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Abstract 

 

First part of this thesis was focused on the previously overlooked field of C1'-branched 

acyclic nucleoside phosphonates (ANPs). Five diverse synthetic approaches were 

developed/optimized affording key 6-chloropurine intermediates bearing N9-

phosphonomethoxyethyl (PME) branched at C1' position in 2–4 steps. It was 

demonstrated that these intermediates can be further vastly diversified into ANPs bearing 

both natural and unnatural nucleobases. Single enantiomers as well as racemates of final 

C1'-branched ANPs (overall 48 final compounds) were prepared and selected compounds 

were evaluated with respect to their biological properties. The aforementioned ANPs 

showed no antiviral potency against studied viruses and only weak to moderate cytostatic 

activity. Adenine C1'-branched ANPs proved to be the most potent currently known 

inhibitors of Trypanosoma brucei adenine phosphoribosyl transferase (TbrAPRT), an 

enzyme involved in purine salvage pathway (PSP) of T. brucei. Further biological 

evaluation of prepared compounds is in progress. 

Second part of this thesis was focused on development of novel prodrug moieties with 

higher selectivity index (i.e. toxicity/potency ratio – SI) based on so-called ProTide 

prodrugs where phenol (present in ProTides) was replaced by tyrosine derivatives. 

Tenofovir was selected as suitable model compound and the efficiency of developed 

prodrugs was evaluated against human immunodeficiency virus (HIV) and hepatitis B 

virus (HBV), and compared to ProTide prodrug of tenfovir (tenofovir alafenamide 

fumarate – TAF). Three series were developed affording overall 27 prodrugs. The 

prodrugs were resolved using chiral HPLC column to fast-eluting epimer (FEE) and slow-

eluting epimer (SEE) as a new chiral center on the phosphorous atom was formed during 

the synthesis. The synthesis was optimized to obtain prodrugs in one-pot manner with up 

to 86% yield. The developed prodrugs reached up to single-digit picomolar potency 

against HIV and nearly 300-fold higher SI compared to TAF. Regarding HBV, the most 

efficient prodrug reached over 25-fold higher SI compared to TAF. The developed 

prodrugs showed slightly higher chemical stability, significantly higher plasma stability, 

but considerably lower microsomal stability than TAF. The metabolic studies 

demonstrated markedly higher cellular uptake of the novel prodrugs and substantially 

higher levels of released tenofovir inside the cells compared to TAF. Sharp differences 

between the metabolism of FEEs and SEEs were further revealed. These promising results 

provide a strong foundation for further development of these novel prodrugs. 

 

 

 

 



 

 

Abstrakt 

 

První část této práce se zabývá dříve přehlíženými C1'-větvenými acyklickými nukleosid 

fosfonáty (ANPs). Bylo vyvinuto/optimalizováno pět různých syntetických přístupů 

vedoucích ve 2–4 krocích ke klíčovému 6-chlorpurinovému intermediátu nesoucímu N9-

fosfonomethoxyethyl (PME) větvený v poloze C1'. Bylo prokázáno, že tyto intermediáty 

mohou být dále rozsáhle diversifikovány na ANPs nesoucí jak přírodní tak modifikované 

nukleobáze. Byly připraveny jednotlivé enantiomery i racemáty finálních C1'-větvených 

ANPs (celkem 48 finálních látek) a vybrané látky byly testovány pro jejich biologické 

vlastnosti. Zmíněné ANPs neprokázaly žádnou aktivitu vůči studovaným virům a pouze 

slabou nebo mírnou cytostatickou aktivitu. Adeninové C1'-větvené ANPs se prokázaly 

být nejaktivnějšími dosud známými inhibitory adenin fosforibosyl transferásy 

Trypanosomy brucei (TbrAPRT), enzymu záchytného mechanismu purinů. Další 

hodnocení biologických vlastností stále probíhá. 

Druhá část této práce se zabývá vývojem nových proléčiv s vyšším indexem selektivity 

(tzn. poměr toxicity a aktivity – SI), která jsou založená na tzv. ProTide proléčivech, a 

která obsahují deriváty tyrosinu namísto fenolu (přítomného v ProTidech). Tenofovir byl 

vybrán jako vhodná modelová látka, proto byla efektivita vyvinutých proléčiv hodnocena 

proti lidskému imunodeficientnímu viru (HIV) a viru hepatitidy B (HBV) a byla 

porovnána s ProTide proléčivem tenofoviru – tenofovirem alafenamide fumarátem 

(TAF). Byly vyvinuty tři série a celkově 27 proléčiv. Proléčiva byla rozdělena na chirální 

HPLC koloně na rychle eluovaný epimer (FEE) a pomalu eluovaný epimer (SEE), protože 

v průběhu syntézy bylo vytvořeno nové chirální centrum na atomu fosforu. Syntéza byla 

optimalizována, aby byly požadovaná proléčiva získána “one-pot” s výtěžkem až 86 %. 

Vyvinutá proléčiva dosáhla aktivity proti HIV v řádu jednotek picomolů a téměř 300-krát 

vyšší SI než TAF. Proti HBV dosáhlo nejnadějnější proléčivo 25-krát vyšší SI než TAF. 

Vyvinutá proléčiva jsou chemicky mírně stabilnější, výrazně stabilnější v plasmě, ale 

značně labilnější v mikrosomech než TAF. Metabolické studie odhalily znatelně vyšší 

prostup do buňek nových proléčiv a podstatně vyšší hladiny uvolněného tenofoviru v 

buňkách než TAF. Dále byly odhaleny výrazné rozdíly mezi metabolismem FEE a SEE. 

Tyto nadějné výsledky jsou silným základem pro další vývoj těchto nových proléčiv. 
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Introduction 

Nucleotides (Figure 1) are absolutely essential for all living organisms. They play the 

central role in energy metabolism as fundamental molecules for energy transfer (ATP, 

GTP). They are components of cofactors necessary for the activity of many enzymes. 

Finally, they are crucial for information transfer either as messenger molecule (cyclic 

adenosine monophosphate – cAMP) or as the building blocks of DNA and RNA. 

A number of different nucleoside analogues is currently used in clinic as therapeutics 

against viral infections or cancer.1 Inside the cell, most of the nucleoside analogues need 

to undergo phosphorylation to the corresponding triphosphates in order to exert an 

activity.2,3 Modified nucleosides are inherently different from natural nucleosides, hence, 

the kinases ensuring the first, most selective phosphorylation often generate the modified 

monophosphates less efficiently.2,4,5 This has been identified as the rate-limiting step in 

the bioactivation of these molecules.6 To bypass this drawback, analogues of nucleoside 

monophosphates (nucleotides, Figure 1) have been synthesized. They are, however, 

unstable in vivo due to the chemically and enzymatically labile P–O bond.7 To address 

this issue, nucleoside phosphonates equipped with more stable P–C bond were developed 

and the development eventually led up to clinically used drugs.8 

 

Acyclic nucleoside phosphonates 

Acyclic nucleoside phosphonates (ANPs) are chemically and metabolically stable 

analogues of nucleotides. ANPs were first developed in the group of prof. Antonín Holý 

more than 30 years ago.8 In contrast to the canonical nucleotides, the molecules of ANPs 

possess the phosphonate moiety instead of the phosphate moiety and an aliphatic chain 

containing an oxygen atom instead of the cyclic sugar (Figure 1).9–11 

 

 

Figure 1. Deoxyadenosine monophosphate – dAMP (left) and analogous ANP tenofovir 

(right). 
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The major advantages of ANPs include the presence of the C-P linkage which is 

enzymatically and chemically more stable compared to the O-P linkage in natural 

nucleotides, and the presence of the phosphonate moiety which bypasses the first, most 

critical, and rate-limiting phosphorylation.7 Another advantage is the high flexibility of 

the acyclic scaffold of the molecule which, on one hand increases entropic penalty during 

the enzyme-binding process, but on the other hand reduces the risk of resistance 

development.  

 

Biological activity of ANPs 

ANPs are mostly known as a class of antiviral and anticancer agents although the 

antiprotozoal activity should not be forgotten.3,12 Under physiological conditions, 

phosphonate is deprotonated and the polar ANP molecule is unable to effectively 

penetrate lipophilic cell membranes.13 Therefore, a suitable prodrug strategy14–16 has to 

be utilized to transport ANPs into cells, where the prodrug moiety is cleaved off and the 

parent ANP is further phosphorylated to active phosphono diphosphate (ANPpp).3,10,11  

 

Antiviral activity 

Following an antiviral activity of ANPs ultimately led to the development of three 

compounds which are currently commercially available as antiviral drugs (some of them 

in the form of prodrugs) – adefovir, cidofovir, and tenofovir (Figure 2). Adefovir ((9-((2-

phosphonomethoxy)ethyl)adenine – PMEA) was first reported in 1987 by Holý and 

Rosenberg17, and is used for the treatment of chronic hepatitis B infections.18 Cidofovir 

((S)-1-((3-hydroxy-2-phosphonomethoxy)propyl)cytosine – (S)-HPMPC) was first 

described by De Clercq et al.19 in 1987 and is currently approved for the treatment of 

human cytomegalovirus (HCMV) retinitis in AIDS patients but is also effective against 

adeno-, herpes-, papilloma-, and poxvirus infections.20 Finally, tenofovir 

((R)-9-((2-phosphonomethoxy)propyl)adenine – (R)-PMPA) which was first mentioned 

by Balzarini et al.21 in 1993 is effective against retroviruses and is used for the treatment 

of human immunodeficiency virus (HIV) and hepatitis B virus (HBV) infections.22  

 

 

Figure 2. Structures of adefovir ((9-((2-phosphonomethoxy)ethyl)adenine – PMEA), 

cidofovir ((S)-1-((3-hydroxy-2-phosphonomethoxy)propyl)cytosine – (S)-HPMPC), 

tenofovir ((R)-9-((2-phosphonomethoxy)propyl)adenine – (R)-PMPA), and PMEG ((9-

((2-phosphonomethoxy)ethyl)guanine).  
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The reason for the significant antiviral activity is very selective affinity of the 

diphosphorylated metabolite (ANPpp) to the viral DNA polymerase compared to the 

human α, β, and γ polymerases.13 The diphosphorylated metabolite acts as a competitive 

inhibitor of the viral DNA and/or RNA polymerase (or reverse transcriptase in the case 

of retroviruses) but also as a substrate for the viral DNA polymerase. It can be therefore 

incorporated into the growing DNA strand thus terminating the chain elongation.9,13 

 

Antitumor activity 

Cidofovir, adefovir, and the guanine counterpart of adefovir – PMEG (9-((2-

phosphonylmethoxy)ethyl)guanine) also exhibit remarkable antitumor activity (Figure 

2).23,24 The antiproliferative activity of PMEG was confirmed in vivo in murine tumor 

model against both P388 leukemia and B16 melanoma.25 PMEG was found to act via the 

diphosphorylated metabolite (PMEGpp) which exhibits high affinity towards human 

DNA polymerases α and ε involved in DNA replication. It acts either as an inhibitor of 

these polymerases or as a chain terminator upon incorporation in the growing DNA strand 

which arrests the S phase during the cell replication and leads to subsequent apoptosis.26,27 

However, PMEG showed very narrow therapeutic window and in vivo experiments 

revealed high prevalence of nephrotoxicity and gastrointestinal toxicity, and the last two 

decades have been dedicated to efforts for development of suitable prodrug, none of 

which so far reached past phase II of clinical trials.24 

 

Antiprotozoal activity 

Recently, ANPs were found to inhibit purine phosphoribosyl transferases (PRTs) – the 

crucial enzymes in the purine salvage pathway (PSP).28–34 As some pathogens (e.g. 

Plasmodium or Trypanosoma) are unable to synthesize purines de novo, the inhibition of 

enzymes involved in PSP of these pathogens is considered to be an interesting medicinal 

target. Despite the complexity and redundancy of enzymes involved in PSP, it has been 

shown that inhibition of hypoxanthine-guanine-(xanthine) phosphoribosyl transferases 

(HG(X)PRTs) using ANPs leads to growth inhibition of Plasmodium falciparum28–32 and 

Trypanosoma brucei33,34. 

 

Trypanosoma brucei 

According to WHO, Trypanosoma brucei (Figure 3) accounts for 98% reported cases of 

human African trypanosomiasis (HAT) also known as sleeping sickness.35 There had 

been several major epidemics in the past century and this protozoan parasitic disease still 

puts 65 millions of people at risk. However, due to intensive efforts the number of cases 

fortunately steadily decreases.36  
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Figure 3. Trypanosoma in the blood of a patient suffering HAT (image by Kennedy37). 

 

HAT is transmitted by tsetse fly through saliva during the feeding and has two forms in 

humans, each caused by different subspecies – T. brucei gambiense is responsible for the 

more common form while T. brucei rhodesiense for the less common form.38 There are 

two stages recognized during HAT. The early stage can last months or even years, 

however, in case of T. brucei rhodesiense, the early stage is more rapid leading to the late 

stage in the time frame of weeks. The late stage is defined by the penetration of the 

trypanosomas into the central nervous system which is associated with increased 

neurological disorders including sleeping disorders (observed in approx. 75% of patients) 

giving the disease its name.39 Without the treatment, the disease leads inevitably to coma 

and death.  

 

 

Figure 4. Currently used agents for treatment of HAT. 

 

Current treatment for early stage relies mainly on pentamidine or suramin while late stage 

is treated with melarsoprol or nifurtimox/eflornithin combination (Figure 4).40 

Pentamidine and suramin represent the first line treatment for gambiense and rhodesiense 

HAT, respectively. Both pentamidine and suramin are associated among others with 
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nephrotoxicity and gastrointestinal symptoms.40 Melarsoprol is a very toxic arsenic drug 

causing reactive encephalopathy in 10% of patients half of which eventually die.37 Sadly, 

melarsoprol is still the only treatment for the late stage rhodesiense HAT. Since 1981, 

eflornithin replaced melarsoprol in the treatment of late stage gambiense HAT. While 

being less toxic than melarsoprol, eflornithin still exhibits serious adverse effects 

including hypertension, macular rash, peripheral neuropathy, tremor, and gastrointestinal 

problems.41 Moreover, due to low plasma stability (t1/2 = 3 h), eflornithin needs to be 

administered very frequently. Enhancement of the therapy was achieved by nifurtimox 

eflornithine combination therapy (NECT) as nifurtimox is administered PO and 

eflornithin is administered less frequently. Nevertheless, NECT exerts higher incidence 

of  tremors, anorexia, and nausea compared to eflornithin therapy.40 Recently, a new 

promising oral drug fexinidazole (Figure 4) was approved for treatment of early stage 

and non-severe late stage gambiense HAT. Although less effective than NECT, 

fexinidazole exhibit less severe effects like vomiting, headache, and tremors.42 Due to the 

aforementioned drawbacks of current treatment the need for new therapeutics against T. 

brucei persists. 

 

 

Figure 5. Purine salvage pathway of Trypanosoma brucei. AK – adenosine kinase, ADSL 

– adenylosuccinate lyase, ADSS – adenylosuccinate synthase, AMPD – AMP deaminase, 

APRT – adenine phosphoribosyl transferase, GDA – guanine deaminase, GMPR – GMP 

reductase, GMPS – GMP synthase, HG(X)PRT – hypoxanthine–guanine–(xanthine) 

phosphoribosyl transferase, IMPD – inosine-5´-monophopshate dehydrogenase, NH – 

nucleoside hydrolase.33 
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As extracellular parasite, T. brucei remains in body fluids where it multiplies by binary 

fission and the essential nucleotides for the reproduction are accessible for T. brucei 

solely via PSP (Figure 5).37 As mammalian cells are able to obtain purines de novo, 

inhibition of PSP enzymes is thought to be a promising target. Phosphoribosyltransferases 

(PRTs) catalyze the formation of purine nucleoside monophosphate from purine 

nucleobase and 5-phospho-D-ribosyl-1-pyrophosphate (Figure 6) and as crucial enzymes 

in PSP, PRTs were recently investigated as potential targets.33,34,43 Despite the 

redundancy and complexity of T. brucei PSP, hypoxanthine and guanine ANPs were able 

to inhibit hypoxanthine-guanine-(xanthine) phosphoribosyl transferases (HG(X)PRTs) in 

vitro thus inhibiting the growth of T. brucei.33  

Since the versatility of PSP might eventually lead to evolution of resistance, the design 

of selective adenine phosphoribosyl transferase (APRT) inhibitors nicely complements 

HG(X)PRT inhibitors and might lead to a complex restriction of parasite growth. Very 

recently, Doleželová et al. showed that even though APRT1/2 are not essential for T. 

brucei, adenine ANPs were able to inhibit in vitro the growth of T. brucei.43 

 

 

Figure 6. General transformation catalyzed by purine PRTs shown on the example of 

TbrAPRT44. 

 

C1'-Modified nucleotides 

Extensive structure-activity relationship studies on ANPs were performed over the years 

in which both nucleobase and/or aliphatic linker were modified.12,45 Interestingly, the 

field of C1′-modified ANPs has been far less explored compared to the other structural 

modifications. Currently only a handful of C1′-branched ANPs is known and all of them 

are only adenine derivatives.46–49 This is surprising since C1′-branched ANPs, lacking the 

labile glycosidic bond, should be more chemically and enzymatically stable compared to 

analogous C1′-substituted (deoxy)ribose containing nucleos(t)ide analogues.50 Recent 

discoveries exposed the potential of such compounds as Warren et al.51 described the 

potent antiviral C1′-branched C-nucleotide prodrug GS-5734 (currently know under the 

name of remdesivir) (Figure 7) where the cyano substituent at the position C1′ is thought 

to increase the potency and selectivity towards the viral RNA polymerase.  
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Figure 7. Structure of remdesivir (parent nucleoside depicted in blue). 

 

Remdesivir is a prodrug of the parent nucleoside (Figure 7, blue), which was introduced 

by Cho et al.52 in 2012 as a part of a research of antiviral efficacy of C1′-modified 

nucleosides. The parent nucleoside was shown to be effective against hepatitis C virus 

(HCV) and other RNA viruses, and remdesivir showed remarkable efficiency (nanomolar 

EC50) against Ebola virus, HCV, and respiratory syncytial virus (RSV) in vitro using 

human cell lines.51,53 Moreover, this compound was also effective against Ebola virus in 

vivo in rhesus monkeys.51 Since remdesivir proved to be an effective inhibitor of RNA-

dependent RNA-polymerases of various viral families (including Coronaviridae), it has 

been most recently studied as a potential therapy against SARS-CoV-2 (causing the 

ongoing COVID-19 pandemic).54–57 

Hence, the exploration of chemistry and biological properties of C1′-branched ANPs 

represents an interesting opportunity for a medicinal chemistry research. 

 

 

Prodrugs 

Both nucleoside phosphates and nucleoside phosphonates are deprotonated at 

physiological pH, thus, forming a dianionic species which significantly complicates their 

transport through biomembranes. Prodrug technologies have been developed to mask the 

charged nature of nucleotide analogues and to consequently circumvent the 

bioavailability obstacle. Prodrug moieties enable an efficient transport into the target cells 

where the prodrug moiety is cleaved off, thus releasing the parent active compound 

(Figure 8). A successful prodrug has to be stable in gastrointestinal (GI) tract and be 

efficiently absorbed in the systemic circulation where it must survive long enough to 

reach the target cells. Hence, both chemical and enzymatic stability needs to be 

thoroughly evaluated early on.58 
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Figure 8. General principle of prodrug approach shown on the example of tenofovir. 

 

Numerous diverse prodrug approaches have been developed over the years (Figure 9) 

and the concept of prodrugs proved to be extremely beneficial. The most successful 

prodrugs are currently components of several approved drugs. 

 

 

Figure 9. The overview of developed prodrug approaches (NB – nucleobase). 

 

Alkyl prodrugs 

The efforts to develop efficient prodrugs started with adopting simple alkyl groups.59 

Carboxylic esters are in vivo rapidly cleaved by carboxyesterases, however, alkyl esters 
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of phosph(on)ates are cleaved far less readily. This prevents their use as prodrugs since 

the high metabolic stability blocks the release of the parent active molecule. Especially, 

mono-alkyl esters proved to be unsuitable due one persisting charge combined with slow 

cleavage of the ester. Rosowsky et al.59 prepared mono-alkyl prodrugs of ara-CMP and 

observed substantial drop of cytostatic activity compared to parent ara-CMP both in vivo 

and in vitro (in L1210 leukemia and B16 melanoma cells). Starrett et al.60 prepared mono-

alkyl and bis-alkyl prodrugs of PMEA and observed in accordance with previous results 

poor bioavailability for mono-alkyl prodrugs. Despite good absorption, the bis-alkyl 

prodrugs also exhibited low efficacy thus confirming the high enzymatic stability of bis-

alkyl phosphonate esters which prevents the liberation of the parent active PMEA.60 

 

Acyloxyalkyl produgs 

The hydrolytic resistance of alkyl ester prodrugs directed further efforts to acyloxyalkyl 

esters bearing most often bis(pivaloyloxymethyl) (POM) or bis(isopropyloxymethyl 

carbonate (POC) moiety (Figure 10). The first step in metabolism of both POM and POC 

prodrugs is cleavage by an esterase. Metabolites undergo spontaneous degradation thus 

producing phosph(on)ate mono-ester, formaldehyde, and in case of POC also carbon 

dioxide. The second cycle yields the parent phosph(on)ate (Figure 10).  

 

 

Figure 10. General structure of acyloxyalkyl (POM and POC) prodrugs, their metabolism 

and the structure of tenofovir disoproxil fumarate (TDF). 
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Starrett et al.60 also prepared the bis(acyloxy)alkyl prodrugs of PMEA and observed 

significant increase of bioavailability both in vitro and in vivo which was attributed to the 

increased cellular uptake of the prodrug. Bis(POM) prodrug of PMEA (adefovir 

dipivoxil) was initially evaluated against HIV, however, the development was stopped 

due to high nephrotoxicity observed.15,61 After further investigation, FDA approved in 

2002 adefovir dipivoxil for treatment of HBV infections.62 Another promising antiviral 

compound - tenofovir21 - was further developed to achieve higher bioavailability. 

Bis(POC) prodrug of tenofovir (tenofovir disoproxil fumarate – TDF) exhibited more 

than 100-fold higher activity against HIV compared to parent tenofovir due to 

significantly increased (over 100-fold) cellular uptake in target lymphocytes.63 After oral 

administration in mice, TDF showed 20% bioavailability and relatively low toxicity.64 

The promising results were confirmed in humans.64 Eventually, TDF (Viread) was 

approved for the treatment of HIV/AIDS (in 2001) and chronic hepatitis B (in 2008).65,66 

 

S-Acyl-2-thioethyl (SATE) and S-((2-hydroxyethyl)sulfidyl)-2-thioethyl (DTE) 

prodrugs 

Both SATE and DTE prodrugs are connected by thioethyl linker to an enzymatically 

labile moiety. SATE prodrugs utilize esterase-labile thioacetate while DTE prodrugs 

utilize reductase-labile disulfide moiety. Upon enzymatic cleavage, the unstable 

metabolite decomposes to ethylene sulfide and mono(SATE)/mono(DTE) phosph(on)ate 

(Figure 11).67 The second cycle releases the parent phosph(on)ate. The usage of SATE 

and DTE prodrugs has been limited to in vitro experiments due to toxicity concerns 

regarding ethylene sulfide which is formed during the metabolism.14  

 

 

Figure 11. General structure of SATE and DTE prodrugs and their metabolism. 
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Alkoxyalkyl prodrugs (Hostetler) 

Lysophospholipids (LPLs) are bearing only one fatty acyl (Figure 12) as opposed to 

phospholipids (PLs) which are bearing two fatty acyls. The lack of one fatty acyl causes 

a conic shape of LPLs which increases the mobility through phospholipid bilayer 

membrane.68 Inspired by the fast movement of LPLs through membranes, Hostetler et al. 

developed alkoxyalkyl prodrugs composed of one hexadecyloxypropyl or 

octadecyloxypropyl moiety on phosphonate thus mimicking the LPL (Figure 12).69 The 

metabolism of these prodrugs is ensured by phospholipase C which releases the parent 

phosphonate.  

 

 

 Figure 12. General structure of lysophospholipids (LPLs) and phospholipids (PLs) (left), 

general structure of alkyloxyalkyl produgs and their metabolism (top, right), and the 

structure of brincidofovir, and structure of CMX157 (bottom, right). 

 

The optimal length of the chain was studied by Wan et al.70 who compared 12–24 atoms 

long chains. It was observed that the optimal length for efficient cellular uptake translated 

to high antiviral activity is 20 atoms. Hence, 16 atoms from hexadecyl moiety plus 4 

atoms from oxypropyl moiety showed the best results. Both longer and shorter chains 

than 20 atoms exhibited sharp drop of antiviral potency.70 This approach was developed 

for phosphonates and proved to be very effective. In case of cidofovir, the 

hexadecyloxypropyl (HDP) prodrug (Figure 12) substantially increased antiviral activity 

against poxviruses, herpes viruses, adenoviruses, and polyoma virus in vitro.69 The HDP 

prodrug of cidofovir has been developed by Chimerix, Inc. under generic name 

brincidofovir and is currently evaluated by FDA for treatment of smallpox.71 This 

approach was also applied to tenofovir. HDP prodrug of tenofovir (also known as 

CMX157) (Figure 12) showed increased activity against HIV and HBV in vitro while 

exhibiting no toxicity and good bioavailability in vivo.72 CMX157 was further pursued 

for the treatment of HBV infection and is currently in phase II clinical studies.73 
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Cyclosaligenyl (CycloSal) and cycloaminobenzyl (CycloAmb) prodrugs 

Unlike previously mentioned prodrugs, CycloSal and CycloAmb prodrugs do not depend 

on enzymatic cleavage and rely on chemical hydrolysis and subsequent spontaneous 

decay to free parent phosph(on)ate and benzyl alcohol derivatives (salicylic alcohol 

derivatives in case of cycloSal prodrugs or 2-aminobenzyl alcohol derivatives in case of 

cycloAmb prodrugs) (Figure 13).74 These prodrugs were developed by Meier et al. who 

applied this approach among others to PMEA.75 The CycloSal prodrugs of PMEA proved 

to be hydrolytically highly unstable. The stability was increased using cycloAmb 

prodrugs, however, despite significantly lower cytotoxicity, cycloAmb PMEA showed 2–

3-fold lower activity against HIV compared to PMEA in vitro.75 Still, the selectivity index 

(SI - toxicity/potency ratio) of the most promising prodrug achieved 9.7 while SI of 

previously described bis(POM) PMEA reached in the same assay 4.1.75 

 

 

Figure 13. General structure of cycloSal and cycloAmb prodrugs and their metabolism. 

 

HepDirect Prodrugs 

The cyclic 1-aryl-1,3-propyl ester of phopsh(on)ates are prodrugs developed to target 

liver. The cleavage of the prodrug moiety is ensured via cytochrome P450 (CYP) mediated 

hydroxylation (Figure 14). The unstable oxidized metabolite undergoes opening and 

subsequent β-elimination to release the parent compound.76  

It was observed that activation of the prodrug is highly stereospecific. Hence, the 

activation proceeded only in case of cis configuration between aryl and nucleoside moiety 

(i. e. RPS or SPR diastereoisomers) as shown in the molecule of pradefovir (Figure 14).76 

The liver selectivity is related to predominant cleavage of these prodrugs by liver specific 

cytochrome isoenzyme CYP3A4.76 Moreover, the liver selectivity is highly desirable for 

treatment of HBV infections. The HepDirect prodrug of PMEA (known as pradefovir) is 

evaluated for the treatment of HBV infections and proved to be effective and safe in phase 

I clinical trial.77 
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Figure 14. General structure of HepDirect produgs, their metabolism, and the structure 

of pradefovir. 

 

Phosphoramidate and phosphonamidate prodrugs 

 

Bisamidate prodrugs 

Bisamidate prodrugs are bearing two amino acids connected via P-N bonds (Figure 15). 

The advantage of this approach is release of solely non-toxic (natural) amino acids upon 

the metabolism and employment of two identical amino acids prevents formation of 

chirality on the phosphorous atom. The metabolism is thought to be analogous to that of 

ProTide prodrugs (Figure 18), which are thoroughly discussed below.  

The bisamidate approach was applied in compound GS-9191 (Figure 15) which was 

investigated in regard to its utilization as a topical treatment of human papilloma virus 

(HPV)-associated lesions.78 Interestingly, GS-9191 is a prodrug within a prodrug. 

Cleavage of the two isobutyl-(S)-phenylalanine units releases cPrPMEDAP (Figure 15) 

which has been recognized as a prodrug of aforementioned PMEG due to enzymatic 

deamination.79 The bisamidate approach has been successfully employed also in our 

research group.30,31,80,81 

 

 

Figure 15. General structure of bisamidate prodrugs and the metabolism of GS-9191.  
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ProTide prodrugs 

Replacing one of the amino acids in bisamidate prodrugs by an aryloxy moiety yields so-

called ProTide prodrugs which are currently considered to be the leading approach in the 

field of prodrugs of modified nucleotides. ProTide approach was originally invented by 

prof. McGuigan in the early 1990s82 and is currently applied in various clinical candidates 

and three approved drugs – sofosbuvir, remdesivir (approved for an emergency use in 

patients suffering SARS-CoV-2 infection), and the aforementioned tenofovir alafenamide 

fumarate (TAF) (Figure 16).1,4 To be absolutely accurate, it is necessary to note that TAF 

is produced in the form of hemifumarate (i.e. 1 mol of fumarate for 2 mol of tenofovir 

alafenamide). 

 

 

Figure 16. Structure of sofosbuvir, remdesivir and tenofovir alafenamide fumarate (TAF) 

with the ProTide moiety depicted in red. TA – tenofovir alafenamide 

 

TAF is the successor of the first tenofovir prodrug (bis(POC)) – tenofovir disoproxil 

fumarate (TDF) (Figure 10). The treatment with TDF required high doses in order to 

exhibit desired activity. This was caused by the low plasma stability, therefore, low 

amount of drug reaching the target cells (Figure 17).83 Nevertheless, the low 

bioavailability was not the major problem of TDF as the lability of TDF led to high levels 

of circulating tenofovir (TFV) in plasma, which is associated with nephrotoxicity and 

bone toxicity.84,85  

Renal elimination of TFV is mediated by organic anion transporters (OAT) 1 and 3 

securing the uptake while the efflux into urine is insufficiently mediated by multidrug 

resistance protein type 4 (MRP4).86 The imbalance between rapid uptake of TFV from 

plasma and slow efflux into urine leads to TFV accumulation in proximal-tubule cells and 

thus to nephrotoxicity. The mechanism of bone toxicity (reduction of mineral density) is 

not fully clarified yet, however, no direct effect of TFV on osteoblasts was observed in 

vitro.87 

The drawbacks of TDF were substantially reduced with the ProTide of tenofovir – TAF 

requires 30-fold lower dose compared to TDF to achieve the same efficacy as TDF thus 

reducing the risk of toxicity by the factor of 30 as well.88 TAF proved to be more stable 

while reaching higher levels of pharmacologically relevant TFV diphosphate (TFVpp) 

due to highly efficient metabolization in target cells (Figure 17).89 Released metabolites 
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have ionic nature and are therefore trapped inside the cell which results in rapid 

accumulation in target cells. The crucial levels of TFV in plasma during treatment with 

TAF decreased to 10% compared to patients treated with TDF.90 In 2016, TAF (Vemlidy) 

has been approved for the treatment of HIV/AIDS as safer and more potent alternative to 

TDF. 

 

 

Figure 17. Transport of tenofovir (TFV), tenofovir disoproxil fumarate (TDF), and 

tenofovir alafenamide (TAF) through membranes to the target cell and conversion of 

prodrugs to biologically active TFV diphosphate (TFVpp). 

 

The proposed mechanism of ProTide metabolism leading to the release of parent 

molecule starts with the cleavage of the amino acid ester (Figure 18). Cathepsin A, a 

ubiquitous carboxypeptidase highly expressed in lymphoid cells, has been recognized as 

the major esterase involved in this step.91 Generated carboxylate undergoes 

intramolecular cyclisation, thus, displacing the aryl moiety and forming a cyclic 

intermediate which opens upon hydrolysis and a phosphoramidase-type enzyme releases 

the parent compound. While this is generally accepted mechanism, there had been no 

experimental evidence of the cyclic intermediates in the ProTide metabolism until 

recently Procházková et al.92 were able to confirm such species using NMR spectroscopy 

and mass spectrometry coupled with infrared spectroscopy, therefore supporting the 

rightness of the postulated mechanism. 

During the ProTide metabolism, an alcohol, an amino acid, and phenol are released. The 

influence of the amino acid ester was studied by McGuigan et al.93 This work indicated 

that more lipophilic ester may increase the activity via higher cellular uptake, however, it 

also demonstrated that not only lipophilicity determines the resulting activity. The 

substrate activity of the compounds towards esterases also plays an important role. In 

particular, t-butyl ester was hydrolyzed significantly slower compared to methyl, ethyl, 

or isopropyl derivatives. As another example, phenyl ester was cleaved faster compared 

to more lipophilic ethyl- and propylphenyl analogues.93  
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Figure 18. The mechanism of ProTide metabolism. 

 

The role of the amino acid was also studied. It has been shown that cathepsin A is not 

able to hydrolyze bulkier amino acids.91 Studies suggest alanine as the most eligible 

option.91,94 

Regarding the aryl ring, the substitution was studied by Siddiqui et al.95 While mainly 

electron-withdrawing groups did increase the activity, the toxicity was higher compared 

to the original ProTide with phenol.95 This is possibly the reason why mostly phenol is 

utilized in the clinical candidates and approved drugs. However, the release of phenol 

during the metabolism of ProTides has been recognized as problematic due to its apparent 

toxicity.96,97  

The replacement of phenol for less toxic moiety might result in even safer prodrug moiety. 

Part of this thesis focuses on the development of modified ProTides with tyrosine 

derivatives instead of phenol. Strikingly, only two tyrosine derivatives of ProTides are 

known in the literature as a part of an effort to increase aqueous solubility by Siddiqui et 

al.96 Substitution of phenol for tyrosine methyl ester indeed increased aqueous solubility 

100-fold, however, decreased the lipophilicity, and therefore, the potency was reduced 

dramatically.96 Nevertheless, the same compound with t-butyl carbamate (BOC) on the 

N-terminus showed the lowest toxicity in the study and partially recovered the activity, 

which was approx. 10-fold lower compared to the original compound bearing phenol. No 

subsequent study of the phenol replacement with tyrosine derivatives has been done.  
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Aims of the study 

 

The first general aim of this thesis was to explore previously neglected field of C1′-

branched acyclic nucleoside phosphonates (ANPs) regarding both synthetic and 

biological aspects. Biological evaluation of ANPs is very often dependent on a prodrug 

application, therefore, the second general aim of this study was to develop novel prodrug 

moiety (preferably with enhanced properties) using tenofovir as suitable and available 

model compound representing ANPs. 

 

The specific aims of this thesis were: 

 

1 to develop suitable synthetic approaches towards C1′-branched ANPs 

 

2 to evaluate biological activity of prepared C1′-branched ANPs 

 

3 to design and synthesize novel prodrugs with tenofovir as model active compound 

 

4 to develop suitable method for separation of epimers formed during the synthesis 

of prodrugs 

 

5 to evaluate the efficacy of developed prodrugs against HIV and HBV, and to 

compare them to clinically used analog tenofovir alafenamide fumarate (TAF) 

 

6 to evaluate both chemical and enzymatic stability of promising prodrugs 
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Results and discussion 

 

As a multidisciplinary field, medicinal chemistry requires collaboration of experts from 

various areas. I would like to acknowledge the work of my colleagues from biochemical 

areas and their contribution to this study. 

 

Team of Prof. Johan Neyts (The Neyts-lab of Virology, Antiviral Drug & Vaccine 

Research, Rega Institute, KU Leuven, Belgium) performed antiviral evaluation of C1′-

branched ANPs. 

 

Gilead Sciences, Inc. (Foster City, CA, USA) evaluated antiviral properties of C1′-

branched ANPs. 

 

Team of Dr. Alena Zíková (Molecular Parasitology, Institute of Parasitology, Biology 

Centre, Czech Academy of Sciences, České Budějovice, Czech Republic) performed 

biological evaluation of C1′-branched ANPs against TbrAPRT. 

 

Team of Dr. Jan Weber (Virology, Institute of Organic Chemistry and Biochemistry, 

Czech Academy of Sciences, Prague, Czech Republic), namely Michala Zgarbová and 

Jan Hodek carried out the assays evaluating the cytotoxicity and potency against HIV and 

HBV. 

 

Team of Dr. Helena Mertlíková-Kaiserová (Biochemical Pharmacology, Institute of 

Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech 

Republic) carried out the assays evaluating cytotoxicity, enzymatic stability, and 

metabolic studies. 
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C1′-Branched ANPs 

The idea of synthesis and subsequent biological evaluation of C1′-branched ANPs bearing 

9-phosphonomethoxyethyl (PME) moiety was inspired by ANP tenofovir21 and by C1′-

modified cyclic nucleotide GS-573452,98,99 (currently known as remdesivir) (Figure 19) 

whose biological properties were described in the Introduction. C1′-Branched ANPs lack 

the labile phosphate group and are therefore chemically and enzymatically more stable 

compared to canonical nucleotides. Moreover, given the structural proximity of C1′-

branched ANPs to tenofovir and remdesivir, these compounds hold a potential to exert 

promising biological activities. 

 

 

Figure 19. Structure of remdesivir (A), an analogous C1′-branched ANP (B), the general 

structure of target intermediates for synthesis of C1′-branched ANPs (C), and the 

structure of tenofovir (D). 

 

Synthesis 

6-Chloropurine derivatives (structure C, Figure 19) were selected as target compounds 

for the synthesis since these intermediates can be further vastly diversified. Ammonolysis 

secures adenine derivatives, hydrolysis secures hypoxanthine or guanine derivatives. But 

the chlorine atom can be displaced by various other O-nucleophiles and N-nucleophiles. 

Moreover, these intermediates can undergo cross-coupling reactions. All these 

transformations hence potentially lead to endless number of derivatives. 

Since the field of C1′-branched ANPs was neglected, it was necessary to establish eligible 

synthetic approaches securing the target compounds C. Up to date, only a handful of 

C1′-branched purine ANPs and only adenine derivatives have been reported. Starting 

from chiral aminoalcohol, Jeffery et al.48 prepared (R)-C1′-methyl derivative of adefovir 

(structure I, Figure 20) in 5 steps with 30% overall yield. The same compound was 

synthesized later as a demonstration of synthetic utility of reported asymmetric 

hydrogenation of α-purine acrylates (5 steps, 32% overall).47 Wu et al.46 prepared 

laboriously C1′-ethyl derivatives of adefovir (compounds II, Figure 20) as acyloxyalkyl 

prodrugs in 8–16 steps with overall yield of 0.07–1.07%. Finally, Kundarapu et al.100 

prepared C1′-ethynyl derivative via nucleophilic addition to an aldehyde and subsequent 

Mitsunobu reaction (structure III, Figure 20) in 8 steps (yield not reported).  
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Figure 20. Structures of previously reported C1′-branched ANPs I, II, and III. 

 

Tandem reaction 

In the very beginning, I focused on the possibility of a tandem reaction which would 

elegantly secured valuable branched halides for the nucleophilic displacement by 6-

chloropurine (Scheme 1). Specifically, (hydroxymethyl)phosphonate would serve as a 

nucleophile in an oxa-Michael addition thus generating a stabilized carbanion which 

would attack a halogen molecule. 

 

 

Scheme 1. General scheme of the studied tandem reaction. 

 

This approach was studied on the reaction of diisopropyl (hydroxymethyl)phosphonate 

with acrylonitrile. First, the conditions for the oxa-Michael addition were optimized 

(conversions estimated based on GC-MS). The reaction did not proceed without catalysis 

(Table 1, Entry 1). Activation of the electrophile using both Brønsted acid (Tf2NH)101 or 

Lewis acid (BF3 · Et2O)102 resulted again in 0% conversion. An activation of the 

electrophile using Bu3P
103 improved the conversion to 20%. Since 

(hydroxymethyl)phosphonate is truly a poor nucleophile, the strategy of activating the 

donor was more promising. Indeed, an addition of suitable base (Cs2CO3 or KOH) 

afforded up to 100% conversions in less than 1 hour.104 1,4-Dioxane proved to be a 

suitable solvent as analogous reactions in t-BuOH led to lower conversions. Hence, Entry 

6 was selected as the most efficient and convenient method. 
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Table 1. Optimization of the oxa-Michael addition of diisopropyl 

(hydroxymethyl)phosphonate to acrylonitrile. 

 

Entry Reagent Amount Solvent 
Conversion 

after 1h 

Conversion 

after 18h 

1 none N/A 1,4-dioxane 0% 0% 

2 Tf2NH 20 mol% 1,4-dioxane 0% 0% 

3 BF3 · Et2O 20 mol% 1,4-dioxane 0% 0% 

4 Bu3P 20 mol% 1,4-dioxane 9% 20% 

5 K2CO3 20 mol% 1,4-dioxane 55% 55% 

6 Cs2CO3 20 mol% 1,4-dioxane 100% 100% 

7 KOH 20 mol% 1,4-dioxane 100% 100% 

8 Cs2CO3 1 eq. 1,4-dioxane 100% 100% 

9 KOH 1 eq. 1,4-dioxane 100% 100% 

10 Cs2CO3 1 eq. t-BuOH 100% 67% 

11 KOH 1 eq. t-BuOH 33% 0% 

 

With the optimized reactions, I proceeded to the tandem reaction. In order to verify 

whether this is a viable approach, I performed the tandem reaction with MeI as a strong 

electrophile (Scheme 2). Unfortunately, the desired adduct 2 was not observed. 

Quenching the reaction with D2O also did not result in deuteration of the product (3) 

(Scheme 2). Based on these results, the tandem reaction was dismissed. 

 

 

Scheme 2. The unsuccessful attempts for tandem reaction. 

 

 

 

 

 



33 

 

Purine-acrylate approach 

(R)-C1′-Methyl derivative of adefovir (structure I, Figure 20) was prepared via 

asymmetric hydrogenation of α-purine acrylates obtained via PPh3-catalyzed reaction of 

purines with esters of propiolate.47,105 I considered the α-purine acrylate as a suitable 

intermediate for synthesis of various C1′-branched ANPs. First, α-purine acrylate could 

react in an oxa-Michael reaction with (hydroxymethyl)phosphonate and the ester function 

could be subsequently further derivatized (Scheme 3, blue). Or second, α-purine acrylate 

would react with various nucleophiles and the ester function would be subsequently 

reduced to an alcohol which would be used for the connection of the phosphonate moiety 

(Scheme 3, red). 

 

 

Scheme 3. Possible utilization of α-purine acrylate in the synthesis of C1′-branched 

ANPs. 

 

Sun et al.47 reported a procedure where the reaction mixture was heated at 110 °C for 

24 h. When I attempted to reproduce this procedure, however, I observed a formation of 

substantial amount of undesirable bis-adduct 5 (Scheme 4, red). Further experiments 

confirmed that at elevated temperatures, the desired mono-adduct 4 is reactive enough to 

undergo second addition, thus forming the aforementioned bis-adduct 5 (Table 2). Even 

without heating, the bis-adduct 5 was formed in relatively high amount. The decrease of 

temperature (to 15 °C) and reaction time (to 10 min) finally afforded predominantly the 

desired product 4 (Table 2). 

 

 
Scheme 4. Synthesis of ethyl α-purine acrylate. 
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Table 2. Optimization of ethyl α-purine acrylate synthesis. 

Entry Temperature Reaction time 
Ratio [%] 

mono:bis 

1 110 °C 17 h 50:50 

2 110 °C 1 h 72:28 

3 110 °C 3 h 67:33 

4 25 °C 15 min 97:3 

5 25 °C 1 h 83:17 

6 25 °C 3 h 83:17 

7 15 °C 10 min 99:1 

 

However, eliminating the formation of bis-adduct 5 during the reaction was not the end 

of surprises as several other problems came into light during the purification. For instance, 

when the starting 6-chloropurine was present in the mixture during adsorption on silica 

gel, the acidity of silica gel catalyzed further reaction and the formation of bis-adduct 5 

was observed. This was easily prevented by extraction of 6-chloropurine with water. 

Adsorption of the crude mixture on silica gel in MeOH containing 1% of Et3N resulted in 

complete conversion of the product to a methoxy-adduct. This was also easily prevented 

and final work-up of the reaction consisted of extraction of 6-chloropurine with water, 

followed by adsorption of the crude mixture on silica gel in EtOAc. This way, no bis-

adduct 5 was observed before separation. However, after the silica gel chromatography 

(using cyclohexane/EtOAc as a mobile phase), the bis-adduct 5 was observed in 

substantial amount which resulted in dramatic decrease of desired mono-adduct 4 yield 

to 7%. These results illustrate high reactivity of α-purine acrylate. 

In contrast with previous observations, the subsequent oxa-Michael addition with 

(hydroxymethyl)phosphonate with compound 4 did not proceed nearly as well as with 

acrylonitrile. The previous optimization of oxa-Michael addition (Table 2) showed 

Cs2CO3 or KOH to be the most suitable bases giving full conversion. In this case, 

however, the highest observed conversion of compound 6 reached unsatisfactory 20% 

(Table 3). Stronger bases such as NaH or Na led to decomposition to 6-chloropurine and 

a high number of side products. It became apparent that α-purine acrylates are weaker 

electrophiles than acrylonitrile and combined with the very low nucleophilicity of 

(hydroxymethyl)phosphonate, this translates into the poor conversion. Based on these 

results combined with the low yield of compound 4, I decided to skip the exploration of 

the more laborious derivatizations (Scheme 3, red) and I turned my attention to different 

direction. 
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Table 3. Conditions for the oxa-Michael addition of diisopropyl 

(hydroxymethyl)phosphonate to ethyl α-purine acrylate. 

 

Entry Reagent Amount Solvent Conversion 

1 KOH 20 mol% 1,4-dioxane 0% 

2 Cs2CO3 20 mol% 1,4-dioxane 5% 

3 Cs2CO3
 1 eq. 1,4-dioxane 20% 

4 NaH 1 eq. DMF 0% 

5 Na 20 mol% THF 0% 

 

Condensation approach 

I further considered the possibility of building up the purine base. Jeffery et al. reported 

a procedure utilizing (R)-alaninol to obtain (R)-C1′-methyl derivative of adefovir 

(structure I, Figure 20).48 I modified the synthesis using the one-pot procedure published 

by Dejmek et al.,106 where the nucleophilic displacement of the chlorine atom and 

imidazole ring closure were carried out in 1 step (Scheme 5). The starting compound 7a 

was quantitatively prepared from 5-amino-4,6-dichloropyrimidine and subsequently 

employed in the condensation with suitable enantiomerically pure amino alcohol. The 

condensation reaction was carried out in a microwave reactor under relatively energetic 

conditions and secured compounds 8a-8d in moderate yields (typically around 60%) 

(Scheme 5, A, Table 4). 

 

 

Scheme 5. Synthesis of target 6-chloropurine (A) and protected 2-amino-6-chloropurine 

(B) derivatives via the condensation approach. Reagents and conditions: a) HCOOH, 

Ac2O, 25 °C, 16 h; b) DIPEA, 1,4-dioxane, 160 °C, 2 h, MW; c) TfOCH2P(O)(OiPr)2, 

n-BuLi, THF, −78 °C, 2 h; d) DMF DMA, 80 °C, 15 min. 
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Table 4. Compounds prepared via the condensation approach (Scheme 5). 

R1 Compound Yield Compound Yield 

Eta (R)-8a 56% (R)-10a 73% 

iPr (S)-8b 91% (S)-10b 91% 

iPr (R)-8b 63% (R)-10b 80% 

cPr (R)-8c 66% (R)-10c 69% 

BnOMe (S)-8d 53% (R)-10d 36% 
       aEt, ethyl; iPr, isopropyl; cPr, cyclopropyl; BnOMe, benzyloxymethyl. 

 

The connection of phosphonate moiety was studied on a model reaction with Boc-(S)-

phenylalaninol. This simple nucleophilic displacement proved to be quite challenging 

since the conversion of compound 12 reached a maximum of 5% under various conditions 

(Table 5). Fortunately, deprotonation using n-BuLi and utilization of diisopropyl 

triflyloxymethanephosphonate afforded the desired 6-chloropurine derivatives 10a-10d 

in satisfactory yield (typically around 75%) (Scheme 5, A, Table 4), hence substantially 

improving the phosphonate moiety introduction reported previously by Jeffery et al. 

(41%) and by Wu et al. (52% average).46,48 

 

Table 5. Optimization of the phosphonate moiety connection via nucleophilic 

displacement. 

 

Entry X Base Solvent Temperature Conversion 

1 OTs (1.2 eq.) NaH (1.5 eq.) DMF 25°C 5% 

2 Br (1.2 eq.) NaH (1.5 eq.) DMF 25°C 5% 

3 OTs (2 eq.) DIPEA (2.5 eq.) MeCN 75°C 0% 

4 Br (2 eq.) DIPEA (2.5 eq.) MeCN 75°C 0% 

5 OTs (10 eq.) Ag2O (5 eq.) DCM 40°C 0% 

6 Br (10 eq.) Ag2O (5 eq.) DCM 40°C 0% 

7 OTs (1.2 eq.) Cs2CO3 (1 eq.) 1,4-dioxane 75°C 0% 

8 Br (1.2 eq.) Cs2CO3 (1 eq.) 1,4-dioxane 75°C 0% 

9 OH (1 eq.) PPh3, DIAD (1 eq.) THF 70°C 0% 

10 OTf (1.2 eq.) NaH (1.5 eq.) DMF 25°C 0% 
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This synthetic sequence was also validated for 2-aminopurine derivatives. Starting from 

commercially available compound 7b, the condensation reaction with 2-amino-6-

chloropurine afforded compound 9 in a similar yield as compounds 8a-8d. The 2-amino 

group was protected using dimethylaminomethylene (DMAM) group prior to the 

nucleophilic displacement which secured compound 11.  

This approach is convenient for the synthesis of enantiomerically pure C1′-branched 

ANPs since starting 2-aminoalcohols are often available as single enantiomers or can be 

conveniently obtained from corresponding amino acids. For instance, (S)-2-amino-3-

(benzyloxy)propan-1-ol (O-benzyl-D-serinol) used in the synthesis of (S)-8d was 

obtained in a 88% yield via the reduction of (R)-2-amino-3-(benzyloxy)propionic acid 

(O-benzyl-D-serine) with in situ prepared BH3. 

 

Aldehyde approach 

Aldehyde of PME (16) was one of the main aims in the development of synthetic 

approaches since an addition of various nucleophiles affords secondary alcohols suitable 

for subsequent Mitsunobu reaction. The aldehyde was previously synthesized in 3 steps 

(yield not reported).100 Kundarapu et al. alkylated and subsequently hydrolyzed solketal. 

The obtained diol was oxidatively cleaved using NaIO4 (Scheme 6, A). The resulting 

alcohol was obtained in 48% yield after addition of TMS-protected acetylene. 

I was aiming to increase the efficiency and therefore performed a screening of possible 

synthetic routes. The simplest way was to connect diisopropyl 

(hydroxymethyl)phosphonate to chloroacetaldehyde which, however, gave no conversion 

under the studied reaction conditions (Scheme 6, Table 6, B).  

Other possibility I considered was to employ ethyl bromoacetate to prepare and 

subsequently reduce compound 13 to the desired aldehyde 16. The alkylation had to be 

slightly optimized to achieve satisfactory conversion 80% which resulted in 56% yield 

(Scheme 6, Table 6, C). The reduction using DIBAL-H successfully secured to desired 

aldehyde in 86% yield (48% overall).  

I also considered a utilization of suitable acetal which would upon acidic hydrolysis yield 

the desired aldehyde 16. My colleague Jan Frydrych prepared cyclic acetal 14 which I 

attempted to hydrolyze using various acids (Scheme 6, Table 6, D). But the cyclic acetal 

proved to be very stable. I therefore prepared acyclic acetal 15a starting from 

bromoacetaldehyde diethyl acetal. The alkylation was optimized (Scheme 6, Table 6, E1) 

to obtain almost quantitative conversion and 90% isolated yield. Obtained acyclic acetal 

15a proved to be considerably more labile compared to its cyclic counterpart as hydrolysis 

with H2SO4 afforded the desired aldehyde 16 in a quantitative conversion and 96% yield 

(Scheme 6, Table 6, E2).  
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Scheme 6. Screening of suitable synthetic routes towards PME aldehyde 16. 

 

Table 6. Conditions applied in the screening of suitable synthetic route towards PME 

aldehyde 16 (Scheme 6). 

 Entry 1 2 3 4 

B 
Base KOH Cs2CO3 Cs2CO3  

Solvent DMF 1,4-dioxane neat  

C 

Base NaH (3 eq.) NaH (1 eq.) NaH (1 eq.)  

Temperature 25 °C 70 °C 25 °C  

Conversion 0% 35% 80%  

D 

Acid DOWEX HCl H2SO4 In(OTf)3 

Solvent H2O/MeOH THF H2O/THF acetone 

Temperature 25 °C  50 °C 25 °C  50 °C 25 °C  50 °C 25 °C  50 °C 

E1 

Base NaH (5 eq.) NaH (3 eq.) NaH (1 eq.) Cs2CO3 

Solvent DMF DMF DMF 1,4-dioxane 

Conversion 16% 9% 95% 0% 

E2 

Acid DOWEX H2SO4   

Solvent H2O/MeOH H2O/THF   

Conversion 0% 100%   
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The synthetic route via hydrolysis of acyclic acetal employed cheap and readily accessible 

reagents and proved to be both most convenient and most efficient as it afforded aldehyde 

16 in an overall 86% yield. Moreover, this synthesis was suitable for multigram scale 

which was highly desirable and aldehyde 16 was prepared in over 60 g scale. The 

aforementioned protocol substantially enhances the previously reported procedure.100 

Aldehyde 16 was the key intermediate for synthesis of various derivatives. An addition 

of diverse nucleophiles (e.g. Grignard reagents, cyanide, trifluoromethyltrimethysilane) 

to the aldehyde group of 16 offered secondary alcohols 17 in excellent yields (80–96%, 

except for (RS)-17g) (Scheme 7, Table 7). This approach substantially enhances the 

procedure reported by Kundarapu et al.100 who prepared TMS-protected (RS)-17d in 4 

steps with 48% overall yield. This approach yields compound (RS)-17d in 3 steps with 

overall yield of 71%, and without the need for protection of the 2-aminopurine group. 

 

 

Scheme 7. Reagents and conditions: a) various nucleophiles; b) 6-chloropurine or 2-

amino-6-chloropurine, DIAD, PPh3, THF, 70 °C, 1 h. 

 

Table 7. Compounds prepared via aldehyde approach (Scheme 7). 

R1 Compound Yield 
Compound 

(R2= H) 
Yield 

Compound 

(R2= NH2) 
Yield 

Me (RS)-17a 80% (RS)-10e 53% (RS)-18a 74% 

Et (RS)-17b 80% (RS)-10a 61% (RS)-18b 65% 

Vinyl (RS)-17c 92% (RS)-10f 80% (RS)-18c 40% 

Ethynyl (RS)-17d 83% (RS)-10g 91% (RS)-18d 43% 

cPr (RS)-17e 91% (RS)-10c 30% (RS)-18e 25% 

CF3- (RS)-17f 96% n.ra -- n.r. -- 

NO2CH2- (RS)-17g 54% n.r. -- n.r. -- 

CN- (RS)-17h 89% n.r. -- n.r. -- 

BzOCH2-b (RS)-17ib -- (RS)-10h 68% -- -- 
a n.r., no reaction observed. b not prepared via aldehyde approach, prepared by my colleague Dr. Špaček 

Alcohols 17 (including (RS)-17i which was prepared by my colleague Dr. Špaček) reacted 

in Mitsunobu reaction with the corresponding purines to give products 10 and 18 in 25–

91% yields (Scheme 7, Table 7). However, the Mitsunobu reaction did not proceed with 

secondary alcohols bearing electron-withdrawing groups (e.g. CF3, CH2NO2 or CN). 

Since the alcohol did not undergo elimination under the reaction conditions, the reason 
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for the reaction failure was suggested to be the lack of electron density on the oxygen 

atom. This apparently reduced the ability of the oxygen atom to attack the phosphonium 

intermediate thus preventing it to become a good leaving group. Nevertheless, in other 

cases, this approach proved to be very efficient. 

 

Substitution approach 

Since compound (RS)-17f did not react in Mitsunobu reaction, the trifluoromethyl 

derivative ((RS)-10i) was obtained via nucleophilic displacement of secondary bromide 

with 6-chloropurine. As expected, this was an inefficient reaction affording compound 

(RS)-8e only in a 16% yield (Scheme 8). Nevertheless, after alkylation with 

triflyloxymethanephosphonate, the desired trifluoromethyl derivative (RS)-10i was 

obtained in a 12% yield (over 2 steps). 

 

 

Scheme 8. Reagents and conditions: a) K2CO3, DMF, 60 °C, 24 h, b) 

TfOCH2P(O)(OiPr)2, n-BuLi, THF, −78 °C, 2 h. 

 

Hemiaminal approach 

Using a reaction developed by Frydrych et al.107, the hemiaminal derivatives could be 

efficiently obtained using previously developed acyclic acetals. First, the phosphonate 

acetals 6 were prepared by the aforementioned alkylation of diisopropyl 

hydroxymethanephosphonate with bromoacetaldehyde dialkylacetal. Treatment of 15 

with the corresponding purines, Ac2O and TMSOTf afforded compounds 10 in high 

yields (over 80%), while 2-aminopurine analogue 19 in a 24% yield only (Scheme 9). 

The N-acetyl group of 19 can be cleaved under basic conditions or can be kept for the 

subsequent synthesis. 

 

 

Scheme 9. Reagents and conditions: a) NaH, OHCH2P(O)(OiPr)2 DMF, 25 °C, 19 h; b) 

6-chloropurine or 2-amino-6-chloropurine, TMSOTf, Ac2O, MeCN, 25 °C, 15 min. 
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Glycerol approach 

The last developed approach towards C1′-branched ANPs starts with an opening of 

optically pure (R)-glycidyl trityl ether with sodium benzyloxide to give protected glycerol 

(R)-20,108 which was then attached to the corresponding purine using Mitsunobu reaction 

(Scheme 10). The trityl group was removed under acidic conditions and the 

methylphosphonate moiety was introduced by the optimized alkylation to afford 

compounds (S)-10d and (S)-23 in high yields (Scheme 10). In case of 2-amino-6-

chloropurine, the protection of the 2-amino group with DMAM was necessary prior to 

the last step. After displacement of the chlorine atom, the benzyl group can be easily 

removed to yield the corresponding hydroxymethyl derivative (data not shown). 

Moreover, the first step (the epoxide opening) can be presumably performed with other 

nucleophiles leading to different substituents at the C1′ position. 

 

 

Scheme 10. Reagents and conditions: a) NaH, BnOH, DMF, 100 °C, 3 h; b) 6-

chloropurine or 2-amino-6-chloropurine, PPh3, DIAD, THF, 70 °C, 1 h; c) TFA, DCM, 

25 °C, 30 min; d) DMF DMA, 80 °C, 15 min; e) TfOCH2P(O)(OiPr)2, n-BuLi, THF, −78 

°C, 2 h. 

 

Comparison of synthetic approaches 

Obviously, when a pure enantiomer is required, the condensation approach (CA) and 

glycerol approach (GA) are preferable. Nevertheless, the aldehyde approach (AA) can be 

still employed to afford single enantiomers, but chiral separations have to be carried out 

at the end of the synthesis. This can be beneficial when both (S) and (R) enantiomers are 

needed in order to identify the more active one. It is noteworthy that enantiomers of ANPs 

in the form of diisopropyl esters can be easily separated with a chiral column using normal 

phase, however, separation of enantiomers of free phosphonic acids using reversed phase 

is very difficult and laborious. 
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CA (for (R)-10a and (R)-10c, Scheme 5) consists of 3 steps, while AA (for (RS)-10a and 

(RS)-10c, Scheme 7) of 4 steps. Nevertheless, aldehyde 16 (AA) could be efficiently 

prepared in a large scale and the reaction of secondary alcohols with purines did not 

require DMAM protection of the 2-aminopurine group. Both approaches gave similar 

overall yields of target 6-chloropurines with C1′-ethyl group (~ 40–45%), but in case of 

C1′-cyclopropyl analogues, CA gave 2-fold higher yield of target intermediate C (Figure 

19) (~ 46% vs 23%) compared to AA, due to the lower yield of the Mitsunobu reaction.  

The (R) and (S) enantiomers of the C1′-benzyloxymethyl analogues (10d) were 

synthesized via CA and GA, respectively. The number of synthetic steps towards target 

6-chloropurine intermediate is lower in CA compared to GA (3 steps vs 4 steps). 

However, when comparing the yields, GA exhibits considerably higher yield (~ 64%) 

compared to CA (~ 19%), thus representing more efficient route despite higher number 

of synthetic steps. 

The hemiaminal approach (similarly to AA) inherently leads to racemic mixtures but is 

essential for the synthesis of the C1′-alkoxy derivatives and is very efficient especially in 

the case of 6-chloropurine analogues (70–80%, 2 steps). 

The substitution approach can find use in some special cases, e.g. in the synthesis of the 

C1′-trifluoromethyl derivatives. Thus, compound (RS)-10i, which could not be prepared 

by AA, was obtained via nucleophilic substitution (Scheme 8). 

 

Further modifications 

Once the compounds of general structure C (Figure 19) are obtained via any of the 

aforementioned approaches, they can be easily modified by a replacement of the chlorine 

atom at position C6. Finally, deprotection of phosphonate esters using TMSBr is usually 

the last step of the synthesis.109 Standard solvent used for this reaction is MeCN, 

nevertheless, acid-labile derivatives were deprotected in pyridine in order to avoid acidic 

environment. After purification, all final products passed through DOWEX 50 (Na+ 

cycle) to obtain ANPs as unified sodium salts. 

Hence, acidic hydrolysis of the intermediates C (Figure 19) was employed to prepare 

ANPs bearing hypoxanthine (compounds 24, Scheme 11, Table 8) and guanine 

(compounds 25, Scheme 11, Table 8), however, basic hydrolysis had to be used in the 

case of C1′-alkoxy analogues containing the acid-labile hemiaminal moiety. Adenine-

based ANPs (compounds 26, Table 8), were obtained by microwave-assisted 

ammonolysis. Other nucleophiles, cyclopropylamine (cPrNH2) and potassium methoxide 

(MeOK), were used to replace the 6-chloro substituent in order to obtain compounds 

(R)-27, (R)-28 and (R)-29, (R)-30, respectively (Scheme 11). Intermediates C were also 

used for the introduction of the phenyl moiety using Suzuki coupling in order to prepare 

compounds (R)-31 and (R)-32 (Scheme 11). Evidently, intermediates C can be used for 

the synthesis of a library of C1′-branched ANPs bearing either natural or modified 

nucleobases.  
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Scheme 11. Reagents and conditions: a) TFA/H2O, 25 °C, 24 h; b) DABCO, K2CO3, 

1,4-dioxane/H2O, 90 °C, 2 h; c) TMSBr, DOWEX 50 (Na+ cycle), MeCN or pyridine, 25 

°C, 24 h; d) EtOH NH3/aq. NH3 (1:1), 120 °C, MW, 30 min; e) cPrNH2, MeCN, 80 °C, 

16 h; f) MeO-K+, MeOH, 25 °C, 2-16 h; g) PhB(OH)2, Cs2CO3, Pd(PPh3)4, 1,4-

dioxane/H2O, 110 °C, 1 h. 

 

Table 8. Yields of ANPs bearing hypoxanthine (24), guanine (25), and adenine (26) 

(Scheme 11). 

Compound R1 R2 Yield 

(2 steps) 
Compound R1 Yield 

(2 steps) 

(RS)-24a Me H 62% (RS)-26a Me 61% 

(RS)-24b Et H 38% (RS)-26b Et 25% 

(R)-24b Et H 69% (R)-26b Et 66% 

(S)-24c iPr H 36% (S)-26c iPr 44% 

(R)-24c iPr H 42% (R)-26c iPr 47% 

(RS)-24d Vinyl H 30% (RS)-26d Vinyl 29% 

(RS)-24e Ethynyl H 56% (RS)-26e Ethynyl 27%a 

(RS)-24f cPr H 87% (RS)-26f cPr 53% 

(R)-24f cPr H 88% (R)-26f cPr 69% 

(RS)-24g CF3- H 41% (RS)-26g CF3- 42% 

(S)-24h BnOMe H 30% (S)-26h BnOMe 70% 

(R)-24h BnOMe H 28% (R)-26h BnOMe 56% 

(R)-24i HOCH2- H 33% (RS)-26i HOCH2- 37% 

(RS)-24j Methoxy H 33% (R)-26i HOCH2- 27%a 

(RS)-24k Ethoxy H 20% (RS)-26j Methoxy 50% 

(RS)-25a Me NH2 61% (S)-26j Methoxy 63% 

(RS)-25b Et NH2 57% (R)-26j Methoxy 63% 

(R)-25b Et NH2 29% (RS)-26k Ethoxy 23% 

(RS)-25c Vinyl NH2 26% (S)-26k Ethoxy 65% 

(RS)-25d Ethynyl NH2 27% (R)-26k Ethoxy 63% 

(RS)-25e cPr NH2 50%    

(RS)-25f MeO- NH2 11%    
a over three steps 
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Final ANPs were obtained in a wide range of yields (11–88% in 2 steps: modification at 

C6 position and ester groups removal). In general, ANPs lacking 2-aminopurine group 

were obtained in higher yields (20–88%, 2 steps) compared to their counterparts bearing 

the 2-aminopurine group (11–61%, 2 steps). This may, partially, be explained by the 

necessity to protect and deprotect the 2-aminopurine group in CA and GA. However, even 

AA, which did not require the protection/deprotection strategy, gave lower yields of the 

target 2-aminopurine analogues. 

 

 

Biological evaluation 

 

Antiviral activity 

Out of the prepared C1′-branched ANPs, 26–31 compounds bearing adenine, 

hypoxanthine, or guanine nucleobase were selected and tested against human 

immunodeficiency virus (HIV), hepatitis C virus (HCV), enterovirus 71 (EV71), 

chikungunya virus (CHIKV), murine norovirus (MNV), and yellow fever virus (YFV). 

 

Table 9. Antiviral activity of tested C1′-branched ANPs (except for 26a). 

Virus EC50 [μM] CC50 [μM] 

HIV >50 >50 

HCV >44 >44 

EV71 >100 >20 

CHIKV >100 >100 

MNV >300 >300 

YFV >100 >100 

 

The tested compounds showed no cytotoxicity but also no activity against studied viruses 

(Table 9). The only exception was compound 26a exhibiting weak activity against HIV 

(EC50 = 17 μM) and HCV (EC50 = 37–41 μM). Although compound 26a is an isomer of 

tenofovir (C1′-methyl instead of C2′-methyl) it exhibited more than 3-fold drop of 

potency against HIV.84 

These finding are unfortunately in an agreement with the available antiviral data reported 

for the handful of C1′-branched ANPs which showed poor activity against HIV, HCV, 

and RSV for compound II (Figure 20) and low anti-HCV activity for compounds III 

(Figure 20).46,100 

 



45 

 

Cytostatic activity 

PMEG (9-((2-phosphonylmethoxy)ethyl)guanine), which is structurally closely related to 

the  prepared guanine C1′-branched ANPs (Figure 21), exerts significant antiproliferative 

and cytostatic potency against solid tumor and leukemia cell lines.24 The guanine 

derivatives 25a-25e were therefore evaluated regarding their cytostatic potency against 

cancer cell lines (HepG2, HL60, HeLa S3, and CCRF-CEM) and compared to PMEG 

(Figure 21). 

  

 

Figure 21. Cytostatic activity of guanine C1′-branched ANPs 25a-25e and structure of 

PMEG/the most potent compound 25a. 

 

The most potent guanine C1′-branched ANP 25a was still considerably less active 

compared to PMEG. The observed cytostatic potency of prepared guanine C1′-branched 

ANPs was only moderate to weak (Figure 21). 

 

Antiprotozoal activity 

Prepared adenine C1′-branched ANPs 26 were tested as potential inhibitors of 

Trypanosoma brucei adenine phosphoribosyl transferase 1 (TbrAPRT1). The active 

recombinant TbrAPRT1 was obtained via overexpression in E. coli. 

It was found that most of compounds 26 are inhibitors of TbrAPRT1 with Ki values < 20 

M. The worst potency was exerted by derivatives bearing methyl (26a), ethynyl (26e) 

and trifluoromethyl (26g) at the position C1′ (Table 10).  
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Table 10. The inhibitory activity of prepared adenine C1′-branched ANPs 26 against 

TbrAPRT1. 

 
R= 

Compound 
TbrAPRT1 

Ki [M] 

 
(RS)-26a > 30 

 

(RS)-26b 11.8 ± 1.4 

(R)-26b 3.18 ± 0.40 

 

(S)-26c 17.5 ± 3.1 

(R)-26c 0.57 ± 0.07 

 
(RS)-26d 16.3 ± 0.9 

 
(RS)-26e 26.7 ± 1.8 

 

(RS)-26f 5.84 ± 0.62 

(R)-26f 2.95 ± 0.28 

 
(RS)-26g > 30 

 

(S)-26h > 30 

(R)-26h 0.39 ± 0.01 

 

(RS)-26i 19.7 ± 2.4 

(R)-26i 15.4 ± 1.9 

 

(RS)-26j 13.1 ± 0.5 

(S)-26j > 30 

(R)-26j 9.88 ± 1.08 

 

(RS)-26k 3.95 ± 0.59 

(S)-26k > 30 

(R)-26k 2.39 ± 0.43 
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Based on the data, it was clearly evident that the configuration on C1′ chiral center 

strongly influences the activity. The (R) enantiomers proved to be superior inhibitors 

compared to (S) enantiomers or racemates. This effect was most pronounced in the most 

potent compound 26h where the (R) enantiomer reached submicromolar activity (Ki = 

0.39 M) while the (S) enantiomer did not exert activity even at 30 M concentration 

(Table 10). The second submicromolar inhibitor was compound (R)-26c (Ki = 0.57 M) 

bearing C1′-isopropyl substituent. Other promising compounds with a single-digit 

micromolar activity were compounds bearing C1′-ethyl ((R)-26b) and C1′-cyclopropyl 

((R)-26f) (Table 10). 

To further verify the observed selectivity towards (R) enantiomers, I performed resolution 

of additional two racemates (diisopropyl phosphonate esters of 26j and 26k), on a chiral 

HPLC column and then transformed the pure enantiomers to the free phosphonic acids. 

Again, in all cases the (R) enantiomers were more potent inhibitors than (S) enantiomers 

(Table 10). 

The reason for the observed selectivity towards (R) enantiomers is currently being 

investigated using in silico docking studies and the crystallization of TbrAPRT with the 

presented inhibitors is also being pursued. However, the observed selectivity can be 

presumably accounted for steric factors rather than electronic as the C1′-isopropyl 

derivative (26c) cannot form significant hydrogen bonding. 
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Modified ProTide prodrugs 

The topic of ANPs is closely related to prodrugs. Both nucleoside phosphates and 

nucleoside phosphonates are deprotonated at physiological pH and their ionic character 

significantly reduces their ability to penetrate through biomembranes. In order to address 

this issue many prodrug moieties have been developed (as described in the Introduction). 

Prodrug moiety masks the ionic character of the parent molecule and substantially 

enhances its delivery to the target cell. Once inside the cell, the prodrug moiety is cleaved 

off thus releasing the parent active compound. Currently, the so-called ProTides are 

considered to be the leading approach in the field of prodrugs of modified nucleotides. 

I used tenofovir as a suitable and available model compound for the purposes of this study. 

In a cell-based assay, tenofovir exhibits single-digit μM potency against human 

immunodeficiency virus (HIV) while the first generation prodrug – tenofovir disoproxil 

fumarate (TDF) exhibits 100-fold higher potency, and the second generation prodrug 

(ProTide) – tenofovir alafenamide fumarate (TAF) exhibits 1000-fold higher potency 

(Figure 22).21,84 

 

 
Figure 22. The influence of the prodrug approach implementation on the potency of 

tenofovir against HIV-1 in vitro.84 

 

The ProTide of tenofovir (TAF) contains (S)-alanine isopropyl ester and phenol as the 

masking moieties. Both masking moieties are cleaved off during the metabolism and since 

phenol exhibits relatively high toxicity, I decided to replace phenol for (S)-tyrosine 

derivatives and I aimed for higher selectivity index (SI - toxicity/potency ratio) compared 

to TAF. 

 

First series 

In order to reduce the complexity and possible side reactions, I prepared the final 

compounds sequentially (Scheme 12b). However, it is certainly desirable to synthesize 

prodrugs in a one-pot manner and later in the study, I did optimize the one-pot reaction 

affording up to 86% yield. 

The first series of final compounds consisted of (S)-tyrosine methyl esters modified on 

the N-terminus (Scheme 12a). First, compounds 33a-33e were prepared from (S)-tyrosine 
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methyl esters using standard procedures. Compound 33a was obtained via double 

reductive amination with formaldehyde. Compound 33b was obtained via double 

nucleophilic displacement of 1,4-dibromobutane. Compound 33c and 33d were obtained 

under basic conditions using acetic and trifluoroacetic anhydride, respectively. 

Compound 33e was obtained via amide coupling with HATU. Compound 33f was 

available commercially. 

 

 
Scheme 12. Synthesis of prodrugs in the first series. Reagents and conditions: a) for 33a: 

CH2O, Na2SO4, AcOH, NaBH3CN, MeOH, 25 °C, 1 h; b) for 33b: 1,4-dibromobutane, 

NaHCO3, toluene, 115 °C, 3 h; c) for 33c: Ac2O, Na2CO3, acetone/H2O, 25 °C, 30 min; 

d) for 33d: (CF3CO)2O, pyridine, DCM, 25 °C, 5 min; e) for 33e: PhCOOH, HATU, 

DIPEA, DMF, 25 °C, 1 h; f) EDC, Et3N, H2O, 40 °C, 16 h; g) compound 1, Et3N, PPh3, 

2,2′-dipyridyl disulfide, pyridine, 65 °C, 16 h; h) to obtain 35a: 35g, H2, Pd/C, phosphate 

buffer (pH 7.4), 25 °C, 1 h. 

 

Compound 34 was prepared starting from tenofovir according to previously reported 

procedure with EDC.110 The key connection of the modified tyrosines (33a-33f) and 

compound 34 was performed using PPh3 and 2,2′-dipyridyl disulfide (Aldrithiol™-2) 

(Scheme 12b) to afford prodrugs 35a-35g. This key connection is discussed in detail 

below during the one-pot reaction optimization. 

 
Figure 23. Illustration of chiral separation of fast-eluting epimer (FEE) and the slow-

eluting epimer (SEE).  
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During the synthesis, a new chiral center was formed on the phosphorous atom. In order 

to resolve the mixture of two epimers, a chiral HPLC was employed thus separating the 

fast-eluting epimer (FEE) and the slow-eluting epimer (SEE) (Figure 23). The separation 

was optimized for resolution of up to 250 mg. The most eligible column proved to be 

YMC Chiral-Art Amylose SA with n-heptane/EtOH/MeCN as a mobile phase. 

 

Table 11. The first series of final prodrugs, their activity against HIV-1 and cytotoxicity. 

compound R yield [%] 
EC50 [µM] CC50 [µM] 

FEE SEE FEE SEE 

TAF -- -- 0.0064a 35a 

35a NH2 23b 0.65 0.35 >50 >50 

35b 
 

21 2.5 0.048 >50 38 

35c 
 

54 0.011 0.016 24 27 

35d 
 

30 2.2 0.72 >50 >50 

35e 
 

5 0.54 0.15 >50 >50 

35f 
 

59 0.072 0.084 >50 >50 

35g 
 

49 0.030 0.016 8.5 16 

          a Data for Sp-epimer; b over 2 steps 

 

The activities against HIV-1 indicated the SEE to be usually the more potent isomer 

(Table 11). This suggests that SEE might have Sp configuration since Chapman et al. 

reported the Sp isomer of TAF to be approx. 10-fold more potent compared to Rp 

isomer.113 The circular dichroism (CD) spectra also suggest the SEE to have Sp 

configuration as the spectra align in some regions with the spectra of TAF while FEE 

spectra do no align in any region. However, there is no definitive proof of the absolute 

configuration yet. Crystallization of these scaffolds (either as a free base or as 

hydrochloride/fumarate salts) proved to be very challenging. Various techniques 

(including slow evaporation, solvent diffusion, vapor diffusion, and slow cooling) have 

been employed to date resulting in nearly 200 failed experiments. Most often, the 

compounds either precipitated or oiled-out from the solution after reaching the critical 

concentration. Small non-crystalline grains or very small needle-like microcrystals 

unsuitable for X-ray diffraction were obtained in the best case. 
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Second series 

The biological data from the first series identified prodrugs 35c and 35g as the most 

promising (Table 11). Due to concerns regarding the potential metabolic instability of 

pyrrolidine114 and generally good stability of carbamates115,116, compound 35g was 

selected as a template for the second series which explored modifications on the C-

terminus. Hence, the second series compounds were bearing carboxybenzyl moiety on 

the N-terminus of tyrosine while the C-terminus was modified. One tyrosine ester (36a) 

was prepared using SOCl2, nine tyrosine esters (36b-36j) were prepared using Mitsunobu 

reaction117 and two tyrosine esters were available commercially. All 

N-((benzyloxy)carbonyl)-(S)-tyrosine esters reacted with compound 34 to afford 12 final 

prodrugs (35h-35s) (Scheme 13, Table 12). 

 

 
Scheme 13. Synthesis of final compounds in the second series. Reagents and conditions: 

a) for R=iPr, SOCl2, iPrOH, 25 °C, 72 h, 79%; b) ROH, PPh3, DIAD, THF, 0–25 °C, 

30 min, 71% – 96%; c) compound 34, Et3N or DIPEA, PPh3, 2,2′-dipyridyl disulfide, 

pyridine, 65 °C, 16 h. 

 

The second series again confirmed the more efficient metabolization and consequently 

higher activities of SEEs (Table 12). Nevertheless, no correlation between potency and 

lipophilicity was observed. For instance, the 4-carbon long t-butyl ester (35j), 6-carbon 

long cyclohexyl ester (35n) and 8-carbon long n-octyl ester (35p) exhibited one order of 

magnitude lower potency compared to TAF. In contrary, 2-carbon long ethyl ester (35h), 

3-carbon long isopropyl ester (35i) 5-carbon long isoamyl (35k) and cyclopentyl (35l) 

esters, and 6-carbon long n-hexyl ester (35m) exhibited higher potency compared to TAF 

reaching up to two orders of magnitude higher potency.  

The biological data further revealed three prodrugs exerting considerably higher SI 

compared to TAF, one of which (35l-SEE) exhibited 26-fold higher SI (Figure 24). 

Prodrug 35l-SEE therefore became the lead and was further thoroughly evaluated. 
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Table 12. The second series of final prodrugs, their activity against HIV-1 and 

cytotoxicity. 

compound R 
yield 

[%] 

EC50 [µM] CC50 [µM] 

FEE SEE FEE SEE 

TAF -- -- 0.0064a 35a 

35h  32 0.02 0.0033 13 11 

35i 
 

24 0.027 0.0006 13 10 

35j 
 

23 0.013b 6.6b 

35k 
 

19 0.011 0.00056 24 8.0 

35l 
 

37 0.016 0.00007 17 10 

35m  37 0.0018b 8.4b 

35n 
 

53 0.019 0.016 17 13 

35o 
 

56 0.021 0.0084 14 9.1 

35p  43 0.036 0.050 38 38 

35q  32 0.473b >50b 

35r 
 

40 0.009b 10b 

35s 
 

10 0.0034b 8.2b 

a Data for Sp-epimer; b Data for the mixture of epimers 

 

 

 
Figure 24. Selectivity indexes (SIs) of the three most efficient prodrugs from the second 

series compared to tenofovir and its prodrugs (TDF and TAF). 
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Evaluation of 35l-SEE 

To assess the importance of the chiral center present in tyrosine moiety, the opposite 

enantiomer (R) was prepared (37, see Experimental part) and introduced to compound 34 

(Scheme 12), thus forming prodrug 35t (Figure 25). The synthesis of prodrug 35t was 

identical to synthesis of prodrug 35l. The biological data suggest that the chiral center in 

tyrosine is indeed important for the efficacy of the prodrug since 35t-SEE exerted one 

order of magnitude lower potency. Interestingly, the potency of 35t-SEE proved to be 

twice lower compared to 35t-FEE which is in contrast with previous results of compounds 

bearing (S) configuration in tyrosine (Figure 25). 

 

 
Figure 25. The effect of the chiral center in tyrosine on the activity and cytotoxicity. 

 

Table 13. Optimized one-pot reaction securing the novel prodrugs. 

 

Entry A B C D E F Yield 

1 1 eq. 1.5 eq. 1.8 eq. 10 eq. 
TEA 

8 eq. 8 eq. 58% 

2 1 eq. 1.5 eq. 2 eq. 10 eq. 
TEA 

8 eq. 8 eq. 56% 

3 1 eq. 1.2 eq. 1.8 eq. 10 eq. 
DIPEA 

7 eq. 7 eq. 77% 

4 1 eq. 1 eq. 1.8 eq. 10 eq. 
DIPEA 

7 eq. 7 eq. 78% 

5 1 eq. 1 eq. 1.8 eq. 10 eq. 
DIPEA 

4 eq. 4 eq. 86% 

6 1 eq. 1 eq. 1.8 eq. 10 eq. 
DIPEA 

2 eq. 2 eq. 1% 

 

Prodrug 35l was further used for an optimization of the one-pot reaction securing the 

prodrugs. The experience from previous reactions reduced the optimization effort to a 

minimum. One of the most important factors was the ratio between the N-nucleophile 

((S)-alanine isopropyl ester) and O-nucleophile ((S)-tyrosine derivatives). Once the 

amount of N-nucleophile reached higher than 1 eq., the undesirable bisamidate side 

product was formed. To avoid this side reaction, the level of N-nucleophile was reduced 
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to 1 eq. while the level of O-nucleophile was set to 1.8 eq. It was further found, that 4 eq. 

of both PPh3 and 2,2′-dipyridyl disulfide are optimal for efficient catalysis while 2 eq. are 

not sufficient and yield only traces of the product (Table 13).  

The best results were obtained when tenofovir was mixed with 1 eq. of (S)-alanine 

isopropyl ester hydrochloride, 1.8 eq. of (S)-tyrosine derivative, and 10 eq. of a base. This 

mixture was heated to 65 °C and stirred. Subsequently, 4 eq. of PPh3 and 4 eq. of 2,2′-

dipyridyl disulfide were mixed in a separate flask and then added to the reaction mixture 

as a solution. This procedure secured the prodrugs in one-pot in a very good yield (86%). 

The proposed mechanism of this key reaction is based on the knowledge of PPh3 reaction 

with 2,2′-dipyridyl disulfide111 and subsequent formation of phosphonate bis(pyridine-2-

yl)thioesters112 which firstly undergo reaction with the more nucleophilic (S)-alanine 

isopropyl ester followed by the reaction with the less nucleophilic (S)-tyrosine derivatives 

(Scheme 14).  

 

 
Scheme 14. The proposed mechanism of the key reaction yielding the prodrugs. 

 

Prior to the evaluation of chemical and metabolic stability, the water-solubility of prodrug 

35l-SEE was increased via formation of corresponding fumarate and hydrochloride salts 

which were obtained via heating of prodrug 35l-SEE in THF with fumaric and 

hydrochloric acid, respectively. The formation of corresponding salts was confirmed by 
1H NMR. Stronger ionic pair in 35l-SEE-HCl caused shift of purine hydrogens from 8.14 

ppm (for H2) and 8.09 ppm (for H8) to 8.47 ppm and 8.43 ppm, respectively (Figure 26). 

Weaker ionic pair in 35l-SEE-fum shifted purine hydrogens only insignificantly (0.004-

0.005 ppm downfield). Nevertheless, the signal of fumarate (6.63 ppm) in the molecule 

suggests successful formation of the salt. 

 

The water-solubility of studied compounds was determined by a method exploiting the 

compounds absorption at 254 nm using HPLC (for details, see Experimental part). The 

area under the curve (AUC) was correlated to the corresponding calibration curve in order 

to calculate the concentration of dissolved compound. 

Original 3l-SEE reached the maximum of 53.50 μM concentration in water while TAF 

reached >1000 μM. Hence, the salts were prepared to increase the solubility. The 

fumarate (35l-SEE-fum) and hydrochloride (35l-SEE-HCl) salts of 35l-SEE increased 

water-solubility 2-fold (103.71 μM) and 4-fold (209.79 μM), respectively (Figure 27). 
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Figure 26. 1H NMR spectra of 35l-SEE compared to 35l-SEE-HCl and 35l-SEE-fum 

(spectra of the salts contain signals of residual acetone (1.90 ppm) and cyclohexane (1.39 

ppm)). 

 

 

 
Figure 27. Water-solubility of prodrug 35l-SEE and its fumarate and hydrochloride salts. 

Bars are means ± SEM obtained by averaging results of three experiments for each 

prodrug. 
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The chemical stability was evaluated at five different pH values (1.5 – 10.0) covering all 

the possible physiological pH values. As expected, the stability was temperature-

dependent (for details regarding the chemical stability assay, see Experimental part). The 

most labile bonds in the molecule are the phosphorous-heteroatom bonds. Specifically, in 

an acidic environment, the P-N bond is cleaved thus disconnecting alanine from the 

molecule while in basic environment, the P-O bond is cleaved thus disconnecting tyrosine 

from the molecule (Figure 28).  

 

 
Figure 28. Identification of the most labile bonds in prodrugs. 

 

Overall, prodrug 35l-SEE proved to be slightly more stable compared to TAF. Both TAF 

and 35l-SEE exhibited very similar stability profiles showing lower stability in basic 

environment. The lowest stability was observed at pH 10.0 followed by pH 1.5. In 

contrary, both types of prodrugs showed the highest stability at pH 4.5 with no 

degradation even at 37 °C (Figure 29).  

 

 
Figure 29. The pH stability of prodrug 35l-SEE compared to TAF. 

 

 



57 

 

Plasma stability and microsomal stability were further determined to evaluate enzymatic 

stability of the novel prodrugs. FEE of prodrug 35l is apparently more prone to 

degradation in plasma (t1/2 = 277 min) compared to SEE of prodrug 35l (t1/2 = 578 min). 

Most importantly, 35l-SEE proved to be significantly more stable in plasma compared to 

TAF (t1/2 = 207 min) (Figure 30, left). This is crucial since degradation in plasma leads 

to high levels of tenofovir in systemic circulation which is associated with nephrotoxicity 

and bone toxicity.83–85 

 

Figure 30. The plasma stability (left) and microsomal stability (right) of prodrug 35l-SEE 

compared to TAF. 

 

An obstacle appeared in the form of microsomal stability as both epimers of prodrug 35l 

degraded almost instantly in human hepatic microsomes suggesting high first-pass effect. 

While investigating the arising metabolites, I identified metabolite I lacking the 

cyclopentyl ester as the major metabolite formed (Figure 30, right). 
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Third series 

To address the low microsomal stability, I designed and prepared the third series 

composed of three prodrugs where the ester function was replaced by a more stable 

isosteric moiety. Instead of the ester group, prodrug 35u was bearing an isosteric amide 

while prodrugs 35v and 35w were bearing an isosteric ketone (Figure 31). I also prepared 

two other derivatives having the isosteric amido (35x) or amino (35y) moiety instead of 

the carbamate group on the N-terminus (Figure 31). 

 

 
Figure 31. Structures of target prodrugs for the third series based on prodrug 35l. 

 

To obtain prodrug 35u, N-((benzyloxy)carbonyl)-(S)-tyrosine was coupled with 

cyclopentyl amine using HATU and the following reaction with compound 34, PPh3 and 

2,2′-dipyridyl disulfide yielded desired 35u (Scheme 16). The synthesis of compounds 

bearing ketone also started from N-((benzyloxy)carbonyl-(S)-tyrosine which was 

converted to a so-called Weinreb amide 39. Compound 39 reacted with freshly prepared 

cyclopentylmethylmagnesium bromide to afford 40, which reacted with compound 34 to 

obtain final prodrug 35v (Scheme 16). To afford compound 35w, 39 underwent catalytic 

hydrogenation followed by double asymmetric reductive amination thus yielding 

compound 41, which was treated with freshly prepared cyclopentylmethylmagnesium 

bromide thus obtaining compound 42. Compound 42 reacted with compound 34 to obtain 

43. Final deprotection of compound 43 using catalytic hydrogenation had to be carried 

out in phosphate buffer (pH 7.4) to prevent degradation of final prodrug 35w (Scheme 

16). 
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Scheme 16. Synthesis of prodrugs bearing isosteric amide or ketone instead of ester on 

the C-terminus of tyrosine. Reagents and conditions: a) cyclopentyl amine, HATU, 

DIPEA, DMF, 25 °C, 30 min; b) compound 34, Et3N or DIPEA, PPh3, 2,2′-dipyridyl 

disulfide, pyridine, 65 °C, 16 h; c) CH3ONHCH3 ∙ HCl, HATU, DIPEA, DMF, 25 °C, 

30 min; d) cyclopentylmethylmagnesium bromide, THF, 0 – 50 °C, 16 h; e) H2, Pd/C, 

MeOH, 25 °C, 1 h, then PhCHO, 3-phenylpropanal, Na2SO4, AcOH, NaBH4, MeOH, 

25 °C, 2 h; f) H2, Pd/C, phosphate buffer pH 7.4, 25 °C, 1 h. *SMR – starting material 

recovery 

 

Synthesis of prodrug 35x started with the cleavage of (benzyloxy)carbonyl from 

compound 36c thus yielding 44. Compound 44 was coupled with 3-phenylpropionic acid 

using HATU to obtain 45 which was attached to compound 34 to afford desired prodrug 

35x (Scheme 17). Compound 44 underwent double asymmetric reductive amination thus 

yielding compound 46, which was connected to compound 34 to afford compound 47. 

The desired prodrug 35y was obtained after catalytic hydrogenation of 47 in phosphate 

buffer (pH 7.4) (Scheme 17). 
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Scheme 17. Synthesis of prodrugs bearing isosteric amide or amine instead of carbamate 

on the N-terminus of tyrosine. Reagents and conditions: a) cyclopentanol, PPh3, DIAD, 

THF, 0 – 25 °C, 30 min; b) H2, Pd/C, MeOH, 25 °C, 1 h; c) 3-phenylpropionic acid, 

HATU, DIPEA, DMF, 25 °C, 30 min; d) PhCHO, 3-phenylpropanal, Na2SO4, AcOH, 

NaBH4, MeOH, 25 °C, 2 h; e) compound 34, Et3N, PPh3, 2,2′-dipyridyl disulfide, 

pyridine, 65 °C, 16 h; f) H2, Pd/C, phosphate buffer pH 7.4, 25 °C, 1 h. 

 

The third series revealed prodrugs with an exceptional potency (Table 14). Especially 

interesting were SEEs of prodrugs 35v, 35w, and 35x. Prodrug 35v-SEE exhibited the 

highest SI in the whole study reaching nearly 300-fold higher SI compared to TAF. 

Prodrug 35w-SEE showed considerably lower toxicity while exerting 150-fold higher SI 

compared to TAF and similarly high SI was observed in the case of prodrug 35x-SEE. 

Interestingly, the substitution of ester for amide led to significant drop of efficacy (35u). 

 

Table 14. Activity against HIV-1, cytotoxicity, and selectivity indexes of prodrugs from 

the third series. 

compound 
EC50 [µM] CC50 [µM] 

SI 

(for SEE) 
FEE SEE FEE SEE 

35u 0.01 0.013 17 28 2 154 

35v 0.00015 0.000006 7.6 9.2 1 533 333 

35w 0.0096 0.00006 7.3 48 800 000 

35x 0.00036 0.00001 11 8.8 880 000 

35y 0.00068 0.00028 7.6 6.0 21 429 
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Prodrug with the highest SIs (35v, 35w, and 35x) were selected for subsequent enzymatic 

stability evaluation. In agreement with previous data, the FEEs were more prone to 

degradation in plasma compared to SEEs. Most importantly, plasma stability of SEEs of 

the three selected prodrugs remained substantially higher compared to TAF (Figure 32, 

left). The microsomal stability confirmed to be very low in case the ester remained in the 

molecule (35x). After substitution of the ester for an isosteric ketone, the microsomal 

stability did increase, however, still remained considerably lower compared to TAF 

(Figure 32, right). The investigation of 35w revealed oxidized metabolites and compound 

34 as major metabolites. 

 

 
Figure 32. The plasma stability (left) and microsomal stability (right) of compounds 35v-

SEE, 35w-SEE, and 35x-SEE compared to TAF. 

 

The reason for the exceptionally high activities was further investigated. The contribution 

of tyrosine derivatives (released during the metabolism) to the anti-HIV effect was 

excluded as all of the tyrosine moieties from compounds 35l, 35v, 35w, 35x, and 35y 

showed no activity against HIV-1 (EC50 > 40 µM). Different rate of prodrug cleavage by 

cathepsin A was also found to be an unlikely reason for the marked potency differences 

between TAF and the novel prodrugs since prodrugs 35l, 35v, 35w, and 35x exhibited 

comparable substrate activity towards cathepsin A as TAF (Table 15). 

 

Table 15. Substrate activity of prodrugs 35l, 35v, 35w, 35x and TAF towards 

cathepsin A. 

Prodrug 
cathepsin A spec. activity (pmol ∙ min–1 ∙ μg–1) 

FEE SEE 

TAF 25,8 ± 1,7 (SP) 

35l 35,9 ± 2,6 33,6 ± 9,1 

35v 30,3 ± 3,8 39,7 ± 2,0 

35w 10,2 ± 2,4 16,3 ± 5,9 

35x 29,5 ± 0,1 26,0 ± 0,6 
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The metabolic studies in intact lymphoid cells (CCRF-CEM) suggested that the superior 

antiviral efficacy were achieved due to highly efficient cellular uptake and rapid 

metabolization to free tenofovir (TFV) inside the cells (Figure 33). In particular, the 

prodrugs lacking the ester moiety (35v and 35w) exhibited substantially higher levels of 

both intact prodrug and released tenofovir (TFV) inside the cells compared to TAF 

(Figure 33). While the SEEs of prodrugs bearing the ester group (35l and 35x) also 

showed considerably higher concentration of TFV than TAF, they were less effective than 

prodrugs 35v and 35w. This can be explained by their lower metabolic stability which is 

also reflected in lower levels of intact prodrugs in the cells (Figure 33). Along with high 

cellular uptake of both FEEs and SEEs, the metabolic study also exposed sharp 

differences in the cleavage of the two epimers. Clearly, the SEEs are metabolized to the 

parent TFV significantly faster than FEEs. This is in accordance with the higher observed 

activities of SEEs against HIV-1. 
 

  
Figure 33. Intracellular content (IC) (pmol/106 cells) of intact prodrugs (left) and released 

tenofovir (TFV) (right) in CCRF-CEM lymphoblast cells after 45 min incubation. Bars 

are means ± SEM obtained by averaging results of two experiments for each prodrug. 

 

The marked differences in metabolic fate of the two epimers were further studied with 

prodrug 35w (Figure 34, Table 16). In agreement with previous data, SEE released 6-

fold higher amount of TFV than FEE. Moreover, the key metabolite M2 which is present 

in the original ProTide metabolism118 was 11-fold more abundant in SEE than in FEE 

thus suggesting standard ProTide metabolic pathway for SEE. However, the 5-fold higher 

levels of metabolite M1 in FEE suggested an additional metabolic pathway for FEE since 

M1 is absent in ProTide metabolism. Moreover, FEE metabolism resulted in a 

considerably higher amount of observed metabolites (Figure 34, Table 16). This can be 

explained by the evidently slower cleavage of FEE to the free TFV, resulting in an 

intracellular accumulation of the intact prodrug which can be further transformed by 

various enzymes thus leading to high number of metabolites as opposed to SEE which is 

rapidly cleaved to the parent TFV thus leaving only a low amount of intact prodrug 

available for sideways metabolic transformations. 

0
.3

0

0
.2

2

2
4
8
.0

0

2
6
6
.2

2

0
.1

2

0
.1

9

1
0

2
.3

6

1
1

.3
7

0
.3

7

0

50

100

150

200

250

300

350

TAF 35l 35v 35w 35x

IC
 i

n
ta

ct
 p

ro
d

ru
g
 [

p
m

o
l/

1
0

6
ce

ll
s]

FEE SEE

2
1

.9
0

2
0

.2
5

7
8

.8
8

5
0

.1
2

2
7

.8
9

7
3

.7
0

1
4

8
.0

9

3
0
4
.5

0

6
4

.2
6

0

50

100

150

200

250

300

350

TAF 35l 35v 35w 35x

IC
 T

F
V

 [
p

m
o

l/
1

0
6

ce
ll

s]

FEE SEE



63 

 

 
Figure 34. Intracellular metabolization of compound 35w demonstrating the sharp 

differences in the metabolism of FEE and SEE.  

 

Table 16. The observed metabolites of FEE and SEE of prodrug 35w. 

Metabolite 
Most possible 

transformation 
Change Exact mass 

Most possible 

formula 

FEE/SEE 

abundance 

M1 tyrosine cleavage – C24H29NO 400.162 C15H25N6O5P 5-fold ↑ in FEE 

M2 (34) 
iPr ester cleavage  

cyclisation  hydrolysis 
– C27H35NO 358.116 C12H19N6O5P 11-fold ↑ in SEE 

M3 (TFV) alanine cleavage – C30H40N2O2 287.078 C9H14N5O4P 6-fold ↑ in SEE 

M4 reduction + H2 749.403 C39H56N7O6P 13.5-fold ↑ in FEE 

M5 reduction + H2 749.403 C39H56N7O6P 1.5-fold ↑ in FEE 

M6 desaturation, oxidation – H2 + O 761.367 C39H52N7O7P 7-fold ↑ in FEE 

M7 desaturation, oxidation – H2 + O 761.367 C39H52N7O7P only in FEE 

M8 desaturation, oxidation – H2 + O 761.367 C39H52N7O7P only in FEE 

M9 desaturation, oxidation – H2 + O 761.367 C39H52N7O7P only in FEE 

M10 oxidative deamination – NH + O 748.371 C39H53N6O7P only in FEE 

M11 oxidation + O 763.382 C39H54N7O7P only in FEE 

M12 oxidation + O 763.382 C39H54N7O7P only in FEE 
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The presented prodrugs were also very efficient in hepatocytes against HBV. Thirteen 

prodrugs exhibited higher efficacy than TAF (Table 17) and in most cases, the prodrugs 

did not exert any toxicity. The most promising prodrug in the hepatocyte assay proved to 

be 35k exerting more than 25-fold higher SI compared to TAF. 

 

Table 17. Activity against HBV and cytotoxicity of prodrugs exhibiting higher EC50 

compared to TAF. 

compound 
EC50 [µM] CC50 [µM] 

FEE SEE FEE SEE 

TAF 0.0053a >50a 

35d 0.0072 0.0032 >50 >50 

35e 0.0016 0.00027 >50 >50 

35g 0.0006b 15b 

35h 0.0036b >50b 

35i 0.0042b >50b 

35k 0.0002b >50b 

35l 0.0007b >50b 

35m 0.0014b >50b 

35v 0.0034 0.0028 >50 >50 

35x 0.0014 0.0044 >50 >50 

35y 0.004 0.019 >50 29 

43 0.0013b 46b 

47 0.0012b >50b 

                   a Data for Sp-epimer; b Data for the mixture of epimers 

 

 

These promising results proved the presented concept to be viable and they lay down a 

strong foundation for further development of next generation tyrosine prodrugs aiming 

for higher microsomal stability while retaining the extraordinary SIs.  
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Conclusions 

This study explored the previously overlooked field of C1′-branched acyclic nucleoside 

phosphonates (ANPs). Five diverse synthetic approaches were developed/optimized 

affording the key 6-chloropurine intermediates containing N9-phosphonomethoxyethyl 

(PME) moiety in 2–4 steps. As reviewed in the chapter Results and Discussion, each 

approach offers different options regarding stereospecifity, possibility for derivatization 

during the synthesis, or yield. It was further demonstrated that these intermediates can be 

further vastly diversified to various final compounds bearing free phosphonate. 

Hydrolysis secured hypoxanthine and guanine derivatives. Acidic hydrolysis was 

employed in most cases, however, derivatives bearing acid-labile hemiaminal moiety 

(C1′-alkoxy) had to be hydrolysed under basic conditions. Ammonolysis afforded adenine 

derivatives. Other O- and N-nucleophiles or coupling reactions can be used to prepare 

ANPs with unnatural nucleobases. Overall, 48 final C1′-branched ANPs in the form of 

sodium salts was synthesized. 

Selected adenine, hypoxanthine, and guanine C1′-branched ANPs were tested against 

various viruses. With agreement with the handful of cases reported, we observed no 

significant antiviral activity against human immunodeficiency virus (HIV), hepatitis C 

virus (HCV), enterovirus 71 (EV71), chikungunya virus (CHIKV), murine norovirus 

(MNV), and yellow fever virus (YFV). 

Selected guanine C1′-branched ANPs were tested for their cytostatic potency and 

compared to PMEG. All tested compounds were less potent compared to PMEG and 

exhibited only moderate or weak cytostatic potency in HepG2, HL60, HeLa S3, and 

CCRF-CEM cell lines. 

Adenine C1′-branched ANPs proved to be potent inhibitors of adenine phosphoribosyl 

transferases of Trypanosoma brucei (TbrAPRT). The enzymatic assays with active 

recombinant protein revealed compounds exerting up to submicromolar inhibitory 

constant (Ki). The data further exposed a very strong influence of the C1′ chiral center 

configuration on the potency. The (R) enantiomers were substantially more potent 

compared to (S) enantiomers or racemates. To validate the observed selectivity, additional 

racemates were resolved using chiral HPLC column. As in previous cases, the (R) 

enantiomers proved to be significantly more potent. The adenine (R)-C1′-branched ANPs 

are up to date the most potent known inhibitors of TbrAPRT. 

The second part of this study was focused on prodrugs which are closely related to ANPs. 

Based on ProTide prodrugs, modified prodrug moieties were developed bearing (S)-

tyrosine derivatives instead of phenol. The design was initially based on the goal to reduce 

the toxicity since the original ProTides release phenol during the metabolism. However, 

the major aim was to increase the selectivity index (SI - toxicity/potency ratio). Tenofovir 

was selected as suitable model compound and the efficiency of the novel prodrugs was 

therefore evaluated against HIV-1 and compared to the ProTide prodrug of tenofovir 

(tenofovir alafenamide fumarate – TAF). The synthesis was performed sequentially in 

order to reduce the complexity and possible side reactions. However, it is highly desirable 
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to synthesize prodrugs in a one-pot manner. Hence, the one-pot reaction affording the 

prodrugs was eventually optimized up to 86% yield which was considerably higher than 

the yield of sequential synthesis. 

During the synthesis, a new chiral center was formed on the phosphorous atom. The two 

foremd epimers were resolved using chiral HPLC column, thus obtaining the fast-eluting 

epimer (FEE) and the slow-eluting epimer (SEE). Numerous attempts to crystallize the 

obtained prodrugs either in the form of a free base or in the form of salts failed, therefore, 

the absolute configuration has not been assigned yet. 

The first series of prodrugs was modified on the N-terminus of tyrosine while the second 

series was modified on the C-terminus of tyrosine. The anti-HIV data showed the SEEs 

to be the more efficient epimers. In the second series, a promising prodrug 35l-SEE was 

discovered with a double-digit picomolar EC50 and 26-fold higher SI compared to TAF. 

Prodrug 35l-SEE thus became a lead and was thoroughly evaluated. It was observed that 

the chiral center in tyrosine plays an important role as the analogous prodrug to 35l 

bearing (R)-tyrosine (35t) exhibited one order of magnitude lower efficacy. The water-

solubility of 35l-SEE was increased 2-fold and 4-fold via formation of fumarate and 

hydrochloride salts, respectively. Compound 35l-SEE was further evaluated with respect 

to chemical and enzymatic stability. While exhibiting similar stability profiles as TAF, 

35l-SEE proved to be slightly more stable at the five observed pHs. The plasma stability 

of 35l-SEE was substantially higher compared to TAF. Nevertheless, a drawback was 

spotted during microsomal stability studies as compound 35l-SEE degraded almost 

immediately in human microsomes. The major metabolite lacking the cyclopentyl ester 

was identified. The ester function was replaced by an isosteric amide or ketone moiety to 

address this issue. While the substitution of the ester for an amide (35u) led to dramatic 

drop of efficacy, the substitution of the ester for a ketone (35v) resulted in a single-digit 

picomolar EC50 and nearly 300-fold increase of SI compared to TAF.  

Selected prodrugs from the last series again proved to be significantly more stable in 

plasma compared to TAF. The critical microsomal stability was increased, however, 

remained considerably lower compared to TAF. 

The reason for the outstanding antiviral potency of studied prodrugs was investigated. 

The tyrosine parts of the prodrugs, which are released during the metabolism exhibited 

no activity against HIV-1 and therefore could not be the reason for the high potency. 

Faster metabolization by cathepsin A was also excluded as a reason since the novel 

prodrugs proved to be comparable substrates for cathepsin A as TAF. The reason for the 

exceptional potency appears to be very high cellular uptake of these prodrugs and their 

rapid metabolization resulting in high levels of tenofovir in the target cells. The metabolic 

studies further revealed substantial differences in metabolism of FEE and SEE. 

The presented prodrugs were also studied against HBV in hepatocytes. Thirteen prodrugs 

demonstrated higher potency compared to TAF while showing no cytotoxicity. The most 

potent prodrug in the study against HBV proved to be 35k exhibiting over 25-fold higher 

SI compared to TAF. 
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Experimental part 

General information 

All solvents and reagents were purchased from commercial suppliers and were not further 

purified. Reactions were monitored using thin-layer chromatography (TLC) on silica gel 

60 F254 plates (Merck KGaA, Germany) and/or ultra-high performance liquid 

chromatography with mass spectrometer (UPLC-MS Acquity Waters, USA, H-Class 

Core System with Waters Acquity UPLC BEH C18 1.7 µm, 2.1 × 100 mm column, 

Waters Acquity UPLC PDA detector, and mass spectrometer Waters SQD2, linear 

gradient elution with 0–100 % MeCN in water with 0.1% HCOOH). The column and 

flash chromatography (ISCO Teledyne, USA) were performed on 60A silica gel (Acros 

Organics, Belgium). Solvents were evaporated using rotary evaporator at 40 – 70 °C/2 

mbar.  

Microwave (MW) heating was performed using microwave reactor Discover (CEM, 

USA) with the Explorer module. The reactor frequency was 2.45 GHz and radiation 

power up to 300 W. Reactions were stirred in the reactor. Temperature and pressure were 

monitored by an infrared temperature sensor (outside the reaction mixture) and CEM 

Explorer pressure sensor, respectively.  

NMR spectra were measured using Bruker Avance III HD 400 MHz equipped with 

Prodigy cryoprobe operating at 9.39 T. 1H, 13C, 19F, and 31P spectra were acquired at 400, 

100, 377, and 162 MHz, respectively. Two-dimensional spectra 1H1H COSY, 1H13C 

HSQC, 1H13C HMBC were acquired for assignment purposes. Chemical shifts (δ) are 

listed in ppm, coupling constants (J) in Hz. NMR multiplicities are abbreviated as follows 

– singlet (s), doublet (d), triplet (t), quartet (q), doublet of doublets (dd), doublet of 

doublets of doublets (ddd), doublet of doublets of doublets of doublets (dddd), doublet of 

triplets (dt), doublet of quartets (dq), doublet of pentets (dp), triplet of doublets (td), and 

multiplet (m). All spectra were referenced to residual signal of DMSO (2.50 ppm for 1H 

and 39.52 ppm for 13C), CDCl3 (7.26 ppm for 1H and 77.16 ppm for 13C), or 1,4-dioxane 

(3.75 ppm for 1H and 67.19 ppm for 13C, for samples measured in D2O).  

High-resolution mass spectra were obtained using LTQ Orbitrap XL (Thermo Fisher 

Scientific, USA) for ESI ionization.  

Optical purity was determined using Waters UPC2 UHPSFC/MS system with PDA 

detector (YMC Alcyon columns, 150 x 3 mm, 3 um, linear gradient elution 2–40% iPrOH 

in CO2). The optical rotation was determined using Autopol IV polarimeter (Rudolph 

Research Analytical, USA). The value of optical rotation for compounds (R)-24b, (R)-

25b, and (R)-27–(R)-32 had to be extrapolated to 66 – 70% ee, as it was retrospectively 

revealed that the starting compound from the commercial supplier, (R)-2-aminobutan-1-

ol, contained 15 – 17% of (S)-enantiomer and the free phosphonates did not separate on 

the chiral column in reversed phase. On the contrary, the precursors of these compounds 

(i.e. compounds (R)-8a, (R)-9, (R)-10a, and (R)-11) did separate well on the chiral column 
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in normal phase and were therefore separated to determine ee and to obtain accurate 

optical rotation data. The CD spectra were measured using Jasco 1500 spectropolarimeter. 

The CD spectra were measured in spectral range 190–300 nm in the quartz cell with 0.2 

mm path length, a scanning speed of 10 nm/min, a response time of 8 seconds, a scanning 

step 0.5 nm with the sample of the concentration 4.4*10-4M in MeOH. After baseline 

correction, the final spectra were expressed as differencial extinction (De) (l.cm-1.mol-1).  

Purity of target compounds was ≥ 95%. Purity was determined by the combination of 

UPLC−PDAMS, NMR, and HRMS. Yields were determined based on the amount of 

isolated compound. 

 

Standard procedures 

Standard procedure A 

Freshly prepared compound 7a or commercially available 7b (1.2 mmol) were mixed 

with suitable amino alcohol (1.0 mmol) and DIPEA (2.0 mmol or 3.0 mmol when starting 

from a hydrochloride) in the appropriate solvent. The mixture was heated in a MW reactor 

for 1 h and then separated using silica gel flash chromatography (linear gradient elution 

0–10% MeOH in CHCl3) to afford the desired product. 

Standard procedure B 

The starting purine (1.0 mmol) was dissolved in anhydrous THF and the solution was 

cooled to −78 °C. n-BuLi (1.1 mmol) was added dropwise, the mixture was stirred at −78 

°C for 10 min, and finally diisopropyl triflyloxymethanephosphonate (1.5 mmol) was 

added. The mixture was stirred at −78 °C and after the consumption of the starting purine, 

the reaction was quenched with sat. NH4Cl solution, concentrated, and extracted with 

EtOAc (3 × 50 mL). Organic fractions were combined, washed with brine (1 × 50 mL), 

dried over MgSO4, and concentrated. The residue was purified using silica gel flash 

chromatography (linear gradient elution 0–10% MeOH in CHCl3) to afford the desired 

product. 

Standard procedure C 

6-Chloropurine or 2-amino-6-chloropurine (1.0 mmol) was mixed with Ac2O (1.0 mmol) 

and compound 15a or 15b (1.0 mmol) in anhydrous MeCN (5 mL). TMSOTf (1.5 mmol) 

was added and the mixture was stirred at 25 °C for 15 min. The reaction was quenched 

with H2O and extracted with DCM (3 × 50 mL). Organic fractions were combined, 

washed with brine (1 × 50 mL), dried over MgSO4, and concentrated. The residue was 

purified using silica gel flash chromatography (linear gradient elution 0–10% MeOH in 

CHCl3) to afford the desired product. 
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Standard procedure D 

To a solution of compound 16 (1.0 mmol) in anhydrous THF (2 mL) was dropwise added 

at −78 °C Grignard reagent (2.0 mmol). The mixture was stirred at −78 °C for 30 min, 

allowed to warm up to 25 °C over the period of 20 min and then quenched with sat. NH4Cl 

solution. The mixture was concentrated, extracted with DCM (3 × 50 mL). Organic 

fractions were combined, washed with brine (1 × 50 mL), dried over MgSO4, and 

concentrated to yield the desired compound. 

Standard procedure E 

A mixture of 6-chloropurine or 2-amino-6-chloropurine (1.0 mmol), PPh3 (1.05 mmol), 

and corresponding alcohol 17 (1.05 mmol) in THF (7 mL) was cooled to 0 °C. DIAD 

(1.05 mmol) was added and the mixture was allowed to warm up to 25 °C and stirred for 

15 min. The mixture was concentrated and purified using silica gel flash chromatography 

(linear gradient elution 0–10% MeOH in CHCl3) to afford the desired product. 

Standard procedure F 

Starting compound was stirred in a TFA:H2O (3:1 ratio) mixture at 25 °C for 24 h, 

concentrated, and co-distilled twice with H2O. The residue was purified using silica gel 

flash chromatography (linear gradient elution 0–20% MeOH in CHCl3) to afford the 

desired product. 

Standard procedure G 

To a solution of starting phosphonate diester (0.5 mmol) in 5 mL of anhydrous MeCN (or 

pyridine in case of acid labile compounds) was added TMSBr (500 μL). The mixture was 

stirred at 25 °C until full conversion (16–60 h), concentrated, and co-distilled 2 × with 

toluene to ensure complete removal of residual TMSBr. The residue was added to a 

MeOH:H2O (1:1 ratio) mixture and stirred at 25 °C for 15 min. Solvents were evaporated 

and the residue was dissolved in 2M TEAB (5 mL). After evaporation, the residue was 

separated using C18-reversed phase flash chromatography (linear gradient elution 0–50% 

MeOH in water). Purified product was taken through DOWEX 50 (Na+ cycle) to secure 

unified sodium salt. 

Standard procedure H 

Starting compound (1.0 eq.), DABCO (0.8 eq.), and K2CO3 (1.0 eq.) were stirred in a 1,4-

dioxane:H2O (5:1 ratio) mixture at 90 °C for 2 h, concentrated, and co-distilled with EtOH 

(2 ×). The residue was purified using silica gel flash chromatography (linear gradient 

elution 0–20% MeOH in CHCl3) to afford the desired product. 

Standard procedure I 

A 1,4-dioxane:water (4:1) mixture was bubbled with argon for 2 min. Starting compound 

(1.0 eq.), corresponding boronic acid (1.5 eq.), Cs2CO3 (2.5 eq.) and Pd(Ph3P)4 (5 mol%) 
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were added and the reaction mixture was stirred at 110 °C for 30 min. Solvents were 

evaporated, the residue was co-distilled with EtOH (2 ×) and purified using silica gel flash 

chromatography (linear gradient elution 0–50% (EtOAc:MeOH 9:1) in hexane) to afford 

the desired product. 

Standard procedure J 

Starting compound and cyclopropyl amine (10 eq.) were stirred in anhydrous MeCN at 

70 °C for 24 h. The mixture was concentrated and the residue purified using silica gel 

flash chromatography (linear gradient elution 0–15% MeOH in CHCl3) to afford the 

desired product. 

Standard procedure K 

Starting compound 10 or 18 was dissolved in a mixture of ethanolic and aqueous 

ammonia (1:1 ratio), and stirred in a MW reactor at 120°C for 30 min. The mixture was 

concentrated and separated using silica gel chromatography (linear gradient elution 0–

20 % MeOH in CHCl3) to obtain the desired product. 

Standard procedure L 

A starting compound (1.00 mmol), an alcohol (1.05 mmol), and PPh3 (1.05 mmol) were 

mixed in THF (5 mL) under argon atmosphere. The mixture was cooled to 0 °C and DIAD 

(1.05 mmol) was added dropwise. The mixture was allowed to warm up to 25 °C and 

stirred for 30 min. The mixture was concentrated and separated silica using gel flash 

chromatography (linear gradient elution 0–50% EtOAc/MeOH (9:1 ratio) in hexane) to 

afford the desired compound. 

Standard procedure M 

An acid (1.00 mmol), an amine (1.20 mmol), and HATU (1.50 mmol) were dissolved in 

DMF (5 mL) under argon atmosphere. Et3N or DIPEA (5.00 mmol) was added, the 

mixture was stirred at 25 °C for 30 min, concentrated, diluted with EtOAc, and washed 

with saturated aqueous NaHCO3 (3 × 25 mL) and brine (25 mL). The organic fraction 

was dried over MgSO4, filtered, concentrated and purified using silica gel flash 

chromatography (linear gradient elution 0–50% EtOAc/MeOH (9:1 ratio) in hexane) to 

afford the desired compound. 

Standard procedure N 

Compound 34 (1.00 mmol) and an L-tyrosine derivative (1.50–2.00 mmol) were mixed 

in pyridine (5 mL) under argon atmosphere. Base (8.00–10.00 mmol) was added and the 

mixture was stirred at 65 °C for 10 min. A solution of PPh3 (6.00–8.00 mmol) and 

AldrithiolTM (6.00–8.00 mmol) in pyridine (5 mL) was added and the mixture was stirred 

at 65 °C for 16 h. After evaporating the volatiles, the residue was co-distilled with toluene 

twice and purified using silica gel flash chromatography (linear gradient elution 0–15% 

MeOH in CHCl3) to afford the desired compound. 
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Standard procedure O 

Tenofovir (1.00 mmol), L-alanine isopropyl ester hydrochloride (1.00 mmol), and an L-

tyrosine derivative (1.80 mmol) were mixed in pyridine (6 mL) under argon atmosphere. 

DIPEA (10.00 mmol) was added and the mixture was stirred at 65 °C for 10 min. A 

solution of PPh3 (4.00 mmol) and AldrithiolTM (4.00 mmol) in pyridine (6 mL) was added 

and the mixture was stirred at 65 °C for 16 h. After evaporating the volatiles, the residue 

was co-distilled with toluene twice and purified using silica gel flash chromatography 

(linear gradient elution 0–15% MeOH in CHCl3) to afford the desired compound. 

 

Spectral data and characterization of prepared compounds 

Diisopropyl ((2-cyanoethoxy)methyl)phosphonate (1) 

(Hydroxymethyl)phosphonate (25 mg, 0.13 mmol) and 

acrylonitrile (85 µL, 1.30 mmol) were added to a suspension 

Cs2CO3 (10 mg, 0.03 mmol) in 1,4-dioxane (2 mL). The 

mixture was stirred at 25 °C for 18h, concentrated, the residue 

re-suspended in EtOAc (10 mL) and washed with H2O (3 × 10 mL) to obtain compound 

1 (29 mg, 91%) as a colorless oil. 1H NMR (401 MHz, DMSO-d6) δ 4.68–4.55 (m, 2H), 

3.80 (d, J = 8.4 Hz, 2H), 3.70 (t, J = 6.0 Hz, 2H), 2.78 (t, J = 5.9 Hz, 2H), 1.26 (d, J = 1.5 

Hz, 6H), 1.25 (d, J = 1.5 Hz, 6H). 13C NMR (101 MHz, DMSO-d6) δ 119.02, 70.27 (d, J 

= 6.6 Hz), 67.11 (d, J = 11.7 Hz), 64.59 (d, J = 164.3 Hz), 23.85 (d, J = 3.7 Hz), 23.74 

(d, J = 5.1 Hz), 17.85. 31P NMR (162 MHz, DMSO-d6) δ 21.57. HRMS (ESI) m/z 

[M+Na]+ calcd for C10H20O4NNaP 272.10222, found 272.10226. 

 

Ethyl 2-(6-chloro-9H-purin-9-yl)acrylate (4) 

6-Chloropurine (2.63 g, 16.99 mmol), PPh3 (892 mg, 3.40 mmol), 

NaOAc (279 mg, 3.40 mmol) were mixed with toluene (35 mL) and 

cooled to 15 °C. AcOH (194 μL, 3.40 mmol) and ethyl propiolate 

(2.58 mL, 25.49 mmol) were added, the mixture was stirred at 15 °C 

for 10 min, and washed with H2O (3 × 50 mL). The organic fraction was 

dried over MgSO4, concentrated and the residue was purified using silica 

gel flash chromatography (linear gradient elution 0–100% EtOAc in 

hexane) to afford the desired compound 4 (297 mg, 7%) as an orangish solid. 1H NMR 

(401 MHz, DMSO-d6) δ 8.84 (s, 1H), 8.82 (s, 1H), 6.76 (d, J = 1.3 Hz, 1H), 6.52 (d, J = 

1.3 Hz, 1H), 4.27 (q, J = 7.1 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, 

DMSO-d6) δ 162.04, 152.78, 152.48, 149.98, 147.61, 131.11, 127.46, 62.68, 14.34. MS 

(ESI) m/z [M+H]+ calcd for C10H10O2N4Cl 253.05, found 253.07. 
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4,6-Dichloro-5-formamidopyrimidine (7a) 

Compound 7a was prepared from 4,6-dichloro-5-aminopyrimidine 

according to previously published procedure.119 1H NMR (401 MHz, 

DMSO-d6) δ 10.52 (s, 1H), 8.86 (s, 1H), 8.36 (s, 1H). 13C NMR (101 

MHz, DMSO-d6) δ 159.94, 159.24, 155.98, 128.07. HRMS (ESI) m/z 

[M−H]− calcd for C5H2ON3Cl2 189.95804, found 189.95797.  

 

(R)-2-(6-Chloro-9H-purin-9-yl)butan-1-ol ((R)-8a) 

Following standard procedure A, compound 7a (1.70 g, 8.85 mmol), 

(R)-2-aminobutan-1-ol (0.70 mL, 7.38 mmol), and DIPEA (2.57 mL, 

14.76 mmol) were stirred in 1,4-dioxane (15 mL) at 160 °C for 1 h to 

obtain (R)-8a (0.93 g, 56%) as a orangish solid. 1H NMR (401 MHz, 

DMSO-d6) δ 8.76 (s, 1H), 8.75 (s, 1H), 5.02 (t, J = 5.6 Hz, 1H), 4.55 

(dddd, J = 9.7, 7.6, 5.6, 4.3 Hz, 1H), 3.90 (ddd, J = 11.5, 7.7, 5.6 Hz, 

1H), 3.75 (ddd, J = 11.5, 5.6, 4.3 Hz, 1H), 2.09–1.87 (m, 2H), 0.75 (t, J = 7.4 Hz, 3H). 
13C NMR (101 MHz, DMSO-d6) δ 152.30, 151.22, 148.89, 146.92, 131.05, 62.04, 60.27, 

22.99, 10.37. HRMS (ESI) m/z [M+H]+ calcd for C9H12ON4Cl 227.06942, found 

227.06942. [α]25
D = +24.1 (c 0.299 g/100 mL, CHCl3/MeOH 1/1). 

 

(R)-2-(6-Chloro-9H-purin-9-yl)-3-methylbutan-1-ol ((R)-8b) 

Following standard procedure A, compound 7a (1.16 g, 6.04 mmol), 

(R)-valinol (0.52 g, 5.03 mmol), and DIPEA (1.75 mL, 10.06 mmol) 

were stirred in 1,4-dioxane (12 mL) at 160 °C for 1 h to obtain (R)-

8b (0.76 g, 63%) as a yellowish solid. 1H NMR (401 MHz, DMSO-

d6) and 13C NMR (101 MHz, DMSO-d6) spectra were identical to 

those of (S)-8b. HRMS (ESI) m/z [M+H]+ calcd for C10H14ON4Cl 

241.08507, found 241.08503. [α]25
D = +31.2 (c 0.173 g/100 mL, CHCl3/MeOH 1/1). 

 

(S)-2-(6-Chloro-9H-purin-9-yl)-3-methylbutan-1-ol ((S)-8b) 

Following standard procedure A, compound 7a (1.16 g, 6.04 mmol), 

(S)-valinol (0.52 g, 5.03 mmol), and DIPEA (1.75 mL, 10.06 mmol) 

were stirred in 1,4-dioxane (12 mL) at 160 °C for 1 h to obtain (S)-8b 

(1.10 g, 91%) as a yellowish solid. 1H NMR (401 MHz, DMSO-d6) 

δ 8.76 (s, 1H), 8.75 (s, 1H), 4.36 (ddd, J = 9.2, 8.1, 3.8 Hz, 1H), 4.02 

(dd, J = 11.6, 8.2 Hz, 1H), 3.83 (dd, J = 11.6, 3.8 Hz, 1H), 2.39 (d of 

septets, J = 9.1, 6.7 Hz, 1H), 1.02 (d, J = 6.7 Hz, 3H), 0.66 (d, J = 6.7 Hz, 3H). 13C NMR 

(101 MHz, DMSO-d6) δ 152.49, 151.26, 148.91, 147.10, 130.83, 64.26, 60.29, 28.74, 
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19.64, 19.22. HRMS (ESI) m/z [M+H]+ calcd for C10H14ON4Cl 241.08507, found 

241.08462. [α]25
D = −26.5 (c 0.268 g/100 mL, CHCl3/MeOH 1/1). 

 

(R)-2-(6-Chloro-9H-purin-9-yl)-2-cyclopropylethan-1-ol ((R)-8c) 

Following standard procedure A, compound 7a (1.59 g, 8.28 mmol), 

(R)-2-amino-2-cyclopropylethan-1-ol hydrochloride (0.95 mg, 

6.90 mmol), and DIPEA (3.61 mL, 20.70 mmol) were stirred in 1,4-

dioxane (15 mL) at 160 °C for 1 h to obtain (R)-8c (1.08 g, 66%) as a 

yellowish solid. 1H NMR (401 MHz, DMSO-d6) δ 8.80 (s, 1H), 8.76 

(s, 1H), 4.09–4.04 (m, 1H), 3.93–3.83 (m, 2H), 1.64–1.55 (m, 1H), 

0.69 (tdd, J = 8.6, 6.0, 4.4 Hz, 1H), 0.55–0.48 (m, 1H), 0.47–0.41 (m, 1H), 0.25 (ddt, J = 

9.3, 6.0, 4.5 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ 152.06, 151.20, 148.89, 146.94, 

131.06, 63.81, 61.96, 11.91, 4.70, 3.11. HRMS (ESI) m/z [M+H]+ calcd for C10H12ON4Cl 

239.06942, found 239.06944. [α]25
D = +36.2 (c 0.398 g/100 mL, CHCl3/MeOH 1/1). 

 

(R)-3-(Benzyloxy)-2-(6-chloro-9H-purin-9-yl)propan-1-ol ((R)-8d) 

Compound (S)-21a (0.50 g, 0.89 mmol) was stirred at 0 °C in 

DCM/TFA (5 mL, 4:1 ratio) for 30 min. The mixture was diluted 

with 50 mL of DCM and TFA was washed away with H2O (3 × 

50 mL). DCM was washed with brine and dried over MgSO4. The 

residue was purified using silica gel flash chromatography (linear 

gradient elution 0–10% MeOH in CHCl3) to afford (R)-8d (269 mg, 

95%) as a white solid. 1H NMR (401 MHz, DMSO-d6) and 13C NMR 

(101 MHz, DMSO-d6) spectra were identical to those of (S)-8d. HRMS (ESI) m/z 

[M+Na]+ calcd for C15H15O2N4ClNa 341.07757, found 341.07735. [α]25
D = +3.5 (c 

0.255 g/100 mL, CHCl3/MeOH 1/1). 

 

(S)-3-(Benzyloxy)-2-(6-chloro-9H-purin-9-yl)propan-1-ol ((S)-8d) 

(R)-2-Amino-3-benzyloxypropionic acid (1.50 g, 7.68 mmol) was 

mixed with NaBH4 (0.72 g, 19.20 mmol) in anhydrous THF (10 mL). 

The mixture was cooled to 0 °C and I2 (1.95 g, 7.68 mmol) was added. 

The mixture was stirred at 0 °C for 10 min and then at 55 °C for 19 h. 

The reaction was quenched with H2O, concentrated and extracted 

with EtOAc (3 × 50 mL). Organic fractions were combined, washed 

with brine (1 × 50 mL), dried over MgSO4, and concentrated to afford 

(R)-2-amino-3-(benzyloxy)propan-1-ol (1.22 g, 88%) as a colorless oil which was 

directly used in the following reaction. Following standard procedure A, compound 7a 
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(1.46 g, 7.62 mmol), (R)-2-amino-3-(benzyloxy)propan-1-ol (1.15 mg, 6.35 mmol), and 

DIPEA (2.21 mL, 12.70 mmol) were stirred in 1,4-dioxane (15 mL) at 160 °C for 1 h to 

obtain (S)-8d (1.08 g, 53%) as a yellowish solid. 1H NMR (401 MHz, DMSO-d6) δ 8.75 

(s, 1H), 8.74 (s, 1H), 7.28–7.21 (m, 3H), 7.15–7.09 (m, 2H), 5.13 (t, J = 5.5 Hz, 1H), 4.91 

(ddt, J = 8.1, 7.1, 4.7 Hz, 1H), 4.52–4.39 (m, 2H), 4.04 (dd, J = 10.4, 8.2 Hz, 1H), 3.96 

(ddd, J = 11.5, 7.1, 5.4 Hz, 1H), 3.91–3.82 (m, 2H). 13C NMR 101 MHz, DMSO-d6) δ 

152.23, 151.25, 148.90, 146.97, 137.79, 130.92, 128.16, 127.49, 127.35, 71.98, 67.57, 

59.62, 57.89. HRMS (ESI) m/z [M+H]+ calcd for C15H16O2N4Cl 319.09563, found 

319.09567. [α]25
D = +26.9 (c 0.104 g/100 mL, CHCl3/MeOH 1/1). 

 

2-(6-Chloro-9H-purin-9-yl)-3,3,3-trifluoropropan-1-ol ((RS)-8e) 

To a solution of 6-chloropurine (0.58 g, 3.75 mmol) in anhydrous 

DMF (10 mL) was added K2CO3 (0.78 g, 5.63 mmol). The mixture 

was stirred at 25 °C for 10 min and 2-bromo-3,3,3-trifluoropropan-1-

ol (0.39 mL, 3.75 mmol) was added. The mixture was stirred at 60 °C 

for 24 h, filtered through Celite, and concentrated. The residue was 

dissolved in EtOAc (50 mL), washed with H2O (3 × 50 mL), with brine (1 × 50 mL), 

dried over MgSO4, and concentrated. The residue was purified using silica gel flash 

chromatography (linear gradient elution 0–10% MeOH in CHCl3) to afford (RS)-8e 

(165 mg, 16%) as colorless oil. 1H NMR (401 MHz, DMSO-d6) δ 8.82 (s, 1H), 8.71 (s, 

1H), 6.84–6.76 (m, 1H), 4.64–4.54 (m, 2H), 4.52–4.42 (m, 1H). 13C NMR (101 MHz, 

DMSO-d6) δ 152.11, 151.69, 149.04, 148.07, 131.11, 124.67 (q, J = 283.2 Hz), 66.71 (q, 

J = 30.0 Hz), 43.64. 19F NMR (377 MHz, DMSO-d6) δ −76.97 (d, J = 7.1 Hz). HRMS 

(ESI) m/z [M−H]− calcd for C8H5ON4ClF3 265.01095, found 265.01097. 

 

(R)-2-(2-Amino-6-chloro-9H-purin-9-yl)butan-1-ol ((R)-9) 

Following standard procedure A, compound 7b (commercially 

available, 5.00 g, 24.15 mmol), (R)-2-aminobutan-1-ol 

(1.90 mg, 20.13 mmol), and DIPEA (7.01 mL, 40.26 mmol) 

were stirred in H2O:EtOH (1:1 ratio) (50 mL) at 120 °C for 1 h 

to obtain (R)-9 (2.91 g, 60%) as a yellowish solid. 1H NMR (401 

MHz, DMSO-d6) δ 8.16 (s, 1H), 6.84 (s, 2H), 5.01 (t, J = 5.4 Hz, 

1H), 4.34–4.22 (m, 1H), 3.81 (ddd, J = 11.2, 7.2, 5.2 Hz, 1H), 3.67 (dt, J = 11.2, 4.8 Hz, 

1H), 1.97–1.82 (m, 2H), 0.75 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 

159.54, 154.46, 149.21, 142.55, 123.57, 61.99, 58.95, 23.01, 10.43. HRMS (ESI) m/z 

[M+H]+ calcd for C9H13ON5Cl 242.08031, found 242.08034. [α]25
D = −5.6 (c 

0.266 g/100 mL, CHCl3/MeOH 1/1). 
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Diisopropyl (R)-((2-(6-chloro-9H-purin-9-yl)butoxy)methyl)phosphonate ((R)-10a) 

Following standard procedure B, compound (R)-8a (0.90 g, 

3.97 mmol) reacted with n-BuLi (2.5 M in hexanes, 

1.75 mL, 4.37 mmol) and diisopropyl 

triflyloxymethanephosphonate (1.95 g, 5.96 mmol) in 

anhydrous THF (10 mL) to afford (R)-10a (1.17 g, 73%) as 

a light orange viscose oil. 1H NMR (401 MHz, DMSO-d6) δ 

8.77 (s, 2H), 4.82–4.75 (m, 1H), 4.45–4.30 (m, 2H), 4.11 (dd, J = 10.4, 8.6 Hz, 1H), 3.89 

(dd, J = 10.4, 4.0 Hz, 1H), 3.77 (dd, J = 13.9, 8.3 Hz, 1H), 3.68 (dd, J = 13.9, 8.3 Hz, 

1H), 2.11–1.87 (m, 2H), 1.13–1.07 (m, 6H), 1.05–0.98 (m, 6H), 0.77 (t, J = 7.4 Hz, 3H). 

13C NMR (101 MHz, DMSO-d6) δ 152.14, 151.36, 149.05, 146.63, 130.97, 72.66 (d, J = 

11.4 Hz), 70.15–69.95 (m), 64.65 (d, J = 164.0 Hz), 57.13, 23.62 (d, J = 3.7 Hz), 23.50–

23.38 (m), 23.11, 10.20. 31P NMR (162 MHz, DMSO-d6) δ 21.22. HRMS (ESI) m/z 

[M+H]+ calcd for C16H27O4N4ClP 405.14530, found 405.14554. [α]25
D = +18.3 (c 

0.142 g/100 mL, CHCl3/MeOH 1/1). 

 

Diisopropyl ((2-(6-chloro-9H-purin-9-yl)butoxy)methyl)phosphonate ((RS)-10a) 

Following standard procedure E, compound (RS)-17b 

(390 mg, 1.45 mmol) reacted with 6-chloropurine (213 mg, 

1.38 mmol), PPh3 (380 mg, 1.45 mmol), and DIAD (284 μL, 

1.45 mmol) in anhydrous THF (10 mL) to afford (RS)-10a 

(342 mg, 61%), as a yellow oil. 1H NMR (401 MHz, 

DMSO-d6) δ 8.77 (s, 2H), 4.82–4.75 (m, 1H), 4.44–4.31 (m, 

2H), 4.12 (dd, J = 10.4, 8.6 Hz, 1H), 3.89 (dd, J = 10.3, 4.0 Hz, 1H), 3.77 (dd, J = 14.0, 

8.3 Hz, 1H), 3.68 (dd, J = 13.9, 8.2 Hz, 1H), 2.11–1.87 (m, 2H), 1.13–1.08 (m, 6H), 1.07–

0.98 (m, 6H), 0.76 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 152.14, 151.35, 

149.05, 146.62, 130.97, 72.66 (d, J = 11.3 Hz), 70.17–69.93 (m), 64.65 (d, J = 163.7 Hz), 

57.13, 23.62 (d, J = 3.9 Hz), 23.51–23.34 (m), 23.11, 10.19. 31P NMR (162 MHz, DMSO-

d6) δ 21.22. HRMS (ESI) m/z [M+Na]+ calcd for C16H25O4N4ClNaP 427.12724, found 

427.12702. 

 

Diisopropyl (R)-((2-(6-chloro-9H-purin-9-yl)-3-methylbutoxy)methyl)phosphonate ((R)-

10b) 

Following standard procedure B, compound (R)-8b (0.73 g, 

3.03 mmol) reacted with n-BuLi (2.5 M in hexanes, 1.33 mL, 

3.33 mmol) and diisopropyl triflyloxymethanephosphonate 

(1.49 g, 4.55 mmol) in anhydrous THF (10 mL) to afford (R)-

10b (1.02 g, 80%) as a light orange viscose oil. 1H NMR (401 
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MHz, DMSO-d6) and 13C NMR (101 MHz, DMSO-d6) were identical to those of (R)-

10b. 31P NMR (162 MHz, DMSO-d6) δ 21.23. HRMS (ESI) m/z [M+Na]+ calcd for 

C17H28O4N4ClNaP 441.14289, found 441.14345. [α]25
D = +13.1 (c 0.245 g/100 mL, 

CHCl3/MeOH 1/1). 

 

Diisopropyl (S)-((2-(6-chloro-9H-purin-9-yl)-3-methylbutoxy)methyl)phosphonate ((S)-

10b) 

Following standard procedure B, compound (S)-8b (1.00 g, 

4.15 mmol) reacted with n-BuLi (1.6 M in hexanes, 

2.86 mL, 4.57 mmol) and diisopropyl 

triflyloxymethanephosphonate (2.04 g, 6.23 mmol) in 

anhydrous THF (12 mL) to afford (S)-10b (1.59 g, 91%) as 

a light-yellow viscose oil. 1H NMR (401 MHz, DMSO-d6) 

δ 8.77 (s, 1H), 8.76 (s, 1H), 4.64–4.55 (m, 1H), 4.42–4.32 (m, 2H), 4.23 (dd, J = 10.4, 8.8 

Hz, 1H), 3.95 (dd, J = 10.5, 3.7 Hz, 1H), 3.80–3.63 (m, 2H), 2.44–2.32 (m, 1H), 1.13–

1.06 (m, 6H), 1.06–0.99 (m, 9H), 0.68 (d, J = 6.6 Hz, 3H). 13C NMR (101 MHz, DMSO-

d6) δ 152.32, 151.40, 149.08, 146.73, 130.75, 71.19 (d, J = 11.8 Hz), 70.18–69.85 (m), 

64.65 (d, J = 164.1 Hz), 61.12, 29.17, 23.67–23.53 (m), 23.51–23.35 (m), 19.42, 19.15. 
31P NMR (162 MHz, DMSO-d6) δ 21.23. HRMS (ESI) m/z [M+Na]+ calcd for 

C17H28O4N4ClNaP 441.14289, found 441.14325. [α]25
D = −11.0 (c 0.371 g/100 mL, 

CHCl3/MeOH 1/1). 

  

Diisopropyl (R)-((2-(6-chloro-9H-purin-9-yl)-2-cyclopropylethoxy)methyl)phosphonate 

((R)-10c) 

Following standard procedure B, compound (R)-8c (0.95 g, 

3.98 mmol) reacted with n-BuLi (2.5 M in hexanes, 1.75 mL, 

4.38 mmol) and diisopropyl triflyloxymethanephosphonate 

(1.96 g, 5.97 mmol) in anhydrous THF (10 mL) to afford (R)-

10c (1.15 g, 69%) as a light orange viscose oil. 1H NMR (401 

MHz, DMSO-d6) δ 8.82 (s, 1H), 8.77 (s, 1H), 4.43–4.32 (m, 

2H), 4.32–4.24 (m, 1H), 4.13 (ddd, J = 10.1, 8.6, 3.7 Hz, 1H), 3.99 (dd, J = 10.2, 3.7 Hz, 

1H), 3.77 (dd, J = 13.9, 8.3 Hz, 1H), 3.69 (dd, J = 13.9, 8.2 Hz, 1H), 1.63–1.54 (m, 1H), 

1.13–1.06 (m, 6H), 1.06–0.97 (m, 6H), 0.75–0.63 (m, 1H), 0.63–0.55 (m, 1H), 0.48–0.41 

(m, 1H), 0.32–0.26 (m, 1H). 13C NMR (101 MHz, DMSO-d6) δ 151.88, 151.36, 149.07, 

146.60, 130.94, 72.48 (d, J = 11.6 Hz), 70.13–69.96 (m), 64.66 (d, J = 164.1 Hz), 60.51, 

23.61 (d, J = 3.7 Hz), 23.48–23.33 (m), 11.97, 4.48, 3.26. 31P NMR (162 MHz, DMSO-

d6) δ 21.22. HRMS (ESI) m/z [M+H]+ calcd for C17H27O4N4ClP 417.14530, found 

417.14535. [α]25
D = +12.7 (c 0.456 g/100 mL, CHCl3/MeOH 1/1). 
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Diisopropyl ((2-(6-chloro-9H-purin-9-yl)-2-cyclopropylethoxy)methyl)phosphonate 

((RS)-10c) 

Following standard procedure E, compound (RS)-17e 

(1.20 g, 4.28 mmol) reacted with 6-chloropurine (0.63 g, 

4.08 mmol), PPh3 (1.12 g, 4.28 mmol), and DIAD (0.84 mL, 

4.28 mmol) in anhydrous THF (20 mL) to afford (RS)-10c 

(0.51 g, 30%), as a yellow oil. 1H NMR (401 MHz, DMSO-

d6), 13C NMR (101 MHz, DMSO-d6) and 31P NMR (162 

MHz, DMSO-d6) were identical with those of (R)-10c. HRMS (ESI) m/z [M+H]+ calcd 

for C17H27O4N4ClP 417.14530, found 417.14500. 

 

Diisopropyl (R)-((3-(benzyloxy)-2-(6-chloro-9H-purin-9-

yl)propoxy)methyl)phosphonate ((R)-10d) 

Following standard procedure B, compound (S)-8d (0.95 g, 

2.98 mmol) reacted with n-BuLi (2.5 M in hexanes, 1.31 mL, 

3.28 mmol) and diisopropyl triflyloxymethanephosphonate 

(1.47 g, 4.47 mmol) in anhydrous THF (10 mL) to afford 

(R)-10d (0.53 g, 36%) as a light yellow-orange viscose oil. 
1H NMR (401 MHz, DMSO-d6) δ 8.76 (s, 1H), 8.75 (s, 1H), 

7.29–7.22 (m, 3H), 7.15–7.10 (m, 2H), 5.13 (tt, J = 8.5, 4.4 Hz, 1H), 4.52–4.33 (m, 4H), 

4.20 (dd, J = 10.4, 8.3 Hz, 1H), 4.05–3.95 (m, 2H), 3.86 (dd, J = 10.4, 4.6 Hz, 1H), 3.79 

(dd, J = 14.0, 8.3 Hz, 1H), 3.72 (dd, J = 14.0, 8.2, 1H), 1.13–1.09 (m, 6H), 1.05–1.01 (m, 

6H). 13C NMR (101 MHz, DMSO-d6) δ 152.11, 151.40, 149.05, 146.73, 137.67, 130.84, 

128.19, 127.57, 127.40, 72.05, 70.24–70.05 (m), 69.86 (d, J = 7.2 Hz), 67.52, 64.75 (d, J 

= 163.3 Hz), 55.08, 23.66 (d, J = 3.6 Hz), 23.56–23.39 (m). 31P NMR (162 MHz, DMSO-

d6) δ 21.26. HRMS (ESI) m/z [M+H]+ calcd for C22H31O5N4ClP 497.17151, found 

497.17142. [α]25
D = −5.1 (c 0.295 g/100 mL, CHCl3/MeOH 1/1). 

 

Diisopropyl (S)-((3-(benzyloxy)-2-(6-chloro-9H-purin-9-

yl)propoxy)methyl)phosphonate ((S)-10d) 

Following standard procedure B, compound (R)-8d (95 mg, 

0.30 mmol) reacted with n-BuLi (2.5 M in hexanes, 131 µL, 

0.33 mmol) and diisopropyl triflyloxymethanephosphonate 

(148 mg, 0.45 mmol) in anhydrous THF (2 mL) to afford 

(S)-10d (119 mg, 80%) as a as a colorless viscose oil. 1H 

NMR (400 MHz, DMSO-d6), 13C NMR (101 MHz, DMSO-

d6) and 31P NMR (162 MHz, DMSO-d6) spectra were identical to those of (R)-10d. 
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HRMS (ESI) m/z [M+Na]+ calcd for C22H30O5N4ClNaP 519.15346, found 519.15254. 

[α]25
D = +3.0 (c 0.919 g/100 mL, CHCl3/MeOH 1/1). 

 

Diisopropyl ((2-(6-chloro-9H-purin-9-yl)propoxy)methyl)phosphonate ((RS)-10e) 

Following standard procedure E, compound (RS)-17a 

(600 mg, 2.36 mmol) reacted with 6-chloropurine (348 mg, 

2.25 mmol), PPh3 (619 mg, 2.36 mmol), and DIAD (463 μL, 

2.36 mmol) in anhydrous THF (12 mL) to afford (RS)-10e 

(463 mg, 53%), as a yellow oil. 1H NMR (401 MHz, 

DMSO-d6) δ 8.78 (s, 1H), 8.78 (s, 1H), 5.03–4.95 (m, 1H), 4.46–4.30 (m, 2H), 4.06 (dd, 

J = 10.3, 8.4 Hz, 1H), 3.87 (dd, J = 10.3, 4.1 Hz, 1H), 3.78 (dd, J = 13.9, 8.3 Hz, 1H), 

3.69 (dd, J = 13.9, 8.3 Hz, 1H), 1.56 (d, J = 7.1 Hz, 3H), 1.13–1.08 (m, 6H), 1.06–1.00 

(m, 6H). 13C NMR (101 MHz, DMSO-d6) δ 151.82, 151.27, 148.98, 146.37, 131.03, 

73.75 (d, J = 11.3 Hz), 70.30–69.81 (m), 64.66 (d, J = 164.1 Hz), 51.08, 23.63 (d, J = 3.6 

Hz), 23.51–23.36 (m), 16.25. 31P NMR (162 MHz, DMSO-d6) δ 21.23. HRMS (ESI) m/z 

[M+Na]+ calcd for C15H24O4N4ClNaP 413.11159, found 413.11210. 

 

Diisopropyl (((2-(6-chloro-9H-purin-9-yl)but-3-en-1-yl)oxy)methyl)phosphonate ((RS)-

10f) 

Following standard procedure E, compound (RS)-17c 

(600 mg, 2.25 mmol) reacted with 6-chloropurine (331 mg, 

2.14 mmol), PPh3 (590 mg, 2.25 mmol), and DIAD (442 μL, 

2.25 mmol) in anhydrous THF (12 mL) to afford (RS)-10f 

(688 mg, 80%), as a yellow oil. 1H NMR (401 MHz, DMSO-

d6) δ 8.79 (s, 1H), 8.79 (s, 1H) 6.22 (ddd, J = 17.0, 10.6, 6.2 

Hz, 1H), 5.57–5.51 (m, 1H), 5.33 (dt, J = 10.6, 1.1 Hz, 1H), 5.21 (ddd, J = 17.2, 1.5, 0.9 

Hz, 1H), 4.46–4.34 (m, 2H), 4.25 (dd, J = 10.5, 8.9 Hz, 1H), 3.99 (dd, J = 10.5, 4.4 Hz, 

1H), 3.82 (dd, J = 13.9, 8.4 Hz), 3.74 (d, J = 13.9, 8.3 Hz), 1.12 (d, J = 6.2 Hz, 3H), 1.11 

(d, J = 6.2 Hz), 1.04 (d, J = 6.2 Hz, 3H), 1.03 (d, J = 6.2 Hz, 3H). 13C NMR (101 MHz, 

DMSO-d6) δ 151.80, 151.51, 149.17, 146.50, 132.59, 130.87, 119.34, 71.97 (d, J = 12.1 

Hz), 70.22–70.01 (m), 64.64 (d, J = 164.2 Hz), 56.96, 23.63 (d, J = 3.8 Hz), 23.51–23.36 

(m). 31P NMR (162 MHz, DMSO-d6) δ 21.17. HRMS (ESI) m/z [M+Na]+ calcd for 

C16H24O4N4ClNaP 425.11159, found 425.11218. 
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Diisopropyl (((2-(6-chloro-9H-purin-9-yl)but-3-yn-1-yl)oxy)methyl)phosphonate ((RS)-

10g) 

Following standard procedure E, compound (RS)-17d 

(600 mg, 2.27 mmol) reacted with 6-chloropurine (334 mg, 

2.16 mmol), PPh3 (595 mg, 2.27 mmol), and DIAD (446 μL, 

2.27 mmol) in anhydrous THF (12 mL) to afford (RS)-10g 

(791 mg, 91%), as a yellow oil. 1H NMR (401 MHz, DMSO-

d6) δ 8.83 (s, 1H), 8.80 (s, 1H), 5.92 (ddd, J = 8.2, 4.3, 2.5 

Hz, 1H), 4.46–4.35 (m, 2H), 4.27 (dd, J = 10.5, 8.1 Hz, 1H), 4.05 (dd, J = 10.5, 4.4 Hz, 

1H), 3.89–3.72 (m, 3H), 1.14–1.08 (m, 6H), 1.07–1.01 (m, 6H). 13C NMR (101 MHz, 

DMSO-d6) δ 151.79, 151.25, 149.37, 146.17, 130.90, 78.22, 77.16, 72.03 (d, J = 11.7 

Hz), 70.17 (d, J = 6.5 Hz), 64.65 (d, J = 163.9 Hz), 46.16, 23.64 (d, J = 3.7 Hz), 23.53–

23.38 (m). 31P NMR (162 MHz, DMSO-d6) δ 20.96. HRMS (ESI) m/z [M+Na]+ calcd 

for C16H22O4N4ClNaP 423.09594, found 423.09655. 

 

2-(6-Chloro-9H-purin-9-yl)-3-((diisopropoxyphosphoryl)methoxy)propyl benzoate 

((RS)-10h) 

Following standard procedure E, compound (RS)-17i 

(547 mg, 1.58 mmol) reacted with 6-chloropurine (232 mg, 

1.50 mmol), PPh3 (414 mg, 1.58 mmol), and DIAD 

(308 μL, 1.58 mmol) in anhydrous THF (10 mL) to afford 

(RS)-10g (521 mg, 68%), as a yellowish solid. 1H NMR 

(401 MHz, DMSO-d6) δ 8.90 (s, 1H), 8.79 (s, 1H), 7.84–

7.78 (m, 2H), 7.66–7.44 (m, 3H), 5.40–5.31 (m, 1H), 4.86–4.71 (m, 2H), 4.50–4.40 (m, 

2H), 4.37 (dd, J = 10.5, 8.2 Hz, 1H), 4.15 (dd, J = 10.5, 4.5 Hz, 1H), 3.87–3.77 (m, 2H), 

1.15–1.04 (m, 12H). 13C NMR (101 MHz, DMSO-d6) δ 165.14, 152.22, 151.55, 149.13, 

146.61, 133.62, 130.84, 129.17, 128.88, 128.75, 70.28–70.08 (m), 69.84 (d, J = 11.8 Hz), 

64.83 (d, J = 164.3 Hz), 62.90, 54.31, 23.74–23.41 (m). 31P NMR (162 MHz, DMSO-d6) 

δ 21.22. HRMS (ESI) m/z [M+H]+ calcd for C22H29O6N4ClP 511.15078, found 

511.15003. 

 

Diisopropyl ((2-(6-chloro-9H-purin-9-yl)-3,3,3-trifluoropropoxy)methyl)phosphonate 

((RS)-10i) 

Following standard procedure B, compound (RS)-8e 

(145 mg, 0.54 mmol) reacted with n-BuLi (2.5 M in 

hexanes, 237 μL, 0.59 mmol) and diisopropyl 

triflyloxymethanephosphonate (266 mg, 0.81 mmol) in 

anhydrous THF (10 mL) to afford (RS)-10i (182 mg, 78%) 
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as a orangish solid. 1H NMR (401 MHz, DMSO-d6) δ 8.83 (s, 1H), 8.66 (s, 1H), 4.81–

4.70 (m, 2H), 4.70–4.61 (m, 1H), 4.58–4.43 (m, 2H), 4.07–3.93 (m, 2H), 1.20 (d, J = 6.1 

Hz, 3H), 1.19–1.15 (m, 6H), 1.10 (d, J = 6.2 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) 

δ 152.62, 152.23, 149.55, 148.29, 131.04, 124.48 (q, J = 285.0 Hz), 76.71–76.10 (m), 

71.13–70.85 (m), 66.32 (d, J = 165.7 Hz), 41.70, 24.24–23.81 (m). 19F NMR (377 MHz, 

DMSO-d6) δ −74.65 (d, J = 6.9 Hz). 31P NMR (162 MHz, DMSO-d6) δ 19.64. HRMS 

(ESI) m/z [M+H]+ calcd for C15H22O4N4ClF3P 445.10138, found 445.10126. 

 

Diisopropyl ((2-(6-chloro-9H-purin-9-yl)-2-methoxyethoxy)methyl)phosphonate ((RS)-

10j) 

Following standard procedure C, compound 15b (299 mg, 

1.05 mmol) reacted with 6-chloropurine (162 mg, 

1.05 mmol), Ac2O (99 μL, 1.05 mmol), and TMSOTf 

(286 μL, 1.58 mmol) to afford (RS)-10j (351 mg, 82%) as a 

colorless oil. 1H NMR (401 MHz, DMSO-d6) δ 8.86 (s, 1H), 

8.82 (s, 1H), 5.95 (dd, J = 7.0, 4.8 Hz, 1H), 4.47–4.36 (m, 

2H), 4.21 (dd, J = 10.6, 7.1 Hz, 1H), 4.08 (dd, J = 10.6, 4.8 Hz, 1H), 3.88–3.72 (m, 2H), 

3.27 (s, 3H), 1.15–1.09 (m, 6H), 1.09–1.01 (m, 6H). 13C NMR (101 MHz, DMSO-d6) δ 

152.22, 151.89, 149.30, 146.01, 131.06, 84.14, 71.20 (d, J = 12.1 Hz), 70.17 (d, J = 6.5 

Hz), 70.15 (d, J = 6.5 Hz), 65.08 (d, J = 164.3 Hz), 56.48, 23.64 (d, J = 3.7 Hz), 23.44 (d, 

J = 4.4 Hz). 31P NMR (162 MHz, DMSO-d6) δ 21.04. HRMS (ESI) m/z [M+Na]+ calcd 

for C15H24O5N4ClNaP 429.10651, found 429.10693. 

 

Diisopropyl ((2-(6-chloro-9H-purin-9-yl)-2-ethoxyethoxy)methyl)phosphonate ((RS)-

10k) 

Following standard procedure C, compound 15a (1.01 g, 

3.23 mmol) reacted with 6-chloropurine (0.50 g, 

3.23 mmol), Ac2O (305 μL, 3.23 mmol), and TMSOTf 

(0.88 mL, 4.85 mmol) to afford (RS)-10k (1.18 g, 87%) as a 

colorless oil. 1H NMR (401 MHz, DMSO-d6) δ 8.86 (s, 1H), 

8.82 (s, 1H), 6.05 (dd, J = 7.0, 4.9 Hz, 1H), 4.50–4.34 (m, 

2H), 4.19 (dd, J = 10.6, 7.1 Hz, 1H), 4.07 (dd, J = 10.6, 4.9 

Hz, 1H), 3.88–3.73 (m, 2H), 3.58 (dq, J = 9.6, 7.0 Hz, 1H), 3.41 (dq, J = 9.6, 7.0 Hz, 1H), 

1.12 (d, J = 6.2 Hz, 6H), 1.10–1.02 (m, 9H). 13C NMR (101 MHz, DMSO-d6) δ 152.12, 

151.87, 149.26, 145.93, 131.00, 82.48, 71.42 (d, J = 11.9 Hz), 70.15 (d, J = 6.7 Hz), 65.06 

(d, J = 164.3 Hz), 64.56, 23.63 (d, J = 3.8 Hz), 23.44 (d, J = 4.6 Hz), 14.62. 31P NMR 

(162 MHz, DMSO-d6) δ 21.05. HRMS (ESI) m/z [M+Na]+ calcd for C16H26O5N4ClNaP 

443.12216, found 443.12164. 
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Diisopropyl (R)-((2-(6-chloro-2-(((dimethylamino)methylene)amino)-9H-purin-9-

yl)butoxy)methyl)phosphonate ((R)-11) 

Compound (R)-9 (2.80 g, 11.59 mmol) was stirred 

with DMF DMA (4.63 mL, 34.77 mmol) in DMF 

(15 mL) at 80 °C for 1 h. The mixture was 

concentrated and co-distilled 3 × with toluene to yield 

(R)-N'-(6-chloro-9-(1-hydroxybutan-2-yl)-9H-purin-

2-yl)-N,N-dimethylformimidamide (3.32 g, 97%), 

which was used directly in the following reaction. Following standard procedure B, (R)-

N'-(6-chloro-9-(1-hydroxybutan-2-yl)-9H-purin-2-yl)-N,N-dimethylformimidamide 

(0.95 g, 2.98 mmol) reacted with n-BuLi (2.5 M in hexanes, 1.31 mL, 3.28 mmol) and 

diisopropyl triflyloxymethanephosphonate (1.47 g, 4.47 mmol) in anhydrous THF 

(10 mL) to afford (R)-11 (3.91 g, 81%) as a light orange viscose oil. 1H NMR (401 MHz, 

DMSO-d6) δ 8.60 (s, 1H), 8.38 (s, 1H), 4.70–4.60 (m, 1H), 4.41 (d of septets, J = 7.7, 6.1 

Hz, 2H), 4.08 (dd, J = 10.3, 8.3 Hz, 1H), 3.89–3.83 (m, 1H), 3.83–3.65 (m, 2H), 3.16 (s, 

3H), 3.04 (s, 3H), 2.04–1.82 (m, 2H), 1.15–1.09 (m, 6H), 1.08–1.02 (m, 6H), 0.77 (t, J = 

7.4 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 161.71, 158.46, 153.91, 148.75, 144.05, 

126.28, 72.82 (d, J = 11.7 Hz), 70.23–69.99 (m), 64.69 (d, J = 163.7 Hz), 56.15, 40.48, 

34.66, 23.66 (d, J = 4.1 Hz), 23.52–23.39 (m), 23.14, 10.25. 31P NMR (162 MHz, DMSO-

d6) δ 21.27. HRMS (ESI) m/z [M+H]+ calcd for C19H33O4N6ClP 475.19839, found 

475.19871. [α]25
D = −10.3 (c 0.068 g/100 mL, CHCl3/MeOH 1/1). 

 

Ethyl 2-((diisopropoxyphosphoryl)methoxy)acetate (13) 

NaH (60% in mineral oil, 20 mg, 0.50 mmol) was mixed with 

DMF (2 mL) under argon atmosphere and cooled to 0 °C. 

Diisopropyl (hydroxymethyl)phosphonate (98 mg, 0.50 mmol) 

was added and the mixture was stirred at 0 °C for 10 min. Ethyl 

bromoacetate (66 μL, 0.60 mmol) was added, the mixture was allowed to warm up to 

25 °C, stirred for 18 h and concentrated. The residue was mixed with DCM (20 mL), 

washed with H2O (3 × 20 mL) and brine (1 × 20 mL), the organic fraction was dried over 

MgSO4 and concentrated to afford compound 13 (79 mg, 56%) as a colorless oil. 1H 

NMR (401 MHz, DMSO-d6) δ 4.67–4.55 (m, 2H), 4.21 (d, J = 1.0 Hz, 2H), 4.13 (q, J = 

7.1 Hz, 2H), 3.84 (d, J = 8.6 Hz, 2H), 1.27–1.23 (m, 12H), 1.20 (t, J = 7.2 Hz, 3H). 13C 

NMR (101 MHz, DMSO-d6) δ 169.45, 70.30 (d, J = 6.6 Hz), 68.82 (d, J = 13.2 Hz), 64.78 

(d, J = 164.3 Hz), 60.28, 23.90–23.63 (m), 14.06. 31P NMR (162 MHz, DMSO-d6) δ 

21.36. HRMS (ESI) m/z [M+H]+ calcd for C11H24O6P 283.13050, found 283.13053. 
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Diisopropyl ((2,2-diethoxyethoxy)methyl)phosphonate (15a) 

A suspension of NaH (11.72 g, 293.10 mmol, 60% in mineral 

oil) in anhydrous DMF (20 mL) was cooled to 0 °C. 

Diisopropyl (hydroxymethyl)phosphonate (57.50 g, 

293.10 mmol) was added dropwise over the period of 20 min. 

The mixture was stirred at 0 °C for 20 min followed by 

addition of acetaldehyde dimethyl acetal (52.91 mL, 351.72 mmol). The reaction mixture 

was allowed to warm up to 25 °C and further stirred for 19 h. After quenching with H2O, 

the mixture was concentrated and extracted with DCM (3 × 600 mL). Organic fractions 

were combined, washed with brine (1 × 500 mL), dried over MgSO4, and concentrated to 

afford 15a (82.36 g, 90%) as a yellowish oil. 1H NMR (401 MHz, CDCl3) δ 4.75 (d of 

septets, J = 7.7, 6.2 Hz, 2H), 4.62 (t, J = 5.2 Hz, 1H), 3.82 (d, J = 8.1 Hz, 2H), 3.69 (dq, 

J = 9.4, 7.1 Hz, 2H), 3.61 (dd, J = 5.2, 0.5 Hz, 2H), 3.55 (dq, J = 9.3, 7.0 Hz, 2H), 1.35–

1.30 (m, 12H), 1.20 (t, J = 7.0 Hz, 6H). 13C NMR (101 MHz, CDCl3) δ 101.25, 73.63 (d, 

J = 11.0 Hz), 71.16 (d, J = 6.5 Hz), 66.43 (d, J = 166.9 Hz), 62.62, 24.07–24.30 (m), 

15.46. 31P NMR (162 MHz, CDCl3) δ 21.95. HRMS (ESI) m/z [M+Na]+ calcd for 

C13H29O6NaP 335.15940, found 335.15935. 

 

Diisopropyl ((2,2-dimethoxyethoxy)methyl)phosphonate (15b) 

A suspension of NaH (0.41 g, 10.19 mmol, 60% in mineral oil) 

in anhydrous DMF (20 mL) was cooled to 0 °C. Diisopropyl 

(hydroxymethyl)phosphonate (2.00 g, 10.19 mmol) was added 

dropwise over the period of 5 min. The mixture was stirred at 0 

°C for 10 min followed by addition of acetaldehyde dimethyl acetal (1.44 mL, 

12.23 mmol). The reaction mixture was allowed to warm up to 25 °C and further stirred 

for 19 h. After quenching with H2O, the mixture was concentrated and extracted with 

DCM (3 × 70 mL). Organic fractions were combined, washed with brine (1 × 70 mL), 

dried over MgSO4, and concentrated to afford 15b (2.51 g, 87%) as a colorless oil. 1H 

NMR (401 MHz, CDCl3) δ 4.81–4.69 (m, 2H), 4.51 (t, J = 5.2 Hz, 1H), 3.86–3.77 (m, 

2H), 3.62 (dd, J = 5.2, 0.6 Hz, 2H), 3.38 (s, 6H), 1.38–1.30 (m, 12H). 13C NMR (101 

MHz, CDCl3) δ 102.85, 72.62 (d, J = 10.0 Hz), 71.22 (d, J = 6.6 Hz), 66.39 (d, J = 167.2 

Hz), 54.16, 24.34–23.96 (m). 31P NMR (162 MHz, CDCl3) δ 21.86. HRMS (ESI) m/z 

[M+Na]+ calcd for C11H25O6NaP 307.12810, found 307.12832. 

 

Diisopropyl ((2-oxoethoxy)methyl)phosphonate (16) 

To a solution of compound 15a (83.00 g, 265.74 mmol) in H2O:1,4-

dioxane (1:1 ratio) was slowly added H2SO4 (14.88 mL, 

279.03 mmol). The mixture was stirred at 80 °C for 30 min, poured 
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into a sat. NaHCO3 solution, and extracted with DCM (3 × 500 mL). Organic fractions 

were combined, washed with brine (1 × 500 mL), dried over MgSO4, and distilled in 

vacuo to afford 16 (60.78 g, 96%) as a colorless oil. 1H NMR (401 MHz, CDCl3) δ 9.72 

(s, 1H), 4.86–4.70 (m, 2H), 4.27 (d, J = 0.9 Hz, 2H), 3.86 (d, J = 8.1 Hz, 2H), 1.35 (d, J 

= 6.3 Hz, 12H). 13C NMR (101 MHz, CDCl3) δ 199.66, 77.80 (d, J = 8.9 Hz), 71.58 (d, 

J = 6.6 Hz), 66.52 (d, J = 167.4 Hz), 24.23 (d, J = 3.7 Hz), 24.19 (d, J = 4.5 Hz). 31P 

NMR (162 MHz, CDCl3) δ 21.79. HRMS (ESI) m/z [M+H]+ calcd for C9H20O5P 

239.10429, found 239.10431. 

 

Diisopropyl ((2-hydroxypropoxy)methyl)phosphonate ((RS)-17a) 

Following standard procedure D, compound 16 (1.15 g, 

4.83 mmol) reacted with 3.0 M methylmagnesium bromide 

(3.0 M in Et2O, 3.22 mL, 9.66 mmol) in anhydrous THF 

(10 mL) to yield (RS)-17a (0.98 g, 80%) as a colorless oil. 1H 

NMR (401 MHz, CDCl3) δ 4.82–4.70 (m, 2H), 3.99 (dqd, J = 8.1, 6.4, 2.9 Hz, 1H), 3.79 

(d, J = 8.1 Hz, 2H), 3.61 (ddd, J = 9.9, 2.8, 0.6 Hz, 1H), 3.42–3.33 (m, 1H), 1.38–1.29 

(m, 12H), 1.14 (d, J = 6.4 Hz, 3H). 13C NMR (101 MHz, CDCl3) δ 79.39 (d, J = 9.5 Hz), 

71.38 (d, J = 6.6 Hz), 71.34 (d, J = 6.7 Hz), 66.39, 66.37 (d, J = 167.9 Hz), 24.23 (d, J = 

3.7 Hz), 24.16 (d, J = 4.9 Hz), 18.50. 31P NMR (162 MHz, CDCl3) δ 21.32. HRMS (ESI) 

m/z [M+Na]+ calcd for C10H23O5PNa 277.11753, found 277.11763. 

 

Diisopropyl ((2-hydroxybutoxy)methyl)phosphonate ((RS)-17b) 

Following standard procedure D, compound 16 (476 mg, 

2.00 mmol) reacted with ethylmagnesium bromide (3.0 M in Et2O, 

1.33 mL, 4.00 mmol) in anhydrous THF (4 mL) to yield (RS)-17b 

(428 mg, 80%) as a colorless oil. 1H NMR (401 MHz, CDCl3) δ 

4.83–4.67 (m, 2H), 3.78 (d, J = 8.1 Hz, 2H), 3.76–3.68 (m, 1H), 3.64 (dd, J = 9.9, 2.8 Hz, 

1H), 3.46–3.39 (m, 1H), 1.51–1.42 (m, 2H), 1.36–1.31 (m, 12H), 0.95 (t, J = 7.5 Hz, 3H). 
13C NMR (101 MHz, CDCl3) δ 77.94 (d, J = 9.8 Hz), 71.68, 71.50–71.32 (m), 66.36 (d, 

J = 168.0 Hz), 25.96, 24.22 (d, J = 4.4 Hz), 24.14 (d, J = 4.3 Hz), 10.04. 31P NMR (162 

MHz, CDCl3) δ 22.38. HRMS (ESI) m/z [M+Na]+ calcd for C11H25O5PNa 291.13318, 

found 291.13307. 
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Diisopropyl (((2-hydroxybut-3-en-1-yl)oxy)methyl)phosphonate ((RS)-17c) 

Following standard procedure D, compound 16 (1.15 g, 

4.83 mmol) reacted with vinylmagnesium bromide (0.7 M in THF, 

13.80 mL, 9.66 mmol) in anhydrous THF (10 mL) to yield (RS)-

17c (1.19 g, 92%) as a colorless oil. 1H NMR (401 MHz, CDCl3) 

δ 5.81 (ddd, J = 17.3, 10.6, 5.4 Hz, 1H), 5.37 (dt, J = 17.2, 1.6 Hz, 1H), 5.20 (dt, J = 10.6, 

1.5 Hz, 1H), 4.82–4.69 (m, 2H), 4.37–4.32 (m, 1H), 3.81 (d, J = 8.0 Hz, 2H), 3.70 (ddd, 

J = 10.2, 3.1, 0.7 Hz, 1H), 3.48 (dd, J = 10.2, 7.9 Hz, 1H), 1.38–1.30 (m, 12H). 13C NMR 

(101 MHz, CDCl3) δ 136.26, 116.70, 77.71 (d, J = 8.9 Hz), 71.58–71.26 (m), 67.31, 65.64, 

24.24 (dd, J = 4.0 Hz), 24.17 (d, J = 4.5 Hz). 31P NMR (162 MHz, CDCl3) δ 21.28. 

HRMS (ESI) m/z [M+Na]+ calcd for C11H23O5PNa 289.11753, found 289.11754. 

 

Diisopropyl (((2-hydroxybut-3-yn-1-yl)oxy)methyl)phosphonate ((RS)-17d) 

Following standard procedure D, compound 16 (1.15 g, 

4.83 mmol) reacted with ethynylmagnesium bromide (0.5 M in 

THF, 19.34 mL, 9.66 mmol) in anhydrous THF (10 mL) to yield 

(RS)-17d (1.05 g, 83%) as a colorless oil. 1H NMR (401 MHz, 

CDCl3) δ 4.8–4.71 (m, 2H), 4.58–4.55 (m, 1H), 3.93–3.78 (m, 3H), 3.70 (ddd, J = 10.2, 

7.3, 1.9 Hz, 1H), 2.43 (d, J = 2.3 Hz, 1H), 1.39–1.24 (m, 12H). 13C NMR (101 MHz, 

CDCl3) δ 77.38, 73.86 (d, J = 13.5 Hz), 71.82–71.53 (m), 66.85 (d, J = 168.0 Hz), 61.76 

(d, J = 2.9 Hz), 24.18 (d, J = 4.9 Hz). 31P NMR (162 MHz, CDCl3) δ 21.34. HRMS (ESI) 

m/z [M+Na]+ calcd for C11H21O5PNa 287.10188, found 287.10208. 

 

Diisopropyl ((2-cyclopropyl-2-hydroxyethoxy)methyl)phosphonate ((RS)-17e) 

Following standard procedure D, compound 16 (2.00 g, 

8.40 mmol) reacted with cyclopropylmagnesium bromide 

(1.0 M in 2-MeTHF, 16.80 mL, 16.80 mmol) in anhydrous THF 

(15 mL) to yield (RS)-17e (2.15 g, 91%) as a colorless oil. 1H 

NMR (400 MHz, CDCl3) δ 4.82–4.67 (m, 2H), 3.88–3.73 (m, 3H), 3.56 (dd, J = 10.0, 7.9 

Hz, 1H), 3.12 (td, J = 8.1, 2.8 Hz, 1H), 1.38–1.29 (m, 12H), 0.84 (qt, J = 8.2, 4.9 Hz, 1H), 

0.59–0.49 (m, 1H), 0.49–0.42 (m, 1H), 0.38 (dtd, J = 9.1, 5.2, 3.9 Hz, 1H), 0.22 (dtd, J = 

9.1, 5.3, 4.1 Hz, 1H). 13C NMR (101 MHz, CDCl3) δ 77.94 (d, J = 9.5 Hz), 74.83, 71.37 

(d, J = 6.6 Hz), 71.34 (d, J = 6.6 Hz), 66.41 (d, J = 167.9 Hz), 24.22 (d, J = 3.8 Hz), 24.15 

(d, J = 4.4 Hz), 13.33, 2.63, 1.85. 31P NMR (162 MHz, CDCl3) δ 22.08. HRMS (ESI) 

m/z [M+Na]+ calcd for C12H25O5PNa 303.13318, found 303.13345. 
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Diisopropyl ((3,3,3-trifluoro-2-hydroxypropoxy)methyl)phosphonate ((RS)-17f) 

TMSCF3 (522 μL, 3.53 mmol) and TBAF (1M in THF, 291 μL, 

0.29 mmol) were added to a solution of compound 16 (700 mg, 

2.94 mmol) in anhydrous THF (10 mL). The mixture was stirred 

at 25 °C for 1 h, quenched with H2O, and extracted with EtOAc 

(3 × 70 mL). Combined organic fractions were washed with brine (1 × 70 mL), dried over 

MgSO4, and concentrated to afford (RS)-17f (867 mg, 96%) as a brownish oil. 1H NMR 

(400 MHz, CDCl3) δ 4.82–4.65 (m, 2H), 4.20–4.09 (m, 1H), 3.92–3.72 (m, 4H), 1.36–

1.28 (m, 12H). 13C NMR (101 MHz, CDCl3) δ 124.40 (q, J = 282.3 Hz), 72.25–72.04 

(m), 72.00–71.83 (m), 69.80 (q, J = 30.6 Hz), 66.95 (d, J = 168.1 Hz), 24.34–23.89 (m). 
19F NMR (376 MHz, CDCl3) δ −77.47. 31P NMR (162 MHz, CDCl3) δ 21.92. HRMS 

(ESI) m/z [M+Na]+ calcd for C10H20O5F3PNa 331.08927, found 331.08930. 

 

Diisopropyl ((2-hydroxy-3-nitropropoxy)methyl)phosphonate ((RS)-17g) 

Nitromethane (68 μL, 1.26 mmol) was added to a suspension of 

NaH (50 mg, 1.26 mmol, 60% in mineral oil) in anhydrous THF 

(1 mL). The mixture was stirred for 10 min and the solution of 

compound 16 (100 mg, 0.42 mmol) in anhydrous THF (1 mL) was 

added. The mixture was stirred at 25 °C for 1 h, quenched with H2O, and extracted with 

EtOAc (3 × 30 mL). Combined organic fractions were washed with brine (1 × 30 mL), 

dried over MgSO4, and concentrated to afford (RS)-17g (68 mg, 54%) as a colorless oil. 
1H NMR (400 MHz, CDCl3) δ 4.80–4.68 (m, 2H), 4.54–4.45 (m, 3H), 3.86–3.67 (m, 4H), 

1.33 (d, J = 6.3, 12H). 13C NMR (101 MHz, CDCl3) δ 77.98, 74.52 (d, J = 8.9 Hz), 71.78 

(d, J = 6.6 Hz), 71.74 (d, J = 6.7 Hz), 67.94, 66.75 (d, J = 168.0 Hz), 24.32–24.01 (m). 
31P NMR (162 MHz, CDCl3) δ 21.82. HRMS (ESI) m/z [M+Na]+ calcd for 

C10H22O7NPNa 322.10261, found 322.10283. 

 

Diisopropyl ((2-cyano-2-hydroxyethoxy)methyl)phosphonate ((RS)-17h) 

KCN (684 mg, 10.50 mmol) was added to a solution of 

compound 16 (50 mg, 0.21 mmol) in H2O/1,4-dioxane (1:1 

ratio) (5 mL). The mixture was stirred at 25 °C for 1 h and 

extracted with EtOAc (3 × 30 mL). Combined organic fractions 

were washed with brine (1 × 30 mL), dried over MgSO4, and concentrated to afford (RS)-

17h (50 mg, 89%) as a colorless oil. 1H NMR (401 MHz, CDCl3) δ 4.89–4.71 (m, 2H), 

4.59 (dd, J = 4.8, 3.1 Hz, 1H), 4.04–3.92 (m, 2H), 3.87–3.78 (m, 2H), 1.37–1.32 (m, 12H). 

13C NMR (101 MHz, CDCl3) δ 118.05, 75.82 (d, J = 6.7 Hz), 72.65 (d, J = 7.1 Hz), 72.15 

(d, J = 7.1 Hz), 67.73 (d, J = 168.1 Hz), 61.69, 24.29–24.05 (m). 31P NMR (162 MHz, 
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CDCl3) δ 22.54. HRMS (ESI) m/z [M+Na]+ calcd for C10H20O5NPNa 288.09713, found 

288.09721. 

 

3-((Diisopropoxyphosphoryl)methoxy)-2-hydroxypropyl benzoate ((RS)-17i) 

NaH (60% in mineral oil, 2.00 g, 138.89 mmol) was mixed with 

THF (200 mL) under argon atmosphere and cooled to 0 °C. 

Diisopropyl (hydroxymethyl)phosphonate (10.00 g, 50.97 mmol) 

was added and the mixture was stirred at 0 °C for 10 min. 

Epibromhydrin (4.30 mL, 50.97 mmol) was added, the mixture 

was allowed to warm up to 25 °C, stirred for 18 h and concentrated. The residue was 

mixed with DCM (20 mL), washed with H2O (3 × 20 mL) and brine (1 × 20 mL), the 

organic fraction was dried over MgSO4 and distilled under vacuum to afford diisopropyl 

((oxiran-2-ylmethoxy)methyl)phosphonate (6.02 g, 23.78 mmol) which was dissolved in 

anhydrous MeCN (250 mL) and to the solution, PhCOOH (3.48 g, 28.54 mmol) and 

TBAB (229 mg, 0.71 mmol) was added and the mixture was stirred in MW-reactor at 

180°C for 6 h. The mixture was concentrated, re-suspended in 5% K2CO3 solution and 

extracted with CHCl3 (3 × 300 mL). The combined organic fractions were washed with 

brine (1 × 300 mL), dried over MgSO4 and purified using silica gel flash chromatography 

(linear gradient elution 0–20% MeOH in CHCl3) to afford (RS)-17i as a colorless oil 

(5.97 g, 31% over 2 steps). Note: prepared by my colleague Dr. Špaček. 1H NMR (400 

MHz, CDCl3) δ 8.07–8.02 (m, 2H), 7.59–7.53 (m, 1H), 7.47–7.39 (m, 2H), 4.81–4.68 (m, 

2H), 4.43–4.34 (m, 2H), 4.21–4.11 (m, 1H), 3.84–3.69 (m, 4H), 1.33 (d, J = 6.1 Hz, 12H). 
13C NMR (101 MHz, CDCl3) δ 166.68, 133.26, 129.99, 129.83, 128.52, 74.99 (d, J = 8.8 

Hz), 71.60–71.46 (m), 68.99, 66.72 (d, J = 168.0 Hz), 65.73, 24.26–24.08 (m). 31P NMR 

(162 MHz, CDCl3) δ 21.99. HRMS (ESI) m/z [M+Na]+ calcd for C17H28O7P 375.15672, 

found 375.15741. 

 

Diisopropyl ((2-(2-amino-6-chloro-9H-purin-9-yl)propoxy)methyl)phosphonate ((RS)-

18a) 

Following standard procedure E, compound (RS)-17a 

(300 mg, 1.18 mmol) reacted with 2-amino-6-

chloropurine (190 mg, 1.12 mmol), PPh3 (310 mg, 

1.18 mmol), and DIAD (232 μL, 1.18 mmol) in 

anhydrous THF (6 mL) to afford (RS)-18a (336 mg, 

74%), as a yellow oil. 1H NMR (401 MHz, DMSO-d6) δ 8.19 (s, 1H), 6.86 (s, 2H), 4.75–

4.64 (m, 1H), 4.50–4.38 (m, 2H), 3.97 (dd, J = 10.2, 8.0 Hz, 1H), 3.84–3.66 (m, 3H), 1.46 

(d, J = 7.0 Hz, 3H), 1.18–1.12 (m, 6H), 1.12–1.04 (m, 6H). 13C NMR (101 MHz, DMSO-

d6) δ 159.56, 153.94, 149.27, 141.79, 123.49, 73.82 (d, J = 11.5 Hz), 70.98–69.41 (m), 

64.76 (d, J = 163.7 Hz), 49.83, 23.70 (d, J = 3.7 Hz), 23.52 (d, J = 4.4 Hz), 16.41. 31P 
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NMR (162 MHz, DMSO-d6) δ 21.24. HRMS (ESI) m/z [M+Na]+ calcd for 

C15H25O4N5ClNaP 428.12249, found 428.12297. 

 

Diisopropyl ((2-(2-amino-6-chloro-9H-purin-9-yl)butoxy)methyl)phosphonate ((RS)-

18b) 

Following standard procedure E, compound (RS)-17b 

(400 mg, 1.49 mmol) reacted with 2-amino-6-

chloropurine (241 mg, 1.42 mmol), PPh3 (391 mg, 

1.49 mmol), and DIAD (292 μL, 1.49 mmol) in 

anhydrous THF (10 mL) to afford (RS)-18b (385 mg, 

65%), as a yellow oil. 1H NMR (401 MHz, DMSO-d6) 

δ 8.18 (s, 1H), 6.86 (s, 2H), 4.52–4.35 (m, 3H), 4.02 (dd, J = 10.3, 8.2 Hz, 1H), 3.84–3.64 

(m, 3H), 1.99–1.79 (m, 2H), 1.18–1.11 (m, 6H), 1.11–1.04 (m, 6H), 0.76 (t, J = 7.4 Hz, 

3H). 13C NMR (101 MHz, DMSO-d6) δ 159.59, 154.33, 149.28, 142.12, 123.42, 72.78 

(d, J = 11.6 Hz), 70.34–70.05 (m), 64.73 (d, J = 163.7 Hz), 55.89, 23.69 (d, J = 3.7 Hz), 

23.49 (d, J = 4.6 Hz), 23.11, 10.24. 31P NMR (162 MHz, DMSO-d6) δ 21.21. HRMS 

(ESI) m/z [M+Na]+ calcd for C16H27O4N5ClNaP 442.13814, found 442.13807. 

 

Diisopropyl (((2-(2-amino-6-chloro-9H-purin-9-yl)but-3-en-1-

yl)oxy)methyl)phosphonate ((RS)-18c) 

Following standard procedure E, compound (RS)-17c 

(300 mg, 1.13 mmol) reacted with 2-amino-6-

chloropurine (183 mg, 1.08 mmol), PPh3 (296 mg, 

1.13 mmol), and DIAD (221 μL, 1.13 mmol) in 

anhydrous THF (6 mL) to afford (RS)-18c (182 mg, 

40%), as a yellow oil. 1H NMR (401 MHz, DMSO-d6) 

δ 8.20 (s, 1H), 6.90 (s, 2H), 6.14 (ddd, J = 17.3, 10.5, 5.9 Hz, 1H), 5.28 (dt, J = 10.5, 1.2 

Hz, 1H), 5.22 (dddt, J = 8.7, 5.8, 4.2, 1.5 Hz, 1H), 5.09 (dt, J = 17.2, 1.2 Hz, 1H), 4.51–

4.39 (m, 2H), 4.16 (dd, J = 10.4, 8.7 Hz, 1H), 3.92 (dd, J = 10.4, 4.3 Hz, 1H), 3.81 (dd, J 

= 13.9, 8.4 Hz, 1H), 3.74 (dd, J = 13.9, 8.4 Hz, 1H), 1.17–1.13 (m, 6H), 1.11–1.06 (m, 

6H). 13C NMR (101 MHz, DMSO-d6) δ 159.68, 153.99, 149.41, 141.97, 133.18, 123.25, 

118.54, 72.12 (d, J = 11.3 Hz), 70.24 (d, J = 6.1 Hz), 64.70 (d, J = 164.3 Hz), 55.90, 23.69 

(d, J = 3.8 Hz), 23.50 (d, J = 4.7 Hz). 31P NMR (162 MHz, DMSO-d6) δ 21.15. HRMS 

(ESI) m/z [M+Na]+ calcd for C16H25O4N5ClNaP 440.12249, found 440.12295. 

 

 



89 

 

Diisopropyl (((2-(2-amino-6-chloro-9H-purin-9-yl)but-3-yn-1-

yl)oxy)methyl)phosphonate ((RS)-18d) 

Following standard procedure E, compound (RS)-17d 

(300 mg, 1.14 mmol) reacted with 2-amino-6-

chloropurine (185 mg, 1.09 mmol), PPh3 (299 mg, 

1.14 mmol), and DIAD (224 μL, 1.14 mmol) in 

anhydrous THF (6 mL) to afford (RS)-18d (139 mg, 

43%), as a yellow oil. 1H NMR (401 MHz, DMSO-d6) 

δ 8.22 (s, 1H), 7.00 (s, 2H), 5.54 (ddd, J = 7.9, 4.4, 2.5 Hz, 1H), 4.52–4.38 (m, 2H), 4.21 

(dd, J = 10.4, 8.0 Hz, 1H), 3.98 (dd, J = 10.4, 4.4 Hz, 1H), 3.88–3.74 (m, 2H), 3.70 (d, J 

= 2.5 Hz, 1H), 1.17–1.13 (m, 6H), 1.11–1.06 (m, 6H). 13C NMR (101 MHz, DMSO-d6) 

δ 159.79, 153.43, 149.61, 141.51, 123.15, 77.78, 77.54, 71.98 (d, J = 11.9 Hz), 70.27 (d, 

J = 6.6 Hz), 70.24 (d, J = 6.4 Hz, 1H), 64.72 (d, J = 164.0 Hz), 45.11, 23.69 (d, J = 3.8 

Hz), 23.58–23.43 (m). 31P NMR (162 MHz, DMSO-d6) δ 20.91. HRMS (ESI) m/z 

[M+Na]+ calcd for C16H23O4N5ClNaP 438.10684, found 438.10743. 

 

Diisopropyl ((2-(2-amino-6-chloro-9H-purin-9-yl)-2-

cyclopropylethoxy)methyl)phosphonate ((RS)-18e) 

Following standard procedure E, compound (RS)-17e 

(600 mg, 2.14 mmol) reacted with 2-amino-6-

chloropurine (346 mg, 2.04 mmol), PPh3 (561 mg, 

2.14 mmol), and DIAD (420 μL, 2.14 mmol) in 

anhydrous THF (10 mL) to afford (RS)-18e (221 mg, 

25%), as a yellow oil. 1H NMR (401 MHz, DMSO-d6) 

δ 8.24 (s, 1H), 6.85 (s, 2H), 4.48–4.36 (m, 2H), 4.20 (dd, J = 10.3, 8.6 Hz, 1H), 3.91 (dd, 

J = 10.2, 3.8 Hz, 1H), 3.84–3.78 (m, 1H), 3.78–3.65 (m, 2H), 1.48 (dddd, J = 12.8, 9.8, 

7.9, 4.9 Hz, 1H), 1.16–1.11 (m, 6H), 1.09–1.03 (m, 6H), 0.71–0.59 (m, 1H), 0.52–0.39 

(m, 2H), 0.32–0.21 (m, 1H). 13C NMR (101 MHz, DMSO-d6) δ 159.59, 154.09, 149.29, 

142.18, 123.41, 72.59 (d, J = 11.7 Hz), 70.36–69.81 (m), 64.73 (d, J = 163.7 Hz), 59.35, 

23.68 (d, J = 3.8 Hz), 23.48 (d, J = 4.4 Hz), 12.01, 4.31, 3.17. 31P NMR (162 MHz, 

DMSO-d6) δ 21.18. HRMS (ESI) m/z [M+Na]+ calcd for C17H27O4N5ClNaP 454.13814, 

found 454.13776. 
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Diisopropyl ((2-(2-amino-6-chloro-9H-purin-9-yl)-2-

methoxyethoxy)methyl)phosphonate ((RS)-19) 

Following standard procedure C, compound 15b 

(284 mg, 1.00 mmol) reacted with 2-amino-6-

chloropurine (170 mg, 1.00 mmol), Ac2O (94 μL, 

1.00 mmol), and TMSOTf (271 μL, 1.50 mmol) to 

afford (RS)-19 (101 mg, 24%) as a colorless oil. 1H 

NMR (401 MHz, DMSO-d6) δ 10.85 (s, 1H), 8.65 (s, 

1H), 5.79 (dd, J = 7.2, 4.9 Hz, 1H), 4.50–4.37 (m, 2H), 4.23 (dd, J = 10.6, 7.2 Hz, 1H), 

4.08 (td, J = 10.6, 4.9 Hz, 1H), 3.87–3.74 (m, 2H), 3.27 (s, 3H), 2.21 (s, 3H), 1.17–1.10 

(m, 6H), 1.09–1.03 (m, 6H). 13C NMR (101 MHz, DMSO-d6) δ 169.29, 153.49, 152.67, 

149.69, 145.41, 127.79, 84.43, 71.47 (d, J = 12.4 Hz), 70.65 (d, J = 6.7 Hz), 70.61 (d, J 

= 6.7 Hz), 65.57 (d, J = 164.3 Hz), 56.92, 25.09, 24.12 (d, J = 3.7 Hz), 23.92 (d, J = 4.6 

Hz). HRMS (ESI) m/z [M+Na]+ calcd for C17H27O6N5ClNaP 486.12797, found 

486.12822. 

 

(R)-1-(Benzyloxy)-3-(trityloxy)propan-2-ol (20) 

To a suspension of NaH (3.79 g, 94.82 mmol) in anhydrous DMF 

(85 mL) was at 25 °C added BnOH (9.81 mL, 94.82 mmol) over the 

period of 15 min. The mixture was stirred for further 10 min at 25 °C. A solution of (R)-

glycidyl trityl ether (25.00 g, 79.02 mmol) in anhydrous DMF (40 mL) was added over 

the period of 15 min and the mixture was stirred at 100 °C for 3 h. The reaction was 

quenched with H2O and extracted with EtOAc (3 × 300 mL). Organic fractions were 

combined, washed with brine (1 × 200 mL), dried over MgSO4, and concentrated. The 

residual BnOH was removed using in vacuo distillation to afford 20 (32.93 g, 98%) as a 

white solid. 1H NMR (401 MHz, DMSO-d6) δ 7.43–7.17 (m, 20H), 4.96 (d, J = 5.5 Hz, 

1H), 4.45 (s, 2H), 3.87–3.77 (m, 1H), 3.53–3.40 (m, 2H), 3.01–2.93 (m, 2H). 13C NMR 

(101 MHz, DMSO-d6) δ 143.93, 138.50, 128.45–126.68 (m), 85.71, 72.15, 71.71, 68.67, 

65.12. HRMS (ESI) m/z [M+Na]+ calcd for C29H28O3Na 447.19307, found 447.19295. 

[α]25
D = +1.7 (c 0.356 g/100 mL, CHCl3/MeOH 1/1). 

 

(S)-9-(1-(Benzyloxy)-3-(trityloxy)propan-2-yl)-6-chloro-9H-purine ((S)-21a) 

Following standard procedure E, compound 20 (550 mg, 

1.30 mmol) reacted with 6-chloropurine (192 mg, 1.24 mmol), 

PPh3 (340 g, 1.30 mmol), and DIAD (255 µL, 1.30 mmol) in 

anhydrous THF (8 mL) to obtain (S)-21a (600 mg, 86%) as a 

white solid. 1H NMR (401 MHz, DMSO-d6) δ 8.79 (s, 1H), 

8.64 (s, 1H), 7.26–7.05 (m, 20H), 5.16–5.10 (m, 1H), 4.47 (d, J 
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= 3.4 Hz, 2H), 4.19 (dd, J = 10.4, 8.2 Hz, 1H), 3.97 (dd, J = 10.3, 5.2 Hz, 1H), 3.56 (dd, 

J = 9.9, 7.3 Hz, 1H), 3.46 (dd, J = 9.9, 3.9 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ 

151.92, 151.20, 149.02, 147.03, 143.02, 137.69, 130.95, 128.56–126.57 (m), 86.12, 

71.96, 66.83, 61.59, 56.10. HRMS (ESI) m/z [M+Na]+ calcd for C34H29O2N4ClNa 

583.18713, found 583.18640. [α]25
D = +8.9 (c 0.293 g/100 mL, CHCl3/MeOH 1/1). 

 

(S)-9-(1-(Benzyloxy)-3-(trityloxy)propan-2-yl)-6-chloro-9H-purin-2-amine ((S)-21b) 

Following standard procedure E, compound 20 (550 mg, 

1.30 mmol) reacted with 2-amino-6-chloropurine 

(210 mg, 1.24 mmol), PPh3 (340 g, 1.30 mmol), and 

DIAD (255 µL, 1.30 mmol) in anhydrous THF (8 mL) to 

obtain (S)-21b (495 mg, 69%) as a white solid. 1H NMR 

(401 MHz, DMSO-d6) δ 8.21 (s, 1H), 7.34–7.09 (m, 20H), 

6.87 (s, 2H), 4.87–4.81 (m, 1H), 4.48 (s, 2H), 4.10 (dd, J 

= 10.2, 7.7 Hz, 1H), 3.90 (dd, J = 10.2, 5.4 Hz, 1H), 3.45 (dd, J = 9.7, 7.0 Hz, 1H), 3.32–

3.25 (m, 1H). 13C NMR (101 MHz, DMSO-d6) δ 159.65, 154.36, 149.34, 143.15, 142.39, 

137.81, 128.69–126.67 (m), 123.33, 86.08, 72.02, 67.22, 62.07, 54.71. HRMS (ESI) m/z 

[M+Na]+ calcd for C34H30O2N5ClNa 598.19802, found 598.19763. [α]25
D = −10.1 (c 

0.345 g/100 mL, CHCl3/MeOH 1/1). 

 

(R)-2-(2-Amino-6-chloro-9H-purin-9-yl)-3-(benzyloxy)propan-1-ol ((R)-22) 

Compound (S)-21b (180 mg, 0.31 mmol) was stirred at 0 °C in 

DCM/TFA (2.5 mL, 4:1 ratio) for 30 min. The mixture was 

diluted with 25 mL of DCM and TFA was washed away with 

H2O (3 × 25 mL). DCM was washed with brine and dried over 

MgSO4. The residue was purified using silica gel flash 

chromatography (linear gradient elution 0–10% MeOH in 

CHCl3) to afford (R)-22 (102 mg, 99%) as a white solid. 1H 

NMR (401 MHz, DMSO-d6) δ 8.16 (s, 1H), 7.33–7.20 (m, 3H), 7.20–7.15 (m, 2H), 6.86 

(s, 2H), 5.12 (t, J = 5.4 Hz, 1H), 4.63 (ddt, J = 7.8, 6.7, 4.9 Hz, 1H), 4.49 (d, J = 12.2 Hz, 

1H), 4.44 (d, J = 12.1 Hz, 1H), 3.96–3.74 (m, 4H), 3.13–2.91 (m, 4H). 13C NMR (101 

MHz, DMSO-d6) δ 159.56, 154.38, 149.22, 142.49, 137.93, 128.23, 127.51, 127.38, 

123.37, 72.04, 67.87, 59.68, 56.59. HRMS (ESI) m/z [M+Na]+ calcd for 

C15H16O2N5ClNa 356.08847, found 356.08820. [α]25
D = +15.8 (c 0.277 g/100 mL, 

CHCl3/MeOH 1/1). 
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Diisopropyl (S)-((3-(benzyloxy)-2-(6-chloro-2-(((dimethylamino)methylene)amino)-

9H-purin-9-yl)propoxy)methyl)phosphonate ((S)-23) 

Compound (R)-22 (50 mg, 0.15 mmol) was stirred 

with DMF DMA (60 µL, 0.45 mmol) in DMF (1 mL) 

at 80 °C for 15 min. The mixture was concentrated 

and co-distilled 3 × with toluene to yield (R)-N'-(9-(1-

(benzyloxy)-3-hydroxypropan-2-yl)-6-chloro-9H-

purin-2-yl)-N,N-dimethylformimidamide (58 mg, 

99%) as a white solid which was used directly in the 

following reaction. Following standard procedure B, 

(R)-N'-(9-(1-(benzyloxy)-3-hydroxypropan-2-yl)-6-chloro-9H-purin-2-yl)-N,N-dimethyl 

formimidamide (58 mg, 0.15 mmol) reacted with n-BuLi (2.5 M in hexanes, 69 µL, 

0.17 mmol) and diisopropyl triflyloxymethanephosphonate (75 mg, 0.23 mmol) in 

anhydrous THF (1 mL) to afford (S)-23 (53 mg, 62%) as a colorless viscose oil. 1H NMR 

(400 MHz, DMSO-d6) δ 8.58 (s, 1H), 8.38 (s, 1H), 7.31–7.22 (m, 3H), 7.21–7.13 (m, 2H), 

5.00 (tt, J = 7.8, 4.6 Hz, 1H), 4.53–4.39 (m, 4H), 4.16 (dd, J = 10.4, 8.1 Hz, 1H), 4.01–

3.91 (m, 2H), 3.90–3.70 (m, 3H), 3.15 (s, 3H), 3.04 (s, 3H), 1.15–1.12 (m, 6H), 1.06 (d, 

J = 6.1 Hz, 6H). 13C NMR (101 MHz, DMSO-d6) δ 161.73, 158.45, 153.81, 148.75, 

144.09, 137.76, 128.18, 127.52, 127.38, 126.11, 72.05, 70.48 (d, J = 11.6 Hz), 70.24–

69.91 (m), 67.28, 64.77 (d, J = 163.5 Hz), 54.13, 40.45, 34.62, 23.65 (d, J = 3.7 Hz), 

23.47 (d, J = 4.4 Hz). 31P NMR (162 MHz, DMSO-d6) δ 21.04. HRMS (ESI) m/z 

[M+Na]+ calcd for C25H36O5N6ClNaP 589.20655, found 589.20581. [α]25
D = +4.9 (c 

0.061 g/100 mL, CHCl3/MeOH 1/1). 

 

Sodium ((2-(6-oxo-1,6-dihydro-9H-purin-9-yl)propoxy)methyl)phosphonate ((RS)-24a) 

Following standard procedure F, compound (RS)-10e 

(180 mg, 0.46 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(145 mg, 0.39 mmol) was stirred in anhydrous MeCN 

(3.9 mL) and TMSBr (390 μL) at 25 °C for 16 h to yield 

(RS)-24a (108 mg, 71% over 2 steps) as an off-white solid. 1H NMR (401 MHz, D2O) δ 

8.31 (s, 1H), 8.17 (s, 1H), 4.97–4.87 (m, 1H), 4.02–3.93 (m, 2H), 3.50–3.44 (m, 2H), 1.58 

(d, J = 7.1 Hz, 3H). 13C NMR (101 MHz, D2O) δ 159.23, 149.34, 145.97, 141.44, 123.90, 

75.07 (d, J = 10.3 Hz), 67.96 (d, J = 155.5 Hz), 51.93, 16.84. 31P NMR (162 MHz, D2O) 

δ 18.04. HRMS (ESI) m/z [M−H]− calcd for C9H12O5N4P 287.05508, found 287.05535. 
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Sodium ((2-(6-oxo-1,6-dihydro-9H-purin-9-yl)butoxy)methyl)phosphonate ((RS)-24b) 

Following standard procedure F, compound (RS)-10a 

(121 mg, 0.30 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(65 mg, 0.17 mmol) was stirred in anhydrous MeCN 

(1.7 mL) and TMSBr (170 μL) at 25 °C for 16 h to yield 

(RS)-24b (40 mg, 38% over 2 steps) as an off-white solid. 
1H NMR (401 MHz, D2O) δ 8.31 (s, 1H), 8.17 (s, 1H), 4.75–4.66 (m, 1H), 4.05 (dd, J = 

11.0, 7.8 Hz, 1H), 3.99 (dd, J = 11.0, 4.0 Hz, 1H), 3.49 (d, J = 8.3 Hz, 2H), 2.05–1.92 (m, 

2H), 0.79 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, D2O) δ 159.35, 149.84, 146.06, 

141.78, 123.88, 74.14, 67.72 (d, J = 156.6 Hz), 57.99, 24.49, 10.11. 31P NMR (162 MHz, 

D2O) δ 18.15. HRMS (ESI) m/z [M−H]− calcd for C10H14O5N4P 301.07073, found 

301.06995. 

 

Sodium (R)-((2-(6-oxo-1,6-dihydro-9H-purin-9-yl)butoxy)methyl)phosphonate ((R)-

24b) 

Following standard procedure F, compound (R)-10a 

(174 mg, 0.43 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivatives 

(125 mg, 0.32 mmol) was stirred in anhydrous MeCN 

(3.2 mL) and TMSBr (320 μL) at 25 °C for 16 h to yield 

(R)-24b (103 mg, 69% over 2 steps) as an off-white solid. 
1H NMR (401 MHz, D2O) δ 8.31 (s, 1H), 8.17 (s, 1H), 4.70 (dddd, J = 9.0, 7.7, 6.0, 4.3 

Hz, 1H), 4.09–3.95 (m, 2H), 3.48 (d, J = 8.3 Hz, 2H), 2.07–1.90 (m, 2H), 0.79 (t, J = 7.4 

Hz, 3H). 13C NMR (101 MHz, D2O) δ 159.47, 149.85, 146.18, 141.85, 123.88, 73.89 (d, 

J = 9.5 Hz), 69.36 (d, J = 151.2 Hz), 58.15, 24.71, 10.10. 31P NMR (162 MHz, D2O) δ 

16.23. HRMS (ESI) m/z [M−H]− calcd for C10H14O5N4P 301.07073, found 301.07027. 

[α]25
D = +3.8 (c 0.280 g/100 mL, H2O/MeOH 1/1). 

 

Sodium (R)-((3-methyl-2-(6-oxo-1,6-dihydro-9H-purin-9-

yl)butoxy)methyl)phosphonate ((R)-24c) 

Following standard procedure F, compound (R)-10b 

(235 mg, 0.56 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, 6-oxo derivatives 

(140 mg, 0.35 mmol) was stirred in anhydrous MeCN 

(3.5 mL) and TMSBr (350 μL) at 25 °C for 16 h to yield 

(R)-24c (84 mg, 42% over 2 steps) as an off-white solid. 
1H NMR (401 MHz, D2O) δ 8.33 (s, 1H), 8.17 (s, 1H), 4.49 (td, J = 8.6, 3.5 Hz, 1H), 4.16 
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(dd, J = 11.1, 8.2 Hz, 1H), 4.04 (dd, J = 11.1, 3.5 Hz, 1H), 3.56–3.47 (m, 2H), 2.34 (d of 

septets, J = 8.9, 6.7 Hz, 1H), 1.05 (d, J = 6.7 Hz, 3H), 0.72 (d, J = 6.7 Hz, 3H). 13C NMR 

(101 MHz, D2O) δ 159.39, 149.97, 146.11, 142.10, 123.64, 72.33 (d, J = 10.2 Hz), 68.68 

(d, J = 153.2 Hz), 62.12, 30.48, 19.51, 18.97. 31P NMR (162 MHz, D2O) δ 16.95. HRMS 

(ESI) m/z [M−H]− calcd for C11H16O5N4P 315.08638, found 315.08615. [α]25
D = +4.7 (c 

0.232 g/100 mL, H2O/MeOH 1/1). 

 

Sodium (S)-((3-methyl-2-(6-oxo-1,6-dihydro-9H-purin-9-

yl)butoxy)methyl)phosphonate ((S)-24c) 

Following standard procedure F, compound (S)-10b 

(209 mg, 0.50 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(135 mg, 0.30 mmol) was stirred in anhydrous MeCN 

(3.0 mL) and TMSBr (300 μL) at 25 °C for 16 h to yield 

(S)-24c (65 mg, 36% over 2 steps) as an off-white solid. 
1H NMR (401 MHz, D2O) δ 8.26 (s, 1H), 8.09 (s, 1H), 4.41 (td, J = 8.6, 3.5 Hz, 1H), 4.07 

(dd, J = 11.1, 8.2 Hz, 1H), 3.97 (dd, J = 11.1, 3.6 Hz, 1H), 3.40 (d, J = 8.3 Hz, 2H), 2.26 

(d of septets, J = 9.1, 6.8 Hz, 1H), 0.97 (d, J = 6.7 Hz, 3H), 0.65 (d, J = 6.7 Hz, 3H). 13C 

NMR (101 MHz, D2O) δ 159.45, 150.01, 146.13, 142.12, 123.66, 72.32 (d, J = 10.1 Hz), 

69.02 (d, J = 152.4 Hz), 62.15, 30.51, 19.55, 18.95. 31P NMR (162 MHz, D2O) δ 16.56. 

HRMS (ESI) m/z [M−H]− calcd for C11H16O5N4P 315.08638, found 315.08628. [α]25
D = 

−3.7 (c 0.240 g/100 mL, H2O/MeOH 1/1). 

 

Sodium (((2-(6-oxo-1,6-dihydro-9H-purin-9-yl)but-3-en-1-yl)oxy)methyl)phosphonate 

((RS)-24d) 

Following standard procedure F, compound (RS)-10f 

(209 mg, 0.52 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(70 mg, 0.18 mmol) was stirred in anhydrous MeCN 

(1.8 mL) and TMSBr (180 μL) at 25 °C for 16 h to yield 

(RS)-24d (53 mg, 30% over 2 steps) as an off-white solid. 
1H NMR (401 MHz, D2O) δ 8.32 (s, 1H), 8.16 (s, 1H), 6.18 (ddd, J = 17.3, 10.6, 5.5 Hz, 

1H), 5.45–5.40 (m, 1H), 5.39–5.33 (m, 1H), 5.13–5.05 (m, 1H), 4.18 (dd, J = 10.9, 7.8 

Hz, 1H), 4.12 (dd, J = 10.9, 4.5 Hz, 1H), 3.59 (d, J = 8.3 Hz, 2H). 13C NMR (101 MHz, 

D2O) δ 159.32, 149.42, 146.22, 142.02, 133.11, 123.94, 119.41, 73.09 (d, J = 10.3 Hz), 

68.73 (d, J = 153.3 Hz), 57.81. 31P NMR (162 MHz, D2O) δ 17.41. HRMS (ESI) m/z 

[M−H]− calcd for C10H12O5N4P 299.05508, found 299.05441. 
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Sodium (((2-(6-oxo-1,6-dihydro-9H-purin-9-yl)but-3-yn-1-yl)oxy)methyl)phosphonate 

((RS)-24e) 

Following standard procedure F, compound (RS)-10g 

(184 mg, 0.46 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(120 mg, 0.31 mmol) was stirred in anhydrous MeCN 

(3.1 mL) and TMSBr (310 μL) at 25 °C for 16 h to yield 

(RS)-24e (88 mg, 56% over 2 steps) as an off-white solid. 
1H NMR (401 MHz, D2O) δ 8.38 (s, 1H), 8.18 (s, 1H), 5.70 (ddd, J = 6.9, 4.7, 1.9 Hz, 

1H), 4.20–4.06 (m, 2H), 3.64–3.53 (m, 2H), 3.07 (d, J = 2.5 Hz, 1H). 13C NMR (101 

MHz, D2O) δ 159.25, 148.94, 146.43, 141.88, 124.12, 77.43, 77.20, 77.16, 73.85 (d, J = 

10.4 Hz), 68.96 (d, J = 154.1 Hz), 47.52. 31P NMR (162 MHz, D2O) δ 17.35. HRMS 

(ESI) m/z [M−H]− calcd for C10H10O5N4P 297.03943, found 297.03932. 

 

Sodium ((2-cyclopropyl-2-(6-oxo-1,6-dihydro-9H-purin-9-

yl)ethoxy)methyl)phosphonate ((RS)-24f) 

Following standard procedure F, compound (RS)-10c 

(100 mg, 0.24 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(90 mg, 0.23 mmol) was stirred in anhydrous MeCN 

(2.3 mL) and TMSBr (230 μL) at 25 °C for 16 h to yield 

(RS)-24f (75 mg, 87% over 2 steps) as an off-white solid. 
1H NMR (401 MHz, D2O) δ 8.39 (s, 1H), 8.15 (s, 1H), 4.20–4.08 (m, 2H), 4.05–3.98 (m, 

1H), 3.46 (d, J = 8.3 Hz, 2H), 1.58–1.48 (m, 1H), 0.82–0.73 (m, 1H), 0.60–0.47 (m, 2H), 

0.32–0.24 (m, 1H). 13C NMR (101 MHz, D2O) δ 159.67, 149.59, 146.27, 141.97, 123.84, 

73.93 (d, J = 9.5 Hz), 69.75 (d, J = 150.4 Hz), 61.62, 12.76, 5.15, 3.26. 31P NMR (162 

MHz, D2O) δ 17.82. HRMS (ESI) m/z [M−H]− calcd for C11H14O5N4P 313.07073, found 

313.07028. 

 

Sodium (R)-((2-cyclopropyl-2-(6-oxo-1,6-dihydro-9H-purin-9-

yl)ethoxy)methyl)phosphonate ((R)-24f) 

Following standard procedure F, compound (R)-10c 

(100 mg, 0.24 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(88 mg, 0.22 mmol) was stirred in anhydrous MeCN 

(2.3 mL) and TMSBr (230 μL) at 25 °C for 16 h to yield 

(R)-24f (76 mg, 88% over 2 steps) as an off-white solid. 
1H NMR (401 MHz, D2O) δ 8.38 (s, 1H), 8.15 (s, 1H), 4.18 (dd, J = 11.1, 7.7 Hz, 1H), 
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4.14–4.02 (m, 1H), 4.02–3.96 (m, 1H), 3.62–3.48 (m, 2H), 1.58–1.49 (m, 1H), 0.78 (tdd, 

J = 9.4, 4.5, 3.1 Hz, 1H), 0.57–0.47 (m, 2H), 0.29 (tdd, J = 9.3, 6.8, 4.1 Hz, 1H). 13C 

NMR (101 MHz, D2O) δ 159.33, 149.51, 146.03, 141.94, 123.83, 74.06 (d, J = 10.2 Hz), 

68.59 (d, J = 154.1 Hz), 61.55, 12.58, 5.13, 3.32. 31P NMR (162 MHz, D2O) δ 17.28. 

HRMS (ESI) m/z [M−H]− calcd for C11H14O5N4P 313.07073, found 313.07041. [α]25
D = 

+7.3 (c 0.246 g/100 mL, H2O/MeOH 1/1). 

 

Sodium ((3,3,3-trifluoro-2-(6-oxo-1,6-dihydro-9H-purin-9-

yl)propoxy)methyl)phosphonate ((RS)-24g) 

Following standard procedure F, compound (RS)-10i 

(67 mg, 0.15 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(48 mg, 0.11 mmol) was stirred in anhydrous MeCN 

(1.1 mL) and TMSBr (110 μL) at 25 °C for 16 h to yield  

(RS)-24g (24 mg, 41% over 2 steps) as an off-white solid. 1H NMR (401 MHz, D2O) δ 

8.35 (s, 1H), 8.19 (s, 1H), 4.71 (dd, J = 15.2, 4.3 Hz, 1H), 4.61 (dd, J = 15.1, 6.0 Hz, 1H), 

4.52–4.40 (m, 1H), 3.81 (dd, J = 12.3, 9.3 Hz, 1H), 3.58 (dd, J = 12.4, 9.1 Hz, 1H). 13C 

NMR (101 MHz, D2O) δ 159.42, 149.64, 146.52, 143.92, 124.87 (q, J = 250.1 Hz), 

123.29, 78.01–76.54 (m), 71.15 (d, J = 150.7 Hz), 42.76. 31P NMR (162 MHz, D2O) δ 

14.46. 19F NMR (377 MHz, D2O) δ −75.39 (d, J = 6.3 Hz). HRMS (ESI) m/z [M−H]− 

calcd for C9H9O5N4F3P 341.02681, found 341.02600. 

 

Sodium (R)-((3-(benzyloxy)-2-(6-oxo-1,6-dihydro-9H-purin-9-

yl)propoxy)methyl)phosphonate ((R)-24h) 

Following standard procedure F, compound (R)-10d 

(89 mg, 0.18 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(80 mg, 0.17 mmol) was stirred in anhydrous MeCN 

(1.7 mL) and TMSBr (170 μL) at 25 °C for 60 h to yield 

(R)-24h (22 mg, 28% over 2 steps) as a white solid (and 

(R)-24i (21 mg, 33% over 2 steps) as a white solid). 

[Note: Shorter reaction time preferentially leads to the cleavage of phosphonate esters 

while longer reaction time leads also to the product with cleaved benzyl group.] 1H NMR 

(401 MHz, D2O) δ 8.19 (s, 1H), 7.96 (s, 1H), 7.25–7.12 (m, 3H), 7.03–6.96 (m, 2H), 4.89 

(tt, J = 7.5, 4.6 Hz, 1H), 4.49 (d, J = 12.2 Hz, 1H), 4.38 (d, J = 12.2 Hz, 1H), 4.13–3.96 

(m, 4H), 3.52 (d, J = 8.5 Hz, 2H). 13C NMR (101 MHz, D2O) δ 159.16, 149.28, 145.69, 

142.30, 137.17, 128.94, 128.84, 128.68, 123.98, 73.24, 70.75 (d, J = 10.6 Hz), 69.05 (d, 

J = 153.0 Hz), 67.85, 56.63. 31P NMR (162 MHz, D2O) δ 16.57. HRMS (ESI) m/z 
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[M−H]− calcd for C16H18O6N4P 393.09694, found 393.09641. [α]25
D = +15.3 (c 

0.183 g/100 mL, H2O/MeOH 1/1). 

 

Sodium (S)-((3-(benzyloxy)-2-(6-oxo-1,6-dihydro-9H-purin-9-

yl)propoxy)methyl)phosphonate ((S)-24h) 

Following standard procedure F, compound (S)-10d 

(119 mg, 0.24 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(100 mg, 0.21 mmol) was stirred in anhydrous MeCN 

(2.1 mL) and TMSBr (210 μL) at 25 °C for 16 h to yield 

(S)-24h (32 mg, 30% over 2 steps) as an off-white solid. 
1H NMR (401 MHz, D2O) δ 8.19 (s, 1H), 7.96 (s, 1H), 

7.28–7.15 (m, 3H), 7.00–6.97 (m, 2H), 4.89 (tt, J = 7.6, 4.6 Hz, 1H), 4.50 (d, J = 12.3 Hz, 

1H), 4.38 (d, J = 12.2 Hz, 1H), 4.11–3.96 (m, 4H), 3.53 (d, J = 8.4 Hz, 2H). 13C NMR 

(101 MHz, D2O) δ 149.29, 145.69, 142.30, 137.18, 128.94, 128.84, 128.69, 123.98, 

73.25, 70.76 (d, J = 10.5 Hz), 68.96 (d, J = 152.8 Hz), 67.85, 56.63. 31P NMR (162 MHz, 

D2O) δ 16.68. HRMS (ESI) m/z [M−H]− calcd for C16H18O6N4P 393.09694, found 

393.09663. [α]25
D = −5.4 (c 0.239 g/100 mL, H2O/MeOH 1/1). 

 

Sodium (R)-((3-hydroxy-2-(6-oxo-1,6-dihydro-9H-purin-9-

yl)propoxy)methyl)phosphonate ((R)-24i) 

Following standard procedure F, compound (R)-10d 

(89 mg, 0.18 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(80 mg, 0.17 mmol) was stirred in anhydrous MeCN 

(1.7 mL) and TMSBr (170 μL) at 25 °C for 60 h to yield 

(R)-24i (21 mg, 33% over 2 steps) as a white solid (and 

(R)-24h (22 mg, 28% over 2 steps) as a white solid). [Note: Shorter reaction time 

preferentially leads to the cleavage of phosphonate esters while longer reaction time leads 

also to the derivative with cleaved benzyl group.] 1H NMR (401 MHz, D2O) δ 8.36 (s, 

1H), 8.18 (s, 1H), 4.90 (tt, J = 6.7, 4.8 Hz, 1H), 4.15–3.99 (m, 4H), 3.56 (d, J = 8.4 Hz, 

2H). 13C NMR (101 MHz, D2O) δ 159.35, 149.77, 146.21, 142.03, 123.78, 71.00 (d, J = 

10.4 Hz), 69.06 (d, J = 152.9 Hz), 61.09, 57.44. 31P NMR (162 MHz, D2O) δ 16.71. 

HRMS (ESI) m/z [M−H]− calcd for C9H12O6N4P 303.04999, found 303.04962. [α]25
D = 

+3.7 (c 0.214 g/100 mL, H2O/MeOH 1/1). 
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Sodium ((2-methoxy-2-(6-oxo-1,6-dihydro-9H-purin-9-yl)ethoxy)methyl)phosphonate 

((RS)-24j) 

Following standard procedure H, compound (RS)-10j 

(281 mg, 0.69 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(150 mg, 0.39 mmol) was stirred in anhydrous pyridine 

(3.9 mL) and TMSBr (390 μL) at 25 °C for 16 h to yield 

(RS)-24j (78 mg, 33% over 2 steps) as a white solid. 1H 

NMR (401 MHz, D2O) δ 8.25 (s, 1H), 8.12 (s, 1H), 5.80 (t, J = 5.2 Hz, 1H), 4.04 (dd, J 

= 11.0, 5.4 Hz, 1H), 3.99 (dd, J = 11.0, 5.1 Hz, 1H), 3.62–3.53 (m, 2H), 3.29 (s, 3H). 13C 

NMR (101 MHz, D2O) δ 159.33, 149.55, 146.63, 141.34, 124.30, 85.38, 72.84 (d, J = 

10.9 Hz), 68.52 (d, J = 155.0 Hz), 57.13. 31P NMR (162 MHz, D2O) δ 17.42. HRMS 

(ESI) m/z [M−H]− calcd for C9H12O6N4P 303.04999, found 303.05003. 

 

Sodium ((2-ethoxy-2-(6-oxo-1,6-dihydro-9H-purin-9-yl)ethoxy)methyl)phosphonate 

((RS)-24k) 

Following standard procedure H, compound (RS)-10k 

(555 mg, 1.32 mmol) was converted to 6-oxo derivative. 

Following standard procedure G, the 6-oxo derivative 

(250 mg, 0.62 mmol) was stirred in anhydrous pyridine 

(6.2 mL) and TMSBr (620 μL) at 25 °C for 16 h to yield 

(RS)-24k (94 mg, 20% over 2 steps) as an off-white solid. 
1H NMR (401 MHz, D2O) δ 8.35 (s, 1H), 8.19 (s, 1H), 

5.98 (t, J = 5.1 Hz, 1H), 4.14–4.02 (m, 2H), 3.72–3.66 (m, 1H), 3.66–3.61 (m, 2H), 3.52 

(dq, J = 9.5, 7.1 Hz, 1H), 1.15 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, D2O) δ 159.30, 

149.46, 146.59, 141.33, 124.15, 83.76, 73.04 (d, J = 11.1 Hz), 68.63 (d, J = 154.8 Hz), 

66.25, 14.46. 31P NMR (162 MHz, D2O) δ 17.31. HRMS (ESI) m/z [M−H]− calcd for 

C10H14O6N4P 317.06564, found 317.06561. 

 

Sodium ((2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)propoxy)methyl)phosphonate 

((RS)-25a) 

Following standard procedure F, compound (RS)-18a 

(219 mg, 0.54 mmol) was converted to 6-oxo 

derivative. Following standard procedure G, the 6-oxo 

derivative (160 mg, 0.41 mmol) was stirred in 

anhydrous MeCN (4.1 mL) and TMSBr (410 μL) at 25 

°C for 16 h to yield (RS)-25a (115 mg, 61% over 2 steps) as a white solid. 1H NMR (401 

MHz, D2O) δ 7.97 (d, J = 0.5 Hz, 1H), 4.74–4.64 (m, 1H), 3.94 (dd, J = 10.8, 7.5 Hz, 



99 

 

1H), 3.89 (dd, J = 10.8, 4.6 Hz, 1H) 3.63–3.52 (m, 1H), 1.50 (d, J = 7.0 Hz, 3H). 13C 

NMR (101 MHz, D2O) δ 159.60, 154.20, 152.02, 138.99, 116.46, 75.06 (d, J = 10.0 Hz), 

68.55 (d, J = 153.9 Hz), 50.87, 17.01. 31P NMR (162 MHz, D2O) δ 17.32. HRMS (ESI) 

m/z [M−H]− calcd for C9H13O5N5P 302.06598, found 302.06579. 

 

Sodium ((2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)butoxy)methyl)phosphonate 

((RS)-25b) 

Following standard procedure F, compound (RS)-18b 

(327 mg, 0.78 mmol) was converted to 6-oxo 

derivative. Following standard procedure G, the 6-oxo 

derivative (269 mg, 0.67 mmol) was stirred in 

anhydrous MeCN (6.7 mL) and TMSBr (670 μL) at 

25 °C for 16 h to yield (RS)-25b (161 mg, 57% over 2 

steps) as a white solid. 1H NMR (401 MHz, D2O) δ 7.97 (s, 1H), 4.50 (dddd, J = 8.9, 7.6, 

6.0, 4.1 Hz, 1H), 4.04–3.87 (m, 2H), 3.67–3.52 (m, 2H), 2.00–1.81 (m, 2H), 0.80 (t, J = 

7.4 Hz, 3H). 13C NMR (101 MHz, D2O) δ 159.65, 154.24, 152.60, 139.38, 116.42, 74.23 

(d, J = 10.3 Hz), 67.93 (d, J = 156.1 Hz), 56.88, 24.44, 10.08. 31P NMR (162 MHz, D2O) 

δ 18.04. HRMS (ESI) m/z [M−H]− calcd for C10H15O5N5P 316.08163, found 316.08138. 

 

Sodium (R)-((2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)butoxy)methyl)phosphonate 

((R)-25b) 

Following standard procedure F, compound (R)-11 

(252 mg, 0.53 mmol) was converted to 6-oxo-2-

amino derivative. Following standard procedure G, 

the 6-oxo-2-amino derivative (160 mg, 0.40 mmol) 

was stirred in anhydrous MeCN (4.0 mL) and TMSBr 

(400 μL) at 25 °C for 16 h to yield (R)-25b (55 mg, 

29% over 2 steps) as a white solid. 1H NMR (401 MHz, D2O) δ 7.98 (s, 1H), 4.56–4.44 

(m, 1H), 4.03–3.89 (m, 2H), 3.49 (d, J = 8.3 Hz, 2H), 2.00–1.79 (m, 2H), 0.78 (t, J = 7.4 

Hz, 3H). 13C NMR (101 MHz, D2O) δ 159.76, 154.34, 152.57, 139.39, 116.45, 73.99 (d, 

J = 9.5 Hz), 69.59 (d, J = 150.1 Hz), 57.04, 24.68, 10.03. 31P NMR (162 MHz, D2O) δ 

16.04. HRMS (ESI) m/z [M−H]−calcd for C10H15O5N5P 316.08163, found 316.08124. 

[α]25
D = +23.4 (c 0.513 g/100 mL, H2O/MeOH 1/1). 
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Sodium (((2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)but-3-en-1-

yl)oxy)methyl)phosphonate ((RS)-25c) 

Following standard procedure F, compound (RS)-18c 

(167 mg, 0.40 mmol) was converted to 6-oxo 

derivative. Following standard procedure G, the 6-oxo 

derivative (52 mg, 0.13 mmol) was stirred in 

anhydrous MeCN (1.3 mL) and TMSBr (130 μL) at 

25 °C for 16 h to yield (RS)-25c (37 mg, 26% over 2 

steps) as a white solid. 1H NMR (401 MHz, D2O) δ 7.99 (s, 1H), 6.11 (ddd, J = 17.2, 

10.6, 5.2 Hz, 1H), 5.33 (dd, J = 10.7, 1.7 Hz, 1H), 5.21 (dtt, J = 8.1, 4.8, 1.8 Hz, 1H), 

5.03 (dd, J = 17.3, 1.7 Hz, 1H), 4.12 (dd, J = 10.9, 7.8 Hz, 1H), 4.06 (dd, J = 10.9, 4.6 

Hz, 1H), 3.68–3.59 (m, 2H). 13C NMR (101 MHz, D2O) δ 159.58, 154.31, 152.14, 

139.52, 133.42, 118.97, 116.39, 73.13 (d, J = 10.2 Hz), 68.37 (d, J = 154.6 Hz), 56.77.  

31P NMR (162 MHz, D2O) δ 17.36. HRMS (ESI) m/z [M−H]− calcd for C10H13O5N5P 

314.06598, found 314.06576. 

 

Sodium (((2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)but-3-yn-1-

yl)oxy)methyl)phosphonate ((RS)-25d) 

Following standard procedure F, compound (RS)-18d 

(166 mg, 0.40 mmol) was converted to 6-oxo 

derivative. Following standard procedure G, the 6-oxo 

derivative (55 mg, 0.14 mmol) was stirred in 

anhydrous MeCN (1.4 mL) and TMSBr (140 μL) at 

25 °C for 16 h to yield (RS)-25d (38 mg, 27% over 2 

steps) as a white solid. 1H NMR (401 MHz, D2O) δ 8.06 (s, 1H), 5.48 (ddd, J = 7.0, 4.8, 

2.5 Hz, 1H), 4.16–4.03 (m, 2H), 3.73–3.56 (m, 2H), 3.02 (d, J = 2.5 Hz, 1H). 13C NMR 

(101 MHz, D2O) δ 159.53, 154.41, 151.63, 139.33, 116.44, 78.01, 76.71, 73.73 (d, J = 

10.3 Hz), 69.15 (d, J = 152.6 Hz), 46.53. 31P NMR (162 MHz, D2O) δ 16.59. HRMS 

(ESI) m/z [M−H]− calcd for C10H11O5N5P 312.05033, found 312.05008. 

 

Sodium ((2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-2-cyclopropylethoxy)methyl)-

phosphonate ((RS)-25e) 

Following standard procedure F, compound (RS)-18e 

(181 mg, 0.42 mmol) was converted to 6-oxo 

derivative. Following standard procedure G, the 6-oxo 

derivative (125 mg, 0.30 mmol) was stirred in 

anhydrous MeCN (3.0 mL) and TMSBr (300 μL) at 

25 °C for 16 h to yield (RS)-25e (78 mg, 50% over 2 

steps) as a white solid. 1H NMR (401 MHz, D2O) δ 8.06 (s, 1H), 4.15–3.99 (m, 2H), 3.82 
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(ddd, J = 9.9, 7.6, 4.0 Hz, 1H), 3.68–3.50 (m, 2H), 1.46 (dtt, J = 10.0, 7.9, 5.0 Hz, 1H), 

0.85–0.70 (m, 1H), 0.54–0.47 (m, 2H), 0.33–0.22 (m, 1H). 13C NMR (101 MHz, D2O) δ 

152.10, 139.67, 116.27, 74.21 (d, J = 10.1 Hz), 68.28 (d, J = 155.2 Hz), 60.43, 12.47, 

5.05, 3.16. 31P NMR (162 MHz, D2O) δ 17.73. HRMS (ESI) m/z [M−H]− calcd for 

C11H15O5N5P 328.08163, found 328.08163. 

 

Sodium ((2-(2-amino-6-oxo-1,6-dihydro-9H-purin-9-yl)-2-

methoxyethoxy)methyl)phosphonate ((RS)-25f) 

Following standard procedure H, compound (RS)-19 

(76 mg, 0.18 mmol) was converted to 6-oxo 

derivative. Following standard procedure G, 6-oxo 

derivative (30 mg, 0.07 mmol) was stirred in 

anhydrous pyridine (0.7 mL) and TMSBr (70 μL) at 

25 °C for 16 h to yield (RS)-25f (7 mg, 11% over 2 

steps) as a white solid. 1H NMR (401 MHz, D2O) δ 7.99 (s, 1H), 5.68 (t, J = 5.3 Hz, 1H), 

4.15–3.95 (m, 2H), 3.70–3.60 (m, 2H), 3.34 (s, 3H). 13C NMR (101 MHz, D2O) δ 159.70, 

152.41, 138.91, 116.70, 84.54, 72.79 (d, J = 10.7 Hz), 68.56 (d, J = 155.2 Hz), 56.86. 31P 

NMR (162 MHz, D2O) δ 17.43. HRMS (ESI) m/z [M−H]− calcd for C9H13O6N5P 

318.06089, found 318.06067. 

 

Sodium ((2-(adenin-9-yl)propoxy)methyl)phosphonate ((RS)-26a)48 

Following standard procedure K, compound (RS)-10e 

(156 mg, 0.40 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (115 mg, 0.31 mmol) was stirred in anhydrous 

MeCN (3.1 mL) and TMSBr (310 μL) at 25 °C for 16 h to 

yield (RS)-26a (81 mg, 61% over 2 steps) as an off-white solid. 1H NMR (500 MHz, 

D2O) δ 8.28 (s, 1H), 8.15 (s, 1H), 4.87 (pd, J = 7.1, 4.2 Hz, 1H), 4.02 (dd, J = 10.9, 7.5 

Hz, 1H), 3.93 (dd, J = 10.9, 4.2 Hz, 1H), 3.61–3.54 (m, 2H), 1.57 (d, J = 7.0 Hz, 3H). 13C 

NMR (126 MHz, D2O) δ 155.85, 152.52, 149.27, 141.74, 119.01, 74.83 (d, J = 10.5 Hz), 

68.21 (d, J = 155.3 Hz), 51.64, 16.87. 31P NMR (202 MHz, D2O) δ 15.74. HRMS (ESI) 

m/z [M−H]− calcd for C9H13O4N5P 286.07106, found 286.07097. 
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Sodium ((2-(adenin-9-yl)butoxy)methyl)phosphonate ((RS)-26b) 

Following standard procedure K, compound (RS)-10a 

(134 mg, 0.33 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (40 mg, 0.10 mmol) was stirred in anhydrous 

MeCN (1.0 mL) and TMSBr (100 μL) at 25°C for 16 h to 

yield (RS)-26b (29 mg, 25 % over 2 steps) as an off-white 

solid. 1H NMR (401 MHz, D2O) δ 8.31 (s, 1H), 8.21 (s, 1H), 4.72–4.64 (m, 1H), 4.09 

(dd, J = 11.0, 7.8 Hz, 1H), 3.96 (dd, J = 11.0, 3.9 Hz, 1H), 3.66–3.52 (m, 2H), 2.05–1.93 

(m, 2H), 0.79 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, D2O) δ 155.54, 151.99, 149.78, 

142.40, 119.01, 73.95 (d, J = 10.8 Hz), 67.77 (d, J = 156.3 Hz), 57.76, 24.44, 10.11. 31P 

NMR (162 MHz, D2O) δ 18.13. HRMS (ESI) m/z [M-H]- calcd for C10H15O4N5P 

300.08671, found 300.08696. 

 

Sodium (R)-((2-(adenin-9-yl)butoxy)methyl)phosphonate ((R)-26b) 

Following standard procedure K, compound (R)-10a 

(328 mg, 0.81 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (250 mg, 0.65 mmol) was stirred in anhydrous 

MeCN (6.5 mL) and TMSBr (650 μL) at 25°C for 16 h to 

yield (R)-26b (185 mg, 66 % over 2 steps) as an off-white 

solid. 1H NMR (401 MHz, D2O) δ 8.31 (s, 1H), 8.19 (s, 1H), 4.72–4.61 (m, 1H), 4.07 

(dd, J = 11.0, 7.8 Hz, 1H), 3.97 (dd, J = 11.0, 4.1 Hz, 1H), 3.52 (d, J = 8.3 Hz, 2H), 2.06–

1.90 (m, 2H), 0.78 (t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, D2O) δ 156.10, 152.79, 

149.83, 142.24, 119.06, 73.85 (d, J = 10.0 Hz), 68.88 (d, J = 153.1 Hz), 57.78, 24.58, 

10.14. 31P NMR (162 MHz, D2O) δ 16.86. HRMS (ESI) m/z [M-H]- calcd for 

C10H15O4N5P 300.08671, found 300.08661. [α]25
D = + 6.5 (c 0.294 g/100 mL, 

H2O/MeOH 1/1). 

 

Sodium (R)-((2-(Adenin-9-yl)-3-methylbutoxy)methyl)phosphonate ((R)-26c) 

Following standard procedure K, compound (R)-10b 

(209 mg, 0.50 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (120 mg, 0.30 mmol) was stirred in anhydrous 

MeCN (3.0 mL) and TMSBr (300 μL) at 25°C for 16 h to 

yield (R)-26c (85 mg, 47 % over 2 steps) as an off-white 

solid. 1H NMR (401 MHz, D2O) δ 8.36 (s, 1H), 8.20 (s, 1H), 4.54–4.39 (m, 1H), 4.17 

(dd, J = 11.1, 8.1 Hz, 1H), 4.03 (dd, J = 11.0, 3.4 Hz, 1H), 3.50 (d, J = 7.7 Hz, 2H), 2.41–
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2.27 (m, 1H), 1.04 (d, J = 6.7 Hz, 3H), 0.70 (d, J = 6.7 Hz, 3H). 13C NMR (101 MHz, 

D2O) δ 156.19, 152.86, 149.57, 142.56, 72.29 (d, J = 9.5 Hz), 68.94 (d, J = 153.1 Hz), 

61.82, 30.42, 19.56, 19.01. 31P NMR (162 MHz, D2O) δ 16.78. HRMS (ESI) m/z [M-H]- 

calcd for C11H17O4N5P 314.10236, found 314.10231. [α]25
D = + 8.4 (c 0.380 g/100 mL, 

H2O/MeOH 1/1). 

 

Sodium (S)-((2-(Adenin-9-yl)-3-methylbutoxy)methyl)phosphonate ((S)-26c) 

Following standard procedure K, compound (S)-10b 

(209 mg, 0.50 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (120 mg, 0.30 mmol) was stirred in anhydrous 

MeCN (3.0 mL) and TMSBr (300 μL) at 25°C for 16 h to 

yield (S)-26c (80 mg, 44 % over 2 steps) as an off-white 

solid. 1H NMR (401 MHz, D2O) δ 8.36 (s, 1H), 8.21 (s, 1H), 4.50–4.41 (m, 1H), 4.16 

(dd, J = 11.1, 8.2 Hz, 1H), 4.03 (dd, J = 11.1, 3.5 Hz, 1H), 3.47 (d, J = 8.3 Hz, 2H), 2.41–

2.28 (m, 1H), 1.05 (d, J = 6.7 Hz, 3H), 0.71 (d, J = 6.7 Hz, 3H). 13C NMR (101 MHz, 

D2O) δ 156.25, 152.92, 150.12, 142.57, 118.30, 72.28 (d, J = 9.7 Hz), 69.16 (d, J = 151.9 

Hz), 61.85, 30.43, 19.59, 19.00. 31P NMR (162 MHz, D2O) δ 16.47. HRMS (ESI) m/z 

[M-H]- calcd for C11H17O4N5P 314.10236, found 314.10223. [α]25
D = – 3.5 (c 

0.317 g/100 mL, H2O/MeOH 1/1).  

 

Sodium (((2-(Adenin-9-yl)but-3-en-1-yl)oxy)methyl)phosphonate ((RS)-26d) 

Following standard procedure K, compound (RS)-10f 

(205 mg, 0.51 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (70 mg, 0.18 mmol) was stirred in anhydrous 

MeCN (1.8 mL) and TMSBr (180 μL) at 25°C for 16 h to 

yield (RS)-26d (50 mg, 29 % over 2 steps) as an off-white 

solid. 1H NMR (401 MHz, D2O) δ 8.30 (s, 1H), 8.14 (s, 1H), 6.15 (ddd, J = 17.3, 10.5, 

5.5 Hz, 1H), 5.40–5.36 (m, 1H), 5.34 (dd, J = 10.5, 1.7 Hz, 1H), 5.06 (dd, J = 17.3, 1.7 

Hz, 1H), 4.20 (dd, J = 10.9, 7.9 Hz, 1H), 4.10 (dd, J = 11.0, 4.3 Hz, 1H), 3.71–3.60 (m, 

2H). 13C NMR (101 MHz, D2O) δ 155.75, 152.52, 149.31, 142.22, 133.00, 119.34, 

118.88, 73.04 (d, J = 11.0 Hz), 67.93 (d, J = 155.5 Hz), 57.51. 31P NMR (162 MHz, D2O) 

δ 17.84. HRMS (ESI) m/z [M-H]- calcd for C10H13O4N5P 298.07106, found 298.07114. 
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Sodium (((2-(adenin-9-yl)but-3-yn-1-yl)oxy)methyl)phosphonate ((RS)-26e) 

Compound (RS)-10g (236 mg, 0.59 mmol) and 

p-methoxybenzylamine were stirred in MeOH at 50°C for 

2 h. The mixture was concentrated, then dissolved in TFA 

and stirred at 50°C for 48 h. The mixture was concentrated, 

co-distilled with H2O twice and with EtOH once. The 

residue was separated using silica gel chromatography 

(linear gradient elution 0–20 % MeOH in CHCl3) to obtain 6-amino derivative. Following 

standard procedure G, the 6-amino derivative (130 mg, 0.34 mmol) was stirred in 

anhydrous MeCN (3.4 mL) and TMSBr (340 μL) at 25°C for 16 h to yield (RS)-26e 

(55 mg, 27 % over 3 steps) as an off-white solid. 1H NMR (401 MHz, D2O) δ 8.36 (s, 

1H), 8.19 (d, J = 1.0 Hz, 1H), 5.65 (ddd, J = 7.0, 4.5, 2.5 Hz, 1H), 4.17 (dd, J = 10.9, 7.0 

Hz, 1H), 4.09 (dd, J = 10.9, 4.5 Hz, 1H), 3.65–3.60 (m, 2H), 3.06 (d, J = 2.5 Hz, 1H) . 
13C NMR (101 MHz, D2O) δ 156.06, 152.92, 148.86, 142.14, 119.10, 77.45, 77.10, 73.67 

(d, J = 10.5 Hz), 68.30 (d, J = 156.0 Hz), 47.26. 31P NMR (162 MHz, D2O) δ 17.50. 

HRMS (ESI) m/z [M-H]- calcd for C10H11O4N5P 296.05541, found 296.05552. 

 

Sodium ((2-(adenin-9-yl)-2-cyclopropylethoxy)methyl)phosphonate ((RS)-26f) 

Following standard procedure K, compound (RS)-10c 

(100 mg, 0.24 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (68 mg, 0.17 mmol) was stirred in anhydrous 

MeCN (1.7 mL) and TMSBr (170 μL) at 25°C for 16 h to 

yield (RS)-26f (46 mg, 53 % over 2 steps) as a white solid. 
1H NMR (401 MHz, D2O) δ 8.39 (s, 1H), 8.20 (s, 1H), 4.20 (dd, J = 10.6, 8.0 Hz, 1H), 

4.08 (dd, J = 10.6, 3.6 Hz, 1H), 4.01–3.94 (m, 1H), 3.56 (d, J = 6.8 Hz, 2H), 1.61–1.48 

(m, 1H), 0.82–0.72 (m, 1H), 0.60–0.48 (m, 2H), 0.37–0.22 (m, 1H). 13C NMR (101 MHz, 

D2O) δ 156.01, 152.87, 149.49, 142.50, 119.31, 73.96 (d, J = 11.1 Hz), 61.22, 12.49, 5.05, 

3.29. 31P NMR (162 MHz, D2O) δ 15.89. HRMS (ESI) m/z [M-H]- calcd for 

C11H15O4N5P 312.08671, found 312.08661. 

 

Sodium (R)-((2-(adenin-9-yl)-2-cyclopropylethoxy)methyl)phosphonate ((R)-26f) 

Following standard procedure K, compound (R)-10c 

(258 mg, 0.62 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (200 mg, 0.50 mmol) was stirred in anhydrous 

MeCN (5.0 mL) and TMSBr (500 μL) at 25°C for 16 h to 

yield (R)-26f (153 mg, 69 % over 2 steps) as an off-white 
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solid. 1H NMR (401 MHz, D2O) δ 8.29 (s, 1H), 8.08 (s, 1H), 4.10 (dd, J = 11.0, 7.7 Hz, 

1H), 3.99 (dd, J = 11.0, 3.8 Hz, 1H), 3.94–3.84 (m, 1H), 3.44 (d, J = 8.4 Hz, 2H), 1.55–

1.38 (m, 1H), 0.74–0.62 (m, 1H), 0.50–0.35 (m, 2H), 0.24–0.12 (m, 1H). 13C NMR (101 

MHz, D2O) δ 156.05, 152.73, 149.54, 142.34, 119.01, 73.93 (d, J = 10.3 Hz), 68.74 (d, J 

= 154.0 Hz), 61.21, 12.58, 5.02, 3.29. 31P NMR (162 MHz, D2O) δ 17.17. HRMS (ESI) 

m/z [M-H]- calcd for C11H15O4N5P 312.08671, found 312.08679. [α]25
D = + 13.0 (c 

0.261 g/100 mL, H2O/MeOH 1/1). 

 

Sodium ((2-(adenin-9-yl)-3,3,3-trifluoropropoxy)methyl)phosphonate ((RS)-26g) 

Following standard procedure K, compound (RS)-10i 

(70 mg, 0.16 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (32 mg, 0.08 mmol) was stirred in anhydrous 

MeCN (0.8 mL) and TMSBr (80 μL) at 25°C for 16 h to 

yield (RS)-26g (26 mg, 42 % over 2 steps) as an off-white solid. 1H NMR (401 MHz, 

D2O) δ 8.35 (s, 1H), 8.21 (s, 1H), 4.67 (dd, J = 15.1, 4.1 Hz, 1H), 4.57 (dd, J = 15.1, 6.2 

Hz, 1H), 4.48–4.36 (m, 1H), 3.81 (dd, J = 12.2, 9.4 Hz, 1H), 3.55 (dd, J = 12.2, 9.3 Hz, 

1H). 13C NMR (101 MHz, D2O) δ 156.16, 153.10, 149.59, 144.16, 124.71 (d, J = 284.1 

Hz), 118.67, 77.46–76.93 (m), 71.03 (d, J = 151.2 Hz), 42.46. 19F NMR (377 MHz, D2O) 

δ -75.41 (d, J = 6.0 Hz). 31P NMR (162 MHz, D2O) δ 14.65. HRMS (ESI) m/z [M-H]- 

calcd for C9H10O4N5F3P 340.04280, found 340.04263. 

 

Sodium (R)-((2-(adenin-9-yl)-3-(benzyloxy)propoxy)methyl)phosphonate ((R)-26h) 

Following standard procedure K, compound (R)-10d 

(65 mg, 0.13 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (50 mg, 0.10 mmol) was stirred in anhydrous 

MeCN (1.0 mL) and TMSBr (100 μL) at 25°C for 16 h 

to yield (R)-26h (32 mg, 56 % over 2 steps) as an off-

white solid.  1H NMR (401 MHz, D2O) δ 8.21 (s, 1H), 

8.00 (s, 1H), 7.18–7.07 (m, 3H), 6.95–6.90 (m, 2H), 4.91–4.83 (m, 1H), 4.42 (dd, J = 

41.4, 12.3 Hz, 2H), 4.12–3.97 (m, 4H), 3.49–3.43 (m, 2H). 13C NMR (101 MHz, D2O) δ 

156.00, 152.47, 149.29, 142.66, 137.00, 128.89–128.49 (m), 119.18, 73.16, 70.56 (d, J = 

2.6 Hz), 69.86 (d, J = 157.7 Hz), 67.63, 56.35. 31P NMR (162 MHz, D2O) δ 15.73. HRMS 

(ESI) m/z [M-H]- calcd for C16H18O5N5NaP 414.09487, found 414.09406. [α]25
D = + 10.2 

(c 0.254 g/100 mL, H2O/MeOH 1/1). 

 

 



106 

 

Sodium (S)-((2-(adenin-9-yl)-3-(benzyloxy)propoxy)methyl)phosphonate ((S)-26h) 

Following standard procedure K, compound (S)-10d 

(184 mg, 0.37 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (160 mg, 0.34 mmol) was stirred in anhydrous 

MeCN (3.4 mL) and TMSBr (340 μL) at 25°C for 16 h 

to yield (S)-26h (114 mg, 70 % over 2 steps) as an off-

white solid. 1H NMR (401 MHz, D2O) δ 8.21 (s, 1H), 

8.02 (s, 1H), 7.22–7.10 (m, 3H), 6.98–6.92 (m, 2H), 4.92–4.84 (m, 1H), 4.43 (dd, J = 

40.7, 12.2 Hz, 2H), 4.12–3.98 (m, 4H), 3.50 (dd, J = 8.5, 1.1 Hz, 2H). 13C NMR (101 

MHz, D2O) δ 156.02, 152.51, 149.34, 142.59, 137.08, 128.86–128.61 (m), 119.15, 73.19, 

70.71 (d, J = 10.6 Hz), 69.25 (d, J = 152.4 Hz), 67.72, 56.24. 31P NMR (162 MHz, D2O) 

δ 16.39. HRMS (ESI) m/z [M+Na]+ calcd for C16H20O5N5NaP 416.10943, found 

416.10931. [α]25
D = – 8.8 (c 0.295 g/100 mL, H2O/MeOH 1/1). 

 

Sodium ((2-(adenin-9-yl)-3-hydroxypropoxy)methyl)phosphonate ((RS)-26i)120 

Following standard procedure K, compound (RS)-10h 

(143 mg, 0.28 mmol) was converted to the 6-amino 

derivative. Following standard procedure G, the 6-amino 

derivative (55 mg, 0.14 mmol) was stirred in anhydrous 

MeCN (1.4 mL) and TMSBr (140 μL) at 25°C for 16 h to 

yield (RS)-26i (36 mg, 37 % over 2 steps) as a white solid. 
1H NMR (401 MHz, D2O) δ 8.32 (s, 1H), 8.14 (s, 1H), 4.91–4.82 (m, 1H), 4.09–3.90 (m, 

4H), 3.65 (d, J = 8.7 Hz, 2H). 13C NMR (101 MHz, D2O) δ 155.70, 152.52, 149.58, 

142.23, 118.75, 71.10 (d, J = 11.7 Hz), 68.12 (d, J = 155.5 Hz), 60.95, 57.18. 31P NMR 

(162 MHz, D2O) δ 15.85. HRMS (ESI) m/z [M-H]- calcd for C9H13O5N5P 302.06598, 

found 302.06592. 

 

Sodium (R)-((adenin-9-yl)-3-hydroxypropoxy)methyl)phosphonate ((R)-26i) 

Following standard procedure K, compound (R)-10d 

(243 mg, 0.49 mmol) was converted to the 6-amino 

derivative. This compound (186 mg, 0.39 mmol) was 

dissolved in AcOH and catalytic amount of Pd/C was added 

under the stream of argon. The mixture was stirred under 

H2 atmosphere at 25°C for 1 h. The mixture was filtered, 

concentrated, co-distilled twice with H2O, to afford deprotected hydroxy derivative. 

Following standard procedure G, the 6-amino derivative (150 mg, 0.39 mmol) was stirred 

in anhydrous MeCN (3.9 mL) and TMSBr (390 μL) at 25°C for 16 h to yield (R)-26i 
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(46 mg, 27 % over 3 steps) as an off-white solid.  1H NMR (401 MHz, D2O) δ 8.39 (s, 

1H), 8.21 (s, 1H), 4.90–4.82 (m, 1H), 4.16–3.98 (m, 4H), 3.51 (d, J = 8.3 Hz, 2H). 13C 

NMR (101 MHz, D2O) δ 156.16, 152.95, 149.76, 142.45, 118.95, 70.86 (d, J = 9.8 Hz), 

69.72 (d, J = 150.6 Hz), 60.98, 57.08. 31P NMR (162 MHz, D2O) δ 16.03. HRMS (ESI) 

m/z [M-H]- calcd for C9H13O5N5P 302.06598, found 302.06591. [α]25
D = + 7.6 (c 

0.261 g/100 mL, H2O/MeOH 1/1). 

 

Sodium ((2-(adenin-9-yl)-2-methoxyethoxy)methyl)phosphonate ((RS)-26j) 

Following standard procedure K, compound (RS)-10j 

(480 mg, 1.18 mmol) was converted to the 6-amino 

derivative which was separated to (R) and (S) enantiomers 

using chiral HPLC (isocratic elution, 78:22 

n-heptane/iPrOH containing 0.3% of DEA, YMC CHIRAL 

ART Cellulose SC (5 μm, 20 × 250 mm) column). 

Following standard procedure G, the racemic 6-amino derivative (320 mg, 0.83 mmol) 

was stirred in anhydrous pyridine (8.3 mL) and TMSBr (830 μL) at 25°C for 16 h to yield 

(RS)-26j (207 mg, 50 % over 2 steps) as an off-white solid. The (R) and (S) enantiomers 

were prepared in the same manner in 63% and 63% yield, respectively. 

Spectral data and characterization of (RS)-26j: 

1H NMR (401 MHz, D2O) δ 8.34 (s, 1H), 8.11 (s, 1H), 5.84 (t, J = 5.1 Hz, 1H), 4.20–

4.11 (m, 2H), 3.82 (d, J = 8.7 Hz, 2H), 3.33 (s, 3H). 13C NMR (101 MHz, D2O) δ 155.26, 

152.36, 149.25, 141.49, 118.62, 84.80, 72.68 (d, J = 11.7 Hz), 68.42 (d, J = 156.3 Hz), 

57.17. 31P NMR (162 MHz, D2O) δ 15.79. HRMS (ESI) m/z [M-H]- calcd for 

C9H13O5N5P 302.06598, found 302.06584. 

Spectral data and characterization of (R)-26j: 

1H NMR (401 MHz, D2O) δ 8.39 (s, 1H), 8.23 (s, 1H), 5.86 (dd, J = 5.6, 4.6 Hz, 1H), 

4.11 (dd, J = 10.9, 5.6 Hz, 1H), 4.04 (dd, J = 10.9, 4.7 Hz, 1H), 3.54 (d, J = 8.6 Hz, 2H), 

3.34 (s, 3H). 13C NMR (101 MHz, D2O) δ 156.32, 153.38, 149.72, 141.71, 119.13, 84.85, 

72.77 (d, J = 11.0 Hz), 70.22 (d, J = 149.7 Hz), 56.95. 31P NMR (162 MHz, D2O) δ 15.52. 

HRMS (ESI) m/z [M-H]- calcd for C9H13O5N5P 302.06598, found 302.06565. [α]25
D = + 

14.3 (c 0.300 g/100 mL, H2O/MeOH 1/1). 

Spectral data and characterization of (S)-26j: 

1H NMR (401 MHz, D2O) δ 8.39 (s, 1H), 8.23 (s, 1H), 5.86 (dd, J = 5.6, 4.6 Hz, 1H), 

4.11 (dd, J = 10.9, 5.6 Hz, 1H), 4.03 (dd, J = 10.9, 4.6 Hz, 1H), 3.54 (d, J = 8.6 Hz, 2H), 

3.34 (s, 3H). 13C NMR (101 MHz, D2O) δ 156.31, 153.37, 149.71, 141.71, 119.11, 84.85, 

72.77 (d, J = 11.0 Hz), 70.25 (d, J = 149.7 Hz), 56.95. 31P NMR (162 MHz, D2O) δ 15.50. 
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HRMS (ESI) m/z [M-H]- calcd for C9H13O5N5P 302.06598, found 302.06550. [α]25
D = – 

7.5 (c 0.279 g/100 mL, H2O/MeOH 1/1). 

 

Sodium ((2-(adenin-9-yl)-2-ethoxyethoxy)methyl)phosphonate ((RS)-26k) 

Following standard procedure K, compound (RS)-10k 

(105 mg, 0.25 mmol) was converted to the 6-amino 

derivative which was separated to (R) and (S) enantiomers 

using chiral HPLC (isocratic elution, 78:22 

n-heptane/iPrOH containing 0.3% of DEA, YMC CHIRAL 

ART Cellulose SC (5 μm, 20 × 250 mm) column). 

Following standard procedure G, the racemic 6-amino 

derivative (70 mg, 0.17 mmol) was stirred in anhydrous pyridine (1.7 mL) and TMSBr 

(170 μL) at 25°C for 16 h to yield (RS)-26k (21 mg, 23 % over 2 steps) as an off-white 

solid. The (R) and (S) enantiomers were prepared in the same manner in 63% and 65% 

yield, respectively. 

Spectral data and characterization of (RS)-26k: 

1H NMR (401 MHz, DMSO) δ 8.33 (s, 1H), 8.11 (s, 1H), 5.80 (t, J = 5.0 Hz, 1H), 3.98–

3.85 (m, 2H), 3.55–3.20 (m, 4H), 0.99 (t, J = 7.0 Hz, 3H). 13C NMR (101 MHz, DMSO) 

δ 156.56, 153.82, 150.35, 141.78, 119.08, 83.34, 73.12–72.71 (m), 70.31 (d, J = 151.0 

Hz), 65.90, 15.50. 31P NMR (162 MHz, DMSO) δ 14.98. HRMS (ESI) m/z [M-H]- calcd 

for C10H15O5N5P 316.08163, found 316.08194. 

Spectral data and characterization of (R)-26k: 

1H NMR (401 MHz, D2O) δ 8.40 (s, 1H), 8.22 (s, 1H), 5.95 (t, J = 5.0 Hz, 1H), 4.13–

4.01 (m, 2H), 3.72–3.62 (m, 1H), 3.58 (d, J = 8.6 Hz, 2H), 3.53–3.41 (m, 1H), 1.14 (t, J 

= 7.0 Hz, 3H). 13C NMR (101 MHz, D2O) δ 156.26, 153.32, 149.63, 141.65, 119.01, 

83.22, 73.04 (d, J = 11.0 Hz), 69.58 (d, J = 151.9 Hz), 66.07, 14.48. 31P NMR (162 MHz, 

DMSO) δ 16.28. HRMS (ESI) m/z [M-H]- calcd for C10H15O5N5P 316.08163, found 

316.08136. [α]25
D = + 14.8 (c 0.332 g/100 mL, H2O/MeOH 1/1). 

Spectral data and characterization of (S)-26k: 

1H NMR (401 MHz, D2O) δ 8.38 (s, 1H), 8.21 (s, 1H), 5.95 (t, J = 5.0 Hz, 1H), 4.13–

4.02 (m, 2H), 3.72–3.58 (m, 3H), 3.53–3.41 (m, 1H), 1.14 (t, J = 7.0 Hz, 3H). 13C NMR 

(101 MHz, D2O) δ 156.21, 153.27, 149.58, 141.60, 119.00, 83.22, 73.03 (d, J = 11.0 Hz), 

69.20 (d, J = 153.3 Hz), 66.08, 14.48. 31P NMR (162 MHz, DMSO) δ 16.73. HRMS 

(ESI) m/z [M-H]- calcd for C10H15O5N5P 316.08163, found 316.08133. [α]25
D = – 14.8 (c 

0.384 g/100 mL, H2O/MeOH 1/1). 
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Sodium (R)-((2-(6-(cyclopropylamino)-9H-purin-9-yl)butoxy)methyl)phosphonate ((R)-

27) 

Following standard procedure J, compound (R)-10a 

(36 mg, 0.09 mmol) reacted with cyclopropylamine 

(62 µL, 0.90 mmol) to afford 6-cyclopropylamine 

derivative. Following standard procedure G, the 6-

cyclopropylamine derivative (35 mg, 0.08 mmol) was 

stirred in anhydrous MeCN (0.8 mL) and TMSBr (80 μL) 

at 25 °C for 16 h to yield (R)-27 (17 mg, 49% over 2 steps) 

as a white solid. 1H NMR (401 MHz, D2O) δ 8.28 (s, 1H), 8.25 (s, 1H), 4.72–4.61 (m, 

1H), 4.09–3.92 (m, 2H), 3.49–3.40 (m, 2H), 2.86 (s, 1H), 2.09–1.90 (m, 2H), 0.99–0.85 

(m, 2H), 0.76 (t, J = 7.4 Hz, 3H), 0.70–0.61 (m, 2H). 13C NMR (101 MHz, D2O) δ 156.29, 

152.80, 141.84, 119.48, 73.84 (d, J = 9.5 Hz), 69.67 (d, J = 150.4 Hz), 57.82, 24.66, 

23.80, 10.15, 7.21. 31P NMR (162 MHz, D2O) δ 15.92. HRMS (ESI) m/z [M−H]− calcd 

for C13H19O4N5P 340.11801, found 340.11768. [α]25
D = +5.6 (c 0.324 g/100 mL, 

H2O/MeOH 1/1). 

 

Sodium (R)-((2-(2-amino-6-(cyclopropylamino)-9H-purin-9-

yl)butoxy)methyl)phosphonate ((R)-28) 

Following standard procedure J, compound (R)-5 

(200 mg, 0.42 mmol) reacted with cyclopropylamine 

(291 µL, 4.20 mmol) to afford 6-cyclopropylamine 

derivative. To cleave DMAM protecting group, the 

residue was prior to the separation dissolved in EtOH 

(2.5 mL) containing 0.25 mL conc. HCl and stirred at 

70 °C for 1h. The mixture was neutralized with KOH, 

concentrated, and separated to afford 2-amino-6-cyclopropylamine derivative. [Note: The 

yield was considerably lowered due to the formation of 6-dimethylaminopurine derivative 

(presumably originating from the unstable DMAM protecting group) which was formed 

approx. in the same amount as the desired 6-cyclopropylamine derivative. Therefore, it 

might be eligible in this case to remove DMAM group first and then introduce the 

cyclopropylamine group (or any other amine).] Following standard procedure G, 

compound 2-amino-6-cyclopropylamine derivative (50 mg, 0.11 mmol) was stirred in 

anhydrous MeCN (1.1 mL) and TMSBr (110 μL) at 25 °C for 16 h to yield (R)-28 (37 mg, 

22% over 2 steps) as a white solid. 1H NMR (401 MHz, D2O) δ 7.98 (s, 1H), 4.50 (ddd, 

J = 12.1, 8.6, 5.1 Hz, 1H), 4.01–3.87 (m, 2H), 3.51–3.42 (m, 2H), 2.84 (bs, 1H), 2.01–

1.83 (m, 2H), 0.89–0.82 (m, 2H), 0.77 (t, J = 7.5 Hz, 3H), 0.69–0.61 (m, 2H). 13C NMR 

(101 MHz, D2O) δ 160.71, 156.99, 151.53, 139.01, 113.79, 74.19 (d, J = 9.6 Hz), 69.52 

(d, J = 150.9 Hz), 56.78, 24.69, 23.79, 10.11, 7.34. 31P NMR (162 MHz, D2O) δ 16.27. 
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HRMS (ESI) m/z [M−H]− calcd for C13H20O4N6P 355.12891, found 355.12827. [α]25
D = 

+27.9 (c 0.338 g/100 mL, H2O/MeOH 1/1). 

 

Sodium (R)-((2-(6-methoxy-9H-purin-9-yl)butoxy)methyl)phosphonate ((R)-29) 

Compound (R)-10a (9 mg, 0.02 mmol) reacted with 

MeOK (4 mg, 0.06 mmol) in MeOH (0.5 mL) at 25 °C for 

2 h. The mixture was concentrated and the residue purified 

using silica gel flash chromatography (linear gradient 

elution 0–15% MeOH in CHCl3) to afford the 6-methoxy 

derivative. Following standard procedure G, the 6-

methoxy derivative (9 mg, 0.02 mmol) was stirred in anhydrous pyridine (0.2 mL) and 

TMSBr (20 μL) at 25 °C for 16 h to yield (R)-29 (7 mg, 88% over 2 steps) as a white 

solid. [Note: The synthetic sequence can be reversed, i.e. the phosphonate isopropyl esters 

can be first cleaved with TMSBr leading to 6-bromopurine derivative in only 3 h and then 

the methoxy group can be introduced to the position C6, thus forming compound (R)-29. 
1H NMR (401 MHz, D2O) δ 8.49 (s, 1H), 8.48 (s, 1H), 4.76–4.70 (m, 1H), 4.19 (s, 3H), 

4.12–3.97 (m, 2H), 3.48–3.39 (m, 2H), 2.08–1.94 (m, 2H), 0.78 (t, J = 7.4 Hz, 3H). 13C 

NMR (101 MHz, D2O) δ 161.64, 152.27, 152.17, 144.20, 121.25, 73.70 (d, J = 9.3 Hz), 

69.78 (d, J = 150.0 Hz), 58.29, 55.51, 24.62, 10.15. 31P NMR (162 MHz, D2O) δ 15.74. 

HRMS (ESI) m/z [M−H]− calcd for C11H16O5N4P 315.08638, found 315.08601. [α]25
D = 

+8.9 (c 0.268 g/100 mL, H2O/MeOH 1/1). 

 

Sodium (R)-((2-(2-amino-6-methoxy-9H-purin-9-yl)butoxy)methyl)phosphonate ((R)-

30) 

Compound (R)-5 (190 mg, 0.40 mmol) and TMSBr 

(400 μL) were stirred at 25 °C for 3 h. The mixture 

was concentrated, co-distilled 2 × with toluene, then 

re-dissolved in MeOH, and MeOK (84 mg, 

1.20 mmol) added. The mixture was stirred at 25 °C 

for 19 h. Solvents were evaporated and the residue 

was dissolved in 2M TEAB (2 mL). After evaporation, the residue was separated using 

C18-reversed phase flash chromatography (linear gradient elution 0–50% MeOH in 

water). Purified product was taken through Na+ DOWEX to yield (R)-30 (51 mg, 34% 

over 2 steps) as a white solid. 1H NMR (401 MHz, D2O) δ 8.09 (s, 1H), 4.61–4.50 (m, 

1H), 4.08 (s, 3H), 4.04–3.89 (m, 2H), 3.51 (d, J = 8.3 Hz, 2H), 2.02–1.86 (m, 2H), 0.79 

(t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, D2O) δ 162.24, 160.52, 154.28, 140.73, 114.71, 

74.07 (d, J = 9.7 Hz), 68.99 (d, J = 152.5 Hz), 57.10, 55.00, 24.53, 10.14. 31P NMR (162 

MHz, D2O) δ 16.83. HRMS (ESI) m/z [M−H]− calcd for C11H17O5N5P 330.09728, found 

330.09683. [α]25
D = +35.6 (c 0.296 g/100 mL, H2O/MeOH 1/1). 
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Sodium (R)-((2-(6-phenyl-9H-purin-9-yl)butoxy)methyl)phosphonate ((R)-31) 

Following standard procedure I, compound (R)-10a 

(40 mg, 0.10 mmol) reacted with PhB(OH)2 (18 mg, 

0.15 mmol), Cs2CO3 (81 mg, 0.25 mmol), and Pd(PPh3)4 

(6 mg, 0.005 mmol) to afford 6-phenyl derivative. 

Following standard procedure G, the 6-phenyl derivative 

(45 mg, 0.10 mmol) was stirred in anhydrous MeCN 

(1.0 mL) and TMSBr (100 μL) at 25 °C for 16 h to yield 

(R)-31 (19 mg, 46% over 2 steps) as a white solid. 1H 

NMR (401 MHz, D2O) δ 8.80 (s, 1H), 8.67 (s, 1H), 8.18–8.08 (m, 2H), 7.64–7.52 (m, 

3H), 4.88–4.81 (m, 1H), 4.12 (dd, J = 11.0, 7.3 Hz, 1H), 4.01 (dd, J = 10.9, 4.0 Hz, 1H), 

3.55 (d, J = 8.4 Hz, 2H), 2.13–1.98 (m, 2H), 0.84 (t, J = 7.4 Hz, 3H). 13C NMR (101 

MHz, D2O) δ 156.02, 152.55, 152.00, 146.98, 134.70, 131.93, 130.98, 130.07, 129.42, 

73.58 (d, J = 10.2 Hz), 68.87 (d, J = 153.1 Hz), 57.96, 24.48, 10.31.  31P NMR (162 MHz, 

D2O) δ 16.93. HRMS (ESI) m/z [M−H]− calcd for C16H18O4N4P 361.10711, found 

361.10672. [α]25
D = +0.6 (c 0.484 g/100 mL, H2O/MeOH 1/1). 

 

Sodium (R)-((2-(2-amino-6-phenyl-9H-purin-9-yl)butoxy)methyl)phosphonate ((R)-32) 

Following standard procedure I, compound (R)-5 

(400 mg, 0.84 mmol) reacted with PhB(OH)2 

(154 mg, 1.26 mmol), Cs2CO3 (684 mg, 2.10 mmol), 

and Pd(PPh3)4 (46 mg, 0.04 mmol) to afford 6-phenyl 

derivative. To cleave DMAM protecting group, the 

residue was prior to the separation dissolved in EtOH 

(5 mL) containing 0.5 mL conc. HCl and stirred at 70 

°C for 1h. The mixture was neutralized with KOH, concentrated, and separated to afford 

2-amino-6-phenyl derivative. Following standard procedure G, 2-amino-6-phenyl 

derivative (250 mg, 0.54 mmol) was stirred in anhydrous MeCN (5.4 mL) and TMSBr 

(540 μL) at 25 °C for 16 h to yield (R)-32 (100 mg, 28% over 2 steps) as an off-white 

solid. 1H NMR (401 MHz, D2O) δ 8.30 (s, 1H), 8.14–8.03 (m, 2H), 7.62–7.48 (m, 3H), 

4.68–4.57 (m, 1H), 4.11–3.88 (m, 2H), 3.55 (d, J = 8.4 Hz, 2H), 2.09–1.87 (m, 2H), 0.83 

(t, J = 7.4 Hz, 3H). 13C NMR (101 MHz, D2O) δ 160.31, 157.46, 154.69, 143.88, 134.97, 

131.70, 129.86, 129.25, 125.02, 73.85 (d, J = 9.7 Hz), 68.87 (d, J = 153.2 Hz), 56.93, 

24.42, 10.24. 31P NMR (162 MHz, D2O) δ 17.03. HRMS (ESI) m/z [M−H]− calcd for 

C16H19O4N5P 376.11801, found 376.11746. [α]25
D = +27.4 (c 0.334 g/100 mL, 

H2O/MeOH 1/1). 
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N,N-Dimethyl-L-tyrosine methyl ester (33a) 

L-Tyrosine methyl ester (500 mg, 2.56 mmol), CH2O (37% in H2O, 

1.27 mL, 10.24 mmol), and Na2SO4 (3.64 g, 25.60 mmol) were 

mixed in MeOH (15 mL) under argon atmosphere. AcOH (366 μL, 

6.40 mmol) and NaBH₃CN (643 mg, 10.24 mmol) were added and 

the mixture was stirred at 25 °C for 1 h, filtered, concentrated, and 

separated using silica using gel flash chromatography (linear gradient elution 0–15% 

MeOH in CHCl3) to afford 33a (568 mg, 99%) as a white solid. 1H NMR (401 MHz, 

DMSO-d6) δ 9.17 (bs, 1H), 7.00–6.90 (m, 2H), 6.69–6.57 (m, 2H), 3.53 (s, 3H), 3.33 (dd, 

J = 9.0, 6.4 Hz, 1H), 2.81 (dd, J = 13.5, 9.0 Hz, 1H), 2.71 (dd, J = 13.5, 6.4 Hz, 1H), 2.24 

(s, 6H). 13C NMR (101 MHz, DMSO-d6) δ 171.28, 155.71, 129.87, 128.14, 115.02, 

68.76, 50.65, 41.33, 34.28. HRMS (ESI) m/z [M+H]+ calcd for C12H18O3N 224.12812, 

found 224.12796. [α]25
D = +43.3 (c 0.549 g/100 mL, CHCl3/MeOH 1/1). 

 

(S)-Methyl 3-(4-hydroxyphenyl)-2-(pyrrolidin-1-yl)propanoate (33b) 

L-Tyrosine methyl ester (220 mg, 1.13 mmol) and NaHCO3 

(190 mg, 2.26 mmol) were mixed in toluene (4 mL). 1,4-

Dibromobutane (148 μL, 1.24 mmol) was added, the mixture was 

stirred at 110 °C for 3 h, filtered, concentrated, and separated using 

silica using gel flash chromatography (linear gradient elution 0–

15% MeOH in CHCl3) to afford 33b (278 mg, 99%) as a colorless oil.  1H NMR (401 

MHz, DMSO-d6) δ 9.19 (s, 1H), 7.01–6.90 (m, 2H), 6.68–6.58 (m, 2H), 3.49 (s, 3H), 

3.40–3.36 (m, 1H), 2.89–2.76 (m, 2H), 2.68–2.59 (m, 2H), 2.59–2.52 (m, 2H), 1.71–1.61 

(m, 4H). 13C NMR (101 MHz, DMSO-d6) δ 171.90, 155.76, 129.83, 127.96, 115.02, 

67.09, 50.80, 49.42, 35.94, 23.07. HRMS (ESI) m/z [M+H]+ calcd for C14H20O3N 

250.14377, found 250.14366. [α]25
D = +36.5 (c 0.351 g/100 mL, CHCl3/MeOH 1/1). 

 

N-Acetyl-L-tyrosine methyl ester (33c) 

Na2CO3 (212 mg, 2.00 mmol) and L-tyrosine methyl ester 

(380 mg, 2.00 mmol) were mixed with acetone/H2O (3:1 ratio, 

8 mL). Ac2O (208 μL, 2.20 mmol) was added and the mixture was 

stirred at 25 °C for 1 h. The mixture was concentrated and 

separated using using silica gel flash chromatography (linear 

gradient elution 0–15 % MeOH in CHCl3) to afford 33c (391 mg, 82%) as a white solid. 
1H NMR (401 MHz, DMSO-d6) δ 9.22 (s, 1H), 8.26 (d, J = 7.7 Hz, 1H), 7.01–6.96 (m, 

2H), 6.69–6.61 (m, 2H), 4.35 (ddd, J = 9.0, 7.7, 5.7 Hz, 1H), 3.57 (s, 3H), 2.87 (dd, J = 

13.8, 5.7 Hz, 1H), 2.74 (dd, J = 13.8, 9.0 Hz, 1H), 1.79 (s, 3H). 13C NMR (101 MHz, 

DMSO-d6) δ 172.36, 169.31, 155.98, 129.94, 127.22, 115.04, 53.99, 51.73, 36.05, 22.25. 

HRMS (ESI) m/z [M+Na]+ calcd for C12H15O4NNa 260.08933, found 260.08920. [α]25
D 

= +48.9 (c 0.356 g/100 mL, CHCl3/MeOH 1/1). 
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N-(2,2,2-Trifluoroacetyl)-L-tyrosine methyl ester (33d) 

L-tyrosine methyl ester (380 mg, 2.00 mmol) was mixed with 

DCM (8 mL). Pyridine (161 μL, 2.10 mmol) and (CF3CO)2O 

(292 μL, 2.10 mmol) were added, the mixture was stirred for 

5 min, concentrated, and separated using using silica gel flash 

chromatography (linear gradient elution 0–15% MeOH in 

CHCl3) to afford 33d (578 mg, 99%) as a white solid. 1H NMR (401 MHz, DMSO-d6) δ 

9.85 (d, J = 8.1 Hz, 1H), 9.25 (s, 1H), 7.06–6.98 (m, 2H), 6.69–6.61 (m, 2H), 4.50 (ddd, 

J = 10.4, 8.1, 5.0 Hz, 1H), 3.66 (s, 3H), 3.06 (dd, J = 13.9, 5.0 Hz, 1H), 2.89 (dd, J = 14.0, 

10.4 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ 170.56, 156.46, 156.07, 129.98, 126.75, 

115.69 (q, J = 288.0 Hz), 115.09, 54.31, 52.35, 34.85. 19F NMR (377 MHz, DMSO-d6) 

δ – 74.25. HRMS (ESI) m/z [M+Na]+ calcd for C12H12O4NF3Na 314.06106, found 

314.06092. [α]25
D = +24.9 (c 0.193 g/100 mL, CHCl3/MeOH 1/1). 

 

N-Benzoyl-L-tyrosine methyl ester (33e) 

Following standard procedure M, L-tyrosine methyl ester 

(500 mg, 2.56 mmol), benzoic acid (375 mg, 3.07 mmol), 

HATU (4.46 g, 3.84 mmol), and DIPEA (2.23 mL, 

12.80 mmol) were stirred in DMF (10 mL) to afford 33e 

(319 mg, 42%) as a white solid. 1H NMR (401 MHz, 

DMSO-d6) δ 9.22 (bs, 1H), 8.78 (d, J = 7.8 Hz, 1H), 7.86–

7.77 (m, 2H), 7.58–7.40 (m, 3H), 7.13–7.05 (m, 2H), 6.69–6.61 (m, 2H), 4.58 (ddd, J = 

9.9, 7.8, 5.4 Hz, 1H), 3.63 (s, 3H), 3.09–2.93 (m, 2H). 13C NMR (101 MHz, DMSO-d6) 

δ 172.39, 166.50, 155.96, 133.74, 131.52, 130.04, 128.32, 127.72, 127.43, 115.08, 54.73, 

51.92, 35.55. HRMS (ESI) m/z [M+H]+ calcd for C17H18O4N 300.12303, found 

300.12298. [α]25
D = +6.0 (c 0.252 g/100 mL, CHCl3/MeOH 1/1). 

 

P-((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)-N-((S)-1-isopropoxy-1-

oxopropan-2-yl)phosphonamidic acid (34) 

Tenfovir (500 mg, 1.74 mmol), L-alanine isopropyl 

ester hydrochloride (1.46 g, 8.71 mmol), and DIPEA 

(1.52 mL, 8.71 mmol) were mixed in H2O (20 mL). 

EDC (1.35 g, 8.71 mmol) was added, the mixture was 

stirred at 40 °C for 24 h, concentrated, and separated 

using C18-reversed phase flash chromatography (linear gradient elution 0–100 % MeOH 

in water) to afford 34 (558 mg, 80%) as a white solid. 1H NMR (500 MHz, D2O) δ 8.22 

(s, 2H, H2, H8), 4.69 (hept, J = 6.3 Hz, 1H, H19), 4.36 (dd, J = 14.8, 3.0 Hz, 1H, H11a), 

4.20 (dd, J = 14.8, 7.9 Hz, 1H, H11b), 3.95–3.88 (m, 1H, H12), 3.62–3.57 (m, 2H, H14a, 

H16), 3.31 (dd, J = 12.6, 9.7 Hz, 1H, H14b), 1.21–1.05 (m, 12H, H13, H17, H20). 13C 

NMR (126 MHz, D2O) δ 177.13 (d, J = 3.3 Hz, C18), 156.12 (C6), 152.91 (C2), 149.85 
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(C4), 144.11 (C8), 118.90 (C5), 76.34 (d, J = 12.4 Hz, C12), 70.41 (C19), 67.19–66.01 

(m, C14), 50.66 (C16), 49.02 (C11), 21.30 and 21.28 (C20), 21.01 (d, J = 5.4 Hz, C17), 

16.37 (C13). 31P NMR (162 MHz, D2O) δ 19.69. HRMS (ESI) m/z [M+H]+ calcd for 

C15H26O5N6P 401.16968, found 401.17043. 

 

Methyl (2S)-2-amino-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-

yl)oxy)methyl)(((S)-1-isopropoxy-1-oxopropan-2-

yl)amino)phosphoryl)oxy)phenyl)propanoate (35a) 

Compound 35g (40 mg, 0.06 mmol) was mixed 

with Pd/C in phosphate buffer (0.01 M, 

pH 7.4)/MeOH (4:1 ratio) under argon 

atmosphere. The flask was evacuated and flushed 

with H2 (3 ×) and the mixture was stirred under 

H2 atmosphere at 25 °C for 1 h. After filtration, 

the volatiles were evaporated and the resiude was 

purified using C18-reversed phase flash chromatography (linear gradient elution 0–100 % 

MeOH in water) to afford 35a (15 mg, 47%) as a white solid. 1H NMR (500 MHz, 

DMSO-d6, mixture of epimers) δ 8.13 and 8.13 (s, 1H, H2), 8.10 and 8.09 (s, 1H, H8), 

7.20 and 7.19 (bs, 2H, H10), 7.14–7.07 (m, 2H, H23), 7.03–6.92 (m, 2H, H22), 5.60 and 

5.47 (dd, J = 11.9, 10.4 and 12.4, 10.0 Hz, 1H, H15), 4.89–4.78 (m, 1H, H19), 4.31–4.08 

(m, 2H, H11), 4.01–3.90 (m, 1H, H12), 3.89–3.72 (m, 3H, H14, H16), 3.57 (s, 3H, H29), 

3.54–3.51 (m, 1H, H26), 2.84–2.79 and 2.76–2.69 (m, 1H, H25), 1.17–1.01 (m, 12H, 

H13, H17, H20). 13C NMR (126 MHz, DMSO-d6, mixture of epimers) δ 175.12 (C28), 

173.04 and 172.90 (d, J = 4.0 and 3.7 Hz, C18), 155.98 and 155.96 (C6), 152.42 and 

152.41 (C2), 149.84 and 149.79 (C4), 148.80–148.58 (m, C21), 141.46 and 141.41 (C8), 

133.89 and 133.83 (C24), 130.21 (C23), 120.37 and 120.16 (d, J = 4.4 and 4.5 Hz, C22), 

118.38 and 118.33 (C5), 75.80–75.31 (m, C12), 67.92 (C19), 64.15 and 64.10 (d, J = 

154.6 and 155.0 Hz, C14), 55.62 (C26), 51.41 (C29), 49.07 and 49.01 (C16), 46.82 and 

46.72 (C11), 21.46–21.39 (m, C20), 20.29 and 19.92 (d, J = 5.2 and 5.5 Hz, C17), 16.78 

and 16.64 (C13). 31P NMR (202 MHz, DMSO-d6, mixture of epimers) δ 22.82 and 22.01. 

HRMS (ESI) m/z [M+Na]+ calcd for C25H36O7N7NaP 600.23060, found 600.23035. 
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Methyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(dimethylamino)propanoate (35b) 

 Following standard procedure N, compound 34 

(300 mg, 0.75 mmol), 33a (301 mg, 1.35 mmol), 

DIPEA (1.05 mL, 6.00 mmol), PPh3 (787 mg, 

3.00 mmol), and AldrithiolTM (661 mg, 

3.00 mmol) were stirred in pyridine (7 mL) to 

afford 35b (94 mg, 21%) as a white solid. 1H 

NMR (401 MHz, DMSO-d6, mixture of epimers) 

δ 8.14 and 8.14 (s, 1H, H2), 8.11 and 8.11 (s, 1H, H8), 7.22 and 7.21 (bs, 1H, H10), 7.18–

7.09 (m, 2H, H23), 7.03–6.93 (m, 2H, H22), 5.62 and 5.49 (dd, J = 12.0, 10.4 and 12.3, 

9.9 Hz, 1H, H15), 4.90–4.78 (m, 1H, H19), 4.32–4.10 (m, 2H, H11), 4.01–3.71 (m, 4H, 

H12, H14, H16), 3.54 (s, 3H, H29), 3.44–3.38 (m, 1H, H26), 2.93–2.77 (m, 2H, H25), 

2.25 (s, 6H, H27), 1.18–1.00 (m, 12H, H13, H17, H20). 13C NMR (101 MHz, DMSO-d6, 

mixture of epimers) δ 173.05 and 172.93 (d, J = 4.0 and 4.0 Hz, C18), 171.13 (C28), 

156.01 and 155.99 (C6), 152.45 (C2), 149.87 and 149.83 (C4), 148.70–148.49 (m, C21), 

141.49 and 141.44 (C8), 134.38 and 134.30 (C24), 130.00 (C23), 120.44 and 120.24 (d, 

J = 4.3 and 4.4 Hz, C22), 118.42 and 118.36 (C5), 75.75–75.41 (m, C12), 68.23 (C26), 

67.94 (C19), 64.21 and 64.14 (d, J = 155.1 and 154.8 Hz), 50.75 (C29), 49.11 and 49.03 

(C16), 46.84 and 46.74 (C11), 41.27 (C27), 34.21 (C25), 21.48–21.39 (m, C20), 20.28 

and 19.91 (d, J = 5.1 and 5.5 Hz, C17), 16.76 and 16.65 (C13). 31P NMR (DMSO-d6, 

mixture of epimers) δ 25.53 and 24.73. HRMS (ESI) m/z [M+H]+ calcd for C27H41O7N7P 

606.27996, found 606.27982. 

 

Methyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-(pyrrolidin-1-

yl)propanoate (35c) 

 Following standard procedure N, compound 34 

(188 mg, 0.47 mmol), 33b (209 mg, 0.84 mmol), 

DIPEA (655 μL, 3.76 mmol), PPh3 (493 mg, 

1.88 mmol), and AldrithiolTM (414 mg, 

1.88 mmol) were stirred in pyridine (5 mL) to 

afford 35c (160 mg, 54%) as a white solid. 1H 

NMR (401 MHz, DMSO-d6, mixture of epimers) 

δ 8.14 and 8.13 (s, 1H, H2), 8.11 and 8.10 (s, 1H, 

H8), 7.22 and 7.20 (bs, 2H, H10), 7.17–7.06 (m, 2H, H23), 7.03–6.92 (m, 2H, H22), 5.62 

and 5.48 (dd, J = 12.0, 10.4 and 12.4, 10.0 Hz, 1H, H15), 4.89–4.78 (m, 1H, C19), 4.31–

4.09 (m, 2H, H11), 3.99–3.72 (m, 4H, H12, H14, H16), 3.50 (s, 3H, H30), 3.47–3.44 (m, 

1H, H26), 2.93–2.87 (m, 2H, H25), 2.66–2.55 (m, 4H, H27), 1.68–1.62 (m, 4H, H28), 

1.18–1.02 (m, 12H, H13, H17, H20). 13C NMR (101 MHz, DMSO-d6, mixture of 
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epimers) δ 173.03 and 172.90 (d, J = 4.1 and 3.9 Hz, C18), 171.69 (C28), 155.99 and 

155.97 (C6), 152.43 (C2), 149.85 and 149.81 (C4), 148.84–148.54 (m, C21), 141.46 and 

141.41 (C8), 134.14 and 134.05 (C24), 129.94 (C23), 120.44 and 120.20 (d, J = 4.3 and 

4.5 Hz, C22), 118.40 and 118.35 (C5), 75.75–75.31 (m, C12), 67.91 (C19), 66.34 (C26), 

64.18 and 64.12 (d, J = 154.4 and 155.1 Hz, C14), 50.86 (C30), 49.28 (C27), 49.09 and 

49.00 (C16), 46.82 and 46.71 (C11), 35.83 (C25), 23.11 (C28), 21.48–21.36 (m, C20), 

20.24 and 19.89 (d, J = 5.2 and 5.5 Hz, C17), 16.76 and 16.62 (C13). 31P NMR (162 

MHz, DMSO-d6, mixture of epimers) δ 25.52 and 24.67. HRMS (ESI) m/z [M+H]+ calcd 

for C29H43O7N7P 632.29561, found 632.29538. 

 

Methyl (2S)-2-acetamido-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-

yl)oxy)methyl)(((S)-1-isopropoxy-1-oxopropan-2-

yl)amino)phosphoryl)oxy)phenyl)propanoate (35d) 

Following standard procedure N, compound 34 

(120 mg, 0.30 mmol), 33c (85 mg, 0.36 mmol), 

Et3N (335 μL, 2.40 mmol), PPh3 (315 mg, 

1.20 mmol), and AldrithiolTM (264 mg, 

1.20 mmol) were stirred in pyridine (5 mL) to 

afford 35d (55 mg, 30%) as a white solid. 1H 

NMR (500 MHz, DMSO-d6, mixture of epimers) 

δ 8.35 and 8.33 (bs, 1H, H27), 8.13 and 8.13 (s, 

1H, H2), 8.11 and 8.10 (s, 1H, H8), 7.26–7.12 (m, 4H, H10, H23), 7.04–6.95 (m, 2H, 

H22), 5.68–5.60 and 5.55–5.46  (m, 1H, H15), 4.90–4.78 (m, 1H, H19), 4.45–4.37 (m, 

1H, H26), 4.31–4.10 (m, 2H, H11), 4.00–3.89 (m, 1H, H12), 3.87–3.71 (m, 3H, H14, 

H16), 3.58 and 3.56 (s, 3H, H31), 3.00–2.79 (m, 2H, H25), 1.78 and 1.78 (s, 3H, H29), 

1.19–1.01 (m, 12H, H13, H17, H20). 13C NMR (126 MHz, DMSO-d6, mixture of 

epimers) δ 173.07 and 172.93 (d, J = 4.1 and 4.0 Hz, C18), 172.23 (C30), 169.36 (C28), 

156.00 and 155.98 (C6), 152.46 and 152.44 (C2), 149.85 and 149.81 (C4), 149.09–148.72 

(m, C21), 141.47 and 141.43 (C8), 133.35 and 133.25 (C24), 130.09 (C23), 120.53 and 

120.25 (d, J = 4.1 and 4.6 Hz, C22), 118.38 and 118.34 (C5), 75.82–75.31 (m, C12), 

67.94 (C19), 64.21 and 64.13 (d, J = 154.8 and 155.2 Hz, C14), 53.64 (C26), 51.85 (C31), 

49.09 and 49.00 (C16), 46.79 and 46.68 (C11), 36.00 (C25), 22.25 (C29), 21.48–21.41 

(m, C20), 20.28 and 19.92 (d, J = 5.2 and 5.4 Hz, C17), 16.82 and 16.67 (C13). 31P NMR 

(202 MHz, DMSO-d6, mixture of epimers) δ 22.90 and 22.03. HRMS (ESI) m/z [M+Na]+ 

calcd for C27H38O8N7NaP 642.24117, found 642.24054. 
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Methyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-(2,2,2-

trifluoroacetamido)propanoate (35e) 

Following standard procedure N, compound 34 

(150 mg, 0.37 mmol), 33d (216 mg, 0.74 mmol), 

Et3N (413 μL, 2.96 mmol), PPh3 (388 mg, 

1.48 mmol), and AldrithiolTM (326 mg, 

1.48 mmol) were stirred in pyridine (6 mL) to 

afford 35e (13 mg, 5%) as an off-white solid. 1H 

NMR (500 MHz, DMSO-d6, mixture of epimers) 

δ 9.90 (bs, 1H, H27), 8.13 and 8.13 (s, 1H, H2), 

8.10 and 8.09 (s, 1H, H8), 7.24–7.16 (m, 4H, H10, H23), 7.05–6.99 (m, 2H, H22), 5.68–

5.60 (m) and 5.48 (dd, J = 12.4, 10.0 Hz, 1H, H15), 4.88–4.78 (m, 1H, H19), 4.63–4.55 

(m, 1H, H26), 4.30–4.11 (m, 2H, H11), 3.99–3.89 (m, 1H, H12), 3.88–3.72 (m, 3H, H14, 

H16), 3.67 and 3.67 (s, 3H, H31), 3.19–3.13 and 3.01–2.95 (m, 1H, H25), 1.18–1.02 (m, 

12H, H13, H17, H20). 13C NMR (126 MHz, DMSO-d6, mixture of epimers) δ 173.02 

and 172.86 (d, J = 4.3 and 4.0 Hz, C18), 170.38 (C30), 156.32 and 156.30 (q, J = 36.6 

and 36.2 Hz, C28), 155.97 and 155.96 (C6), 152.43 and 152.41 (C2), 149.84 and 149.80 

(C4), 149.20–148.77 (m, C21), 141.44 and 141.40 (C8), 132.88 and 132.73 (C24), 130.09 

(C23), 120.61 and 120.23 (d, J = 4.2 and 4.6 Hz, C22), 118.37, 118.33 (C5), 115.65 (q, J 

= 288.0 Hz, C29), 75.78–75.39 (m, C12), 67.89 (C19), 64.21 and 64.11 (d, J = 155.0 and 

154.9 Hz, C14), 53.91 (C26), 52.42 (C31), 49.06 and 48.97 (C16), 46.75 and 46.67 (C11), 

34.80 (C25), 21.46–21.32 (m, C20), 20.18 and 19.83 (d, J = 5.1 and 5.2 Hz, C16), 16.77 

and 16.63 (C13). 19F NMR (470 MHz, DMSO-d6, mixture of epimers) δ -74.26 

and -74.28. 31P NMR (202 MHz, DMSO-d6, mixture of epimers) δ 22.93 and 22.02. 

HRMS (ESI) m/z [M+Na]+ calcd for C27H35O8N7F3NaP 696.21290, found 696.21216. 

 

Methyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-benzamidopropanoate 

(35f) 

Following standard procedure N, compound 34 

(188 mg, 0.47 mmol), 33e (251 mg, 0.84 mmol), 

DIPEA (655 μL, 3.76 mmol), PPh3 (493 mg, 

1.88 mmol), and AldrithiolTM (414 mg, 

1.88 mmol) were stirred in pyridine (5 mL) to 

afford 35f (189 mg, 59%) as a white solid. 1H 

NMR (401 MHz, DMSO-d6, mixture of epimers) 

δ 8.83 and 8.83 (d, J = 7.8 and 7.8 Hz, 1H, H27), 

8.14 and 8.13 (s, 1H, H2), 8.09 and 8.08 (s, 1H, 

H8), 7.83–7.76 (m, 2H, H30), 7.56–7.48 (m, 1H, H32), 7.50–7.40 (m, 2H, H31), 7.30–

7.16 (m, 4H, H10, H23), 7.06–6.97 (m, 2H, H22), 5.60 and 5.45 (dd, J = 12.0, 10.3 and 
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12.5, 10.0 Hz, 1H, H15), 4.85–4.75 (m, 1H, H19), 4.68–4.61 (m, 1H, H26), 4.29–4.08 

(m, 2H, H11), 3.96–3.69 (m, 4H, H12, H14, H16), 3.64 and 3.64 (s, 3H, H34), 3.20–3.03 

(m, 2H, H25), 1.14–0.98 (m, 12H, H13, H17, H20). 13C NMR (101 MHz, DMSO-d6, 

mixture of epimers) δ 173.01 and 172.87 (d, J = 4.2 and 3.9 Hz), 172.19 (C33), 166.50 

and 166.46 (C28), 156.00 and 155.98 (C6), 152.47 and 152.43 (C2), 149.84 and 149.82 

(C4), 149.06–148.61 (m, C21), 141.46 and 141.42 (C8), 133.83–133.60 (m, C24, C29), 

131.50 (C32), 130.12 (C23), 128.27 (C31), 127.40 and 127.41 (C30), 120.55 and 120.22 

(d, J = 4.3 and 4.5 Hz), 118.39 and 118.35 (C5), 75.78–75.33 (m, C12), 67.89 (C19), 

64.19 and 64.13 (d, J = 154.8 and 155.2 Hz, C14), 54.29 (C26), 51.98 (C34), 49.07 and 

48.97 (C16), 46.77 and 46.67 (C11), 35.50 (C25), 21.41–21.38 (m, C20), 20.21 and 19.87 

(d, J = 5.1 and 5.3 Hz, C17), 16.78 and 16.62 (C13). 31P NMR (162 MHz, DMSO-d6, 

mixture of epimers) δ 25.55 and 24.67. HRMS (ESI) m/z [M+H]+ calcd for C32H41O8N7P 

682.27487, found 682.27467. 

 

Methyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35g) 

  Following standard procedure N, compound 34 

(140 mg, 0.35 mmol), N-

((benzyloxy)carbonyl)-L-tyrosine methyl ester 

(231 mg, 0.70 mmol), Et3N (390 μL, 

2.80 mmol), PPh3 (367 mg, 1.40 mmol), and 

AldrithiolTM (308 mg, 1.40 mmol) were stirred 

in pyridine (6 mL) to afford 35g (121 mg, 49%) 

as a white solid. 1H NMR (401 MHz, DMSO-

d6, mixture of epimers) δ 8.17 and 8.17 (s, 1H, 

H2), 8.14 and 8.13 (s, 1H, H8), 7.82 and 7.82 (d, J = 8.2 and 8.2 Hz, 1H, H27), 7.44–7.24 

(m, 7H, H10, H31, H32, H34), 7.23–7.14 (m, 2H, H23), 7.06–6.97 (m, 2H, H22), 5.62 

and 5.48 (dd, J = 12.0, 10.3 and 12.4, 9.9 Hz, 1H, H15), 5.04–4.91 (m, 2H, H29), 4.87–

4.77 (m, 1H, H19), 4.33–4.11 (m, 3H, H11, H26), 4.00–3.73 (m, 4H, H12, H14, H16), 

3.62 (s, 3H, H35), 3.05–2.95 and 2.88–2.78 (m, 2H, H25), 1.16–1.01 (m, 12H, H13, H17, 

H20). 13C NMR (101 MHz, DMSO-d6, mixture of epimers) δ 173.02 and 172.89 (d, J = 

4.2 and 3.9 Hz, C18), 172.30 (C34), 155.96 (C28), 155.40 and 155.36 (C6), 151.69 and 

151.67 (C2), 149.74 and 149.70 (C4), 149.01–148.70 (m, C21), 141.77 and 141.73 (C8), 

136.85 (C30), 133.48 and 133.37 (C24), 130.12 (C23), 128.33 (C32), 127.81 (C33), 

127.63 and 127.60 (C31), 120.47 and 120.24 (d, J = 4.3 and 4.5 Hz, C22), 118.32 and 

118.28 (C5), 75.78–75.29 (m, C12), 67.92 (C19), 65.47 and 65.45 (C29), 64.22 and 64.13 

(d, J = 154.8 and 154.8 Hz, C14), 55.56 (C26), 51.93 (C35), 49.05 and 49.00 (C16), 46.82 

and 46.77 (C11), 35.72 (C25), 21.42 and 21.38 (C20), 20.26 and 19.90 (d, J = 5.0 and 5.6 

Hz, C17), 16.77 and 16.65 (C13). 31P NMR (162 MHz, DMSO-d6, mixture of epimers) 

δ 25.55 and 24.74. HRMS (ESI) m/z [M+Na]+ calcd for C33H42O9N7NaP 734.26738, 

found 734.26707. 
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Ethyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35h) 

Following standard procedure N, compound 34 

(200 mg, 0.50 mmol), N-

((benzyloxy)carbonyl)-L-tyrosine ethyl ester 

(343 mg, 1.00 mmol), Et3N (558 μL, 

4.00 mmol), PPh3 (787 mg, 3.00 mmol), and 

AldrithiolTM (661 mg, 3.00 mmol) were stirred 

in pyridine (8 mL) to afford 35h (117 mg, 32%) 

as a white solid. 1H NMR (401 MHz, DMSO-

d6, mixture of epimers) δ 8.14 and 8.13 (s, 1H, 

H2), 8.11 and 8.10 (s, 1H, H8), 7.82–7.78 (m, 1H, H27), 7.38–7.26 (m, 5H, H31, H32, 

H33), 7.25–7.13 (m, 4H, H10, H23), 7.06–6.97 (m, 2H, H22), 5.62 and 5.49 (dd, J = 12.0, 

10.3 and 12.4, 10.0 Hz, 1H, H15), 5.05–4.92 (m, 2H, H29), 4.88–4.78 (m, 1H, H19), 

4.31–4.11 (m, 3H, H11, H26), 4.06 (q, J = 7.0 Hz, 2H, H35), 3.99–3.74 (m, 4H, H12, 

H14, H16), 3.03–2.94 and 2.89–2.80 (m, 2H, H25), 1.16–1.01 (m, 15H, H13, H17, H20, 

H36). 13C NMR (101 MHz, DMSO-d6, mixture of epimers) δ 173.05 and 172.90 (d, J = 

4.0 and 4.0 Hz, C19), 171.82 (C34), 155.97–155.93 (m, C6, C28), 152.39 (C2), 149.84 

and 149.82 (C4), 149.08–148.68 (m, C21), 141.47 and 141.43 (C8), 136.90 (C30), 133.48 

and 133.37 (C24), 130.15 (C23), 128.33 (C32), 127.81 (C33), 127.63 and 127.61 (C31), 

120.47 and 120.25 (d, J = 4.3 and 4.5 Hz), 118.39 and 118.34 (C5), 75.78–75.36 (m, 

C12), 67.92 (C19), 65.44 (C29), 64.22 and 64.14 (d, J = 155.5 and 156.3Hz), 60.59 (C35), 

55.64 (C26), 49.07 and 49.01 (C16), 46.77 and 46.71 (C11), 35.78 (C25), 21.42 and 21.40 

(C20), 20.27 and 19.89 (d, J = 5.1 and 5.1 Hz, C16), 16.79 and 16.68 (C13), 14.01 (C36). 
31P NMR (162 MHz, DMSO-d6, mixture of epimers) δ 25.55 and 24.74. HRMS (ESI) 

m/z [M+H]+ calcd for C34H45O9N7P 726.30109, found 726.30136. 

 

Isopropyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35i) 

Following standard procedure N, compound 

34 (210 mg, 0.52 mmol), 36a (373 mg, 

1.04 mmol), Et3N (580 μL, 4.16 mmol), PPh3 

(546 mg, 2.08 mmol), and AldrithiolTM 

(458 mg, 2.08 mmol) were stirred in pyridine 

(8 mL) to afford 35i (92 mg, 24%) as a white 

solid. 1H NMR (500 MHz, DMSO-d6, mixture 

of epimers) δ 8.13 and 8.13 (s, 1H, H2), 8.11 

and 8.09 (s, 1H, H8), 7.80 and 7.78 (bs, 1H, 

H27), 7.38–7.25 (m, 5H, H31, H32, H33), 7.24–7.15 (m, 4H, H10, H23), 7.05–6.95 (m, 
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2H, H22), 5.67–5.59 and 5.53–5.46 (m, 1H, H15), 5.06–4.73 (m, 4H, H19, H29, H35), 

4.31–4.07 (m, 3H, H11, H26), 3.98–3.71 (m, 4H, H12, H14, H16), 3.00–2.90 and 2.87–

2.78 (m, 2H, H25), 1.18–0.94 (m, 18H, H13, H17, H20, H36). 13C NMR (126 MHz, 

DMSO-d6, mixture of epimers) δ 173.13 and 172.98 (d, J = 4.0 and 3.9 Hz, C18), 171.41 

(C34), 156.01 (C6, C28) 152.49 (C2), 149.87 and 149.84 (C4), 149.06–148.72 (m, C21), 

141.53 and 141.49 (C8), 136.98 (C30), 133.51 and 133.40 (C24), 130.24 (C23), 128.40 

(C32), 127.88 (C33), 127.70 and 127.68 (C31), 120.54 and 120.30 (d, J = 4.1 and 4.4 Hz, 

C22), 118.40 and 118.36 (C5), 75.81–75.43 (m, C12), 68.15 and 68.00 and 67.99 (C19, 

C35), 65.46 and 65.44 (C29), 64.23 and 64.16 (d, J = 154.9 and 154.8 Hz, C14), 55.80 

and 55.78 (C26), 49.11 and 49.07 (C16), 46.80 and 46.73 (C11), 35.82 (C25), 21.58–

21.43 (m, C20, C36), 20.34 and 19.94 (d, J = 5.1 and 5.5 Hz, C17), 16.84 and 16.72 

(C13). 31P NMR (202 MHz, DMSO-d6, mixture of epimers) δ 22.92 and 22.09. HRMS 

(ESI) m/z [M+H]+ calcd for C35H47O9N7P 740.31674, found 740.31697. 

 

Tert-butyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35j) 

 Following standard procedure N, compound 34 

(180 mg, 0.45 mmol), N-

((benzyloxy)carbonyl)-L-tyrosine t-butyl ester 

monohydrate (351 mg, 0.90 mmol), Et3N 

(501 μL, 3.60 mmol), PPh3 (708 mg, 

2.70 mmol), and AldrithiolTM (595 mg, 

2.70 mmol) were stirred in pyridine (8 mL) to 

afford 35j (154 mg, 45%) as a white solid. 1H 

NMR (401 MHz, DMSO-d6, mixture of 

epimers) δ 8.14 and 8.13 (s, 1H, H2), 8.10 and 8.09 (s, 1H, H8), 7.69 (bd, J = 8.0 Hz, 1H, 

H27), 7.38–7.15 (m, 9H, H10, H23, H31, H32, H33), 7.07–6.96 (m, 2H, H23), 5.61 and 

5.48 (dd, J = 12.0, 10.3 and 12.3, 9.9 Hz, 1H, H15), 5.06–4.91 (m, 2H, H29), 4.89–4.78 

(m, 1H, H19), 4.32–4.14 (m, 2H, H11), 4.13–4.06 (m, 1H, H26), 3.99–3.74 (m, 4H, H12, 

H14, H16), 3.00–2.89 and 2.87–2.76 (m, 2H, H25), 1.33 (s, 9H, H36), 1.18–1.01 (m, 12H, 

H13, H17, H20). 13C NMR (101 MHz, DMSO-d6, mixture of epimers) δ 173.04 and 

172.88 (d, J = 4.1 and 4.0 Hz, C18), 170.94 (C34), 155.99–155.90 (m, C6, C28), 152.42 

(C2), 149.83 and 149.80 (C4), 148.94–148.70 (m, C21), 141.44 and 141.40 (C8), 136.95 

(C30), 133.59 and 133.49 (C24), 130.16 (C23), 128.31 (C32), 127.79 (C33), 127.66 and 

127.64 (C31), 120.42 and 120.18 (d, J = 4.2 and 4.1 Hz, C22), 118.37 and 118.34 (C5), 

80.67 (C35), 75.78–75.35 (m, C12), 67.90 (C19), 65.36 (C29), 64.19 and 64.15 (d, J = 

155.5 and 155.2 Hz, C14), 56.14 and 56.12 (C26), 49.05 and 49.01 (C16), 46.75 and 

46.69 (C11), 35.92 (C25), 27.55 (C36), 21.41 and 21.38 (C20), 20.28 and 19.88 (d, J = 

5.4 and 5.4 Hz), 16.79 and 16.66 (C13). 31P NMR (162 MHz, DMSO-d6, mixture of 

epimers) δ 25.53 and 24.74. HRMS (ESI) m/z [M+H]+ calcd for C36H49O9N7P 754.33239, 

found 754.33278. 
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Isopentyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35k) 

 Following standard procedure N, 

compound 34 (190 mg, 0.47 mmol), 36b 

(362 mg, 0.94 mmol), Et3N (523 μL, 

3.76 mmol), PPh3 (493 mg, 1.88 mmol), 

and AldrithiolTM (414 mg, 1.88 mmol) 

were stirred in pyridine (8 mL) to afford 

35k (68 mg, 19%) as a white solid. 1H 

NMR (500 MHz, DMSO-d6, mixture of 

epimers) δ 8.13 and 8.13 (s, 1H, H2), 8.10 

and 8.09 (s, 1H. H8), 7.83 and 7.81 (bs, 1H, H27), 7.37–7.26 (m, 5H, H31, H32, H33), 

7.25–7.14 (m, 4H, H10, H23), 7.05–6.97 (m, 2H, H22), 5.68–5.60 and 5.56–5.47 (m, 1H, 

H15), 5.03–4.91 (m, 2H, H29), 4.86–4.77 (m, 1H, H19), 4.32–4.09 (m, 3H, H11, H26), 

4.05 (t, J = 6.7 Hz, 2H, H35), 3.99–3.73 (m, 4H, H12, H14, H16), 3.02–2.94 and 2.87–

2.79 (m, 2H, H25), 1.63–1.53 (m, 1H, H37), 1.44–1.37 (m, 2H, H36), 1.19–0.77 (m, 18H, 

H13, H17, H20, H38). 13C NMR (126 MHz, DMSO-d6, mixture of epimers) δ 173.11 

and 172.96 (d, J = 4.1 and 3.9 Hz, C18), 171.91 (C34), 156.04–155.99 (m, C6, C28), 

152.48 (C2), 149.87 and 149.84 (C4), 148.97 and 148.84 (d, J = 8.9 and 8.9 Hz, C21), 

141.51 and 141.47 (C8), 136.91 (C30), 133.56 and 133.45 (C24), 130.18 (C23), 128.39 

(C32), 127.89 (C33), 127.71 and 127.68 (C31), 120.55 and 120.31 (d, J = 4.1 and 4.3 Hz, 

C22), 118.40 and 118.36 (C5), 75.76–75.45 (m, C12), 67.98 and 67.96 (C19), 65.49 and 

65.47 (C29), 64.25 and 64.16 (d, J = 154.9 and 155.3 Hz, C14), 63.07 (C35), 55.74 (C26), 

49.10 and 49.04 (C16), 46.77 and 46.71 (C11), 36.78 (C36), 35.74 (C25), 24.41 (C37), 

22.34 and 22.28 (C38), 21.47 and 21.44 (C20), 20.32 and 19.95 (d, J = 5.0 and 5.5 Hz, 

C17), 16.84 and 16.72 (C13). 31P NMR (202 MHz, DMSO-d6, mixture of epimers) δ 

22.90 and 22.07. HRMS (ESI) m/z [M+H]+ calcd for C37H51O9N7P 768.34804, found 

768.34815. 
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Cyclopentyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-

1-isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35l) 

 Following standard procedure N, compound 

34 (210 mg, 0.52 mmol), 36c (399 mg, 

1.04 mmol), Et3N (580 μL, 4.16 mmol), 

PPh3 (546 mg, 2.08 mmol), and AldrithiolTM 

(458 mg, 2.08 mmol) were stirred in 

pyridine (8 mL) to afford 35l (147 mg, 37%) 

as a white solid. HRMS (ESI) m/z [M+H]+ 

calcd for C37H49O9N7P 766.33239, found 

766.33223. 

NMR data and characterization of 35l-FEE: 

1H NMR (400 MHz, DMSO-d6) δ 8.13 (s, 1H, H2), 8.10 (s, 1H, H8), 7.76 (d, J = 7.9 Hz, 

1H, H27), 7.38–7.26 (m, 5H, H31, H32, H33), 7.21–7.17 (m, 4H, H10, H23), 7.05–7.00 

(m, 2H, H22), 5.48 (dd, J = 12.3, 10.0 Hz, 1H, H15), 5.07–4.92 (m, 3H, H29, H35), 4.82 

(hept, J = 6.2 Hz, 1H, H19), 4.28 (dd, J = 14.3, 3.9 Hz, 1H, H11a), 4.22–4.12 (m, 2H, 

H11b, H26), 4.00–3.92 (m, 1H, H12), 3.90–3.77 (m, 3H, H14, H16), 2.95 (dd, J = 13.8, 

5.5 Hz, 1H, H25a), 2.83 (dd, J = 13.9, 9.6 Hz, 1H, H25b), 1.81–1.39 (m, 8H, H36, H37), 

1.15–1.00 (m, 12H, H13, H17, H20). 13C NMR (100 MHz, DMSO-d6) δ 173.05 (d, J = 

4.4 Hz, C18), 171.50 (C34), 155.98–155.94 (C28, C6), 152.42 (C2), 149.84 (C4), 148.79 

(d, J = 9.5 Hz, C21), 141.45 (C8), 136.92 (C30), 133.48 (C24), 130.14 (C23), 128.33 

(C32), 127.81 (C33), 127.63 (C31), 120.47 (d, J = 4.4 Hz, C22), 118.34 (C5), 77.21 

(C35), 75.63 (d, J = 12.5 Hz, C12), 67.92 (C19), 65.41 (C29), 64.14 (d, J = 154.8 Hz, 

C14), 55.67 (C26), 49.01 (C16), 46.70 (C11), 35.73 (C25), 32.08 (C36), 32.05 (C36), 

23.24 (C37), 23.21 (C37), 21.47 (C20), 21.45 (C20), 19.89 (d, J = 5.9 Hz, C17), 16.79 

(C13). 31P NMR (162 MHz, DMSO) δ 25.55.  

 

NMR data and characterization of 35l-SEE: 

1H NMR (400 MHz, DMSO-d6) δ 8.14 (s, 1H, H2), 8.09 (s, 1H, H8), 7.77 (d, J = 7.9 Hz, 

1H, H27), 7.39–7.26 (m, 5H, H31, H32, H33), 7.22–7.15 (m, 4H, H10, H23), 7.02–6.96 

(m, 2H, H22), 5.61 (dd, J = 12.0, 10.4 Hz, 1H, H15), 5.07–4.92 (m, 3H, H29, H35), 4.84 

(hept, J = 6.2 Hz, 1H, H19), 4.27 (dd, J = 14.4, 3.9 Hz, 1H, H11a), 4.20–4.09 (m, 2H, 

H11b, H26), 3.97–3.90 (m, 1H, H12), 3.89–3.73 (m, 3H, H14, H16), 2.94 (dd, J = 13.8, 

5.7 Hz, 1H, H25a), 2.83 (dd, J = 13.9, 9.5 Hz, 1H, H25b), 1.82–1.38 (m, 8H, H36, H37), 

1.17–1.01 (m, 12H, H13, H17, H20). 13C NMR (100 MHz, DMSO-d6) δ 172.90 (d, J = 

3.7 Hz, C18), 171.51 (C34), 156.00–155.95 (m, C28, C6), 152.44 (C2), 149.82 (C4), 

148.93 (d, J = 8.8 Hz, C21), 141.42 (C8), 136.91 (C30), 133.38 (C24), 130.13 (C23), 

128.33 (C32), 127.82 (C33), 127.65 (C31), 120. 23 (d, J = 4.4 Hz, C22), 118.38 (C5), 

77.21 (C35), 75.52 (d, J = 12.5 Hz, C12), 67.91 (C19), 65.42 (C29), 64.20 (d, J = 154.1 

Hz, C14), 55.65 (C26), 49.06 (C16), 46.76 (C11), 35.73 (C25), 32.08 (C36), 32.05 (C36), 
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23.24 (C37), 23.21 (C37), 21.43 (C20), 21.39 (C20), 20.28 (d, J = 5.1 Hz, C17), 16.68 

(C13). 31P NMR (162 MHz, DMSO-d6) δ 24.75.  

 

n-Hexyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35m) 

  Following standard procedure N, 

compound 34 (200 mg, 0.50 mmol), 

36d (399 mg, 1.00 mmol), Et3N 

(558 μL, 4.00 mmol), PPh3 (525 mg, 

2.00 mmol), and AldrithiolTM 

(441 mg, 2.00 mmol) were stirred in 

pyridine (8 mL) to afford 35m 

(144 mg, 37%) as a white solid. 1H 

NMR (401 MHz, DMSO-d6, mixture 

of epimers) δ 8.14 and 8.13 (s, 1H, H2), 8.11 and 8.09 (s, 1H, H8), 7.80 and 7.80 (d, J = 

8.0 and 8.1 Hz, 1H, H27), 7.38–7.25 (m, 5H, H31, H32, H33), 7.24–7.13 (m, 4H, H10, 

H23), 7.06–6.97 (m, 2H, H22), 5.61 and 5.48 (dd, J = 12.0, 10.4 and 12.4, 9.9 Hz, 1H, 

H15), 5.06–4.90 (m, 2H, H29), 4.88–4.77 (m, 1H, H19), 4.32–4.11 (m, 3H, H11, H26), 

4.06–3.73 (m, 6H, H12, H14, H16, H35), 3.04–2.94 and 2.89–2.79 (m, 2H, H25), 1.55–

1.45 (m, 2H, H36), 1.31–1.20 (m, 6H, H37, H38, H39), 1.15–1.01 (m, 12H, H13, H17, 

H20), 0.88–0.79 (m, 3H, H40). 13C NMR (101 MHz, DMSO-d6, mixture of epimers) δ 

173.04 and 172.90 (d, J = 4.4 and 3.7 Hz, C18), 171.85 (C34), 156.04–155.83 (m, C28, 

C6), 152.41 (C2), 149.84 and 149.82 (C4), 149.10–148.73 (m, C21), 141.47 and 141.43 

(C8), 136.88 (C30), 133.52 and 133.40 (C24), 130.12 (C23), 128.33 (C32), 127.81 (C33), 

127.63 and 127.60 (C31), 120.50 and 120.26 (d, J = 4.3 and 4.5 Hz, C22), 118.39 and 

118.34 (C5), 75.87–75.40 (m, C12), 67.93 and 67.92 (C19), 65.45 and 65.43 (C29), 64.55 

(C35), 64.24 and 64.15 (d, J = 154.1 and 155.5 Hz, C14), 55.69 (C26), 49.07 and 49.01 

(C16), 46.76 and 46.70 (C11), 35.76 (C25), 30.83 (C38), 28.01 (C36), 24.90 (C37), 21.99 

(C39), 21.42 and 21.39 (C20), 20.28 and 19.91 (d, J = 5.1 and 5.4 Hz, C17), 16.79 and 

16.68 (C13), 13.88 (C40). 31P NMR (162 MHz, DMSO-d6, mixture of epimers) δ 25.55, 

24.73. HRMS (ESI) m/z [M+Na]+ calcd for C38H52O9N7NaP 804.34563, found 

804.34537. 
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Cyclohexyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-

1-isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35n) 

  Following standard procedure N, 

compound 34 (110 mg, 0.27 mmol), 36e 

(163 mg, 0.41 mmol), Et3N (376 μL, 

2.16 mmol), PPh3 (283 mg, 1.08 mmol), 

and AldrithiolTM (238 mg, 1.08 mmol) were 

stirred in pyridine (5 mL) to afford 35n 

(112 mg, 53%) as a white solid. 1H NMR 

(401 MHz, DMSO-d6, mixture of epimers) 

δ 8.14 and 8.13 (s, 1H, H2), 8.11 and 8.10 

(s, 1H, H8), 7.78 and 7.76 (bs, 1H, H27), 7.39–7.25 (m, 5H, H31, H32, H33), 7.26–7.14 

(m, 4H, H10, H23), 7.07–6.96 (m, 2H, H22), 5.62 and 5.48 (dd, J = 12.0, 10.4 and 12.4, 

9.9 Hz, 1H, H15), 5.06–4.90 (m, 2H, H29), 4.89–4.75 (m, 1H, H19), 4.71–4.60 (m, 1H, 

H35), 4.33–4.10 (m, 3H, H11, H26), 4.00–3.72 (m, 4H, H12, H14, H16), 3.03–2.91 and 

2.89–2.78 (m, 2H, H25), 1.77–1.17 (m, 10H, H36, H37, H38), 1.17–1.00 (m, 12H, H13, 

H17, H20). 13C NMR (101 MHz, DMSO-d6, mixture of epimers) δ 173.05 and 172.90 

(d, J = 4.1 and 4.0 Hz, C18), 171.18 (C34), 156.06–155.88 (m, C28, C6), 152.44 (C2), 

149.84 and 149.82 (C4), 149.07–148.66 (m, C21), 141.46 and 141.43 (C8), 136.94 (C30), 

133.51 and 133.41 (C24), 130.15 (C23), 128.32 (C32), 127.81 (C33), 127.66 and 127.64 

(C31), 120.49 and 120.25 (d, J = 4.3 and 4.4 Hz, C22), 118.39 and 118.35 (C5), 75.80–

75.35 (m, C12), 72.49 (C35), 67.93 (C19), 65.41 (C29), 64.24 and 64.15 (d, J = 155.0 

and 155.5 Hz, C14), 55.80 and 55.78 (C26), 49.07 and 49.02 (C16), 46.77 and 46.72 

(C11), 35.79 (C25), 30.91 and 30.76 (C36), 24.84 (C38), 22.90 (C37), 21.43 and 21.40 

(C20), 20.29 and 19.90 (d, J = 5.2 and 5.6 Hz, C17), 16.79 and 16.67 (C13). 31P NMR 

(162 MHz, DMSO-d6, mixture of epimers) δ 25.56 and 24.75. HRMS (ESI) m/z [M+H]+ 

calcd for C38H51O9N7P 780.34804, found 780.34815. 

 

2-Ethylbutyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-

yl)oxy)methyl)(((S)-1-isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35o) 

  Following standard procedure N, 

compound 34 (110 mg, 0.27 mmol), 36f 

(164 mg, 0.41 mmol), Et3N (376 μL, 

2.16 mmol), PPh3 (283 mg, 1.08 mmol), and 

AldrithiolTM (238 mg, 1.08 mmol) were 

stirred in pyridine (5 mL) to afford 35o 

(119 mg, 56%) as a white solid. 1H NMR 

(401 MHz, DMSO-d6, mixture of epimers) 

δ 8.14 and 8.13 (s, 1H, H2), 8.10 and 8.09 
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(s, 1H, H8), 7.80 and 7.80 (d, J = 8.2 and 8.2 Hz, 1H, H27), 7.39–7.24 (m, 5H, H31, H32, 

H33), 7.25–7.14 (m, 4H, H10, H23), 7.07–6.97 (m, 2H, H22), 5.61 and 5.48 (dd, J = 12.0, 

10.4 and 12.4, 10.0 Hz, 1H, H15), 5.05–4.90 (m, 2H, H29), 4.89–4.75 (m, 1H, H19), 

4.32–4.10 (m, 3H, H11, H26), 4.00–3.73 (m, 6H, H12, H14, H16, H35), 3.04–2.94 and 

2.90–2.78 (m, 2H, H25), 1.49–1.37 (m, 1H, H36), 1.31–1.20 (m, 4H, H37), 1.17–1.01 

(m, 12H, H13, H17, H20), 0.88–0.74 (m, 6H, H38). 13C NMR (101 MHz, DMSO-d6, 

mixture of epimers) δ 173.04 and 172.89 (d, J = 4.2 and 3.9 Hz, C18), 171.87 (C34), 

156.00–155.94 (m, C28, C6), 152.43 (C2), 149.85 and 149.81 (C4), 149.07–148.70 (m, 

C21), 141.45 and 141.41 (C8), 136.84 (C30), 133.54 and 133.43 (C24), 130.09 (C23), 

128.33 (C32), 127.82 (C33), 127.67 and 127.63 (C31), 120.50 and 120.26 (d, J = 4.3 and 

4.4 Hz, C22), 118.38 and 118.34 (C5), 75.82–75.29 (m, C12), 67.92 and 67.91 (C19), 

66.16 (C35), 65.47 and 65.45 (C29), 64.23 and 64.14 (d, J = 154.8 and 154.8 Hz, C14), 

55.72 (C26), 49.06 and 49.01 (C16), 46.74 and 46.69 (C11), 39.69 (C36), 35.70 (C25) 

22.63 and 22.59 (C37), 21.42 and 21.38 (C20), 20.27 and 19.90 (d, J = 5.5 and 5.4 Hz, 

C17), 16.78 and 16.68 (C13), 10.85 and 10.81 (C38). 31P NMR (162 MHz, DMSO-d6, 

mixture of epimers) δ 25.55 and 24.75. HRMS (ESI) m/z [M+H]+ calcd for C38H53O9N7P 

782.36369, found 782.36380. 

 

n-Octyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35p) 

Following standard procedure N, 

compound 34 (190 mg, 

0.47 mmol), 36g (402 mg, 

0.94 mmol), Et3N (523 μL, 

3.76 mmol), PPh3 (493 mg, 

1.88 mmol), and AldrithiolTM 

(414 mg, 1.88 mmol) were stirred 

in pyridine (8 mL) to afford 35p 

(165 mg, 43%) as a white solid. 
1H NMR (400 MHz, DMSO-d6, mixture of epimers) δ 8.14 and 8.13 (s, 1H, H2), 8.10 

and 8.09 (s, 1H, H8), 7.79 and 7.78 (d, J = 8.1 and 8.3 Hz, 1H, H27), 7.36–7.15 (m, 9H, 

H10, H23, H31, H32, H33), 7.05–6.98 (m, 2H, H22), 5.60 and 5.47 (dd, J = 12.1, 10.4 

and 12.3, 9.9 Hz, 1H, H15), 5.04–4.91 (m, 2H, H29), 4.88–4.78 (m, 1H, H19), 4.32–4.11 

(m, 3H, H11, H26), 4.05–3.74 (m, 6H, H12, H14, H16, H35), 3.02–2.95 and 2.88–2.80 

(m, 2H, H25), 1.54–1.17 (m, 12H, H36), 1.16–1.02 (m, 12H, H13, H17, H20), 0.87–0.81 

(m, 3H, H37). 13C NMR (101 MHz, DMSO-d6, mixture of epimers) δ 173.01–172.83 (m, 

C18), 171.80 (C34), 155.93 (C6, C28), 152.37 (C2), 149.82 and 149.79 (C4), 148.98–

148.75 (m, C21), 141.42 and 141.38 (C8), 136.85 (C30), 133.48 and 133.37 (C24), 130.08 

(C23), 128.29 (C32), 127.77 (C33), 127.57 and 127.55 (C31), 120.45 and 120.22 (d, J = 

4.2 and 3.7 Hz, C22), 118.37 and 118.32 (C5), 75.67–75.43 (m, C12), 67.88 and 67.86 

(C19), 65.39 (C29), 64.51 (C35), 64.98–63.37 (m, C14), 55.64 (C26), 49.04 and 48.98 
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(C16), 46.73 and 46.68 (C11), 35.73 (C25), 31.18 and 28.55 and 28.02 and 25.20 and 

22.05 (C36), 21.39 and 21.36 (C20), 20.28–19.84 (m, C16), 16.76 and 16.65 (C13), 13.92 

(C37). 31P NMR (162 MHz, DMSO-d6, mixture of epimers) δ 25.29 and 24.48. HRMS 

(ESI) m/z [M+H]+ calcd for C40H57O9N7P 810.39499, found 810.39485. 

 

2-(2-(2-Methoxyethoxy)ethoxy)ethyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-

yl)propan-2-yl)oxy)methyl)(((S)-1-isopropoxy-1-oxopropan-2-

yl)amino)phosphoryl)oxy)phenyl)-2-(((benzyloxy)carbonyl)amino)propanoate (35q) 

  Following standard 

procedure N, compound 34 

(210 mg, 0.52 mmol), 36h 

(480 mg, 1.04 mmol), Et3N 

(580 μL, 4.16 mmol), PPh3 

(546 mg, 2.08 mmol), and 

AldrithiolTM (458 mg, 

2.08 mmol) were stirred in 

pyridine (8 mL) to afford 35q 

(141 mg, 32%) as an off-white solid. 1H NMR (400 MHz, DMSO-d6, mixture of epimers) 

δ 8.14 and 8.13 (s, 1H, H2), 8.10 and 8.09 (s, 1H, H8), 7.80 and 7.79 (d, J = 8.1 and 8.1 

Hz, 1H, H27), 7.39–7.25 (m, 5H, H31, H32, H33), 7.25–7.14 (m, 4H, H10, H23), 7.09–

6.94 (m, 2H, H22), 5.60 and 5.47 (dd, J = 12.0, 10.3 and 12.4 and 10.0 Hz, 1H, H15), 

5.04–4.91 (m, 2H, H29), 4.89–4.75 (m, 1H, H19), 4.33–4.08 (m, 5H, H11, H26, H35), 

4.01–3.72 (m, 4H, H12, H14, H16), 3.63–3.36 (m, 10H, H36, H37, H38, H39, H40), 

3.05–2.96 and 2.90–2.79 (m, 2H, H25), 1.17–1.00 (m, 12H, H13, H17, H20). 13C NMR 

(101 MHz, DMSO-d6, mixture of epimers) δ 173.04 and 172.90 (d, J = 4.0 and 3.9 Hz, 

C18), 171.80 (C34), 156.08–155.88 (m, C6, C28), 152.44 (C2), 149.86 and 149.82 (C4), 

149.10–148.70 (m, C21), 141.47 and 141.43 (C8), 136.86 (C30), 133.48 and 133.37 

(C24), 130.14 (C23), 128.34 (C32), 127.81 (C33), 127.63 and 127.61 (C31), 120.48 and 

120.26 (d, J = 4.3 and 4.5 Hz, C22), 118.39 and 118.35 (C5), 75.79–75.38 (m, C12), 

71.27 (C40), 69.89–69.57 (m, C37, C38, C39), 68.15 (C36), 67.94 and 67. 92 (C19), 

65.48 and 65.46 (C29), 64.25 and 64.16 (d, J = 156.3 and 155.5 Hz, C14), 64.00 (C35), 

58.05 (C41), 55.60 (C26), 49.07 and 49.03 (C16), 46.75 and 46.72 (C11), 35.73 (C25), 

21.42 and 21.39 (C20), 20.27 and 19.90 (d, J = 5.1 and 5.3 Hz, C17), 16.79 and 16.67 

(C13). 31P NMR (162 MHz, DMSO-d6, mixture of epimers) δ 25.33 and 24.53. HRMS 

(ESI) m/z [M+Na]+ calcd for C39H54O12N7NaP 866.34603, found 866.34574. 
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Benzyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-1-

isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35r) 

 Following standard procedure N, 

compound 34 (195 mg, 0.49 mmol), 36i 

(397 mg, 0.98 mmol), Et3N (547 μL, 

3.92 mmol), PPh3 (514 mg, 1.96 mmol), 

and AldrithiolTM (432 mg, 1.96 mmol) 

were stirred in pyridine (8 mL) to afford 

35r (153 mg, 40%) as a white solid. 1H 

NMR (401 MHz, DMSO-d6, mixture of 

epimers) δ 8.14 and 8.14 (s, 1H, H2), 8.11 

and 8.10 (s, 1H, H8), 7.86 and 7.86 (d, J = 8.1 and 8.1 Hz, 1H, H27), 7.40–7.25 (m, 10H, 

H31, H32, H33, H37, H38, H39), 7.24–7.14 (m, 4H, H10, H23), 7.05–6.97 (m, 2H, H22), 

5.62 and 5.49 (dd, J = 12.0, 10.3 and 12.4, 10.0 Hz, 1H, H15), 5.18–5.06 (m, 2H, H35), 

5.05–4.90 (m, 2H, H29), 4.88–4.77 (m, 1H, H19), 4.34–4.11 (m, 3H, H11, H26), 4.01–

3.73 (m, 4H, H12, H14, H16), 3.08–2.99 and 2.92–2.80 (m, 2H, H25), 1.17–0.99 (m, 

12H, H13, H17, H20). 13C NMR (101 MHz, DMSO-d6, mixture of epimers) δ 173.05 and 

172.90 (d, J = 3.7 and 3.7 Hz, C18), 171.71 (C34), 156.08–155.95 (m, C6, C28), 152.44 

(C2), 149.85 and 149.82 (C4), 149.08–148.75 (m, C21), 141.46 and 141.43 (C8), 136.84 

(C30), 135.83 (C36), 133.42 and 133.31 (C24), 130.17 (C23), 128.44 (C38), 128.35 

(C32), 128.05 (C39), 127.83 (C33), 127.80 and 127.78 (C37), 127.67 and 127.63 (C31), 

120.50 and 120.28 (d, J = 4.3 and 4.4 Hz, C22), 118.39 and 118.35 (C5), 75.74–75.41 

(m, C12), 67.92 and 67.93 (C19), 66.08 (C35), 65.49 and 65.51 (C29), 64.25 and 64.16 

(d, J = 154.4 and 154.8 Hz, C14), 55.71 (C26), 49.07 and 49.02 (C16), 46.76 and 46.71 

(C11), 35.67 (C25), 21.43 and 21.39 (C20), 20.28 and 19.91 (d, J = 5.1 and 5.1 Hz, C17), 

16.80 and 16.68 (C13). 31P NMR (162 MHz, DMSO-d6, mixture of epimers) δ 25.56 and 

24.76. HRMS (ESI) m/z [M+Na]+ calcd for C39H46O9N7NaP 810.29868, found 

810.29850. 
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Thiophen-2-ylmethyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-

yl)oxy)methyl)(((S)-1-isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35s) 

 Following standard procedure N, 

compound 34 (210 mg, 0.52 mmol), 36j 

(428 mg, 1.04 mmol), Et3N (580 μL, 

4.16 mmol), PPh3 (546 mg, 2.08 mmol), 

and AldrithiolTM (458 mg, 2.08 mmol) 

were stirred in pyridine (8 mL) to afford 

35s (41 mg, 10%) as a white solid. 1H 

NMR (400 MHz, DMSO-d6, mixture of 

epimers) δ 8.13 and 8.13 (s, 1H, H2), 8.10 

and 8.09 (s, 1H, H8), 7.82 and 7.82 (d, J = 8.1 and 8.0 Hz, 1H, H27), 7.56 (dd, J = 5.1, 

1.3 Hz, 1H, H39), 7.37–7.24 (m, 5H, H31, H32, H33), 7.20–7.13 (m, 5H, H10, H23, 

H37), 7.04–6.95 (m, 3H, H22, H38), 5.60 and 5.47 (dd, J = 12.0, 10.3 and 12.4, 10.0 Hz, 

1H, H15), 5.29 (s, 2H, H35), 5.03–4.90 (m, 1H, H29), 4.87–4.77 (m, 1H, H19), 4.31–

4.11 (m, 3H, H11, H26), 3.99–3.74 (m, 4H, H12, H14, H16), 3.03–2.95 and 2.87–2.78 

(m, 2H, H25), 1.15–1.01 (m, 12H, H13, H17, H20). 13C NMR (101 MHz, DMSO-d6, 

mixture of epimers) δ 173.03–172.84 (m, C18), 171.52 (C34), 155.95 (C6, C28), 152.42 

(C2), 149.84 and 149.81 (C4), 141.45 and 141.41 (C8), 137.56 (C36), 136.82 (C30), 

133.32 and 133.20 (C24), 130.12 (C23), 128.58 (C37), 128.33 (C32), 127.80 (C33), 

127.66–127.55 (m, C31, C39), 126.87 (C38), 120.47 and 120.25 (d, J = 3.8 and 3.6 Hz, 

C22), 118.37 and 118.34 (C5), 75.77–75.36 (m, C12), 67.91 (C19), 65.48 (C29), 65.00–

63.37 (m, C14), 60.71 (C35), 55.58 (C26), 49.05 and 49.01 (C16), 46.73 (C11), 35.60 

(C25), 21.41 and 21.38 (C20), 20.26 and 19.89 (d, J = 5.1 and 5.4 Hz, C17), 16.79 and 

16.67 (C13). 31P NMR (162 MHz, DMSO-d6, mixture of epimers) δ 25.31 and 24.52. 

HRMS (ESI) m/z [M+Na]+ calcd for C37H45O9N7PS 794.27316, found 794.27339.  

 

Cyclopentyl (2R)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-

1-isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-

(((benzyloxy)carbonyl)amino)propanoate (35t) 

Following standard procedure O, tenofovir 

(112 mg, 0.39 mmol), L-alanine isopropyl 

ester hydrochloride (65 mg, 0.39 mmol), 37 

(270 mg, 0.70 mmol), DIPEA (679 μL, 

3.90 mmol), PPh3 (409 mg, 1.56 mmol), and 

AldrithiolTM (344 mg, 1.56 mmol) were 

stirred in pyridine (8 mL) to afford 35t 

(244 mg, 82%) as a white solid. HRMS 

(ESI) m/z [M+H]+ calcd for C37H49O9N7P 

766.33239, found 766.33272. 
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NMR data and characterization of 35t-FEE: 

1H NMR (401 MHz, DMSO-d6) δ 8.14 (s, 1H, H2), 8.12 (s, 1H, H8), 7.76 (bd, J = 8.0 

Hz, 1H, H27), 7.38–7.27 (m, 5H, H31, H32, H33), 7.25–7.18 (m, 3H, H10, H23), 7.05–

6.99 (m, 2H, H22), 5.48 (dd, J = 12.4, 10.0 Hz, 1H, H15), 5.06–4.90 (m, 3H, H35, H29), 

4.82 (hept, J = 6.3 Hz, 1H, H19), 4.28 (dd, J = 14.4, 4.0 Hz, 1H, H11a), 4.22–4.12 (m, 

2H, H11b, H26), 4.00–3.93 (m, 1H, H12), 3.90–3.77 (m, 3H, H14, H16), 2.95 (dd, J = 

14.1, 5.5 Hz, 1H, H25a), 2.83 (dd, J = 13.8, 9.7 Hz, 1H, H25b), 1.84–1.39 (m, 8H, H36, 

H37), 1.15–1.02 (m, 12H, H13, H17, H20). 13C NMR (101 MHz, DMSO-d6) δ 173.04 

(d, J = 4.0 Hz, C18), 171.50 (C34), 155.96 (C6), 155.84 (C28), 152.29 (C2), 149.82 (C4), 

148.80 (d, J = 8.6 Hz, C21), 141.51 (C8), 136.90 (C30), 133.48 (C24), 130.13 (C23), 

128.32 (C32), 127.81 (C33), 127.64 (C31), 120.45 (d, J = 4.3 Hz, C22), 118.32 (C5), 

77.21 (C35), 75.62 (d, J = 12.5 Hz, C12), 67.91 (C19), 65.40 (C29), 64.14 (d, J = 155.1 

Hz, C14), 55.66 (C26), 49.01 (C16), 46.72 (C11), 35.71 (C25), 32.08 (C36), 32.05 (C36), 

23.24 (C37), 23.20 (C37), 21.42 (C20), 21.39 (C20), 19.88 (d, J = 5.9 Hz, C16), 16.79 

(C13). 31P NMR (162 MHz, DMSO-d6) δ 25.55. 

NMR data and characterization of 35t-SEE: 

1H NMR (401 MHz, DMSO-d6) δ 8.14 (s, 1H, H2), 8.10 (s, 1H, H8), 7.77 (bd, J = 8.0 

Hz, 1H, H27), 7.37–7.26 (m, 5H, H31, H32, H33), 7.21 (bs, 2H, H10), 7.20–7.14 (m, 2H, 

H23), 7.02–6.97 (m, 2H, H22), 5.61 (dd, J = 12.0, 10.4 Hz, 1H, H15), 5.07–4.92 (m, 3H, 

H35, H29), 4.84 (hept, J = 6.3 Hz, 1H, H19), 4.27 (dd, J = 14.4, 3.8 Hz, 1H, H11a), 4.18–

4.11 (m, 2H, H11b, H26), 3.96–3.74 (m, 4H, H12, H14, H16), 2.95 (dd, J = 13.9, 5.6 Hz, 

1H, H25a), 2.83 (dd, J = 13.9, 9.7 Hz, 1H, H25b), 1.81–1.40 (m, 8H, H36, H37), 1.15–

1.04 (m, 12H, H13, H17, H20). 13C NMR (101 MHz, DMSO-d6) δ 172.98 (d, J = 4.0 Hz, 

C18), 171.50 (C34), 155.96 (C6), 155.94 (C28), 152.41 (C2), 149.82 (C4), 148.95 (d, J 

= 8.7 Hz, C21), 141.51 (C8), 136.91 (C30), 133.39 (C24), 130.14 (C23), 128.33 (C32), 

127.81 (C33), 127.63 (C31), 120.22 (d, J = 4.4 Hz, C22), 118.36 (C5), 77.21 (C35), 75.50 

(d, J = 12.4 Hz, C12), 67.90 (C19), 65.40 (C29), 64.20 (d, J = 154.7 Hz, C14), 55.67 

(C26), 49.05 (C16), 46.76 (C11), 35.73 (C25), 32.09 (C36), 32.05 (C36), 23.25 (C37), 

23.21 (C37), 21.42 (C20), 21.40 (C20), 20.27 (d, J = 5.1 Hz, C16), 16.67 (C13). 31P NMR 

(162 MHz, DMSO-d6) δ 24.74. 
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Isopropyl (((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(4-((S)-2-

(((benzyloxy)carbonyl)amino)-3-(cyclopentylamino)-3-

oxopropyl)phenoxy)phosphoryl)-L-alaninate (35u) 

 Following standard procedure N, 

compound 34 (110 mg, 0.27 mmol), 38 

(157 mg, 0.41 mmol), DIPEA (376 μL, 

2.16 mmol), PPh3 (283 mg, 1.08 mmol), and 

AldrithiolTM (238 mg, 1.08 mmol) were 

stirred in pyridine (5 mL) to afford 35u 

(106 mg, 51%) as a white solid. 1H NMR 

(401 MHz, DMSO-d6, mixture of epimers) δ 

8.14 and 8.13 (s, 1H, H2), 8.10 and 8.09 (s, 

1H, H8), 7.88 and 7.89 (d, J = 7.3 and 7.3 Hz, 1H, H27), 7.46–7.14 (m, 10H, H10, H23, 

H31, H32, H33, H35), 7.08–6.94 (m, 2H, H22), 5.60 and 5.47 (dd, J = 12.0, 10.3 and 

12.4, 9.9 Hz, 1H, H15), 5.04–4.88 (m, 2H, H29), 4.88–4.77 (m, 1H, H19), 4.35–4.08 (m, 

3H, H11, H26), 4.03–3.73 (m, 5H, H12, H14, H16, H36), 2.91–2.78 and 2.78–2.63 (m, 

2H, H25), 1.85–1.21 (m, 8H, H37, H38), 1.18–1.00 (m, 12H, H13, H17, H20). 13C NMR 

(101 MHz, DMSO-d6, mixture of epimers) δ 173.02 and 172.89 (d, J = 4.0 and 3.9 Hz, 

C18), 170.60 (C34), 155.95 (C6), 155.73 (C28), 152.41 (C2), 149.84 and 149.80 (C4), 

148.80–148.57 (m, C21), 141.43 and 141.39 (C8), 137.03 (C30), 134.10 and 133.98 

(C24), 130.21 (C23), 128.29 (C32), 127.69 (C33), 127.52 and 127.49 (C31), 120.23 and 

120.01 (d, J = 4.3 and 4.3 Hz), 118.36 and 118.33 (C5), 75.69–75.45 (m, C12), 67.89 

(C19), 56.04 and 56.01 (C26), 50.25 (C36), 49.04 and 49.01 (C16), 46.69 (C11), 37.15 

(C25), 32.30 and 32.06 (C37), 23.44 and 23.40 (C38), 21.42 and 21.38 (C20), 20.27 and 

19.88 (d, J = 5.1 and 5.3 Hz, C17), 16.79 and 16.69 (C13). 31P NMR (162 MHz, DMSO-

d6, mixture of epimers) δ 25.46 and 24.67. HRMS (ESI) m/z [M+H]+ calcd for 

C37H50O8N8P 765.34837, found 765.34848. 

 

Isopropyl (((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(4-((S)-2-

(((benzyloxy)carbonyl)amino)-4-cyclopentyl-3-oxobutyl)phenoxy)phosphoryl)-L-

alaninate (35v) 

 Following standard procedure N, 

compound 34 (200 mg, 0.50 mmol), 40 

(381 mg, 1.00 mmol), Et3N (558 μL, 

4.00 mmol), PPh3 (525 mg, 2.00 mmol), and 

AldrithiolTM (441 mg, 2.00 mmol) were 

stirred in pyridine (8 mL) to afford 35v 

(126 mg, 33%) as a white solid. 1H NMR 

(401 MHz, DMSO-d6, mixture of epimers) δ 

8.14 and 8.13 (s, 1H, H2), 8.11 and 8.09 (s, 

1H, H8), 7.72 and 7.72 (d, J = 8.2 and 8.2 Hz, 1H, H27), 7.38–7.24 (m, 5H, H31, H32, 
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H33), 7.24–7.14 (m, 4H, H10, H23), 7.05–6.95 (m, 2H, H22), 5.62 and 5.48 (dd, J = 12.0, 

10.3 and 12.5, 9.9 Hz, 1H, H15), 5.04–4.90 (m, 2H, H29), 4.89–4.77 (m, 1H, H19), 4.32–

4.10 (m, 3H, H11, H26), 4.01–3.72 (m, 4H, H12, H14, H16), 3.03–2.92 and 2.70–2.59 

(m, 2H, H25), 2.59–2.37 (m, 2H, H35), 2.17–2.05 (m, 1H, H36), 1.76–1.37 (m, 6H, H37, 

H38), 1.19–0.94 (m, 14H, H13, H17, H20, H38). 13C NMR (101 MHz, DMSO-d6, 

mixture of epimers) δ 209.12 (C34), 173.05 and 172.86 (d, J = 4.0 and 3.9 Hz, C19), 

156.06–155.88 (m, C6, C28), 152.41 (C2), 149.84 and 149.80 (C4), 148.92–148.55 (m, 

C21), 141.43 and 141.39 (C8), 136.99 (C30), 134.05 and 133.93 (C24), 130.14 (C23), 

128.31 (C32), 127.78 (C33), 127.57 and 127.54 (C31), 120.43 and 120.17 (d, J = 4.3 and 

4.0 Hz, C22), 118.37 and 118.33 (C5), 75.84–75.28 (m, C12), 67.89 (C19), 65.37 (C29), 

64.21 and 64.13 (d, J = 154.9 and 155.7 Hz, C14), 61.30 (C26), 49.05 and 48.99 (C16), 

46.73 and 46.68 (C11), 44.79 (C35), 34.63 (C36), 34.39 (C25), 32.02 and 32.00 (C37), 

24.46 (C38), 21.41 and 21.38 (C20), 20.25 and 19.89 (d, J = 4.5 and 5.4 Hz, C17), 16.78 

and 16.67 (C13). 31P NMR (162 MHz, DMSO-d6, mixture of epimers) δ 25.52, 24.70. 

HRMS (ESI) m/z [M+Na]+ calcd for C38H50O8N7NaP 786.33507, found 786.33508. 

 

Isopropyl (((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(4-((S)-4-

cyclopentyl-3-oxo-2-((3-phenylpropyl)amino)butyl)phenoxy)phosphoryl)-L-alaninate 

(35w) 

Compound 43 (125 mg, 0.15 mmol) was 

mixed with Pd/C in phosphate buffer 

(0.01 M, pH 7.4)/MeOH (4:1 ratio) under 

argon atmosphere. The flask was evacuated 

and flushed with H2 (3 ×) and the mixture 

was stirred under H2 atmosphere at 25 °C for 

1 h. After filtration, the volatiles were 

evaporated and the resiude was purified 

using C18-reversed phase flash chromatography (linear gradient elution 0–100 % MeOH 

in water) to afford 35w (52 mg, 46%) as a white solid. 1H NMR (401 MHz, DMSO-d6, 

mixture of epimers) δ 8.14 and 8.13 (s, 1H, H2), 8.10 and 8.09 (s, 1H, H8), 7.28–7.08 (m, 

9H, H10, H23, H31, H32, H33), 7.04–6.94 (m, 2H, H22), 5.61 and 5.47 (dd, J = 11.9, 

10.4 and 12.3, 9.9 Hz, 1H, H15), 4.90–4.76 (m, 1H, H19), 4.32–4.09 (m, 2H, H11), 4.01–

3.67 (m, 4H, H12, H14, H16), 3.40–3.29 (m, 1H, H26), 2.82–2.71 and 2.71–2.61 (m, 2H, 

H25), 2.56–2.24 (m, 6H, H27, H29, H35), 2.11–2.00 (m, 1H, H36), 1.71–1.38 (m, 8H, 

H28, H37, H38), 1.18–1.01 (m, 12H, H13, H17, H20), 1.01–0.89 (m, 2H, H37). 13C NMR 

(101 MHz, DMSO-d6, mixture of epimers) δ 212.80 (C34), 173.02 and 172.87 (d, J = 4.1 

and 4.0 Hz, C18), 155.98 and 155.95 (C6), 152.42 (C2), 149.84 and 149.80 (C4), 148.76–

148.38 (m, C21), 142.00 (C30), 141.42 and 141.38 (C8), 134.51 and 134.40 (C24), 130.14 

(C23), 128.24 and 128.16 (C31, C32), 125.57 (C33), 120.36 and 120.07 (d, J = 4.2 and 

4.4 Hz, C22), 118.38 and 118.33 (C5), 75.92–75.29 (m, C12), 68.17 (C26), 67.89 (C19), 

64.12 (d, J = 155.1 Hz, C14), 49.06 and 48.99 (C16), 46.78 and 46.68 (C11), 46.48 (C27), 

45.25 and 45.20 (C35), 36.70 (C25), 34.57 (C36), 32.65 (C29), 32.06 and 31.99 (C37), 
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31.47 (C28), 24.45 (C38), 21.42 and 21.38 (C20), 20.31–19.87 (m, C17), 16.77 and 16.62 

(C13). 31P NMR (162 MHz, DMSO-d6, mixture of epimers) δ 25.49 and 24.64. HRMS 

(ESI) m/z [M+H]+ calcd for C39H55O6N7P 748.39460, found 748.39434. 

 

Cyclopentyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-

1-isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-(3-

phenylpropanamido)propanoate (35x) 

Following standard procedure N, compound 

34 (100 mg, 0.25 mmol), 45 (191 mg, 

0.50 mmol), Et3N (278 μL, 2.00 mmol), 

PPh3 (262 mg, 1.00 mmol), and AldrithiolTM 

(220 mg, 1.00 mmol) were stirred in 

pyridine (7 mL) to afford 35x (143 mg, 

75%) as a white solid. 1H NMR (401 MHz, 

DMSO-d6, mixture of epimers) δ 8.29 and 

8.29 (bd, J = 7.6 and 7.6 Hz, 1H, H27), 8.14 

and 8.13 (s, 1H, H2), 8.10 and 8.09 (s, 1H, H8), 7.29–7.08 (m, 9H, H10, H23, H32, H33, 

H34), 7.04–6.95 (m, 2H, H22), 5.61 and 5.47 (dd, J = 12.0, 10.4 and 12.4, 9.9 Hz, 1H, 

H15), 5.05–4.98 (m, 1H, H36), 4.89–4.77 (m, 1H, H19), 4.42–4.33 (m, 1H, H26), 4.31–

4.10 (m, 2H, H11), 4.00–3.72 (m, 4H, H12, H14, H16), 2.97–2.79 (m, 2H, H25), 2.77–

2.71 (m, 2H, H30), 2.39–2.35 (m, 2H, H29), 1.85–1.37 (m, 8H, H37, H38), 1.18–1.01 (m, 

12H, H13, H17, H20). 13C NMR (101 MHz, DMSO-d6, mixture of epimers) δ 173.04 

and 172.88 (d, J = 4.1 and 4.1 Hz, C18), 171.47 and 171.46 (C28), 171.29 and 171.28 

(C35) 155.97 and 155.95 (C6), 152.41 (C2), 149.83 and 149.80 (C4), 148.98–148.68 (m, 

C21), 141.42 and 141.38 (C8), 141.17 (C31), 133.30 and 133.18 (C24), 130.07 (C23), 

128.24 (C33), 128.13 (C32), 125.87 (C34), 120.48 and 120.18 (d, J = 4.2 and 4.5 Hz), 

118.38 and 118.33 (C5), 77.09 (C36), 75.79–75.40 (m, C12), 67.89 (C19), 65.05–63.34 

(m, C14), 53.62 (C26), 49.04 and 49.00 (C16), 46.75 and 46.69 (C11), 36.54 (C29), 36.03 

(C25), 32.03 (C37), 30.91 (C30), 23.25 and 23.22 (C38), 21.42 and 21.39 (C20), 20.29 

and 19.90 (d, J = 5.0 and 5.6 Hz, C16), 16.81 and 16.65 (C13). 31P NMR (162 MHz, 

DMSO-d6, mixture of epimers) δ 25.55 and 24.73. HRMS (ESI) m/z [M+H]+ calcd for 

C38H51O8N7P 764.35312, found 764.35345. 
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Cyclopentyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-

1-isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-((3-

phenylpropyl)amino)propanoate (35y) 

Compound 47 (65 mg, 0.08 mmol) was 

mixed with Pd/C in phosphate buffer 

(0.01 M, pH 7.4)/MeOH (4:1 ratio) under 

argon atmosphere. The flask was evacuated 

and flushed with H2 (3 ×) and the mixture 

was stirred under H2 atmosphere at 25 °C for 

1 h. After filtration, the volatiles were 

evaporated and the resiude was purified 

using C18-reversed phase flash chromatography (linear gradient elution 0–100 % MeOH 

in water) to afford 35y (37 mg, 64%) as a white solid. 1H NMR (401 MHz, DMSO-d6, 

mixture of epimers) δ 8.13 and 8.13 (s, 1H, H2), 8.10 and 8.09 (s, 1H, H8), 7.29–7.06 (m, 

9H, H10, H23, H31, H32, H33), 7.03–6.92 (m, 2H, H22), 5.60 and 5.46 (dd, J = 11.9, 

10.3 and 12.3, 9.9 Hz, 1H, H15), 5.03–4.93 (m, 1H, H35), 4.91–4.75 (m, 1H, H35), 4.32–

4.09 (m, 2H, H11), 4.00–3.70 (m, 4H, H12, H14, H16), 3.31–3.24 (m, 1H, H26), 2.86–

2.68 (m, 2H, H25), 2.58–2.31 (m, 4H, H27, H29), 1.79–1.27 (m, 10H, H28, H36, H37), 

1.17–0.99 (m, 12, H13, H17, H20). 13C NMR (101 MHz, DMSO-d6, mixture of epimers) 

δ 173.84 (C34), 173.04 and 172.87 (d, J = 4.0 and 4.0 Hz, C18), 155.97 and 155.95 (C6), 

152.41 (C2), 149.83 and 149.80 (C4), 148.87–148.45 (m, C21), 142.03 (C30), 141.42 and 

141.38 (C8), 133.96 and 133.87 (C24), 130.13 (C23), 128.26 and 128.19 (C31, C32), 

125.59 (C33), 120.31 and 120.04 (d, J = 4.3 and 4.4 Hz, C22), 118.38 and 118.33 (C5), 

76.45 (C35), 75.78–75.33 (m, C12), 67.88 (C19), 64.10 (d, J = 153.3 Hz, C14), 62.54 

(C26), 49.04 and 49.00 (C16), 46.76 and 46.68 (C11), 46.47 (C27), 38.07 (C25), 32.73 

(C29), 32.14 and 32.06 (C36), 31.34 (C28), 23.19 and 23.14 (C37), 21.41 and 21.38 

(C20), 20.38–19.73 (m, C17), 16.78 and 16.64 (C13). 31P NMR (162 MHz, DMSO-d6, 

mixture of epimers) δ 25.47 and 24.67. HRMS (ESI) m/z [M+H]+ calcd for C38H53O7N7P 

750.37386, found 750.37366. 

 

N-((benzyloxy)carbonyl)-L-tyrosine isopropyl ester (36a) 

N-((benzyloxy)carbonyl)-L-tyrosine (500 mg, 

1.59 mmol) was dissolved in iPrOH (5 mL), SOCl2 

(231 μL, 3.18 mmol) was added, and the solution was 

stirred at 25 °C for 72 h. The mixture was concentrated 

and the residue was purified using silica gel flash 

chromatography (linear gradient elution 0–15% MeOH 

in CHCl3) to afford 36a (449 mg, 79%) as a white solid. 1H NMR (401 MHz, DMSO-d6) 

δ 9.29 (s, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.41–7.19 (m, 5H), 7.08–6.99 (m, 2H), 6.72–6.64 

(m, 2H), 5.08–4.93 (m, 2H), 4.93–4.81 (m, 1H), 4.14 (ddd, J = 9.5, 7.9, 5.7 Hz, 1H), 2.89 

(dd, J = 13.8, 5.7 Hz, 1H), 2.78 (dd, J = 13.8, 9.5 Hz, 1H), 1.16 (d, J = 6.2 Hz, 3H), 1.08 
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(d, J = 6.2 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 171.64, 156.10, 156.07, 137.10, 

130.18, 128.42, 127.87, 127.65, 127.44, 115.12, 68.06, 65.44, 56.20, 35.99, 21.62, 21.43. 

HRMS (ESI) m/z [M+Na]+ calcd for C20H23O5NNa 380.14684, found 380.14694. [α]25
D 

= +7.7 (c 0.404 g/100 mL, CHCl3/MeOH 1/1). 

 

N-((benzyloxy)carbonyl)-L-tyrosine isoamyl ester (36b) 

Following standard procedure L, N-

((benzyloxy)carbonyl)-L-tyrosine (500 mg, 

1.59 mmol), isoamyl alcohol (181 μL, 1.67 mmol), 

PPh3 (438 mg, 1.67 mmol), and DIAD (328 μL, 

1.67 mmol) were stirred in THF (8 mL) to afford 

36b (509 mg, 83%) as a white solid. 1H NMR (401 

MHz, DMSO-d6) δ 9.22 (s, 1H), 7.75 (d, J = 7.9 Hz, 1H), 7.38–7.24 (m, 5H), 7.06–6.95 

(m, 2H), 6.70–6.61 (m, 2H), 5.04–4.93 (m, 2H), 4.14 (ddd, J = 9.7, 7.9, 5.7 Hz, 1H), 4.09–

3.98 (m, 2H), 2.88 (dd, J = 13.8, 5.7 Hz, 1H), 2.75 (dd, J = 13.8, 9.7 Hz, 1H), 1.63–1.47 

(m, 1H), 1.42–1.34 (m, 2H), 0.85 (d, J = 3.9 Hz, 3H), 0.84 (d, J = 3.9 Hz, 3H). 13C NMR 

(101 MHz, DMSO-d6) δ 172.50, 156.47, 156.39, 137.41, 130.47, 128.78, 128.25, 128.03, 

127.79, 115.46, 65.81, 63.33, 56.51, 37.21, 36.30, 24.80, 22.76, 22.68. HRMS (ESI) m/z 

[M+Na]+ calcd for C22H27O5NNa 408.17814, found 408.17820. [α]25
D = +8.1 (c 

0.099 g/100 mL, CHCl3/MeOH 1/1). 

 

N-((benzyloxy)carbonyl)-L-tyrosine cyclopentyl ester (36c) 

Following standard procedure L, N-

((benzyloxy)carbonyl)-L-tyrosine (1.58 g, 5.00 mmol), 

cyclopentanol (476 μL, 5.25 mmol), PPh3 (1.38 g, 

5.25 mmol), and DIAD (1.03 mL, 5.25 mmol) were 

stirred in THF (40 mL) to afford 36c (1.82 g, 95%) as a 

white solid. 1H NMR (401 MHz, DMSO-d6) δ 9.23 (s, 1H), 7.71 (d, J = 7.9 Hz, 1H), 

7.42–7.16 (m, 5H), 7.06–6.94 (m, 2H), 6.72–6.58 (m, 2H), 5.07–4.87 (m, 3H), 4.10 (ddd, 

J = 9.4, 7.9, 6.0 Hz, 1H), 2.85 (dd, J = 13.8, 6.0 Hz, 1H), 2.75 (dd, J = 13.8, 9.4 Hz, 1H), 

1.83–1.65 (m, 2H), 1.63–1.37 (m, 6H). 13C NMR (101 MHz, DMSO-d6) δ 171.70, 

155.98, 155.93, 136.97, 130.02, 128.32, 127.77, 127.57, 127.28, 114.96, 77.05, 65.32, 

55.99, 35.82, 32.07, 32.03, 23.24, 23.18. HRMS (ESI) m/z [M+Na]+ calcd for 

C22H35O5NNa 406.16249, found 406.16317. [α]25
D = +5.9 (c 0.136 g/100 mL, 

CHCl3/MeOH 1/1). 
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N-((benzyloxy)carbonyl)-L-tyrosine n-hexyl ester (36d) 

Following standard procedure L, N-

((benzyloxy)carbonyl)-L-tyrosine (500 mg, 

1.59 mmol), n-hexanol (210 μL, 1.67 mmol), 

PPh3 (438 mg, 1.67 mmol), and DIAD (328 

μL, 1.67 mmol) were stirred in THF (8 mL) to 

afford 36d (533 mg, 84%) as a white solid. 1H 

NMR (401 MHz, DMSO-d6) δ 9.24 (bs, 1H), 7.74 (d, J = 8.1 Hz, 1H), 7.38–7.24 (m, 5H), 

7.05–6.97 (m, 2H), 6.69–6.61 (m, 2H), 4.98 (d, J = 2.7 Hz, 2H), 4.15 (ddd, J = 9.6, 8.1, 

5.6 Hz, 1H), 4.06–3.95 (m, 2H), 2.89 (dd, J = 13.8, 5.6 Hz, 1H), 2.76 (dd, J = 13.9, 9.6 

Hz, 1H), 1.54–1.43 (m, J = 7.2, 6.7 Hz, 2H), 1.31–1.14 (m, 6H), 0.85 (t, J = 6.9 Hz, 3H). 
13C NMR (101 MHz, DMSO-d6) δ 172.08, 156.05, 155.95, 136.96, 130.02, 128.33, 

127.78, 127.56, 127.32, 115.02, 65.35, 64.44, 56.05, 35.88, 30.85, 28.01, 24.92, 21.99, 

13.90. HRMS (ESI) m/z [M+H]+ calcd for C23H30O5N 400.21185, found 400.21199. 

[α]25
D = +5.8 (c 0.449 g/100 mL, CHCl3/MeOH 1/1). 

 

N-((benzyloxy)carbonyl)-L-tyrosine cyclohexyl ester (36e) 

Following standard procedure L, N-

((benzyloxy)carbonyl)-L-tyrosine (536 mg, 

1.70 mmol), cyclohexanol (186 μL, 1.79 mmol), PPh3 

(469 mg, 1.79 mmol), and DIAD (351 μL, 1.79 mmol) 

were stirred in THF (8 mL) to afford 36e (572 mg, 

85%) as a white solid. 1H NMR (401 MHz, DMSO-d6) 

δ 9.24 (bs, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.45–7.16 (m, 5H), 7.06–6.98 (m, 2H), 6.69–

6.61 (m, 2H), 5.06–4.93 (m, 2H), 4.73–4.59 (m, 1H), 4.12 (ddd, J = 9.6, 7.9, 5.7 Hz, 1H), 

2.88 (dd, J = 13.9, 5.7 Hz, 1H), 2.76 (dd, J = 13.9, 9.6 Hz, 1H), 1.77–1.49 (m, 4H), 1.49–

1.12 (m, 6H). 13C NMR (101 MHz, DMSO-d6) δ 171.37, 156.00, 155.96, 137.00, 130.04, 

128.32, 127.76, 127.57, 127.36, 115.00, 72.33, 65.31, 56.15, 35.87, 30.92, 30.74, 24.85, 

22.90. HRMS (ESI) m/z [M+H]+ calcd for C23H28O5N 398.19620, found 398.19620. 

[α]25
D = +6.8 (c 0.310 g/100 mL, CHCl3/MeOH 1/1). 

 

N-((benzyloxy)carbonyl)-L-tyrosine 2-ethylbutyl ester (36f) 

Following standard procedure L, N-

((benzyloxy)carbonyl)-L-tyrosine (536 mg, 

1.70 mmol), 2-ethylbutanol (220 μL, 1.79 mmol), 

PPh3 (469 mg, 1.79 mmol), and DIAD (351 μL, 

1.79 mmol) were stirred in THF (8 mL) to afford 36f 

(654 mg, 96%) as a white solid. 1H NMR (401 MHz, 

DMSO-d6) δ 9.23 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.39–7.23 (m, 5H), 7.06–6.98 (m, 

2H), 6.70–6.62 (m, 2H), 5.04–4.92 (m, 2H), 4.16 (ddd, J = 9.7, 8.1, 5.6 Hz, 1H), 3.98–
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3.88 (m, 2H), 2.89 (dd, J = 13.8, 5.6 Hz, 1H), 2.76 (dd, J = 13.8, 9.7 Hz, 1H), 1.48–1.34 

(m, 1H), 1.30–1.14 (m, 4H), 0.82 (td, J = 7.5, 2.2 Hz, 6H). 13C NMR (101 MHz, DMSO-

d6) δ 172.10, 156.02, 155.96, 136.94, 129.99, 128.33, 127.80, 127.61, 127.37, 115.03, 

66.06, 65.38, 56.11, 39.70, 35.84, 22.64, 22.60, 10.87, 10.82. HRMS (ESI) m/z [M+H]+ 

calcd for C23H30O5N 400.21185, found 400.21194. [α]25
D = +6.0 (c 0.466 g/100 mL, 

CHCl3/MeOH 1/1). 

 

N-((benzyloxy)carbonyl)-L-tyrosine n-octyl ester (36g) 

 Following standard procedure L, N-

((benzyloxy)carbonyl)-L-tyrosine 

(500 mg, 1.59 mmol), n-octanol (261 μL, 

1.67 mmol), PPh3 (438 mg, 1.67 mmol), 

and DIAD (328 μL, 1.67 mmol) were 

stirred in THF (8 mL) to afford 36g 

(565 mg, 83%) as a colorless oil. 1H NMR (401 MHz, DMSO-d6) δ 9.25 (bs, 1H), 7.75 

(d, J = 8.1 Hz, 1H), 7.39–7.26 (m, 5H), 7.06–6.99 (m, 2H), 6.70–6.63 (m, 2H), 4.99 (d, J 

= 2.8 Hz, 2H), 4.16 (ddd, J = 9.8, 8.0, 5.6 Hz, 1H), 4.06–3.97 (m, 2H), 2.90 (dd, J = 13.8, 

5.5 Hz, 1H), 2.77 (dd, J = 13.9, 9.7 Hz, 1H), 1.58–1.43 (m, 2H), 1.24 (s, 10H), 0.86 (t, J 

= 6.9 Hz, 3H). 13C NMR (101 MHz, DMSO-d6) δ 172.07, 156.04, 155.96, 136.96, 130.01, 

128.33, 127.79, 127.55, 127.34, 115.02, 65.36, 64.45, 56.06, 35.87, 31.24, 28.61, 28.05, 

25.26, 22.11, 13.98. HRMS (ESI) m/z [M+H]+ calcd for C25H34O5N 428.24315, found 

428.24323. [α]25
D = +10.6 (c 0.377 g/100 mL, CHCl3/MeOH 1/1). 

 

N-((benzyloxy)carbonyl)-L-tyrosine 2-(2-(2-methoxyethoxy)ethoxy)ethyl ester (36h) 

 Following standard procedure L, N-

((benzyloxy)carbonyl)-L-tyrosine 

(500 mg, 1.59 mmol), 2-(2-(2-

methoxyethoxy)ethoxy)ethanol (261 

μL, 1.67 mmol), PPh3 (438 mg, 

1.67 mmol), and DIAD (328 μL, 

1.67 mmol) were stirred in THF (8 mL) to afford 36h (588 mg, 80%) as a colorless oil. 
1H NMR (401 MHz, DMSO-d6) δ 9.24 (s, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.38–7.25 (m, 

5H), 7.08–7.00 (m, 2H), 6.69–6.63 (m, 2H), 4.99 (s, 2H), 4.23–4.05 (m, 3H), 3.62–3.45 

(m, 8H), 3.43–3.38 (m, 2H), 3.22 (s, 3H), 2.92 (dd, J = 13.9, 5.2 Hz, 1H), 2.76 (dd, J = 

13.9, 9.8 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ 172.00, 156.01, 155.96, 136.94, 

130.05, 128.33, 127.77, 127.56, 127.35, 115.02, 71.27, 69.84, 69.74, 69.61, 68.16, 65.37, 

63.89, 58.05, 55.96, 35.80. HRMS (ESI) m/z [M+H]+ calcd for C24H32O8N 462.21224, 

found 462.21241. [α]25
D = +6.7 (c 0.624 g/100 mL, CHCl3/MeOH 1/1). 
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N-((benzyloxy)carbonyl)-L-tyrosine n-octyl ester (36i) 

Following standard procedure L, N-

((benzyloxy)carbonyl)-L-tyrosine (500 mg, 

1.59 mmol), benzyl aclohol (174 μL, 1.67 mmol), 

PPh3 (438 mg, 1.67 mmol), and DIAD (328 μL, 

1.67 mmol) were stirred in THF (8 mL) to afford 36i 

(491 mg, 76%) as a white solid. 1H NMR (401 MHz, 

DMSO-d6) δ 7.80 (d, J = 8.1 Hz, 1H), 7.39–7.24 (m, 10H), 7.05–6.96 (m, 2H), 6.68–6.60 

(m, 2H), 5.09 (s, 2H), 5.01–4.94 (m, 2H), 4.28–4.17 (m, 1H), 2.92 (dd, J = 13.8, 5.5 Hz, 

1H), 2.77 (dd, J = 13.8, 9.7 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ 171.91, 156.31, 

155.98, 136.91, 135.84, 130.03, 128.39, 128.33, 128.01, 127.75, 127.58, 115.10, 65.94, 

65.39, 56.08, 35.78. HRMS (ESI) m/z [M+H]+ calcd for C24H24O5N 406.16490, found 

406.16495. [α]25
D = –2.6 (c 0.377 g/100 mL, CHCl3/MeOH 1/1). 

 

N-((benzyloxy)carbonyl)-L-tyrosine thiophen-2-ylmethyl ester (36j) 

 Following standard procedure L, N-

((benzyloxy)carbonyl)-L-tyrosine (500 mg, 

1.59 mmol), 2-thienylmethanol (159 μL, 

1.67 mmol), PPh3 (438 mg, 1.67 mmol), and DIAD 

(328 μL, 1.67 mmol) were stirred in THF (8 mL) to 

afford 36j (464 mg, 71%) as a colorless oil. 1H NMR 

(401 MHz, DMSO-d6) δ 9.24 (s, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.56 (dd, J = 5.1, 1.3 Hz, 

1H), 7.38–7.23 (m, 5H), 7.14 (dd, J = 3.5, 1.3 Hz, 1H), 7.02 (dd, J = 5.1, 3.5 Hz, 1H), 

7.00–6.93 (m, 2H), 6.67–6.59 (m, 2H), 5.28 (s, 2H), 4.98 (d, J = 2.6 Hz, 2H), 4.18 (ddd, 

J = 10.0, 8.2, 5.1 Hz, 1H), 2.89 (dd, J = 13.9, 5.1 Hz, 1H), 2.74 (dd, J = 13.9, 10.0 Hz, 

1H). 13C NMR (101 MHz, DMSO-d6) δ 172.19, 156.46, 156.42, 138.05, 137.37, 130.49, 

129.04, 128.80, 128.23, 128.01, 127.66, 127.31, 115.49, 65.84, 61.09, 56.42, 36.14. 

HRMS (ESI) m/z [M+H]+ calcd for C22H22O5NS 412.12132, found 412.12140. [α]25
D = 

–5.5 (c 0.237 g/100 mL, CHCl3/MeOH 1/1). 

 

N-((benzyloxy)carbonyl)-D-tyrosine cyclopentyl ester (37) 

Following standard procedure L, N-

((benzyloxy)carbonyl)-L-tyrosine (500 mg, 

1.59 mmol), cyclopentanol (152 μL, 1.67 mmol), PPh3 

(438 mg, 1.67 mmol), and DIAD (328 μL, 1.67 mmol) 

were stirred in THF (8 mL) to afford 37 (283 mg, 46%) 

as a white solid. 1H NMR (401 MHz, DMSO-d6) δ 9.23 

(s, 1H), 7.71 (d, J = 7.9 Hz, 1H), 7.42–7.15 (m, 5H), 7.05–6.97 (m, 2H), 6.70–6.62 (m, 

2H), 5.06–5.01 (m, 1H), 4.99 (d, J = 5.6 Hz, 2H), 4.10 (ddd, J = 9.4, 7.9, 5.9 Hz, 1H), 

2.85 (dd, J = 13.9, 5.9 Hz, 1H), 2.75 (dd, J = 13.9, 9.4 Hz, 1H), 1.83–1.64 (m, 2H), 1.64–
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1.36 (m, 6H). 13C NMR (101 MHz, DMSO-d6) δ 171.70, 155.98, 155.92, 136.97, 130.02, 

128.31, 127.77, 127.58, 127.28, 114.96, 77.05, 65.32, 55.99, 32.07, 32.03, 23.25, 23.18. 

HRMS (ESI) m/z [M+Na]+ calcd for C22H35O5NNa 406.16249, found 406.16322. [α]25
D 

= –9.8 (c 0.153 g/100 mL, CHCl3/MeOH 1/1). 

 

Benzyl (S)-(1-(cyclopentylamino)-3-(4-hydroxyphenyl)-1-oxopropan-2-yl)carbamate 

(38) 

Following standard procedure M, N-

((benzyloxy)carbonyl)-L-tyrosine (536 mg, 

1.70 mmol), cyclopentyl amine (202 μL, 2.04 mmol), 

HATU (970 mg, 2.55 mmol), and DIPEA (1.48 mL, 

8.50 mmol) were stirred in DMF (10 mL) to afford 38 

(550 mg, 85%) as a white solid. 1H NMR (401 MHz, 

DMSO-d6) δ 9.17 (s, 1H), 7.82 (d, J = 7.3 Hz, 1H), 7.39–7.23 (m, 6H), 7.06–6.99 (m, 

2H), 6.69–6.60 (m, 2H), 4.96 (d, J = 1.5 Hz, 2H), 4.17–4.07 (m, 1H), 4.02–3.89 (m, 1H), 

2.77 (dd, J = 13.7, 5.1 Hz, 1H), 2.63 (dd, J = 13.7, 9.7 Hz, 1H), 1.83–1.68 (m, 2H), 1.65–

1.54 (m, 2H), 1.53–1.43 (m, 2H), 1.40–1.32 (m, 1H), 1.32–1.22 (m, 1H). 13C NMR (101 

MHz, DMSO-d6) δ 171.26, 156.20, 156.17, 137.61, 130.61, 128.75, 128.46, 128.11, 

127.87, 115.24, 65.56, 56.80, 50.68, 37.67, 32.77, 32.50, 23.92, 23.86. HRMS (ESI) m/z 

[M+Na]+ calcd for C22H26O4N2Na 405.17848, found 405.17852. [α]25
D = +5.7 (c 

0.632 g/100 mL, CHCl3/MeOH 1/1). 

 

Benzyl (S)-(3-(4-hydroxyphenyl)-1-(methoxy(methyl)amino)-1-oxopropan-2-

yl)carbamate (39) 

Following standard procedure M, N-

((benzyloxy)carbonyl)-L-tyrosine (5.00 g, 

15.86 mmol), N,O-dimethylhydroxylamine 

hydrochloride (1.86 g, 19.03 mmol), HATU (9.05 g, 

23.79 mmol), and DIPEA (13.81 mL, 79.30 mmol) 

were stirred in DMF (100 mL) to afford 39 (4.67 g, 

82%) as a white solid. 1H NMR (401 MHz, DMSO-d6) δ 9.21 (s, 1H), 7.66 (d, J = 8.6 

Hz, 1H), 7.39–7.22 (m, 5H), 7.07–6.99 (m, 2H), 6.70–6.62 (m, 2H), 4.95 (s, 2H), 4.63–

4.49 (m, 1H), 3.71 (s, 3H), 3.10 (s, 3H), 2.77 (dd, J = 13.7, 4.4 Hz, 1H), 2.62 (dd, J = 

13.8, 9.8 Hz, 1H). 13C NMR (101 MHz, DMSO-d6) δ 155.96, 155.89, 137.01, 130.04, 

128.31, 127.72, 127.55, 114.97, 65.24, 53.23, 35.75. HRMS (ESI) m/z [M+H]+ calcd for 

C19H24O5N2 360.16797, found 360.16781. [α]25
D = +10.1 (c 0.357 g/100 mL, 

CHCl3/MeOH 1/1). 
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Benzyl (S)-(4-cyclopentyl-1-(4-hydroxyphenyl)-3-oxobutan-2-yl)carbamate (40) 

I2 (249 mg, 0.98 mmol) and Mg (356 mg, 14.63 mmol) 

were mixed in THF (9.75 mL) under argon atmosphere. 

(Bromomethyl)cyclopentane (1.25 mL, 9.75 mmol) 

was added and the mixture was stirred at 25 °C. 

Approximately after 1 min, the mixture turned clear in 

color and the exothermic reaction was triggered. The 

reaction mixture was stirred at 25 °C for 30 min and at 50°C for 1 h. The freshly prepared 

cyclopentylmethylmagnesium bromide (1 M in THF, 9.75 mL, 9.75 mmol) was added 

dropwise at 0 °C to a solution of compound 39 (700 mg, 1.95 mmol) in THF (10 mL). 

The mixture was allowed to warm up to 25 °C, stirred for 16 h, quenched slowly with 

1 M aqueous HCl, and concentrated. The resiude was diluted in CHCl3, washed with H2O 

(3 × 50 mL), washed with brine (50 mL), dried over MgSO4, filtered, and concentrated. 

The residue was purified using silica using gel flash chromatography (linear gradient 

elution 0–50% EtOAc/MeOH (9:1 ratio) in hexane) to afford 40 (386 mg, 52% + 241 mg, 

32% of the starting 39) as an off-white solid. 1H NMR (401 MHz, DMSO-d6) δ 9.20 (s, 

1H), 7.66 (d, J = 8.1 Hz, 1H), 7.38–7.22 (m, 5H), 7.07–6.95 (m, 2H), 6.69–6.60 (m, 2H), 

5.04–4.88 (m, 2H), 4.13 (ddd, J = 10.0, 8.1, 5.0 Hz, 1H), 2.87 (dd, J = 14.0, 5.0 Hz, 1H), 

2.62–2.52 (m, 1H), 2.40 (dd, J = 17.1, 7.1 Hz, 1H), 2.18–2.02 (m, 1H), 1.76–1.63 (m, 

2H), 1.57–1.37 (m, 4H), 1.07–0.92 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 209.91, 

156.44, 156.30, 137.55, 130.52, 128.77, 128.50, 128.20, 127.94, 126.88, 115.44, 65.75, 

62.10, 45.43, 35.05, 34.98, 32.50, 32.46, 24.93. HRMS (ESI) m/z [M+Na]+ calcd for 

C23H27O4NNa 404.18323, found 404.18388. [α]25
D = +9.3 (c 0.107 g/100 mL, 

CHCl3/MeOH 1/1). 

 

(S)-2-(benzyl(3-phenylpropyl)amino)-3-(4-hydroxyphenyl)-N-methoxy-N-

methylpropanamide (41) 

Compound 39 (4.00 g, 11.16 mmol) was dissolved in 

MeOH (25 mL) and Pd/C was added under argon 

atmosphere. The flask was evacuated and flushed with 

H2 (3 ×) and the mixture was stirred under H2 

atmosphere at 25 °C for 1 h. The mixture was filtrated, 

concentrated and mixed with PhCHO (1.25 mL, 

12.27 mmol), and Na2SO4 (7.92 g, 55.75 mmol) in 

MeOH (50 mL) under argon atmosphere. AcOH (765 μL, 13.38 mmol) and NaBH₃CN 

(1.40 g, 22.30 mmol) were added and the mixture was stirred at 25 °C for 30 min. 

3-Phenylpropanal (2.94 mL, 22.30 mmol), AcOH (765 μL, 13.38 mmol), and NaBH₃CN 

(1.40 g, 22.30 mmol) were added. The mixture was stirred at 25 °C for 1 h, filtered, 

concentrated, and separated using silica using gel flash chromatography (linear gradient 

elution 0–40% EtOAc/MeOH (9:1 ratio) in hexane) to afford 41 (4.22 g, 88%) as a 

colorless oil. 
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1H NMR (401 MHz, DMSO-d6) δ 9.16 (s, 1H), 7.31–7.17 (m, 7H), 7.16–7.10 (m, 1H), 

7.08–7.02 (m, 2H), 6.96–6.88 (m, 2H), 6.69–6.61 (m, 2H), 4.00 (s, 1H), 3.83 (d, J = 14.4 

Hz, 1H), 3.68 (d, J = 14.4 Hz, 1H), 3.29–3.13 (m, 3H), 3.01 (s, 3H), 2.91 (dd, J = 13.2, 

9.2 Hz, 1H), 2.77 (dd, J = 13.2, 5.4 Hz, 1H), 2.68–2.53 (m, 2H), 2.46–2.36 (m, 2H), 1.68–

1.55 (m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 155.57, 142.27, 140.49, 130.07, 128.78, 

128.45, 128.17, 127.95, 126.59, 125.52, 114.98, 60.89, 59.50, 54.41, 50.14, 32.82, 32.58, 

31.45, 29.90. HRMS (ESI) m/z [M+H]+ calcd for C27H33O3N2 433.24857, found 

433.24872. [α]25
D = +9.8 (c 0.589 g/100 mL, CHCl3/MeOH 1/1). 

 

(S)-3-(benzyl(3-phenylpropyl)amino)-1-cyclopentyl-4-(4-hydroxyphenyl)butan-2-one 

(42) 

I2 (586 mg, 2.31 mmol) and Mg (842 mg, 34.65 mmol) 

were mixed in THF (23.1 mL) under argon atmosphere. 

(Bromomethyl)cyclopentane (2.96 mL, 23.10 mmol) 

was added and the mixture was stirred at 25 °C. 

Approximately after 1 min, the mixture turned clear in 

color and the exothermic reaction was triggered. The 

reaction mixture was stirred at 25 °C for 30 min and at 

50°C for 1 h. The freshly prepared cyclopentylmethylmagnesium bromide (1 M in THF, 

23.1 mL, 23.10 mmol) was added dropwise at 0 °C to a solution of compound 41 (2.00 g, 

4.62 mmol) in THF (25 mL). The mixture was allowed to warm up to 25 °C, stirred for 

16 h, quenched slowly with 1 M aqueous HCl, and concentrated. The resiude was diluted 

in CHCl3, washed with H2O (3 × 150 mL), washed with brine (150 mL), dried over 

MgSO4, filtered, and concentrated. The residue was purified using silica using gel flash 

chromatography (linear gradient elution 0–50% EtOAc/MeOH (9:1 ratio) in hexane) to 

afford 42 (153 mg, 7% + 1.02 g, 50% of the starting 41) as an off-white solid. 1H NMR 

(401 MHz, DMSO-d6) δ 9.11 (s, 1H), 7.35–7.20 (m, 7H), 7.17–7.07 (m, 3H), 6.91–6.85 

(m, 2H), 6.62–6.57 (m, 2H), 3.76 (d, J = 13.8 Hz, 1H), 3.58 (d, J = 13.8 Hz, 1H), 3.45 

(dd, J = 9.3, 4.1 Hz, 1H), 2.85 (dd, J = 13.3, 9.3 Hz, 1H), 2.66 (dd, J = 13.4, 4.1 Hz, 1H), 

2.60–2.26 (m, 6H), 1.89–1.77 (m, 1H), 1.75–1.62 (m, 2H), 1.52–1.28 (m, 6H), 0.91–0.75 

(m, 2H). 13C NMR (101 MHz, DMSO-d6) δ 209.25, 155.33, 142.04, 139.78, 130.05, 

129.42, 128.72, 128.23, 128.18, 126.95, 125.63, 114.95, 68.46, 54.69, 49.51, 46.68, 

35.08, 32.86, 31.88, 31.72, 29.92, 27.98, 24.31. HRMS (ESI) m/z [M+H]+ calcd for 

C31H38O2N 456.28971, found 456.28952. [α]25
D = –46.5 (c 0.187 g/100 mL, 

CHCl3/MeOH 1/1). 
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Isopropyl (((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(4-((S)-2-

(benzyl(3-phenylpropyl)amino)-4-cyclopentyl-3-oxobutyl)phenoxy)phosphoryl)-L-

alaninate (43) 

 Following standard procedure N, compound 

34 (96 mg, 0.24 mmol), 42 (109 mg, 

0.24 mmol), DIPEA (334 μL, 1.92 mmol), 

PPh3 (252 mg, 0.96 mmol), and AldrithiolTM 

(211 mg, 0.96 mmol) were stirred in pyridine 

(5 mL) to afford 43 (177 mg, 88%) as a white 

solid. 1H NMR (401 MHz, DMSO-d6, 

mixture of epimers) δ 8.13 and 8.13 (s, 1H, 

H2), 8.10 and 8.09 (s, 1H, H8), 7.37–6.90 

(m, 16H, H10, H22, H23, H31, H32, H33, H36, H37, H38), 5.59 and 5.46 (dd, J = 12.0, 

10.4 and 12.2, 10.0 Hz, 1H, H15), 4.91–4.73 (m, 1H, H19), 4.33–4.09 (m, 2H, H11), 

3.99–3.55 (m, 6H, H12, H14, H16, H34), 3.51–3.45 (m, 1H, H26), 2.97–2.87 and 2.79–

2.71 (m, 2H, H25), 2.63–2.28 (m, 6H, H27, H29, H40), 1.88–1.78 (m, 1H, H41), 1.76–

1.27 (m, 8H, H28, H42, H43), 1.15–0.99 (m, 12H, H13, H17, H20), 0.92–0.75 (m, 1H, 

H42). 13C NMR (101 MHz, DMSO-d6, mixture of epimers) δ 209.12 and 209.07 (C39), 

173.00 and 172.85 (d, J = 4.2 and 3.9 Hz, C18), 155.98 and 155.96 (C6), 152.41 (C2), 

149.83 and 149.79 (C4), 148.40–148.05 (m, C21), 141.98 (C30), 141.42 and 141.38 (C8), 

139.62 (C35), 135.73 and 135.59 (C24), 130.15 (C23), 128.74 (C36), 128.23 and 128.21 

and 128.17 (C31, C32, C37), 126.97 (C38), 125.63 (C33), 120.43 and 120.12 (d, J = 4.1 

and 4.3 Hz, C22), 118.38 and 118.33 (C5), 75.74–75.38 (m, C12), 68.45 and 68.44 (C26), 

67.85 (C19), 64.14 and 64.07 (d, J = 154.9 and 155.4 Hz, C14), 54.72 (C34), 49.51 (C27), 

49.04 and 48.98 (C16), 46.74 and 46.66 (C11), 46.49 (C40), 35.03 and 35.01 (C41), 32.86 

(C29), 31.88 and 31.73 (C42), 29.89 (C28), 28.05 (C25), 24.32 and 24.29 (C43), 21.39 

and 21.37 (C20), 20.26 and 19.88 (d, J = 5.5 and 5.7 Hz, C17), 16.77 and 16.64 (C13). 
31P NMR (162 MHz, DMSO-d6, mixture of epimers) δ 25.45 and 24.64. HRMS (ESI) 

m/z [M+H]+ calcd for C46H61O6N7P 838.44155, found 838.44165. 

 

L-tyrosine cyclopentyl ester (44) 

Compound 36c (1.95 g, 5.08 mmol) was dissolved in MeOH 

(10 mL) and Pd/C was added under argon atmosphere. The flask was 

evacuated and flushed with H2 (3 ×) and the mixture was stirred 

under H2 atmosphere at 25 °C for 1 h. After filtration, compound 44 

(1.26 g, 99%) was obtained as a white solid. 1H NMR (401 MHz, 

DMSO-d6) δ 9.18 (s, 1H), 6.96–6.92 (m, 2H), 6.67–6.62 (m, 2H), 5.01–4.95 (m, 1H), 3.42 

(t, J = 6.8 Hz, 1H), 2.67 (d, J = 6.7 Hz, 2H), 1.80–1.69 (m, 2H), 1.60–1.37 (m, 6H). 13C 

NMR (101 MHz, DMSO-d6) δ 174.82, 155.83, 130.09, 127.79, 114.86, 76.37, 55.93, 

32.09, 32.05, 23.27, 23.20. HRMS (ESI) m/z [M+H]+ calcd for C14H20O3N 250.14377, 

found 250.14396. [α]25
D = +3.0 (c 0.549 g/100 mL, CHCl3/MeOH 1/1). 
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N-(3-phenylpropanoyl)-L-tyrosine cyclopentyl ester (45) 

Following standard procedure M, compound 44 

(450 mg, 1.80 mmol), 3-phenyl propionic acid (270 

mg, 1.80 mmol), HATU (1.03 g, 2.70 mmol), and 

DIPEA (1.57 mL, 9.00 mmol) were stirred in DMF 

(10 mL) to afford 45 (197 mg, 29%) as a white solid. 
1H NMR (401 MHz, DMSO-d6) δ 9.21 (s, 1H), 8.23 (d, 

J = 7.6 Hz, 1H), 7.28–7.21 (m, 2H), 7.21–7.13 (m, 3H), 7.00–6.92 (m, 2H), 6.68–6.60 

(m, 2H), 5.04–4.95 (m, 1H), 4.36–4.26 (m, 1H), 2.82 (dd, J = 13.8, 6.5 Hz, 1H), 2.78–

2.70 (m, 3H), 2.42–2.34 (m, 2H), 1.82–1.65 (m, 1H), 1.64–1.34 (m, 2H). 13C NMR (101 

MHz, DMSO-d6) δ 171.50, 171.43, 155.98, 141.21, 129.99, 128.25, 128.15, 127.11, 

125.85, 114.96, 76.95, 53.97, 36.53, 36.15, 32.04, 30.91, 23.27, 23.20. HRMS (ESI) m/z 

[M+Na]+ calcd for C23H27O4NNa 404.18323, found 404.18392. [α]25
D = +12.2 (c 

0.147 g/100 mL, CHCl3/MeOH 1/1). 

 

N-benzyl-N-(3-phenylpropyl)-L-tyrosine cyclopentyl ester (46) 

Compound 44 (500 mg, 2.01 mmol), PhCHO (225 μL, 

2.21 mmol), and Na2SO4 (1.43 g, 10.05 mmol) were 

mixed in MeOH (10 mL) under argon atmosphere. 

AcOH (138 μL, 2.41 mmol) and NaBH₃CN (253 mg, 

4.02 mmol) were added and the mixture was stirred at 

25 °C for 30 min. 3-Phenylpropanal (529 μL, 

4.02 mmol), AcOH (138 μL, 2.41 mmol), and 

NaBH₃CN (253 mg, 4.02 mmol) were added. The mixture was stirred at 25 °C for 1 h, 

filtered, concentrated, and separated using silica using gel flash chromatography (linear 

gradient elution 0–40% EtOAc/MeOH (9:1 ratio) in hexane) to afford 46 (805 mg, 88%) 

as a colorless oil. 1H NMR (401 MHz, DMSO-d6) δ 9.17 (s, 1H), 7.30–7.10 (m, 8H), 

7.10–7.02 (m, 2H), 6.93–6.85 (m, 2H), 6.68–6.59 (m, 2H), 5.09–5.01 (m, 1H), 3.91 (d, J 

= 14.3 Hz, 1H), 3.51 (d, J = 14.3 Hz, 1H), 3.44 (dd, J = 8.4, 6.8 Hz, 1H), 2.87 (dd, J = 

13.7, 8.4 Hz, 1H), 2.73 (dd, J = 13.7, 6.8 Hz, 1H), 2.70–2.60 (m, 1H), 2.49–2.36 (m, 3H), 

1.85–1.66 (m, 2H), 1.66–1.40 (m, 8H). 13C NMR (101 MHz, DMSO-d6) δ 171.36, 

155.67, 142.12, 139.93, 130.00, 128.29, 128.27, 128.17, 128.04, 114.86, 76.42, 64.06, 

54.67, 49.83, 34.24, 32.72, 32.43, 32.21, 29.64, 23.18, 23.15. HRMS (ESI) m/z [M+Na]+ 

calcd for C30H36O3N 458.26897, found 458.26966. [α]25
D = –55.6 (c 0.250 g/100 mL, 

CHCl3/MeOH 1/1). 
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Cyclopentyl (2S)-3-(4-((((((R)-1-(6-amino-9H-purin-9-yl)propan-2-yl)oxy)methyl)(((S)-

1-isopropoxy-1-oxopropan-2-yl)amino)phosphoryl)oxy)phenyl)-2-(benzyl(3-

phenylpropyl)amino)propanoate (47) 

 Following standard procedure N, compound 

34 (200 mg, 0.50 mmol), 46 (458 mg, 

1.00 mmol), Et3N (558 μL, 4.00 mmol), 

PPh3 (525 mg, 2.00 mmol), and AldrithiolTM 

(441 mg, 2.00 mmol) were stirred in 

pyridine (8 mL) to afford 47 (107 mg, 25%) 

as a white solid. 1H NMR (401 MHz, 

DMSO-d6, mixture of epimers) δ 8.13 (s, 

1H, H2), 8.11 and 8.10 (s, 1H, H8), 7.29–

6.94 (m, 16H, H10, H22, H23, H31, H32, H33, H36, H37, H38), 5.61 and 5.47 (dd, J = 

12.0, 10.4 and 12.4, 9.9 Hz, 1H, H15), 5.10–5.05 (m, 1H, H40), 4.88–4.77 (m, 1H, H19), 

4.31–4.11 (m, 2H, H11), 4.02–3.73 (m, 5H, H12, H14, H16, H34a), 3.55–3.46 (m, 2H, 

H26, H34b), 2.98–2.78 (m, 2H, H25), 2.70–2.35 (m, 4H, H27, H29), 1.85–1.46 (m, 10H, 

H28, H41, H42), 1.15–1.01 (m, 12H, H13, H17, H20). 13C NMR (101 MHz, DMSO-d6, 

mixture of epimers) δ 173.03 and 172.86 (d, J = 4.0 and 4.0 Hz, C18), 171.20 (C39), 

155.96 and 155.94 (C6) 152.39 (C2), 149.84 and 149.80 (C4), 148.67–148.36 (m, C21), 

142.05 (C30), 141.43 and 141.38 (C8), 139.75 and 139.73 (C35), 134.54 and 134.40 

(C24), 130.13 (C23), 128.28 (C36), 128.16 and 128.07 (C31, C32, C37), 126.72 (C38), 

125.55 (C33), 120.35 and 120.02 (d, J = 4.2 and 4.4 Hz, C22), 118.37 and 118.33 (C5), 

76.58 (C40), 75.79–75.34 (m, C12), 67.87 (C19), 64.92–63.34 (m, C14), 63.65 and 63.58 

(C26), 54.68 (C34), 49.78 and 49.71 (C27), 49.05 and 49.01 (C16), 46.71 and 46.66 

(C11), 34.11 (C25), 32.72 (C29), 32.48 and 32.19 (C41), 29.61 and 29.59 (C28), 23.20 

and 23.14 (C42), 21.40 and 21.38 (C20), 20.28 and 19.89 (d, J = 5.0 and 5.3 Hz, C16), 

16.80 and 16.66 (C13). 31P NMR (162 MHz, DMSO-d6, mixture of epimers) δ 25.49, 

24.65. HRMS (ESI) m/z [M+H]+ calcd for C45H59O7N7P 840.42081, found 840.42106. 
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Solubility measurements 

The stock solution of studied compound (0.5 mM in DMSO) was prepared, out of which 

50 μL was pipetted in a vial containing 950 μL of MilliQ water affording 25 μM 

concetration. Using HPLC (Agilent 1260/1290 Infinity II, Reprosil 5 μm, 3 × 200 mm, 

C18 with guard, 40 °C, flow rate 1 mL/min, modified gradiend 5-100% of MeCN in H2O), 

this vial was used to measure an 8-point calibration curve (based on the UV absorption at 

254 nm) ranging from 1.35 μM to 150 μM via different injection volumes.  

Studied compounds were mixed with MilliQ water to hit hypothetical 1 mM 

concentration to secure oversaturation of the mixture. Compounds were incubated at 25°C 

for 24h in order to reach equilibrium. The remaining solid was removed using 

centrifugation (30 000 rcf for 15 min). The supernatants were analyzed and the 

concentration of the solute was determined. The AUCs were correlated to corresponding 

calibration curves to calculate the concentration in the samples. 

 

 

 

Figure 35. Calibration curves for TAF (top) and 35l-SEE (bottom). 
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pH stability assay 

Using Jenway 3505 pH meter, the stock solutions of 0.01 M buffers were prepared (NaCl-

HCl buffer pH – 1.5, citrate buffer – pH 4.5, phosphate buffer – pH 7.4, Tris-HCl buffer 

– pH 8.5, and NaOH-glycine buffer – pH 10.0). The stock solution of studied compound 

(0.5 mM in DMSO) was prepared, out of which 50 μL was pipetted in a vial containing 

950 μL of MilliQ water affording 25 μM concetration. Using HPLC (Agilent 1260/1290 

Infinity II, Reprosil 5 μm, 3 × 200 mm, C18 with guard, 40 °C, flow rate 1 mL/min, 

modified gradiend 5-100% of MeCN in H2O), this vial was used to measure an 8-point 

calibration curve (based on the UV absorption at 254 nm) ranging from 1.35 μM to 150 

μM via different injection volumes. 

Out of the stock solution of studied compound (0.5 mM in DMSO), 50 μL was pipetted 

in a vial containing 950 μL of appropriate buffer affording 25 μM concetration. Each 

sample was incubated at given temperature (4 °C, 22 °C, or 37 °C) for 24 h while 

analyzing the sample every 3 h. Each experiment was conducted in triplicate, at three 

temperatures, at five different pH thus resulting in 45 experiments for each compound. 
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