Univerzita Karlova v Praze
Farmaceutická fakulta v Hradci Králové

DISERTAČNÍ PRÁCE

Studium využitelnosti alternativních přístupů v HPLC analýze léčiv

Vědní obor: Kontrola chemických léčiv

Školitel: Doc. RNDr. Jiří Klimeš, CSc.
Školitel specialista: PharmDr. Radim Kučera, Ph.D.

Hradec Králové 2004-2008
Mgr. Václav Žižkovský
Na tomto místě bych rád poděkoval všem, kteří přispěli ke vzniku této disertační práce:

Doc. RNDr. Jiřímu Klimešovi, CSc., mému školiteli, za jeho odborné vedení a cenné připomínky a rady v průběhu celého postgraduálního studia,

PharmDr. Radimu Kučerovi, Ph.D., mému školiteli specialistovi, za jeho odbornou asistenci a všestrannou pomoc při řešení praktických problémů spojených s experimentální částí mé práce a také za cenné rady při sepsování vědeckých publikací a disertační práce,

Ing. Jiřímu Dohnalovi, CSc., ze společnosti Zentiva a.s., za spolupráci a podporu při realizaci experimentálních prací,

všem dalším spoluautorům za jejich podíl na konečné podobě publikovaných prací,

Doc. RNDr. Veronice Opletalové, Ph.D., za pomoc při úpravě anglických textů,

všem pracovníkům katedry farmaceutické chemie a kontroly léčiv za všestrannou pomoc a vytvoření příjemného pracovního prostředí,

všem dalším kolegům z FaF UK za poskytnuté rady a konzultace,

v neposlední řadě své přítelkyni Janě, své rodině a přátelům za trpělivost a podporu během celého postgraduálního studia.
OBSAH

1 ÚVOD ... 7
2 CÍL PRÁCE .. 11
3 TEORETICKÁ ČÁST .. 15
 3.1 Vysokoúčinná kapalinová chromatografie (HPLC) 17
 3.1.1 Vznik HPLC .. 17
 3.1.2 HPLC ve farmaceutické analýze ... 18
 3.1.3 HPLC v kontextu dalších separačních metod 19
 3.2 Stacionární fáze ... 21
 3.2.1 Silikagelové stacionární fáze ... 22
 3.2.2 Hybridní stacionární fáze ... 29
 3.2.3 Polymerní stacionární fáze ... 31
 3.2.4 Stacionární fáze na bázi grafitizovaného uhlíku 34
 3.2.5 Stacionární fáze na bázi jiných oxidů než SiO$_2$ 36
 3.3 Stacionární fáze na bázi oxidů kovů .. 37
 3.3.1 Vlastnosti sorbentů na bázi oxidů kovů .. 37
 3.3.2 Mechanismy uplatňující se při retenci analytů 40
 3.3.2.1 Iontová výměna ... 41
 3.3.2.2 Výměna ligandů .. 42
 3.3.2.3 Možnosti změny příspěvků jednotlivých mechanismů na celkovou retenci 44
 3.3.3 Přehled úprav povrchu sorbentů na bázi oxidů kovů 48
 3.3.3.1 Dynamická modifikace ... 48
 3.3.3.2 Kovalentní modifikace ... 49
 3.3.3.3 Modifikace polymerem .. 52
 3.3.3.4 Modifikace oxidů kovů uhlíkem .. 60
 3.3.4 Chirální stacionární fáze na bázi oxidů kovů 62
 3.3.4.1 CSP na bázi ZrO$_2$ potaženého tris(3,5-dimethylfenyl)karbamátem celulosy 62
 3.3.4.2 CSP na bázi ZrO$_2$ potaženého BSA a karboxymethyl-β-cyclodextrinem 63
 3.3.4.3 CSP na bázi ZrO$_2$ využívající Lewisovy interakce 63
 3.3.5 Monolitické stacionární fáze na bázi oxidů kovů 68
 3.4 Možnosti využití stacionárních fází na bázi oxidů kovů ve farmaceutické analýze .. 70
 3.4.1 Stacionární fáze na bázi Al$_2$O$_3$... 70
 3.4.2 Stacionární fáze na bázi ZrO$_2$.. 72
 3.4.2.1 Přehled komerčně dostupných kolon na bázi ZrO$_2$ 73
 3.4.3 Stacionární fáze na bázi TiO$_2$.. 78
 3.4.3.1 Komerčně dostupné kolony na bázi TiO$_2$ 79
 4 PUBLIKOVANÉ PRÁCE .. 81
4.1 Práce publikované ve vědeckých časopisech .. 83
4.2 Komentáře k publikovaným pracím .. 114
4.3 Práce publikované formou posteru na vědeckých konferencích a formou abstraktů v odborných časopisech ... 123
5 SOUHRN VÝSLEDKŮ .. 127
6 SUMMARY ... 131
7 SEZNAM ZKRATEK .. 135
8 POUŽITÁ LITERATURA .. 141
1 Úvod
Vysokoúčinná kapalinová chromatografie (HPLC) je v moderní farmaceutické analýze využívána velmi široce. V lékopisných monografiích, DMF a registračních dokumentacích léčiv je nejvíce využívána pro hodnocení čistoty aktivních substancí, kvalitativní i kvantitativní analýzu účinných látek v léčivých přípravcích a stabilitních studiích.

Nečistoty obsažené v léčivu či léčivém přípravku mohou představovat potencionální riziko pro pacienta ve spojení s terapií. Proto je nezbytné ověřovat přítomnost nečistot, které se mohou v léčivu vyskytnout. Abychom mohli zjistit přítomnost určité nečistoty, popř. stanovit její obsah v léčivém přípravku, je v praxi často zapotřebí od sebe jednotlivé složky přípravku oddělit. Jelikož nečistoty bývají nezřídka strukturně velmi podobné sobě vzájemně i vlastní léčivé látky, bývá jejich úplná separace nejkomplikovanějším procesem analýzy.

Mezi největší přednosti HPLC patří vysoká selektivita, umožňující identifikovat a stanovit konkrétní látku i ve složité směsi, citlivost, nízká spotřeba vzorku, značná robustnost metody a v neposlední řadě možnost automatizace. HPLC je ve farmaceutické analýze běžně využívána pro stanovení obsahu účinné látky v léčivém přípravku nebo u zkoušek na čistotu pro ověření přítomnosti nečistot a jejich stanovení, popř. pro stanovení obsahu účinné látky i provedení zkoušky na čistotu současně. Stanovení obsahu i provedení zkoušky na čistotu jedním krokem výrazně zkracuje proces analýzy a snižuje spotřebu mobilní fáze, tudíž i snižuje náklady spojené s kontrolou daného léčivého přípravku. Navíc možnost automatizace umožňuje provádět desítky i stovek analýz bez přítomnosti operátora, což zjednodušuje pracnost vlastního procesu analýzy i šetří analytikův cenný čas. Jinou významnou oblastí využití HPLC ve farmaceutické analýze jsou stabilitní studie, kdy HPLC pomáhá identifikovat rozkladné produkty a stanovit obsah produktů degradace.

Kromě farmaceutické analýzy má HPLC významnou úlohu v celé řadě dalších oborů. Nezastupitelnou úlohu má v biochemii, při monitorování lékových hladin, metabolických a farmakokinetických studiích, dále v toxikologii, v potravinářství, v analýze vody, půd, životního prostředí atd.

V současné době patří HPLC k nejúčinnějším a nejpoužívanějším analytickým metodám. Výroba chromatografických zařízení představuje významné průmyslové odvětví, stejně tak jako výroba chromatografických kolon. Vzhledem
k neustále se stupňující potřebě jištění jakosti, nejen farmaceutických produktů, se rozvoj farmacie a řady dalších oborů bez postupného rozvoje HPLC instrumentace a neustálého vývoje moderních, rychlých a spolehlivých metod jeví nemyslitelný.
2 Cíl práce
Tato disertační práce je směrována do oblasti studie využití moderních separačně účinných stacionárních fází a selektivní detekce v oblasti analýzy léčiv.

Pro hodnocení kvality aktivních substancí pomocí validní HPLC analýzy je nezbytným předpokladem volba chromatografických podmínek umožňujících separaci a detekci všech doprovodných nečistot a rozkladních produktů.

Obdobně pro analýzu léčivých přípravků je nutno optimalizovat HPLC podmínky umožňující separaci a detekci všech hodnocených složek, a to na pozadí matrice excipientů přípravku.

Hlavním cílem disertační práce bylo vyzkoušet možnosti využití specifických vlastností stacionárních fází na bázi oxidů kovů v oblasti farmaceutické analýzy a na praktických příkladech prokázat použitelnost a potenciální přínosnost těchto sorbentů pro rutinní kontrolně-analytické hodnocení léčiv.

Disertační práce měla níže uvedené dílčí cíle:

- V rámci teoretické části zhodnotit vlastnosti moderních stacionárních fází na bázi oxidů kovů, včetně srovnání s „tradičními“ stacionárními fázemi.

- Studium možností využití stacionárních fází na bázi ZrO₂ pro separaci ibuprofenu, methylparabenu, propylparabenu a jejich rozkladních produktů. Následně ověřit použitelnost vyvinutých metod na praktickém příkladě.

- Studium retenčního chování ondansetronu a jeho nečistot na stacionárních fázích na bázi oxidů kovů a možnosti jejich použití pro kontrolně-analytické hodnocení ondansetronu ve farmaceutické praxi.

- Porovnání retenčního chování ondansetronu a jeho nečistot na reverzních fázích na bázi ZrO₂ a TiO₂. Následně vzájemné srovnání výhodnosti použití obou typů stacionárních fází pro hodnocení ondansetronu.
• Studium možností využití coulometrické detekce pro stanovení obsahu biotinu ve vitaminových přípravcích a následné ověření na praktickém příkladě.
3 Teoretická část
3.1 Vysokoúčinná kapalinová chromatografie (HPLC)

3.1.1 Vznik HPLC

3.1.2 HPLC ve farmaceutické analýze

Vysokoúčinná kapalinová chromatografie je v současné době jedna z nejprogresivnějších metodik, která nachází stále větší uplatnění ve všech oblastech analýzy léčiv [6]. Směrnice pro nečistoty v nových léčivých látkách a nových léčivých produktech vydané ICH (International Conference on Harmonisation) [7,8] a doprovodné směrnice pro validaci metod [9], předurčují výhodnost HPLC pro použití ve farmaceutické analýze. Dá se říci, že směrnice byly psány na základě analytických možností HPLC. Vysokoúčinná kapalinová chromatografie je široce využívána ve všech lékopisných monografiích a dá se předpokládat, že její význam neustále poroste.

Mezi hlavní přednosti HPLC patří:

a) možnost použití pro kvalitativní i kvantitativní hodnocení léčiv
b) citlivost stanovení (v závislosti na použitém detektoru)
c) pro analýzu stačí minimální množství vzorku
d) možnost automatizace
e) možnost analýzy poměrně složitých směsí

HPLC poskytuje spolehlivou přesnost a správnost společně s dostatečným lineárním dynamickým rozsahem pro současné hodnocení farmakologicky účinné látky a příbuzných látek, s možností použití různých typů detekce. Celý systém může být plně automatizovaný. Kromě toho se HPLC vyčnívá výbornou reprodukovatelností a možností použití pro širokou skupinu sloučenin. Většina HPLC analýz využívá reverzní fáze (RP), popř. normální fáze (NP) pro analýzu malých organických molekul (pod 2000 Da), iontovýměnné fáze pro separaci iontů, gelové fáze pro dělení polymerů a chirální stacionární fáze pro hodnocení čistoty opticky aktivních látek. Existuje množství chemicky různých typů kolon určených pro každou z těchto typů chromatografie, což usnadňuje vývoj konkrétních separačních metod farmaceutické analýzy [10].
Uplatnění HPLC ve farmaceutické praxi lze shrnout do těchto bodů:

- **Vývoj nových léčivých látek** – napomáhá určování struktury nově syntetizovaných látek a vedlejších produktů reakce, objasňování degradačních procesů, identifikace látek izolovaných z přírodních materiálů; využívá se kombinace s hmotnostním detektorem (HPLC-MS) nebo nukleárně magnetickou rezonancí (HPLC-NMR) [11-13];

- **Izolace chemicky čistých látek** – izolace jednotlivých složek ze směsi přírodních látek, izolace hlavního produktu chemické reakce od vedlejších či degradačních produktů, atd.;

- **Vývoj nových lékových forem** – stabilitní studie, sledování biologické dostupnosti, atd.;

- **Kvantitativní a kvalitativní hodnocení léčiv** – umožňuje potvrdit identitu látky, stanovit obsah látky a ověřit čistotu přípravku [14-16];

- **Monitorování lékových hladin** – stanovení plazmaticích koncentrací účinných látek a jejich metabolitů, farmakokinetické studie, bioekvivalenční studie;

- **Využití v oborech souvisejících s farmaceutickou praxí** – toxikologie, forenzní medicína, analýza potravin a doplňků stravy, atd.

3.1.3 HPLC v kontextu dalších separačních metod

Přestože HPLC, obzvláště HPLC na reverzních fázích, je v současnosti metodou disponující nejvhodnějšími vlastnostmi pro kvantitativní analýzu ve farmaceutickém průmyslu [10], existují určité limity v jejích vlastnostech. Je často složité vybrat kolony od různých výrobců, které umožní dosáhnout stejných záznamů. Proto je nutné pečlivě vybrat typ kolony pro metody určené pro použití v různých laboratořích. Navíc existují rozdíly mezi přístroji od různých firem, což má za následek nutnost seznámit se s těmito rozdíly pro úspěšné převádění metod na přístroj od jiného výrobce. Například rozdílné velikosti směšovacího prostoru, rozdílná délka kapilár, rozdílné vlastnosti pump a použití vysokotlakého gradientu nebo nízkotlakého gradientu má za následek rozdílný gradientový profil, tedy rozdílné retenční časy analyzovaných látek. Rozdíly v objemu detekční cely mohou
způsobit rozdílnou odezvu mezi přístroji a následně odlišné lineární dynamické rozsahy a změnu citlivosti.

Kromě problémů s přenositelností metody HPLC dosahuje nižší separační účinnosti než některé jiné separační techniky, jako kapilární elektroforéza (CE), plynová chromatografie (GC) nebo superkritická fluidní chromatografie (SFC). Je značně složité rozdělit více než 15-20 sloučenin pomocí jedné HPLC analýzy [17,18]. Analýza složitých směsí vyžaduje použít dvoudimenzionální HPLC nebo použití kombinace různých metod. Přes všechny výše uvedené nedostatky lze však říci, že neexistuje žádná perspektivní technika, která by mohla významně zredukovat použití HPLC v několika příštích letech, a to nejen v oblasti farmaceutické analýzy.
3.2 Stacionární fáze

Ačkoliv vysokoúčinná kapalinová chromatografie patří ke „zralým“ analytickým technikám, tempo vývoje sorbentů rozhodně nepořežuje a na trh jsou uváděny stále pokročilejší materiály s lepšími vlastnostmi. Tyto inovace přinášejí nejen nové chemické modifikace na stávajících matricích, ale také využití modernějších matric a změny vlastního formátu separačního lože.

V posledních letech je patrná silná tendence ke zmenšování rozměrů částic sorbentů. Před deseti lety byly nejpoužívanější stacionární fáze 5 μm, dnes jsou nejrozšířenější fáze 3 μm. Stále běžnější jsou komerčně dostupné i sorbenty s velikosti částic pod 2 μm. Zmenšování částic sorbentu je následováno zkracováním chromatografických kolon. Výsledkem je podstatné zkrácení časové délky analýz bez ztráty účinnosti ve srovnání se separacemi provedenými na kolonách tradiční délky (25 cm) plněných 5 μm sorbentem. Doby analýz na krátkých kolonách (5 cm, 2 cm i menších) určených pro tzv. rychlou chromatografii bývají kolem 1 a 2 min. Tyto kolony jsou s výhodou užívány zejména pro tzv. vysokoprostupné analýzy v oblastech, kde jsou denně zpracovávány stovky a tisíce vzorků. Kromě zkracování časové délky kolon dochází postupně také ke zmenšování jejich vnitřního průměru. Tradiční průměr analytických kolon 4,6 mm je postupně opouštěn a nahrazován dnes již běžnějšími průměry kolem 3−4 mm. S nástupem techniky LC-MS vzrostl význam kolon o průměru 2 mm a menším. Tento trend souvisí nejen s snahou o zrychlení analýz, ale také s úsilím o zlepšení ekonomiky provozu chromatografických laboratoří a v neposlední řadě i s hledisky ekologickými. Spotřeba mobilních fází, obvykle obsahujících organická rozpouštědla a množství vznikajících odpadů může být tímto způsobem řádově snížena.

Je možno konstatovat, že dělení na RP je stále nejrozšířenější technikou, přitom dominantní postavení mají již tradičně partikulární vázané fáze na bázi silikagelu. Ze silikagelových RP jsou dlouhodobě nejpopulárnější C18 modifikace s tím, že tyto fáze představovaly kolem 50 % všech RP kolon nově uváděných na trh v roce 2005. S velkým odstupem následují modifikace C8 (13 %), fluorované fáze, alkylované fáze s řetězci delšími než 18 uhlíků, fenylové fáze, fáze se zabudovanou polární funkční skupinou, C4 modifikace a další. Vedle silikagelových partikulárních sorbentů se v moderní RP-HPLC stále více prosazují materiály nové, jako např.
anorganicko-organické hybridy a modifikované oxidy kovů. Velmi perspektivní jsou také monolitické kolony [19].

3.2.1 Silikagelové stacionární fáze

V současnosti existuje na trhu více než 400 reverzních fází na bázi silikagelu modifikovaného oktadecylovými skupinami [20]. Jejich vlastnosti se podstatně liší podle výrobce. Silikagelové stacionární fáze jsou široce využívány ve všech LC módech, avšak silikagelové reverzní fáze jsou jednoznačně nejvýznamnější [21].

Silikagel je atraktivním sorbentem díky řadě jeho výhodných vlastností [19,21].

- možnost přípravy monodisperzních částic sorbentu,
- možnost úpravy velikosti a distribuce pórů,
- možnost přípravy sorbentu s velkým specifickým povrchem,
- snadná chemická úprava povrchu, což umožňuje přípravit různé typy modifikací včetně reverzních, normálních, iontovýměnných i gelových fází,
- vysoká mechanická odolnost.

Částice silikagelu pro kapalinovou chromatografií mají nejčastěji strukturu porézní amorfní hmoty o složení SiO₂ x H₂O. Voda je chemicky vázána v nestechiometrickém množství za vzniku silanolových skupin Si-OH. Silanolové skupiny udělují povrchu silikagelu polární charakter a jsou pro svoji reaktivitu využívány k přípravě kovalentně vázaných fází. Obr. 1 znázorňuje různé typy silanolových skupin, které jsou v nestejné míře rozprostřeny na povrchu silikagelu a vykazují rozdílnou kyselost. Silanolové skupiny a jejich typ mají velký vliv na chromatografické chování silikagelu. Díky silanolovým skupinám má silikagel při vyšším pH vlastnosti katexu. V prostředí pufrů jsou protony silanolových skupin vyměňovány za kationty elektrolytu. Tento proces je silně závislý na pH mobilní fáze a na vlastnostech silikagelu. Hodnota pKa silanolových skupin je teoreticky rovna 7, ale prakticky bývá podstatně nižší, kolem [4,22]. V literatuře uváděné hodnoty je
třeba chápat jen jako průměrné. Ve skutečnosti mohou být, a bývají, na povrchu silikagelu silanoly značně různé kyselosti a je známo, že i minoritní část tvořená extrémně kyselými silanolovými skupinami může zásadně měnit vlastnosti sorbentu jako celku [19,23,24].

Obr. 1 Různé typy funkčních skupin na povrchu silikagelu, převzato z ref. [19].

1 – vicinální silanolové skupiny; 2 – geminální silanolové skupiny; 3 – siloxanové skupiny; 4 – asociované silanolové skupiny; 5 – izolovaná silanolová skupina

Je prokázáno, že při zavádění hydrofobního řetězce na povrch silikagelu zreaguje asi jen polovina všech přítomných silanolových skupin na povrchu silikagelu [25]. Nezreagované silanolové skupiny mohou zvláště při vyšším pH a separaci látek bazického charakteru ovlivňovat analýzu díky tzv. „silanolovému efektu“, viz rovnice 1.

\[(1) \quad BH^+ + SiOM^+ \leftrightarrow SiOBH^+ + M^+\]

Jelikož vazba analytu na silanolovou skupinu má charakter iontové interakce, která může převládnout, dochází k chvostování piků. Navíc množství volných silanolových skupin dostupných pro analyt bývá nestandardní, což může mít za následek snížení reprodukovatelnosti metody [25]. Nežádoucí silanolový efekt lze
potlačit snížením pH mobilní fáze nebo přidáním pufru s bazickým kationtem (Na⁺, K⁺, NH₄⁺, TEA⁺), popř. bazického aditiva (TEA, hexylamin). Určitý typ separací ovšem neumožňuje takovéto úpravy mobilní fáze. Z těchto důvodů byla snaha o vývoj kolon s minimálním nežádoucím silanolovým efektem a podařilo se zvládnout výrobu tzv. „bazicky deaktivovaných“ silikagelových fází. Jedná se o velmi čistý silikagel s homogenní distribucí asociovaných silanolových skupin.

Dnes již prakticky všechny světové významné chromatografické firmy vyrábějí a pro přípravu vázaných fází používají ultračisté silikagely uvedeného typu [19]. Výsledné reverzní fáze poskytují pro většinu látek, včetně bazických, symetrické píky s vysokou účinností nejen v kyselých mobilních fázích, ale i při neutrálním pH.

reverzních silikagelových sorbentů a mobilních fází s nízkým obsahem organické složky.

Výrobci našli různá řešení tohoto problému, umožňujících použít mobilní fázi tvořenou 100% vodnou složkou [27]:

- použití reverzních fází s krátkým alkylovým řetězcem,
- použití stacionárních fází s velmi dlouhým řetězcem (C30 fáze),
- aplikace makroporézních sorbentů,
- požití hydrofilních a polárně endkapovaných stacionárních fází,
- použití sorbentů se zabudovanou polární funkční skupinou v alkylovém řetězci (PEP – polar embedded alkyl phase).

Obr. 2 Zobrazení uspořádání alkylových řetězců na povrchu stacionární fáze; a) voda-MeOH, b) 100% voda; převzato z ref. [26].
Obr. 3 Zobrazení smáčení póru sorbentu vodnou mobilní fází; a) solvatace póru při vysokém tlaku, b) vytlačení vodné mobilní fáze při nízkém tlaku; převzato z ref. [26].

Částečného řešení stability v oblasti nízkého pH bylo dosaženo:

- zvětšením velikosti vázaného organosilanového řetězce [31],
- zvětšením počtu kovalentně vázaných řetězců [25,35],
- sterickou ochranou silikagelového povrchu [31,36,37].

Všechny tyto úpravy povrchu sorbentu vedou k ochraně siloxanové vazby mezi silikagelem a navázaným alkalickým řetězcem, a tudíž i ke snížení možnosti kyselé hydrolyzy. Komerčně dostupné stericky chráněné fáze umožňují rutinní použití při pH 1 [38].

Částečným řešením stability silikagelových sorbentů v oblasti vysokého pH bylo:

- zvýšení pokrytí nebo stínění podložního silikagelu [25],
- chemické řešení volných silanolových skupin na povrchu sorbentu (tzv. „endcapping“) [25,33,35,39-41],
- tvorba anorganicko-organických hybridních částic (viz kap. 3.2.2).

Podstatou prvních dvou přístupů je snaha o co největší zakrytí silikagelového podloží, což kromě zvýšení stability při vyšším pH vede i ke snížení nežádoucího silanolového efektu. Dvojitě endkapované stacionární fáze disponuji významně vyšší stabilitou ve srovnání s konvenčními silikagelovými RP (až do pH 11) [40,41].

Schopnost kolony odolat nakrátko vysokému pH není to samé jako být stabilní ve vysokém pH při dlouhodobém používání. Vzhledem k tomu, že HPLC kolony jsou relativně drahé, mají zájem jejich uživatelé o kolony stabilní celé měsíce, nejen několik dnů. Požadavek opakovaného provádění testů způsobilosti, často se značným množstvím měřených vzorků, významně zvyšuje požadavky na stabilitu sorbentu. Častá výměna kolon se může významně podílet na zvýšení ceny prováděné analýzy. Silikagelové stacionární fáze speciálně upravené pro použití v oblasti vyššího pH dovedou snížit vyšší pH pouze omezenou dobu, obvykle 3-6 dní nepřetržitého měření [21]. Navíc při dlouhodobém užívání silikagelových kolon
při vyšším pH se nesmí provádět analýza za vysoké teploty (nad 60°C) a neměly by se používat anorganické příkr (PO₄³⁻, CO₃²⁻, HCO₃⁻) [30,42]. Reverzní silikagelové stacionární fáze jsou stabilnější při vyšším pH a použití většího obsahu organické složky v mobilní fázi [43,44]. To je pravděpodobně zapříčiněno nižší rozpustností silikagelu v méně polárním organickém rozpouštědle.

I přes veškerou snahu řady vědeckých týmů se dosud nepodařil problém omezené chemické i tepelné stability silikagelových kolon zcela vyřešit. Dá se předpokládat, že se v budoucnu stabilita kolon na bázi SiO₂ ještě zvýší. Přesto se silikagelové kolony jeví nevhodné pro použití v extrémních oblastech pH nebo vysoké teplotě. Pro provádění analýz vyžadujících drastické podmínky, existují naštěstí sorbenty tvořené jinou matricí, než je silikagel.
3.2.2 Hybridní stacionární fáze

Zajímavý a komerčně úspěšný přístup k syntéze odolnějších reverzních fází na bázi silikagelu navrhl a poprvé publikoval Unger et al. [45]. Pro přípravu lze využít reakce anorganického alkoxysilanu s organickým alkoxysilanem za vzniku anorganicko-organické hybridní částice [46]. Hybridní anorganicko-organické stacionární fáze kombinují nejlepší vlastnosti silikagelu, tj. vysokou účinnost a vynikající mechanickou stabilitu, s nejlepšími vlastnostmi polymerních sorbentů, tj. mimořádnou pH stabilitou a sníženým efektem reziduálních silanolů [19]. Firma Waters uvedla v roce 1999 na trh první generaci hybridních fází pod názvem X Terra [46]. Pro přípravu těchto fází použili reakci dvou organosilanů, z nichž jeden tvoří silikagelovou matrici a druhý do vznikající matrice vnáší methylsiloxanové jednotky. Konkrétně se jedná o reakci tetraethoxysilanu s methyltriethoxysilanem. Vzniklé hybridní částice obsahují methylsiloxanové jednotky, a to jak uvnitř matrice sorbentu, tak na povrchu, viz obr. 4.

Obr. 4 Syntéza a struktura hybridní anorganicko-organické částice, převzato z ref. [46].

![Diagram hybridní fáze](attachment:diagram.png)
Stechiometrický poměr reaktantů 2:1 se osvědčil jako optimální z hlediska vlastností připraveného sorbentu. Pro potřeby reverzní chromatografie je povrch následně kovalentně modifikován buď trifunkčními sílany za vzniku fází MS C8 a MS C18, optimalizovaných pro maximální chemickou stabilitu a určených pro LC-MS, anebo monofunkčními sílany za vzniku fází RP8 a RP18, s vloženými karbamáty, optimalizovaných pro minimální chvostování bazických látek. Experimentálně bylo prokázáno, že selektivita MS C8 a C18 stacionárních fází pro hydrofobní i polární analyty je obdobná jako na běžných silikagelových reverzních fázích [46]. Stejně tak selektivita hybridů se zabudovanou karbamátovou polární funkční skupinou se téměř nelišila od čistě silikagelových karbamátových kolon. Toho se dá vhodně využít při přenosu chromatografických metod z konvenčních silikagelových sorbentů na materiály hybridní, kdy často není nutná nová optimalizace separačních podmínek. Vzhledem k tomu, že na povrchu hybridu je ve srovnání s klasickými silikagelovými materiály asi jen 66 % silanolových skupin, mohou být pro navázání alkylového řetězce (C8, C18) použity klasické metody silanizace. Přitom je chvostování bazických látek na hybridních fázích výrazně omezeno a symetrie píků daleko lepší.

Hybridy vykazují velkou odolnost vůči vysoké hodnotě pH mobilní fáze. Technická literatura uvádí, že oktadecylové hybridní fáze jsou mnohem stabilnější při pH 10 ve srovnání s běžnými C18 fázemi [46]. Výrobci uvádějí, že hybridní fáze jsou stabilní v oblasti pH 2-12 [46]. Analyty bazické povahy bývají při navázání alkylového řetězce (C8, C18) použity klasické metody silanizace. Přitom je chvostování bazických látek na hybridních fázích výrazně omezeno a symetrie píků daleko lepší.

Hybridy vykazují velkou odolnost vůči vysoké hodnotě pH mobilní fáze. Technická literatura uvádí, že oktadecylové hybridní fáze jsou mnohem stabilnější při pH 10 ve srovnání s běžnými C18 fázemi [46]. Výrobci uvádějí, že hybridní fáze jsou stabilní v oblasti pH 2-12 [46]. Analyty bazické povahy bývají při navázání alkylového řetězce (C8, C18) použity klasické metody silanizace. Přitom je chvostování bazických látek na hybridních fázích výrazně omezeno a symetrie píků daleko lepší.
efektu a přitom velice podobné selektivitě, jakou mají klasické RP C18 fáze, se hybridní anorganicko-organické kolony jeví jako velmi perspektivní a dá se předpokládat zvýšení jejich použití v praxi.

3.2.3 Polymerní stacionární fáze

Polymerní sorbenty využívané v RP-HPLC jsou buď hydrofobní sami o sobě nebo se derivatizují hydrofobními funkčními skupinami. Podle okolností, derivatizace mění hydrofilní polymer na hydrofobní nebo je jejím cílem vytvořit sorbent s podobnými retenčními vlastnostmi, jako mají silikagelové fáze RP C8 nebo RP C18. Moderní stacionární fáze na bázi polymerů mají dostatečnou mechaničkou stabilitu a jsou kompatibilní s běžně užívanými organicemi rozpouštědly v chromatografii. Navíc již vykazují dostatečnou účinnost pro řadu typů analytů, jsou chemicky stabilní v celém rozsahu pH [49] a mohou být používány při vysokých teplotách (od 80°C až do 200°C) [50,51]. Ačkoli většina polymerních stacionárních fází je chemicky mnohem stabilnější než silikagelové fáze, některé typy polymerů obsahují svá přirozeně aktivní místa, ovlivňující analýzu určitých typů látek [52]. Přestože tedy polymery nabízejí výhodu pro použití v extrémních oblastech pH, mohou vznikat jiné pro ně specifické problémy v retenčních charakteristikách látek [52].

PS-DVB byl modifikován hydrofobními alkylovými skupinami [63], pro posílení retence na principu rozdělování mezi dvě fáze, za účelem získání podobného chromatografického chování jako na silikagelových RP fázích. Jiným typem modifikace povrchu polymeru je navázání hydrofilních skupin [63,64] za účelem získání specifických retenčních vlastností. Mezi alkyl-derivatizované polymerní stacionární fáze patří sorbenty na bázi polyvinylalkoholů (PVA) [59,65-67]; poly(hydroxyalkyl)akrylátů nebo methakrylátů (PHA) [59,66]; polyvinyletherů (PVE) [68]; N-alkyl [69-71] a N,N-dialkylpolyakrylaminů (PAA) [69,70]; a polyalkylmethakrylátů (PAM) [59]. Každá z těchto stacionárních fází disponuje svými specifickými retenčními vlastnostmi. Obecně lze říci, že jsou všechny docela stabilní v kyselém i alkalickém prostředí, jednoznačně stabilnější než stacionární fáze na bázi silikagelu. C18-PVA [71], C18-PVE [68] a N,N-dialkyl PAA [69,70] vykazují lepší chromatografickou účinnost než silikagelové sorbenty RP C18 pro separaci bazických látek, jako jsou aminy. Účinnost těchto sorbentů závisí na použité mobilní fázi, mikroporozitě a přiměřeně i na poměru monomerů použitých pro jejich syntézu.

Tahala [59,66], porovnal retenční vlastnosti PS-DVB, různých alkylovaných polymerních fází a silikagelových RP C18 fází pro separaci různých skupin analytů. Ačkoli jednotlivé polymerní sorbenty vykazovaly svoje specifické retenční
vlastnosti, obecně všechny více zadržovaly strukturně rigidní, aromatické sloučeniny, zatímco silikagelové sorbenty více zadržovaly objemné, méně rigidní analyty. Retenční pořadí na polymerních fázích bylo opačné než na silikagelových a obecně retence vzrůstala v řadě: lineární alkany, cykloalkany, flexibilní aromatické sloučeniny, rigidní polyaromáty. Derivatizované polymerní sorbenty vykazovaly lepší kolonovou účinnost než PS-DVB sorbenty. Je to pravděpodobně způsobeno odlišným retenčním mechanizmem uplatňujícím se při separaci na obou typech kolon. Na alkylovaných polymerech jsou látky zadržovány rozdělovacím mechanizmem, který je energeticky slabší než adsorpční mechanismus uplatňující se na nederivatizovaném PS-DVB. Proto na derivatizovaných polymerech dochází k rychlejšímu přechodu analytu z mobilní fáze do stacionární a naopak, čímž je docíleno vyšší účinnosti kolony.

Zvýšená retence určitých typů analytů na specifických polymerních stacionárních fázích se přisuzuje zvláště silným interakcím s aktivními místy na povrchu jednotlivých polymerů. Polární a aromatické látky mohou interagovat s π elektrony benzenového kruhu na PS-DVB sorbentech. Aromatické analyty mohou také podléhat π-π interakcím s triallylisocyanuronovými skupinami používanými jako síťující látky při výrobě určitých PVA [68,72-74]. N-Alkyl PAA [71] obsahují amidové skupiny (CONH), které mohou vázat vodíkovou vazbou karbonylové skupiny určitých analytů (např. alkylbenzoátů), což vede k asymetrii píků [69,70]. N,N-Dialkyl PAA [69,70] a deriváty vinyletheru (PVE) [68] nemají ve své struktuře aromatické ani amidové skupiny proto nevykazují výše zmíněné interakce.

Přestože použití stacionárních fází na bázi polymerů je pouze okrajové, je pro doplnění nutné zmínit opětovné zvýšení významu polymerů, jako materiálu pro přípravu sorbentů, po objevu monolitických kolon [75] a jejich potenciál využití v této relativně nové a progresivní skupině stacionárních fází.
Stacionární fáze na bázi grafitizovaného uhlíku

Stacionární fáze na bázi uhlíku mají nižší kapacitu kolony a nižší účinnost než konvenční silikagelové RP C18 fáze, ale nabízejí výhodu vyšší chemické a tepelné stability a možnost provádění separací těžko realizovatelných na silikagelových RP C18 stacionárních fázích. Nejpoužívanější formou uhlíku pro reverzně fázové chromatografické aplikace je porózní grafitizovaný uhlík (porous graphitic carbon – PGC). Výroba PGC sestává z impregnace porózní silikagelové formy fenol-formaldehydovou pryskyřicí, grafitizací organické pryskyřice pyrolýzou a následného rozpuštění silikagelové formy [52]. Výsledný materiál se skládá z „propletených dvou-dimenzionálních uhlíkových pásů“ [76], které jsou bez funkčních skupin. Mají adekvátní mechanickou odolnost, aby vydržely tlaky používané při HPLC a strukturu pórů definovanou použitým typem silikagelové formy.

PGC je chemicky stabilní v silně kyselém i silně bazickém prostředí. Disponuje silnější retenční schopností než typické silikagelové reverzní fáze, proto provádění separací na PGC vyžaduje použití silnější mobilní fáze k dosažení retence srovnatelné s retencí na silikagelové stacionární fázi [77]. Ke zkrácení retenčního času silně zadržovaných látek a k odstranění chvostování píků jsou nejvýhodnější silné eluenty s dipolárním charakterem (THF, ACN). Grafitizovaný uhlík má rigidní planární povrch schopný interagovat s analyty pomocí disperzních sil a elektron donor-akceptorovým mechanizmem [77-84]. Podle Tanaky jsou disperzní síly dominantní v retenčním procesu na grafitizovaných uhlíkových fázích, což dokazoval pomocí nasycených uhlovodíků neschopných jiných interakcí [85]. Interakce analyt-stacionární fáze jsou na uhlíkových sorbentech silnější než na silikagelových. To má za následek vyšší retenci planárních sloučenin [85]. Kromě disperzních interakcí umožňuje elektronová struktura grafitu elektron donor-akceptorové interakce přispívající retenci elektronově bohatých molekul [81,86]. Tyto elektronové interakce jsou významnější u látek měnících svoji orientaci vůči grafitickému povrchu v závislosti na polaritě mobilní fáze [77,86].

Uhlíkové stacionární fáze mají rigidní, planární interagující povrch umožňují dosáhnout sterkické selektivity pro separaci látek s podobnou hydrofobicitou, které je těžké rozdělit na silikagelových RP C18 fázích [85]. Proto
těžiště jejich využití je v separaci strukturně velice podobných látek a geometrických izomerů. Příkladem využití PGC stacionární fáze v oblasti farmaceutické analýzy může být separace tetracyklinových antibiotik [87]. Karlsson prokázal výhody metod pro stanovení obsahu a zkoušku na příbuzné látky pro alprenolol a metoprolol vyvinuté na koloně, jejíž stacionární fáze byla tvořena grafitizovaným uhlíkem, oproti metodě vyvinuté na silikagelové RP C8 koloně [88]. Reepmeyer využil vlastností sorbentu na bázi PGC pro separaci izomerů estrogenu, lišících se pouze polohou dvojné vazby ve steroidní struktuře, a vyvodil, že zнатelná stereoselektivita stacionární fáze na bázi grafitizovaného uhlíku může být výhodně využívána pro dělení izomerů nebo strukturně příbuzných látek [89].

Přestože sorbenty na bázi uhlíku vykazují vysokou chemickou stabilitu v oblasti pH (1-14) a tepelnou stabilitu (do 200°C) [25,50], mají nižší efektivitu než sorbenty na bázi silikagelu a jsou též značně křehké [25]. Práce s tímto typem kolon vyžaduje vysoko čisté mobilní fáze, protože nečistoty se mohou silně vázat na sorbent a postupným vymýváním zvyšovat šum pozadí, v krajinm případě mohou ireverzibilně snižovat účinnost kolony. Ze stejného důvodu musí být kladen značný důraz na úpravu vzorku před analýzou [25,90]. Jejich využití ve farmaceutické analýze spočívá hlavně v separaci strukturně podobných látek a geometrických izomerů, jejichž dělení na silikagelových sorbentech je jen těžko proveditelné. Díky jejich vysoké tepelné stabilitě by snad jedním z jejich potenciálních uplatnění v budoucnosti mohla být vysokoteplotní kapalinová chromatografie (HTLC) [50].
3.2.5 Stacionární fáze na bázi jiných oxidů než SiO₂

Mezi látky ze skupiny jiných oxidů než SiO₂ používaných pro přípravu HPLC sorbentů patří Al₂O₃, ZrO₂ a TiO₂ [21,91,92], okrajově i CeO₂ a ThO₂ [93,94]. Vzhledem k tomu, že výzkumu těchto oxidů kovů a možnostem jejich uplatnění pro přípravu HPLC stacionárních fází bylo věnováno v posledních patnácti letech množství odborných publikací a došlo k významnému pokroku ve vývoji kolon použitelných v praxi, bude tomuto tématu věnována samostatná kapitola.
3.3 Stacionární fáze na bázi oxidů kovů

3.3.1 Vlastnosti sorbentů na bázi oxidů kovů

Nejdůležitější vlastností Al$_2$O$_3$, ZrO$_2$ a TiO$_2$ je jejich vysoká chemická stabilita, překonávající stabilitu SiO$_2$. Z tohoto důvodu byly zkoumány jako materiály pro přípravu HPLC stacionárních fází.

Vyšší stabilita sorbentu má tyto výhody [21]:

- delší životnost kolony a z toho plynoucí snížení nákladů analýzy;
- možnost použití širšího rozsahu pH a teploty, tudíž lepší možnosti pro vývoj metody a dosažení optimálnějších podmínek separace;
- nižší „krvácivost“ kolony („column bleeding“), tudíž lepší předpoklady pro použití MS detekce či ELSD detekce;
- možnost použití agresivních podmínek při čištění kolony, aniž by došlo k jejímu poškození.

SiO$_2$ je stabilní do teploty okolo 200°C. Při vyšší teplotě začínají povrchové hydroxylové skupiny kondenzovat a chemické vlastnosti jeho povrchu se mění [21]. Nepřekročí-li teplota 400°C, jsou změny vratné a není složité navrátit materiálu jeho původní vlastnosti. Tepelná stabilita ZrO$_2$ (t$_i$ je 2750°C) je podstatně vyšší. ZrO$_2$ se jeví jako tepelně i chemicky nejstabilnější oxid kovu. V celém rozsahu pH 1-14 je ZrO$_2$ absolutně stabilní [92]. Al$_2$O$_3$ je méně stabilní než ZrO$_2$ v nízkém i vysokém pH. Jeho stabilita je omezena na oblast pH 1-12 [21,92]. Je jednoznačně rozpustnější v kyselinách, zvláště HCl. Podle Grüna je TiO$_2$ stabilní v oblasti pH 1-14 [95], ale stabilita TiO$_2$ používaného pro výrobu chromatografických sorbentů nebyla dosud dostatečně potvrzena experimentálními daty [21]. Bylo prokázáno, že sorbenty na bázi oxidů kovů mohou být používány při teplotách okolo 200°C. Vysoká tepelná stabilita je výhodná, neboť při použití vysoké teploty dochází k poklesu tlaku na koloně a může být použita vyšší rychlost průtoku, což umožňuje zrychlení
analýzy [96-98]. Navíc může být teplota použita jako parametr k úpravě selektivity [99]. Nejprostudovanějším typem stacionární fáze na bázi oxidu kovu, je sorbent tvořený ZrO₂, jehož povrch je pokryt kovalentně vázaným polybutadienem (Zr-PBD). Proto většina níže uváděných studií byla prováděna na tomto typu stacionární fáze. Nicméně závěry platí víceméně i pro ostatní sorbenty na bázi oxidů kovů.

Oproti stabilním polymerním sorbentům mají však sorbenty na bázi oxidů kovů výrazně vyšší účinnost, která je srovnatelná se silikagelovými sorbenty (více než 100 000 teoretických pater/m). Samozřejmě díky odlišným chemickým vlastnostem povrchu stacionární fáze je selektivita kolon na bázi oxidů kovů odlišná od silikagelových kolon [21].
Obr. 5 Stabilita kolony ZrO$_2$-PBD a silikagelové Zorbax Extend při vysokém pH; podmínky: ZirChrom-PBD; K$_3$PO$_4$ (20 mM, pH 11,5)/ACN (72/28;v/v); Zorbax Extend; K$_3$PO$_4$ (20 mM, pH 11,5)/ACN (55/45); průtok 1,5 ml/min, 40 °C, 254 nm. Analyzované látky: (1) labetolol; (2) atenolol; (3) acebutolol; (4) metoprolol; (5) oxprenolol; (6) chinidin; (7) lidokain; (8) alprenolol; (9) propranolol. Převzato z ref. [21].

Obr. 6 Porovnání stability silikagelových kolon a Zr-PBD kolony ve vysokém pH, převzato z ref. [21].
3.3.2 Mechanismy uplatňující se při retenci analytů

Povrch Al\(_2\)O\(_3\), ZrO\(_2\) a TiO\(_2\) se významně liší od povrchu SiO\(_2\). Díky svým acidobazickým vlastnostem se silikagel chová jako měnič kationtů, zatímco oxidy kovů mají vlastnosti amfoterické, proto mohou měnit kationty i anionty v závislosti na pH.

Dalším důležitým rozdílem oproti silikagelu je přítomnost aktivních míst s charakterem Lewisovy kyseliny, které mohou mít velký vliv na retenci látek, viz obr. 7. Tato aktivní místa jsou odpovědná za schopnost oxidů kovů fungovat jako měniče ligandů.

Pro přípravu reverzních fází na bázi oxidů kovů je potřeba jejich povrch modifikovat, aby byla snížena jeho polarita. To se provádí nanesením a imobilizováním vhodné látky (polybutadienu, polystyrenu atd.) na jejich povrchu. Dosud však neexistuje taková úprava povrchu, která by zablokovala všechna místa na povrchu sorbentu s charakterem Lewisovy kyseliny. Proto se i na reverzních fázích na bázi oxidů kovů uplatňuje retence na principu ligandové výměny. Na stacionárních fázích na bázi oxidů kovů se tudíž podílí více retenčních mechanismů, mluvíme o tzv. „smíšeném retenčním módu“. To, který z retenčních mechanismů převládne, závisí na vlastnostech analytu, pH, typu pufru, celkové iontové síle a množství organické složky v mobilní fázi [21,100].

Obr. 7 Povrch ZrO\(_2\), převzato z ref. [101].
3.3.2.1 Iontová výměna

Iontovýměnné vlastnosti povrchu sorbentů jsou založeny na schopnosti povrchových hydroxylů přijímat protony (2) nebo protony uvolňovat (3), v závislosti na pH mobilní fáze:

\[
\begin{align*}
(2) & \quad \text{M-OH} + \text{H}^+ \leftrightarrow \text{M-OH}_2^+ & K_1^{\text{int}} \\
(3) & \quad \text{M-OH} + \text{OH}^- \leftrightarrow \text{M-O}^- + \text{H}_2\text{O} & K_2^{\text{int}}
\end{align*}
\]

\(K_1^{\text{int}}\) a \(K_2^{\text{int}}\) jsou vnitřní ionizační konstanty. Ionty \(\text{H}^+\) a \(\text{OH}^-\) mají schopnost ovlivňovat povrchový náboj sorbentu. Je-li množství pozitivně nabitých i ontů (\(\text{M-OH}_2^+\)) stejné jako negativně nabitých i ontů (\(\text{M-O}^-\)), pak je celkový náboj povrchu sorbentu nulový. pH, při němž tato situace nastává, závisí na vnitřních ionizačních konstantách (4):

\[
(4) \quad \text{pH}_{\text{pzc}} = 0,5(pK_1^{\text{int}} + pK_2^{\text{int}})
\]

Z toho vyplývá, že bude-li pH nižší než \(pK_1^{\text{int}}\), bude se oxid kovu chovat jako anex, kdežto při pH vyšším než je \(pK_2^{\text{int}}\) se bude oxid kovu chovat jako katex.

Protože oxidy kovů mají vyšší hodnoty pH_{pzc} než má silikagel [92], umožňují pracovat při podstatně vyšším pH, aniž by analyt interagoval s negativně nabitými skupinami i ontově výměnným mechanismem. Navíc, oproti silikagelovým sorbentům umožňují sorbenty na bázi oxidů kovů práci i při podstatně vyšším pH, čehož lze využít pro deprotonizaci bazických analytů a úpravě jejich retence.

Je zajímavé dodat, že existují rozdíly v i ontovýměnném chování oxidů kovů. Např. halogenidy se eluují ze ZrO\(_2\) v pořadí Cl\(^-\), Br\(^-\), I\(^-\), zatímco eluční pořadí na Al\(_2\)O\(_3\) je opačné [102,103]. I ontovýměnné vlastnosti TiO\(_2\) jsou velice podobné ZrO\(_2\) [21]. Všechny oxidy kovů silně zadržují fluoridové anionty, které mají charakter velmi silných Lewisových bazí [92,104,105].
3.3.2.2 Výměna ligandů

Schopnost oxidů kovů vyměňovat ligandy vyplývá z přítomnosti aktivních míst s vlastnostmi Lewisovy kyseliny (Al$^{3+}$, Zr$^{4+}$, Ti$^{4+}$) na svém povrchu a přítomnosti molekul vody nebo jiných snadno zaměnitelných ligandů komplexně navázaných na tato aktivní místa. Výměna ligandů byla důkladně studována pouze pro povrch ZrO$_2$. Jak již bylo uvedeno výše, i na povrchu reverzních fází na bázi oxidů kovů zůstávají místa s vlastnostmi Lewisovy kyseliny, proto se i na těchto fázích uplatňuje mechanismus ligandové výměny. Klíčovou rolí při výměně ligandů hrají komplexně vázané molekuly vody. Tyto molekuly mohou být zaměněny za jiné částice s charakterem Lewisovy baze. Platí, že čím je částice silnější Lewisovou bazí, tím snáze vytěsní jinou částicí.

Následující rovnice (5-9) popisují reakce probíhající při výměně ligandů na povrchu oxidů kovů [92,104]:

\begin{align*}
(5) & \quad M(OH)(H_2O) + L_1^- \leftrightarrow M(H_2O)L_1^- + OH^- \\
(6) & \quad M(OH)(H_2O) + L_1^- \leftrightarrow M(OH)L_1^- + H_2O \\
(7) & \quad M(OH)(H_2O) + L_2^- \leftrightarrow M(H_2O)L_2^- + OH^- \\
(8) & \quad M(OH)(H_2O) + L_2^- \leftrightarrow M(OH)L_2^- + H_2O \\
(9) & \quad M(OH)L_1^- + L_2^- \leftrightarrow M(OH)L_2^- + L_1^- \\
\end{align*}

M reprezentuje oxid kovu, L$_1$ Lewisovu bazi přítomnou v mobilní fázi (např. anion pufru) a L$_2$ analyt s vlastnostmi Lewisovy baze. Rovnice (5) a (6) popisují procesy ke kterým dochází tehdy, jsou-li v mobilní fázi přítomná aditiva charakteru Lewisových bazí. Rovnice (7) aţ (9) popisují děje, ke kterým dále dochází v přítomnosti analytu s vlastnostmi Lewisovy baze. Velký praktický význam má proces popsaný rovnicí (9), který popisuje rovnováhu výměny ligandu analytu za ligand jiné Lewisovy baze přítomné v mobilní fázi (nejčastěji aniontu pufru). Je zřejmé, že zvolením vhodného aniontu pufru a nastavením jeho koncentrace lze upravovat míru příspěvku mechanismu výměny ligandů na retenci analytu. Dále je patrné, že příspěvek molekul H$_2$O a aniontu OH$^-$ na výměnu ligandů silně závisí.

Síla interakce Lewisovy baze s místy charakteru silných Lewisových kyselin na povrchu oxidu kovu závisí na elektronové hustotě a polarizovatelnosti baze. Vyšší elektronová hustota a nižší polarizovatelnost vede k silnější interakci. Síla interakce Lewisových bazí klesá v pořadí:

fosforečnan > fluorid > citranon > síran > octan > mravenčan > dusičnan > chlorid

Tato eluotropická řada byla vytvořena na základě schopností jednotlivých bazí vytěsnit anion kyseliny benzoové ze sorbetu na bázi ZrO₂ [92,106]. Byla též nalezena lineární závislost mezi log k⁺ a pKₐ derivátů kyseliny benzoové [107,108]. Směrnice přímky vyjadřující tuto závislost se měnila v závislosti na pH. Oproti tomu nebyla nalezena žádná taková závislost pro silné anexy na bázi silikagelu. To potvrzuje předpoklad, že závislost log k⁺ na pKₐ derivátů kyseliny benzoové souvisí s Lewisovou kyselostí povrchu ZrO₂ a tudiž mechanismem výměny ligandů a nikoli mechanismem výměny iontů.

Mají-li separované látky charakter silných Lewisových bazí a tudiž jsou silně vázány na stacionární fázi, dá se očekávat zvýšená retence a chvostování píků, pokud se nepřidá do mobilní fáze nějaká jiná látková složka s vlastnostmi silné Lewisovy baze. Na obr. 8 je znázorněna separace alkoxykyselin na koloně na bázi ZrO₂. Poněvadž karboxylové kyseliny silně interaguji s povrchem sorbentu, je třeba přidat Lewisovu bazi pro zlepšení separace. Fosforečnan je silnější Lewisovou bazí než octan, proto má větší schopnost blokovat dostupná aktivní místa na povrchu stacionární fáze, což vede ke zvýšení účinnosti kolony, viz obr. 8. Fluorid je sice silnou Lewisovou bazí, ale nelze používat při velmi nízkém pH, nebot’ vznikající kyselina fluorovodíková má schopnost rozpouštět jak sorbenty [103-105,109], tak často i části HPLC aparatury.
Obr. 8 Vliv Lewisových bazí na separaci alkoxykyselin na Zr-PBD koloně; pufr (40 mM)/ACN (75/25;v/v), 5mM NH₄F; 0,6 ml/min; 30°C; 254 nm. Převzato z ref. [21].

Karboxylové skupiny bílkovin také silně interagují s povrchy oxidů kovů. Při použití 0,1% kyseliny trifluoroctové v mobilní fázi nebyla pozorována žádná eluce ze ZrO₂. Avšak přidavek kyseliny citronové nebo fosforečné umožnil eluci proteinů ze sorbetu [110]. Přítomnost fluoridu, polyvalentních organických ligandů nebo organofosfátu v mobilní fázi umožnila separovat mnoho kyselých, neutrálních nebo bazických bílkovin na ZrO₂ stacionárních fázích [111]. Retence bílkovin je způsobena kombinací iontovýměnného mechanismu a mechanismu ligandové výměny. Míra retence tudíž může být kontrolována změnami iontové síly nebo koncentrace Lewisových bazí v mobilní fázi.

3.3.2.3 Možnosti změny příspěvků jednotlivých mechanismů na celkovou retenci

Příkladem analýzy, při niž se uplatňuje smíšený retenční mód, může být analýza látek ze skupiny antihistaminik na stacionární fázi na bázi ZrO₂. Byl zkoumán vliv různých typů Lewisových bazí (octanu, fluoridu a fosforečnanu) na separaci. Při použití octanového pufru byla retence látek nejnižší. Octan je slabší Lewisovou bazí než fluorid nebo fosforečnan. Fluorid i fosforečnan blokují efektivněji aktivní místa na povrchu sorbentu, avšak také přinášejí větší záporný
náboj na jeho povrch, který se proto stává silnějším katexem. Výměna kationtů se stane hlavním retenčním mechanismem, což má za následek vyšší retenci bazických antihistaminik [21].

Interakce na povrchu oxidů kovů mohou být výrazně ovlivňovány typem pufru (Lewisovy baze), koncentrací pufru, pH mobilní fáze a její iontovou silou. Pochopení retenčního mechanismu je nezbytné pro správné ovlivnění separací bazických látek. Příklad vlivu iontové síly na retenci je znázorněn na obr. 9. Zvýšení koncentrace pufru z 20 na 100 mM způsobilo více než 50% pokles retenčních časů [112].

Obr. 9 Vliv iontové síly na retenci bazických látek na Zr-PBD koloně. pufr (pH 7)/ACN (70/30, v/v); 0,8 ml/min, 40°C, 210 nm; Prázdný sloupec: 20 mM NH₄H₂PO₄; Plný sloupec: 100 mM NH₄H₂PO₄. Látky: (1) lidokain; (2) norpseudoefedrin; (3) tryptamin; (4) chinidin; (5) amitriptylin; (6) nortriptylin, převzato z ref. [21].

Převládá-li iontově výměnný mechanismus retence, lze použít pH jako proměnnou pro úpravu separace. Při značném zvýšení pH dojde k deprotonizaci bazických analytů a výraznému poklesu příspěvku iontovýměnného mechanismu na jejich celkovou retenci. Převládající se stane reverzně-fázový typ interakce, což může vést k změně pořadí eluovaných látek.

Mohlo by se zdát, že silný vliv koncentrace pufru na separaci látek na stacionárních fázích na bázi oxidů kovů může být značnou nevýhodou, s ohledem
na robustnost vyvíjené metody, oproti separaci na silikagelových stacionárních fáziích. Jak vyplývá z obr. 10 a tab. 1, není to však pravda. Jak v okolí koncentrace pufru 5 mM, tak okolo koncentrace 50 mM je potřeba kontrolovat hodnotu koncentrace pufru pouze zhruba dvakrát přesněji než při použití silikagelové fáze [21]. Naopak vliv koncentrace pufru na retenci lze s výhodou použít pro „ladění“ separace na sorbentech na bázi oxidů kovů, zatímco na silikagelových sorbentech toho lze využít jen minimálně. Tudíž patrná komplexnost chemismu povrchu oxidů kovů může být zkušeným analytikem přeměněna ve výhodu.

Přestože celkový povrch reverzních stacionárních fázi na bázi oxidů kovů bývá podstatně nižší než povrch běžných silikagelových reverzních fázi, kapacita kolony na bázi oxidů kovů může být při separaci protonovaných bazí větší než kapacita konvenčních silikagelových kolon. K přetížení obou typů kolon dochází tehdy, když bazické molekuly spotřebovávají podstatnou část negativně nabitých míst na povrchu stacionární fáze. Množství negativního náboje na povrchu oxidu kovu je díky navázaným molekulám pufru mnohem větší než množství náboje na povrchu silikagelu vzniklého deprotonizací reziduálních silanolových skupin [21], což má za následek i vyšší kapacitu kolon na bázi oxidů kovů pro bazické látky.

Obr. 10 Vliv koncentrace pufru na retenci pyrrobutaminu, převzato z ref. [21].
Tab. 1 Změna koncentrace fosfátového pufru odpovídající 1% změně \(k' \), převzato z ref. [21].

<table>
<thead>
<tr>
<th>c pufru, při níž se změna počítala</th>
<th>SiO(_2) RP C18</th>
<th>Zr-PBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mM</td>
<td>(\Delta 0,20) mM</td>
<td>(\Delta 0,09) mM</td>
</tr>
<tr>
<td>50 mM</td>
<td>(\Delta 2,0) mM</td>
<td>(\Delta 0,86) mM</td>
</tr>
</tbody>
</table>

3.3.3 Přehled úprav povrchu sorbentů na bázi oxidů kovů

Povrchové úpravy oxidů kovů lze rozdělit do 3 skupin [91]:

- dynamické modifikace – přidání reaktivního aditiva do mobilní fáze,
- kovalentní chemická modifikace – silanizace povrchu sorbentu nebo jiný typ využívající přímého navázání určité funkční skupiny,
- fyzikální pokrytí – depozice polymeru na povrch oxidu kovu nebo jeho potažení uhlíkem.

3.3.3.1 Dynamická modifikace

Dynamická modifikace může sloužit buď k zablokování nežádoucích aktivních míst na povrchu sorbentu, nebo k vytvoření dočasně vázané stacionární fáze. U silikagelových stacionárních fází slouží dynamická modifikace k potlačení silanolového efektu přidáním TEA nebo kvarterní amoniové soli do mobilní fáze. V případě sorbentů na bázi oxidů kovů slouží dynamická modifikace k blokaci aktivních míst charakteru Lewisovy kyseliny na povrchu stacionární fáze. To se provádí běžně přidáním Lewisovy baze do mobilní fáze (PO₄³⁻, F⁻, EDTA) [104,105,111].
3.3.3.2 Kovalentní modifikace

3.3.3.2.1 Alkylace

Hlavním cílem úprav povrchu oxidů kovů je získat sorbent s retenčními vlastnostmi co nejpodobnějšími silikagelovým reverzním fázím. I proto doposud přetrvává snaha o přípravu stabilního sorbentu metodou silanizace oxidů kovů. Zavádět alkylové řetězce na povrch oxidů kovů je ovšem podstatně složitější než na povrch silikagelu. Hydrolytická stabilita silikonové vazby klesá v pořadí [91]:

\[
\text{Si-O-Si-R} \gg \text{Zr-O-Si-R} > \text{Ti-O-Si-R} > \text{Al-O-Si-R}
\]

3.3.3.2.2 Modifikace povrchu využívající koordinačně-kovalentní vazbu

Stacionární fáze, využívající silné interakce mezi aktivními místy na povrchu oxidů kovů s charakterem Lewisovy kyseliny a Lewisových bazí modifikujících povrch, vykazují značnou stabilitu v různých podmínkách. V silně bazickém prostředí ovšem dochází k vytěšnění vázané Lewisovy baze silnější Lewisovou bazi, konkrétně OH⁻ iony. PO₄³⁻ a F⁻ byly jako první použity k vytvoření nové stacionární fáze z neupraveného ZrO₂. Úspěch fosforečnanové a fluoridové stacionární fáze vedl ke zkoušení dalších Lewisových bazí jako komponent pro přípravu sorbentů. Mezi ně patří i analog EDTA, který způsobuje odlišnou selektivitu oproti konvenčním
iontovýměnným fázím [113], pravděpodobně díky příspěvku mechanismu ligandové výměny na retenci. Podobná úprava byla použita pro přípravu vázané fáze reakcí kyseliny jablečné s povrchem Al₂O₃ [114-116].

3.3.3.2.2.1 Modifikace fosforečnanem

Úprava povrchu sorbentu pomocí fosforečnanu může být provedena buď přidáním fosforečnanu do mobilní fáze nebo povrchovou úpravou ZrO₂, t. j. povrch oxidu kovu je vystaven agresivnímu působení kyseliny fosforečné, což vede ke vzniku tenké vrstvy fosforečnanu kovu vázané na povrchu stacionární fáze [117]. Při neutrálním pH může být takto připravená stacionární fáze vystavena promývání tisícinásobky objemů kolony mobilní fázi bez fosforečnanových aniontů, aniž by ztratila svoji účinnost [118]. Stacionární fáze má charakter katexu, který byl s výhodou použit pro separaci kationických bílkovin, immunoglobulinů a aminokyselin [118,119].

Při pH vyšším než 10 a nepřítomnosti fosforečnanových iontů v mobilní fázi dochází k desorpci fosforečnanových skupin z povrchu sorbentu a změně retenčních vlastností materiálu. To lze částečně zvrátit promýváním kolony roztokem fosforečnanu při vysoké teplotě. Fosforečnanem modifikovaný Zr-PBD sorbent byl použit pro separaci peptidů [120] a bílkovin [121], ale bylo dosaženo podstatně horších výsledků než na silikagelových reverzních fázích. Důvodem bylo příliš mnoho různých retenčních mechanismů, což se pro separaci velkých nabitých molekul jevilo jako nevýhodné.

3.3.3.2.2.2 Modifikace fluoridem

Ačkoli se může fluoridem modifikovaný ZrO₂ (F-ZrO₂) jevit podobný jako fosforečnanem modifikovaný ZrO₂, jeho chování je dost odlišné. K přípravě F-ZrO₂ fáze stačí pouze ZrO₂ kolonu proláchnout roztokem iontů F⁻ [104]. Tato stacionární fáze je vynikající pro separaci bílkovin. Oproti ostatním iontovýměnným stacionárním fázím na bázi oxidů kovů vykazuje jedinečnou selektivitu [105]. F-ZrO₂ vykazuje mimofádně vysokou kapacitu pro bílkoviny [105], proto byl sorbent použit i pro preparativní čištění bílkovin [122]. Pokud dojde k poklesu účinnosti
kolony, stačí kolonu propláchnout hydroxidem sodným k odstranění silně vázaných molekul a následně ji regenerovat průplachem pomocí roztoku fluoridového pufru. Tento proces koloně plně navráti její původní účinnost. F-ZrO₂ stacionární fáze ovšem nesmí být používána při nízkém pH, neboť by vznikala kyselina fluorovodíková a došlo by k poškození sorbentu i aparatury.

3.3.3.2.2.3 Modifikace fosfonátovým analogem EDTA

Po zjištění výhod sorbentů na bázi ZrO₂ modifikovaného pomocí F⁻ a PO₄³⁻ iontů, byly hledány další Lewisovy baze s odlišnou selektivitou. Velmi užitečná stacionární fáze vznikla modifikací povrchu ZrO₂ fosfonátovým analogem EDTA, ethylenediamin-N,N,N’,N’-tetramethylfosfonovou kyselinou (EDTPA) [113,123]. Refluxování částic ZrO₂ zředěným roztokem EDTPA vede ke vzniku stacionární fáze s vlastnostmi katexu s ojedinělou selektivitou. Aktivní místa s charakterem Lewisovy kyseliny jsou účinně zablokovány, čímž vzniká biokompatibilní sorbent. Díky přítomnosti alifatických částí EDTPA, je možné separovat bílkoviny i jiné analyty, které na fosforečnaném modifikovaném ZrO₂ separovat nelze. Stacionární fáze byla úspěšně použita pro získání vysoce čistých monoklonálních protilátek z buněčné kultury se zachovanou vysokou biologickou aktivitou [113].

Pomocí EDTPA je možné modifikovat i Zr-PBD sorbent, viz obr. 11. Takto upravená reverzní fáze má blokovaná aktivní místa na svém povrchu s charakterem Lewisovy kyseliny, tudyž umožňuje provádět separace i silných Lewisových bazí (SO₄²⁻, PO₄³⁻, R-COO⁻) při použití těkových organických pufrů, jako je octan nebo mravenčán. Toho se dá s výhodou využít pro použití MS detekce. Sorbent je stabilní v rozsahu pH 1-10 [124].

Obr. 11 Struktura Zr-PBD povrchově modifikovaného pomocí EDTPA, převzato z ref. [101].
3.3.3.3 Modifikace polymerem

Stacionární fáze na bázi oxidů kovů, jejichž povrch je potažen vrstvou polymeru, v sobě kombinují mechanické vlastnosti oxidu kovu s všestranností organických polymerů. Takovéto materiály mají obrovský potenciál pro získání ideální stacionární fáze, která je mechanicky i chemicky stabilní, poskytuje pouze minimální nespecifickou retenci a umožňuje snadnou úpravu selektivity. Úprava povrchu oxidu kovu pomocí polymeru má za cíl získat stacionární fáze s podobnými vlastnostmi jako silikagelové reverzní stacionární fáze a kromě toho omezit přístup k aktivním místům s charakterem Lewisovy kyseliny na povrchu sorbentu. Nejpoužívanějšími polymery pro potažení oxidu kovu jsou polybutadien, který napodobuje oktylové a oktadecylové skupiny silikagelových RP C8 a RP C18 fází, a polystyren s vlastnostmi podobnými fenylem modifikovanému silikagelu.

3.3.3.3.1 Oxidy kovů modifikované polybutadienem

Polybutadienem modifikované oxidy kovů nabízejí vysokou tepelnou a chemickou stabilitu. Al₂O₃ potažený hydrofobním polymerem vykazuje stabilitu v oblasti 3 < pH < 12, [131], zatímco Zr-PBD je stabilní v oblasti 1 < pH < 14 [120,121]. Polybutadienem upravený ZrO₂ vykazuje výjimečnou stabilitu v alkalickém prostředí. Nebyla pozorována žádná degradace tohoto materiálu ani při expozici 1 M NaOH nebo 100°C [130,132], ani při 200°C [133] při dlouhodobém použití. Vysoká tepelná stabilita Zr-PBD umožňuje použití tohoto materiálu pro práci při podstatně vyšších teplotách, než se používají při běžném provádění HPLC analýz.
Pro lepší představu je třeba dodat, že polybutadienové krytí porózních částic netvoří jednolitý film, ale spíše nehomogenní strukturu, v níž se polymer nenachází ani tak na povrchu částice, ale spíše tvoří fleky a chomáče okupující vnitřky pórů [134-136].

3.3.3.3.1 Reverzně-fázové vlastnosti

Reverzně-fázové vlastnosti Zr-PBD sorbentů byly široce a systematicky zkoumány [127,129,137,138] a porovnávány s běžnými silikagelovými reverzními fáziemi. Je obecně uznáno, že polybutadienové fáze mají stejné vlastnosti jako konvenční reverzní fáze. Pokud analyt neinteraguje s povrchem ZrO₂ nebo SiO₂ specifickými interakcemi, dá se očekávat velice podobná retence a selektivita jako na běžných reverzních fázích, jako je tomu v případě jednoduchých nepolárních analytů.

Jednoduché neionizovatelné molekuly jsou na Zr-PBD stacionární fázi zadržovány výhradně reverzně-fázovým mechanismem. Na obr. 12 je porovnána normalizovaná selektivita reverzní silikagelové (Luna), polymerní (PLRP) a Zr-PBD stacionární fáze při separaci 22 látek, neschopných ionizace. Z obr. 12 je patrné stejné retenční chování látek na všech reverzních fázích.

Obr. 12 Srovnání normalizované selektivity: voda/ACN (60/40, v/v), 1 ml/min, 30 °C, nastřikovaný objem 5 μl, 254 nm; převzato z ref. [91].
Platí, že \(\ln k' \) je na reverzních fázích lineárně závislý na počtu methylenových skupin v homologní řadě molekul, tedy že retence vzrůstá s rostoucím počtem methylenových skupin v řadě [139]. Za účelem ověření reverzního chování Zr-PBD, byla změřena retenční data homologní řady alkylbenzenů pro sorbenty o různém obsahu uhličí a různé mobilní fáze [137]. Získané výsledky potvrzovaly, že Zr-PBD stacionární fáze se skutečně chová jako reverzní. Obr. 13 zobrazuje methylenovou selektivitu získanou na Al\(_2\)O\(_3\)-PBD, Zr-PBD a SiO\(_2\) RP C18 stacionární fázi. Ačkoli se sorbenty liší v obsahu uhličí, methylenová selektivita zirkoniové fáze i aluminiolových fází je podobná, zatímco selektivita silikagelové kolony je pouze mírně větší.

Obecně je pozorováno, že na běžných reverzních fázích retence neionických molekul klesá pravidelně s rostoucím množstvím organické složky v mobilní fázi. Proto byla změřena závislost \(\ln k' \) pro benzen a toluen na množství organické složky v mobilní fázi na polybutadienem modifikovaném Al\(_2\)O\(_3\) a ZrO\(_2\). Výsledky prokázaly, že citlivost retence na složení mobilní fáze je v podstatě stejná jako na silikagelových reverzních sorbentech [91].

Z výše uvedeného je patrné, že pro neionizovatelné látky je Zr-PBD skutečně reverzní sorbent a chová se velmi podobně jako silikagelové RP C18 stacionární fáze [112,140-142].

Obr. 13 Závislost \(\ln k' \) na počtu methylenových skupin homologní řady alkylbenzenů; voda/ACN (60/40; v/v); převzato z ref. [91].
Absolutní retence měřená formou \(k' \) by měla růst s množstvím polybutadienu navázaného na oxid kovu. Obr. 14 ukazuje závislost absolutní retence benzenu na množství uhlíku v Zr-PBD sorbentu pro dva typy dvousložkových mobilních fází [137]. Bylo prokázáno, že zvýšení absolutní retence s množstvím uhlíku obsaženého v sorbentu souvisí téměř výhradně se zvýšením fázového poměru a nikoli s retenčními energetickými změnami [137]. Z obr. 14 je zřejmé, že absolutní retence jednoznačně vzrůstá, téměř lineárně, s množstvím polybutadienu na ZrO₂. Obdobné výsledky byly získány pro konvenční reverzní fáze [143].

Obr. 14 Závislost absolutní retence benzenu na množství uhlíku v Zr-PBD sorbentu. Retence benzenu byla získána jako člen \(y \) v rovnici závislosti \(\ln(k') \) na počtu methylenových skupin obsažených v homologické řadě alkylbenzenů. % Organické složky (v/v): 20, 30, 40, 50 od shora dolů. Levý graf: voda/ACN. Pravý graf: voda/MeOH. Převzato z ref. [91].

3.3.3.1.2 Retenční chování při separaci organických bazí

Jak již bylo uvedeno, na povrchu polybutadienem modifikovaných oxidů kovů zůstává významná část aktivních míst s charakterem Lewisovy kyseliny schopných interakce se složkami mobilní fáze nebo analyty, které mají vlastnosti
Lewisovy baze. Bylo zjištěno, že k saturaci aktivních míst na povrchu, typických komerčně dostupných Zr-PBD sorbentů, anionty fosforečnanu dochází již při koncentraci 5 mM, v prostředí voda/ACN (50/50; v/v) [91]. Je-li tedy v mobilní fázi přítomen fosforečnanový pufr v dostatečném množství, bude mit povrch stacionární fáze silně negativně nabitý povrch a to v široké oblasti pH. Takovýto povrch nese náboj i při pH 2 a zadržuje analyty smíšeným módem. Retence se účastní kationvýměnný i reverzně–fázový mechanismus.

Dalo by se říci, že povrch oxidů kovů modifikovaných polymerem v přítomnosti pufřů charakteru Lewisových bazí disponuje podobnými retenčními vlastnostmi jako silikagelové RP C18 fáze, na jejichž povrchu se nacházejí negativně nabité silanolové skupiny. Přesto existují významné kvalitativní i kvantitativní rozdíly v retenčních procesech na obou typech sorbentů:

- k^r organických bazí bývá často větší na polymerem modifikovaném ZrO$_2$ než na silikagelových reverzních fázích navzdory tomu, že čistě hydrofobní látky jsou zadržovány na polymerem modifikovaném ZrO$_2$ mnohem méně díky nižšímu povrchu této fáze ve srovnání se silikagelovými [144].
- Často jsou pozorovány rozdíly v elučním pořadí látek a umístěním píků organických bazí mezi ZrO$_2$ a SiO$_2$ sorbenty [112,141,144].
- Běžný bývá velmi silný vliv typu pufru na retenci organických bazí na Zr-PBD kolonách [112].
- Vliv koncentrace pufru na retenci organických bazí je mnohem silnější na Zr-PBD než na silikagelových RP C18 fázích [112,144].
- Citlivost na stupeň substituce na nabitém atomu dusíku u organických bazí je podstatně větší na polymerem modifikovaném ZrO$_2$ než na silikagelových sorbentech.

Výše uvedená fakta dokazují významnější roli iontovýměnného mechanismu oproti reverzně-fázovému mechanismu na retenci organických bazí na polymerem modifikovaném ZrO$_2$ ve srovnání se silikagelovým RP C18 fázemi. Tato teorie byla potvrzena Yangem [140], který studoval retenci homologní řady p-alkylbenzylaminů jako funkci koncentrace amoniových iontů. Podle jeho závěrů tvoří reverzně-fázový
přispěvek na celkovou retenci organických bazí na Zr-PBD stacionární fázi pouze 20 %, zatímco na silikagelových sorbentech je to více než 90 %.

Z vlastností Zr-PBD sorbentů vyplývá, že optimalizace metody závisí na typu separovaných látek, obzvláště acido-bazickém charakteru. Obecně platí následující zásady [91]:

Kyselé látky:

Nezbytnou složkou mobilní fáze by měl být fosforečnan (min. 20 mM). Pro separaci při nízkém pH lze použít i k. fosforečnou. Při pH vyšším než 4 je vhodné přidat fluorid. (Nejvhodnější bývají amonné soli, hlavně kvůli vyšší rozpustnosti.) Po přidání fosforečnanu nebo fluoridu dochází k blokování aktivních míst na povrchu sorbentu, avšak současně ke vzniku silně negativního náboje na povrchu stacionární fáze, což vede k zesílení iontovýměnné interakce. Chceme-li potlačit tento efekt, lze použít octan místo fluoridu nebo fosforečnanu. Míru iontovýměnného příspěvku na retenci lze změnit úpravou koncentrace a pH pufru.

Bazické látky:

Souhrnně lze o sorbentech na bázi oxidů kovů modifikovaných polybutadienem uvést:

- Úprava povrchu je vysoce reprodukovatelná.
- Jsou vysoce chemicky i tepelně stabilní.
- Polybutadienem potažený ZrO₂ a Al₂O₃ vykazují pro neionizovatelné látky reverzně-fázové chování srovnatelné s reverzními silikagelovými fázemi.
Interakce na principu ligandové výměny způsobují nízkou účinnost a nízkou symetrii píků pro látky charakteru Lewisových bazí. Tomu lze však zabránit přidáním silné Lewisovy baze do mobilní fáze.

Retence organických bazí se účastní reverzně-fázový i iontovýměnný mechanismus, což má velký dopad na rozdílnou celkovou retenci a selektivitu oproti silikagelovým reverzním fázím.

3.3.3.3.2 Oxidy kovů modifikované polystyrenem

Kromě nejprostudovanější Zr-PBD stacionární fáze byla skupinou P. W. Carra vyvinuta i stacionární fáze na bázi oxidu zirkoničitého potaženého polystyrenem (Zr-PS) [125,145,146]. Zr-PS stacionární fáze byla vyvinuta jako alternativa k Zr-PBD fázi pro látky, které nelze rozděлит na Zr-PBD, neboť aromatická funkční skupina v Zr-PS vede k odlišné selektivitě pro aromatické sloučeniny.

Chromatografické vlastnosti Zr-PS byly rozsáhle porovnány se Zr-PBD [125]. Byla zkoumána stabilita Zr-PS stacionární fáze při pH 1 a 13 a při zvýšené teplotě (80, 120 a 160 °C), přičemž nebyla pozorována žádná degradace sorbentu ani při promývání tisíci kolonovými objemy agresivní mobilní fáze. Vlastnosti Al₂O₃ modifikovaného polystyrenem byly zkoumány Kurganovem [129], který také zdůraznil výbornou stabilitu oxidů kovů modifikovaných polymerem. V jeho studii Zr-PS sorbent umožňoval separaci i docílení vynikající symetrie píků v extrémně kyselých (0,1 M HNO₃) a bazických (0,13 M NaOH) podmínkách. V jeho práci však nebyla stabilita kolon zkoumána systematicky.

Zhao a Carr dokázaly, že Zr-PS fáze se výrazně liší od Zr-PBD fáze i jiných sorbentů včetně silikagelových podle LSER (linear solvation energy relationship) přístupu [146] i mnoha provedených separací různých druhů analytů [145]. Zr-PS fáze vykazovala vyšší selektivitu při separaci strukturních izomerů (fenyltolueny, stilbeny, etc.), které se liší v poloze fenylové skupiny, než Zr-PBD sorbent [145]. Vlastnosti Zr-PS fáze byly porovnány i s jinými aromatickými stacionárními fázemi, jako je fenylem modifikovaný silikagel nebo PS-DVB fáze [145,146].

Výhodnost použití Zr-PS je dána vysokou účinností a odlišnou selektivitou s možností výrazně snížit čas analýzy [91]. Zr-PS může sloužit jako alternativa
pro složité separace, které jsou na Zr-PBD nebo běžných silikagelových reverzních fázích těžko proveditelné. Pro úplnost je třeba dodat, že byla též popsána vysoká stabilita polystyrenem modifikovaného TiO₂, ale systematická studie jeho stability provedena nebyla [147].

3.3.3.3 Oxidy kovů modifikované polyethyleniminem

Polyethylenimin (PEI) byl široce používán jako polymerní krytí pro různé materiály včetně SiO₂, TiO₂, Al₂O₃, i porózního PS-DVB za účelem přípravy iontvýchenněho sorbentu [91]. Avšak každý z těchto materiálů trpěl nějakými operačními nedostatky. PEI modifikovaný SiO₂ [148,149] disponoval nízkou chemickou stabilitou kvůli dostupnosti své matrice pro negativně působící baze. Současné pokroky ve vývoji sorbentů na bázi silikagelu sice vedou ke zlepšení stability SiO₂ fází, ale tyto snahy směřují k produkci reverzních materiálů [40,42], nikoli silikagelových iontoměničích. Polymerní iontoměniče, jako je polyethylenem modifikovaný PS-DVB, jsou chemicky mnohem stabilnější a sesou i pH v oblasti 4-12 [150]. Polymerní sorbenty jsou sice chemicky stabilní, ale zato nejsou plně mechanicky stabilní kvůli bobtnání a změnám svého objemu v prostředí organických rozpouštědel, extrémech pH nebo při změnách iontvé síly mobilní fáze [151]. Důvodem ke snahám o potažení porózního ZrO₂ polyethyleniminem bylo získání vysoce stabilního a zároveň účinného iontvýchenněho sorbentu.

Slabý anex (WAX)

Tento sorbent je stabilní pouze v oblasti pH 3-9 [152]. Byl použit pro separaci biomolekul, jako jsou bílkoviny a nukleotidy. Bohužel tato stacionární fáze nebyla stabilní v oblasti vysokého pH [153]. Eluce některých anorganických iontů byla na tomto sorbentu podobná (BrO₃⁻ < NO₂⁻ < NO₃⁻ < I⁻) jako na typickém silikagelovém iontoměniči [152]. Zirkoniový WAX může být také použit pro separaci cukrů při použití stejných podmínek jako na aminopropylem modifikovaných silikagelových kolonách. Přičemž silikagelové kolony jsou nestabilní [154], zatímco PEI-ZrO₂ je mnohem stabilnější. Chemická stabilita je
extrémně důležitá a často vyžadovaná v procesech purifikace biomateriálů, neboť při čištění a sterilizaci kolon se často používá silně alkalické prostředí.

Silné anexy (SAX)

Tyto stacionárních fáze jsou ionizované v celém rozsahu pH. Byly použity pro separaci oligonukleotidů a oligodeoxynukleotidů [153], které se lišily pouze v jediném nukleotidu. Jsou vhodné i pro separaci velkých biomolekul, jako jsou bílkoviny. S výhodou byly použity pro odstranění endotoxinu z hovězího inzulínu [155], kdy navíc díky jejich stabilitě v oblasti pH 1-13 bylo možné snadno a opakovaně na kolonu naadsorbovaný endotoxin odstraňovat promýváním silně alkalickým roztokem.

3.3.3.4 Modifikace oxidů kovů uhlíkem

Vývoj potaženého oxidu kovu vrstvou uhlíku byl odvozen od několika výhodných vlastností obou materiálů:

- vysoká chemická odolnost v oblasti nízkého i vysokého pH i v prostředí organických rozpouštědel,
- mechanická stabilita,
- odlišná a užitečná selektivita.

Ze všech oxidů kovů byl pouze ZrO$_2$ modifikovaný uhlíkem (Zr-C) pro účely HPLC [91]. ZrO$_2$ je ideální materiál pro pokrytí vrstvou uhlíku. Může být zahříván až na 700°C, aniž by došlo ke změně struktury pórů [156]. Proces přípravy tohoto sorbentu je vysoce reproducovatelný [157]. Je možné docílit až 97% pokrytí povrchu ZrO$_2$ [157].

Předpokládá se, že výhradním mechanismem retence je adsorpce na rigidní povrch sorbentu. Proces adsorpce je velmi citlivý na tvar molekuly analytu, proto je stacionární fáze mnohem selektivnější pro geometrické izomery než typické reverzní alkylované fáze nebo fáze na bázi oxidů kovů potažených polymerem [157].
Weber a Carr dokázaly na celé řadě separací geometrických izomerů pomocí Zr-C stacionární fáze odlišnou selektivitou tohoto sorbentu oproti konvenčním RP C18 fázím [158]. Schopnost Zr-C fáze rozdělovat izomery byla dále testována na separaci diastereoisomerů, přičemž byla nalezena znamenitá rozdělovací schopnost pro širokou skupinu sloučenin [159]. Komerčně dostupné kolony na bázi Zr-C byly dále použity pro separaci diastereoisomerů polystyrenových oligomerů, přičemž bylo docíleno vysokého stupně rozlišení [160]. Výjimečná schopnost Zr-C sorbentu rozdělovat diastereoisomery byla potvrzena i v další studii [161].

Zr-C sorbent má díky svému povrchu podobné chromatografické vlastnosti jako stacionární fáze na bázi grafitizovaného uhlíku. Zr-C na rozdíl od alkylovaných stacionárních fází:

- je mnohem selektivnější pro separace polárních i nepolárních geometrických izomerů,
- je mnohem hydrofobnější,
- oproti alkylovaným fázím má schopnost zadržovat molekuly analytu i pomocí elektronových π-π interakcí.

Zajímavý typ sorbentu byl získán navázáním fenylotadecylové skupiny na povrch Zr-C fáze. Takto připravená stacionární fáze má výjimečnou stabilitu, která byla ověřena pro oblast pH 0,3-14 při teplotě 40°C. Tepelně stabilní je minimálně do 200°C při neutrálním pH [91].
3.3.4 Chirální stacionární fáze na bázi oxidů kovů

V současné době patří HPLC k hlavním metodám používaným pro analytické i preparativní dělení opticky aktivních látek. Pro separaci optických antipodů se používají chirální stacionární fáze (CSP), na nichž dochází k různě silné retenci jednotlivých enantiomerů, což vede k jejich separaci. Existuje celá řada různých chirálních sorbentů určených pro dělení různých skupin látek. Jedinečná stabilita stacionárních fází na bázi oxidů kovů i schopnost Lewisových interakcí nabízí zajímavé možnosti. Dosud byl však pouze ZrO$_2$ použit jako materiál pro získání chirálních sorbentů.

3.3.4.1 CSP na bázi ZrO$_2$ potaženého tris(3,5-dimethylfenyl)karbamátem celulosy

Pro přípravu sorbentu na bázi ZrO$_2$ využili Castellová a Carr univerzálnosti již popsaných polysacharidových CSP [162,163]. Ve své práci se zabývali přípravou CSP na bázi ZrO$_2$ pokrytého tris(3,5-dimethylfenyl)karbamátem celulosy (CDMPC) [164]. Zjistili, že nejvhodnějším kompromisem pro získání sorbentu s dostatečnou kapacitou a účinností kolony na bázi jimi vytvořeného sorbentu je velikost částic 2,5 μm. Optimální pokrytí ZrO$_2$ činilo 3-4 % (w/w). Při nižším obsahu CDMPC než 3 % klesala selektivita fáze, zatímco při obsahu vyšším než 4 % docházelo k nežádoucímu ovlivnění struktury pórů a poklesu účinnosti kolony. Navíc selektivita docílená na ZrO$_2$ pokrytém 4 % CDMPC byla stejná jako selektivita popsaná při použití SiO$_2$ pokrytého 20 % CDMPC. Dále byla testována schopnost CSP na bázi ZrO$_2$ potaženého CDMPC vydržet vyšší průtoky mobilní fáze promýváním kolony směsí propan-2-ol/n-hexanu (10/90, v/v) při teplotě 30°C a průtoku 4 ml/min. Bylo zjištěno, že jimi navržený sorbent vydrží trojnásobný tlak (150 bar) dovolený při používání silikagelových CSP potaženými CDMPC.

V další práci byl zkoumán vliv různých podmínek analýzy na separaci bazických chirálních látek na tomto sorbetu [165]. Většinu zkoumaných páru optických antipodů se podařilo rozdělit do 2 min.
3.3.4.2 CSP na bázi ZrO₂ pottaženého BSA a karboxymethyl-β-cykloextrinem

Jelikož vazby Zr-C a Zr-O-C jsou nestabilní, byl na povrch ZrO₂ bovinní sérový albumin (BSA) ukotven pomocí glutaraldehydu [166]. Takto získaná CSP vykazovala velkou selektivitu pro bazické chirální látky. První enantiomer byl vždy minimálně zadržován, což naznačuje malý příspěvek neselektivních interakcí na enantioseparaci a možnou denaturaci takto vázaného BSA [100].

V další práci je popsána CSP na bázi ZrO₂ na jehož povrchu je imobilizovaný karboxymethyl-β-cykloextrin [167]. Na této CSP byly separovány dinitrofenylderiváty aminokyselin. Bohužel autorům se nepodařilo imobilizovat dostatečné množství chirálního selektoru na částice ZrO₂.

3.3.4.3 CSP na bázi ZrO₂ využívající Lewisovy interakce

Nový přístup pro získání CSP využívá aktivních míst s charakterem Lewisovy kyseliny na povrchu ZrO₂ umožňujících navázání chirálních selektoru prostřednictvím kotvících skupin se silnými elektron-donorovými vlastnostmi. Proces se skládá ze dvou kroků, viz obr. 15:

- 1) navázání vhodné kotvící skupiny prostřednictvím Lewisových interakcí na povrch ZrO₂,
- 2) kovalentní navázání požadovaného selektoru na kotvící skupinu.

Druhý způsob navázání selektoru je pouze jednokrokový. Při něm se předem na kotvící skupinu kovalentně navázaný selektor připevní na povrch ZrO₂, viz obr 16. To umožňuje rychlejší výměnu selektorů při vývoji metody.

Obr. 15 Dvoukrokový způsob připevnění chirálního selektoru na povrch ZrO₂, převzato z ref. [168].
Obr. 16 Jednokrokové přichycení chirálního selektoru na povrch ZrO2, převzato z ref. [168,169].

Molekula fungující jako kotvící musí mít skupinu charakteru Lewisovy baze umožňující připevnění na povrch ZrO2 a zároveň funkční skupinu umožňující kovalentní navázání chirálního selektoru (nejčastěji –NH2). Mezi kotvících látky patří:

- kyselina aminopropylfosfonová (APPA),
- 3,4-dihydroxynorefedrin (DHNP),
- kyselina aspartová (ASPA)
- kyselina pamidronová (PDA)

Struktury těchto látek jsou pro názornost uvedeny na obr. 17. Kotvící skupina má velký vliv na stabilitu stacionární fáze. Nejstabilnější sorbenty využívají k ukotvení chirálních selektorů PDA, z jejíž struktury vyplývá silná chelatační schopnost a tudíž i možnost silnější vazby na povrch oxidu kovu [169].

CSP na bázi ZrO2 využívající k navázání selektoru Lewisových interakcí mají všechny charakter Pirklových fází, využívajících tříbodové interakce s analytem, viz obr. 18.
Existuje celá řada chirální selektorů využívajících tříbodových interakcí. Mezi selektory použité pro přípravu komerčně dostupných sorbentů na bázi ZrO₂ patří [168,170]:

- dinitrobenzoyl-L-leucin,
- dinitrobenzoyl-L-fenylglycin,
- kyselina N-[1-(1-nafty)ethyl]jantarová,

CSP získané navázáním chirálního selektoru přes kotvící látku na povrch ZrO₂ jsou stabilní v oblasti pH 2-8, avšak je možné je úplně odstranit z povrchu oxidu kovu při použití pH nad 12. Toho lze s výhodou využít při vývoji nové analytické
metody. Aniž bychom vyměňovali kolonu, je možné vypláchnout selektor z kolony a kolonu buď zregenerovat promyšlen roztokem daného selektoru (i s navázanou kotvící skupinou) nebo na povrch ZrO₂ zavést jiný chirální selektor [170]. Tento typ stacionárních fází vykoval selektivitu se silikagelovými Pirklovými fázemi pro širokou skupinu látek. Byla též potvrzena reprodukovatelnost jejich přípravy [170].

Obr. 19 Schéma přípravy a struktura modifikované celulosy pro přípravu CSP, převzato z ref. [171].
Z výše uvedeného je patrné, že aktivní místa na povrchu oxidů kovů nabízejí ohromné možnosti pro modifikaci svého povrchu pro tvorbu nových CSP. Během krátké doby (3 let) bylo popsáno poměrně značné množství různých CSP na bázi ZrO$_2$ využívajících Lewisových interakcí pro zakotvení vhodného chirálního selektoru na povrch sorbentu. I do budoucna se dá předpokládat vývoj celé řady nových flexibilních CSP na principu Lewisových interakcí a to nejen na bázi ZrO$_2$. Zda si najde tento typ CSP svoje místo i v rutinní farmaceutické analýze ukáže budoucnost.
3.3.5 Monolitické stacionární fáze na bázi oxidů kovů

Pro monolitické stacionární fáze je charakteristické, že nemají interpartikulární prostory, ale jsou v podstatě tvořeny jednou velkou celistvou porézní částicí [172]. Výhodou monolitických kolon je, že mohou být používány i při pětkrát vyšších průtocích než běžné kolony plněné 5 μm částicemi, přitom tlaky jsou srovnatelné [19]. Jelikož monolitické kolony jsou velmi perspektivním předmětem výzkumu, je jim v současnosti věnována značná pozornost mnoha vědeckých týmů a firem po celém světě. I oxidy kovů se nabízejí jako jeden z možných materiálů pro přípravu monolitických sorbentů. Kombinace vysoké chemické i tepelné stability ZrO$_2$ společně s nízkým zpětným tlakem typickým pro monolitické stacionární fáze vytváří ideální předpoklady pro získání nového typu HPLC sorbentu.

Dosud byly pouze ZrO$_2$ a HfO$_2$ zkoušeny jako materiály pro přípravu monolitických kolon. Hoth popsal syntézu monolitického sorbentu na bázi HfO$_2$ uvnitř kapiláry [173]. Vzniklý sorbent použil jako CEC a nano-LC fázi. Dále popsal monolitickou strukturu ze ZrO$_2$, avšak v jeho práci nebyla presentována žádná separace pomocí tohoto materiálu.

J. Randon využil při přípravě monolitické stacionární fáze na bázi ZrO$_2$ vznik pevného-gelu ze zirkoniumalkoxidu [174], viz obr. 20. Rychlá hydrolýza zirkoniumalkoxidu byla tlumená přidáním chelatačního činidla (k. octové).

Obr. 20 Schéma přípravy monolitického sorbentu na bázi ZrO$_2$, převzato z ref. [174].
Touto cestou byla získána monolitická fáze, která byla dále vpravena do silikagelové kapiláry o průměru 75 μm a dále tyč ze ZrO₂ o délce 2 cm a průměru 2,3 mm. Monolit byl tvořen kuličkami o průměru 2 μm a póry o průměrné velikosti 6 μm. Získaný sorbent byl použit pro nano-LC separaci aminů v normálním módu za použití hexanu jako mobilní fáze. Po zavedení n-dodecylfosfátu na povrch ZrO₂ byla rozdělena směs thiomočoviny, toluenu, ethylbenzenu, propylbenzenu, butylbenzenu a pentylbenzenu za použití mobilní fáze obsahující 26% ACN. Přestože monolitická stacionární fáze na bázi ZrO₂ měla nízkou účinnost, práce ukazuje možnost tvorby monolitických kapilár na bázi ZrO₂ [174]. Protože význam monolitických kolon neustále vzrůstá a nové technologie a výrobní procesy umožňují získávat neustále lepší monolitické sorbenty, na nichž lze docílit podstatně nižších časů analýzy při zachování stejné účinnosti kolony, je nevyhnutelný i jejich přechod do farmaceutické praxe. Přestože tvorba monolitických sorbentů na bázi oxidů kovů je dosud v plenkách, nabízejí tyto materiály díky kombinaci vysoké chemické stability s nízkým zpětným tlakem na koloně jednu z možných a přínosných oblastí výzkumu.
3.4 Možnosti využití stacionárních fází na bázi oxidů kovů ve farmaceutické analýze

Přestože stacionární fáze na bázi oxidů kovů poskytují některé výhody oproti stacionárním fázím na bázi silikagelu, polymerů nebo uhlíku, jejich uplatnění v praktické farmaceutické analýze je jen okrajové. Dominantní postavení silikagelových sorbentů v oblasti farmaceutické analýzy bude asi jen těžko pokořeno sorbenty na bázi oxidů kovů. Přesto se však na trhu vyskytují tyto kolony umožňující v řadě případů dosáhnout lepších výsledků než na SiO$_2$ kolonách, zvláště při separaci bazických léčiv. Odlišná selektivita a možnost pracovat v celém rozsahu pH i při vyšší teplotě mohou vést k lepším výsledkům při optimalizaci metod než na konvenčních SiO$_2$ sorbentech.

3.4.1 Stacionární fáze na bázi Al$_2$O$_3$

Oxid hlinitý je používán v chromatografii již desítky let, zvláště pro separace v normálním modu, avšak ve formě málo definovaných a pravidelných částic s různou krystalinitou, povrchem a porozitou. Těžiště jeho využití bylo v oblasti TLC a purifikačních procesů. Přestože je Al$_2$O$_3$ používán v chromatografii již značnou dobu, nebylo uděláno dostatečně mnoho pro jeho systematické prostudování, zvláště v oblasti jeho použití jako reverzní fáze, umožňující mu úspěšně konkurovat ostatním typům HPLC sorbentů [21]. Povrch Al$_2$O$_3$ umožňuje stejně jako ZrO$_2$ nebo TiO$_2$ zadržovat látky kombinací retenčních mechanismů (iontovýměnné interakce, ligandová výměna).

V současné době jsou nejvíce prostudovány stacionární fáze na bázi Al$_2$O$_3$ potaženého vrstvou polymeru (např. PBD) [175]. Sorbenty na bázi Al$_2$O$_3$ je možné použít až do pH 12, nicméně nedosahují stability ZrO$_2$ nebo TiO$_2$ fází. Navíc kolony na bázi Al$_2$O$_3$ nejsou vhodné pro analýzu látek s karboxylovou nebo sulfátovou skupinou, neboť Al$_2$O$_3$ ireverzibilně váže analyty s těmito funkčními skupinami [21]. Vzhledem k tomu, že kromě separací při pH vyšším než 10 nenabízejí stacionární fáze na bázi Al$_2$O$_3$ žádné výraznější výhody oproti silikagelovým fázím, je jejich využitelnost ve farmaceutické praxi minimální. Navíc uplatnění Al$_2$O$_3$ jako materiálu
pro výrobu HPLC sorbentů výrazně ustoupilo s rozvojem poznatků o ZrO₂, jehož použití jako materiálu pro výrobu stacionárních fází (zvláště reverzních) je v současnosti mnohem lépe prostudováno. ZrO₂ nejen svojí stabilitou překonává Al₂O₃ z hlediska vlastností významných pro HPLC stacionární fáze. Nicméně vzhledem k odlišné selektivitě Al₂O₃ a ZrO₂ může být použití fáze na bázi Al₂O₃ pro určitý typ separací jen obtížně nahraditelně [176].
3.4.2 Stacionární fáze na bázi ZrO$_2$

ZrO$_2$ je neprostudovanějším oxidem kovu používaným pro přípravu stacionárních fází v HPLC [21]. Existuje celá řada komerčně dostupných fází na bázi ZrO$_2$. Svojí chemickou stabilitou v celém rozsahu pH a až do teploty 200°C překonává jak SiO$_2$, tak i Al$_2$O$_3$. Různé modifikace jeho povrchu umožnily získat zajímavé sorbenty pro práci v normálním módu, reverzním módu, iontovýměnné sorbenty i fáze určené pro chirální separace, jejichž účinnost je srovnatelná se silikagelovými fázemi. Současné Zr-PBD kolony s rozměrem částic 5μm mají účinnost přes 100 000 teoretických pater/m a jsou stejně účinné jako nejlepší silikagelové kolony s částicemi stejné velikosti [91]. Na obr. 21 je porovnána průměrná účinnost kolon na bázi ZrO$_2$, Al$_2$O$_3$, SiO$_2$ a polymeru.

Obr. 21 Porovnání průměrné účinnosti kolon pomocí reverzně-fázové testovací směsi. Mobilní fáze: pufr (50 mM PO$_4$$^{3-}$, pH 3,2)/ACN (35/65, v/v), 1,0 ml/min, 21 °C, 254 nm; koncentrace analytů: fenol 0,04 mg/ml, pyridin 0,15 mg/ml, k. 4-butylbenzoová 0,30 mg/ml, N,N-dimethylanilin 0,15 mg/ml, toluen 4 mg/ml. Převzato z ref. [91].

![Diagram průměrné účinnosti kolon](image)

Příkladem použití stacionární fáze na bázi ZrO$_2$ v oblasti analýzy farmakologicky aktivních látek je práce Soukupové, která porovnala retenční
chování enkefalinů na Zr-PBD a Zr-PS stacionární fázi proti běžným silikagelovým fázím a vyvodila, že kolony na bázi ZrO₂ se jeví jako vhodná alternativa k silikagelovým kolonám [177]. Odlišná selektivita způsobená kombinací reverzně-fázového a iontvýměnného retenčního mechanismu ZrO₂ byla využita pro separaci kationických antihistaminik, antidepressiv a antiarytmik [178]. V jiné práci byla též popsána využitelnost Zr-PBD stacionární fáze jako alternativy k silikagelovým fázím pro separaci antihistaminik a antidepressiv [141]. Vysoká tepelná stabilita Zr-PBD fáze byla použita pro separaci steroidů [179] a při analýze triazolových fungicidů [180]. L. A. Riddle využil tepelné stability kolony na bázi Zr-C pro separaci volných sterolů při vysoké teplotě [181]. Potenciál využitelnosti stacionárních fází na bázi ZrO₂ v oblasti ryze farmaceutické analýzy byl ukázan i při separaci ibuprofenu a jeho nečistot [182].

3.4.2.1 Přehled komerčně dostupných kolon na bázi ZrO₂

Největší společností (která vlastní většinu patentů) vyrábějící HPLC stacionárních fáze na bázi ZrO₂ je firma ZirChrom Separations se sídlem v Anoce, MN, USA. Druhou společností dodávající na trh pouze reverzní kolony na bázi ZrO₂ je firma Sigma-Aldrich, konkrétně její divize Supelco s hlavním sídlem v Pensylvánském Bellefonte, USA.

Reverzní fáze [124,183]:

ZR-PBD – Stacionární fáze je tvořena ZrO₂, na jehož povrchu je ukotven polybutadien, je stabilní v oblasti pH 1-14 a teplotě do 150°C. Je ideální pro separaci aminů i jiných bazických molekul.

Zr-Carbon C18 – Fáze je tvořena ZrO₂ potaženým vrstvou uhlíku, na jehož povrch jsou kovalentně navázány oktadecylové řetězce, viz obr. 22. Je stabilní v celém rozsahu pH 1-14 a teplotě do 200°C. Jeho selektivita je odlišná od silikagelových RP C18 fází díky podložní vrstvě uhlíku.

Zr-C – Stacionární fáze je tvořena ZrO₂ potaženým tenkou vrstvou uhlíku, viz obr. 22. Je stabilní v oblasti pH 1-14 a teplotě do 200°C. Vykazuje naprosto odlišnou selektivitu oproti ostatním reverzním fázím. Sorbent je vhodný pro separaci geometrických izomerů a diastereoizomerů.

Obr. 22 Povrch kolony ZirChrom-CARB a DiamondBond-C18, převzato z ref. [184].

Deaktivované reverzní fáze [124]:

Zr-EZ – Stacionární fáze má na povrchu ukotvenou vrstvu polybutadienu a volná aktivní místa s charakterem Lewisových bazí deaktivovaná pomocí EDTPA, viz obr. 11. Je stabilní v oblasti pH 1-10 a teplotě do 50°C. Díky deaktivaci povrchu není třeba přidávat do mobilní fáze anorganické netěkavé Lewisovy baze (PO₄³⁻, F⁻)⁹ pro úpravu retence a tvaru piků. To zvýhodňuje tuto fázi pro použití v systému LC-MS. Dále je možné na této stacionární fázi bez problému dělit látky s charakterem silných Lewisových bazí s použitím běžných aditiv do mobilní fáze, narozdíl od Zr-PBD a Zr-PS sorbentů,
Zr-MS – Stacionární fáze byla vyvinuta speciálně pro použití v LC-MS a má podobné vlastnosti, jako Zr-EZ kolona, ale při její přípravě se využívá jiný postup. Na povrch ZrO₂ se nejprve naváží EDTPA, jejíž atomy dusíku se následně kvarternizují navázaným allyljiódidových skupin. Poté je povrch fáze pokryt polybutadienem a zesílenou pomocí dikumylperoxidu, viz obr. 23. Takto připravený sorbent vykazuje oproti Zr-EZ fázi vyšší reverzně fázovou retenci, srovnatelnou selektivitu se silikagelovými reverzními fázemi a díky kovalentní úpravě i nižší „column bleeding“ efekt. Je stabilní v oblasti pH 1-10 a teplotě do 50°C.

Obr. 23 Schéma přípravy Zr-MS stacionární fáze, převzato z ref. [185].

Normální fáze [124]:

Zr-PHASE – Stacionární fáze je tvořená nemodifikovaným ZrO₂, je stabilní v celém rozsahu pH 1-14 a teplotě do 150°C. Je to vysoce stabilní silný ionex, na němž nedochází ke chvostování aminů. Dá se snadno modifikovat pomocí roztoku F. Je regenerovatelnou
alternativou ke křehkým a drahým hydroxyapatitům používaným v chromatografii bílkovin.

Iontoměniče [124]:

Zr-SAX – Stacionární fáze je tvořena ZrO₂ potaženým polyethyleniminem. Je stabilní v oblasti pH 1-12 a teplotě do 80°C. Je vhodná pro separaci anorganických i organicích aniontů a dále biomolekul jako jsou nukleotidy, nukleosidy, oligonukleotidy, oligodeoxynukleotidy, aminokyseliny a peptidy.

Zr-SHAX – Stacionární fáze je tvořena ZrO₂ potaženým kvarternizovaným polyethyleniminem. Je stabilní v oblasti pH 1-12 a teplotě do 80°C. Vlastnosti sorbentu jsou podobné jako má Zr-SAX, ale díky kvarterním amoniovým skupinám je jeho povrch mnohem více hydrofilní, což je užitečné při separaci bílkovin.

Zr-WAX – Stacionární fáze je tvořena ZrO₂, jehož povrch je potažen polyethyleniminem. Je stabilní v oblasti pH 3-9 a teplotě do 50°C. Je to účinný slabý anex vyvinutý pro separaci biomolekul jako jsou nukleotidy, nukleosidy, oligonukleotidy, oligodeoxynukleotidy, aminokyseliny, peptidy i bílkoviny. Lze užít i jako normální fáze pro separaci cukrů.

Zr-WCX – Stacionární fáze je tvořena ZrO₂ modifikovaným fosforečnanem. Jedná se o slabý katex využitelný pro separaci bílkovin. Je stabilní v oblasti pH 1-10 a teplotě do 50°C.

Zr-PEZ – Stacionární fáze je tvořena ZrO₂, jehož povrch je modifikován pomocí EDTPA. Je stabilní v oblasti pH 1-10 a teplotě do 50°C. Fáze je využitelná jako katex pro separaci bílkovin. Je vynikající pro dělení monoklonálních protilátek.
Chirální fáze [124]:

Komerčně dostupné CSP na bázi ZrO$_2$ využívají Lewisových interakcí pro zakotvení chirálního selektoru. Jsou stabilní v oblasti pH 2-8 a teplotě do 30°C. Jejich výhodou je, že při pH nad 12 je možné z nich chirální selektor vypláchnout a vhodným postupem zavést na povrch ZrO$_2$ jiný chirální selektor. Tento proces lze použít i pro regeneraci kolony stejným selektorem. Výrobce dodává jednu kolonu s určitým zakotveným selektorem společně se sadou dalších selektorů. Při vývoji metody lze tedy pomocí jediné kolony a opakovaním procesu výplachu a zavádění chirálních selektorů dle návodu odzkoušet více různých CSP a určit nejvhodnější pro naši separaci.

Současné komerčně dostupné CSP na bázi ZrO$_2$:

- Zr-(S)LEU – chirálním selektorem je (S)-3,5-dinitrobenzoylleucin
- Zr-(R)NESA - chirálním selektorem je kyselina
 \((R)-N-[1-(1-naftyl)ethyl]jantarová \)
- Zr-(S)NESA - chirálním selektorem je kyselina
 \((S)-N-[1-(1-naftyl)ethyl]jantarová \)
- Zr-(S)PG - chirálním selektorem je (S)-3,5-dinitrobenzoylfenylglycin
- Zr-(R)PG - chirálním selektorem je (R)-3,5-dinitrobenzoylfenylglycin
- Zr-CelluloZe – na povrchu je zakotvena 3,5-dimethylphenyl-carbamoyl cellulosa

Dá se očekávat, že se v krátké době nabídka CSP na bázi ZrO$_2$ ještě rozšíří.
3.4.3 Stacionární fáze na bázi TiO₂

Možností využití TiO₂ jako materiálu pro získání HPLC stacionární fáze se vědci zabývají relativně krátkou dobou (okolo 13 let) [21]. Vlastnosti TiO₂ by měly být velmi podobné ZrO₂, ale většina studií zabývajících se TiO₂ nebyla prováděna na chromatografických částicích. Podle některých názorů nebyl dokonce podán žádný jasný důkaz přítomnosti nebo nepřítomnosti aktivních míst s vlastnostmi Lewisovy kyseliny na povrchu chromatografického TiO₂ [186]. Podle Grüna je TiO₂ stabilní v oblasti pH 1-14 [95], ale platnost jeho závěrů pro chromatografický TiO₂ dosud nebyla spolehlivě potvrzena. Na základě interakcí s deriváty k. benzoové, fosforečnany a karboxylovými kyselinami se předpokládá, že TiO₂ se chová podobně jako ZrO₂ nebo Al₂O₃ [21,91]. Podle Grüna má TiO₂ výraznější vlastnosti Lewisovy kyseliny [95], zatímco podle van Veena se Ti⁴⁺ nejeví tak reaktivní jako Al³⁺ [187]. Z výše uvedeného plyne, že je třeba v oblasti studia vlastností a možností využití TiO₂ jako materiálu pro výrobu HPLC sorbentů ještě třeba udělat velký kus práce.

Významnou vlastností TiO₂ je jeho schopnost silně vázat fosforečnany a fosfolipidy, což bylo použito při selektivním získávání fosfolipidů z biologických vzorků [188]. Možnost využití sorbentu na bázi TiO₂ pro separace v normálním modu popsal Winkler [186]. Určil že pH izoelektrického bodu TiO₂ použitého v jeho studii leží mezi 5,5 - 6,5, tudíž že povrchové hydroxyly jsou pouze slabě kyselé, což umožňuje separaci bazických molekul, jako jsou aminy, které by jinak bylo nutné dělit na reverzní fázi, kvůli příliš silné retenci na povrchu SiO₂, Al₂O₃ i ZrO₂. I další práce se zabývala možností použití TiO₂ jako normální fáze pro separaci bazických, neutrálních i kyselých látek [147]. Využití TiO₂ pro separaci aniontů i kationtů popsal Yu [189]. Stejně jako u ZrO₂ byla popsána i modifikace TiO₂ polybutadienem [190]. Avšak použití této fáze pro praktické separace dosud publikováno nebylo.

Využití stacionární fáze na bázi TiO₂ v oblasti čistě farmaceutické analýzy dosud nebylo popsáno, asi i díky relativně krátké době, která uplynula od zavedení prvního komerčně vyráběného sorbentu na bázi TiO₂ na trh. V nedávné době byla vyvinuta reverzní fáze na bázi TiO₂ potaženého vrstvou polyethylenu (TiO₂-PE), která je nyní vyráběna i za obchodním účelem. To by mohlo usnadnit pronikání TiO₂ jako sorbentu nejen do oblasti farmaceutické analýzy.
3.4.3.1 Komerčně dostupné kolony na bázi TiO$_2$

Částice tvořené TiO$_2$ vyprodukované jako sorbent pro HPLC pod názvem Sachtopore vyrábí německá firma Sachtleben se sídlem v Duisburgu. Nabízí částice o rozměrech 3, 5, 10, 20, 40 a 80 μm s velikostí pórů 60, 100, 300 a 2000 Å [191]. Tento typ stacionární fáze lze použít pro separace v normálním módu. Kromě toho firma ZirChrom Separations nabízí dva typy kolon na bázi TiO$_2$ vyráběného společností Sachtleben [124]:

NP – Stacionární fáze je tvořena nemodifikovaným TiO$_2$, viz obr. 24. Fázi lze použít pro separace bazických i izomerních sloučenin. Díky vlastnostem svého povrchu a potenciálně odlišné selektivitě může být použita jako alternativa k ZrO$_2$ (Zr-PHASE koloně).

RP – Stacionární fáze je tvořena TiO$_2$, na jehož povrchu je ukotvena tenká vrstva polyethylenu, viz obr. 25. Stabilita je výrobcem deklarována pro oblast pH 1-12 a teplotu do 100°C. Selektivita je velmi podobná Zr-PBD fázi. Tuto kolonu lze tedy použít jako alternativu k Zr-PBD fázi, zvláště pro separace bazických léčiv.

Obr. 24 Struktura povrchu TiO$_2$, převzato z ref. [192].
Obr. 25 Struktura povrchu Sachtopore-RP fáze, převzato z ref. [192].
4 Publikované práce
4.1 Práce publikované ve vědeckých časopisech

Utilization of zirconia stationary phase as a tool in drug control

Zirconia-based stationary phases represent an interesting alternative to silica-based materials. Two zirconia-based stationary phases were studied as an option for use in drug analysis. The different properties of zirconia material, distinct from RP silica-columns, were employed for the development of a novel and rapid stability monitoring HPLC method. This method enables simultaneous control of possible degradation processes of active substance (ibuprofen) as well as antimicrobial excipients (methyl- and propylparaben). The separation of ibuprofen, its two main degradation products 2-(4-isobutylphenoxy)propanoic acid and 4-isobutylacetophenone, parabens, and 4-hydroxybenzoic acid as their degradation product was successfully accomplished on a Zr-CarbonC18 column using a mobile phase consisting of acetonitrile-phosphate buffer (pH 4.8)-propan-2-ol (27:56:17, v/v/v). Detection was performed at 258 nm and the analysis was completed within 17 minutes.

Key Words: Zirconia-based stationary phase; Stability monitoring; Ibuprofen; Parabens

Received: February 15, 2005; revised: May 6, 2005; accepted: May 31, 2005

DOI 10.1002/jjsr.200500078

1 Introduction

High performance liquid chromatography is a widespread separation technique that occupies the leading position in routine pharmaceutical analysis. A chromatographic column is without doubt the heart of a chromatographic system. At present, most analytes are processed on various RP silica-based stationary phases. Solute are retained predominantly by hydrophobic (reversed-phase) interactions with the bonded phase [1, 2]. Silica possesses known limitations despite its numerous positive properties [3, 4].

Zirconia-based stationary phases were relatively recently introduced into HPLC and they offer some advantages over silica-based phases. Zirconia is a material with many unique properties that make it attractive as a chromatographic support. These columns represent very useful alternatives to silica-based materials and they have been studied extensively [2, 3, 5–14]. Zirconia is an amphoteric material with anion-exchange properties in neutral and acid solutions and with cation-exchange properties in alkaline solutions. The most useful features are its high thermal and chemical stability over a wide range of temperatures (up to 200°C) and pH (1 to 14) [1–3, 8, 10, 11, 15]. In contradistinction to the behaviour of the silanol groups, Zr(IV) sites (hard Lewis acids) on zirconia cause hard Lewis base analytes (R-SO3−, R-PO3−, R-COO−, etc.) to adsorb quite tenaciously. Such Lewis acid-base interactions are characterised by especially slow desorption kinetics, which cause broad and tailed peaks. However, when a strongly competing Lewis base (PO43−, F−, carboxylates) is deliberately added to the eluent in sufficient high concentration, the accessible Zr(IV) sites are dynamically blocked by adsorption of the eluent. Thus addition of the hard Lewis base to the eluent greatly improves the peak shape of the analytes [1, 3, 9, 12].

Zirconia-based stationary phases have been used for separation of many chemical substances with different structures and physico-chemical characteristics, for example variety of nonpolar aromatic positional isomers, triazines, steroids [13], alkaldoids, and antidepressants [16], beta-blockers, local anaesthetics, p-alkylbenzylamines [3, 9], testosterone, and a series of related compounds [8]. From the chemical point of view all these compounds have basic or neutral nature. The separation of samples containing hard Lewis base moieties such as anions of acidic compounds, nucleotides, peptides or proteins is rather problematic due to the presence of hard Lewis acid sites on the zirconia surface. Polymers coated on zirconia's surface do not completely block these Lewis
acid sites. The salt content is needed to suppress the strong coulombic interactions and to block unwanted Lewis acid-base interactions [17–22].

Quality control of raw materials and consecutive monitoring of potency and safety of pharmaceutical products constitutes an important current subject of investigation in the pharmaceutical sector. The decomposition process can result in a loss of potency and quality or in a loss of safety of drugs and drug formulations due to creation of minor ineffective or toxic degradation products. In contrast to model samples used in studies describing features of columns, real samples are usually more complicated because they contain different moieties with variable physical-chemical properties. It is also necessary to optimize resolution. In fact, eluent type and stationary phase type present effective variables for modulating the selectivity and thus also for achieving successful separation on an HPLC column [5, 13].

Ibuprofen = (R,S)-2-(4-isobutylphenyl)propionic acid – is a non-steroidal anti-inflammatory drug with analgesic, antipyretic, and platelet aggregating properties. From the chemical point of view, ibuprofen (Ibu) is relatively stable, but its sensitivity to oxidation and photolytic degradation has been reported [23]. Especially in solution, 4-isobutylacetophenone (Ibap) and 2-(4-isobutylphenyl)propionic acid (Bopa) are present. Ibap arises via radical-induced decarboxylation followed by benzolic oxidation. Bopa is a product of oxidative processes acting on the basic structure [24]. 4-Isobutylacetophenone has shown adverse effects on the central nervous system and presented high dermal absorption [23, 25]. Alkyl (methyl, ethyl, propyl or butyl) esters of 4-hydroxybenzoic acid (parabens) are widely used as antimicrobial preservatives in the pharmaceutical, cosmetic, and food industry. They are generally used as a combination of two or more alkyl esters, because such combinations show enhanced antimicrobial activity. Parabens degrade by hydrolysis under alkaline or acidic conditions to form 4-hydroxybenzoic acid (PhBE), whose antimicrobial activity is not high enough [6] to prevent microbial attack [26–28].

The analysis of Ibu, methyl-, propylparaben and their degradation products on silica reversed C18 stationary phases failed. The aim of our study was to exploit the benefits of zirconia-based stationary phases, especially the combination of reversed phase mechanism and ion-exchange interaction in the separation process. These features have been employed in development of the analytical procedure for monitoring the stability of the active agent as well as the antimicrobial excipients (Fig. 1) in topical creams. Two types of zirconia-based stationary phases were tested to achieve satisfactory results.

2 Experimental
2.1 Instruments and chromatographic columns
All chromatographic work was performed on a Shimadzu chromatography system equipped with SCL-10A VP system controller, SPD-10A VP detector, LC-10AD VP pump,
SIL-10ASu aut injector, CTO-10ASu column oven, DGU-14A degasser, FCV-10Alw low pressure module, and computer-based chromatographic software Class-VP (Shimadzu, Tokyo, Japan). A Shimadzu UV2401PC UV-VIS spectrometer (Tokyo, Japan) was used for measurement of UV spectra. A K10 Ultrasonic bath (Krainik, Slovakia) and MLW TS1 centrifuge (Engelsdorf, Germany) were used during the extraction process.

The following analytical columns were used in the experimental work: Discovery-Zr-CarbonC18, 150 × 4.6 mm ID, particle size 3 μm, Discovery-Zr-PS, 150 × 4.6 mm ID, particle size 5 μm, Sigma-Aldrich (Schnelldorf, Germany); and Sepharose SGX RPS, 150 × 4.0 mm ID, particle size 5 μm, Teasek (Prague, Czech Republic).

2.2 Chemicals
Ibuprofen Sigma (St-Louis, MO, USA), 4-isobutylaceto-phenone 98% (Lancaster, UK), 2-(4-isobutylphenyl)propionic acid, Zentiva, a.s. (Czech Republic). Methylpara- ben (MeP), propylparaben (PP), acetoin, propanol-2-ol, ammonium dithrogenphosphate p.a., phosphoric acid 85% p.a., and sodium hydroxide p.a. were obtained from Lach-Ner (Czech Republic). 4-Hydroxybenzoic acid and butylparaben were purchased from Sigma-Aldrich (Schnelldorf, Germany).

2.3 Sample preparation
2.3.1 Standard solutions
A mixture of acetonitrile-water (90:10, v/v) was used as solvent for the preparation of all solutions. All stock solutions were prepared at concentration 1 mg mL⁻¹ except for ibu (2.5 mg mL⁻¹). The standard solution was prepared by adding appropriate amounts of stock solutions to the 10 mL volumetric flask. The final concentrations in the standard solution were Ibuprofen 1.25 mg mL⁻¹, methlyparaben 0.05 mg mL⁻¹, propylparaben 0.0125 mg mL⁻¹, Bopa and ibap 3.75 × 10⁻² mg mL⁻¹, PhBa 1.25 × 10⁻² mg mL⁻¹.

2.3.2 Extraction
An accurately weighed portion of pharmaceutical cream corresponding to 2.5 mg of Ibuprofen (about 0.5 g) was transferred into 25 mL extraction flask and 20.0 mL of extraction solution was added (mixture of acetonitrile-water (90:10, v/v)). The mixture was placed in the ultrasonic bath for 10 min and then centrifuged for 5 min (60 Hz). A volume of 20 μL of supernatant was analysed.

2.4 Buffer preparation
Phosphate buffers (50 mM) were prepared by dissolving ammonium dithrogenphosphate in water and pH value was adjusted by adding 0.1 M NaOH or 5% phosphoric acid.

3 Results and discussion
Our attempt to accomplish the separation of all compounds with a conventional silica C18 stationary phase failed, even when the column with higher carbon content was tested. The co-elution of peaks due to PhP and Bopa constituted the problematic point of the analysis using acetonitrile-water (pH 2.6) (60:40, v/v) as the eluent. It was necessary to decrease the percentage of acetonitrile in the mobile phase to 40% or below in order to achieve better separation of PhP and Bopa. Unfortunately, this change in composition of the mobile phase dramatically increases the retention times of other analytes, especially of Ibap. For this reason, alternative stationary phases were tested as a potential key to solve the above-mentioned separation problem, including acceptable analysis time. Zirconia-based stationary phases exhibit unique properties and selectivity for different type of solutes. One of the most chemically interesting aspects of using zirconia supports is that of their surface chemistry, which is radically different from that of silica supports. In particular, there are many hard Lewis acid sites on the zirconia surface [26, 30]. In aqueous media the surface is populated with hydroxylated and aquated Zr(IV) sites which can undergo ligand exchange with hard Lewis bases. This type of coordination chemistry does not take place on silica as it is not a metal [4]. Thus ionised carboxylic acid analytes show strong ligand exchange interactions with the accessible hard Lewis acid sites. To avoid long retention times and very poor peak shapes, phosphate was added to the eluant in all experiments. If phosphate buffer was replaced with acetate buffer the analysis was no longer feasible. Since acetate is a weaker Lewis base than phosphate, interactions between the analyte and stationary phase became stronger which resulted in unacceptable peak tailing and long analysis times.

3.1 Polystyrene coated zirconia stationary phase
According to our recent study [31] dealing with quality control of raw material of ibu using zirconia stationary phase, the polystyrene-zirconia stationary phase (PS-ZrO₂) was chosen first. PS-ZrO₂ exhibits different selectivity from octadecyl bonded silica (C18-SiO₂) towards a variety of analytes and it is a unique, selective stationary phase, which can provide effective separations for many compounds [15]. In order to achieve separation of all analysed compounds, several experiments were performed. The percentage and type of organic solvent (MeOH, ACN) in a mobile phase and pH value were tested as the most important variables to influence the performance of the column. Retention of PhBa was weak under all tested conditions, even though other compounds were base-line separated. PhBa was mostly eluted with the system peak. Its retention was not greatly improved by the changes of organic solvent or the changes of pH. Its highest retention
was observed at pH 4.0. Fig. 2, but peaks due to MeP, Bopa and Ibu, Ibp were co-eluted. The best condition for separation of all compounds (except PhBa) are as follows: mobile phase MeOH-phosphate buffer (50 mM, pH 5.48)-tetrahydrofuran 25:70:5 (v/v/v), flow rate 0.6 mL min⁻¹, and temperature 60°C, see Fig. 3. The experiments show that the retention of PhBa on the PS-ZrO₂ column is insufficient and thus it is impossible to obtain reasonable separation of this diverse group of solutes.

3.2 Zr-CarbonC18 stationary phase

To increase the retention especially of PhBa another type of zirconia-based stationary phase was chosen. Zr-CarbonC18 is more hydrophobic than the PS-ZrO₂ stationary phase and also offers ion-exchange interactions to influence the separation process as opposed to conventional silica C18 phase. The simultaneous action of reversed phase mechanism and ion-exchange interactions between stationary phase and solute led to the expected effect. All compounds including PhBa were retained and satisfactorily resolved within an acceptable analysis time. As in the case of PS-ZrO₂, the pH optimization of the eluent was the most important variable to influence separation. Decreasing the pH value increased the retention times of all analytes because of the enforcement of hydrophobic interactions with the stationary phase. Increasing pH negatively influenced the retention of PhBa due to the impairment of hydrophobic interactions and due to possible electrostatic repulsion of analyte from the negatively
charged zirconia surface. Decreasing retention of PhBa with increasing pH is more marked on PS-ZrO₂ stationary phase. Hence, a pH range from 3.45 to 5.0 was tested to reach a compromise between sufficient retention and acceptable analysis time, see Fig. 4. The experiments established an optimal pH 4.8 for separation of all six compounds. The final mobile phase composition was acetoneitrile-phosphate buffer (50 mM, pH 4.8)-IPA 27:56:17, v/v/v, see Fig. 5. The retention time of Ibap under these conditions was approximately 17.5 min and the total analysis time was 19 min. Ibap exhibits stronger interactions with stationary phase on account of its physical-chemical properties (Fig. 1). In order to shorten the analysis time some gradients of acetoneitrile in the mobile phase were tested. Higher content of organic solvent did not shorten the retention time as expected. In addition, the time needed for equilibration of the column even prolonged the analysis. Increasing the flow rate proved to be more useful than the use of the acetoneitrile gradients given in Table 1. This approach cut the total analysis time by six minutes (including re-equilibration), Fig. 6.

3.3 Detection and temperature

Compared to Ibu, Ibap and Bopa exhibit a bathochromic shift, and their absorption maxima are shifted to 258 nm. Therefore, UV detection was performed at 258 nm to attain maximal sensitivity for detection of Ibu degradation.
products. The detection of parabens and 4-hydroxybenzoic acid is also sensitive at this wavelength. If it is needed to make the method more sensitive to PhBa as a stability marker of parabens, it is possible to use the dual wavelength mode for its detection (absorption maximum at 274 nm).

High temperature provides an opportunity to increase analyte mass transfer rates (and thereby decrease peak width). Within the mobile phase, increased temperatures serve to increase diffusion and decrease viscosity, where the ratio of the diffusion coefficient to the viscosity-temperature product is appropriately constant over a wide range of pressure and temperature conditions. An additional benefit of lower viscosity is the potential to operate at higher flow rates and thereby reduce total analysis time [6]. The temperature 70°C has been found to be sufficient for shortening the analysis time and for improvement of peak shape.

3.4 Optimal chromatographic condition for analysis of all decomposition products

The choice of optimal chromatographic conditions was based on the experiments described above. Only the ZrCarbonC18 stationary phase, due to its higher hydrophobicity, could be used in separation of all studied compounds. The pH of phosphate buffer in the mobile phase,

Table 1. Step gradient of flow rate.

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Flow rate [mL.min⁻¹]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 5</td>
<td>0.6</td>
</tr>
<tr>
<td>5 – 15</td>
<td>0.8</td>
</tr>
<tr>
<td>15 – 16</td>
<td>0.8 → 0.6</td>
</tr>
<tr>
<td>16 – 17</td>
<td>0.6</td>
</tr>
</tbody>
</table>

as an important retention-affecting factor, was adjusted to a value of 4.6. The retention of PhBa as well as the resolution of MeP and Bopa were sufficient. Acetonitrile possessed higher elution power and that is why it was preferred to MeOH as an organic component of the mobile phase. To improve peak shape, propan-2-ol was added to the mobile phase. Optimal mobile phase contained acetonitrile-phosphate buffer (50 mM, pH 4.8)-propan-2-ol (27:56:17, v/v/v). Detection was performed at 258 nm; the flow gradient was as specified in Table 1; a column temperature of 70°C was found to be satisfactory with regard to analysis time and peak shape. These chromatographic conditions were optimal for the analysis of all the above-mentioned compounds. Analysis under these conditions was complete within 17 min.

The developed method is applicable for determination of both the active agent and preservatives. The response of Ibu, MeP, and PrP is linear in the range of 10% — 120% of the defined amount (seven concentrations). Butylparaben has been chosen as suitable internal standard for the assay, see Fig. 6. The linear response of decomposition products was tested in the range of 10% — 120% of the admissible amount (seven concentrations). The correlation coefficients, r, found were higher than 0.999 for all compounds. A signal-to-noise (S/N) ratio of 3 is generally considered to be acceptable for estimating the detection limit. A typical S/N ratio for calculating the quantitative limit is 10:1. Both limits were calculated, see Table 2.

Accuracy was determined using spiked placebo (six preparations). Relative standard deviation values (RSD) were calculated for repeated standard injections (system precision) as well as injections of multiple sample preparations (method precision). Table 2. The responses of the detector to 0.3% solutions of PhBa, Bopa, and Ibab at 258 nm were divided by response of the detector to a
Table 2. Validation results. (repeatability six injection of standard; method precision, accuracy six preparation of spiked placebo; linearity ~ 10%, 20%, 40%, 60%, 80%, 100%, 120% for Ibu, MeP, and PrP; 10%, 20%, 40%, 60%, 80%, 100%, 120% of admissible amount for PhBa, Bopa, and Ibab).

<table>
<thead>
<tr>
<th></th>
<th>PhBa</th>
<th>Bopa</th>
<th>MeP</th>
<th>PrP</th>
<th>Ibu</th>
<th>Ibab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repeatability</td>
<td>RSD [%]</td>
<td>1.30</td>
<td>1.36</td>
<td>0.62</td>
<td>0.85</td>
<td>0.56</td>
</tr>
<tr>
<td>Method precision</td>
<td>RSD [%]</td>
<td>1.53</td>
<td>1.57</td>
<td>0.98</td>
<td>1.01</td>
<td>1.28</td>
</tr>
<tr>
<td>Accuracy</td>
<td>recovery [%]</td>
<td>97.04</td>
<td>97.50</td>
<td>101.00</td>
<td>99.23</td>
<td>97.09</td>
</tr>
<tr>
<td>Linearity</td>
<td>correlation coefficient</td>
<td>0.9992</td>
<td>0.9993</td>
<td>0.9993</td>
<td>0.9995</td>
<td>0.9995</td>
</tr>
<tr>
<td>slope</td>
<td>2.14</td>
<td>4.18</td>
<td>92.7</td>
<td>15.66</td>
<td>19.57</td>
<td>5.41</td>
</tr>
<tr>
<td>intercept</td>
<td>20.8</td>
<td>-13.8</td>
<td>8</td>
<td>82</td>
<td>72</td>
<td>4.3</td>
</tr>
<tr>
<td>LOD</td>
<td>[mg · mL⁻¹]</td>
<td>1.88 × 10⁻⁴</td>
<td>4.5 × 10⁻⁸</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LOQ</td>
<td>[mg · mL⁻¹]</td>
<td>6.25 × 10⁻⁴</td>
<td>1.5 × 10⁻⁵</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

0.3% solution of Ibu at 258 nm, see Table 3. The response factors differ considerably from one another; and thus it is necessary to prepare the solution with limited concentrations of all impurities for monitoring of Ibu, MeP, and PrP stability.

The influence of small changes of composition of mobile phase, flow rate, and temperature on separation was also tested. The most important factor for sufficient separation of all compounds from one another, especially Bopa-MeP and PrP-Ibu, is the pH value of the phosphate buffer. It has been verified that the separation is not influenced in range of pH 4.8 ± 0.1. The temperature does not affect the separation very much but it is worth keeping the column above 60°C with regard to peak shape. The flow rate at the beginning of analysis should not be higher than 0.6 mL min⁻¹ with respect to resolution between PrP and Ibu. The experiments have shown that small changes of optimal parameters do not dramatically affect the performance and the developed method could be used for evaluation of Ibu, parabens, and their degradation products. The chromatogram of real pharmaceutical cream sample (after expiration) is also shown, Fig. 7. The degradation products of Ibu and parabens were detected.

4 Conclusion
Two types of zirconia-based stationary phases were tested as a possible alternative to commonly used silica reversed phases. Considerable differences were

![Figure 7. Chromatogram of real sample, pharmaceutical cream after its expiration. Chromatographic conditions mobile phase acetonitrile-phosphate buffer (50 mM, pH 4.8):propan-2-ol (27:56:17, v/v/v), detection 258 nm, step gradient of flow rate, column temperature 70°C.](image-url)
observed in retention on zirconia stationary phases and on C18 silica stationary phase.

Zirconia as an amphoteric material possesses anion-exchange properties in acidic or neutral pH. The presence of hard Lewis acids – Zr(IV) sites – causes hard adsorption of anion exchangers – especially Lewis bases – on the zirconia surface which results in broad peaks. To avoid these unwanted interactions a competing Lewis base which blocks dynamically accessible zirconia sites was added. According to our previous study [31], acetate is not strong enough to suppress such interaction – tailing peaks and increased retention time were observed. When phosphate was used in the eluent the peak shape was acceptable, as was the analysis time. The tested zirconia columns differ from each other in selectivity and retention, see Fig. 2 and Fig. 4. The carbon content in PS-ZrO2 is much lower than that of conventional reversed-phase material and ZrCarbonC18, but most of the studied compounds were well separated from one another. The lower hydrophobicity was insufficient only for PrBa. The most important factor affecting separation was the pH of phosphate buffer on both types of zirconia columns. The effect on retention is more significant on the PS-ZrO2 column. Retention of carboxylate ions (ibu, Bopa, and PrBa) decreased remarkably with increasing pH compared to parabens and ibap. From a practical point of view higher hydrophobicity is needed especially for sufficient retention of 4-hydroxybenzoic acid and thus the ZrCarbonC18 column was chosen for simultaneous analysis of ibuprofen, its degradants, parabens, and their decomposition product. Detection of Bopa and ibap as first products of degradation of ibuprofen enables evaluation of degradation progression in topical pharmaceuticals. In addition, monitoring of 4-isobutylacetophenone is important because of its toxic effect on the nervous system. Simultaneous monitoring of 4-hydroxybenzoic acid enables identification of possible decomposition of antimicrobial excipients. The method can serve also for quantification of the active substance ibuprofen and parabens, using butylparaben as an internal standard. The possible applicability of zirconia-based stationary phase in pharmaceutical analysis was documented for a practical example. Simultaneous activity of ion-exchange and hydrophobic (reversed) interactions on zirconia-based stationary phase provides a wide range for modulating column selectivity and thus attaining appropriate resolution between analytes in the mixture.

Acknowledgement

This work was implemented with the support of Research Project MSM 0021620822.

References

Potential employment of non-silica-based stationary phases in pharmaceutical analysis

Václav Žižkovský, Radim Kučera*, Jiří Klimeš

Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heroldského 1203, 500 05 Hradec Králové, Czech Republic

Received 5 March 2007; received in revised form 16 April 2007; accepted 20 April 2007
Available online 25 April 2007

Abstract

The absolute majority of the HPLC applications use silica-based columns for the separation of active substance and its impurities. However, stationary phases based on metal oxides appear as an interesting alternative. The aim of our study was to investigate the potential utilization of metal oxide-based stationary phases in analytical evaluation of oxandrolon and its five pharmacopeial impurities. In our study commercially available ZrO₂-based columns (e.g. Zr-PBD, Zr-PS, Zr-C18) and TiO₂-based column were used. The effect of an organic modifier (type and ratio), a buffer (type, pH and concentration) and the influence of temperature was investigated. The separation of oxandrolon and its five pharmacopeial impurities was successfully accomplished on a Zirchrom®-PBD column using a mobile phase consisting of acetonitrile-ammonium phosphate (25 mM, pH 7.0) (18:82, v/v). Detection was performed at 216 nm and the analysis was completed within 7.5 min. The paper proves metal oxide-based stationary phases as an alternative to classical silica-based stationary phases in pharmaceutical analysis.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Metal oxide-based stationary phase; Zirconia-based stationary phase; RP-HPLC; Oxandrolon; Impurities

1. Introduction

Quality control of raw materials and consecutive monitoring of potency and safety of pharmaceutical products constitute an important current subject of investigation in pharmaceutics. The impurities present in a drug or a drug formulation lower its quality and potency. The impurities are either residuals from the drug synthesis (e.g. by-products, residual solvents, etc.) or compound arising from decomposition reactions. Products of the decomposition process could be, on the one hand, ineffective (i.e. the drug quality is debased) but, on the other hand, toxic and thus for safety the quantity of drug is reduced.

The analytes are usually more complex than the model mixtures used in studies describing features of analytical columns. The model mixtures contain mostly easily separable components (i.e. the same nature but different structure), whereas real samples involve both moieties with different as well as very similar properties. The resolution between peaks is a basic parameter, which is usually optimised during method development process for an analysis of related compounds in a drug. In fact, eluent type and stationary phase type present effective variables for modulating the selectivity, and thus also for achieving sufficient separation on an HPLC column [1,2].

Properties of allied compounds and degradation products, which occur in drugs as impurities, are often very similar to the parent drug substance. This is the reason why new analytical separation methods, which show high selectivity for separation of complicated mixtures, should be developed. The HPLC is without doubts the most important analytical procedure in the field of drug analysis. The absolute majority of applications use silica-based columns, even though the use of silica support is limited by pH and temperature in relation to column stability [3–8].

To overcome these disadvantages stationary phases based on metal oxides – zirconia, alumina and titania – have been developed [7,9]. Zirconia-based stationary phases have been the most investigated metal oxides stationary phases up to date [1,2,7,9–21]. High thermal and chemical stability over a wide range of temperature (up to 200 °C) and pH (1–14) are the most useful features of zirconia-based stationary phases [1,11,14,16,17,20,22]. The other advantage of zirconia-based columns is their different selectivity compared to silica-based
columns. This enables their convenient utilisation also at mild conditions. The zirconia-based columns are also feasible for analysis of carboxylic compounds besides basic analytes. The potential problematic strong interactions with Lewis acids on the zirconia surface can be reduced due to addition of Lewis base (PO₄³⁻, F⁻, CH₃COO⁻) into a mobile phase [7]. Nowadays four reversed-phase ZrO₂-based stationary phases are commercially available: Zr-PBD, Zr-Carbon C18, Zr-Carbon and Zr-PS. Each type of column possess different retention properties and has been developed for different analytical purpose [23,24] (see Table 1).

The next metal oxide studied as a chromatographic support is alumina. Al₂O₃-based packings cannot be used for analytes containing carboxylic groups, because these compounds are bonded irreversibly on the alumina surface. Moreover, except for mobile phases with pH above 10, alumina-based packings have separation properties quite similar to those for silica, without obvious advantages [5].

The other metal oxide, which can be used as stationary phase bed for HPLC is TiO₂. Its properties and usefulness for chromatography have been investigated recently. There is still lack of data describing its properties and applicability to separation purposes. Some stationary phases based on TiO₂ have been used to separate basic or non-basic molecules under normal phase conditions [25,26]. Polyethylene-covered TiO₂ stationary phase has been developed for reversed-phase separation. The polymer layer causes decrease of Lewis acid–base interactions and thus improves the peak shape [7]. This stationary phase should have similar properties as Zr-PBD [23,27], which enables its utilisation as an alternative, when separation on Zr-PBD is insufficient.

The serotonin (5-hydroxytryptamine; 5-HT) type 3 receptor (5-HT₃) antagonist ondansetron has become first line therapy for the treatment of postoperative nausea and emesis as well as of emetogenic side effects accompanying cancer chemotherapy. Its quality assurance is implicit just as the other pharmacopoeial substances and pharmacologically active compounds present in pharmaceutical preparations of current use.

Racemic ondansetron hydrochloride dihydrate has been firstly mentioned in the 5th edition of European Pharmacopoeia (Ph. Eur.) [28], whereas the United States Pharmacopoeia, has mentioned ondansetron 6 years ago in the 24th edition [29]. The Pharmacopoeias [28,30-31] use nitrile silica-based stationary phase for determination of ondansetron and its impurities (except of impurity B) and the retention time of the last substance (ondansetron) is about 15 min.

Silica-based stationary phases are mostly used for HPLC analysis of ondansetron in human plasma [32-35] and pharmaceutical preparations [36-39] according to the literature. No publication has described a method for determination of ondansetron and its impurities and degradation products.

The aim of our work was to investigate the potential utilisation of non-silica-based stationary phases in analytical evaluation of ondansetron and its five pharmacopoeial impurities (Fig. 1). Commercially available ZrO₂-based columns (DiamondBond™-C18, Zircon™-PBD, Discovery™Zr-PS) and TiO₂-based column (Sachtopore™-RP) were used in our study. The retention behaviour of analysed substances has been investigated.

2. Experimental

2.1. Instruments

All chromatographic experiments were performed on a Shimadzu chromatography system assembled of communication bus module CBM 20A, DAD detector SPD-M20A, pump LC-20AD, autoinjector SIL-20AC, column oven CTO-20AC, degasser DGU-20A3 and a computer-based chromatographic software LC solution, Shimadzu (Tokyo, Japan).

2.2. Chromatographic columns

The following analytical columns were used during experiments: Zorbax SB-Aq. 150 mm × 4.6 mm i.d., particle size 3.5 μm, HPST (Czech Republic), DiamondBond™-C18, 150 mm × 4.6 mm i.d., particle size 5 μm, Sachtopore™-RP, 150 mm × 4.6 mm i.d., particle size 5 μm, Zircon™-PBD, 150 mm × 4.6 mm i.d., particle size 5 μm, Zircon Separations (Anoka, USA), Discovery™Zr-PS, 150 mm × 4.6 mm i.d., particle size 5 μm, Supelco-CN, 120 mm × 4.6 mm i.d., particle size 5 μm, Sigma–Aldrich (Schneidorf, Germany).

2.3. Chemicals

Ondansetron hydrochloride dehydrate – (3RS)-9-methyl-3-[2-(methyl-1H-imidazol-1-yl)methyl]-1,2,3,9-tetrahydro-4H-carbazol-4-one – and its five pharmacopoeial impurities (Fig. 1) were kindly provided by Zentiva a.s. The other chemical substances came from common commercial sources.

2.4. Standard solutions

- Stock solutions of ondansetron and its five impurities were prepared at concentration 1 mg mL⁻¹ in methanol.
- Standard solutions were prepared by diluting stock solutions with methanol to the concentration 20 μg mL⁻¹.
- The same operation was used for preparation of mixture of ondansetron and its five impurities.

For determination of dead volume, potassium iodide (1 mg mL⁻¹) for silica-based columns and acetone (1 mg mL⁻¹) for zirconia-based and titania-based columns, were used. The injection volume of standard solutions was 5 μL.

2.5. Model sample

The model sample of ondansetron hydrochloride dihydrate, containing admissible amount of impurities, was prepared as follows: the stock solutions was diluted by mobile phase to these final concentrations: Imp. 1, 3, 4 and 5—1 μg mL⁻¹; Imp. 2—0.5 μg mL⁻¹; Ond—500 μg mL⁻¹ [28]. The injection volume of model of impure ondansetron was 20 μL.

2.6. Buffer preparation

Buffers were prepared by dissolving appropriate salt (ammonium dihydrogen phosphate, diammonium hydrogenphosphate and ammonium fluoride or ammonium acetate) in water, and the pH value was adjusted by addition of 0.1 M ammonium hydroxide or 10% phosphoric acid.

3. Results and discussion

The separation of ondansetron and its impurities was tested on six HPLC columns. A special attention was paid to the influence of the experimental conditions on separation of studied compounds on metal-based stationary phases. The effect of an organic modifier (type and ratio), a buffer (type, pH and concentration) and the influence of temperature was investigated. All performances were realised using universal detection wavelength 216 nm and the ratio of acetonitrile in a mobile phase was 20% [28].

Achieving the sufficient resolution between imidazole (Imp. 3) and 2-methylimidazole (Imp. 4) constituted the main problematic point of the separation on all stationary phases. The experiments and obtained results are summarised for each column below.

3.1. Silica-CN

Using 20% acetonitrile in the mobile phase resulted in weak retention of all analysed substances on silica-CN stationary phase ($K_{H2O} = 1.33, K_{CH3CN} = 0$). The effect of pH and buffer concentration on retention of first eluted compounds – Imp. 3 and 4 – was negligible. These compounds were eluted constantly in dead retention time. The only way how to attain sufficient retention of both impurities was decreasing the amount of the organic modifier. Even if the mobile phase was composed of
acetonitrile-ammonium phosphate (pH 5.4; 20 mM) (5-95, v/v) the retention factor of Imp. 3 and 4 was insufficient and both impurities were eluted at the same retention time as potassium iodide. Further decreasing of the amount of acetonitrile in the mobile phase was improper with respect to stability of silica-based stationary phase [5]. The studied silica-CN stationary phase appeared unsuitable for the separation of ondansetron and its five impurities.

3.2. Silica C18

Zorbax SB-Aq is an alkyl reversed-phase bonded phase especially designed to operate under highly aqueous condition (including 100% water phase) for sufficient retention of hydrophilic compounds [40].

Retention of analysed substances was naturally higher in comparison with silica-CN column, but unfortunately the selectivity for above mentioned Imp. 3 and 4 was also insufficient. The effect of a pH value and a buffer concentration on retention and selectivity of these analytes, i.e. Imp. 3 and 4, was minimal. The ratio of acetonitrile in mobile phase affected strongly the retention of all analysed compounds. One-minute increase in retention time of Imp. 4 was followed by 40 min rise in retention time of last eluted substance—Ond (flow rate was 1.50 mL min⁻¹). The effect of pH and concentration of a buffer on retention of ondansetron was negligible. Higher resolution than 2.00, between peaks due to Imp. 3 and 4 could be achieved, but the total analysis time for isocratic elution would be higher than 60 min. That is why this column appeared improper for isocratic separation of ondansetron and its five impurities.

3.3. Zr-PS

Zr-PS stationary phase is made of ZrO₂, which is covered by a polystyrene layer [24]. This column has been developed for separation of very hydrophilic compounds, basic compounds and amines.

The order of eluted substances on Zr-PS stationary phase remained the same as on silica-based columns. Using mobile phase composed of acetonitrile-ammonium phosphate (pH 5.4; 20 mM) (20:80, v/v) Imp. 3 was eluted at the same retention time as dead retention time indicator—acetone. There was practically no observable resolution between peaks of first eluted substances. The effect of pH and buffer concentration on retention of Imp. 3 and 4 was minimal with 20% acetonitrile in mobile phase. Decrease of amount of acetonitrile in mobile phase was essential to increase retention of Imp. 3 and 4 and to examine the effect of buffer pH and buffer concentration on resolution between bands of Imp. 3 and 4.

The best results were obtained by using mobile phase composed of acetonitrile-di ammonium phosphate (pH 7.5; 20 mM) (7:93, v/v), column temperature 50°C and flow rate 1.50 mL min⁻¹. After all, the resolution between peaks due to Imp. 3 and 4 was 1.20 and the resolution between Imp. 2 and 5 (fourth and fifth eluted compound) was 1.45. The last two peaks (Imp. 5 and Ond) were broad and tailed and total analysis time was about 32 min.

Due to inappropriate peak shapes of Imp. 5 and Ond and also relatively long time of analysis, Zr-PS column appeared improper for isocratic separation of ondansetron and its five impurities.

3.4. Zr-C18

DiamondBond®-C18 stationary phase belongs also to a group of zirconia-based columns. The stationary phase is analogous to conventional ODS columns. The C18 ligands are attached to the carbon layer on the surface of zirconia with ultra-stable carbon-carbon bonds—so the columns are impervious to extremes mobile phase chemistry and temperature [23]. This stationary phase is ideal for the reversed-phase separation of positional isomers and diastereomers [23,24].

The retention of analysed compounds on Zr-C18 column was obviously the highest of all investigated columns as was expected. Double amount of acetonitrile in mobile phase, compared to the other investigated columns, was essential for achieving separation of ondansetron and its studied impurities in acceptable time. The best results were obtained by using mobile phase composed of acetonitrile-di ammonium phosphate (pH 8.0; 20 mM) (50:50, v/v), column temperature 50°C and flow rate 1.50 mL min⁻¹. The separation of all compounds was achieved. The retention factor of first eluted substance (Imp. 3) was only 0.16 but the retention factor of the last eluted substance (Ond) was 88.41 and tailing factor of Ond was 3.2.

Due to inappropriate peak shape of ondansetron and high total time of analysis, DiamondBond®-C18 column appeared improper for isocratic separation of ondansetron and its five impurities.

3.5. Titania-RP

Sachtopore®-RP stationary phase is a new type of metal-based RP stationary phase. It is made of TiO₂ and covered by a thin layer of polyethylene [23].

The similar selectivity towards Imp. 3 and 4 has been observed also on this column. After preliminary experiments the best results were achieved with acetonitrile-ammonium phosphate (pH 6.0; 20 mM) (18:82, v/v) as a mobile phase, column temperature 50°C and flow rate 1.50 mL min⁻¹. Under these conditions the first eluted substance was Imp. 4 (k' = 0.58) and then Imp. 3 as opposed to other columns. The resolution between them was 2.13. The tailing factor of peak of the last eluted compound (Ond) was 1.41. The total analysis time was reduced to 10.5 min.

The Sachtopore®-RP column appeared suitable for isocratic separation of ondansetron and its five impurities. Since titania-RP stationary phase is similar to Zr-PBD stationary phase [23] also the Zr-PBD column has been tested before detailed study of retention behaviour was performed.

3.6. Zr-PBD

Zr-PBD stationary phase is made of ZrO₂ and its surface is covered by polybutadiene layer.
Satisfactory separation on Zr-PBD under the same conditions as on titania-based column was not achieved. There was practically no resolution among peaks of Imp. 2-4. Increase of pH to 7.0 was sufficient for satisfactory separation of all analysed compounds in total analysis time 9.5 min. In contrast to titania-RP column the first eluted substance on Zr-PBD column was Imp. 3.

Owing to sufficient separation of all analysed compounds in total analyses time 9.5 min, Zr-PBD column was chosen for further experiments. The aim was to describe the influence of experimental conditions on retention behaviour of studied analytes and optimization of separation.

3.6.1. Effect of type, pH and concentration of buffer

Ammonium phosphate, ammonium fluoride and ammonium acetate were tested as Lewis-base additives to the mobile phase. The presence of Lewis-base in the mobile phase influences the interaction between an analyte and Lewis-acid sites on the surface of zirconia.

The fluoride anions as a constituent of mobile phase affected the selectivity of the stationary phase, and thus coelution of peaks due to Imp. 4 and 1 was observed. Simultaneously the retention of ondansetron slightly increased compared to the mobile phase with phosphate instead of fluoride.

When fluoride is replaced by acetate the cation-exchange interactions are weaker. Therefore, the retention of all compounds is lower. The resolution between peaks of Imp. 3 and 4 was improved, in contrast to mobile phase with fluoride. The best result were obtained using phosphate buffer as a constituent of mobile phase (see Fig. 2).

The influence of buffer pH on separation of all six analysed compounds was investigated in pH range of 2.0-9.0. The dependence between retention factor k' and pH of buffer using mobile phase acetonitrile-ammonium phosphate (20 mM) (18:82, v/v) is shown in Fig. 3. In respect of absence of the imidazole part of molecule with acid–base character the effect of pH of mobile phase on retention of Imp. 1 and 2 is negligible. The other investigated compounds showed the highest retention in the range of pH 4.5-5.0 and manifested retention behaviour typical for Lewis bases. Based on these results the pH value 7.0 was chosen. The time of analysis and robustness of the method, especially the resolution between two first peaks (i.e. Imp. 3, Imp. 4, respectively), was also taken into account.

The effect of buffer concentration was investigated in concentration range of 5-50 mM. The dependence between retention factor k' and buffer concentration is shown in Fig. 4. With regard to the neutral character of Imp. 1 and 2, no effect of buffer concentration on retention of these two compounds was observed. The retention of all other analysed substances and resolution due to peaks of Imp. 3 and 4 decreased with higher buffer concentration. The appropriate concentration of phosphate buffer to keep the sufficient resolution within the group of analytes was 25 mM.

3.6.2. Effect of organic modifier

The effect of acetonitrile (ACN) and methanol (MeOH) on retention of ondansetron and its impurities was examined. Relatively great difference between these organic modifiers was observed. MeOH in mobile phase caused long retention times, broader peaks and higher column pressure. For these reasons ACN was chosen as the organic modifier.

The influence of ratio of acetonitrile in the mobile phase on separation was studied in range 14-22% (v/v) (5 values) (flow rate 1.50 mL min$^{-1}$, 50 C, 25 mM ammonium phosphate buffer, pH 7.0). The reversed-phase behaviour was observed, i.e. an increase of acetonitrile in mobile phase caused decrease
of retention of all analysed compounds. Higher amount of acetonitrile in mobile phase than 20% (v/v) resulted in resolution between peaks of Imp. 1 and 4 under the value 2.00. According to these facts and sufficient method robustness, the best ratio for separation of ondansetron and its five impurities appeared 18% (v/v).

3.6.3. Effect of temperature and flow rate

The effect of column temperature on separation was investigated in the range 40–70 °C (4 values) under following condition acetonitrile-ammonium phosphate (25 mM, pH 7.0) (18:82, v/v), flow rate 1.50 mL min^{-1}. Increase in column temperature resulted in better peak shape, lower column pressure, gentle decreasing of retention of all analysed compounds and implicitly in decrease of total analysis time. But the resolution between peaks of Imp. 3 and 4 and between Imp. 2 and 5 decreased. Setting up the column temperature higher than 60 °C, the resolution between peaks of Imp. 2 and 5 decreased below 2.00. Column temperature higher than 70 °C induced decrease of resolution between peaks of Imp. 3 and 4 under the value 1.95. In view of sufficient method robustness and potential analyte instability, the column temperature 50 °C was chosen as the best for separation of analysed compounds.

The influence of flow rate on separation was investigated in the range 1.25–3.50 mL min^{-1} (10 values), under following condition acetonitrile-ammonium phosphate (25 mM, pH 7.00) (18:82, v/v), temperature 50 °C. Flow rate above 3.00 mL min^{-1} reduced the resolution between peaks of Imp. 3 and 4 below the value 2.00. The flow rate 2.70 mL min^{-1} was chosen with respect to the analysis time and the method robustness.

3.6.4. Linearity, LOD and LOQ, precision, robustness

The optimised conditions for separation of ondansetron and its five impurities are mobile phase acetonitrile-ammonium phosphate (25 mM, pH 7.0) (18:82, v/v), column temperature 50 °C and flow rate 2.70 mL min^{-1}. All analysed compounds were separated with higher resolution than 2.00 under these conditions. The total analysis time was 7.5 min and column pressure was 15.1 MPa. The chromatogram of model sample, containing limit concentrations of Imp. 1–5 in presence of ondansetron [28] is presented in Fig. 5.

The suitability of the developed method was confirmed by means of linearity, precision, robustness and determination of LOD as well as LOQ.

Linear response of impurities was tested in the range 10–120% of the admisible amount (seven concentrations). Response of ondansetron is linear in the range 9.6–108.0 µg mL^{-1} (seven concentrations) [28]. The correlation coefficients (r) were higher than 0.997 for all compounds (see Table 2).

A signal-to-noise (S/N) ratio of 3 is generally considered to be acceptable for estimating the detection limit. A typical S/N ratio for calculating the quantitative limit is 10:1. Both limits were calculated (see Table 2).

Precision was determined using spiked standard substance of ondansetron (six preparations). Relative standard deviation values (R.S.D.) were calculated for multiple sample preparations (method precision) (see Table 2).

The effect of small changes of analytical parameters on separation, was also investigated. The results have proven that pH of mobile phase in the range of 6.8-7.2 and buffer concentration in the range of 20–30 mM do not affect the separation process, however total analysis time is slightly affected. The column temperature should not be higher than 60 °C and flow rate not
higher than 3.00 mL min\(^{-1}\). The maximal amount of acetonitrile
in mobile phase must not get over 20%. According to these facts
we found this method robust enough for analytical evaluation of
ondanestron and its five impurities.

The responses of the detector to 20 \(\mu\)g mL\(^{-1}\) solutions of
Imp. 1–5 at 216 nm were divided by response of the detector
to 20 \(\mu\)g mL\(^{-1}\) solution of Ond at 216 nm (see Table 3). The
response factors differ considerably from one another; and thus
it is necessary to prepare the solution with limited concentrations
of all impurities for purity control or use the reciprocal values of
response factor—correction response factors.

4. Conclusion

Four HPLC metal oxide-based columns (Sachtopore®-RP,
ZirChrom®-PBD, DiamondBond®-C18, Discovery®-Ze-PS) and
two silica-based columns (Zorbax SB-Aq and Supelco-CN)
were tested for utilization in analysis of ondanestron and its
pharmacopoeial impurities (Fig. 1). Different properties of zirconia
with regard to silica allowed better separation of analysed
compounds. The Zr-PBD column appeared as the best one.
The optimization of chromatographic condition consisted in
achieving satisfactory resolution between imidazole and 2-
methylimidazole with regard to reasonable analysis time. The
best results achieved on each column are shown in Table 4.

Optimal conditions for separation of ondanestron and its five
impurities on Zr-PBD column were: acetonitrile-ammonium
phosphate (25 mM, pH 7.0) (18:82, v/v) as the mobile phase,
column temperature 50 \(^\circ\)C and flow rate 2.70 mL min\(^{-1}\). Detection
was performed at universal wavelength 216 nm. Under these

conditions six analysed compounds were separated with higher
resolution than 2.00 and total analysis time was 7.5 min.

The developed method appears suitable for the monitoring
of ondanestron and its five pharmacopoeial impurities. The possible applicability of zirconia-based stationary phase in
pharmaceutical analysis was documented on a practical example.
Simultaneous activity of ion-exchange and hydrophobic (reversed) interactions on zirconia-based stationary phase provides
a wide range for modulating column selectivity and thus
attaining appropriate resolution between analytes in the mixture,
unlike silica-based stationary phase.

Acknowledgement

This work was financially supported by Research Project No.
MNM0021620822.

References

TiO₂-based stationary phase in separation of ondansetron and its related compounds

Václav Žižkovský a, Radim Kučera a,*, Jiří Klimeš b, Jiří Dohnal b

a Charles University in Prague, Faculty of Pharmacy in Hradec Králové, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
b Zentra z.s., U Káveřny 199, 102 37 Praha 10, Czech Republic

Abstract

Improvements in stationary phase stability have been and remain a great task for research of new stationary phases. Metal oxide-based stationary phases appear as one of the perspective alternatives to classical silica-based stationary phases regarding their similar effectiveness, different selectivity, different retention mechanism and mainly better chemical and thermal stability. In this study, the retention behaviour of ondansetron and its five pharmaceutical impurities on TiO₂-based reversed phase was investigated. The influence of buffer type, pH and concentration on retention was studied. Different types and amount of organic solvents in mobile phase were tested. The effect of temperature and flow rate on separation was investigated. The separation conditions were optimized and developed method validated. The retention parameters - retention time (tR), retention factor (k'), theoretical plate number (N), resolution between peaks due to nearby peaks (Rs) and symmetry factor (AS) have been compared to parameters achieved on polybutadiene-coated zirconia columns. The thermodynamic parameters of retention of analysed compounds – enthalpy, entropy and Gibbs free energy – were calculated and compared to those achieved on polybutadiene-coated zirconia column. This work proves similarity of retention behaviour of ondansetron and its five related compounds on zirconia-based and titania-based stationary phases and potential utilisation of polyethylene covered TiO₂-based reversed stationary phase as an alternative to polybutadiene-coated ZrO₂ stationary phase in pharmaceutical analysis of ondansetron.

© 2007 Elsevier B.V. All rights reserved.

Keywords: TiO₂-based stationary phase; Zirconia-based stationary phase; HPLC; Ondansetron; Pharmaceutical analysis

1. Introduction

HPLC has become one of the principal analytical techniques in the field of drug analysis. Majority of separations are realised under reversed-phase conditions. Although the properties of stationary phases differ from one manufacturer to another, generally the column performance, stability and reproducibility have improved greatly over past a few years. Despite this fact, need for more effective and more durable columns and thus more reliable analytical methods still remains. Improvements in stationary phase stability have been and remain a challenge for research dealing with development of new stationary phases [1].

Silica is by far the most popular material for manufacturing chromatographic columns. The main disadvantage of this material (limited chemical and thermal stability) has been partly solved by new approaches introduced in a manufacture process.

The low pH stability was enhanced by prolonging the organosilane chain [2], and increasing the number of covalent attachments [3,4]. This procedure increases the steric protection of silica surface [2,5,6] and extend the range of pH up to 7 [7]. The column stability in the pH range above 7.0 was increased by the protection of the underlying silica against dissolving through steric barrier (longer chains and endcapping) [3,4,8-10]. The second procedure involves formation of an inorganic/organic hybrid particle [11,12]. After all silica-based columns specifically designed for use at high pH can only withstand high pH over a limited time [1].

There are also attempts to replace silica by other materials possessing higher pH and thermal stability. Some polymers are sufficiently hydrophobic for use as reversed-phase (e.g. polysiloxene-divinylbenzene copolymer). These stationary phases are stable in the pH range 1 – 13 [4]. Nevertheless polymer-based stationary phases suffer from low effectiveness...
compared to silica columns and the polymers change their volume in presence of organic solvents [4].

Graphitized carbon represents another alternative to silica-based supports. Its hydrophobicity differs considerably from silica-based and polymer-based materials, and thus its application distinct from both. These stationary phases are usually used for separation of geometric isomers. Their advantage lies in high chemical (pH 1–14) and thermal stability. However mechanical fragility and lower effectiveness are limitations of graphitized carbon materials. Moreover the column performance could be changed by adsorbed compounds from either a mobile phase or a sample [4,13].

The attention of researchers has been paid to metal oxide materials recently. Only a little information concerning TiO2 and CeO2 as packing materials for HPLC columns has been published [14,15]. Columns based on these supports are not commercially available. On the other hand Al2O3, ZrO2 and TiO2 have been studied as alternative to silica. The chemistry of alumina, titania and zirconia surfaces differs considerably from that of silica. Unlike silica, metal oxides behave as amphoteric ion exchangers, i.e. they can be cation or anion exchangers depending on pH. The existence of Lewis acid sites on the surface of metal oxide is another difference, which has a great impact on the use of metal oxide phases. These sites are responsible for the ligand exchange ability of zirconia, titania and alumina [1]. Because of combination of reversed-phase and ion-exchange retention mechanism on metal oxide-based columns, the retention behaviour of analysed substances can be totally different in comparison with silica-based stationary phases.

The advantage of Al2O3-based stationary phases is their stability up to pH 12. At present reversed-phases based on Al2O3 covered by polymeric layer have been mostly investigated [4,16]. These columns are not suitable for analysis of compounds with carboxylic or sulphate group due to irreversible binding between analyte and alumina [1,4]. Because of the same application scope as silica-based stationary phases, these phases do not bring any special advantages (except the separation at pH 10). That is why the application area of these columns is relatively narrow [4,16].

Mostly investigated and utilized metal oxide stationary phases are based on ZrO2 [1,17–26]. Thanks to its high thermal and chemical stability over a wide range of temperature (up to 200 °C) and pH (1 to 14) [19,22,23,26–29], different selectivity, similar effectiveness to silica-based stationary phases and commercial availability [30,31], utilization of zirconia-based columns has arisen recently. Du et al. have used polybutadiene-coated zirconia as an alternative to octadecylsilica for separation of amphoteric amino acids [32]. Different selectivity, caused by combination of reversed-phase and ion-exchange retention mechanism of ZrO2 compared to SiO2, has been exploited for separation of cationic antibacterial, antiparasitic and anti-arrhythmic drugs [33]. High temperature stability of a polybutadiene-coated zirconia column has been employed for separation of steroids [34] and for analysis of triazole fungicides [35]. Soukupová et al. have compared retention behaviour of enkephalins on polybutadiene-coated (Zr-PBD) and polyethylene-coated ZrO2 against classical silica-based stationary phase and has deduced that zirconia-based columns were proved to be a good alternative to silica-based stationary phases for separation of enkephalins [36]. Potential utilisation of zirconia-based stationary phases in pharmaceutical analysis has been shown on separation of Buprenorf and its impurities [37,38].

The separation on ZrO2-based stationary phases is strongly influenced by type and concentration of Lewis base in a mobile phase [1]. Unfortunately commonly used buffers (phosphates, fluorides) are not volatile and therefore the connection with mass spectrometer seems to be problematic. Denitrated zirconia-based stationary phases have been newly developed to overcome this problem. The surface is covered by highly crosslinked, hydrophilic polybutadiene polymer and the negatively charged EZTIPA (1,2,3,4-tetraakis(carboxymethyl)benzene) molecules which chelate the zirconia surface resulting in deactivation of available Lewis acid sites [30]. This procedure results in great decrease of the accessible amount of charged sites on the particle surface, which can influence the interaction between an analyte and a particle surface. This surface modification improves the properties and enables to operate without non-volatile Lewis base additives. However, due to their surface modification, their stability is limited to pH 1–10.

Zirconia is also attractive material for preparation of monolithic columns. Zirconia-based monolithic columns should combine positive properties of both stationary phases – chemical and thermal stability, together with low back pressure [39]. This research is at the beginning.

Far less information, compared to zirconia, have been published about titania and its utilisation as HPLC stationary phases. Titania tends to have similar properties as zirconia [1] and thus similar retention behaviour is expected. There is still lack of information about titania and its usefulness as a chromatographic support in real analysis. Only a few applications of titania columns have been published so far [40–42]. Polyethylene-covered TiO2 (TiO2–PE) stationary phase has been developed for reversed-phase separation. This stationary phase should have similar properties as Zr-PBD [30,43]. That is why polyethylene-covered titania could be utilised as an alternative to polybutadiene-coated zirconia.

The aim of our study was to investigate potential utilisation of stable newly introduced polyethylene-coated TiO2-based reversed-phase in routine pharmaceutical analysis. Ondansetron and its five pharmacopoeial impurities were used as model compounds (Fig. 1). Influence of analytical conditions on retention behaviour of separated substances has been investigated. Validation parameters under best analysis conditions were measured. The separation parameters – retention time (tR), retention factor (k'), theoretical plate number (N), resolution between adjacent two peaks (Rs) and symmetry factor (Dr) have been compared to parameters achieved on Zr-PBD column [44]. The thermodynamic parameters – enthalpy, entropy and Gibbs free energy were counted, compared with those achieved on Zr-PBD column [44] and thermodynamic aspects of retention of analysed compounds on both columns evaluated.

Please cite this article in press as: V. Žiškovský et al., J. Chromatogr. A (2008), doi:10.1016/j.chroma.2007.12.017.
2. Experimental

2.1. Instruments

All chromatographic experiments were performed on a Shimadzu chromatography system assembled of communication bus module CBM-20A, diode array detector SPD-M20A, pump LC-20AD, autoinjector SIL-20AC, column compartment CTO-20AC, degasser DGU-20A5 and a computer-based chromatographic software LC solution, Shimadzu (Tokyo, Japan).

2.2. Chromatographic columns

The following analytical columns were used in the experimental work: Sachiopre-RP, 150 mm × 4.6 mm I.D., particle size 5 μm and ZirChrom-PBD, 150 mm × 4.6 mm I.D., particle size 5 μm, ZirChrom Separations (Anoka, USA).

2.3. Chemicals

Ondanestron hydrochloride dihydrate = (RS)-9-methyl-1,2,3,9-tetrahydro-4H-carbazole-4-one and its five pharmacopoeial impurities (Fig. 1) were kindly provided by Zentiva (Prague, Czech Republic). The other chemical substances came from common commercial sources.

2.4. Standard solutions

Stock solutions of ondanestron and its five impurities were prepared in concentration 1 mg/mL by dissolving the standard substances in methanol and diluting with the same solvent.

Standard solutions were prepared by diluting stock solutions with methanol to the concentration 20 μg/mL.

The same operation was used for preparation of standard mixture of ondanestron and its five impurities.

The dead volume of TiO₂-PE column was determined by injection of acetone (1 mg/mL) using acetonitrile-ammonium phosphate (25 mM, pH 6.0) (18:82, v/v) as the mobile phase, flow rate 1.50 mL/min. The dead volume of Zr-PBD column was determined by the same procedure using acetonitrile-ammonium phosphate (25 mM, pH 7.0) (18:82, v/v) as the mobile phase, flow rate 1.50 mL/min.

The injection volume of standard solutions and acetone solution was 5 μL.

2.5. Model sample

The model of impure ondanestron hydrochloride dihydrate, containing pharmacopoeial limits of impurities, was prepared by dilution of stock solutions by mobile phase to these final concentrations: RS1, RS2, RS4 and RS5: 1 μg/mL, RS2: 0.5 μg/mL, OR: 500 μg/mL. The injection volume was 20 μL.

Please cite this article in press as: V. Žilhavský et al., J. Chromatogr. A (2008), doi:10.1016/j.chroma.2007.12.017
2.6. Buffer preparation

Buffers were prepared by dissolving appropriate salt (ammonium dibydrogenophosphate, diammonium hydrogenophosphate, ammonium fluoride or ammonium acetate) in water and the pH value was adjusted by adding 0.1 M HCl or 10% phosphoric acid.

2.7. Calculation of chromatographic parameters

Chromatographic parameters \(k', N, R, \) and \(A_j \) were calculated according to the European pharmacopoeia [45].

Assuming the elution in the standard state at infinite dilution, Eq. (1) relates the relative retention, \(k' \), to the standard Gibbs free energy (\(\Delta G^\circ \)) of condensation (\(\Delta H^\circ \) and \(\Delta S^\circ \)) of transfer of the mobile to the stationary phase [46]:

\[
\ln k' = \frac{-\Delta G^\circ}{RT} + \ln \phi = \frac{-\Delta H^\circ}{RT} + \frac{\Delta S^\circ}{R} + \ln \phi,
\]

where \(R \) is the gas constant, \(T \) the absolute temperature and \(\phi \) is the phase ratio of the column (i.e., the volume of stationary to that of mobile phase). The approach according to Jardens et al. was chosen for determination of stationary phase volume. The volume of the stationary phase is determined as the difference between the geometrical volume of the empty column and the volume of the mobile phase in the column determined using a non-retained marker (acetone) [47]. Slight simplification of this approach is obvious because it is satisfactory for the comparison of both columns in this stage of investigation (particularly if both columns are of very similar nature).

If the dependence between \(\ln k' \) and \(1/T \) (van’t Hoff plot) is linear, then the relation can be expressed analogically as Eq. (2):

\[
\ln k' = a + b/T,
\]

where \(a \) is the intercept and \(b \) is the slope of the straight line. This form of relation enables to count standard enthalpy (\(\Delta H^\circ \)) and standard entropy (\(\Delta S^\circ \)) of transfer of analysed compounds from the mobile to the stationary phase from slope and intercept of van’t Hoff plot, if it is linear [46].

The Gibbs free energy (\(\Delta G^\circ \)) change of transfer from the mobile to the stationary phase was calculated at the mean of the working temperature range (i.e. 328 K) by the Gibbs–Helmholtz equation:

\[
\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ.
\]

When the values of \(\Delta H^\circ \) and \(\Delta S^\circ \) are both either negative or both positive, the Gibbs free energy change indicates the prevailed contribution of \(\Delta H^\circ \) or \(T\Delta S^\circ \) and, thus, if the retention process is enthalpically or entropically controlled.

3. Results and discussion

The separation of the studied compounds on reversed-phase TiO₂–PE column has been tested. A special attention was paid to the influence of the experimental conditions on separation of the studied compounds on the investigated stationary phase, i.e. the effect of organic modifier (type and ratio), buffer (type, pH and concentration), temperature and flow rate. All experiments were realized using universal detection wavelength 216 nm [45].

The retention behaviour and separation parameters \(n_k, k', R, N, \) and \(A_j \) of all analysed compounds were compared to those found out on Zorbaz®PBD column [46]. The obtained results are summarized below.

3.1. Investigation of the retention behaviour and optimization of separation

3.1.1. Effect of type, pH and concentration of buffer

Firstly a strong Lewis base (phosphate buffer) was chosen for investigation of influence of pH and buffer concentration on retention of analysed substances. The influence of buffer pH on separation was investigated in the pH range 2.0–9.0. The dependence between retention factor \(k' \) and buffer pH was plotted and is shown in Fig. 2. In respect of absence of the imidazole part of molecule with acid–basic character the effect of pH of mobile phase on retention of RS1 and RS2 is negligible. The other investigated compounds showed the highest retention in the range of pH 4.5–5.0 and manifested retention behaviour typical for Lewis bases. The higher \(k' \)-values of omeprazole and compound RS5 were caused by higher contribution of reversed-phase interaction to retention. But not only reversed-phase mechanism is responsible for retention on metal oxide-based stationary phases. Ion-exchange interactions are also involved significantly in retention [33]. The ion-exchange interactions between negatively charged PEs⁻ ions coordinatively bonded to the TiO₂ surface and positively charged ions of analyte are responsible for increased retention. The increase of pH causes deprotonisation of the molecules of RS5 and omeprazole, and leads to decrease of ion-exchange interactions and consequently decrease of \(k' \) is observed. The optimal pH value 6.0 was chosen based on these results. The time of analysis and robustness of the method, especially the resolution between (two first peaks (i.e. RS4, RS5, respectively), was also taken into account.

The effect of buffer concentration was investigated in concentration range of 5–50 mM. The dependence between retention factor \(k' \) and buffer concentration is shown in Fig. 3. With regard

Please cite this article as: V. Žitkovský, et al., J. Chromatogr. A (2008), doi:10.1016/j.chroma.2007.12.017
to the neutral character of RS1 and RS2, no effect of buffer concentration on retention of these two compounds was observed. The retention of all other analysed substances and especially resolution due to peaks of RS4 and RS3 decreased with higher buffer concentration. The appropriate concentration of phosphate buffer to keep the sufficient resolution within the group of analysed was 25 mM.

The type of Lewis-base also influences the interaction between an analyte and Lewis-acid sites on the surface of titania. That is why ammonium acetate and ammonium fluoride were tested as other Lewis-base additives to the mobile phase, see Fig. 4. The fluoride anions as a constituent of mobile phase affected the selectivity of the stationary phase, and thus co-elution of peaks due to RS4 and RS3 was observed. Simultaneously the retention of olandameton slightly decreased, and thus co-elution of peaks due to RS5 and O occurred. When phosphate is replaced by acetate, the cation-exchange interactions are weaker. Therefore the retention of all compounds decreases. Moreover the order of the last two eluted substances has changed in contrast to the mobile phase with phosphate. The substitution of phosphate by acetate anions has resulted also in modification of selectivity and consequently ondameton was eluted in the same time as RS2. The resolution between peaks due to RS4 and RS3 apparently decreased. The best result were obtained using phosphate buffer as a constituent of mobile phase.

3.1.2. Effect of organic modifier

The effect of acetonitrile (ACN) and methanol (MeOH) on retention of olandameton and its impurities was examined. Relatively great differences between these organic modifiers were observed. Weaker elution strength of MeOH caused longer retention times and broader peaks. Furthermore, using methanol resulted in higher pressure on the column, due to higher viscosity of the mobile phase. Additionally, using methanol-ammonium phosphate (20 mM, pH 6.0) (20:80, v/v) total analysis time was 18 min and co-elution of peaks due to RS5 and O occurred. Using similar mobile phase that contains acetonitrile (ACN-ammonium phosphate (25 mM, pH 6.0) (19:81, v/v)) sufficient resolution among all analysed compounds was achieved and retention time of last eluted compound was round about 7 min. ACN was chosen as the organic modifier for these reasons.

The influence of ratio of acetonitrile in the mobile phase on separation was studied in the range 13–21% (v/v) (5 values), flow rate 1.50 mL/min, 50°C, 25 mM ammonium phosphate buffer, pH 6.0. The reversed-phase mechanism contributes to retention of all analytes in the tested range. Nevertheless higher amount of acetonitrile in mobile phase than 19% (v/v) resulted in resolution between peaks of RS4 and RS3 under the value 2.00. According to these facts and sufficient method robustness, the best ratio for separation of olandameton and its five impurities appeared 18% (v/v), when resolution between peaks due to RS4 and RS3, as critical factor of separation, was above 2.00.

3.1.3. Effect of temperature and flow rate

The effect of column temperature on separation was investigated in the range 40–70°C (4 values) under following condition: acetonitrile-ammonium phosphate (25 mM, pH 6.0) (18:82, v/v), flow rate 1.50 mL/min. Increase in column temperature resulted in better peak shape, lower column pressure, gentler decrease of retention of all analysed compounds. The elevated temperature resulted in a decrease of resolution between peaks of RS4, RS3 and RS2, RS5, respectively. Setting up the column temperature higher than 60°C, the resolution between peaks of RS4 and RS3 decreased below 2.00. In view of sufficient method robustness, the column temperature 50°C was chosen as the best for separation of analysed compounds.

The influence of flow rate on separation was investigated in the range 1.25–3.50 mL/min (10 values), under following conditions: acetonitrile–ammonium phosphate (25 mM, pH 6.0) (18:82, v/v), temperature 50°C. The higher flow rate, the faster analysis, but worse resolution between adjacent peaks due to RS4, RS3 and RS5, O. Flow rate 1.75 mL/min caused decrease of resolution between peaks due to RS4 and RS3 to the value 1.89 and resolution between peaks due to RS5 and O to the value 1.91. The flow rate 1.50 mL/min was chosen with respect to the analysis time and the method robustness.

The optimised conditions for separation of olandameton and its five impurities are mobile phase acetonitrile–ammonium phosphate (25 mM, pH 6.0) (18:82, v/v), column temperature.
50°C and flow rate 1.50 mL/min. All analysed compounds were separated with resolution higher than 2.00 under these conditions. The total analysis time was 9.5 min. The chromatogram of the model sample, containing limit concentrations of RS1, RS2, RS3, RS4, and RS5 in presence of omeprazole [45] is presented in Fig. 5.

3.2. Linearity, limits of detection (LOD) and limits of quantification (LOQ), precision, robustness

The suitability of the developed method was confirmed by means of linearity, precision, robustness and determination of LOD as well as LOQ.

Linear response of impurities was tested in the range 5–120% of the admissible amount (13 values). Response of omeprazole is linear in the range 4.5–100.0 μg/mL [45]. The correlation coefficients (r) were higher than 0.998 for all compounds, see Table 1.

A signal-to-noise (S/N) ratio of 3 is generally considered to be acceptable for estimating the detection limit. A typical S/N ratio for calculating the quantitative limit is 10.1. The concentration of principle compound in a real sample is 500 or 1000 times higher than admissible amount of analysed impurities. Thus determination of LOD and LOQ of omeprazole and not required [48]. Both limits were determined for all impurities, see Table 1.

Precision was determined using spiked standard substance of omeprazole (six preparations). Relative standard deviation values (RSD) were calculated for multiple sample preparations (method precision), see Table 1.

The effect of small changes of analytical parameters on separation, were also investigated. The results has proven, that pH of water component of mobile phase in the range of 5.8–6.2 and buffer concentration in the range of 20–30 mM do not affect the separation process, however total analysis time is slightly affected. The column temperature should not be higher than 60°C and flow rate not higher than 1.70 mL/min. The maximal amount of acetaminophen in mobile phase should be lower than 15%. According to these facts the method was found robust enough for analytical evaluation of omeprazole and its five impurities.

3.3. Comparison of TiO₂-PE and Zr-PBD column

Polyethylene-covered TiO₂-based stationary phase has been developed for reversed-phase separation and experimental work of McNeff et al. indicates similar properties as Zr-PBD stationary phase [43]. Therefore the differences in retention properties of both columns were compared on mixture of related substances with similar properties. The retention behaviour of omeprazole and its five impurities on Zr-PBD column was described in our previous study [44]. The difference between retention behaviour of analysed compounds on TiO₂-PE and Zr-PBD column is evaluated below.

The comparison of influence of pH on retention of analysed compounds on both columns is showed in Fig. 6. The influence of pH on retention of each compound are similar on both columns, however the selectivity is different. Using pH 6.0 for separation on Zr-PBD column resulted in coelution of peaks due to RS2, RS3 and RS4, unlike on TiO₂-PE. The pH had to be adjusted to the value 7 for baseline separation of all analysed compounds on Zr-PBD stationary phase [44].

Retention parameters t₀, k', N, R, and Aₜ on TiO₂-PE and Zr-PBD columns were investigated, see Table 2. The parameters were calculated for the model sample of impure omeprazole under optimized conditions on both columns:

Table 1

<table>
<thead>
<tr>
<th>Method precision RSD (%)</th>
<th>RS1</th>
<th>RS2</th>
<th>RS3</th>
<th>RS4</th>
<th>RS5</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linearity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correlation coefficient</td>
<td>0.9996</td>
<td>0.9994</td>
<td>0.9995</td>
<td>0.9994</td>
<td>0.9981</td>
<td>0.9995</td>
</tr>
<tr>
<td>Slope</td>
<td>11.3209</td>
<td>55.70</td>
<td>30.98</td>
<td>39.28</td>
<td>66.34</td>
<td>547.314</td>
</tr>
<tr>
<td>Intercept</td>
<td>-8113</td>
<td>-3791</td>
<td>-1881</td>
<td>3574</td>
<td>-6817</td>
<td>-405140</td>
</tr>
<tr>
<td>LOD (μg/mL)</td>
<td>16.7</td>
<td>8.33</td>
<td>16.7</td>
<td>0.17</td>
<td>33.3</td>
<td>–</td>
</tr>
<tr>
<td>LOQ (μg/mL)</td>
<td>50</td>
<td>25</td>
<td>50</td>
<td>0.50</td>
<td>100</td>
<td>–</td>
</tr>
</tbody>
</table>

TiO₂-PE column, acetaminophen-phosphate (25 mM, pH 6.0, v/v) as the mobile phase, temperature 50°C, flow rate 1.50 mL/min, detection wavelength 216 nm.

Please cite this article in press as: V. Žiškovský et al., J. Chromatogr. A (2008) xxx–xxx.
Fig. 6. Comparison of dependence between retention factor \(k' \) and pH of buffer: (a) acetonitrile-ammonium phosphate (25 mM, pH 6.0) (18:82, v/v) column temperature 50°C, flow rate 1.50 mL/min; (b) Zr-PBD column.

- **TiO₂-PE**: acetonitrile-ammonium phosphate (25 mM, pH 6.0) (18:82, v/v), column temperature 50°C, flow rate 1.50 mL/min, detection at 216 nm.
- **Zr-PBD**: acetonitrile-ammonium phosphate (25 mM, pH 7.0) (18:82, v/v), column temperature 50°C, flow rate 1.50 mL/min, detection at 216 nm.

The selectivity of both stationary phases is influenced by the buffer type. The presence of the phosphate is essential for sufficient separation as mentioned above. The selectivity is quite similar for non-ionisable compounds (RS1, RS2), but there are some differences for ionisable compounds. The order of elution of compounds is the same on both columns, except for the first two eluted substances – on Zr-PBD column RS3 is first eluted substance, on TiO₂-PE column it is RS4. The asymmetry of peaks due to all analysed compounds apart from ondansetron is on Zr-PBD stationary phase worse than on TiO₂-PE column. The higher value of peak asymmetry implies that there are slightly stronger interactions between an analyte and the Zr-PBD phase, and thus the mass transfer between stationary phase and mobile phase is slightly different.

Resolution between peaks due to firstly eluted compounds is the critical parameter for separation on both columns, as it was mentioned above. The increasing flow rate caused greater decrease of theoretical plates on TiO₂-PE column than on Zr-PBD column. Therefore total analysis time lowering via increase of flow rate on TiO₂-PE column is limited unlike Zr-PBD column [44].

The influence of pH on \(k' \) (shown in Fig. 6) and separation parameters (Table 2) prove similar retention behaviour, but different selectivity of ondansetron and its five investigated compounds on TiO₂-PE and Zr-PBD stationary phases. The potential of analysis performance using flow rate 2.7 mL/min on Zr-PBD enables to achieve shorter total analysis time (7.5 min) [44] compared to total analysis time achieved on TiO₂-PE column (9.5 min), however the mobile phase consumption increases indeed.

As mentioned above, the influence of temperature on the retention of all analysed compounds in the range 313–343 K was investigated. Fig. 7 shows the dependence between ln \(k' \) of analysed substances and 1/T on TiO₂-PE column. Fig. 8 shows the same dependence on Zr-PBD column [44]. Intercept, slope and \(r \) (linear correlation coefficient) of these relations are detailed in Tables 3 and 4 for TiO₂-PE, Zr-PBD column, respectively. If the plot of ln \(k' \) versus 1/T is linear, then the enthalpy and

Please cite this article: V. Žítkovský, et al., J. Chromatogr. A (2008), doi:10.1016/j.chroma.2007.12.017

Fig. 7. The change of capacity factor of analysed substances with reciprocal temperature on TiO₂-PE column: Conditions: acetonitrile-ammonium phosphate (25 mM, pH 6.0) (18:82, v/v) in the mobile phase, flow rate 1.50 mL/min.

Table 2

<table>
<thead>
<tr>
<th>Substance</th>
<th>(t_r) (min)</th>
<th>(k')</th>
<th>(N)</th>
<th>(A)</th>
<th>(R_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TiO₂-PE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS4</td>
<td>1.69</td>
<td>0.50</td>
<td>3108</td>
<td>1.54</td>
<td>-</td>
</tr>
<tr>
<td>RS3</td>
<td>1.94</td>
<td>0.72</td>
<td>3694</td>
<td>1.31</td>
<td>2.06</td>
</tr>
<tr>
<td>RS2</td>
<td>2.84</td>
<td>1.51</td>
<td>3946</td>
<td>1.18</td>
<td>5.93</td>
</tr>
<tr>
<td>RS1</td>
<td>4.05</td>
<td>2.58</td>
<td>4380</td>
<td>1.13</td>
<td>1.74</td>
</tr>
<tr>
<td>RS5</td>
<td>5.26</td>
<td>4.54</td>
<td>2536</td>
<td>1.54</td>
<td>6.11</td>
</tr>
<tr>
<td>O</td>
<td>7.36</td>
<td>5.51</td>
<td>1183</td>
<td>2.63</td>
<td>2.15</td>
</tr>
<tr>
<td>Zr-PBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS4</td>
<td>1.75</td>
<td>0.56</td>
<td>1814</td>
<td>1.85</td>
<td>2.09</td>
</tr>
<tr>
<td>RS3</td>
<td>1.42</td>
<td>0.27</td>
<td>1339</td>
<td>1.87</td>
<td>1.87</td>
</tr>
<tr>
<td>RS2</td>
<td>2.23</td>
<td>0.99</td>
<td>1929</td>
<td>1.73</td>
<td>2.61</td>
</tr>
<tr>
<td>RS1</td>
<td>2.88</td>
<td>1.57</td>
<td>2310</td>
<td>1.75</td>
<td>2.92</td>
</tr>
<tr>
<td>RS5</td>
<td>3.80</td>
<td>2.39</td>
<td>2060</td>
<td>1.66</td>
<td>3.21</td>
</tr>
<tr>
<td>O</td>
<td>7.01</td>
<td>5.59</td>
<td>3493</td>
<td>2.20</td>
<td>0.41</td>
</tr>
</tbody>
</table>

TiO₂-PE column: acetonitrile-ammonium phosphate (25 mM, pH 6.0) (18:82, v/v), temperature 50°C, flow rate 1.50 mL/min, detection wavelength 216 nm.

Zr-PBD column: acetonitrile-ammonium phosphate (25 mM, pH 7.0) (18:82, v/v), temperature 50°C and flow rate 1.50 mL/min, detection wavelength 216 nm.

105
Fig. 8. The change of capacity factor of analyzed substances with reciprocal temperature on Zr-PBD column. Conditions: zetonilite–ammonium phosphate (25 mM, pH 7.0; 18.82, v/v) as the mobile phase, flow rate 1.50 mL/min.

Table 3
Regression parameters of Eq. (2) for the analysed compounds on TiO₂–PE column.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Intercept</th>
<th>Slope (K)</th>
<th>r (linear correlation coefficient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1</td>
<td>-13578.4</td>
<td>2031.1</td>
<td>0.9987</td>
</tr>
<tr>
<td>RS2</td>
<td>-10635.7</td>
<td>1093.1</td>
<td>0.9980</td>
</tr>
<tr>
<td>RS3</td>
<td>-1885.2</td>
<td>2011.1</td>
<td>0.9895</td>
</tr>
<tr>
<td>RS4</td>
<td>-8475.1</td>
<td>1074.1</td>
<td>0.9940</td>
</tr>
<tr>
<td>RS5</td>
<td>-1885.2</td>
<td>2011.1</td>
<td>0.9980</td>
</tr>
<tr>
<td>O</td>
<td>-1885.2</td>
<td>2011.1</td>
<td>0.9980</td>
</tr>
</tbody>
</table>

Table 4
Regression parameters of Eq. (2) for the analyzed compounds on Zr-PBD column.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Intercept</th>
<th>Slope (K)</th>
<th>r (linear correlation coefficient)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1</td>
<td>-13578.4</td>
<td>2031.1</td>
<td>0.9987</td>
</tr>
<tr>
<td>RS2</td>
<td>-10635.7</td>
<td>1093.1</td>
<td>0.9980</td>
</tr>
<tr>
<td>RS3</td>
<td>-1885.2</td>
<td>2011.1</td>
<td>0.9895</td>
</tr>
<tr>
<td>RS4</td>
<td>-8475.1</td>
<td>1074.1</td>
<td>0.9940</td>
</tr>
<tr>
<td>RS5</td>
<td>-1885.2</td>
<td>2011.1</td>
<td>0.9980</td>
</tr>
<tr>
<td>O</td>
<td>-1885.2</td>
<td>2011.1</td>
<td>0.9980</td>
</tr>
</tbody>
</table>

Table 5
Standard enthalpy (ΔH°), entropy (ΔS°) and Gibbs free energy (ΔG°) on TiO₂–PE stationary phase.

<table>
<thead>
<tr>
<th>Analyzed compound</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔS° (J K⁻¹ mol⁻¹)</th>
<th>ΔG° (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1</td>
<td>-7122.9</td>
<td>-43.5</td>
<td>-599.9</td>
</tr>
<tr>
<td>RS2</td>
<td>-1752.2</td>
<td>-47.6</td>
<td>-249.9</td>
</tr>
<tr>
<td>RS3</td>
<td>-1223.7</td>
<td>-39.8</td>
<td>-125.7</td>
</tr>
<tr>
<td>RS4</td>
<td>-282.3</td>
<td>-14.7</td>
<td>1959.3</td>
</tr>
<tr>
<td>RS5</td>
<td>-2398.6</td>
<td>-40.2</td>
<td>-1453.0</td>
</tr>
<tr>
<td>O</td>
<td>-17851.0</td>
<td>-39.6</td>
<td>-4862.2</td>
</tr>
</tbody>
</table>

Table 6
Standard enthalpy (ΔH°), entropy (ΔS°) and Gibbs free energy (ΔG°) on Zr-PBD stationary phase.

<table>
<thead>
<tr>
<th>Analyzed compound</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔS° (J K⁻¹ mol⁻¹)</th>
<th>ΔG° (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RS1</td>
<td>-12485.2</td>
<td>-37.9</td>
<td>-19.0</td>
</tr>
<tr>
<td>RS2</td>
<td>-12993.1</td>
<td>-35.7</td>
<td>-1232.5</td>
</tr>
<tr>
<td>RS3</td>
<td>-19671.8</td>
<td>-71.0</td>
<td>3016.2</td>
</tr>
<tr>
<td>RS4</td>
<td>-10662.9</td>
<td>-7.1</td>
<td>1469.2</td>
</tr>
<tr>
<td>RS5</td>
<td>-22777.0</td>
<td>-62.5</td>
<td>-2277.0</td>
</tr>
<tr>
<td>O</td>
<td>-23151.2</td>
<td>-55.9</td>
<td>4816.0</td>
</tr>
</tbody>
</table>

Analytes with the stationary phase. The contribution of ΔH° is greater than 7.5ΔS° for RS1, RS2, RS5 and O, because ΔG° is negative on both columns. However, the contribution of ΔH° is lower than 7.5ΔS° for RS3 and RS4, because ΔG° is on both columns positive. These results show that retention process of RS1, RS2, RS5 and O seems to be enthalpically controlled, but retention process of RS3 and RS4 is on both columns controlled rather entropically. It could be probably explained due to their smaller molecule without hydrophobic benzene part compared to the other investigated compounds.

The changes of ΔH°, ΔS° and ΔG° (shown in Tables 5 and 6) signify similar behaviour of ondansetron and its five impurities on TiO₂–PE and Zr-PBD column. Considering similar retention behaviour, similar retention mechanism of all analysed compounds, but different selectivity, this study proves possibility of utilization of TiO₂–PE stationary phase as an alternative to the Zr-PBD stationary phase in pharmaceutical evaluation of ondansetron. TiO₂-based stationary phases together with ZrO₂-based stationary phases possess a remarkable potential for pharmaceutical analysis as was demonstrated on example of ondansetron and its five pharmacoperipheral impurities.

4. Conclusion

The retention behaviour of ondansetron and its five pharmacoperipheral impurities on TiO₂–PE stationary phase was investigated. The influence of buffer type, pH and concentration on retention was studied. Different types and amount of organic solvent in mobile phase were tested. The effect of temperature and flow rate on separation was examined. The separation conditions were optimized. The optimal conditions for separation of
ondastat and its five pharmaceutical impurities on TiO₂-PE column are: mobile phase acetonitrile-ammonium phosphate (25 mM, pH 6.0) (18:82, v/v), column temperature 50 °C and flow rate 1.50 mL/min. All analysed compounds were separated with higher resolution than 2.00 in overall analysis time 9.5 min. The suitability of the developed method was confirmed by means of linearity, precision, robustness and determination of LOD as well as LOQ.

The retention behaviour of analysed compounds and separation parameters k', k, N, Aₙ and Rₛ achieved on TiO₂-PE and Zr-PEBD columns were compared. Similar dependence between mobile phase pH and retention of each compound on both columns, but different selectivity was found. This phenomenon is likely caused by the difference between polymeric layers and also slight difference in acid-base properties of TiO₂ and ZrO₂ might be involved. The thermodynamic parameters standard enthalpy (ΔH°), standard entropy (ΔS°) and Gibbs free energy (ΔG°) of transfer of analysed compounds from the mobile to the stationary phase for TiO₂-PE and Zr-PEBD columns were counted and compared. The results show that retention process of RS₁, RS₂, RS₅ and O seems to be enthalpically controlled, but retention process of RS₃ and RS₄ is on both columns controlled rather entropically.

The similar retention behaviour and similar thermodynamic aspects of retention, but different selectivity of analysed compounds on both columns was found. Columns investigated in our study appear convenient for evaluation of ondastat and its impurities. This work proves potential of utilization of polyethylene covered TiO₂-based reversed stationary phase as an alternative to polybutylene-coated ZrO₂-based stationary phase in routine pharmaceutical analysis of ondastat.

Acknowledgement

This work was financially supported by Research Project No. MSM0121602782.

References

Using of HPLC coupled with coulometric detector for the determination of biotin in pharmaceuticals

A. Zerzaňová, V. Žižkovský, R. Kučera, J. Klimes, I. Jesenský, J. Dohnal, D. Barrón

Abstract

The method for the determination of biotin by high performance liquid chromatography (HPLC) coupled with coulometric detector is presented here. Chromatographic and detection conditions were tested. A LiChrospher 60 RP-select B column (250 mm x 4 mm; 5 μm) and the mobile phase containing 0.24 mol/L aqueous solution of acetic acid and acetonitrile in the ratio 85:15 (v/v) were found as the most suitable. The flow rate was 1 mL/min and the injected volume of the sample was 20 μL. The hydrodynamic voltammogram of biotin was measured and according to obtained data the detection parameters were set – channel I 600 mV, channel II 900 mV, sensitivity 1 μA. The developed method has been validated. The calibration curve is linear in the range 15–3600 ng/mL, correlation coefficient is 0.9998, limits of detection and quantification are 5 and 15 ng/mL, respectively. Recovery of the spiked samples was 98.67% with R.S.D. 0.255% on average. The developed method has been successfully applied for determination of biotin in pharmaceutical preparations.

Keywords: Biotin; Coulometry; Electrochemical detection; HPLC; Pharmaceutical preparations

1. Introduction

In the last approximately 30 years, the connection of high performance liquid chromatography and electrochemical detection (HPLC-ED) has seen many improvements. Even though questions of HPLC detectors have been widely discussed and developed, electrochemical detection still has some interesting advantages over other detectors used with HPLC. One of the biggest advantages of electrochemical detection is its high selectivity. This is caused by the property of an electrochemical detector to respond only to substances showing electrochemical activity. Seeing that many substances do not readily react electrochemically, the electrochemical detector is employed to advantage when a complex matrix is analyzed. Furthermore, electrochemically active compounds can be detected with much higher sensitivity. Coulometry, a specialized form of amperometry, based on an electrochemical principle, uses measuring of total current as a function of time — that is, the charge needed to the total chemical change of an analyte measured in coulombs [1]. Many applications of the utilization of coulometric detection have been described: application in analytical food chemistry [2,3], determination of antioxidants [4], determination of biogenic amines [5,6]. In addition, owing to the simple instrumentation the determination of biogenic amines was also carried out in vivo [7]. A coulometric detector has also been used for determination of illicit drugs [8] and enantioseparations [9]. For its superior selectivity and sensitivity, this technique is usually chosen when compounds of interest are present only at trace concentrations in comparison with other sample components. This is also the case in
the determination of biotin in pharmaceuticals described in this paper.

Biotin (Fig. 1a) 5-[[3αS,4S,6αR]-2-oxoexahydrothieno[3,4-d]imidazol-4-yl]pentanoic acid, also known as vitamin H or B₇₈, is a water-soluble vitamin belonging to the B-complex. It acts as a cofactor responsible for the carbon dioxide transfer in several carboxylase enzymes. It is involved in the biosynthesis of fatty acids, gluconeogenesis, energy production, the metabolism of the branched-chain amino acids and the de novo synthesis of purine nucleotides. Recent research indicates that biotin plays a role in gene expression and that it may also act in DNA replication. A sufficient intake is necessary for healthy hair, skin, sweat glands, nerve tissue, bone marrow and it also assists with muscle pain [10,11].

The analytical techniques for biotin determination can be divided into four main categories:

1. Microbiological methods, based on growth of microorganisms in presence of biotin, are very sensitive but they lack specificity and are very time-consuming [12].
2. Biological techniques are based on the animal development curve. These are used mainly for the determination of biotin in food [12].
3. Binding assays make use of formation of a specific avidin (or streptavidin)–biotin complex [12].
4. The last group of methods includes all physicochemical methods such as spectrophotometry, polarography, thin layer chromatography, gas chromatography, high performance liquid chromatography and capillary zone electrophoresis [12,13].

HPLC was coupled with UV/VIS [14–17], fluorescence [12] or MS detection [18,19]. There have also been some experiments employing electrochemical detectors. The amperometric detection of biotin was published in 1986 but the detection limit was very similar to limits usually reached with UV detection [20]. A voltammetric detector was also tested for determination of biotin; the experiment was based on avidin–biotin interaction [21]. A coulometric detection was used for determination of two B-group vitamins (pyridoxine and cyanocobalamin) [22].

In our paper, a very sensitive and advantageous analytical method for determination of biotin in pharmaceutical preparations using HPLC coupled with a coulometric detector is described. The defined daily dose of biotin is about 30 μg/day, and thus its content is proportional in pharmaceuticals unlike the amount of other water-soluble vitamins (e.g. vitamin C), in which the content is much higher. This fact together with its non-specific UV-spectrum – maximum at 190 nm (Fig. 1b) causes problems when UV/VIS detection for determination of biotin is used. Therefore, the employment of the coulometric detector is more than suitable. A procedure for extraction of biotin from the pharmaceuticals has been developed, conditions for chromatography with regard to usage of coulometric detection have been optimized and the method has been validated. This developed method was consequently applied to determine the amount of biotin in some pharmaceuticals available on the Czech market.

2. Experimental

2.1. Reagents

All reagents were of analytical or gradient grade. Water was purified in a Milli-Q system (Millipore). Acetonitrile, methanol, propan-2-ol, formic acid and phosphoric acid were supplied by Sigma–Aldrich. Citric acid, acetic acid, potassium phosphate monobasic anhydrous and potassium phosphate dibasic anhydrous were obtained from Fluka. Sodium acetate trihydrate was supplied by Lach-Ner. Biotin and placebo were obtained from Zentiva, a.s. Prague, Czech Republic.

2.2. Materials

Pharmaceuticals or dietary supplements, which were investigated during the experiment, are commercially available in pharmacies in the Czech Republic.

2.3. Instrumentation

Analyses were performed using an Esa Solvent Delivery System (model 582) coupled with Coulotech™ III, Esa Inc. (model 5011A High Sensitivity Analytical Cell) working in an oxidation mode. Column temperature was set to 35 °C. Chromatographic software CSW 1.7 was used for data collection and processing. The following chromatographic columns were used – Zorbax SB-Aq 150 mm × 4.6 mm 3.5 μm (Agilent); Symmetry C18 150 mm × 3.9 mm 5 μm (Waters); Pathfinder 150 mm × 4.6 mm 3.5 μm (Shimadzu); BDS HYPERSIL C18
100 mm × 4.6 mm 3 μm (Thermo) and LiChrospher 60RP-select B 250 mm × 4 mm 5 μm (Merck).

2.4. Preparation of mobile phases and extraction buffer

Various mobile phases were tested during searching for the optimal separation and detection conditions. In general, aqueous and organic parts were prepared separately and mixed together in the desired ratio. Acetonitrile and methanol were used as organic solvents. The following aqueous solutions were used (in parentheses there is a way of its preparation): phosphate buffer 0.05 mol/L (3.40 g of potassium phosphate monobasic anhydrous were dissolved in 500 mL of water and then pH was adjusted with phosphoric acid to 3.0; for testing of robustness pH was also adjusted to 2.6 and 3.2), acetate buffer 0.05 mol/L (5.64 g of sodium acetate trihydrate were dissolved in 500 mL of water and then pH was adjusted with formic acid to 3.0), solution of acetic acid 0.24 mol/L, pH 3 (7.0 mL of 98% acetic acid were diluted to 500 mL with water), solution of phosphoric acid 0.003 mol/L, pH 3 (0.09 mL was diluted to 500 mL with water), solution of citric acid 0.001 mol/L, pH 3 (0.09 mL was dissolved in 500 mL of water) and solution of formic acid 0.0015 mol/L, pH 3 (0.03 mL was diluted to 500 mL with water). All aqueous parts were filtered through a 0.22 μm filter before being mixed with an organic part. The following mobile phase was chosen as the most convenient for a determination of biotin in pharmaceuticals: 0.24 mol/L aqueous solution of acetic acid and acetonitrile in the ratio 85:15 (v/v) (7.0 mL of 98% acetic acid were diluted to 500 mL with water, 75 mL of acetonitrile were put into a 500 mL volumetric flask and it was filled up to the mark with acetic acid solution). The flow rate of the mobile phase 1 mL/min was constant during all analyses. The extraction buffer was prepared by dissolving 1.74 g of potassium phosphate dibasic in 100 mL of water and adjusting pH to 8.0 with phosphoric acid [21]. The use of this buffer was found as suitable because this buffer did not influence coulometric detection.

2.5. Preparation of stock solution, standard solution and solutions for linearity

Stock solution of biotin was prepared in the concentration of 600 μg/mL. The exactly weighed quantity of the compound was dissolved in water. Standard solution was prepared by diluting the stock solution with water to the concentration of 2 μg/mL. Linearity solutions were prepared in the following 12 concentration levels of 15, 30, 50, 100, 200, 400, 600, 1200, 1800, 2400, 3000 and 3600 ng/mL by diluting the stock solution with water.

2.6. Preparation of samples

Fortified samples for accuracy and precision evaluation were prepared as follows. Placebo was spiked with the stock solution to the absolute concentration of 2 μg/mL; this was considered to be 100% of the average content of biotin in tablets. Samples with an 80% and a 120% content of biotin were also prepared: 80% (1.6 μg/mL), 100% (2 μg/mL) and 120% (2.4 μg/mL). These fortified samples and real samples underwent the following procedure. Tablets were powdered and an appropriate amount corresponding to 150 μg of biotin in the sample (approximately 0.4 g) were weighed into a volumetric flask. Then 1 mL of acetonitrile and 10 mL of extraction buffer were added and the sample was placed into an ultrasonic bath for 15 min. After sonication the samples were centrifuged at 3600 rpm for 5 min. Then 1 mL of supernatant was diluted with water to 10 mL. All solutions were filtered through a 0.22 μm filter before the injection to the HPLC. The injected volume of all samples was 20 μL.

2.7. Conditions of coulometric detection

The following potentials were set for testing of separation conditions: guard cell 1000 mV, channel I 400 mV, channel II 750 mV, sensitivity 1 μA. The hydrodynamic voltammogram of biotin was measured under the following potentials set to the cells: guard cell 1000 mV, channel I 0 mV, channel II from 100 to 900 mV, sensitivity 5 μA. Validation of the method and determination of biotin in real samples was performed under the following detection conditions: guard cell 1000 mV, channel I 600 mV, channel II 900 mV, sensitivity 1 μA.

3. Results and discussion

3.1. Chromatography and coulometric detection

The optimization procedure was performed with regard to the best possible separation as well as detection of biotin among other water-soluble vitamins commonly present in multivitamin preparations. The experiment started with Waters Symmetry C18 column. The mobile phase contained phosphate buffer and acetonitrile. The percentage of acetonitrile decreased from 25% to 10%, but the separation was either unsatisfactory or the retention times were too long. The next tested column was Agilent Zorbax SB-Aq. Binary and also ternary mobile phases were tested. Binary phases were composed of phosphate buffer and acetonitrile (from 6% to 15%). Ternary mobile phases contained methanol (methanol: acetonitrile:phosphate buffer—26:104:870) or propan-2-ol (propan-2-ol:acetonitrile:phosphate buffer—48:95:857 or 48:124:828). All mentioned ratios were v/v/v. None of the used
combinations provided satisfactory results. Similar results were also obtained on BDS HYPERCEL C18. The fourth employed column was Pathfinder, but the retention was too strong on this sorbent, even with 40% of acetonitrile in the mobile phase. A higher percentage of an organic solvent is not suitable for coulometric detection. The last tested column was LiChrsopher 60RP-select B. Its combination with the mobile phase containing phosphate buffer and acetonitrile in the ratio 87:13 (v/v), proved to be the best. When the separation conditions were optimized, robustness was tested. Percentage of acetonitrile (9%, 11% and 15%) and pH of phosphate buffer (2.6 and 3.2) were tested. The results are tabulated (Table 1). From these results, it is obvious that the percentage of acetonitrile has a much higher impact on retention time of biotin than pH of the aqueous part.

Table 1

table

<table>
<thead>
<tr>
<th>Conditions</th>
<th>RT of biotin (min)</th>
<th>Tailing factor</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of acetonitrile</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13% (standard condition)</td>
<td>11.2</td>
<td>1.172</td>
<td>9,954</td>
</tr>
<tr>
<td>9%</td>
<td>23.0</td>
<td>1.153</td>
<td>10,652</td>
</tr>
<tr>
<td>11%</td>
<td>15.8</td>
<td>1.175</td>
<td>10,204</td>
</tr>
<tr>
<td>15%</td>
<td>7.0</td>
<td>1.108</td>
<td>9,411</td>
</tr>
<tr>
<td>pH of phosphate buffer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0 (standard condition)</td>
<td>11.22</td>
<td>1.172</td>
<td>9,954</td>
</tr>
<tr>
<td>2.6</td>
<td>11.23</td>
<td>1.119</td>
<td>10,135</td>
</tr>
<tr>
<td>3.2</td>
<td>11.21</td>
<td>1.141</td>
<td>6,844</td>
</tr>
</tbody>
</table>

As has already been mentioned, the composition of the mobile phase influences not only separation but in case of electrochemical detector also the sensitivity of detection. With regard to this fact, various aqueous solutions were tested but pH (3.0) and the percentage of acetonitrile (13%) were kept constant to preserve separation already developed. Except for the phosphate buffer used in separation experiments, the following aqueous solutions were tested to optimize the sensitivity of the assay: acetate buffer, acetic acid solution, phosphoric acid solution, citric acid solution and formic acid solution. The most sensitive detection was observed using acetic acid solution. The change of the aqueous part shifted the retention time of biotin a little. Therefore, the percentage of acetonitrile was increased to 15%. The separation of biotin from the other vitamins possibly present in multivitamin preparations was not influenced. Under the chosen conditions other B-group vitamins had, due to their positive charge, much shorter retention times than biotin thus the determination of biotin was not interfered with. The only exception was folic acid (possessing negative charge) but
its electrochemical properties (high oxidation rate at 600 mV) provided its oxidation at the first channel and thereby its signal was eliminated at the second channel.

When having these conditions developed, the hydrodynamic voltamogram was measured to acquire working potentials of the detection cells for the best possible sensitivity of the method. The hydrodynamic voltamogram was measured from 100 to 900 mV set to the channel II (see Fig. 2). Even though the maximum of the voltamogram was not reached, the experiment was finished, because long duration measuring above 900 mV, which would be necessary for a validation, is not recommended on this instrument. Seeing the behaviour of the hydrodynamic voltamogram the following potentials were set on coulometric cells: guard cell 1000 mV – the highest possible potential to eliminate oxidizable compounds present in the mobile phase, channel I 600 mV – the highest possible potential to eliminate oxidizable impurities in a sample but not so high to oxidize biotin yet, channel II 900 mV – the potential suitable to oxidation of biotin. Fig. 3 shows coulometric chromatograms measured under the optimal conditions.

3.2. Validation

Linearity, accuracy, precision and robustness were tested as validation parameters. The calibration curve was constructed by quadruple injection of 12 concentration levels of linearity solutions. Table 2a summarizes linearity parameters in the whole concentration range such as equation of regression line, slope, intercept, residual sum of squares, correlation coefficient, limit of detection (LOD) and limit of quantification (LOQ). The LOD and LOQ were calculated as three and ten times a signal-to-noise ratio, respectively. Table 2b shows linearity parameters of the curve of the working range from 15 to 400 ng/mL. Sensitivity of 200 nA was adjusted for trying to reach a lower detection limit. Setting this sensitivity LOD of 0.25 ng/mL was reached. Accuracy was measured at three concentration levels (80%, 100% and 120%) of spiked placebo samples. Every concentration level was made in triplicate and every sample was injected three times. Using these samples, precision was tested too. Table 3a presents accuracy and precision results. Precision was also proved on real samples of Pharmaceutical 1. Inter-day precision data was measured also using Pharmaceutical 1 and the obtained data is tabulated in Table 3b. Six samples of Pharmaceutical 1 were prepared and each was injected in triplicate (Table 4). Robustness was tested during optimization of separation, see Section 3.1 and Table 1.

3.3. Quantification of biotin in pharmaceutical formulations

The proposed and validated method was applied to determine biotin in pharmaceutical preparations. Two samples of each preparation were prepared and injected in triplicate. The results are summarized in Table 4. As has been mentioned above, Pharmaceutical 1 was also used to prove the precision. The obtained results agree with the labeled amounts of biotin in particular pharmaceutical preparations (Pharmaceutical 1 might be mentioned like the only exception, tablets contained only 91.2% of declared amount). No interferences were found during analyses of the pharmaceutical preparations. The results demonstrate the ability of the proposed method for quantitative determination of biotin in pharmaceuticals and dietary supplements.

4. Conclusion

A novel method for the determination of biotin using HPLC coupled with a coulometric detector has been described in this article. Such a type of detection had not been reported previously for the determination of biotin. The chromatographic and detection conditions have been optimized for this purpose. The developed method has been validated and very good linearity, sensitivity, accuracy, precision and selectivity have been proven. The validated method has been applied for determination of biotin in pharmaceutical preparations.

Using this presented method much lower detection and quantification limits were reached in comparison to previously developed methods using UV and amperometric detection.

Acknowledgement

The financial support of research project MSM No. 002 162 0822 is gratefully acknowledged.

References

4.2 Komentáře k publikovaným pracím

Kontrola léčiv tvoří významné odvětví farmacie. Sledování kvality účinných látek a léčivých přípravků je nezbytným předpokladem kvalitní terapie pacientů. Přítomnost nečistot (příbuzných látek nebo degradačních produktů) vede vždy ke snížení kvality a účinnosti léčivé látky nebo přípravku. Má-li nečistota i toxický efekt, představuje její přítomnost i zdravotní riziko pro paciente.

Vlastnosti příbuzných látek a degradačních produktů, které se vyskytují v léčivech jako nečistoty, jsou často velmi podobné vlastní účinné látky. Proto přetrvává potřeba rozvoje nových separačních přístupů vykazujících vysokou selektivitu pro dělení složitých směsí látek s velmi podobnými vlastnostmi. Stacionární fáze na bázi oxidů kovů vykazují řadu odlišných vlastností oproti stacionárním fázím na bázi silikagelu, čehož lze s výhodou využít při vývoji nových separačních metod v oblasti farmaceutické analýzy. Obzvláště kombinace různých mechanismů uplatňujících se při retenci molekul analytu nabízí možnost docílit dostatečného rozdělení všech analyzovaných složek léčiva, při zachování uspokojivé doby analýzy. Tato vlastnost stacionárních fází na bázi oxidů kovů předurčuje možnost jejich uplatnění v oblasti praktické farmaceutické analýzy.

V této publikované práci byla pozornost zaměřena na možnost využití perspektivních stacionárních fází na bázi ZrO$_2$ ve farmaceutické analýze. Jako modelová struktura sloužila léčivá látka ibuprofen, její příbuzné látky a degradační produkty. Cílem práce byl vývoj nové HPLC metody pro monitorování možného rozkladného procesu ibuprofenu v topické lékové formě, včetně sledování degradace konzervačních látek (parabenů).
Ibuprofen, \((R, S)-2-(4\text{-isobutylfényl})\)propionová kyselina, patří mezi nejpoužívanější nesteroidní antiflogistika, přičemž do terapie byl zaveden již koncem šedesátých let.

Analýzu ibuprofenu (Ibu), jeho degradačních produktů 2-(4\text{-isobutyrylfényl})propionové kyseliny (Bopa), 4\text{-isobutylacetofenonu (Ibap) a dále methylparabenu (MeP), propylparabenu (PrP) a jejich degradačního produktu kyseliny 4\text{-hydroxybenzoové (PhBa) nebylo možné provést na silikagelové C18 koloně pomocí již dříve vyvinuté metody pro hodnocení Ibu, MeP, PrP a Ibap v topických přípravcích [193]. Při použití této metody (mobilní fáze: ACN-voda (pH 2,6, upraveno H\textsubscript{3}PO\textsubscript{4}) (60:40, v/v), průtok 0,6 ml\textperiodcentered min-1) došlo ke koeluci PrP a Bopa. Jejich rozdělení bylo možné pouze při snížení obsahu ACN v mobilní fázi o 20 %, což vedlo k výrazně vyšší retenci ostatních analytů, zejména pak Ibap. Jednou z alternativních možností pro docílení vhodné separace všech studovaných látek bylo použítí stacionárních fází na bázi oxidů kovů.

Ke sledování stability ibuprofenu a jeho konzervačních přísad methylparabenu a propylparabenu v topickém léčivém přípravku byly testovány dvě stacionární fáze na bázi oxidu zirkoničitého Zr-PS a Zr-Carbon C18. Obě testované kolony se vzájemně lišily v selektivitě i retenci, viz Fig. 2 a 4 v textu publikace. Úpravou experimentálních podmínek (pH pufru, typ organické složky a jejího množství v mobilní fázi) se na koloně Zr-PS nepodařilo dosáhnout pro PhBa dostatečné retence. Záměnou stacionární fáze Zr-PS za Zr-Carbon C18 s vyšším obsahem uhlíku, tzn. vyšší retenční schopností, se podařilo tento problém vyřešit. Finální chromatografické podmínky pro analýzu všech studovaných látek byly: mobilní fáze ACN-fosforečnanový pufr (50 mM, pH 4,8)-IPA (27:56:17, v/v/v). Průtok mobilní fáze byl na počátku 0,6 ml\textperiodcentered min-1 a během analýzy byl zvýšen na 0,8 ml\textperiodcentered min-1, viz Table 1 v textu publikace. Tento přístup nevyžadoval tak dlouho dobu pro ustálení kolony na konci analýzy, která byla zapotřebí v případě použití gradientové eluce. S ohledem na lepší kinetiku separačního procesu a zároveň nižší pracovní tlak byla kolona temperována na 70°C. Detekce při 258 nm umožňovala docílit co nejvyšší citlivosti pro rozkladné produkty Ibu. Při této vlnové délce bylo možné sledovat i rozkladný produkt parabenů, i když maximum absorpce 4\text{-hydroxybenzoové kyseliny je při 274 nm (v případě potřeby citlivější detekce degradačního produktu parabenů je možné přepnout detektor do duálního módu). Výše popsaná metoda byla zvalidována, viz Table 2 v textu publikace.
Popsaná metoda je vhodná pro monitorování případného rozkladného procesu ibu i parabenů a také pro jejich stanovení v léčivém přípravku. Jako vhodný vnitřní standard pro stanovení byl zvolen butylparaben, viz Fig. 6 v textu publikace. Na chromatogramu – Fig. 7 v textu publikace – je záznam vzorku krému po době použitelnosti, kde byly detekovány degradační produkty ibuprofenu i parabenů.

Práce dokazuje na praktickém příkladu možnost výhodného použití stacionárních fází na bázi ZrO₂ pro kontrolně-analytické účely.
Cílem práce bylo prostudovat možnost využití nesilikagelových stacionárních fází pro analytické hodnocení ondansetronu a jeho pěti lékopisných nečistot, viz Fig. 1 v textu publikace. V naší studii byly použity komerčně dostupné kolony na bázi ZrO₂ (DiamondBond-C18, ZirChrom-PBD, Discovery Zr-PS), na bázi TiO₂ (Sachtopore-RP) a na bázi SiO₂ (Zorbax SB-Aq a Supelco CN), na nichž bylo zkoumáno retenční chování analyzovaných látek.

Ondansetron patří do skupiny antagonistů 5-HT₃ receptorů. Používá se k terapii postoperativní nauzey a zvracení, také pro potlačení emetogenního efektu vyvolaného chemoterapií při léčbě rakoviny. Jištění jeho kvality je nezbytné stejně jako u ostatních lékopisných substancí a farmakologicky aktivních látek přítomných v běžně užívaných léčivých přípravcích. Evropský, americký a britský lékopis používá pro hodnocení ondansetronu a jeho nečistot stacionární fázi tvořenou silikagelem, na jehož povrchu jsou navázané nitrilové skupiny [194-196]. Retenční čas poslední látky (ondansetronu) je okolo 18 min.

Odlisné vlastnosti sorbentů na bázi ZrO₂ a TiO₂ oproti silikagelovým sorbentům umožnily dosáhnout lepších separací analyzovaných látek. Klíčovým parametrem se jevilo dostatečné rozlišení nejméně zadržovaných nečistot Imp. 3 a Imp. 4.

Retence Imp. 3 a Imp. 4 na silikagelové koloně s povrchem tvořeným C₃H₆CN skupinami (Supelco-CN) byla nedostačující. Obě látky byly eluovány v mrtvém čase i při použití pouze 5% ACN v mobilní fázi.

Na oktadecylsilikagelové koloně (Zorbax SB-Aq) bylo možné dosáhnout dostatečného rozlišení pro píky prvních dvou nečistot (Imp 3 a Imp. 4), ale celková doba analýzy by byla při použití isokratické eluce vyšší než 60 min.

Účinná separace všech analyzovaných látek na Zr-PS koloně (Discovery Zr-PS) se nezdařila. Nejlepším výsledkem bylo rozdělení píků Imp. 3 a Imp. 4 s rozlišením pouze 1,2 a celková doba analýzy byla okolo 32 min.
Na koloně Zr-C18 (DiamondBond-C18) se látky podařilo rozdělit, nicméně retenční faktor první látky (Imp. 3) byl 0,16 a retenční faktor poslední látky (Ond) byl 88,44. Navíc faktor symetrie píku Ond byl 3,2.

Na koloně na bázi TiO$_2$, jehož povrch je modifikovaný vrstvou polyethylenu (Sachtopore-RP) se všechny látky podařilo rozdělit s dostatečným rozlišením v celkovém čase 10,5 min. Mobilní fáze byla tvořena směsí ACN-fosforečnan amonnný (20 mM, pH 6,0) (18:82, v/v), teplota na koloně byla 50 °C, průtok 1,5 ml·min$^{-1}$.

Na koloně Zr-PBD (ZirChrom-PBD) se podařilo při použití průtoku 1,5 ml·min$^{-1}$ rozdělit všechny látky v celkovém čase 9,5 min, což dokazovalo, že tento typ stacionární fáze je nejvhodnější pro separaci studovaných látek. Tato kolona byla tedy použita pro další experimenty a finální optimalizaci separačních podmínek. V průběhu vývoje metody byla zkoumána závislost retence látek na typu, pH a koncentraci použitého pufru, viz Fig. 2, 3 a 4 v textu publikace. Dále byl zkoumán vliv typu a množství organické složky přidané do mobilní fáze. Následovala optimalizace teploty na koloně a rychlosti průtoku mobilní fáze.

Optimální podmínky pro separaci ondansetronu a pěti jeho lékopisných nečistot na Zr-PBD koloně byly: mobilní fáze ACN-fosforečnan amonnný (25 mM, pH 7,0) (18:82, v/v), teplota na koloně 50°C a průtok 2,70 ml·min$^{-1}$. Detekce byla prováděna při univerzální vlnové délce 216 nm. Za těchto podmínek bylo všech šest analyzovaných látek rozděleno s rozlišením vyšším než 2,00 v celkovém čase 7,5 min, viz Fig. 5 v textu publikace. Validita vyvinuté metody byla potvrzena pomocí proměření linearity, přesnosti, robustnosti a určení LOD a LOQ nečistot, viz Table 2 v textu publikace.

Možnost uplatnění stacionární fáze na bázi ZrO$_2$ ve farmaceutické analýze byla prokázána na praktickém příkladě. Spoluúčast iontově-výměnných a reverzních interakcí na ZrO$_2$ stacionární fázi poskytla oproti silikagelovým reverzním stacionárním fázím širší možnosti úpravy kolonové selektivity, tudíž i lepší potenciál pro dosažení vhodného rozlišení mezi analyty.
Práce navazuje na naší předchozí studii [197], v níž se jako jedna ze vhodných kolon pro separaci ondansetronu a jeho příbuzných látek ukázala kolona na bázi TiO$_2$, jehož povrch je modifikovaný vrstvou polyethylenu. Cílem práce bylo zoptimalizovat podmínky separace ondansetronu a pěti jeho lékopisných nečistot, viz Fig. 1 v textu publikace, na TiO$_2$-PE koloně, vyvinutou metodu zvalidovat a porovnat retenční chování separovaných látek na kolonách TiO$_2$-PE a Zr-PBD.

Byl studován vliv pH, koncentrace a typu pufru na retenci analyzovaných látek, viz Fig. 2, 3 a 4 v textu publikace. Dále byl testován vliv typu a koncentrace organické složky mobilní fáze na retenční chování látek. Následovala optimalizace teploty a rychlosti průtoku mobilní fáze. Optimální podmínky pro separaci látek byly: mobilní fáze tvořená směsí ACN-fosforečnanový pufr (25 mM, pH 6,0) (18:82, v/v), teplota na koloně 50 °C, rychlost průtoku 1,5 ml·min$^{-1}$, viz Fig. 5 v textu publikace. Validita vyvinuté metody byla potvrzena ověřením linearity a přesnosti, dále určením LOD a LOQ nečistot, viz Table 1 v textu publikace.

Následovalo porovnání retenčního chování analyzovaných látek na kolonách TiO$_2$-PE a Zr-PBD. Vliv pH na retenci studovaných látek byl na obou kolonách podobný, avšak selektivita byla odlišná, viz Fig. 6 v textu publikace. Nastavení pH na hodnotu 6,0 vedlo na Zr-PBD koloně ke koeluci nečistot RS2, RS3 a RS4, které byly za stejných podmínek na TiO$_2$-PE dostatečně rozděleny. Pro vyhovující rozdělení všech studovaných sloučenin bylo nutné na Zr-PBD koloně posunout pH na hodnotu 7,0 [197]. Byly určeny retenční parametry t_R, k', N, A_s a R_s za srovnatelných podmínek analýzy, při nichž jsou všechny látky dostatečně separovány na obou kolonách, viz Table 2 v textu publikace. Selektivita obou kolon byla podobná pro neionizovatelné látky (RS1, RS2), avšak pro ionizovatelné látky se lišila. Eluční pořadí látek bylo stejné, kromě prvních dvou sloučenin. Na Zr-PBD koloně byla nejméně zadržovaná nečistota RS3, zatímco na TiO$_2$-PE koloně byla první eluovanou sloučeninou RS4. Kritickým parametrem separace bylo rozlišení mezi prvníma dvěma látkami na obou kolonách. Zvýšení rychlosti průtoku vedlo k výraznějšímu poklesu počtu teoretických pater na TiO$_2$-PE koloně, než na Zr-PBD koloně. Na rozdíl od Zr-PBD kolony, kde i při průtoku 2,7 ml·min$^{-1}$ bylo dostatečné...
rozlišení mezi všemi analyzovanými látkami [197], nebylo tedy na TiO₂-PE koloně možné zkrátit celkovou dobu analýzy pomocí zvýšení rychlosti průtoku mobilní fáze, neboť při vyšším průtoku došlo k výraznému poklesu rozlišení mezi píky nečistot RS4, RS3 a nečistoty RS5 a ondansetronu.

Vliv pH na retenci (Fig. 6 v textu publikace) a separační parametry (Table 2 v textu publikace) prokázaly podobnost retenčního chování, avšak odlišnou selektivitu obou studovaných kolon pro ondansetron a pět jeho nečistot. Na Zr-PBD koloně bylo díky použití vyššího průtoku možné dosáhnout kratší doby analýzy (7,5 min) než na TiO₂-PE koloně (9,5 min), samozřejmě za cenu vyšší spotřeby mobilní fáze.

Poslední část práce se zabývá termodynamickým pohledem na chování analyzovaných sloučenin při průchodu kolonami. Byly spočítány a porovnány standardní entalpie (ΔH°), standardní entropie (ΔS°) a Gibbsova energie (ΔG°) přechodu látek z mobilní do stacionární fáze pro TiO₂-PE i ZR-PBD kolonu. Výsledky ukázaly, že retenční proces látek RS1, RS2, RS5 a ondansetronu se jeví spíše jako entalpicky kontrolovaný, zatímco retenční proces látek RS3 a RS4 je kontrolován spíše entropicky, viz Table 5 a 6 v textu publikace.

Práce dokazuje podobné retenční vlastnosti, podobné termodynamické aspekty retence, avšak odlišnou selektivitu kolon TiO₂-PE a Zr-PBD. Obě studované kolony se ukázaly být vhodnými pro kontrolně-analytické hodnocení ondansetronu. Práce dokazuje možnost využití reverzní stacionární fáze na bázi TiO₂-PE jako alternativy pro Zr-PBD stacionární fázi v rutinní farmaceutické analýze ondansetronu.

Cílem práce bylo vyvinout a zvalidovat dostatečně citlivou metodu pro stanovení obsahu biotinu v přítomnosti dalších ve vodě rozpustných vitaminů, vyskytujících se ve vitaminových přípravcích.

Doporučená denní dávka biotinu je okolo 30 μg/den, proto je jeho obsah v přípravcích podstatně menší než řady dalších vitaminů (např. vit. C). Tento fakt společně s nespecifickým UV-spektrem biotinu, jehož maximum je při 190 nm, vede ke značně nízké citlivosti při použití UV/VIS detekce. Jako vhodná alternativa pro zvýšení citlivosti a selektivity detekce biotinu se nabízí coulometrický detektor.

Jednou z největších výhod elektrochemické detekce je vysoká selektivita, způsobená schopností detektoru reagovat pouze na elektrochemicky aktivní látky. Toho lze s výhodou použít zvláště pro analýzu složitých matric, v nichž řada složek bývá bez elektrochemické aktivity. Kromě toho elektrochemicky aktivní látky mohou být detekovány s mnohem vyšší citlivostí. Coulometrie, zvláštní forma amperometrie, využívá měření celkového náboje (v coulombeech) potřebného pro úplnou elektrochemickou přeměnu analýzy [198]. Jako selektivní a vysoko citlivá metoda pro elektrochemicky aktivní látky byla tato detekce zvolena pro vývoj metody určené ke stanovení obsahu biotinu v běžných multivitaminových přípravcích.

V průběhu optimalizace separačních podmínek bylo testováno 5 HPLC kolon. Na Symmetry C18 koloně, Zorbax SB-Aq, BDS Hypersil C18 koloně ani na koloně Pathfinder se nepodařilo dosáhnout uspokojivých výsledků. Dostatečná separace biotinu od ostatních vitaminů s rozumnou celkovou dobou analýzy se zdařila na koloně LiChrospher 60RP-select B. V průběhu optimalizace podmínek analýzy byl zkoušen vliv typu a množství organické složky v mobilní fázi a dále typu i pH pufru na retenci biotinu i odezvu detektoru. Po dosažení optimální separace, i s ohledem na citlivost detekce, byl proměřen hydodynamiccký voltamogram za účelem získání pracovních potenciálů na elektrodách pro docílení co nejvyšší citlivosti, viz Fig. 2 v textu publikace.
Optimální podmínky na koloně LiChrospher 60RP-select B byly: mobilní fáze tvořená směsí ACN-k. octová (0,24 M) (15:85, v/v), rychlost průtoku 1 ml·min⁻¹; potenciály na celách: ochranná cela 1000 mV, kanál I. 600 mV, kanál II. 900 mV, citlivost 1 μA, viz Fig. 3 v textu publikace. Po získání optimálních podmínek analýzy následovalo ověření linearity, přesnosti, mezilehlé přesnosti a správnosti vyvinuté metody - viz Table 2 a 3 v textu publikace - a určení limitů detekce i kvantifikace. V průběhu vývoje metody byla též testována robustnost metody. Vyvinutá metoda byla použita pro stanovení obsahu biotinu ve čtyřech vitaminových přípravcích. Získané výsledky odpovídaly výrobci deklarovánemu obsahu biotinu (kromě přípravku 1, kde bylo zjištěno 91,2 % deklarovánoho množství), viz Table 4 v textu publikace.

Kombinace selektivity a vysoké citlivosti coulometrické detekce se ukázala jako výhodná pro stanovení obsahu minoritní složky v poměrně složitých matricích se značně se lišícími koncentracemi aktivních složek. Použití popsány metody umožňuje dosáhnout mnohem nižších limitů kvantifikace než dříve vyvinuté metody využívající UV nebo amperometrické detekce. Práce dále dokazuje možnost a výhody využití HPLC s coulometrickou detekcí jako alternativy pro elektrochemicky aktivní látky v oblasti praktické farmaceutické analýzy.
4.3 Práce publikované formou posteru na vědeckých konferencích a formou abstraktů v odborných časopisech

5 Souhrn výsledků
Výzkum zabývající se možnostmi uplatnění jiných než silikagelových stacionárních fází probíhá již řadu let. Pozornost je věnována mimo jiné i kolonám na bázi oxidů kovů, které se zdají být vhodnou alternativou k silikagelu. Tyto sorbenty se liší od silikagelových v retenci i selektivitě. Rozdíly, které vyplyvají z odlišných chemických vlastností oxidů kovů, se mohou výrazně uplatnit při procesu separace. K retenci analytu na stacionárních fázích na bázi oxidů kovů přispívá současně více druhů interakcí (reverzní interakce, výměna iontů a výměna ligandů). To, jak se na retenci konkrétní látky projeví příspěvky jednotlivých typů interakcí, závisí na podmínkách analýzy (typu použitého pufru, jeho koncentrace, pH i použité organické složce mobilní fáze). Efektivita kolon na bázi oxidů kovů je výrazně vyšší, než dosahují polymerní stacionární fáze, a v současnosti je plně srovnatelná se silikagelovými kolonami. Navíc tyto sorbenty mají podstatně vyšší chemickou i tepelnou stabilitu než silikagelové reverzní fáze.

Tato disertační práce se ve svém teoretickém úvodu krátce dotýká obecných vlastností i možností uplatnění HPLC ve farmaceutické analýze a hlavní část se zabývá problematikou stacionárních fází používaných v současné analytické praxi. Pozornost je zaměřena na široce používané silikagelové fáze, dále na hybridní fáze, polymerní fáze a fáze na bázi grafitizovaného uhlíku. Hlavní součást teoretické části je pak věnována stacionárním fázím na bázi oxidů kovů, zejména na bázi oxidu zirkoničitého.

Výsledky experimentální práce jsou obsaženy v textu prací publikovaných v zahraničních impaktovaných časopisech.

Přehled dosažených výsledků, odpovídající publikovaným pracím:

- Byla vyvinuta a zvalidována metoda vhodná pro monitorování případného rozkladného procesu ibuprofenu a parabenů v topické lékové formě. Odlišná selektivita stacionární fáze na bázi ZrO₂ (oproti SiO₂ fázím) umožnila docílit dostatečného rozlišení pro všechny hodnocené látky. Metoda, využívající Zr-Carbon C18 kolonu pro rozdělení ibuprofenu a jeho dvou rozkladných produktů, a současně methylparabenu, propylparabenu a jejich degradačního
produktu, na praktickém příkladě dokazuje možnost využití stacionární fáze na bázi ZrO₂ v rutinní analýze léčiv.

- Bylo prostudováno retenční chování ondansetronu a jeho pěti lékopisných nečistot na různých stacionárních fázích na bázi silikagelu a oxidů kovů. Odlišné vlastnosti sorbentů na bázi ZrO₂ a TiO₂ oproti silikagelovým sorbentům umožnily dosáhnout lepších separací analyzovaných látek. Vyvinutá a zvalidovaná metoda pro hodnocení ondansetronu, využívající pro separaci kolonu Zr-PBD, potvrzuje možnost uplatnění reverzní stacionární fáze na bázi ZrO₂ ve farmaceutické praxi.

- Byla vyvinuta a zvalidována HPLC metoda pro stanovení obsahu biotinu ve vitaminových přípravcích s coulometrickým způsobem detekce. Při vývoji metody byla využita selektivita a vysoká citlivost coulometrického detektoru, která umožnila stanovení obsahu minoritní složky v poměrně složitých matricích se značně se lišícími koncentracemi aktivních složek. Byla dokázána možnost a výhodnost využití HPLC s coulometrickou detekcí jako alternativy pro elektrochemicky aktivní látky v oblasti praktické farmaceutické analýzy.
6 Summary
The research engaged in potential utilization of non-silica-based stationary phases has proceeded many years. The attention has been focused among other on metal oxide-based stationary phases, which appear to be an appropriate alternative to SiO₂. These sorbents differ from SiO₂ in retention and selectivity. Differences, which are caused by different chemical properties of metal oxides, can influence the separation process. More types of interactions (reversed-phase interaction, ion-exchange and ligand exchange) simultaneously contribute to the retention of an analyte on stationary phases based on metal oxides. How much is the retention of a defined substance affected by each type of interaction depends on conditions of analysis (the buffer type, pH, buffer concentration and type of organic modifier used). The effectiveness of metal oxide-based columns is much higher than effectiveness of polymer-based stationary phases, and in recent time it is fully comparable with silica-based columns. Additionally these phases dispose of higher thermal and chemical stability in comparison to SiO₂-based reversed phases.

Theoretical introduction of this dissertation thesis is concerned with general properties and possibilities of HPLC applications in pharmaceutical analysis and with stationary phases used in the current analytical practice. Attention is paid to widely used SiO₂-based phases, followed by hybrid phases, polymeric phases and graphitized carbon-based phases. The main part of the theoretical introduction is focused on metal oxide-based stationary phases, especially ZrO₂-based ones.

The results of experimental work are contained in the text of original publications in impacted journals.

The summary of results achieved, corresponding to published studies:

- The method for monitoring potential degradation process of ibuprofen and parabens in topical pharmaceutical preparation was developed and validated. Different selectivity of ZrO₂-based stationary phases (compared to SiO₂-based phases) enabled to achieve sufficient resolution of all analysed compounds. The method, utilizing Zr-Carbon C18 column for resolution of ibuprofen and its two degradation products, and simultaneously methylparaben, propylparaben and their degradation
product, proves a practical example of potential utilization of ZrO₂-based stationary phase in routine drug analysis.

- The retention behaviour of ondansetron and its five pharmacopoeial impurities on different stationary phases based on SiO₂ and metal oxides was studied. Different properties of ZrO₂-based and TiO₂-based stationary phases compared to SiO₂-based sorbents enabled to achieve better separations of analysed substances. The developed and validated method for evaluation of ondansetron, utilizing Zr-PBD column for separation, confirms the potential of applicability of reversed ZrO₂-based stationary phase in pharmaceutical practice.

- The retention behaviour of ondansetron and its five impurities on TiO₂-PE stationary phase was mapped. The separation conditions were optimized and validity of the method verified. Afterwards different retention parameters of separation of analysed compounds on TiO₂-PE and Zr-PBD columns were compared. Attention was also focused on comparing of thermodynamic behaviour of analysed substances on both columns. The applicability of TiO₂-PE column as an alternative to Zr-PBD column for routine pharmaceutical evaluation of ondansetron has been proved.

- The HPLC method coupled with coulometric detection for the assay of biotin in multivitamin preparations has been developed and validated. The selectivity and high sensitivity of coulometric detector, which enabled quantification of minor component in complex matrices with considerably differing concentrations of active constituents, was utilized during the method development. The possibility and convenience of HPLC coupled with coulometric detection as an alternative for electrochemically active compounds in the field of practical pharmaceutical analysis was proved.
7 Seznam zkratek
ACN acetonitril
APPa kyselina aminopropylfosfonová
A_s faktor symetrie piku
ASPA kyselina aspartová
Bopa 2-(4-isobutyrlyfenyl)propionová kyselina
BSA bovinní sérový albumin
CDMPC tris(3,5-dimethylfenyl)karbamát celulosy
CE kapilární elektroforéza
CEC kapilární elektrochromatografie
CSP chirální stacionární fáze
DHNP 3,4-dihydroxynorefedrin
DMF Drug Master File
EDTA N,N-ethylenediamintetraoctová kyselina
EDTPA N,N-ethylenediamintetramethylfosfonová kyselina
ELSD evaporative light scattering detector
F-ZrO$_2$ fluoridem modifikovaný ZrO$_2$
GC plynová chromatografie
HPLC vysokoúčinná kapalinová chromatografie
HPLC-MS vysokoúčinná kapalinová chromatografie s hmotnostní detekcí
HPLC-NMR vysokoúčinná kapalinová chromatografie v kombinaci s NMR
HTLC vysokoteplotní kapalinová chromatografie
Ibap 4-isobutylacetofenon
Ibu ibuprofen
ICH International Conference on Harmonisation
IPA propan-2-ol
k' retenční faktor
LC kapalinová chromatografie
LC-MS kapalinová chromatografie s hmotnostní detekcí
LOD limit detekce
LOQ limit kvantifikace
LSER linear solvation energy relationship
M molární
MeOH methanol
MeP methylparaben
N počet teoretických pater
NMR nukleární magnetická rezonance
NP normální fáze
NPLC kapalinová chromatografie v normálním módu
Ond ondansetron
PAA N,N-dialkylnitrosoharník
PAM polyalkylmethakrylát
PBD polybutadien
PDA kyselina pamidronová
PEI polyethylenimin
PGC porozní grafitizovaný uhlík
pH \textsubscript{pzc} pH, při kterém je celkový náboj částice roven nule
PHA poly(hydroxyalkyl)akrylát
PhBa 4-hydroxybenzoová kyselina
PLRP polymerní reverzní fáze
PrP propylparaben
PS polystyren
PS-DVB polystyren-divinylbenzenový kopolymer
PVA polyvinylalkohol
PVE polyvinylether
RP reverzní fáze
RP C8 reverzní fáze, jejíž povrch je tvořen oktylovými řetězci
RP C18 reverzní fáze, jejíž povrch je tvořen oktadecylovými řetězci
RP-HPLC vysokoúčinná kapalinová chromatografie v reverzním módu
R_s rozlišení mezi píky
SAX silný anex
SFC superkritická fluidní chromatografie
TEA triethylamin
THF tetrahydrofuran
TiO_2-PE polyethylenem modifikovaná titaniová stacionární fáze
TLC temkovrstevná chromatografie
\(t_R\) retenční čas
WAX slabý anex
Zr-PBD polybutadienem modifikovaná zírkoniová stacionární fáze
Zr-PS polystyrenem modifikovaná zírkoniová stacionární fáze
Zr-C uhlíkem modifikovaná zírkoniová stacionární fáze
Zr-Carbon C18 uhlíkem modifikovaná zírkoniová stacionární fáze s navázanými oktadecylovými řetězci
8 Použitá literatura

