routed through link
(7, 8), where the traffic load would be of value L2,7,8

T2
+ L3,7,8

T3
= 24

100 + 24
100 = 144

300 .

Period Matching (PM)

As can be seen in the example in Section 4.2.3, if flows of different periods are
routed through the same link, it is unschedulable, whereas the flows of the same
periods on the same link can still be scheduled. The motivation is to route through
a link such flows whose periods are identical or at least somehow congenial, rather
than those flows whose periods are indivisible. We want the criterion function
to reflect the extent of the pair-wise indivisibility of flows if the flows are routed
through the same link. In other words, it is preferable to route through the same
link flows of periods 100 and 200, rather than 100 and 150 or 150 and 200.

To assess the extent of the indivisibility, we take the least common multiple
(lcm) of the flows divided by their greatest common divisor (gcd). For example,
lcm{100,150}
gcd{100,150} = 300

50 = 6 or lcm{150,200}
gcd{150,200} = 600

50 = 12, whereas in the case of harmonic
periods, gcd is equal to the shortest period and lcm is equal to the longest period,
e.g., lcm{100,200}

gcd{100,200} = 200
100 = 2.

Formally, let us first define the set of distinct periods of the flows as:

P = {P1, P2, . . . , P|P|} (4.34)
In our example from Section 4.2.3, P = {100, 150}, |P| = 2, P1 = T2 = T3 =

100, and P2 = T1 = 150.
Next, we introduce auxiliary variables as follows:

1. ∀(a, b) ∈ E ,∀p ∈ {1, . . . , |P|}, binary variable xp,a,b, indicating that there is
at least one flow of period Pp routed through link (a, b), and

2. ∀(a, b) ∈ E ,∀p, p′ ∈ {1, . . . , |P|}, p < p′, binary variable yp,p′,a,b, indicating
that there is at least one flow of period Pp and at least one flow of period
Pp′ routed through link (a, b).
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First, we need to ensure the correct behavior of these variables. As to variables
xp,a,b, we add the following constraints:

∀(a, b) ∈ E ,∀p ∈ {1, . . . , |P|} : xp,a,b ≤
∑

i∈F ,Ti=Pp

ρi,a,b (4.35)

∀(a, b) ∈ E ,∀p ∈ {1, . . . , |P|},∀i ∈ F , Ti = Pp : ρi,a,b ≤ xp,a,b (4.36)
And as to variables yp,p′,a,b, we add the constraints modeling that yp,p′,a,b =

1⇔ xp,a,b = 1 ∧ xp′,a,b = 1, as follows:

∀(a, b) ∈ E ,∀p, p′ ∈ {1, . . . , |P|}, p < p′ :
yp,p′,a,b ≤ xp,a,b (4.37)
yp,p′,a,b ≤ xp′,a,b (4.38)

xp,a,b + xp′,a,b ≤ yp,p′,a,b + 1 (4.39)

Finally, the criterion function is constructed as follows:

min
∑

(a,b)∈E
p,p′∈{1,...,|P|},p<p′

lcm{Pp, Pp′}
gcd{Pp, Pp′}

yp,p′,a,b (4.40)

In the resulting routing from our example, variables x1,1,6, x1,6,8, x1,8,5, x2,2,6,
x2,6,7, x2,7,8, x2,8,4, and x2,3,7 are 1, the other variables are 0. The criterion function
depicted by equation (4.40) is equal to 0, which is clearly optimal.

4.4 Baseline Approaches
Recall that our main contribution is in the CP1 and CP2 models. To compare
our work against some baseline approaches, we considered the following state-of-
the-art approaches as described in related work:

• The global models proposed by [69] in SMT and ILP and the versions for
scheduling a given routing by [62] (in SMT) and [77] (in ILP).

• The no-wait global model in ILP [71] and the no-wait model for scheduling
a given routing [73], which we refer to as ILP NW.

• The time-indexed formulation (also no-wait) in ILP [74], which we refer to
as ILP TI.

Except for ILP TI, we adjusted these methods to our problem definition both
for the OPT approach and the 1Q approach, and we implemented the Logic-
Based Benders Decomposition as described in Section 4.3.5. In all the cases, we
applied the improvements described in Section 4.3.3.

One might think that imposing the no-wait constraint is a way to circumvent
the frame isolation constraint. However, we show that even with the no-wait
constraint, the order of frames in a queue is uncertain, thereby losing the deter-
ministic guarantees. Recall we need to find a transmission offset for each frame.
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As we work with the granularity of 1 microsecond, the no-wait constraint is re-
alized such that the transmission offset of a frame on a succeeding link is equal
to the time point when the frame from the preceding link is ready on the corre-
sponding queue but rounded up to microseconds. More precisely, the precedence
constraint is modified as follows:

∀i ∈ F ,∀(x, a), (a, b) ∈ E :(
ρi,x,a = 1 ∧ ρi,a,b = 1

)
⇒
(
ϕi,a,b =

⌈
ϕi,x,a + Li,x,a + dx,a + da + δ

⌉)
(4.41)

Consider two flows in the scenario from Figure 4.4. Let:

Li,x,a = Li,a,b = 0.8 (4.42)
Lj,y,a = Lj,a,b = 3.85 (4.43)
dx,a = dy,a = da,b = 0.17 (4.44)
da = 10 (4.45)
δ = 0 (4.46)

This tiny problem instance can be scheduled subject to the no-wait constraint
as follows:

ϕi,x,a = 3 (4.47)
ϕj,y,a = 0 (4.48)
ϕi,a,b = ⌈ϕi,x,a + Li,x,a + dx,a + da + δ⌉ = ⌈13.97⌉ = 14 (4.49)
ϕj,a,b = ⌈ϕj,y,a + Lj,y,a + dy,a + da + δ⌉ = ⌈14.02⌉ = 15 (4.50)

It can be easily verified that the frame isolation constraint is not satisfied.
Moreover, the times when the frames are enqueued at switch a are:

ϕi,x,a + Li,x,a + dx,a = 3.97 (4.51)
ϕj,y,a + Lj,y,a + dy,a = 4.02 (4.52)

It follows that if there is maximum synchronization error δ > 0.05, the order
of the two frames in a queue is not deterministic. Hence, the network does not
guarantee deterministic behavior. For this reason, we enforce the frame isolation
constraint in our implementation, even in the no-wait models.

4.5 Experiments
We implemented the models in the IBM CP Optimizer version 12.10 [11]. We set
parameter ConflictRefinerOnVariables to On in order to make the solver find
the set of variables that cannot be consistently instantiated altogether. Next, we
set the parameter NoOverlapInferenceLevel to Extended in order to make the
solver use improved filtering for the NoOverlap constraints.

To solve the SMT models, we use the application interface of the Z3 solver
version 4.8.8 [24]. This solver provides two objects: Solver, which serves for
determining the feasibility of a formula and is thus used for the 1Q approaches,
and Optimizer, which allows for optimization of an objective function and is thus
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used for the OPT approaches. In the Solver object, we set unsat core to true
in order to make the solver find the unsatisfiable core.

To solve the ILP models, we use Gurobi solver version 9.0.1 [14]. The ex-
periments were run on a system with 2x Intel® Xeon® E5-2690 v4 CPU, 14
Cores/CPU; 2.6GHz; 35 MB SmartCache; with 512 GB DDR4, ECC.

4.5.1 Problem Instances
We evaluated our algorithms on randomly generated problem instances of topolo-
gies proposed by [63] inspired by industrial automation1. The switches are con-
nected either in a ring or as a partial mesh. The small networks consist of 12
switches and 12 end-stations, the large networks consist of 48 switches and 48
end-stations. Each end-station is connected to a different switch. The small
partial meshes are of types PM3-4-3 and PM4-3-2, and the large partial meshes
are of types PM6-8-3 and PM8-6-2. The numbers 4-3-2 stand for 4 columns, 3
switches per column, and horizontal connections every 2 rows (see Figure 4.6).

Figure 4.6: Small partial-mesh topologies.

The other parameters were set as follows. ∀a ∈ V : da = 10; ∀(a, b) ∈ E :
da,b = 0.17, qa,b = 2. The speed of all links was set to 1000 Mbit/s.

Table 4.3: Period Sets

Periods HP
{400, 500, 1000} 2000
{500, 1000, 2000} 2000
{800, 1600, 3200} 3200

{500, 1000, 1500, 3000} 3000
{500, 800, 1000, 2000, 4000} 4000

The number of flows in the small networks ranged from 10 to 300, incremented
by 10, and in the large networks ranged from 30 to 900, incremented by 30. The
talker and listener were chosen uniformly at random for each flow. The periods
Ti were uniformly chosen from each of the period sets listed in Table 4.3.

1The problem instances can be downloaded from https://github.com/CTU-IIG/JRaS-TSN
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The payload of each flow was set uniformly at random from interval [72, 1542]
bytes, where 1542 bytes is the maximal Ethernet packet size including the over-
head. The release dates and deadlines were generated randomly such that interval
[ri, d̃i] covers exactly 50 % of period Ti, which is the parameter we obtained from
our industrial partner for applications in industrial automation. For each set of
parameters, we generated ten random problem instances for the small networks
and one random instance for the large networks. The small networks were given
a time limit of 60 seconds, and the large networks were given a time limit of 3600
seconds.

4.5.2 Comparison of Schedulability
First of all, we are interested in the schedulability ratio, which is the percentage
of problem instances for which a feasible schedule was found by a given method.
Table 4.4 shows the percentage of instances for which a feasible schedule was
found by the OPT approaches. Analogically, Table 4.5 shows the results for
the 1Q approaches. The column ”Any” in the tables shows the percentage of
instances for which a feasible schedule was found by at least one (any) of all the
approaches from the table. This column is meant to illustrate the extent to which
the schedulable instances differ among various approaches and how the winning
approach covers the subset of instances scheduled by any approach.

Table 4.4: Percentage of problem instances scheduled by OPT approaches

Global Decomposed
topology Any SMT ILP ILP NW CP1 CP2 SMT ILP ILP NW CP1 CP2

PM3-4-3 76.5 3.5 12.8 14.7 16.4 50.7 20.9 49.5 50.9 46.7 75.0
PM4-3-2 77.8 3.4 11.9 13.1 18.6 48.0 22.8 51.3 53.8 47.3 76.3
RING12 70.7 4.9 18.7 19.2 14.5 48.1 16.7 42.7 44.9 37.3 69.7

mean 75.0 3.9 14.5 15.7 16.5 49.0 20.2 47.9 49.9 43.8 73.7

PM6-8-3 49.3 - - - - 1.3 13.3 25.3 28.7 22.0 47.3
PM8-6-2 60.0 - - - - 2.0 12.7 24.7 30.0 21.3 58.7
RING48 60.7 - - - - 29.3 13.3 30.7 40.0 22.7 58.0

mean 56.7 - - - - 10.9 13.1 26.9 32.9 22.0 54.7

Table 4.5: Percentage of problem instances scheduled by 1Q approaches

Global Decomposed
topology Any SMT ILP ILP NW CP1 CP2 SMT ILP ILP NW ILP TI CP1 CP2

PM3-4-3 69.5 6.4 10.8 11.5 38.3 34.7 31.7 43.9 46.7 13.9 68.2 44.6
PM4-3-2 71.1 5.9 9.0 9.3 34.8 37.1 33.1 45.6 49.5 14.9 70.3 46.9
RING12 63.4 8.6 16.1 18.7 42.0 31.9 29.1 39.3 41.3 12.4 62.1 41.5

mean 68.0 7.0 12.0 13.2 38.4 34.6 31.3 43.0 45.8 13.8 66.8 44.4

PM6-8-3 36.0 - - - - 6.0 22.0 28.0 30.7 - 30.7 18.7
PM8-6-2 35.3 - - - - 4.7 21.3 26.7 28.7 - 34.0 20.7
RING48 51.3 - - - - 14.0 23.3 34.7 42.0 - 47.3 26.0

mean 40.9 - - - - 8.2 22.2 29.8 33.8 - 37.3 21.8

It can be seen that our CP methods reach the highest schedulability. In par-
ticular, CP2 combined with the decomposition achieved the highest schedulabil-
ity among the OPT approaches, whereas CP1 combined with the decomposition

71



achieved the highest schedulability among the 1Q approaches. As expected, lim-
iting queues to one renders some instances unsolvable that could be solved using
more queues. On the other hand, limiting queues to one increases the schedula-
bility rate for the CP1 and SMT models, which shows that the size of the search
space is crucial for the performance of these models. It can also be seen that for
every method, the decomposition outperforms the global model.
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Figure 4.7: Dependence of the percentage of scheduled problem instances on the
number of flows in RING12 networks for OPT approaches.
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Figure 4.8: Dependence of the percentage of scheduled problem instances on the
number of flows in RING12 networks for 1Q approaches.

The dependence of schedulability on the number of flows in the ring networks
with 12 switches is depicted in Figure 4.7 and Figure 4.8. Other networks exhib-
ited similar trends. The methods in the diagrams are sorted in the decreasing
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order of the schedulability. Recall that the global approaches are labeled with
suffix G, and the decomposed approaches are labeled with suffix D.

The solvers almost always deplete the given time limit. That is why we
focused on whether a feasible solution was found in the given time limit and
the quality of such a solution. However, with the increasing complexity of the
instances, the global models tend to take more time than the time limit. This
is particularly noticeable for SMT, as can be seen in Figure 4.9 and Figure 4.10,
where the dependence of the average solving time on the number of flows in the
ring networks with 12 switches is shown. Recall that the time limit for the small
networks was 60 s; hence, no curve should exceed the value of 60 on the y-axis.
We note that the biggest excess of the time-limit was 5635.62 s for the SMT G on
a PM3-4-3 instance with 210 flows, which confirms the inapplicability of SMT.
Besides, the SMT optimizer has the drawback that it either finds an optimal
solution or finds no solution at all.
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Figure 4.9: Dependence of the average solving time on the number of flows in
RING12 networks for OPT approaches.

There are missing results in the tables since the solvers crashed on a lack
of memory. The only global model that managed to complete the results for
the large networks is CP2, albeit exceeding the time limit. This underlines the
importance of decomposition on larger networks.

Overall, it can be seen that our CP models perform best. The results show
that CP2 is better at finding a feasible solution in a larger search space, whereas
CP1 is better at finding a feasible solution when the search space is pruned by
limiting queues to one. We note that we also tried the CP modeling trick known
to be efficient for problems where a feasible solution is difficult to find: relaxing
deadlines to due dates and involving the violation of the deadlines in the objective
function as tardiness. In our case, unfortunately, this brought no benefit. We also
tried to set the search phases for the solver such that it schedules first the flows
with the smallest periods, then those with the second smallest periods, and so on,
just like in the widely used rate monotonic policy [91]. This strategy turned out
to be counterproductive since the solver has more sophisticated variable selection
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Figure 4.10: Dependence of the average solving time on the number of flows in
RING12 networks for 1Q approaches.

rules.

4.5.3 Usage of Queues and Optimality
Table 4.6 shows the percentage of instances for which the models optimizing the
number of used queues proved that the found solution is optimal, and Table 4.7
shows the percentage of instances that were proved infeasible. CP1 performed
best at proving the optimality, whereas CP2 at proving the infeasibility. Note
that the instances are generated such that it is not known whether the unsolved
instances are infeasible until some model proves it. Although significantly more
successful in finding a feasible solution, the results also confirm that the decom-
posed models are not suitable for proving the optimality or infeasibility. The
reason is that the decomposed models must examine all potential routings (ex-
cept those pruned out by nogoods), which is rarely made within the time limit.

Table 4.6: Percentage of problem instances with proved optimality

Global Decomposed
topology SMT ILP CP1 CP2 SMT ILP CP1 CP2

PM3-4-3 3.53 6.47 10.33 0.27 0.00 0.00 0.00 0.00
PM4-3-2 3.40 6.20 10.60 0.13 0.00 0.00 0.00 0.00
RING12 4.87 7.67 10.40 6.93 0.07 0.53 0.47 0.00

mean 3.93 6.78 10.44 2.44 0.02 0.18 0.16 0.00

PM6-8-3 - - - 0.00 0.00 0.00 0.00 0.00
PM8-6-2 - - - 0.00 0.00 0.00 0.00 0.00
RING48 - - - 10.00 0.67 1.33 1.33 0.67

mean - - - 3.33 0.22 0.44 0.44 0.22
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Table 4.7: Percentage of problem instances with proved infeasibility

Global Decomposed
topology SMT ILP CP1 CP2 SMT ILP CP1 CP2

PM3-4-3 0.00 0.00 0.20 1.20 0.00 0.00 0.00 0.00
PM4-3-2 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00
RING12 0.00 0.00 1.27 1.40 0.00 0.00 0.00 0.00

mean 0.00 0.00 0.49 1.16 0.00 0.00 0.00 0.00

PM6-8-3 - - - 2.00 0.00 0.00 0.00 0.00
PM8-6-2 - - - 1.33 0.00 0.00 0.00 0.00
RING48 - - - 3.33 0.00 0.00 0.00 0.00

mean - - - 2.22 0.00 0.00 0.00 0.00

Table 4.8 shows the comparison of the usage of queues for CP1 and CP2.
Score ”x : y” in column ”method1 : method2” states that x % of instances
were solved by method1 using strictly fewer queues than method2 and that y %
of instances were solved by method2 using strictly fewer queues than method1,
provided the instance was scheduled by both methods. It can be seen that the
schedules found by CP1 are using fewer queues than by CP2, whether it is in the
global model (first column) or decomposition (second column). Further, solving
the problem by the global model brings an advantage over decomposition for CP1
(third column), whereas the opposite holds for CP2 (fourth column).

Table 4.8: Comparison of better usage of queues

topology CP1 G : CP2 G CP1 D : CP2 D CP1 G : CP1 D CP2 G : CP2 D

PM3-4-3 6.7 : 3.1 16.1 : 0.4 10.7 : 4.6 10.0 : 39.5
PM4-3-2 9.6 : 2.7 15.9 : 0.4 11.2 : 6.7 8.3 : 38.7
RING12 4.6 : 2.5 11.9 : 0.4 8.9 : 2.7 10.4 : 35.3

mean 7.0 : 2.8 14.6 : 0.4 10.3 : 4.6 9.6 : 37.8

PM6-8-3 - : - 10.0 : 4.0 - : - 0.7 : 0.7
PM8-6-2 - : - 6.0 : 6.7 - : - 0.0 : 2.0
RING48 - : - 4.7 : 3.3 - : - 1.3 : 18.0

mean - : - 6.9 : 4.7 - : - 0.7 : 6.9

To summarize the results, CP2 is the best in terms of schedulability. In
particular, CP2 D should be used if the time limit within which a feasible schedule
must be found is small, as this method exhibited the best schedulability ratio.
On the other hand, CP1 yields solutions of better quality and is better at proving
the optimality of the found solution.

Note that the SMT and ILP models introduce variables only for the first
frame occurrences, which is possible due to the zero-jitter requirement. On the
contrary, the CP1 and CP2 models work with variables for each frame occurrence,
which suggests that if the zero-jitter requirement is relaxed, our CP models should
exhibit more efficiency than other models.
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4.5.4 Impact of Various Routing Criteria, Period Sets,
and Problem Modifications

The following experiments investigate the effect of the different criterion function
used for the routing problem in the decomposition. In the experiments above,
the decomposition only used the shortest paths as the routing problem criterion,
and the scheduling subproblem always got all the remaining time limit. Since the
scheduling subproblem creates the bottleneck of the whole problem, it rarely hap-
pens that the decomposition examines more than one potential routing. Hence,
to focus more on the routing criteria, we modify the decomposition such that
the scheduling subproblem gets half of the remaining time limit (but at least
one second). This way, we achieve that the decomposition examines several pos-
sible routings. Besides, we generated problem instances where the period sets
are not particularly congenial (e.g., harmonic periods), as was the case in the
experiments so far. The other parameters and the methodology of generating the
problem instances are the same. For the comparison, we use only the CP2 model
as it performed best.

Table 4.9: Percentage of scheduled problem instances for various routing criteria

Periods HP Any SP LBSP SPLB SPPM PMSP

{1400, 1800, 2400, 3600} 50400 25.3 22.3 23.0 22.3 22.8 22.0
{1400, 1800, 2400} 50400 9.1 7.2 7.2 7.6 7.3 8.3
{1400, 1800, 2800, 3600} 25200 39.2 32.3 33.2 31.8 32.1 28.3
{1400, 1800, 2800} 25200 26.3 20.6 20.3 20.3 20.8 19.3
{700, 900, 1200, 1800} 25200 24.1 20.0 21.3 20.8 21.1 18.7
{700, 900, 1200} 25200 8.2 6.1 6.1 6.0 6.2 7.4
{720, 900, 1800, 3600} 3600 86.4 73.4 62.9 73.2 73.1 83.7
{720, 900, 3600} 3600 82.8 62.6 56.0 61.3 61.8 81.1
{800, 1600, 2400, 3200} 9600 80.3 74.9 72.2 76.3 75.3 60.6
{800, 1600, 2400} 9600 90.7 82.6 83.9 84.7 81.7 79.7

mean 47.3 40.2 38.6 40.4 40.2 40.9

Table 4.9 shows the results. Recall that the routing criterion functions of
interest are the shortest paths (SP), load balancing (LB), and period matching
(PM), as defined in Section 4.3.6. If the criterion function consists of two criteria,
the primary criterion is written first and followed by the other, e.g., LBSP stands
for LB as the primary criterion and SP as the secondary criterion. Although
the Gurobi solver provides options for multicriteria optimization, this approach
turned out to be slightly less efficient. Hence, we use the modeling approach where
the primary criterion is multiplied by a sufficiently large constant (depending on
the number of flows and links).

The results showed that PMSP performs best for the period sets with HP =
3600. Otherwise, we did not discover any direct relation between the period sets
and the success of various routing criteria. In general, taking SP as the primary
(or the only) criterion, which is mostly done in practice, seems to be a reasonable
option to choose. The reason why taking other than the shortest paths is often
detrimental can be explained by the fact that the TSN switches use the store-
and-forward mechanism and that the switching delay is set to 10µs.

We performed another set of experiments to show how the schedulability

76



Table 4.10: Percentage of scheduled problem instances if the cut-through mech-
anism is enabled

Periods HP Any SP LBSP SPLB SPPM PMSP

{1400, 1800, 2400, 3600} 50400 26.2 22.1 23.3 23.1 22.4 23.8
{1400, 1800, 2400} 50400 10.1 8.3 8.1 8.1 8.6 9.0
{1400, 1800, 2800, 3600} 25200 41.0 33.6 33.9 35.6 34.0 29.0
{1400, 1800, 2800} 25200 27.9 23.3 22.8 23.0 23.4 18.8
{700, 900, 1200, 1800} 25200 23.9 21.2 21.2 21.0 21.0 20.8
{700, 900, 1200} 25200 9.0 7.4 7.3 7.3 7.8 7.8
{720, 900, 1800, 3600} 3600 91.6 73.7 63.2 71.2 72.4 87.8
{720, 900, 3600} 3600 87.8 64.7 57.7 61.8 61.7 84.7
{800, 1600, 2400, 3200} 9600 80.4 73.0 71.7 74.7 73.9 69.0
{800, 1600, 2400} 9600 96.3 87.8 88.8 90.8 88.4 86.2

mean 49.4 41.5 39.8 41.7 41.4 43.7

would increase if switches with the cut-through mechanism were used. In this
case, we modify constraint 4.4 such that a transmission of a frame on a link does
not need to wait until the frame on a preceding link is fully delivered to the switch
and processed but can start right after 4 seconds since the preceding frame started
its transmission, as assumed in [76]. The discussion on whether this assumption is
realistic in TSN context is beyond the scope of this chapter. Table 4.10 confirms
the expectation that the advantage of PMSP increased substantially more than
for the other criteria since the cut-through mechanism enables paths with many
hops to be scheduled. On the other hand, the overall increase in schedulability
brought by the cut-through mechanism is not as significant as anticipated.

Finally, we ran the experiments without considering the frame isolation con-
straint in the model, i.e., without Constraint (4.5). Note that in this case, the
CP1 and CP2 models are the same. The results showed that the mean schedu-
lability that would be in column ”Any” increased to 73.2 %. Moreover, for the
period sets yielding HP of 3600 and 9600, the schedulability increased to 100 %.
This confirms that the frame isolation constraint is the main burden in finding
a feasible solution as the schedulability without this constraint would be signif-
icantly higher. We emphasize that the schedules crafted without this constraint
are not valid deterministic schedules for TSN networks since the schedules neglect
the fact that the transmissions of frames have to obey the FIFO property of the
queues. However, these schedules may be used in the TTEthernet networks since
the TTEthernet switches can dispatch the frames in arbitrary order.

4.6 Summary
This chapter addressed the problem of joint routing and scheduling in IEEE
802.1Qbv Time-Sensitive Networks. We developed two CP models: one with
disjunctions and one with optional interval variables that represent the waiting
of frames in queues. Further, we implemented approaches inspired by Logic-
Based Benders Decomposition and pruning the search space by restricting the
problem. The extensive experimental evaluation compared the various methods.

It has been shown that the simple CP model with disjunctions yields solu-
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tions of the best quality and is the best at proving the optimality of the found
solutions. On the other hand, the CP model with interval variables representing
waiting in queues to avoid disjunctions is very efficient in quickly finding a feasi-
ble solution. In particular, this model, combined with the Logic-Based Benders
Decomposition, exhibited the best schedulability ratio. The overall success of the
decomposition is a significant result showing that it allows for solving large-scale
problems. Further, we investigated various criterion functions for the routing
problem, thereby boosting the schedulability.

The results in this chapter were published in [6]. We also developed an efficient
heuristic algorithm that solves the scheduling problems on large-scale networks
(but disregards alternative routing options), which is published in [7]. Finally,
we also investigated an option to enhance schedulability and throughput of the
traffic in a network by enhancing the hardware of switches [8].
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Conclusion
This thesis investigated the usage of optional activities. First, we coped with the
scheduling problem of the production of water tubes where the machine reconfig-
urations lead to the sequence-dependent setups between consecutive tasks that
must be performed by a machine setter who can only serve one machine at a
time. Along with the efficient CP model using the optional activities to represent
the setups between tasks, we presented four other CP models, an ILP formula-
tion, and a hybrid heuristic that leverages the strength of ILP in the shortest
Hamiltonian path problem and the efficiency of CP at sequencing problems with
makespan minimization. The experimental evaluation showed that among the
proposed exact approaches, the CP model with the optional activities is a supe-
rior method being able to solve instances with three machines and up to 11 tasks
on each machine to optimality within a few seconds.

Another problem that we tackled is the MAPF problem, the goal of which is
to find paths for agents. We approached MAPF using scheduling methodology
where nodes and arcs are conceived as resources. We first described three models,
where each agent can visit each node at most once. Then, we took the best
model, which was the one that used optional activities to represent which nodes
and arcs the agents will visit, and extended it so that agents could visit the
nodes repetitively. The major contribution of the scheduling model of MAPF
was its capability to accommodate other constraints. Namely, we extended the
traditional MAPF formulation such that the capacities of arcs and the lengths
of arcs could be greater than one. These extensions brought the model closer to
real-life applications.

Finally, we addressed the problem of joint routing and scheduling of TT traffic
in communication networks. Our approach computes routes of flows jointly with
scheduling, which possibly allows more flows to be scheduled and hence increases
the throughput in a network. We proposed two CP models with optional activities
that represent the transmissions of data frames on communication links through
which the data will be forwarded. An experimental evaluation comparing our
solutions against the commonly used ILP and SMT formulations showed that
our novel CP model, which also uses optional activities to represent waiting of
frames in queues, brought a 50 % increase in the schedulability.

To conclude, this thesis focused on the notion of optional activities. It has
been shown that the concept of optional activities can be easily applied not only
to scheduling problems but also to various combinatorial optimization problems.

This thesis consists of the research results published during the Ph.D. studies
of the author at Charles University.
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List of Abbreviations
AVB Audio Video Bridging

COP constraint optimization problem
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