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Nižňanský, J. Appl. Phys. 99, 08M903 (2006). . . . . . . . . . . . 128
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Introduction
Nuclear magnetic resonance (NMR) is a unique spectroscopic method for study-
ing condensed matter: it gains information about the structure and important
properties at atomic level, from the point of view of atomic nuclei. At the same
time the measurement itself does not significantly perturb its point of interest, the
electronic system. Namely, the resonant frequencies of nuclei are usually several
orders of magnitude lower than analogous frequencies for electrons, phonons, or
other species, which are thus affected by weak quasi-static fields only.

While NMR spectroscopy is a robust and irreplaceable method for studying
structure and dynamics of liquids, where subtle electron-nuclear and inter-nuclear
interactions can be captured in high-resolution spectra, the use of NMR in solid-
state physics is much more limited. It is partly because of higher experimental
demands in the solid-state NMR measurements, but to a great extent also due
to the fact that analysis and interpretation of solid-state NMR spectra is more
difficult. Ironically, the uniqueness of the method then becomes a curse: often
there are no other experimental methods with adequate resolution to which the
NMR results could be compared. The interpretation of NMR spectra of complex
solids and magnetic materials may thus become extremely challenging.

The lack of other complementary experimental methods, fortunately, does
not apply to methods for calculation of electronic structure. In this regard, the
situation is in fact quite appropriate: the local character of NMR is exactly what
supports such connection, since relatively small models in the electronic structure
calculation are sufficient to describe the experimental spectra. Combination of
the two methods, one experimental and one computational, but both focused on
atomic scale, brings two main benefits:

• The calculations of spectroscopic parameters greatly simplify understanding
of experimental NMR spectra, or even allow the interpretation in cases where
it would be unfeasible otherwise.

• On the other hand, confronting the ab initio calculation with NMR ex-
periment via the spectroscopic parameters supports the credibility of the
calculated model. This applies not only to the properties being directly
compared, but justifies the model as a whole, and thus also increases the
reliability of other calculated physical properties – even those which cannot
be obtained experimentally.

We have been applying and developing this comparative approach in the last
decade. At the beginning we were concerned mostly with the local magnetic fields
and gradients of electric fields in magnetically ordered materials, hence magnetic,
multiferroic, and related materials were the subject of majority of the presented
papers. More recently with advancement of computational possibilities our focus
has been widened also to non-magnetic solids.

The thesis is structured in the following way: first chapter briefly introduces the
nuclear magnetic resonance method, especially describes interactions of nuclear
moments with local magnetic and electric fields – hyperfine magnetic field, electric
field gradient, and chemical and Knight shift – and how they manifest in the
NMR spectroscopy. Second chapter presents the methods of density functional
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theory (DFT) calculations, which were used in our studies, with focus on local
magnetic and electric fields: how the related quantities can be determined and
how accurately, and also where the usual practice fails and other solutions need to
be searched for. The way, how the approach of comparing NMR experiments and
DFT calculations was applied in practice, is then presented in the last chapter in
a form of commenting on the main results of the published papers.
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1. Nuclear Magnetic Resonance
in Solids
The nuclear magnetic resonance phenomenon is based on the interaction of nu-
clear moments with local magnetic and electric fields. The key prerequisite is the
presence of nuclei with suitable nuclear spin 𝐼: nuclei with 𝐼 ≥ 1

2 possess magnetic
dipole moment and those with 𝐼 ≥ 1 possess electric quadrupole moment. The
energy level of the ground state for such nuclei is then split by Zeeman interaction
with magnetic field and/or by electric quadrupole interaction, and by exciting the
transitions between the split levels it is possible to induce the NMR. The acquired
NMR spectrum corresponds to the values of these local fields and thus carries
essential spectroscopic information about the structure and other properties of
the studied system.

The local magnetic and electric fields originate mostly by interaction of nucleus
with electronic system, as is the case of magnetically ordered solids where the
values of the local fields are directly reflected in the NMR spectrum. For non-
magnetic solids the magnetic field is supplied as a very homogeneous static external
magnetic field B0 and the resonance then probes subtle deviations from the value
of B0. Regardless of the origin of the local fields, the key property of NMR
(as for most spectroscopies) is the fact that, in general, nuclei in two different
environments (e.g., nonequivalent crystal sites) have different values of the local
fields, and therefore, different resonance frequencies in the NMR spectrum.

Besides the Coulomb interaction between the positive charge of the atomic
nucleus and the surrounding electronic charge density, the nucleus interacts with
electrons also via its nuclear moments: magnetic dipole moment and electric
quadrupole moment. These interactions are usually termed the hyperfine inter-
actions and are briefly described in the following paragraphs, accompanied by
description of NMR shifts. Some of these quantities are, as well, of interest for
Mössbauer spectroscopy, which was also utilized as an experimental method (to-
gether with or instead of NMR) in several of the presented works.

1.1 Hyperfine magnetic interaction
A nucleus with non-zero spin possesses nuclear dipole magnetic moment which
can be – in analogy with electrons – expressed by units of nuclear magneton 𝜇𝑁 ,
a quantity about three orders of magnitude smaller than the Bohr magneton 𝜇B:

𝜇N = 𝑒ℏ
2𝑚𝑝

∼ 1
1836𝜇B . (1.1)

The interaction of nuclear spin with electrons in the atom results in a local
magnetic field at the nucleus. This hyperfine field can be expressed as a sum of
contributions of individual electrons [1]:

Bhf = −𝜇0𝜇𝐵

2𝜋
∑︁

𝑖

(︃
l𝑖

𝑟3 + s𝑖

𝑟3 − 3r(s𝑖 · r)
𝑟5 + 8𝜋

3 s𝑖𝛿(r)
)︃
, (1.2)

3



where the first term describes the field induced by electron orbital moment l, while
the remaining terms describe the field arising due to interaction with electron spin
s. The terms for dipole field adequately describe interaction with spin of electron
within the dipole limit, whereas the last term gives the Fermi contact interaction.
The contact field arises in cases when electron is present in a very close proximity
to the nucleus (or inside the volume of nucleus), so that the dipole approximation
breaks down, and additionally, relativistic effects have to be considered [1, 2].
Typically, the contact term is significant for atoms where the core 𝑠 states are
spin-polarized by 𝑑-𝑠 or 𝑓 -𝑠 exchange with unpaired electrons in 3𝑑 or 4𝑓 shells; in
case of 3𝑑 atoms, such as Fe, the contact field is usually the dominant contribution
to the hyperfine field Bhf .

In non-magnetic systems, where all electrons are effectively paired in the atomic
orbitals as well as within the chemical bonds, the hyperfine magnetic field is zero
with a high precision (the non-zero effects, such as indirect nuclear spin-spin
interaction, appear as terms in the second-order perturbation theory [2]). On the
other hand, in magnetic systems the contributions of unpaired electrons are not
compensated, yielding high value of magnetic hyperfine field at the nuclei. Then
the very presence of such a hyperfine magnetic field is the key aspect for application
of NMR spectroscopy to studying the magnetic materials [3]. The time-averaged
value of hyperfine field for nuclei of paramagnetic atoms can be from several units
of Tesla up to hundreds of Tesla, and additionally, transferred hyperfine field of
lower magnitude can appear also at nuclei of neighboring non-magnetic atoms.

1.2 Hyperfine electric quadrupole interaction

For nuclei with spin 𝐼 > 1
2 the distribution of charge inside the nucleus deviates

from the spherical one and is connected with presence of nuclear quadrupole (or
higher order) electric moment, described as tensor Q. The electric quadrupole
moment Q interacts with gradient of electric field E, which is generated by the
surrounding electronic density and neighboring nuclei [1, 2]:

𝐻𝑄 = 𝑒

6Q∇E . (1.3)

Rotational symmetry and parity of the nucleus in the ground state dictate a
special form of tensor Q, allowing defining it with just one scalar component, 𝑄
[1]. The tensor of electric field gradient can then be considered as traceless,

V = ∇E − 1
1
3Tr(∇E) , (1.4)

and described by two parameters: the largest component 𝑉𝑧𝑧 and the asymmetry
𝜂 = 𝑉𝑦𝑦−𝑉𝑥𝑥

𝑉𝑧𝑧
, with such a choice of coordinate system that |𝑉𝑧𝑧| ≥ |𝑉𝑦𝑦| ≥ |𝑉𝑥𝑥|.

The electric quadrupole interaction is strongly influenced by the local symmetry:
presence of 3-fold axis or higher symmetry causes 𝜂 to be zero; moreover, for
nucleus in cubic symmetry the electric quadrupole interaction does not influence
the NMR spectrum.
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1.3 NMR shifts
For non-magnetic materials in zero magnetic field, the hyperfine magnetic field
effectively cancels out, and thus does not cause splitting of nuclear energy levels.
Application of homogeneous magnetic field is then required to observe NMR, and
the role of observable spectroscopic quantity is taken by subtle effects that change
– locally – the value of the applied external field. When the external magnetic
field is present, much weaker local magnetic fields are induced within the electron
system and manifest as small changes of frequency in the NMR spectrum: the
electronic response to the static field acts essentially as a ”shielding”, slightly
shifting the resonance frequency from the value of bare, unshielded nucleus [1, 2],

𝜔 = 𝛾B = 𝛾(1 − 𝜎)B0 . (1.5)

In diamagnetic liquids and solids the effect is termed chemical shielding and when
confronted with a shielding of the reference compound, the difference gives rise
to so called chemical shift 𝛿, usually expressed in ppm:

𝛿 = 106(𝜎ref − 𝜎) . (1.6)

Analogous terms in metals are called Knight shielding and Knight shift (𝐾) and
arise predominantly due to Fermi contact interaction with conduction electrons
which are slightly polarized by the external magnetic field. The values of 𝐾 are
usually positive (“paramagnetic”) and a few orders of magnitude larger than 𝛿,
thus often expressed as a percentage:

𝜔 = 𝛾B = 𝛾(1 +𝐾)B0 . (1.7)

In general, both quantities 𝛿, 𝐾 are tensors, so that the resonance frequency
depends also on direction of the external magnetic field with respect the tensors’
principal axes – such anisotropic properties correspond to the local symmetry of
the crystal site with resonating nucleus.
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2. Calculation of NMR
parameters
Density Functional Theory (DFT) [4] belongs to the most important methods avail-
able for computations in condensed-matter physics, especially for many-body prob-
lems that are encountered when obtaining the electronic structures of solids. As in
other self-consistent field (SCF) approaches, in DFT the many-body Schrodinger
equation is rephrased as one-electron Kohn-Sham equations [5], which are then iter-
atively solved. Usually a reasonable set of approximations is applied to the original
exact Hamiltonian, such as Born-Oppenheimer approximation and approximate
potentials for the exchange and correlation (e.g., Local Density Approximation [4]
or some variant of Generalized Gradient Approximation [6–8]). This self-consistent
process yields, at its end, the electron density uniquely corresponding to the ground
state for the studied many-body problem.

There exists a plethora of different DFT codes encompassing various ap-
proaches, parametrizations, and further approximations to tackle the solution
to the SCF problem. In order to reach the hyperfine and related parameters,
which are localized at or very close to the nucleus, it is natural to employ ap-
proaches that include description of the core electrons for all involved atoms, i.e.,
all-electron methods, also termed full-potential methods [9, 10]. This approach
contrasts with pseudo-potential methods, where the core states of each atom are
replaced by pre-calculated potentials [11, 12], which leads to notable increase in
computational speed with almost no decrease of accuracy. Despite slower than the
pseudopotential methods, the Full-Potential Linearized Augmented Plane Wave
(FP LAPW) approach [13] is widely considered as one of the most precise elec-
tronic structure methods in solid state physics. In the FP LAPW scheme the
volume of the crystal unit cell is divided into non-overlapping atomic spheres and
an interstitial region, which differ by wave-functions used for description. Inside
the atomic spheres the basis consists of “atomic-like” functions, while in the inter-
stitial plane waves are used, and the solutions to the Kohn-Sham equations are
expanded in such a combined basis set.

The DFT code that was used in all presented works is WIEN2k [14], which
is based on FP LAPW, while employs additionally APW+lo (Augmented Plane
Waves + local orbitals [15]) approach to be mixed with LAPW, allows additional
local orbitals for better description of semi-core states [16], and various other
features [17, 18]. Some of the spectroscopic parameters relevant for NMR can be
evaluated from the calculated electron density and are often readily available, such
as the hyperfine fields and electric field gradients, while obtaining other properties
like NMR shifts requires additional and costly procedures.

In magnetically ordered materials the shape of experimental NMR spectrum
is determined by the hyperfine magnetic fields at nuclei, while in non-magnetic
materials the key parameter is NMR shift and (nuclear) magnetic dipole-dipole
interaction. In both cases, if an appreciable electric quadrupole interaction is
present, also the electric field gradients have to be considered, because strong
electric quadrupole interaction can be decisive for the character and shape of the
spectrum. In the following text we briefly describe how all these quantities are
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calculated in the WIEN2k, what is their accuracy, and how various shortcomings
can be overcome or circumvented.

2.1 Calculation of hyperfine magnetic fields
With electron density of the ground state available from a successfully converged
SCF problem, it is relatively simple to calculate – for any specified nuclear site –
the contribution due to the dipolar fields of electron spins or due to the orbital
motion of the electrons. Since also the population matrices are calculated (and
defined in the |𝑙,𝑚, 𝜎⟩ space, where 𝑙, 𝑚, and 𝜎 are orbital, magnetic, and spin
quantum numbers) it is only a matter of obtaining mean value of a single particle
operator �̂� with Kohn-Sham eigenfunctions 𝜑𝑖:

⟨𝜓|�̂�|𝜓⟩ =
∑︁

𝐸𝑖≤𝐸𝐹

⟨𝜑𝑖|�̂�|𝜑𝑖⟩ , (2.1)

with the form of �̂� according to orbital or spin-dipolar part in Eq. (1.2). Several
approximations are applied [19]: first, the operator �̂� is considered non-zero within
the given atomic sphere only, second, the terms non-diagonal in 𝑙 are neglected,
and third, the relativistic mass enhancement is only approximately accounted
for. All three approximations are relatively mild and perform well for localized
magnetic moments of 3𝑑 and 4𝑓 compounds; on the other hand they would
be less appropriate for, e.g., hyperfine field due to orbital moments in metals.
The calculation of orbital and spin-dipolar hyperfine fields requires spin-orbit
interaction to be included, but otherwise the time cost for such step is comparable
to a single SCF iteration in a standard calculation.

For the Fermi contact term the process is even less demanding in terms of
computational effort, however, it is less straightforward since the contact term
expression (1.2) contains delta function, which diverges at point-like nucleus. Most
DFT codes (including WIEN2k) do not consider finite size nuclei, but represent
each nucleus with a point-like Coulomb potential. Since it can be shown [19]
that the consideration of finite size of the nucleus is in fact not important for
the hyperfine field, the situation is solved in the following way: the calculated
electron (spin) density is averaged over a sphere with Thomson radius 𝑟𝑇 = 𝑍𝑒2

𝑚𝑐2 ,
which is typically an order of magnitude larger than the actual radius of the
nucleus. The contact field is then integrated for such averaged spin density. A
good agreement with experiments is reached for cases of nonmagnetic impurities
in magnetic matrices [20–23], because the contact field at the impurity atom
is dominated by spin-polarization of valence 𝑠 states due to interactions with
neighboring atoms. This approach works as well when evaluating isomer shifts
for Mössbauer spectroscopy, where one also needs to calculate the electron charge
density due to 𝑠-electrons within the nucleus [24].

Unfortunately, for magnetic atoms with unpaired 3𝑑 or 4𝑓 electrons, the contri-
butions of core 𝑠 states turn out to be significantly underestimated in comparison
with experiments [25, 26]. This mismatch is, however, not caused by the applied
mechanism with density smearing in the Thomson sphere, but it is clearly a failure
of local density approximation to correctly describe the non-local 𝑑-𝑠 exchange
interaction for the core states [19, 26]. To correct this shortcoming and make
the calculated results applicable for comparison with experiments, we developed
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Figure 2.1: The scheme of sources of hyperfine magnetic field. The calculation
of Fermi contact field (grey pathways) is circumvented by determining the core
and valence contributions directly from magnetic moments (green pathways); the
problematic exchange polarization is thus completely avoided.

an approach [VC1] that circumvents the problematic 𝑑-𝑠 exchange entirely (see
Fig. 2.1) – for a specific atomic species, in our case Fe atoms.

The approach makes use of the fact that calculated atomic magnetic moments
are in much better agreement with the experiments (e.g., neutron diffraction
or magnetic measurements), in contrast to the underestimated hyperfine fields.
Our analysis [VC1] for Fe in various magnetic compounds showed that the core
contribution to the contact field scaled linearly with the magnetic moment of 3𝑑
electrons. Likewise, the valence contribution, which arises mostly due to transferred
hyperfine field from neighboring atoms, scaled linearly with magnetic moment of
valence 4𝑠 states of a given Fe atom. Therefore, our ansatz for reconstruction of
the contact field was:

𝐵𝑐 = 𝑎3𝑑𝑚3𝑑 + 𝑎4𝑠𝑚4𝑠 , (2.2)

where constants 𝑎3𝑑 and 𝑎4𝑠 were determined from fits to experimental 57Fe NMR
data. This correction to the Fermi contact term provided a suitable tool to explain
and predict the values of the hyperfine fields on the Fe nuclei in various iron
compounds containing ferric (and to some extent also ferrous) ions in the high
spin configuration. Although the set of constants 𝑎3𝑑 and 𝑎4𝑠 relates to a specific
type of atom only (in our case Fe, and for another species the process would have
to be done separately), the application does not cost any extra computational
resources and allows to obtain reliable contact hyperfine magnetic fields with
precision better than 1 T (cf. 50 T, the typical value of contact field at 57Fe).
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2.2 Calculation of electric field gradients
The electric field gradient (EFG) tensor can be directly evaluated from the electron
density of the ground state, again at no extra computational costs, since the EFG
components are connected with charge density by integrals of the charge density
𝜌(r) over the unit cell [27], e.g., for 𝑉𝑧𝑧 as:

𝑉𝑧𝑧 =
∫︁
𝜌(r)2𝑃2(cos𝜗)

𝑟3 dr , (2.3)

where 𝑃2 is the second-order Legendre polynomial. The 𝜌(r) is represented by
lattice harmonics 𝑌𝐿𝑀(r), and in the LAPW method the integral is in practice a
summation over occupied states [28]:

𝑉𝑧𝑧 =
∑︁

𝐸<𝐸𝐹

∑︁
𝑙𝑚

∑︁
𝑙′𝑚′

𝑅𝑙𝑚𝑅𝑙′𝑚′𝐺𝑀𝑚𝑚′

𝐿𝑙𝑙′
2𝑃2(cos𝜗)

𝑟3 . (2.4)

where 𝑅𝑙𝑚 are LAPW radial functions with angular momentum 𝑙 or 𝑙′, and 𝐺
are the Gaunt coefficients [29]. For example when obtaining the component 𝑉𝑧𝑧,
we are interested in 𝑉20 component in the spherical representation of the EFG
tensor, i.e., 𝐿 = 2 and 𝑀 = 0, and the number of non-zero contributions is then
limited by 𝐺 to combinations p-p, d-d, s-d, and p-f. This ability of the calculation
to resolve EFG contributions according to particular 𝑙 value is very important
when interpreting the (dominant) sources of the EFG value in many practical
cases [30, 31].

2.3 Calculation of chemical and Knight shield-
ings

While chemical shifts of molecules have been accessible for calculations for decades
[32, 33], the implementation for solids has been delayed – among other complica-
tions – by the fact that the magnetic field breaks translational symmetry of the
problem (leading to issues with gauge). For solids, within the projector augmented-
wave (PAW) method [34], the gauge-including projector augmented-wave (GIPAW)
approach [35] became successful for practical applications, especially when im-
proved to be usable with nowadays ultrasoft-pseudopotentials in the pseudopoten-
tial DFT methods [36]. But for the family of APW/LAPW methods, and WIEN2k
code in particular, the calculation of chemical shielding has been implemented
only relatively recently [37–39]. The calculation involves enhancement of the basis
set by local orbitals positioned at higher energies (unoccupied states), and then
solving the eigenproblem for the original and six additional reciprocal k-point
meshes (shifted along all six directions), for which the induced current as well
as the magnetic susceptibility is obtained. The full chemical shielding tensor is
then constructed straightforwardly from these seven calculations by integrating
the current according to Biot-Savart law.

Compared to standard LAPW calculations, the chemical shielding calculations
are significantly more demanding in terms of computational efforts. The difficulty
further increases when the studied compound is a metal, which usually requires
exceedingly dense sampling of the reciprocal space by the k-points. Additionally
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for metals, the shielding due to polarization of conduction electrons, i.e., the
Knight shielding 𝐾, has to be considered, as in metals it is the dominant source
of shielding relevant for NMR spectroscopy. In order to determine 𝐾, explicit
external magnetic field has to be applied in the calculation framework to obtain
the induced contact hyperfine field due to electron spins, and likewise one has to
calculate the spin-dipolar term. Again, the computational requirements are very
high and make the application affordable for rather small or medium-size systems.

In NMR experiments the observed quantity, however, is the chemical (or
Knight) shift, i.e., the difference in shielding between the measured and the ref-
erence compound. Therefore, in order to allow for comparison with experiment,
one should – in principle – calculate also such NMR reference compound. This
is usually not a well suited approach, since it increases the uncertainty of the
final figures, and additionally, the reference compounds are quite often liquids, or
solids with peculiar structures (e.g., nitrates with large unit cells and containing
crystal water molecules) exceeding in complexity the studied compound. Much
more convenient and reliable approach [40–42] involves matching the calculated
shieldings with experimental shifts of several compounds using a linear regression
(with slope usually very close to 1).

2.4 Role of anisotropic interactions
When attempting to model the experimental NMR spectrum, one now has all rele-
vant spectroscopic parameters available for calculation with reasonable precision:

• the total magnetic field – in form of hyperfine magnetic field for magnetic
systems, or external magnetic field modified by the NMR shielding for non-
magnetic systems,

• and the electric field gradient for electric quadrupole interaction (if present).

Nevertheless, in very complex cases with many non-equivalent atomic positions
the experimental spectra may consist of a high number of spectral lines, which may
be overlapping or insufficiently resolved. The spectroscopic parameters of different
lines in the experimental spectrum then can be simply too similar – compared to
the precision of the calculated parameters – to allow for unambiguous assignment
of the spectrum, i.e., to match each individual spectral line to its respective
atomic position using the calculated parameters. In such cases there is a need for
additional parameters to be compared, which can be for instance the anisotropies
of the relevant quantities, namely the anisotropy of hyperfine magnetic field and
the anisotropy of chemical or Knight shielding.

We developed such an approach employing the anisotropy of hyperfine in-
teraction in Ref. [VC2] and tested it for the ordered spinel structure of lithium
ferrite. In spite of lithium ferrite being a relatively simple compound with only
two crystallographically non-equivalent Fe sites (tetrahedral and octahedral), two
of the five lines in the zero-field experimental 57Fe NMR spectrum cannot be
unambiguously interpreted solely from the experiment: the lines have the same
integral intensity and the corresponding Fe sites differ only by the orientation
of the local axes with respect to the vector of magnetization. In other words,
the two sites are crystallographically equivalent but magnetically non-equivalent,
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Figure 2.2: NMR spectrum of ordered lithium ferrite measured at 4.2 K in zero
magnetic field. In the octahedral sub-spectrum (B lines) the two lines at 73.134
and 73.879 MHz are impossible to assign solely from the NMR experiment.

and thus can be distinguished only by the anisotropic part of hyperfine magnetic
interaction, which is briefly described below.

The total local magnetic field at 57Fe nucleus is mainly given by the hyperfine
field with the Fermi contact, the orbital, and the spin-dipolar contributions, from
which only the Fermi contact term is purely isotropic, i.e., its absolute value
does not depend on direction of electronic magnetization. Additionally, atomic
moments in the surrounding lattice also contribute to the local field by their
(classical) dipolar fields; this contribution to the local field is purely anisotropic
and can be straightforwardly determined by summation within a sufficiently large
Lorentz sphere. The total local field then consists of isotropic and anisotropic part,

Bloc(n) = Biso + Banizo(n) , (2.5)
and for a given direction of magnetization n a single crystallographic site – depend-
ing on its local symmetry – may give rise to one or more lines in the spectrum.

Experimentally, one can observe situations for values of n different from the
easy direction by recording NMR spectra of a single crystal under application of
external magnetic field, sufficient to rotate the vector of magnetization from the
easy direction into the desired direction n [43]. In the calculations, the direction of
magnetization can be arbitrarily specified as a ℎ𝑘𝑙 vector in the unit cell, whenever
the spin-orbit interaction is considered for a spin-polarized case. Thus, confronting
the behavior of experimental and calculated spectra for varying n yields extra
information: the sites can be additionally distinguished according to anisotropy
of their hyperfine magnetic fields.

The 57Fe spectrum of tetrahedral A sites in Li ferrite is clearly understood [43]
from the NMR experiment by simple symmetry considerations, in fact already
without the application of external magnetic field. All eight tetrahedral Fe sites
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Figure 2.3: The comparison of calculated and experimental 57Fe hyperfine field
anisotropies in ordered lithium ferrite. The experimental fields were derived from
angular dependences of 57Fe NMR spectra measured at 4.2 K in external mag-
netic field 0.266 T [43]; our calculations modeled the experiment for directions of
magnetization within (01̄1) plane. Both experimental and calculated fields were
adjusted by subtracting their isotropic parts. Adapted from Ref. [VC2]

possess trigonal symmetry with axis oriented along ⟨111⟩, i.e., there are four groups
– each containing two tetrahedral sites – with local axes along either the [111],
[1̄11], [11̄1], or [111̄] direction. Concurrently, the easy axis of magnetization in
lithium ferrite lies in one of these directions. Therefore, one of the four groups of
tetrahedral sites has the local axis parallel with the easy direction of magnetization,
while for the other three groups they are not parallel: the vectors of these directions
are intersecting (forming an angle of ∼ 70.5 degrees). This leads to a fundamental
difference in how the resonance frequencies in tetrahedral subspectrum depend
on the direction of magnetization, and consequently causes these two types of
tetrahedral sites to be easily distinguishable, yielding the 2:6 line ratio in zero-field
57Fe spectrum in Fig. 2.2.

Such simple situation is not found for the octahedral spectrum, which is split
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into three lines 3:3:6 for the easy direction of magnetization and remains ambigu-
ous even when the direction of magnetization is changed by the external field.
Specifically, the spectral lines at 73.134 and 73.879 MHz in Fig. 2.2 cannot be
unambiguously identified with the corresponding six crystal sites (3:3). Again as
in the tetrahedral case, the frequencies of octahedral sites change according to the
behavior of their hyperfine field anisotropy, however, this time the differences are
more subtle: there is no distinguishing symmetry element present and the sites
differ only by the numerical value of the anisotropy. This leads to a deadlock: if
the hyperfine tensor was known, the values of hyperfine field anisotropy could
be directly calculated and lines assigned to sites. However, the tensor cannot be
determined uniquely (ambiguity in sign of one of the parameters) from the exper-
iment because of the lines not being unambiguously assigned. In Ref. [VC2] the
situation for octahedral sites was remedied by calculating the anisotropy tensor
from DFT, which allowed to match the calculated and experimental data [43], and
finally assign also the octahedral lines to their corresponding Fe sites (Fig. 2.3).

The approach employing the anisotropy of hyperfine interaction thus opens
another path to assign and interpret the experimental spectra, although this ben-
efit comes at a cost of much more demanding experiments. In order to measure
the angular dependences of NMR spectra, naturally one should use a single crys-
tal sample, as well as appropriate NMR experimental setup. And likewise, the
calculations and the following analysis may also become quite extensive.
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3. NMR & DFT: Applications to
magnetic and non-magnetic solids
This chapter presents several publications where we applied the approach of
comparing the NMR spectroscopy experiments (in three of the cases also the
Mössbauer spectroscopy experiments) with results obtained from calculated DFT
models. The topic of the studied systems concerns mainly magnetic solids, namely
iron oxides, for which the key parts of the NMR-DFT comparison have been
developed [VC1, VC2].

First we present two studies related to valence states of Fe atoms in hexafer-
rites, where both benefits of the NMR-DFT comparative approach, mentioned in
the introduction, are demonstrated: the calculations serve as a helpful tool for
interpretation of experiments and conversely the experiment is used to justify the
calculated results. Other hexaferrite studies follow, as well as works concerned
with magnetite and various magnetic ferrites, and the chapter is completed by
application of the comparative approach to several non-magnetic solid-state sys-
tems.

3.1 Hexagonal ferrites
Hexagonal ferrites (hexaferrites) are magnetic oxides of iron and atoms of alkali
earth metals (Ba, Sr, Pb) or lanthanides (sometimes termed large cations), often
accompanied by substitutions of various elements (Co, Al, ...). The industrial
and technological importance of hexaferrites as permanent magnets, in magnetic
recording, and wide range of high-frequency and electrical devices perhaps over-
shadows their other interesting properties discovered recently, such as promising
multiferroic behavior [44, 45] or outstanding microwave absorption in form of
various composites [46, 47].

The hexagonal ferrites consist of stacked structural blocks along the hexagonal
axis; there are three possible structural blocks, T, R, and S. According to the
type of block used, the compounds can be organized into two main families: first,
containing R and S blocks only, where the simplest R-S stacking yields the M-type
structure, and second, built with T and S blocks, with Y-type hexaferrite (T-S
stacking) being the simplest representative. More complex structures then can be
derived (and more importantly also synthesized) by altering the sequence of the
building blocks or combining the two families together [48].

The magnetic structure of hexaferrites is ferrimagnetic, with moments of neigh-
boring Fe atoms along the hexagonal axis being mutually antiparallel. Hexaferrites
display high magnetic anisotropy of either easy axis character (mostly M-type and
related structures) or planar/conical type (usually Y-type and derived structures)
[48]. Their magnetic properties, especially the magnetocrystalline anisotropy, are
sensitive to magnetic and valence states of Fe atoms [49], and can be also in-
fluenced by various cationic substitutions (e.g., Co2+). The determination of Fe
valence states in hexaferrites was also one of the main topics in the next two
presented papers.

The structure of hexagonal ferrites contains five or more crystallographically
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non-equivalent Fe sites, which are also magnetically equivalent when the magne-
tization is along the hexagonal axis, but may become split for other cases, e.g.,
for planar hexaferrites. Since the nuclear spin of 57Fe isotope is 1/2, the electric
quadrupole interaction does not apply in NMR, and each non-equivalent Fe site
then usually gives rise to one spectral line in the 57Fe NMR spectrum. The ex-
perimental NMR spectra of hexaferrites may become difficult to interpret: the
complexity of their spectra steeply rises with increasing number or non-equivalent
sites in the structure, as well as for ferrites with planar magnetic anisotropy where
the anisotropy of hyperfine interaction may affect the shapes of spectral lines or
cause splitting. With exception of the simplest and well-studied M-type hexafer-
rite, the assignment of all NMR spectral lines is often incomplete [50, 51]. For
other related hyperfine methods, such as Mössbauer spectroscopy, already the
M-type structure with five iron sublattices implies five overlapping sextets, whose
analysis can be a complicated problem, and more complex structures are usually
beyond the method’s resolution [52, 53].

Localization of valence electron in hexaferrites with mixed valence

Good examples of such more complex structures are strontium W-type and X-type
hexagonal ferrites, on which we focused in the study by 57Fe NMR and Mössbauer
spectroscopies and DFT calculations in Ref. [VC3]. Both ferrites are composed
of the same set of building blocks – R and S – as the simplest M-type structure
(“SrM”, SrFe12O19, space group 𝑃63/𝑚𝑚𝑐), which has the stacking sequence R-S.
The stacking sequence of the W-type structure (“SrW”, SrFe18O27, space group
𝑃63/𝑚𝑚𝑐) is R-S-S and the X-type structure can be considered as a sum of M-
and W-type, yielding R-S-R-S-S stacking (“SrX”, Sr2Fe30O46, space group 𝑅3̄𝑚).

Both SrW and SrX are mixed-valence ferrites, i.e., contain both (nominally)
ferric and ferrous ions, and thus our aim was to study the specifics of the valence
charge: whether the valence charge is localized in the form of Fe2+ and which Fe
crystal sites are involved. The applied spectroscopic methods are sensitive to the
valence state of Fe atoms: value of isomer shift, which is obtained from Mössbauer
spectra, can be attributed to the given valence state, whereas NMR detects Fe2+

indirectly as a missing intensity in the 57Fe spectrum from Fe3+ atoms. However,
first the NMR and Mössbauer spectra had to be interpreted (their lines assigned
to crystallographic Fe positions), for which the DFT calculations were utilized.
Moreover, the valence states of iron atoms were also determined from the ground
state obtained in the electronic structure calculations, and thus the calulated
valences were used together with the experimental results to identify the Fe2+

sites [VC3].
The five Fe sublattices in the M-type structure are occupied by nominally ferric

ions and are labeled as 12𝑘VI, 4𝑓IV, 4𝑓VI, 2𝑏V, and 2𝑎VI, where the labels indicate
the multiplicity, Wyckoff symbol, and oxygen coordination (“IV” and “VI” are
tetrahedral and octahedral, respectively, while “V” denotes hexahedral site, usually
termed bipyramidal). Accordingly, the 57Fe NMR spectrum of SrM consisted of
five narrow and well separated resonance lines, and since its interpretation is well
known [54], the lines could be assigned to the respective sublattices, as depicted in
Fig. 3.1. The hyperfine magnetic fields, measured by NMR as well as Mössbauer,
were in a very good agreement with the calculated values (using corrected contact
fields via the method described in [VC1]). Likewise, the calculated values of EFG
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Figure 3.1: Experimental 57Fe NMR spectra of M-type SrFe12O19, W-type
SrFe18O27, and X-type Sr2Fe30O46 with spectral line assignment indicated. The
lines labeled in red were only assigned by employing the DFT calculations. Par-
tially adopted from Ref. [VC3].
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on Fe nuclei basically matched the experimental quadrupole splittings – for 57Fe
these are observed in Mössbauer only. As expected, the valence states of Fe atoms
(obtained by Atoms in Molecules method [55]) were essentially Fe3+, which was
also confirmed by the measured isomer shifts.

For SrW hexaferrite with seven Fe sublattices, the interpretation of the 57Fe
NMR experiment is already incomplete and only four of the seven lines in the 57Fe
NMR spectrum can be directly assigned to sites upon their resemblance with SrM
57Fe NMR spectrum, integral intensities, and response to external magnetic field
[56]. The Mössbauer spectra and DFT calculations helped to resolve the issue:
the connection of three sites in the S-block part of the structure, 6𝑔VI, 4𝑓IV, 4𝑒IV,
with three unassigned lines in the NMR spectrum became possible by comparison
with hyperfine fields from NMR and also by comparing EFGs from Mössbauer
spectra with those calculated by DFT.

Similar obstacles with interpretation were encountered for SrX structure with
its eleven Fe sublattices. While again some of the lines could be assigned – by
literally matching these with analogous sites and spectral lines of SrM and SrW
hexaferrites – remaining three lines were once more assigned using the calculated
hyperfine fields.

All Fe atoms in SrM are in high-spin ferric state Fe3+, but both SrW and
SrX contain also some ferrous atoms Fe2+, formally being SrFe2+

2 Fe16O27 and
Sr2Fe2+

2 Fe28O46, respectively. The question of localization of Fe2+ in one or more
crystallographic positions was thus mainly addressed in the Ref. [VC3]. From
the analysis of NMR line intensities, isomer shift in the Mössbauer spectra, and
calculated valence in the DFT we concluded that the minority electron tends
to be localized in 6𝑔VI and 4𝑓VI of the SrW structure, and in 9𝑒VI and 6𝑐VI of
the SrX structure. All these sites are located in between the two neighboring S
blocks. Such behavior can be understood given the fact that the S block possesses
spinel-like structure, 2Fe3O4, and is thus more inclined to incorporate the extra
valence electron, compared to R block, SrFe6O11.

Related issue of valence charge compensation was the subject of another hexa-
ferrite study [VC4], concerning substituted SrM. There are only ferric Fe present
in the SrM, however, when the divalent strontium is replaced by a trivalent cation,
the charged substitution is compensated by change of valence of some of the Fe
atoms. It has been shown [57–59] that in lanthanum M-type hexaferrite (LaM),
where La is formally trivalent, at low temperatures the compensation occurs via
localization of minority electron at octahedral 2a sites, forming Fe2+(2𝑎). Such
process is accompanied by a notable increase of magnetocrystalline anisotropy,
compared to LaM at room temperature or to anisotropy of SrM (Fig. 3.3 left).

The charge localization in LaM (and also in Nd- and Pr-substituted cases) and
its influence on magnetocrystalline anisotropy were studied by combining DFT
calculations and 57Fe NMR spectroscopy [VC4]. This time the DFT calculations
were not employed to mainly provide help with interpretation of NMR spectra,
but we utilized the second ”branch” of the relationship between the experiment
and calculations: the experiments justified the correctness of our DFT model in
describing the localized state. The credibility of the ground state obtained by
DFT was important because of employing DFT+U approach [60, 61] and because
of dealing with calculation of magnetocrystalline anisotropy energy; both issues
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Figure 3.2: Integral intensities of parts of 57Fe NMR spectra in pure and doped
SrM and LaM. The dependence of intensities on the concentration of trivalent
large cation supported the conclusion that Fe2+ localized in octahedral 2𝑎 sites.
Adopted from Ref. [VC4].

are described below in a bit more detail.
When calculating magnetic ferrites, the proper description of Fe 3𝑑 states

is essential and one of the successful, albeit simple approaches is the DFT+U
method [60]. The idea is to treat the strong on-site Coulomb interaction of lo-
calized 3𝑑 states, which are not correctly described by the generalized gradient
approximation (GGA), with an additional Hubbard-like potential – its strength
being parametrized by on-site Coulomb interaction 𝑈 and site exchange 𝐽 . For
instance, without application of a reasonable 𝑈 the calculated ground state of
some hexaferrites is incorrectly metallic [62], and thus the application of such
potential, usually in a form [61] of 𝑈eff = 𝑈 −𝐽 and strength of several eV (4.5 eV
in our calculations), is a routine procedure to remedy the shortcoming of GGA
exchange-correlation potential.

On the other hand, application of the DFT+U approach may produce addi-
tional local energy minima for the SCF process [63–65] and in case of complex
structures there is a danger that the calculation converges into a stable state
which is not the real ground state. When more than one such stable self-consistent
solution is obtained in DFT+U, the proper one has to be chosen – usually ac-
cording to the lowest total energy, or the justification can also be provided by
comparison with suitable experiments; both apply to our case.

In La-, Nd-, and Pr-doped Sr hexaferrites at low temperatures the intensity
of 57Fe NMR line corresponding to octahedral 2𝑎 sites diminishes proportionally
to the concentration of the trivalent cation (see Fig. 3.2). The presence of La3+

(as well as Nd3+ or Pr3+) induces Fe2+ in the 2𝑎 sites, which is accompanied by a
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Figure 3.3: The experimentally observed temperature dependence of anisotropic
fields [58] (left panel) was modeled and satisfactorily explained by the calculated
magnetocrystalline energy. In LaM at low temperatures the Fe2+ localizes in 2𝑎
sites, as documented by differences in charge density in a 3D plot (right panel,
b) and strongly contributes to the anisotropy; with increasing temperature the
minority charge delocalizes, mainly within 12k and 2a sites and leads to reduced
anisotropy. On the other hand, there is no such process present in SrM as docu-
mented by the constant temperature dependence of its anisotropy. Adopted from
Refs. [58] and [VC4].

significant reduction of the hyperfine field at 57Fe nuclei. The NMR line intensity
is thus effectively reduced by the amount of Fe2+ and can be utilized to monitor
Fe2+ concentrations. The linear decrease of Fe(2𝑎) NMR intensity indicates that
the distribution of Fe2+ in the 2𝑎 sublattice is rather static at low temperatures
without significant fast electron hopping. Therefore, within the 2𝑎 sublattice there
are well defined ferric and ferrous ions and their arrangement at low temperatures
does not change significantly.

Such a scenario observed in 57Fe NMR experiment was searched for by the
DFT+U calculations. Our aim was to obtain the “localized” solution, i.e., Fe2+

in 2𝑎, as well as the “delocalized” solution – with different (and at the time
unknown) way of compensating the extra valence charge – and to use these
electronic structures to evaluate magnetocrystalline anisotropy and compare it
with experiment (see Fig. 3.3 left).

In order to calculate the magnetocrystalline anisotropy energy 𝐸MA, it is
useful to utilize so called force theorem approach [66] and evaluate 𝐸MA as the
difference between the total energies of calculations with different directions of
magnetization. In the M-type hexaferrites with uniaxial character of anisotropy,
such suitable directions are the hexagonal axis (001), which is the easy axis of
magnetization, and any direction in the hexagonal plane, e.g., (100). For these
hexaferrites the anisotropy is dominated by single-ion contributions of Fe atoms
due to spin-orbit interaction and yields anisotropy constant 𝐾1 = 0.36 and 0.09
MJ.m−3 for localized and delocalized LaM, respectively, and 0.18 MJ.m−3 for SrM.
Although these values are about half of the experimental values [67], they are in
excellent agreement with the temperature behavior of anisotropy field of LaM and
SrM in experiments [58].
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Figure 3.4: Frequency shift of the 2𝑏 line resonance in dependence on the concen-
tration of trivalent large cation. Adopted from Ref. [VC4].

Moreover, the spin-orbit interaction can be arbitrarily enabled or disabled for
any atomic species in the structure, which allows to evaluate the contributions of
individual Fe sublattices to 𝐸MA. We thus confirmed that the bipyramidal Fe3+(2𝑏)
causes large anisotropy, nevertheless, its single-ion contribution is constant in both
LaM solutions, as well as in SrM. Whereas the key role for the increase of 𝐸MA
at low temperatures is played by Fe2+(2𝑎) and to some extent by Fe3+(12𝑘), see
Fig. 3.3 right. When the localization into octahedral 2a sites in LaM takes place,
the contribution of Fe2+(2𝑎) is responsible for about 70 % of the total 𝐸MA. On
the other hand, at higher temperatures, the delocalized scenario is realized and
the minority electron is smeared over multiple Fe sites, partly again 2𝑎, but mostly
12𝑘, negative contribution of which effectively reduces the total magnetocrystalline
anisotropy.

The selection of large cation affects strongly not only the magnetic and other
physical properties of hexagonal ferrites, but manifests also through relatively
subtle effects in the 57Fe NMR spectrum. One could expect that the nearest Fe
neighbor to the large cation site, the bipyramidal Fe(2𝑏) site, should be the most
affected site by the substitution of large cation. This is manifested by the hyperfine
field of Fe(2𝑏) visibly increasing with increasing concentration of large cation
that substitutes Sr, as observed from frequency shift in NMR spectra (Fig. 3.4).
But surprisingly, the changes are not due to extra valence charge brought by
substitution of La3+ for Sr2+, but rather due to changes of geometry, to which
the hyperfine field of bipyramidal site is particularly sensitive. The perturbation
of local structure can be most probably caused by the different atomic size of the
large cations: the calculated atomic volume of La3+ is about 13 % larger than
that of Sr2+.
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The effect of large cation size on neighboring Fe can be well observed in the
57Fe NMR spectra of Ba and Sr M-type hexaferrites, where the hyperfine field of
Fe(2𝑏) differs by about 0.9 T. The remaining four Fe sublattices have essentially
the same positions in 57Fe NMR spectra, hence their hyperfine fields are almost
unchanged by the type of large cation. The explanation of this difference in BaM
and SrM, and its connection to local and lattice geometry, unexpectedly followed
from our analysis of lattice deformations on calculated hyperfine magnetic fields
[VC5]. Due to larger ionic size of barium, the neighboring bipyramidal site is more
expanded compared to SrM, which leads to weaker effect of Fe-O covalency and
lower hyperfine field.

Originally, the analysis [VC5] of how the lattice deformations influence the
hyperfine fields was motivated by non-uniform shifts found out in 57Fe NMR
spectra of SrM oriented thin films [68]. In principle, for samples with reduced
dimensions such as nanoparticles or thin films, the values local fields at 57Fe nuclei
may differ from those in a bulk single crystal due to presence of demagnetizing
field. As a consequence, the spectral lines should be uniformly shifted: those with
magnetization parallel to the total magnetization to higher frequencies and vice
versa. Our analysis brought a deeper insight into the connection of lattice defor-
mations and observed hyperfine fields and by studying dependences of calculated
hyperfine fields on changes of volume and c/a ratio of the lattice parameters, we
rejected the conjecture that the observed shifts can be simply explained by lattice
mismatch with the substrate. Some other structural defect in the SrM thin film
has to be affecting the hyperfine field of each iron site differently.

Atomic arrangement in planar multiferroic hexaferrites

The NMR spectroscopy and DFT calculations were employed to study the local
structures of other hexagonal ferrites – in the family of Y-type, planar hexaferrites.
Mixed Ba/Sr Zn2Y-type was one of the first hexaferrites where magnetoelectric
properties were discovered, notably with transition temperatures above the room
temperature [44].

The structure of Y-hexaferrite consists of T-S block stacking and besides
four octahedral sites the structure contains two tetrahedral sites: one in the T
block and the other in the S block. Since Zn atoms strongly prefer tetrahedral
environment, the octahedral sites are fully occupied by Fe, while the tetrahedrons
contain both Fe and Zn. The Zn/Fe distribution between blocks can be described
by parameter 𝛾: the S block contains Zn𝛾 and the T block contains Zn1−𝛾. The
distribution of zinc atoms is a one of the key parameters for the ferroelectricity and
many other properties [44, 69, 70], with 𝛾 = 0.5 expected to be the most suitable
for magnetoelectricity. Therefore, our aim was to study experimentally the Zn
distribution in Ba- and Sr-Zn2Y hexaferrites by means of 57Fe and 67Zn NMR.
The role of DFT calculations was mainly to interpret the measured NMR spectra.
The viability of such approach was shown in Ref. [VC6], where already a rough
DFT model allowed us to assign the two components in 67Zn NMR spectrum to
the two respective Zn sites in the T and S block of the Y hexaferrite structure. In
the 67Zn spectra, simulated from calculated electric field gradients and hyperfine
magnetic fields, the line originating from Zn in S block and T block could be
clearly distinguished.

Further improving on the DFT model in Ref. [VC7] provided finer resolution of
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Figure 3.5: The 67Zn NMR spectra simulated for various values of parameter 𝛾 (left)
allowed determining the Zn distribution in the experimental NMR spectra (top
right). Bottom right: the application of external magnetic field and calculations
of hyperfine magnetic fields lead to assignment of 57Fe NMR spectra in barium
Zn2Y-ferrite and to evaluation of parameter 𝛾. Adopted from Refs. [VC6–VC8].

the parameter 𝛾 (Fig. 3.5 left) and its more reliable determination. Interestingly,
the hyperfine field for Zn in the S-block was relatively unaffected by value of 𝛾
and the frequency of the corresponding 67Zn resonance line kept constant, while
the T-block Zn resonance shifted significantly when 𝛾 was changed. The shape of
the simulated spectrum thus related to the distribution of Zn in the structure and
could be used to determine the value of 𝛾 ∼ 0.65 for the experimental spectrum –
by a simple comparison. The heat treatment lead to only a minuscule differences
in the measured spectra (Fig. 3.5 top right).

In contrast to zinc, the 57Fe spectra are much more complex, containing signals
from six different Fe sublattices, some of which are further split due to Zn/Fe
disorder within both tetrahedral sites. Reasonable interpretation of 57Fe NMR
spectrum was reached in pure Ba-Zn2Y hexaferrite [VC8], where complications
from the Ba/Sr disorder were avoided. Application of external magnetic field
in the NMR experiments allowed to separate the Fe crystal sites according to
the orientation of their magnetic moments: for atoms with moments parallel to
the total magnetization their nuclear resonance shifts to lower frequencies and
vice versa. Together with calculation of hyperfine fields on 57Fe nuclei we were
eventually able to assign the experimental 57Fe NMR spectrum (Fig. 3.5 bottom
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Figure 3.6: Left: graphically represented anisotropy of calculated hyperfine mag-
netic fields of octahedral Fe sites in the magnetite 𝐶𝑐 unit cell. Green lines denote
the trimeron structures, where central Fe2+-like atoms display increased anisotropy,
compared to relatively isotropic Fe3+-like atoms situated at the end of trimerons.
Right: assignment of the 57Fe NMR spectral lines to octahedral Fe sites. Intensity
of the squares corresponds to mean square deviation between the DFT and NMR
results. Adopted from Ref. [VC9].

right), which allowed to determine the 𝛾 ∼ 0.62 from 57Fe, in a good agreement
with the value from 67Zn NMR results. Our approach thus also demonstrated that
NMR is suitable tool to study the atomic arrangement, even in such relatively
disordered systems.

3.2 Magnetite and other ferrites
The concept of combining experimental local probe (such as NMR) with electronic
structure calculations has been successfully applied – besides the hexaferrites –
also to various other magnetic iron oxides. In this section the papers concerning
structure of magnetite are presented, followed by presentation of two works where
electric quadrupole interaction played a significant role in the analysis of NMR
spectra of ferrites for isotopes other than 57Fe.

Low temperature phase of magnetite

One of the most intricate iron oxide structures is that of magnetite which occurs
below the Verwey phase transition 𝑇𝑉 ∼ 120 K [71]. The complications with
studying such structure are due to large size of the monoclinic unit cell with 8
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unique tetrahedral and 16 octahedral Fe positions, while in addition the structure
differs only very slightly from the high temperature cubic structure – by monoclinic
angle ∼ 90.24 degrees and orthorhombic deformation of about 0.3 % [72]. But
more importantly, the peculiarity of magnetite at low temperature arises from the
rich possibilities of charge and orbital order, allowed by the fact that magnetite is
a mixed valence compound: in the cubic phase the octahedral Fe are all equivalent,
whereas in the low temperature phase a delicate and unique charge and orbital
structure of octahedral Fe is established. Consequently, the charge and orbital
ordering, the value of 𝑇𝑉 and the presence of the Verwey transition (or lack of it)
is very sensitive to exact stoichiometry [73] and the number of defects [74], even
the history of the particular magnetite sample can be important [75, 76].

Current understanding is that below 𝑇𝑉 the octahedral Fe atoms form a net-
work of linear objects, nicknamed “trimerons”, each consisting of three neighboring
Fe atoms. In a trimeron the central Fe donates part of its minority-spin electron
density to the remaining two atoms, which in turn are slightly shifted toward the
center [77].

From the point of view of NMR, the situation with magnetite is quite ironic:
57Fe NMR is the only spectroscopy that can resolve all the 24 nonequivalent Fe
sites, and thus during the history of magnetite research the method significantly
contributed to determination of the 𝐶𝑐 structure [78], yet the full assignment of the
individual spectral lines is not available to this day. In Ref. [VC9] we attempted
to tackle this problem by utilizing both presented approaches [VC1, VC2] for
comparison of hyperfine fields obtained by NMR and DFT, i.e., DFT calculations
were employed to obtain the hyperfine fields including their anisotropic parts
for all Fe sites (see Fig. 3.6 left panel). These results were then compared with
available NMR experiments, which were the sophisticated measurements of 57Fe
NMR dependences on direction of external magnetic field by Moriji Mizoguchi [79].
In order to allow the comparison, the direction of the magnetization was calculated
(using the magnetic anisotropy of magnetite [80]) for a given direction of applied
external magnetic field in the experiment. Then the anisotropy tensors for all 16
octahedral Fe sites were obtained by fitting the experimental dependences.

The DFT calculations were designed to mimic the experiment and analogous
set of anisotropy tensor was derived from the calculated hyperfine fields. By
minimizing the mean square deviation of the calculated and experimental fields
(or NMR frequencies) we were able to correlate the NMR and DFT data. Al-
though making most of the method (using both the zero-field frequencies and the
anisotropic contributions responsible for the angular dependences), our approach
yielded only a partial assignment: the 16 octahedral Fe sites in the unit cell can
be sorted into three groups 8:5:3, however, inside these groups, as well as inside
the group of 8 tetrahedral sites, the lines cannot be identified any further (Fig. 3.6
right panel). The values of spectroscopic parameters within each of the groups are
unfortunately too similar to allow for further refinement. These results supported
the idea of trimeron structure against other proposed arrangements, e.g., [72, 81].
We proved that character of the 57Fe NMR spectrum, particularly the segregation
into 8:5:3, and the trimeron structure are mutually compatible, and it is a topic
for future studies, whether this relationship is exclusive.

Another approach of tackling the low temperature phase was undertaken in
Ref. [VC10], this time, however, for the Mössbauer spectroscopy, which is a frequent
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experimental method for studying magnetite and other iron oxides. Although this
method lacks the high resolution in hyperfine magnetic fields compared to NMR,
for 57Fe isotope Mössbauer makes up for it by availability of two extra spectroscopic
quantities: the quadrupole interaction and the isomer shift. As already mentioned,
the quadrupole interaction is not present in NMR for 57Fe isotope with spin 1/2,
but appears in Mössbauer spectroscopy due to spin value of the excited nuclear
state of 57Fe being 3/2. Similarly, the isomer shift is observable thanks to the
difference in nuclear radii of excited and ground state of the 57Fe nucleus.

Unlike 57Fe NMR, where generally each non-equivalent Fe site contributes by a
single line, in Mössbauer spectroscopy the higher number of possible nuclear tran-
sitions between excited and ground state of 57Fe induces up to eight, but typically
six spectral lines per Fe site in magnetic materials. Detailed and reliable analysis
of Mössbauer spectra with higher number of non-equivalent sites then becomes
a difficult procedure of resolving numerous overlapping sextets. To describe the
experiment, one then has to adopt a strategy of decomposing to lower number of
sextets, usually using some phenomenological assumptions.

Since the overall analysis is limited by such assumptions, which makes a compar-
ison of different Mössbauer studies complicated, we aimed to propose a universal
decomposition to four sextets [VC10]. Utilizing our experience with such grouping
for the lines in 57Fe NMR spectrum, we suggested decomposing the Mössbauer
spectrum of low-temperature magnetite phase into one sextet for tetrahedral Fe
and three sextets (with intensities 8:5:3) for the octahedral Fe. To demonstrate
that such approximation is adequate, the complete set of parameters for the four
sextets was calculated by DFT, i.e., the hyperfine magnetic field, the electric field
gradient, and the isomer shift. Then, the Mössbauer spectrum of high-quality
single crystal of magnetite was acquired and the approximation by four sextets
applied to fit the measured spectrum – successfully, as no feature of the experi-
mental Mössbauer spectrum was left unexplained by the model. We thus proposed
a simple tool for analysis of Mössbauer experiments not only in physics, but also
in other fields such as chemistry or geology, where often the goal is to determine
the changes of magnetite amount in a measured sample or even only check for its
presence.

High temperature phase of magnetite

The low temperature phase is both interesting and challenging for its complex
crystallographic and domain structure, orbital and charge ordering, and many
related physical properties or phenomena, such as the nature of the Verwey transi-
tion itself, axis switching induced by external magnetic field [82, 83], or anisotropy
[80]. In contrast to these features, the high temperature cubic phase appears
to be rather dull. However, recent experiments [84–86] reveal high temperature
magnetite phase as a rather dynamic state, especially in the vicinity of the Ver-
wey transition where some form of short-range order resembles ordering of the
low-temperature phase.

Besides, there is another interesting magnetic property of magnetite: the behav-
ior of its magnetocrystalline anisotropy and especially the reorientation transition
at temperature 𝑇SR ∼ 130 K, which has long time been disputed to be connected
with the Verwey transition [87–89]. The reorientation transition is well visible in
the 57Fe NMR experiments: for direction of magnetization along ⟨100⟩ direction
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Figure 3.7: Spin reorientation temperature 𝑇SR and Verwey transition temperature
𝑇V in dependence on the average valency 𝜈𝐵 of octahedral Fe atoms. Adopted
from Ref. [VC11].

(below 𝑇SR) all 57Fe nuclei in octahedral Fe sites resonate in a single spectral
line, while above 𝑇SR with magnetization direction ⟨111⟩ the line splits 1:3 due to
anisotropy of hyperfine interaction.

Studying the influence of Ti, Zn, Al, and Ga doping or low amount of vacancies
small on the Verwey transition and the spin reorientation transition [VC11] by
means of 57Fe NMR and ac susceptibility measurements, we found a correlation
between their temperatures, 𝑇SR and 𝑇V (Fig. 3.7). The study was accompanied
by calculations of electronic structure to evaluate the valence states in pure and
substituted magnetites. Using the calculated valence we showed that the charge
density due to defect/substitution spreads over a large distance, and thus the
magnetocrystalline anisotropy is not induced by localized anisotropic ions. As a
consequence, 𝑇SR is only slightly modified by the charged defects.

Additionally, the anisotropy constants in pure cubic magnetite were calculated
and confronted with experiments [80] and thermodynamic models [88], which
allowed us to propose the following explanation of the anomalous temperature
dependence of the magnetocrystalline anisotropy in the cubic phase of magnetite.
At temperatures above 𝑇V magnetite displays small magnetocrystalline anisotropy
with 𝐾1 anisotropy constant negative. Excited state is degenerate, with large
anisotropy and positive 𝐾1. The gap between this excited state and the ground-
state is sensitive to temperature: it is wide at high temperatures but closes with
decreasing temperature and eventually, at 𝑇SR, leads to change of sign of 𝐾1
constant, and further at 𝑇V the degeneracy of the excited state is lifted entirely
and its contribution to 𝐾1 disappears.

Magnetic systems with electric quadrupole interaction

As was shown for the 57Fe isotope, the structural information stemming from the
quadrupole interaction can be extracted by the Mössbauer spectroscopy but not
by NMR (spin 1/2 in the ground state of 57Fe), nevertheless, this is not the case for
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Figure 3.8: Comparison of experimental 175Lu NMR spectrum and the one simu-
lated from ab initio calculated EFG and hyperfine fields in lutetium iron garnet.
Left panel: contributions from lutetium atoms neighboring to antisite Lu(a) defect,
or being next-nearest neighbors, as well as more distant Lu atoms are denoted
with indices nn, nnn, and 0. Right panel: contribution directly from 175Lu forming
the Lu(a) defect. Adopted from Ref. [VC12].

many other isotopes with higher spins, which are available to NMR spectroscopy.
Then, in presence of electric quadrupole interaction, the calculation of electric field
gradients is the key part to understand, assign, or even predict the experimental
NMR spectra, as will be shown in the remaining presented papers.

In lutetium iron garnet (LuIG) the NMR spectrum consists, besides the 57Fe
isotope resonance, also from intensive and exceptionally broad lines of 175Lu isotope
(spin 7/2). The combination of strong electric quadrupole interaction and non-zero
transferred hyperfine magnetic field on 175Lu yields a general case where none
of the 175Lu nuclear transitions can be considered as “forbidden” and thus up
to 28 lines for each of the two (magnetically) non-equivalent Lu sites can be
expected. The measured NMR spectrum reflects such scenario and contains a pile
of overlapping resonance lines in a broad range of about 20–300 MHz. Additionally,
there is another, weaker resonance detectable at higher frequencies, about 300–
550 MHz. The lower frequency spectrum must clearly originate from the 175Lu in
the dodecahedral sites, nominal for lutetium atoms. This was confirmed by the
calculations of LuIG electronic structure [VC12], where simulated 175Lu NMR
spectrum from the calculated parameters matched well with the experiment at
low frequencies (Fig. 3.8 left panel).

Different situation, however, occurs for the weaker resonance at higher fre-
quencies where two equivalent explanations can be proposed. First, lutetium has
another, less abundant stable isotope 176Lu with spin 7 and slightly higher nuclear
moments 𝜇 and 𝑄 compared to 175Lu, and so the resonance at higher frequencies
could correspond to 176Lu in dodecahedral sites. Or second, the garnet contains
small amount of anti-site defect, consisting of a Lu atom entering an octahedral
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site which nominally belongs to Fe, and thus the resonance of 175Lu in such octahe-
dral sites could alternatively give rise to the spectrum at higher frequencies. Both
scenarios would produce quite similar intensity of the higher frequency spectrum,
about 50 times lower than the intensity of the main 175Lu NMR spectrum at low
frequencies, because the abundance of 176Lu is 2.6 % and the concentration of
anti-site defect is ∼ 1 %, as can be determined from 57Fe spectra.

The issue was resolved by calculating the hyperfine parameters for both scenar-
ios [VC12], i.e., the hyperfine fields as well as electric field gradients at lutetium
nuclei were to be obtained. Unlike in case 57Fe where a correction to calculated
magnetic fields is required, for lutetium the situation is more favorable and no
correction needs to be developed. This is because lutetium atom in the garnet
does not possess any appreciable magnetic moment, therefore, the problematic
core contribution to the contact hyperfine magnetic field is not encountered at
all. The contact field on Lu nucleus is produced predominately due to transferred
field from neighboring Fe atoms, via oxygen ligands and valence Lu 6s electrons.
In such cases, the calculated fields do not suffer from systematic underestimation
[20, 22]. Likewise, the calculated electric field gradients are usually in a good
agreement with the experiments [90, 91].

Hyperfine parameters calculated for the 175Lu occupying octahedral sites yield-
ed NMR spectrum well corresponding to the experimentally observed weaker
resonance at higher frequencies (Fig. 3.8 right panel). Our calculations thus ex-
plained the observed frequency shift for the octahedral (anti-site) Lu resonance,
which is caused by a considerable transferred magnetic field ∼ 21.7 T, about 4
times larger than the values 5.9 and 3.9 T for dodecahedral Lu (the nominal Lu
sites). Presence of such increased transferred field is understandable, as the anti-
site Lu, being located within the magnetic Fe sublattice, is exposed to stronger
exchange interactions in comparison to the dodecahedral sites. The alternative
scenario with 176Lu in dodecahedral sites yielded resonance lines in a similar range
as dodecahedral 175Lu, i.e., in a broad range of frequencies below 150 MHz, and
thus 176Lu resonance is most probably overlapped by much more intensive 175Lu
spectrum. Therefore this alternative could be rejected.

Another example concerning the electric quadrupole interaction and deter-
mination of EFG parameters was NMR, Mössbauer, and DFT study of ilmenite
FeTiO3 [VC13]. The local structure of titanium was investigated at various tem-
peratures by 47,49Ti NMR in magnetic field 9.4 T and analogously for 57Fe by
Mössbauer spectroscopy in zero field. Both experimental methods were then com-
pared via the spectroscopic parameters to the results of calculations of electronic
structure. The ilmenite structure is relatively simple, since nominally the Fe and
Ti cations occupy one octahedral site each, however, the NMR spectroscopy of
titanium brings issues on its own. The two stable titanium isotopes, 47Ti and
49Ti, have unusually close values of gyromagnetic ratios, and both also possess
considerable electric quadrupole moments, which leads to an unavoidable overlap
of the their NMR spectra.

Ilmenite is paramagnetic at room temperature and its titanium NMR spectrum
is relatively well resolved, allowing to extract the EFG parameters directly by
fitting the whole powder-pattern of the quadrupole spectrum including satellite
transitions. EFG parameters, 𝑉𝑧𝑧 = 2.58(4)×1021 Vm−2, 𝜂 = 0.029(3), obtained in
such way are much more trustworthy, compared to more usual procedure when only
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Figure 3.9: 47Ti and 49Ti NMR spectrum of FeTiO3 at 300 K, fitted and decom-
posed to contributions of titanium isotopes. Adopted from Ref. [VC13].

the central transition is measured and analyzed [92] and yields 𝑉𝑧𝑧 = 2.1(2) ×
1021 Vm−2, and higher value of 𝜂 = 0.35(10). For 57Fe the parameter 𝑉𝑧𝑧 =
8.6(2) × 1021 Vm−2 was acquired by the Mössbauer experiment at 5 K. Our
DFT calculations of electronic structure provided EFG values in a relatively
good agreement with both spectroscopic methods, 𝑉𝑧𝑧 = 2.24(10) for Ti and
𝑉𝑧𝑧 = 6.95(10) × 1021 Vm−2 for Fe. The parameter 𝜂 was zero due to symmetry
constraints – presence of 3-fold symmetry axis of Fe and Ti sites.

In further analysis we broke the local symmetry of Ti sites in order to study
a possible deviation from the trigonal symmetry and to estimate its influence
on EFG parameters. Optimizing the structure with lowered symmetry yielded
𝜂 ∼ 0.17(5) in the calculations, which corresponds to the small non-zero value of
asymmetry 𝜂 being indeed found in the 47,49Ti NMR experiments. However, such
slight deviation of 𝜂 from zero could also be interpreted as an effect of distribution
of EFG around some mean value, e.g., due to defects or other perturbations of
the structure.

3.3 Non-magnetic systems
In contrast to magnetically ordered materials where large values of hyperfine mag-
netic field can give rise to measurable NMR even without application of external
magnetic field, in a non-magnetic system the contributions to hyperfine magnetic
field for electrons with opposing spins effectively cancel out. As a consequence, the
time-averaged mean value is zero and the main part of the magnetic field is usually
supplied by a well-defined homogeneous external field. The spectroscopic informa-
tion – analogous to hyperfine fields – is then contained in the chemical or Knight
shifts. The approach of comparing NMR experiments with DFT calculations can
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Figure 3.10: Equilibrium phase diagram of gallium, depicting the triple point as
well as several metastable equilibrium phase boundaries, taken from [93]. Example
of 71Ga NMR spectra of gallium at room temperature for several different pressures,
taken from [VC14].

thus be used in the same way, since both shifts can be reasonably calculated,
and of course the electric quadrupole interaction is again considered if present
in the studied system. In the following text we present four such works where
the NMR-DFT comparison was successfully applied in studying non-magnetic
solid-state systems.

Local structure of metals

Unlike most of other pure elements, which tend to crystallize as high-symmetry
structures under ambient conditions, elemental gallium forms a rather complex
structure with orthorhombic unit cell. Gallium displays a rich polymorphism [93–
95] and besides the Ga-I phase (orthorhombic, also denoted as 𝛼-Ga) or Ga-II
(bcc) the phase diagram contains a plethora of stable and metastable crystal
phases (Fig. 3.10). Moreover, the liquid phase as well as several solid phases may
be significantly supercooled [96], and thus the structure of gallium at a given
temperature and pressure depends also on how this state was reached. The NMR
spectroscopy has been successfully applied for studying the liquid [97, 98] as well as
some of the most common solid phases of gallium [99–101]. The phases emerging
above the liquid–Ga-I–Ga-II triple point that require higher pressure have rarely
been measured by NMR [102] though, and thus we studied the structure of gallium
metal under pressure up to 2.2 GPa by means of 71Ga NMR in combination with
DFT calculations [VC14].

At room temperature and ambient pressure the gallium was liquid at room
temperature, but under applied pressure of ∼ 2 GPa transformed into a crystal
phase as manifested by quadrupole splitting in the 71Ga NMR spectrum (Fig. 3.10).
The isotope 71Ga has nuclear spin 3/2 and so the electric quadrupole splitting
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Figure 3.11: 139La NMR spectra of LaCuAl3 (left) and LaAuAl3 (right) with their
simulations using distribution of 𝑉𝑧𝑧 parameter. Adopted from Ref. [VC15].

can be expected if the local symmetry of gallium site differs from cubic. Indeed,
the experimentally observed spectrum was quadrupolarly split and corresponded
to a single crystal site with axial symmetry (𝜂 = 0) and 𝑉𝑧𝑧 ∼ 1.58 × 1021 Vm−2.

For room temperature and pressure 2.2 GPa, several crystal structures of gal-
lium can be expected: cubic Ga-II, tetragonal Ga-III, and monoclinic 𝛽-Ga phase.
However, for each of these three structures all Ga atoms in the unit cell are equiv-
alent, hence any of these three phases could give rise to the observed spectrum.
Therefore, in order to attribute the 71Ga NMR spectrum to one particular struc-
ture, we confronted the experimental EFG parameters with those obtained from
calculations of electronic structure.

Since the electric field gradients are readily available in the WIEN2k calcula-
tions in each SCF iteration, the only missing aspect in the DFT model was the
applied pressure. Pressure dependences were obtained by changing the unit cell
volume, while maintaining equilibrium, i.e., the remaining structural degrees of
freedom (ratios of lattice parameter and internal atomic positions) were properly
optimized. The value of pressure corresponding to a given volume was then ex-
tracted from fit to Birch-Murnaghan equation of state [103]. This process allowed
direct comparison of the calculated EFG parameters with those derived from
the experiment at 2.15 GPa. Our calculations yielded 𝑉𝑧𝑧 = 1.64 × 1021 Vm−2

and 𝑉𝑧𝑧 = −0.96 × 1021 Vm−2 for Ga-III and Ga-II (both with 𝜂 = 0), and
𝑉𝑧𝑧 = 2.67 × 1021 Vm−2, 𝜂 = 0.37 for 𝛽-Ga phase. The obvious assignment of the
phase observed in experiment to Ga-III was further supported by calculation of
Knight shift 𝐾 = 0.45 %, which also matched well with the value in experiment
𝐾 = 0.47 %, whereas the calculated 𝐾 for Ga-II and 𝛽-Ga phase was 𝐾 = 0.42 %
and 𝐾 = 0.49 %, respectively. Such agreement of NMR parameters lead us to
interpret unambiguously the experimental 71Ga NMR spectrum as the tetragonal
Ga-III phase.

Another non-magnetic metallic system where investigation of the crystal struc-
ture was addressed by NMR spectroscopy and DFT calculations was LaCuAl3
[VC15]. Our aim was to show whether the local environment of lanthanum in
LaCuAl3 is uniform or rather there are more non-equivalent La sites due to Cu/Al
disorder, as this information was essential for understanding the structure of the
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compound’s phonon-analogue CeCuAl3. Inelastic neutron scattering experiments
[104] revealed that the neutron energy spectra of the cerium compound contain an
extra peak in addition to the two peaks expected from crystal electric field theory.
In order to interpret such results the magnetoelastic interaction between the crys-
tal electric field excitations and the lattice vibrations (so called ”vibron”) had to
be incorporated. On the other hand, alternative explanation could consist simply
in presence of multiple non-equivalent Ce sites with different crystal field param-
eters. NMR spectroscopy was chosen as a suitable method to resolve whether
such scenario is possible. Because cerium lacks suitable NMR isotope, only an
indirect investigation via NMR of Al and Cu nuclei would be possible. Therefore
the study was performed with phonon-analogue compound containing La instead
of Ce. This brings additional benefit, as the La compounds are nonmagnetic and
thus not affected (broadened) by hyperfine magnetic fields.

A comparative approach was undertaken with LaCuAl3, as a compound pre-
sumably having more than one La site, and LaAuAl3, as a compound known to
be well ordered, i.e., having a single type of La surroundings. The NMR spectra
of 139La, 27Al, and 65Cu were recorded for LaCuAl3 in 9.4 T at room temperature,
and all displayed well visible features of electric quadrupole interaction. When
confronted with results on the ordered LaAuAl3 system, the 139La spectra of
LaCuAl3 were significantly more broadened in comparison with those of LaAuAl3
(see Fig. 3.11).

In order to determine the source of such broadening, DFT models of LaCuAl3
and LaAuAl3 with various cationic configurations and stoichiometries were cal-
culated and for each such model the EFG parameters were evaluated. The 139La
spectrum in LaAuAl3 could be interpreted by a single spectral component and
corresponded well to the (ordered) 𝐼4𝑚𝑚 structure, and at the same time, the
EFG parameters calculated for other possible Au/Al arrangements were signif-
icantly different and could not contribute to the spectrum. Whereas in case of
LaCuAl3 the 139La spectra displayed a wide distribution of spectral parameters,
which could not be explained by a single La environment – at least one additional
structure with different Cu/Al arrangement was needed to interpret the observed
spectra. Similar observations were made for 27Al NMR spectra, and in case of
LaCuAl3 also for 65Cu NMR spectrum. Therefore, we concluded that multiple
non-equivalent La positions must be present in the crystal structure of LaCuAl3.
This finding was further elaborated and justified by analysis of calculated con-
figurational energies, where we showed that LaCuAl3 has a stronger tendency to
atomic Cu/Al mixing compared to Au/Al case in LaAuAl3.

EFG and band-inversion in topological insulator

The 209Bi NMR accompanied by DFT calculations was used to study Bi2Se3
topological insulator [VC16], which is a system where spin-orbit interaction makes
the electronic states in bulk different from those near the surface. Strong spin-orbit
coupling in the bulk Bi2Se3 induces so called ”band inversion”, i.e., the position of
Bi 𝑝𝑧 states in energy is decreased and the energy of Se 𝑝𝑧 states increased. This
leads to charge transfer from Se to Bi and such transfer is manifested as relatively
small quadrupole splitting observed in 209Bi NMR spectrum. The splitting further
decreases with increasing concentration of charge carriers.

The corresponding 209Bi EFG parameters were obtained from DFT calculations
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Figure 3.12: Calculated 𝑉𝑧𝑧 with (red) and without (blue) spin-orbit coupling in de-
pendence on the carrier concentration are compared with experimental quadrupole
splittings measured in Ref. [VC16] (black triangles), [105] (green triangles), and
[106] (orange triangles). Horizontal error bars indicate the expected variation
of the carrier concentration among the samples, vertical error bars indicate the
variation of 𝑉𝑧𝑧 due to uncertainty of 209Bi quadrupole momentum. Adopted from
Ref. [VC16].

of Bi2Se3 with extra charge added into the unit cell in order to model realistic
carrier concentrations (see Fig. 3.12). We showed that the EFG on Bi appears
due to anisotropy of its 6𝑝 states: 6𝑝𝑧 states are less occupied than the 6𝑝𝑥 and
6𝑝𝑦 states. And since the extra charge enters the 6𝑝𝑧 states predominantly, the
increase of carrier concentration reduces the EFG on 209Bi.

When the spin-orbit interaction is enabled in the calculation, band inversion
occurs, which is accompanied by additional transfer of electronic density from Se
to Bi 𝑝 states. The calculations thus allowed us to explain the abrupt decrease of
the EFG on bismuth when the strong spin-orbit interaction is present.

Investigation of cationic preference

Not only interpretation of NMR spectra but an additional insight was brought by
employing the DFT calculations of Lu3Al5−𝑥Ga𝑥O12 garnets [VC17], where the
atomic arrangement of Al and Ga was studied. The occupation of tetrahedral and
octahedral positions of the garnet lattice by Al and Ga atoms – important for
scintillating properties of the material [107] – was independently determined from
spectral intensities of 27Al and 71Ga NMR. The NMR results were then confronted
with appropriate DFT models and both methods indicated a strong preference of
Ga to occupy tetrahedral sites, regardless of Ga concentration 𝑥.

Such result appears as a paradox, since gallium has larger ionic radius than
aluminium and the tetrahedron in the garnet structure has significantly smaller
volume than the octahedron. Besides, there is no apparent difference in the elec-
tronic structure, since both Al an Ga atoms possess 𝑛𝑠2𝑛𝑝1 valence electrons that
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Figure 3.13: Top: Aluminium and gallium quadrupole constants as determined
from NMR experiments and from DFT calculations for the mixed Lu3Al5−𝑥Ga𝑥O12
garnets. Bottom: Local structure of the garnet with indicated changes upon Ga
substitution. Inflation of Ga tetrahedron further increases the trigonal distortion
of the oxygen octahedron, while the tetrahedron is rotated to accommodate the
shift of the shared oxygen. Partially adopted from Ref. [VC17].
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favor the formation of hybridized 𝑠𝑝3 orbitals in the oxygen tetrahedron. How-
ever, from our DFT calculations we were able to show that, despite being fully
occupied, the semi-core Ga 3𝑑 electrons are slightly involved in the interactions,
and thus become the essential factor making Ga less compatible for octahedral
environment. Together with higher electronegativity of Ga, this explained the
observed tendencies of atomic distribution in the garnet structure.

Besides the atomic arrangement, the quadrupole coupling constants and chemi-
cal shift parameters for Al and Ga nuclei were calculated in a good agreement with
the NMR experiments. This allowed us to understand why for octahedral Al and
Ga the measured EFG parameters increase with increasing Ga content, while the
tetrahedral EFGs keep constant. The DFT modelling showed that the structural
relaxation after substitution of Al by larger Ga proceeds via deformation of the
octahedrons while the tetrahedrons are rotated in the process, but otherwise left
relatively intact.
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Concluding remarks
The presented thesis described – as a common theme – the connection of two
methods for studying solids: nuclear magnetic resonance experiments and density
functional theory calculations. These methods were briefly introduced in the first
chapters, and then their mutually beneficial combination was demonstrated in a set
of papers concerning magnetic, but also several non-magnetic solid-state systems.
The original pathway of this interaction – lying in calculations providing help with
the interpretation of experiments – became more and more often completed with
the support flowing in the opposite direction, as the precise experiments provided
an anchor to reality for the calculations. We tried to show both the difficulties
and the advantages of such approach and the deeper understanding it provides.

There are many directions for future developments of this combined method,
mostly consisting of improvements on the side of calculations. For example in
magnetic materials, the electronic correlations should be better addressed by
utilizing beyond-DFT methods. Nowadays, such solution has become feasible in
form of incorporating many-body methods (e.g., dynamical mean field theory)
selectively within the DFT framework. For nonmagnetic materials, potentials for
considering dispersion forces have been recently developed and implemented in
all-electron DFT methods, which allows better descriptions of systems we would
like to study, such as crystals containing water molecules with hydrogen bonds or
layered structures with inter-layer van der Waals forces.
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[68] J. Burš́ık, I. Drbohlav, Z. Frait, K. Kńıžek, R. Kužel, and K. Kouřil, J.
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