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ABSTRACT

Drought is a natural disaster, which negatively affects millions of people and
causes huge economic losses. This thesis investigates agricultural drought in
Czechia using machine learning algorithms. The statistical models utilised
were Random Forest (RF), Geographical Random Forest (GRF) and Locally
Tuned Geographical Random Forest (LT GRF). GRF consists of several RF
models trained on a subset of original data. The final prediction is a weighted
sum of the prediction of a local and global model. The size of the subset is
determined by the tunable parameter. LT GRF addresses spatial variability
of subset size and local weight. During the tuning process, optimal parame-
ters are found for every location and then interpolated for unknown regions.
The thesis aims to evaluate the performance of each model and compare
GRF feature importance output with the global model. The best model fea-
tures meteorological importances are used to create a drought vulnerability
map of Czechia. Produced assessment is compared to existing drought vul-
nerability projects.

Key words: drought, vulnerability assessment, Geographical Random For-
est
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ABSTRAKT

Sucho je přı́rodnı́ katastrofa, která negativně ovlivňuje miliony lidı́ a způsobuje
obrovské ekonomické ztráty. Tato práce zkoumá zemědělské sucho v Česku
pomocı́ algoritmů strojového učenı́. Použité statistické modely byly Ran-
dom Forest (RF), Geographic Random Forest (GRF) a Locally Tuned Ge-
ographic Random Forest (LT GRF). GRF se skládá z několika RF modelů
vytrénovaných na podmnožinu původnı́ch dat. Konečná predikce je váženým
součtem predikce lokálnı́ho a globálnı́ho modelu. Velikost podmnožiny je
určena laditelným parametrem. LT GRF řešı́ prostorovou variabilitu ve-
likosti podmnožiny a lokálnı́ váhu. Během procesu laděnı́ jsou pro každé
mı́sto nalezeny optimálnı́ parametry a poté interpolovány pro neznámé oblasti.
Tato práce si klade za cı́l vyhodnotit přesnost každého modelu a porovnat
výstup důležitosti faktorů GRF s globálnı́m modelem. K vytvořenı́ mapy
zranitelnosti vůči suchu v Česku se využije důležitost meteorologických fak-
torů. Vytvořené hodnocenı́ je porovnáno se stávajı́cı́mi projekty zranitelnosti
suchem.

Klı́čová slova: sucho, posouzenı́ zranitelnosti, Geographical Random Forest
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1 INTRODUCT ION

Environmental hazards are natural phenomena, which negatively affect hu-
man society in terms of economic and social losses. Drought hazard belongs
to most damaging and widespread causes of huge economic and human
losses. The severity of the drought depends on the environment’s (or so-
ciety’s) ability to cope with hazards. For example, in developed countries,
drought’s direct impact is almost invisible, and indirect impact projects to
higher consumption of water to irrigate agricultural plants. In developing
countries, drought might cause crop failure and subsequent instability. How-
ever, climate change will worsen many aspects of drought, its recurrence,
severity and timespan (Mukherjee et al., 2018). Therefore, the need for mech-
anisms and tools, which make the environment and society more resilient
towards drought is pressing. The first step is identifying vulnerabilities in
the agricultural system and describing natural coping strategies. One such
tool is vulnerability assessment, which helps to identify vulnerable regions.
Researchers can then find underlying causes of vulnerability. On the other
hand, less vulnerable regions can point out factors if assessed, which in-
crease resilience. Vulnerability assessments are usually conducted by subjec-
tive assigning weight to factors.

The use of machine learning models expanded into geographical topics.
However, these algorithms are aspatial, thus cannot identify underlying spa-
tial patterns in data. It is analysing spatial data, not spatial analysis (Fother-
ingham, Charlton, et al., 1996). The spatial analysis utilises spatial aspects
existing within to create a more accurate conclusion and describe patterns
from a spatial perspective. Models incorporating spatial aspects should per-
form better with spatial data than their aspatial counterparts. Spatial analy-
sis can in addition explain spatial non-linearity and change in the dependent
variable with space.

In this thesis variants of spatially explicit machine learning algorithm Geo-
graphical Random Forest (Georganos et al., 2019) (GRF), which builds on
Random Forest (RF) algorithm, will be tested on environmental data. Best
variant will be chosen to create a vulnerability map of study area, which is
defined by bounding box of Czechia boundaries.

1.1 research questions

Three research tasks were formulated, centred around the problem of spatial
non-linearity in vulnerability analysis.

1



1.2 thesis outline 2

• Build and evaluate GRF and Locally Tuned Geographical Random For-
est (LT GRF) for prediction of drought indicator.

• Explore spatial variability of feature importance from local models in
comparison to the global model.

• Create vulnerability assessment to drought hazard with the most accu-
rate algorithm.

First task comprises of preparing a dataset of environmental data and build-
ing several regression prediction models - RF, GRF and LT GRF. Finally,
these models are evaluated in terms of prediction accuracy. In addition, top-
ics concerning performance of models including ability to capture spatial
patterns, computational complexity, effectiveness of tuning process will be
discussed. The main question, which the topic will also seek to answer is:
“Is it worth it to build spatially explicit machine learning model such as GRF
(possibly with local tuning) compare to regular aspatial RF ?”

The second task involves an examination of RF unique feature, ability to
return importance of variables used during the training phase. RF returns
importance for the whole dataset, on the other hand, GRF opens the possi-
bility to study variable importance from each location. Differences between
local and global variables will be studied. As a tool of analysis, only visual
exploration will be employed.

Lastly, vulnerability assessment of drought hazards is created in form of a
map. The task includes developing a new methodology, which processes
existing data and returns the output. The validation process is done by
comparing existing vulnerability assessments from different sources. The
question is, whether it is possible to accurately assess vulnerability in com-
parison to the ;other methods.

1.2 thesis outline

The thesis is structured into chapters:

• Chapter 2 reviews studies related to drought hazard and machine
learning, random forest in particular. The chapter also describes stud-
ies and projects which monitor drought hazards in Czechia.

• Chapter 3 focuses on theoretical background. The chapter describes
drought identification and quantification with drought indices, a frame-
work for drought vulnerability assessment and factors, which influ-
ence the severity of drought. Next, the chapter focuses on machine
learning, mainly on algorithm random forest. Besides that, spatial ex-
tensions to machine learning and tuning of parameters are discussed.
Lastly, some sampling approaches are described.

• Chapter 4 includes a description of datasets, tools and study area.
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• Chapter 5 describes the methodology. Firstly dataset preparation, vi-
sual exploration and sampling is addressed. Later, the model building
of random forest, geographical random forest and locally tuned geo-
graphical random forest are described. At last, a method of assessing
vulnerability is presented.

• Chapter 6 presents the results of model testing, variable importance
and vulnerability assessment.

• Chapter 7 discuss the results and evaluates, if the research tasks were
fulfilled.



2 REV IEW OF L I TERATURE

This chapter aims to provide a comprehensive review of relevant scientific
publications. Publications mentioned are a primary source for the theoretical
part of the thesis, which provides knowledge to construct the methodolog-
ical part. Review of literature consists of several subsections, first one lists
publications dealing with drought hazards and the concept of vulnerability
towards drought, second review publications about machine learning, RF
algorithm, spatial aspect in machine learning and use of machine learning
in drought modelling.

2.1 drought and drought assessment

Drought as one of the most severe natural hazards has been exhaustively
described in many publications. Therefore, only a small fraction of stud-
ies, which are subjectively most beneficial, will be mentioned. Firstly, it is
needed to bring up studies, which define natural hazards and provides a
framework for vulnerability assessment. Several authors discussed the con-
cept and definition of drought and its usability, for example, D. A. Wilhite
and Glantz (1985), D. Wilhite A. (2000) argue the importance of the definition
in case of drought. Lloyd-Hughes, 2014 stress the impracticality of a single,
uniform definition of phenomena that is dependent on human needs and
intervention. Despite the inconsistency in determining a uniform definition,
the interpretation from Palmer (1965) is often used; “interval of time, gen-
erally of the order of months or years in duration, during which the actual
moisture supply at a given place rather consistently falls short of the cli-
matically expected or climatically appropriate moisture supply”. However,
this definition is suitable for meteorological drought. The thesis analyses
agricultural drought, which definition is altered to focus on plants condi-
tions. Mishra and Singh (2010) define agricultural drought as “period with
declining soil moisture and consequent crop failure without any reference to
surface water resources.”. Crop failure refers to absent or diminished crop
yield relative to expectations. The meteorological definition describes rela-
tive deficiency in precipitation, on the other hand, agricultural drought is a
physical manifestation of such deficiency. For research purposes, drought
needs to be quantified using an indicator.

Drought manifests itself differently across the world and can be researched
from different perspectives. It is relative in space, time, scale and research
field. The relative nature of drought gave rise to a high number of drought
indicators and indices. Several studies summarise and list used indices and
indicators. Mishra and Singh (2010) describe some of the most popular. A
comprehensive list of approximately 50 indicators and indices provides pub-
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2.1 drought and drought assessment 5

lication from World Meteorological Organisation ((Svoboda, Fuchs, et al.,
2016)). A lot of researchers summarise and point out aspects of indices, for
example, Heim Jr (2002) for indices used in 20. century, Niemeyer et al.
(2008) describe indices by categories or Zargar et al. (2011), whom review
advantages and disadvantages of various indices. Many authors evaluate
performance of indices in specific region for example, Adnan et al. (2018) in
Pakistan, Teweldebirhan Tsige et al. (2019), Tian et al. (2018) in United States,
Raible et al. (2017) in all of Europe or Szalai, Szinell, and Zoboki (2000) in
Hungary. Keyantash and Dracup (2002) evaluated indices by qualitative fac-
tors. X. Liu et al. (2016) reviewed agricultural indices in particular and out-
lined challenges in detecting agricultural drought. From the research aims
perspective the most important are studies, which evaluates agricultural in-
dicators in climatic conditions similar to Central Europe.

Natural hazards and their mitigation is a topic often discussed by United
Nations. In their publication, Office for Disaster Risk Reduction (2004) dis-
cussed vulnerability and risk mitigation initiatives around the globe. Ac-
cording to De Stefano et al. (2015) vulnerability is understood and concep-
tualized in different ways from diverse scientific domains. Despite that, two
major epistemological approaches can be identified. Firstly, vulnerability as
“relationship between the severity of the hazard and the degree of damage
caused” (Füssel, 2007) and secondly, vulnerability as a condition of socio-
economical background. The first approach is more relevant to this thesis.
Various vulnerability models were constructed, for example the Pressure
and Release Model (Blaikie et al., 2014), Hazard and Risk model (Office for
Disaster Risk Reduction, 2004) or “Methods for the Improvement of Vulner-
ability Assessment in Europe” model by (Joern Birkmann et al., 2013).

Drought as natural phenomena and risk describes many authors, for exam-
ple Blaikie et al., 2014 or Bryant, 2005. Comprehensive information about
drought causes, drought factors and vulnerability assessment provides pub-
lication from Nagarajan, 2010. Additional materials containing information
about current research drought vulnerability are for example from Hagen-
locher et al., 2019 or from Ionescu et al., 2009 in context of climate change.

The first notable vulnerability assessment was conducted by Wilhelmi and
D. A. Wilhite (2002) by subjective weighting individual factors over Ne-
braska. A similar approach used by Jain et al. (2015) in the region of Ken
river in India, Shahid and Behrawan (2008) in Bangladesh. Ekrami et al.
(2016), Hoque, Pradhan, and Ahmed (2020) improve exactness of assessment
by employing analytical hierarchy process (AHP) method. Fuzzy logic meth-
ods employed D. Zhang et al. (2011) in Liaoning province in China, Dayal
et al. (2018) in Queensland in Australia and Hoque, Pradhan, Ahmed, and
Sohel (2021) in northern New South Wales in Australia. A new technique -
machine learning models such as Support Vector Machine, random forest or
boosted regression trees utilised Rahmati, Falah, et al. (2020) for vulnerabil-
ity assessment of part of Queensland, Australia. A similar study, only with
an artificial neural network, was developed a year later (Rahmati, Panahi,
et al., 2020). The last two studies are important sources as they assess vul-
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nerability to drought with machine learning.

2.2 machine learning

Machine learning as a discipline encompasses various algorithms, methods
and approaches. In recent decades, as a consequence of the rapid growth
of computational performance, the field of machine learning experienced a
renewal after the so-called AI winter. Interest in machine learning and ar-
tificial intelligence surged in recent years following the availability of big
data from internet users. Therefore, machine learning became a popular
tool for data analysts. Demands for theoretical and practical is reflected by
a huge amount of publications. For example, the publication Pattern Recog-
nition and Machine Learning from Bishop (2006), which belong to the most
cited in the field, provides main information from a theoretical perspective.
A valuable theoretical base also provides older publication from Mitchell
(1997). Other examples of well written publication with a more contempo-
rary approach are from Alpaydin (2020) and Hastie et al. (2009). Machine
learning evolution from a less mathematical, more exemplary perspective of-
fers Russell and Norvig (2002) in their more than 2000 pages long book. Sev-
eral authors tried to provide more specialized theoretical knowledge such as
Kuhn, Johnson, et al. (2013) publication devoted to statistical prediction or
Berk (2020), who wrote about machine learning from a regression perspec-
tive. A lot of publication offers more applied information. James et al. (2013)
deliver mathematically lightly put content with code examples in R targeted
at beginners.

As was stressed, machine learning comprises plenty of methods and ap-
proaches, including algorithms. The popular ones are the artificial neural
network, support vector machine, linear and logistic regression and last but
not least, algorithms based on a decision tree. Because decision tree is sim-
ple, intuitive and easy to interpret, their variants are known from ancient
times. One of the first notable use decision tree-like structures is Porphyrian
tree, from Greek philosopher Porphyry (3. century CE). Hierarchical tree
represent scale of being, from “supreme genus” to “species” and “individ-
uals” (Lima, 2011). Earliest modern utilisation of a decision tree, according
to de Ville (2013) trace back to Belson (1956). The term Classification and
Regression Tree was coined in the publication by Breiman et al. (1984), in
which authors describe the methodology used to construct decision trees.
The first true tree-like machine learning algorithm was developed by Quin-
lan, called “Interactive Dichotomizer” (ID3) (J. Ross Quinlan, 1986), sub-
sequently refined to C4.5 algorithm (J Ross Quinlan, 1992). The next im-
provement of decision tree-based algorithms was achieved by incorporating
bootstrap sampling, developed by Efron (1992). Bootstrap can be described
as random sampling with replacement, and in the context of decision tree
leads to lower bias and variance. This approach led to the design of Adaptive
boosting (Freund, Schapire, et al., 1996) or short Adaboost. The algorithm
creates many shallow trees (called stump) and iteratively train and assign
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weight to them. Ho (1995), and later Breiman (2001) further refined boot-
strapped decision tree by incorporating randomization of input features, an
improved algorithm is known as RF.

The excellent performance of RF attracted the attention of users and re-
searchers alike, which resulted in a high number of publications discussing
properties, variants and extensions. Genuer et al. (2008) contribute with gen-
eral methodological insight along with advice for feature selection. Feature
importance caught attention of several authors; Grömping (2009) compares
RF features importance with linear regression, Strobl, Boulesteix, Zeileis, et
al. (2007) researched bias in feature importance results, Strobl, Boulesteix,
Kneib, et al. (2008) and Archer and Kimes (2008) inspect performance with
high dimensional dataset. Probst, Wright, et al. (2019) review pieces of infor-
mation concerning hyper tuning RF.

Increasingly available machine learning algorithms found application in ge-
ography. Fotheringham, Charlton, et al. (1996) published adjustment to the
linear regression to be better suited for spatial data, known as Geographic
Weighted Regression (GWR). The concept is further broadened in their pub-
lication (Fotheringham, Brunsdon, et al., 2003). Fotheringham, Crespo, et al.
(2015) later extended this concept to the time dimension. Georganos et al.
(2019) applied the same principle to RF, creating GRF. Another approach to
incorporate spatial aspect to machine learning are geographical covariates
in RF (Hengl et al., 2018), (Meyer et al., 2019). Because GRF is relatively
new concept, only a handful of studies utilised it. Santos et al. (2019) used
GRF and dasymetric mapping to evaluate forest change drivers in Ecuador.
Hokstad and Tiganj (2020) compared performance of GRF to regular RF and
Kriging in spatial modelling of gas deposit.

2.3 drought assessment in czechia

Fur the purpose of validation vulnerability assessment, it is important to
describe relevant publications and projects, which monitor and evaluate
drought events in Czechia. Czech Hydro-Meteorological Institute provides
warnings on possible drought events using Standardized Precipitation In-
dex (SPI) and Standardised Precipitation-Evapotranspiration Index (SPEI)
for meteorological and available soil water for soil drought. Intersucho
(Miroslav Trnka, Hlavinka, et al., 2014) is a multidisciplinary project es-
tablished in 2012, which provides a short-time and long-time prediction of
drought severity and monitors the current condition of soil and vegetation.
Water balance model SoilClim is used for estimation evapotranspiration and
soil moisture. According to Hlavinka et al. (2011) model has been tested and
performs well within the area of Czechia.

Publication from Brázdil and Miroslav Trnka (2015) is a comprehensive source
of information about drought in Czechia. The authors describe means of
monitoring drought with indices, historical drought events and the impact of
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drought on various sectors of the economy, mainly agriculture, forestry and
water management. The last part of the publication is dedicated to future
trends, including a description of vulnerable regions and estimated drought
vulnerability for Czechia in form of a map. The vulnerability assessment
was conducted with datasets provided with project intersucho and project
EnviSec. Project EnviSec arises from the cooperation of several research insti-
tutes, financed by the ministry of interior, with aims to developed integrated
methods for monitoring and evaluation of global changes that impact to en-
vironmental security of Czechia. The project began in 2012 and finished in
2015. The study conducted by (Pártl et al., 2017), one of the outcomes of the
project, assess integrated risk as a function of hazard and vulnerability.

Several other studies assess vulnerability to drought. For example, Trnka et
al. (2009) identified a drought-prone region with new developed combined
drought index. Miroslav Trnka, Semerádová, et al. (2016) focus on assessing
the vulnerability of agricultural areas. As an indicator of drought median
number of days with a saturation of topsoil less than 30 % is used. Vulnera-
bility of forest to drought in the context of climate change discusses Hlásny
et al. (2014). The authors estimate future climate data from historical records
and regional climate models. Results show that forests within Czechia are
relatively resilient to climate change-induced droughts.

2.4 summary

The chapter describes the current state of research in the field of drought
vulnerability assessment using machine learning models, specifically the RF
model. The first part focus on different understanding of drought hazard,
vulnerability assessment frameworks and distinct assessment methods used.
Case studies (drought indicators and assessments) are mostly located in arid
and semi-arid regions such as Australia, India or Iran. On the other hand,
the number of studies, which would be localised in Central Europe or sim-
ilar climate is very small. The contribution of such studies from different
climatic environments to the thesis is smaller.

Second part focus on machine learning models and specific models, which
deals explicitly with spatial information. This field is relatively new, as the
GRF concept has been developed recently. Therefore, only a small number
of studies exist, which might be used for the comparison of results. The
third part deals with existing monitoring and vulnerability assessments in
Czechia. The problem is similar. Despite many studies deals with drought
hazards, a small number of them assess environmental vulnerability to agri-
cultural drought. Existing studies present vulnerability in insufficient scale
and without distinction to land cover, which further hinders comparison and
validation.

In conclusion, the spatial applicability of machine learning models is not
thoroughly explored. Only a small number of studies utilise spatially ex-
plicit models such as GRF. In addition, unique property of RF - feature im-
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portance assessment was not explored in this context. Similarly, use of ma-
chine learning models in vulnerability assessment is not wide-spread. The
aim of this thesis is to provide insight into usability of spatially explicit RF
model in vulnerability studies.



3 THEORET ICAL BACKGROUND

This chapter aims to describe theoretical concepts, which are required for
developing a new methodology for assessment of agricultural drought with
a spatially sensitive RF algorithm. The first part is dedicated to drought.
It is important to describe the environment and factors, which influence
the severity of drought. The next part comprises theoretical information
about machine learning principles. Next, RF and GRF are described. Lastly,
sampling methods are described.

3.1 drought

Compared to droughts, earthquakes, tropical storms or floods belong to
more prominent and visible hazards. Subsequent devastation, which oc-
curs quickly is easy to capture and quantify. On the other hand, “drought
is a creeping phenomenon that accumulates over a period of time across
a vast area, and the effect lingers for years even after the end of drought”
(Sivakumar, 2011). Drought is often a trigger of more serious effects, for
example, drought can cause crop failure, which results in famine and vio-
lence. Drought ranks first among natural disasters sorted by several criteria
such as severity, length, area extent or loss of life (Bryant, 2005). According
to Blaikie et al. (2014) impacts of drought contribute 86.9 % of all deaths
caused by natural hazards between the years 1900 - 1999. Despite successful
mitigation of negative effects of drought attribute mainly to humanitarian
aid and accelerated economic development, 1.5 billion people were affected
by drought in 1998 - 2017 (Wallemacq, 2018). Because of huge economic and
human losses, there is a constant effort to develop methods to detect, moni-
tor, predict and mitigate drought hazards.

Traditionally, drought is classified into four categories. Meteorological drought
refers to the shortage of precipitation over an area and period. Hydrologi-
cal drought relates to an insufficient supply of surface and subsurface water.
Agricultural drought is linked to meteorological and hydrological drought
and refers to lack of soil moisture and subsequent crop failure. A plants
demand for water is dependent on prevailing meteorological conditions, bio-
logical characteristics of the specific plant, its stage of growth, and the phys-
ical and biological properties of the soil (D. A. Wilhite and Glantz, 1985).
Thus agricultural drought severity may vary from plant to plant. Lastly,
socio-economical drought expresses the failure of meeting market demand.
Mishra and Singh (2010) suggest adding groundwater drought, which refers
to low levels of groundwater resources.

10
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It is important to identify drought hazard accurately. Imprecise identifi-
cation leads to inaccuracies, which are propagated to all subsequent steps
and will hinder model building process. To achieve this goal, three proper-
ties need to be obtained; initiation and termination, duration and severity
of the drought (Yevjevich, 1967), (Mohan and Rangacharya, 1991). A. D.
Wilhite (2011) adds spatial extent, which is needed to distinguish regional
droughts. The magnitude of the drought is calculated as the ratio of severity
and duration (Dracup et al., 1980b). The longer the duration, the smaller the
magnitude of drought. Dracup et al. (1980a) lists several steps:

1. The nature of water deficit: This point refers to a particular definition
of analysed drought. In the case of agricultural drought, it is a deficit
of available soil moisture and subsequent crop failure.

2. Identification of variable: This step was added by Mohan and Ran-
gacharya (1991) and is closely linked to the first point. This step in-
cludes the selection of indicators, which is used to quantify drought.
Various indices were developed to measure drought and the selection
of indicators will be discussed further below.

3. Identification of averaging period: The selection of time step (for exam-
ple hours, days, months) over which analysed data are aggregated. A
shorter averaging increment will result in a larger number of drought
events and a longer increment in a smaller number. Secondly, a shorter
time step tends to result in a bigger serial correlation than a larger time
increment.

4. The truncation level: Component which serves as a divider between a
time series of into drought period and normal period. Truncation value
can be set arbitrary, but mostly a statistical variable is used. Several
truncations or threshold values might be used for different categories
of drought.

3.1.1 Drought indices

According to Mishra and Singh (2010), drought indicator is a prime variable
for assessing the effect of drought and defining different drought param-
eters, which include intensity, duration, severity and spatial extent. The
selection of appropriate indicator is essential as it will be the dependent
variable, which will be predicted by model. Firstly, it needs to distinguish
between drought index and indicator. Indicators are variables or parame-
ters used to quantify drought hazard. A typical indicator is the amount of
precipitation or soil moisture for a selected time scale. Indices are usually
calculated numerical representations of drought and are computed from in-
dicators (Svoboda, Fuchs, et al., 2016). Besides providing information about
drought events, indicators and indices help compare quantitative drought
impacts over variable scales of geography and time and facilitating the com-
munication of drought conditions among various interested entities (Zargar
et al., 2011). There are more than a hundred drought indicators and in-
dices, yet no one is generally accepted as perfect. This subsection describes
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drought taxonomy, most important indices and other issues connected to
drought indices.

Same as drought, indicators are classified into meteorological, hydrologi-
cal and agricultural. Socio-economic and agricultural drought will not take
place without one of the former. The indicator of socio-economic drought
would be monetary (Keyantash and Dracup, 2002), which is difficult to
assess. Meteorological indices use precipitation and temperature as input.
Hydrological indicators are derived from stream characteristics, lastly, agri-
cultural indicators are concerned mainly with soil moisture and vegetation
conditions. Niemeyer et al. (2008) adds the category of comprehensive in-
dices which combine variables from more fields, for example, precipitation
and soil moisture. Indicators can be classified through the acquisition of
variables needed to construct indices. Indicators constructed from in situ
observation rely on a network of meteorological stations. Because of a long
history of meteorological records, these indices may be used in historical
research. On the other hand, in the region with sparsely located meteo-
rological stations records might not be sufficient. The second option is to
utilise remote sensing. The obvious advantage compared to in situ is spatial
resolution, which is uniform across borders. Research scope of thesis prede-
termines the selection of agricultural indicator, however other categories are
often use in agricultural drought research and shows decent performance.
Some of the most prominent are described further as they are widely avail-
able and well-known, which eases reproducibility.

One of the oldest and most prominent indexes is the Palmer Drought Sever-
ity Index (PDSI) (Palmer, 1965). Index use water supply and water demand
calculation, which requires precipitation, temperature data and available wa-
ter content of the soil to approximate soil moisture. Soil is divided into two
layers, the upper layer, which is 25 mm deep and the lower layer. Firstly,
the top layer is saturated, then lower and lastly run-off will occur. Potential
evaporation (demand side) is calculated using a model developed by Thorn-
thwaite (1948). Drought will occur when all moisture in the soil is evapo-
rated. Despite being popular and widely used, there are several concerns
and objections. According to Heim Jr (2002), index needs to be calibrated
if a comparison between different regions or months is needed. This issue
resolves Z-index, created by the same author, which does not require data
from previous months. The index is not as sensitive as PDSI to calibration
and is more suitable to short term assessment of drought (Karl, 1986). Al-
ley (1984) emphasizes a number of arbitrary assumptions that were made
during the development of the PDSI. Firstly, the model developed by Thorn-
thwaite is one of many available models, other models could be easily used.
The second problem is an arbitrary designation of drought severity classes.
Also, PDSI was developed for a semi-arid region of the United States and it
is inaccurate for mountainous regions. Despite that index has come under
scrutiny in recent studies, its variations provide accurate means of drought
identification, thus making it a suitable indicator in drought assessment.
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SPI developed by McKee et al. (1993). The index is calculated from long-
term records of precipitation. The records are fitted to the probability func-
tion and then transformed using the Gaussian function, which results in
the mean of SPI being zero and variance being one. According to Guttman
(1999), who compared several distribution models, Pearson type III and Gen-
eralized additive model achieved the best performance, especially for wet
events. Time interval is flexible, usually computed with 1, 3, 6 or 12 months
intervals. Despite being a meteorological index, SPI is often used for agri-
cultural drought. Szalai, Szinell, and Zoboki (2000) investigate relations be-
tween soil moisture, PDSI and SPI in which 2-months SPI achieved the best
correlation with soil moisture. Zargar et al. (2011) summarise the advan-
tages and disadvantages of the index. SPI is simple to obtain because relies
on precipitation records only. It is adaptable, maybe use for various times
scales and various types of drought. In addition, it can be used to compare
different climates and monitor the wet period as well. On the other hand,
SPI is loosely connected to ground conditions and additional variables are
required. Lastly, long precipitation records are essential for accurate assess-
ment. One of the weak points of the SPI tried to solve (Vicente-Serrano et
al., 2010), who introduced the SPEI. The index incorporates potential evap-
oration and SPI. However, potential evaporation requires several variables,
which might be hard to obtain, for example, surface temperature, air hu-
midity or water vapour pressure. SPI would not be the first choice for the
indicator as it lacks a link to the link to others features, however, it is easily
obtained and widely known. SPEI is linked to ground conditions, on the
other hand, it is not as easily obtained.

Combined Drought Indicator CDI belongs to the category of combined or
comprehensive indices. Was developed by Sepulcre-Canto et al. (2012) to
monitor agricultural drought over Europe. CDI combines SPI, anomalies of
soil moisture and the Fraction of Absorbed Photosynthetically Active Radia-
tion (fAPAR). Classification scheme includes five categories “watch”, “warn-
ing”, “alert”, “partial recovery” and “full recovery” after specific condition
is achieved. For example, for the first category three months, SPI must bust
be lower than -1 or two months SPI lower than -2. Recently, the index was
update by Cammalleri et al. (2021) to include new category “temporary re-
covery”. Despite being well suited for Europe and being an agricultural
indicator, categorical values of CDI are not suited for a regression prob-
lem. Transforming indicator to continuous values would increase inaccuracy,
which makes indicator somewhat less convenient.

Soil moisture, especially within the root system of the plants, is an accurate
indicator of agricultural drought. There have been several attempts to de-
velop a model, which simulates a water balance in soils layers. For example,
Huang et al. (1996) created a model which uses monthly mean temperature
and precipitation. However, with the development of remote sensing, as-
sessment of soil moisture from synthetic aperture radar emerged. Soil mois-
ture detection utilises an increase in the backscattering of microwave radia-
tion. Soil saturated with water has a higher dielectric constant than dry soil,
however during temperatures below freezing point, water content appears
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similarly to dry soil. Several physical and empirical models to extract infor-
mation about soil moisture were developed. Most notable, multi-temporal
method developed by Wagner, Lemoine, et al. (1999) utilises archives of mi-
crowave imagery. For every pixel is found a record with the lowest value,
which equates to minimal soil moisture and base roughness of the terrain.
This base value is then subtracted from other images resulting in soil mois-
ture. Information about soil moisture might be represented by the Soil Water
Index (SWI), which provides relative information about the water saturation
of the soil. Compare to other mentioned indicators SWI is not as widely
used and studied, thus making it less comparable and known. This is not
necessarily a negative attribute, but compared to other indicators its applica-
bility to drought assessment is not as much examined.

Besides the aforementioned indices, several others need to point out. In a
category in situ indices belongs Crop moisture index (Palmer, 1968). Index
is constructed from mean weekly temperature values, total weekly precip-
itation and index value for the previous week. Opposite to PDSI, which
maps long term drought, index is better suited to evaluate short term soil
moisture shortage. Surface water supply index developed by Shafer and
Dezman (1982). Index is calculated from the monthly probability of precip-
itation, reservoir storage, streamflow and snowpack. The index is used to
detect anomalies in the surface water supply. However, index is regional
index computed primarily for river basins in just the western United states
(Heim Jr, 2002) thus its transferability to other climatic zones is question-
able. From a remote sensing perspective, most utilised is the Normalized
Difference Vegetation Index, which is calculated from red and near-infrared
bands. Most satellites designed for terrestrial observation contains these
bands, which make index accessible. Tucker et al. (1991) demonstrated the
usability of index for agricultural detection in the Sahel region in Africa. En-
hanced Vegetation Index (Huete et al., 1994) builds on concept Normalized
Difference Vegetation Index. New index minimize effect atmospheric and
soil background effects (Sivakumar, 2011).

There have been many attempts to find the best drought indicator. Com-
puted soil moisture followed by soil moisture anomaly index and Z index
was found best by several criteria such as robustness, transparency or ex-
tendibility (Keyantash and Dracup, 2002). Performance of drought indices is
region-specific due to the variability in meteorological variables and stream-
flow characteristics which are used for deriving indices (Mishra and Singh,
2010). Numerous studies compare the most prominent indices - PDSI and
SPI. According to Szalai and Szinell (2000), SPI is more suitable and flex-
ible. Raible et al. (2017) tested several indices in Europe from 2000 years
of records. SPI was found to be most efficient in west Europe, whereas for
southern and eastern Europe Standardized Precipitation Latent Heat Evap-
otranspiration Index (SPLEI), which incorporates temperature and evapora-
tion, was found to be better. PDSI, which involve water supply and demand
suits better northern Europe. Similar results conclude Bachmair et al. (2018);
SPI is a better indicator for drought in western Europe and SPLEI is more
effective in eastern and southern Europe. In conclusion, there is no single
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indicator that outperforms others. Effectiveness depends on the location and
availability of meteorological and hydrological records.

3.1.2 Drought risk assessment

Firstly, it is needed to distinguish between predicting drought, monitoring
drought and assessment of drought vulnerability. Drought modelling (fore-
casting) refers to process of predicting the onset, duration and severity of
drought time period in advance. These properties are forecast by various
methods, for example regression analysis, time series models or probability
models. Input typically consist of hydro meteorological variables and cli-
mate indices such as sea surface temperature. Drought monitoring involves
continuous observing of drought indicators and evaluating its severity. Vul-
nerability assessment on the other hand, is not concerned with exact period
in future, rather evaluates hazard risk for selected extent in general. Vulner-
ability assessment as one of the task of thesis is described in detail.

It has been demonstrated that drought hazard causes huge economic loses
and even famine. Thus, it is important to assess hazard risk and identify vul-
nerable regions and populations. Firstly, it is needed to describe and select
a framework within which several concepts will be defined. For example,
the basic idea of “Pressure and release” model (Blaikie et al., 2014) is that a
disaster is a result of two opposing forces - hazard and vulnerability of the
environment. The vulnerability has three components; root causes, dynamic
pressures and unsafe conditions. The framework of MOVE model (Joern
Birkmann et al., 2013) is much more complex, authors further distinguish
vulnerability to exposure, susceptibility and fragility, and lack of resilience.
These factors interact with hazard resulting in a degree of risk. In Hazard
and risk model (Office for Disaster Risk Reduction, 2004), widely used across
scientific community, risk is seen as the results of two components; hazard
and vulnerability. The last framework provides clear and simple explana-
tion of hazard, which is well suited for thesis aims. Within the framework
standpoint other terms are defined.

According to Office for Disaster Risk Reduction (2004), risk can be defined
as “the probability of harmful consequences, or expected losses (deaths, in-
juries, property, livelihoods, economic activity disrupted or environment
damaged) resulting from interactions between natural or human-induced
hazards and vulnerable conditions”. Drought hazard has been defined ear-
lier. In the hazard and risk model drought is characterizes by its severity
and probability. Probability is a relative chance of hazard occurring in time.
The severity of drought is quantified by drought indices. Probability aspect
is omitted in analysis as there is no option to model relation between relative
chances and predefined time period.

The concept of vulnerability is often blurred and vaguely defined. Wilhelmi
and D. A. Wilhite (2002) summarise several authors who agree that vulnera-
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bility describes the degree of susceptibility of society to a hazard. Lavell et al.
(2012) define vulnerability as “propensity or predisposition to be adversely
affected by hazard and is a result of diverse historical, social, economic, po-
litical, cultural, institutional, natural resource and environmental conditions
and processes”. Vulnerability is often further classified to better describe spe-
cific aspects of the affected place. Joern Birkmann et al. (2013) distinguished
dimension of vulnerability; social, economic, physical, cultural, environmen-
tal and institutional. The environmental dimension, for example, describes
the propensity for ecological and biophysical systems to be damaged. In
more practical meaning, the environmental dimension of vulnerability can
be assessed in terms of a crop’s areas ability to resist the effects of drought
(Han et al., 2016).

Vulnerability varies across the space and economic background of those af-
fected. Vásquez-León et al. (2003) found vast differences in socio-economical
vulnerability and response to drought on both sides of the US-Mexico bor-
der. In developing nations drought vulnerability constitutes a threat to liveli-
hoods and the ability to maintain productive and stable economies. In de-
veloped countries, drought poses economical risks to individual and public
enterprises (Bakker and Downing, 2000). Vulnerability is linked to infras-
tructure and socio-economical conditions, thus the poor suffer more from
hazards than the rich (Wilhelmi and D. A. Wilhite, 2002). The environmen-
tal vulnerability may differ on the other side of the border as well. For
example, it is known that different farming practises and field sizes on the
opposite sides of the Czech Austrian border, affect soil erosion (Čermáková
et al., 2014), therefore soil ability to cope with precipitation deficit.

Vulnerability has also a time dimension (Wilhelmi and D. A. Wilhite, 2002).
Vulnerability changes over time as a result of technological, economical and
demographic progress. Often, vulnerability decrease as a result of policies
aimed to improve the situation after a previous disaster. However, inade-
quate response to hazard events may increase the vulnerability of the envi-
ronment in time. Another important aspect of vulnerability assessment is
its scale. Before the assessment, it is needed to define spatial and tempo-
ral scale, which will suit research aims. Unfortunately, spatial scale is often
driven by data availability (Fekete et al., 2010).

According to Omar Dario Cardona et al. (2012) exposure refers to the inven-
tory of elements in which hazard event may occur. No hazard risk exists
if economic resources or population were not located in the affected region.
It is necessary to be exposed, while vulnerable. In the case of assessing
agricultural drought risk exposure may refer to crop area or the presence of
vegetation. As the thesis deals with agricultural drought, primary focus is
on soil used for crop production.

Vulnerability assessment can be described as a process of identifying, quan-
tifying and scoring the vulnerabilities in a system (De Stefano et al., 2015).
Most studies concerning mapping drought vulnerability were issued in the
last two decades. According to Wilhelmi and D. A. Wilhite (2002) two main



3.1 drought 17

reasons led to this increase; firstly, the recognition of the importance of vul-
nerability in hazard assessment and secondly, the growing availability of GIS
technology, which allows integration of spatial data from various sources.
For accurate assessment is needed to specify “the vulnerable entity, the stim-
ulus to which it is vulnerable and the preference criteria to evaluate the
outcome of the interaction between the entity and the stimulus” (Ionescu et
al., 2009). In the case of environmental vulnerability assessment, the vulner-
able entity is vegetation, the stimulus is the variety of factors, for example,
amount of precipitation and the criteria is selected indicator.

Various techniques for mapping drought vulnerabilities were developed. First
studies, incorporated several factors which influence drought vulnerability,
for example, climate factors, soil properties, land use or irrigation proxim-
ity, to create an agricultural drought vulnerability. Each factor was assigned
weight, which value was based on informed assumptions on the relative
contribution to drought vulnerability. The apparent problem is a subjective
assumption of weight for each factor. The weight would differ for each sci-
entist and such assumptions will be the source of error and inaccuracy. An
improvement over subjective assumptions provides utilisation of AHP tech-
nique, in which a questionnaire is answered by experts in agriculture. Dif-
ferent approach is to use the natural break method (Zeng et al., 2019). This
method classifies factor into a defined number of classes by natural break
classification, which seeks to minimize the average deviation from the class
meanwhile maximizing the deviation from the other classes.

Machine learning algorithms can be applied to vulnerability assessment.
Contrary to others method, no weight to factors is assigned in the process.
A prediction (classification or regression) model is created; drought factors
are independent variables and drought index (or other vulnerability indices)
is dependent. A drought vulnerability map is created from a trained model.
Opposite to previous methods, the impact of individual factor cannot be
assessed. The exemption is a RF algorithm, which provides the relative im-
portance of independent variables. The main advantage of the utilization of
machine learning algorithms is no need to subjective assign weights. The ef-
ficiency of the model, and therefore the assessment is quantified by selected
metric, for example, recall or RMSE. On the other hand, it is not possible to
create hazard, exposure and vulnerability assessment separately.

3.1.3 Drought vulnerability factors

Agricultural drought is linked to many factors, which need to be considered
in vulnerability assessment. In these subsections, various properties of the
environment will be described. Also, meteorological variables typically be-
longing to the hazard category are included. This is because of the nature of
the drought index or indicator, which values are obtained in time and place
and influenced by meteorological characteristic. Thus, these properties need
to be included to compensate for temporal variation. An abundance of fac-
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tors was used in vulnerability assessment, for example, terrain characteris-
tic, soil properties or land use. The listed factors were described because of
their well-founded link to the agricultural drought vulnerability in Central
Europe.

Terrain characteristic refers to quantitative descriptions of the physical fea-
tures of the land. Topography alters various climatic condition. It is the most
important factor controlling soil water redistribution, organic matter, nutri-
ents, soil textural composition and other properties, which affect plants well
being (Dinaburga et al., 2010). Altitude translates to lower temperatures and
different conditions, which sustain different processes than in lower altitude
regions. Vegetation in mountainous regions subscribes to different patterns
of climatic conditions and developed specific adaptation. In higher altitude
snow cap protects plants from frost and its absence may harm the mountain-
ous ecosystem and make them more vulnerable to drought in spring and
summer. Compare to highland plants, lowland vegetation is more resilient
to winter drought (Rosbakh et al., 2017).

Slope of area affects the run-off, recharge and movement of surface water.
Flat terrain areas have relatively high infiltration rate, on the other hand,
the areas with steeper slopes have low infiltration rate and higher run-off
(Shekhar and Pandey, 2015). Steeper slopes tend to be more susceptible to
erosion and soil degradation. If a drought event occurs, vegetation in steeper
slopes is more vulnerable than vegetation in less steep areas due to deficit
of soil moisture Hawthorne and Miniat, 2018.

Another topographic factor is aspect, which refers to the orientation of slope.
The aspect of slope can influence local climate because of the length of the
exposure to sun rays. West and south-facing slopes will be warmer than
east and north-facing slopes, therefore have lower soil moisture and higher
evaporation rate (Magesh et al., 2011). The importance of aspect is some-
what diminished, when vegetation is present (Oorthuis et al., 2021). More
vulnerable to drought are south-west facing slopes, especially if vegetation
cover is missing.

Topographical Wetness Index TWI developed by Beven and Kirkby (1979) de-
scribes proclivity of place to accumulate water based on topographic infor-
mation. It is calculated as follows Mattivi et al., 2019;

TWI = ln
(︃
SCA

tanϕ

)︃
where ϕ is slope angle and SCA is specific catchment area. SCA is computed
by different algorithms, which are classified into single flow direction and
multiple directions, depending on how water flow is distributed between the
grid. The most notable include D8 (O’Callaghan and Mark, 1984), in which
water flows in a grid is distributed to one adjacent cell through the steepest
gradient and MD∞ (Seibert and McGlynn, 2007), which splits grid cells into
triangles and then redistributed water flow proportionally to the slope gra-
dient. According to the authors, this methodology improves dispersion on
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planar and concave hillslopes. MFD-md (Qin et al., 2007) algorithms transfer
water flow to all neighbourhood cell based on the linear function of a gra-
dient. The study by Raduła et al. (2018) demonstrated better performance
of MFD-md algorithms in comprehensive comparison of several algorithms.
TWI is widely used to assess information about the spatial distribution of
wetness condition due to the requirements of the only terrain model. On
the other hand, index is static and relies on the assumption that slope is an
adequate indicator for the effective downslope gradient. This is often not
true on flat terrain (Grabs et al., 2009).

Meteorological factors. The connection between agricultural drought and
meteorological patterns is clear. Precipitation is the only source of moisture
for the environment with exception of irrigation, which is available for frac-
tion of cultivated areas. Snow precipitation is important as its cover and
protects soil (Dinaburga et al., 2010), provides soil moisture in early vegeta-
tion circle, which facilitates root growth (Cairns et al., 2011) and in higher
altitudes is the source of water supply for river basin located downstream.
Temperature influence the rate of transpiration, higher temperatures increase
the transpiration rate. A region with higher temperatures is, therefore, more
prone to drought. However, precipitation deficit impacts are greater than
high temperatures in general (Yang et al., 2020).

Soil properties are important factors influencing the environment ability to
cope with drought. Soil acts as a substrate for plants roots, provide them
with water and nutrients. Soil characteristic influence these function to var-
ious degree. Soil properties refer to the physical and chemical attributes of
the soil. Not all properties are significant, only a handful of them will be
taken into account. Soil texture refers to the composition of solid particles,
which soil is composed of. Sandy soil particles are smaller than 2 mm and
bigger than 0.05 mm. Silt particles are smaller than sand but larger than
0.002 mm. Tinier than silt is clay. Soil water available for plants is stored in
space between soil particles. Sands soil has the least space for water, which
tends to evaporate faster. Clay soils have the most total spore space, how-
ever, water is held too tightly for plants to access (Sullivan, 2000). Silt soil
provides a balance between water capacity and accessibility.

Soil bulk ratio convey the ratio of the dry mass to the total volume occupied
in the soil. It is also an indicator of soil porosity. Soil with high bulk density
is susceptible to surface run-off and erosion because water is restricted from
moving through the soil. On the other soils with lower bulk ratio are more
prone to vertical leaching of nutrients (Easton, Bock, et al., 2016). Soil bulk
ratio can be altered by physical management processes, for example, tillage
or by tunnelling activities of worms.

One of the most important factors is the amount of organic matter in soil. The
mechanisation of agriculture, use of pesticides and use of intensification of
agriculture reduce organic matter and its beneficial impact on soil quality.
However, fertilizers and tillage can not fully substitute the function of the
organic part of the soil, which reduces the resilience of soil and plants to
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environmental hazards. According to Bot and Benites (2005) organic content
increase water infiltration and water holding capacities, increasing diversity
and activity of soil organism, provides nutrient availability. Organic matter
that covers the soil surface protects from raindrops impacts, thus increas-
ing rainwater infiltration, reducing run-off and erosion. Organic matter in-
creases to greater activity of earthworms and other insects, which improves
other soil properties. The pore space in the soil is enlarged with increased
organic matter, making the soil more capable of holding water during heavy
rains (Tirado and Cotter, 2010). Lastly, soil cover reduces water evaporation
and shell soil from the negative heating effects of the sun.

Plants need appropriate soil depth. Otherwise, plants roots are too shallow
and the plant is more vulnerable to be carried away by wind or excessive wa-
ter flow. Shallow soils have lower available water. According to Scherer et al.
(2017) if soil depth is less than 90 cm available water to plants is decreased.
Above mentioned soil parameters and their relation to water retention can
be summarized in Available Water Capacity (AWC) characteristic. AWC refers
to the amount of water in the soil that can be removed by plants. It is es-
timated by the difference in soil water content between field capacity and
permanent wilting point (Cassel and Nielsen, 1986). Field capacity refers to
the level of soil moisture left after drainage of the gravitational water. The
wilting point is defined as soil moisture low enough to be non-extractable
for plants. Most crops are permanently damaged.

Land cover is intertwined with water demand and coping abilities of the
environment to drought hazard. Land use describes how society uses land,
land cover refers to physical features of the land. In case of vulnerability
to drought, scientific community classify several types - mainly agricultural
field, grassland, forest, barren lands, urban areas and water bodies (Jain et
al., 2015), (Thomas et al., 2016), (Hoque, Pradhan, Ahmed, and Sohel, 2021).
In agriculture cultivation methods has impacts on other factors, mainly soils.
Tillage with heavy machinery, use of fertilizers and pesticides disrupts nat-
ural processes, which regenerates soil, reduce organic matter and make the
soil more suspecting to erosion. Ecological agriculture mitigates many of
mentioned negative effects (Tirado and Cotter, 2010). For example, conven-
tional agriculture tends to cultivate monoculture, which is more prone to
hazards. Ecological agriculture promotes biodiversity resulting in resilience
to drought (Di Falco and Chavas, 2008).

Forests, on the other hand, are most resilient to drought (Peng et al., 2019).
Forests produce organic matter in higher proportions than other ecosystems,
which increases the water capacity of soils. Forests also transpire more wa-
ter. Plants in woodlands ecosystem are more resilient than plant in grass-
lands, because of larger degradation of soil than in forested areas (Zhao et
al., 2008). Grasslands are often used as pastures. Grazing of livestock has
been associated with decreased soil infiltration rate, porosity and hydraulic
conductivity, which leads to enhanced run-off rates (Weatherhead and How-
den, 2009). Urban areas are typical for low infiltration rates and high run-off.
Closeness to water bodies is another factor. Plants in close proximity are less
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vulnerable because of abundance of surface and subsurface water. However,
the benefit of water abundance is limited to close proximity to water source.

3.2 machine learning

Term machine learning is often interchangeable with terms pattern recog-
nition and statistical learning. The main goal of statistical learning theory
“is to provide a framework for studying the problem of inference, that is of
gaining knowledge, making predictions, making decisions or constructing
models from a set of data” (Bousquet et al., 2003). Definition of machine
learning is very broad and often is described by examples. Mitchell (1997)
states; “A computer program is said to learn from experience E with respect
to some task T and some performance measure P, if its performance on T,
as measured by P, improves with experience E”. Simply put machine learn-
ing can be defined as computational methods using experience to improve
performance or to make accurate predictions (Mohri et al., 2018). Machine
learning might be seen as a extension of statistical learning to computer en-
vironment. Alpaydin (2020) notes that role of computer science is twofold:
First, in training we need efficient algorithms to solve the optimization prob-
lem, as well as to store and process the massive amount of data. Secondly,
once a models learned, its representation and algorithmic solution for infer-
ence needs to be efficient as well.

Statistical models have two main tasks; prediction and explanation. Predic-
tive modeling aims to create a statistical model capable of predicting new
values from known observation. Explanatory or descriptive modeling in-
tents to reveal relation between independent and dependent variables. By
revealing relations prior hypothesis can be tested. Predictive model would
be build and tuned differently than explanatory model as Shmueli et al.
(2010) stressed: ”In explanatory modeling the focus is on minimizing bias
to obtain the most accurate representation of the underlying theory. In con-
trast, predictive modeling seeks to minimize the combination of bias and es-
timation variance, occasionally sacrificing theoretical accuracy for improved
empirical precision.” Depending on goal different models might be appro-
priate. Linear models allow for relatively simple and interpretable inference,
but may not yield as accurate predictions. In contrast some of the highly
non-linear models provide more accurate predictions (James et al., 2013).

The traditional tasks of machine learning include classification and regres-
sion. Classification concerns with predicting categories, regression predicts
values. Other tasks include ranking (predicting order according to selected
criterion), dimensionality reduction, and clustering. Machine learning can
be divided into several categories. Supervised learning is the most com-
mon scenario where labels are known for each observation in the training
phase. On the other hand, the unsupervised learning algorithm receives un-
labelled observation. In between are semi-supervised learning, transductive
inference, on-line learning, reinforcement learning, or active learning which
receive labelled observation to some degree at the beginning or during the
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process.

Ultimate goal is build a model which will have high accuracy, in other words
low testing error. This can be achieved by sufficient training of the model,
which will result in simultaneously low variance and low bias. This balance
is also called bias variance trade-off. “Bias represents the extent to which
the average prediction over all data sets differs from the desired regression
function and variance measures the extent to which the solutions for indi-
vidual data sets vary around their average” (Extent to which the function is
sensitive to the data set.) (Bishop, 2006).

Among the most used supervised algorithms are kernel methods (most
known is support vector machines), based on decision trees (random forest
or boosted regression trees) or artificial neural networks.

3.2.1 Decision trees

Decision trees based models make predictions by dividing prediction space
into several subregions and have tree like hierarchical structure. Decision
tree consist of decision node and leaf node with beginning at root node.
Decision trees can be used for classification or regression problem, given
the scope of thesis, only regression would be described. The building of a
decision trees follow two steps. Firstly, the predictor space is divided into
two subspaces. Secondly, for every observation which belong to subspace a
prediction is made - mean of known samples. The problem is to find value
dividing predictor space most efficiently. The threshold value is calculated
so that the overall sums of squares error are minimized (Kuhn, Johnson, et
al., 2013).

SSE =
∑︂
i∈S1

(yi − y1̄)
2 +

∑︂
i∈S2

(yi − y1̄)
2

where y1̄ and y2̄ are the averages of the training set outcomes within groups
S1 and S2. However, sums of squares error not calculated only for one split
at the time. Computing the best split for all predictor subspaces would be
infeasible. This is top-down, greedy approach. Top-down because starts at
the top of the tree and greedy because trees is divided at each split. This
process is also known as recursive binary splitting.

Decision trees have many advantages. Decision trees are easy interpret
(Kuhn, Johnson, et al., 2013), especially when are shallow. Trees are also
relatively fast to compute. Another advantage is handling of missing values.
When tree splits, only observation with selected predictor are used. After
first split, substitute variable is created which mimic first predictor and split.
On the other hand single decision trees have low predictive power and have
high variance which results in overfitting. By nature of its construction, tree
models split predictor space into rectangular regions, which might be not
suitable for every feature. Often a small change in the data can result in
a very different series of splits. The major reason for this instability is the
hierarchical nature of the process: the effect of an error in the top split is
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propagated down to all of the splits below it (Hastie et al., 2009).

High variance of decision trees can be reduced by process called bagging,
short for bootstrap aggregation. Bagging belongs to ensemble techniques
which incorporates many models to improve prediction efficiency. First step
is to prepare bootstrapped samples. Bootstrap is random sampling with
replacement, which means some observation will be represented more and
some wont. On average 63.2 % of observations are included (Efron, 1983).
Bagging is averaging results of several decision trees and can be formulated
as;

f̂bag (x) =
1

B

B∑︂
b=1

f̂
∗b

(x)

where B is the number of bootstrapped samples. One third of observation,
which were not sampled with bootstrap (Out-of-Bag (OOB) samples) can be
utilized as testing samples. Bagging increases accuracy and reduces vari-
ance. On the contrary the readability of models is worsened.

3.2.2 Random Forest

As was stated, bagging can reduce variance by averaging trees. However, by
nature of its building process, bagged trees are strongly correlated. Single
trees are similar, especially at the top, because most important predictors are
used first. This is also know as tree correlation and limits possible reduction
of variance. RF reduce trees correlation by considering only a portion of
predictors in every split.in regression by default only one third of variables
are considered (in classification is

√
n). Algorithm is described below (Hastie

et al., 2009);

1: for b = 1 to B do
2: Draw a bootstrap sample Z of size N from the training data.
3: repeat
4: Select m variables at random from the p variables.
5: Pick the best variable/split-point among the m.
6: Split the node into two daughter nodes.
7: until nsize = nmin

8: end for
9: Output the ensemble of trees {Tb}

B
1

10: To make a prediction at a new point x: f̂Brf(x) =
1
B

∑︁B
b=1 Tb(x)

The size of variance can be described by equation (Hastie et al., 2009);

Varf̂rf = ρ(x)σ2(x)

where ρ(x) is the sampling correlation between any pair of pairs of trees.
σ2(x) is the sampling variance of any single randomly drawn tree. Variance
is dependent on sampling variability of bootstrapped data, number of vari-
ables in splitting pool and their mutual correlation. In addition to mentioned
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factors, low values of minimum node size tends to overfit the model (Segal,
2004). Bias remain same as bias of any single tree used in the ensemble.

One of the advantage of tree based models is ability to return variable im-
portance. Breiman (2002) describe several methods or metrics to quantify
variable importance;

• Random permutation. For every split in every tree, split values are ran-
domly permuted. Then is calculated new error. Difference between
of permuted and original error is variable importance. The larger the
error, the more important the variable.

• Gini impurity. At every split for every variable decrease in the gini
impurity is summed. Variable with highest decrease in giny impurity
is the most important. For regression, MSE is used.

Gini impurity metric lacks accuracy when calculating importance for vari-
ables with many categorical values (Strobl, Boulesteix, Zeileis, et al., 2007),
therefore random permutation is preferred method. The main problem of
random permutation methods overestimates importance of correlated pre-
dictors (Strobl, Boulesteix, Kneib, et al., 2008). This is especially true in
cases with many predictors and small number of observation. In such cases,
prediction of variable importance tends to be unstable (Genuer et al., 2008).
Kuhn, Johnson, et al. (2013) illustrate an example; Suppose critical predictor
had an importance of X. If another predictor is just as critical but is almost
perfectly correlated as the first, the importance of these two predictors will
be roughly X/2.

Genuer et al. (2008) state, that variable importance assessment is concluded
for two main reason;

• To find important variables highly related to the response variable for
interpretation purpose,

• to find a small number of variables sufficient to a good prediction of
the response variable.

Dıýaz-Uriarte and De Andres (2006) suggests a method based on recursive
eliminations of predictors. Firstly, RF variable importance is calculated. Sec-
ondly, certain number (authors used 20 %) of predictors is eliminated. Then
the process is repeated. Different approach proposed Genuer et al. (2008).
Procedure consist of two step. Compute the random forest variable impor-
tance and eliminate m least important variables. Remaining variables order
in decreasing order of importance. For interpretation purpose build nested
random forest model which include n variables. Then select variables, which
lead to smallest error. For prediction build ascending sequence of RF mod-
els by invoking and testing the variables stepwise. The variables of the last
model are selected.

The RF algorithm achieves one of the highest predictive accuracy compared
to other algorithms for broad field of tasks in behavioural, social, and biomed-
ical sciences (Berk, 2020). One of the advantage of RF is great performance
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for high dimensional data, when amount of predictors is higher than amount
of observation. This is especially useful in field microbiology and genet-
ics (see Dıýaz-Uriarte and De Andres (2006)). RF rarely overfit; deep trees
may cause slight overfiting, that can be easily resolved (Hastie et al., 2009).
Another reason to choose RF is great computational performance, which is
native to all tree based algorithm. Compared to bagging, “RF is more compu-
tationally efficient on a tree-by-tree basis since the tree building process only
needs to evaluate a fraction of the original predictors at each split” (Kuhn,
Johnson, et al., 2013). RF can be running simultaneously on more machines
and results can be aggregated afterwards (Liaw, Wiener, et al., 2002).

3.2.3 Spatial extension

Machine learning algorithms mentioned so far might be described as aspa-
tial. This may be a problem for a dataset containing observations, which
are localized in space. The same feature or same value of an attribute has
a different or opposite influence on the dependent variable. For example
prediction of residential units in Prague; the age of houses might have a
different impact depending on location. Old houses close to the historical
center will have a higher price because were built as a spacious residence
for wealthy elites. On the other hand, old houses in the outskirts of Prague
will tend to have a lower price because were built as residences for workers
in agriculture. These two opposite influences on price in different parts of
Prague may negate or reverse the final effect. Reversal of results when ob-
servations are analyzed separately and together is called Simpson’s paradox
Simpson, 1951.

The variety of influence on different places is called spatial non-stationarity
(Fotheringham, Charlton, et al., 1996). Fotheringham, Brunsdon, et al. (2003)
lists tree reasons which cause spatial non-stationarity. Firstly, observations
in different places are not the same. There is sampling variation. Secondly,
some relationships are intrinsically different across space, which is especially
true for social processes. And lastly, there is an option that one or more im-
portant variables are missing from the model. Inaccuracy which is caused by
reasons behind spatial non-stationarity might be reduced by using spatially
sensitive statistical models.

The problem of aspatial statistical models is well known and many authors
contributed to the solution by creating new spatial models or extending es-
tablished statistical models. Examples are spatial expansion method (Casetti
and Jones III, 1991) spatial regression models, namely kriging (Krige, 1966),
which is a geostatistical method. One of the more prominent methods is
GWR developed by Fotheringham, Brunsdon, et al. (2003). GWR works the
same as regular regression but each observation is weighted by its distance
to the regression point. GWR is written as;

ŷi = β0 (ui, vi) +
∑︂
n

βn (ui, vi) xin + ϵi
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where (ui, vi) denotes the coordinates of the ith point in space.

The space in which the points are included in regression is called a kernel.
The size of the kernel or the maximal distance is bandwidth. Kernel size can
either fixed or adaptive. The distance of fixed kernels remains the same for
each regression points, which is adequate when observations are in a reg-
ular grid, but insufficient when observations are localized irregularly. This
is often the case. Adaptive kernel defines the size of bandwidth for each
regression point by a predefined amount of closest points. This is useful
when regression points are located in the periphery, where tends to be fewer
observations.

It is important to calibrate the appropriate bandwidth. The bigger band-
width or more observations included lower the standard error and variance.
Contrary, bigger bandwidth will introduce bias. There are more options to
create an adaptive kernel with varying bandwidth. Firstly, choose n nearest
neighbours and apply the desired function, for example, exponential. The
second option is to rank observations by their distance; the closest point
weights 1, the second weights 2 etc. Lastly, the sum of weights will be a
predefined constant for every regression point.

Another approach is to include spatial covariates. Spatial information is then
treated same as other attributes. Hengl et al. (2018) lists some of the most
used;

1. Geographical coordinates. Easting and northing.

2. Euclidean distances. Distance to reference points or area. For example,
distance to the center and edges of the study area or distance to the
closest ocean.

3. Euclidean distances to sampling locations. Distances from observed loca-
tions.

4. Downslope distances. Distances within a watershed.

5. Resistance distances or weighted buffer distances.

The most widely used and simplest are geographical coordinates. They are
not ideal for most algorithms, because the prediction ignores spatial pattern
appearing at the sample point (Ahn et al., 2020). However, algorithms based
on decision trees such as RF, are naturally good at handling coordinates in
geographic datasets, because latitude and longitude might be chosen during
splitting process, thus leaf node is within the area defined by its ancestral
nodes (Deng et al., 2020), even if tends to create linear boundaries (Hengl
et al., 2018).

Adding additional distance covariates (distance to corner or center) may in-
crease accuracy as in the study from Behrens et al. (2018) in which coordi-
nates achieved less predictive power than distances to corners and center of
the map. Together, coordinates and distances obtained the best results. Cal-
culating distances to each observations might solve problems of coordination
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as covariates. With few observations performance of such a model tend to be
low, contrary with more observations computational requirements increase
steeply (Ahn et al., 2020). Spatial covariates are a necessity in the cross-
validation process. In case of RF, coordinates may contribute to overfitting
of model and predictor should be chosen according to its importance (Meyer
et al., 2019).

The concept of GWR applied to the realm of random forest was introduced
by Georganos et al. (2019). For each regression point, a local RF model is
computed, which includes a subset of nearest observations. Contrary to
GWR, a global model is also computed and the result is a weighted average
of the global and local model. Similarly to GRF adaptive and fixed kernel
might be used. The main benefit is that GRF can retain low bias spatial
non-stationarity and at the same time capture a low variance global model.
Bandwidth for local model and weight should be treated as a hyperparame-
ter.

Unfortunately, compare to RF, computational complexity of GRF is higher.
RF is in general fast algorithm with a computational complexity expressed
by following equation (Hassine et al., 2019);

O (n log (n))

where n is the number of training samples. Complexity is dependent on
other parameters such as number of trees, or number of features. Here,
for simplicity are these parameters omitted. On the other, hand for GRF is
complexity much higher because of computation of local models and can be
expressed by equation;

O (n log (n) +n (bn log (bn))) → O
(︁
n2 log (n)

)︁
where b is ratio of samples in bandwidth. Lower bandwidth reduce com-
putational complexity. For example, bandwidth of one tenth of study area
encompasses only one hundredth of all samples. GRF for big data might be
impractical or with a regular desktop PC impossible.

3.2.4 Random forest tuning

Process of building machine learning model involves setting up number of
parameters, which affects stability and performance. In this subsections,
procedure of tuning RF algorithms will be evaluated including description
of parameters and their influence on stability, accuracy and variable impor-
tance score and tuning strategies.

RF contains various parameters which can be tweak and tuned. Here, most
influential will be described;

• Number of randomly selected features (max features): Parameter is
defined as a size of pool from which are randomly drawn candidates
when growing a tree. Typical value for regression is nfeatures/3.
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Lower values of parameter result in more stable trees, but lower accu-
racy. Lower value of parameter induce greater randomness to splitting
process, which will makes trees more diverse and potentially more in-
formative. However, a too strong randomization produces trees that
do not suit problem enough - high bias. On the other hand, not
enough diverse trees will overfit the data - high variance (Bernard et al.,
2009). Parameter should be set high in case, that dataset contains only
small number of influential features or all features have same informa-
tion value. Computational complexity decrease with lower parameter
value.

• Number of trees (n estimators): Amount of trees is not a typical tuning
parameter. According to Probst and Boulesteix (2017) tuning is unnec-
essary during classification, in case of regression more trees result in
lower error with diminishing returns. Oshiro et al. (2012) do not advise
larger values trees as it only increase computational cost, which grow
linearly. Number of trees possible depends on other parameters, which
create less correlated, more diverse trees may require higher number
of trees which will offset their negative effect.

• Sample size (max samples): Sample size define number of sample to
be selected from full dataset for training each tree. Lower sample sizes
result in less correlated trees and better prediction accuracy and lower
stability. It is similar to max features parameter. According to case
study of Martıýnez-Muñoz and Suárez (2010) parameter is data depen-
dent and can be tuned. Lower sample size also lower computational
cost, which is always advantageous.

• Node size (min samples split): Parameter determines sample size in
a terminal node. Lower values will allow deeper trees lowering bias
and increasing variance. Parameter can be tuned and rising node size
can increase accuracy especially in low-dimensional and large sample
size case (Lin and Jeon, 2006). Limiting tree depth by node may signifi-
cantly improve computational cost, which decrease exponentially with
increasing node size (Probst, Wright, et al., 2019).

• Tree depth, leaf node size, impurity decrease (max depth, min samples leaf,
min impurity decrease): Similarly to node size parameters controls
tree depth by different means and should be treated as such.

• Splitting rule (criterion): During splitting process rule, which minimise
either Root Mean Squared Error (RMSE) (weighted variance) or Mean
Absolute Error (MAE) is used.

Traditional approach to tuning machine learning algorithms is to use k-fold
cross-validation. This strategy randomly divides training data into k parts
of equal size. The model is trained on k− 1 parts and then tested on the
last one. Special case of cross-validation is Leave-One-Out Cross-Validation
(LOO CV) when only one sample is used for validation and the remaining
samples are used for training. Obviously, this strategy is usable only with
very small number of samples. K-fold strategy needs to be executed only k
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times, typically three, five or ten. Additional advantage is higher accuracy.
LOO CV values achieve very low values of bias, on the other hand very
high values of variance because model is trained on lot of almost identical
observation, resulting in correlated results (James et al., 2013). Compare to
other algorithms RF can utilise OOB samples feature to estimate error dur-
ing training. Each tree is built on a bootstrapped sample, approximately
one third of OOB samples can be used to test error. Advantage over k-fold
cross-validation is time. Model does not need to be trained reapeatably k

but only once. OOB method compare to cross-validation underestimates er-
ror, however the difference is very small and both methods are effective in
hyperparameter tuning (Ljumović and Klar, 2015).

Several methods for identification the best parameters has been proposed.
The simplest is to manually identify parameters. This process is only applica-
ble in models with small number of parameters. Manual selection is fast, pro-
vides insight into parameters influence and has no computational barriers.
However, results of manual search are hard to reproduce (Bergstra and Ben-
gio, 2012). Computationally most demanding option is grid search. Method
is evaluating every possible combination of parameters, which might be com-
putationally infeasible. Search can be easily parallelized (Petro Liashchyn-
skyi and Pavlo Liashchynskyi, 2019) and usually achieves best possible re-
sults. Third options is random search, which in contrast with grid search
evaluate randomly chosen values of parameters. Number of selection is in-
put parameter of grid and can be adjusted by availability of resources. Lower
computational demand is main advantage of this approach. In case of accu-
racy, random search can reach grid search if features, which contributes to
performance change are known (Bergstra and Bengio, 2012). Besides manual,
grid and random search other less conventional methods for parameter tun-
ing such as genetic algorithms (Loussaief and Abdelkrim, 2018). This meth-
ods imitates darwinian selection by creating artificial chromosomes, which
compete between each other and subsequently evolve. Surviving elements
represent optimal values. Discussed search methods consider only one met-
ric for selecting optimal parameter - accuracy. Besides accuracy, stability and
computational complexity can be introduced as performance metric for pa-
rameter tuning (C. B. Liu et al., 2017).

Even without tuning RF algorithm performs well with default settings. Com-
pare to other algorithms such as SVM, tuning contribution to performance is
very small (Probst, Boulesteix, and Bischl, 2019). Van Rijn and Hutter (2018)
found across several testing dataset, that parameters leaf node size and max
features contributed most to change in performance. Even if leaf node size,
tree depth and node size controls similar characteristic of tree, leaf node size
is much more advantageous then latter parameters.

RF tuning is exhausting and time consuming process. This is especially true
in case of GRF tuning. One of the solution is to use sampled dataset to
tune hyperparameters. However, results from sampled dataset might not
fit complete dataset. DeCastro-Garcıýa et al. (2019) proved that, third of all
combination between parameters is statistically different in sampled dataset.
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Although, size of the dataset does not impact accuracy in critical way.

3.2.5 Sampling

It is often the case, that researchers are limited by time or resources and
cannot access complete dataset or research full population. For example,
most visible cases are opinion polls, which receive information from small
reference sample. The process of selecting reference sample is know as sam-
pling. In general, sampling methods can be classified into non-probability
and probability sampling. In non-probability sampling researcher sample
data based on his subjective judgement and it is often used in qualitative
studies. In probability it is known the chance of sample being selected into
sampled dataset. In this sections, tree methods for probability sampling will
be discussed - random sampling, stratified sampling and Latin Hypercube
Sampling (LHS).

• Random sampling can be described as “sampling design in which n dis-
tinct units are selected from dataset in such a way that every possible
combination of n units is equally likely to be the sample selected.”
(Thompson, 2012). Obvious advantage of random sampling is ease
of assembling sampled data. Random sampling is also representative
of original dataset if all observation are available to sampling. Only
luck can influence the sampled dataset, which results in sampling er-
ror (Sharma, 2017).

• Stratified sampling divides datasets into N subsets called stratas. Se-
lection of samples from subset is independent. Compare to random
sampling, information about dataset are needed to divide data into
stratas. True stratified sampling divides dataset along all dimension,
which is impractical for higher dimensional dataset. Stratified sam-
pling can be divided in disproportionate and proportionate sampling.
In former, the number of samples selected from each subset is not pro-
portional to their share in total population. In latter, selected samples
are proportional.

• LHS developed by McKay et al. (1979) operates by dividing N-dimensional
space intro stratas. Compare to true stratified sampling LHS might be
viewed on a opposite spectrum possible stratification methods. LHS
stratifies each dimensions individually and true stratified sampling
stratifies space simultaneously (Shields and J. Zhang, 2016). LHS per-
forms much better in high dimensional space.

Generalization of dataset from a random or stratified sampling required ap-
propriate size of sample to avoid high bias and sampling error. At the same
time sample has to be small enough to keep processing time as low as pos-
sible. Several guides focus to random sampling, almost no LHS. In general,
LHS achieve better performance with smaller sample size (Matala, 2008).
Swidzinski and Chang (2000) in their study achieved same variability with
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200 samples selected by LHS and with 1000 samples selected by random
sampling.

3.2.6 Performance metrics

Performance metrics are essential element in building, tuning and evaluating
machine learning model. Metric quantify prediction results, and simplifying
them to one, easily readable value. Many various metric exists and would
be inappropriate to describe every one them. Thus, only the most popular
will be discussed - RMSE and MAE.

One of the most used metric is RMSE. Metric is the square root of mean of
the average of squared errors. RMSE is disproportionately impacted more
by larger values of error, thus penalising outliers. The formula is expressed
as;

RMSE =

⌜⃓⃓⎷ n∑︂
i=1

(ŷi − yi)2

n

Similar metric, Mean Squared Error (MSE) is often used. Compare to RMSE
is less readable, because of calculated values outside the range of predic-
tion values. RMSE and MSE is often criticised for its counterintuitiveness
and ambiguity. Squared errors can not be meaningfully compared to other
squared errors, because of unknown variability of the errors (Willmott et al.,
2009). However, Chai and Draxler (2014) argues, that if errors distribution
is normal rather than uniform, RMSE is better metric than non-squared met-
rics.

Most popular non-squared error is MAE, which can be calculated using
formula below;

MAE =
1

n

n−1∑︂
i=0

|yi − ŷi|

MAE is simple mean of errors, which does not penalise outliers. RMSE and
MAE have informative value, thus it is advisable to use both. Another pop-
ular metric is Mean Absolute Percentage Error (MAPE) calculates as below;

MAPE =
100

n

n∑︂
i=1

⃓⃓⃓⃓
ŷi − yi

ŷi

⃓⃓⃓⃓
MAPE has major drawbacks, for instance can not be used if actual value is
zero. Also, it is known that MAPE overstates errors (Tayman and Swanson,
1999).
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3.3 summary

The chapter contains theoretical information for two distinct topics - drought
and machine learning. The first part is dedicated to drought definition and
identification. The precise identification is important as it is the phenomenon
that is modelled. It is required that drought is present to the desired extent.
Next, drought is quantified by the drought indicator. Several indicators
were described and their positive and negative aspect was discussed. As
was stressed there is not a universal best indicator as climatic conditions in
which was indicator created differs across the world. Another important
aspect is the availability of data. More complex, experimental or recently
developed indicators are often not obtainable. Based on those conditions
indicators derived from soil moisture are most suitable. Soil moisture in-
fluences the plant’s well-being and its deficit cause crop failure. Compare
to SPI, soil moisture is impacted by other ground conditions, for example,
soil properties, from which vulnerability can be assessed. In addition, it is
available within the Copernicus project.

In the next subsection, the frameworks within which would be vulnerability
understood are described. The most appropriate framework is the Hazard
and Risk model from Office for Disaster Risk Reduction (2004). However,
the framework does not distinguish environmental vulnerability, which had
to be defined. Most vulnerability assessments are carried out by subjec-
tive weighting of factors, for example, method AHP. Machine learning tech-
niques eliminate this negative aspect. The thesis methodology further devel-
oped the machine learning approach. The next subsection describes several
categories of factors that affect vulnerability. As RF algorithms can handle
noisy data (features without importance) the more available feature the bet-
ter. Limitation remains in the availability of quality data.

The second part is focused on machine learning. The introduction contains
a definition of machine learning and a description of the two main goals of
the statistical model. Both prediction and explanation purposes are utilised
in the thesis. The main tool, RF is described as an evolution of the basic de-
cision tree model. Decision trees models tend to overfit because trees grow
until predictor space is divided by all features. RF solves this by incorpo-
rating bagging and random selection from a subset of features. RF variable
importances can be assessed by two methods; random permutations and
Gini impurity. The latter is used more frequently, which makes a compari-
son to other studies easier and is more accessible from a software standpoint.
If categorical features are not used, Gini impurity is the preferred method.

There are two possible techniques to make the model able to perform better
with spatial data. The easier option is to include spatial covariates into fea-
tures. RF is known to be good with handling coordinates, which makes them
better options than other possible geographical covariates. The second op-
tion is to give each observation weight based on their distance to predicted
locations. This is the of GWR or GRF. These techniques are not exclusive,
both should be applied in methodology. GRF is known to be computation-
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ally demanding and some concessions have to be made. A lower number of
observations, better hardware or more effective coding (utilisation of all core
of CPU).

Tuning of the model is important as it increases the accuracy of prediction.
RF and GRF have several parameters which can be tuned. The most impor-
tant parameter is the number of randomly selected features and node size,
which can be controlled by other parameters such as leaf node size. The
number of trees is not a traditional parameter because with increasing value
the error only decreases. However, a higher number of trees increase the
runtime. The GRF parameters bandwidth and local weight are not explored
in literature as much as parameters of RF. There are two possible options
when choosing a tuning strategy; either choose all possible parameters and
use random search or manually select the most important parameters and
tune them with grid search. The latter option is better as many parameters
are connected or unimportant.

Three sampling methods were described - Random sampling, stratified sam-
pling and LHS. The last one tends to be the best option as it sample observa-
tions evenly. However, all methods should be evaluated empirically and the
best option used to sample data to test and train set. Lastly, three evaluation
metrics are described; RMSE, MAE and MAPE.



4 METHODOLOGY

This chapter describes the methodology used to address the research ques-
tion stated in the first chapter. The proposed methodology is based on the-
oretical concepts reviewed in previous chapters. Three stages are identified;
pre-processing of data, parameter tuning and evaluation of algorithms, and
lastly vulnerability assessment. The workflow of methodology is depicted
in the scheme below.

Features selection

Drought indicator
selection

Resampling Filter dataset by 
conditions

Delete incomplete 
observation

Sampling data

Scaling data

Training setRandom Forest
tuning

Local tuning

Global bandwidth
Global weight

Max features
Min samples leaf
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Testing test

Testing models
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Local and global
variable importance

Accuracy 
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Geographical 
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tuning

Local bandwidth
Local weight

Pre-processing

- selection of optimal resolution 
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- 80 % training set, 
   20 % testing set
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Performance and 
vulnerability
assessment

- precipitation and temperature
   feature importances

Figure 1: Methodology workflow.

34



4.1 pre-processing 35

4.1 pre-processing

4.1.1 Data selection and preparation

The first step is to select a drought indicator, which can sufficiently quan-
tify drought. Various indicators and their advantages and disadvantages
has been described in previous chapter (Section 3.1.1). Drought indexes
or indicators are published in a time dimension most often hours or days.
Therefore, the period needs to be selected and aggregated in the next step.
For example, Rahmati, Panahi, et al. (2020) use a relative difference of pe-
riod mean to annual mean of soil moisture, selected period to correspond to
drought period. It is important, that the drought index has a wide range of
values, to make the model more versatile. Therefore, a month with drought
partially present should be chosen. However, no study dedicated to drought
period selection exists.

SWI was chosen as drought indicator for several reason; SWI can reasonably
represent soil moisture condition in soil layers, which is good proxy for crop
condition. It is available in sufficient spatial and temporal resolution and
soil moisture based indicators has been successfully used in similar studies,
for example Rahmati, Panahi, et al. (2020) and Rahmati, Panahi, et al. (2020).
As a representative time period august of 2018 was chosen. According to
Masante and Vogt (2018), Central Europe was affected by drought. CDI
identified medium and high risk for parts of Czechia, Poland and Germany.
SPI and fAPAR indicate severe drought in Elbe valley.

The timespan of an indicator is linked to the timespan of meteorological
features. Features influence on indicator values is time-dependent. There-
fore, the timespan of features should be similar to the indicator, but not
identical. The selection of time depends on the type of indicator. Vegeta-
tion indexes are affected by precipitation two to three months in advance
(Méndez-Barroso et al., 2009). Soil moisture is most affected in the period of
one day to two weeks in advance. After two weeks precipitation influence
weakens (Lauzon et al., 2004). However, coherence exists between earlier
periods of precipitation and deeper soil depth.

The selection of features is based on proved links to drought severity de-
scribed in the theoretical part (Section 3.1.3). The selection of continuous
data is emphasised, because of their suitability in analysis. Discrete data
needs to be converted to continuous data, which cause inaccuracies or trans-
late to several features, which inflates feature space. The selection process
is also influenced by the availability of data. Selected features are listed in
table below.
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Table 1: Selected features and their category.

Category Feature Category Feature

Terrain

Elevation
Spatial

X-coordination
Slope Y-coordination
Aspect

Land Cover

Built-up area
TWI Forest

Soil

Organic matter Agricultural area
AWC Grassland
Bulk density

Meteo
Precipitation

Coarse particles Temperature
Clay content Other Water bodies proximity
Sand content

First category contains elevation, slope, aspect and TWI. Elevation is plain
value from Digital Elevation Model, slope and aspect were calculated in de-
grees. Values of aspect are circular (value 0° and 360° are the same), thus
two values are needed to describe feature. This would make feature less in-
terpretable and highly correlated in variable importance assessment. This is
less desirable than a small loss of accuracy, single value feature was selected.
TWI was calculated using MFD-md method.

Category soil contains organic matter content, AWC, bulk density, coarse
particles and sand content. Soil category content choice is affected by avail-
ability of suitable data sources. Clay and sand content is expressed as share
of total soil matter. Silt content was not included as it is negatively corre-
lated with sum of two other shares and would not be contribute to model
fitting as much. Similarly to previous, coarse fragments values are share of
total soil mass. Bulk density, AWC and organic matter is provided as mass
over volume.

As spatial covariates plain coordinates were selected, because of their sim-
plicity and readability. Water bodies proximity express distance to closest
water body. Places with zero value are bordering water.

Land cover distinguish several classes; built-up area, forest, agricultural area
and grassland. Features built-up area and forest are used later in filtering
inappropriate regions. Features represent share of given land cover. From
wide variety of land covers were disqualified wetlands because of their small
representation in study area and water bodies, which can not be assessed by
drought indicators.

From meteorological category temperature and precipitation is selected. Pe-
riod is selected in considering timespan and type of drought indicator. From
soil moisture derived SWI has timespan of one month. Optimal period is
timespan of indicator plus two weeks. Same period is selected for both me-
teorological features - 16.07.2018 to 31.08.2018. Temperature is average along
time dimension while precipitation is summed.
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Spatial resolution and coordinate system differ across datasets, thus uniform
parameters need to be chosen. As most viable coordinate reference system
ETRS89-LAEA1 was selected for several reasons. The system is suitable for
mapping with regions within Europe, mapping units are in meters, which is
readable and lastly, many available datasets for Europe are in ETRS89-LAEA.
Spatial resolution is determined concerning several aspects. High spatial res-
olution increases the number of samples, which raises runtime. On the other
hand, if the spatial resolution is low, properties of places are too generalized
and spatial patterns diminish. Secondly, the spatial resolution should be cho-
sen to be close to the resolution of available datasets to prevent distortions
during interpolation. In order to balance both condition resolution of 1 km
selected.

In case that datasets are in different resolutions, they are interpolated to
desired resolution by bilinear interpolation. Similarly, missing values for
independent variables are interpolated by bilinear interpolation. Compare
to the nearest neighbour method, bilinear interpolation takes into account
other near values. Other methods, which are superior in accuracy such as
kriging are too complex and not as available as former methods. Lastly, miss-
ing observations for the dependent variable are dropped. Missing values are
mostly localized in metropolitan areas and mountains.

Cleaned data are filtered by two following conditions;

1. Forest should not cover more than 20 % of the pixel area.

2. Built-up are should not cover more than 20 % of the pixel area.

These conditions prevent the analysis of forest and metropolitan areas, which
are not suffering from agricultural drought in the same way as agricultural
areas or grasslands. The inclusion of such areas would distort the model,
which would prioritise land cover classification. Variable importance would
be skewed towards land cover classes if land cover features are included.

Lastly, all features are scaled, to provide more accurate results. Variables are
measured in different scales, which might not contribute evenly to the model
fitting and create a bias. Therefore, it is useful to transform features into
the same range. Compare to standardization scaling does not change the
distribution of data. Transformation is expressed by the following formula;

xsc =
x−min(x)

max(x) −min(x)

4.1.2 Data exploration

An explanatory analysis is the process of investigation of data structure us-
ing mainly visualization methods. The primary purpose of visualization is
to make data and the corresponding phenomena perceptible to the mind

1 European Terrestrial Reference System 1989 on Lambert Azimuthal Equal Area projection.
EPSG: 3035
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or imagination (N. Andrienko and G. Andrienko, 2006). According to Telea
(2014) visualization provides insight about data and studied phenomena and
helps answer concrete questions about a given problem. Firstly, insight may
provide information, which is important to the ensuing analysis. For exam-
ple, data visualization shows unnatural patterns in one of the features, that
indicates damaged or fake data. In the second case, data visualization may
provide answers to specific questions, which results from the assessment.
Data can be visualized and explored in a variety of ways.

The first part of data exploration investigates the correlation between all vari-
ables and correlation between dependent and independent variables in de-
tail. A high correlation between features may result in their lower variable
importance. A high correlation between drought indicators and features
may indicate linear relation. In the second part relation between individual
features and indicators is explored and described for purpose of detecting
possible functions.

4.1.3 Sampling

As will be describes in next section dataset is split into two parts - train and
test set. The splitting process is achieved by using one of three sampling
methods - random, stratified and LHS. The performance of each methods is
rated by difference of sampled set to original dataset. As evaluation metrics
were used differences of the mean and standard deviation between original
and sampled dataset. The smaller the difference is, the closer the sampled
dataset is to the original. It is assumed that a similar dataset will select pa-
rameters close to optimal values.

4.2 model building

4.2.1 Random Forest

To achieve the best possible accuracy it is necessary to tune parameters. For
regular RF, three parameters were tuned - max features, min samples leaf
and number of trees. No additional parameters were considered because
of their minuscule benefits to performance or redundancy. Parameter min
samples leaf encompass several others parameters such as tree depth, leaf
node size or min samples split. The number of trees parameter was tuned
independently, as it is not a classical parameter. It is needed to identify a
break value, the number of trees below makes the model unstable and val-
ues above increase runtime with diminishing returns.

To tune parameters, the Grid-search method was utilised, which is viable
because of the low dimensionality of parameters (only two). Dataset was
divided into two parts; training and testing set in 80/20 ratio. The best
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sampling method is used. Model is tuned on training set evaluating OOB
samples. RMSE and MAE metrics are calculated to find optimal parameters.

4.2.2 Geographical Random Forest

After tuning regular RF, the next step is to train GRF. Optimal parame-
ters from regular RF are employed in GRF. Tuning parameter for each local
model would be computationally infeasible. It is assumed, that optimal pa-
rameters for global model will suit local models as well. Among variants,
GRF with an adaptive kernel was chosen. Data points are not in a regular
grid and a fixed kernel would results in an uneven number of samples for
each local model. On the other hand, for models created in isolated places
without close neighbours the average distance to samples will be higher than
in more populated regions. Bandwidth is considered as a tuning parameter,
the second parameter local weight can be tuned without repetitive training
and testing of the model.

The first step is to calculate the distances of each point to each other point,
which will be saved in the matrix of size (n,n). For larger sizes of samples,
more space needs to be allocated. For example, for a sample size of 70 000,
approximately 36 GB of memory space in float64 data type. Therefore, data
were converted to int16 format, which requires less memory. Secondly, the
weight of b (according to bandwidth) closest samples are set to 1, other sam-
ples are assigned 0.

Next, the algorithm loop over locations and for each creates and trains an
RF model. Samples with zero weight are not considered in the local model.
After local models are trained, one global model is created. Lastly, predic-
tion from both local and global will be weighted by values from 0.1 to 1 and
summed. From summed prediction, RMSE and MAE are calculated. Best
weight and bandwidth is selected from the lowest value of RMSE.

Compare to RF, the tuning process of GRF is different. It is not possible to
utilise OOB for evaluation of accuracy, because observation for a location
to predict is missing. Similarly, k-fold Cross-validation for a small subset
would be pointless. However, in some sense tuning, GRF can be seen as LOO
CV because for every observation, the model is trained (only on a portion of
data) where this observation is missing. The tuning process consists of re-
peating training and predicting for each sample for several bandwidths. Not
for all observations are predicted values. Observations outside the bounding
box are used only for training.

4.2.3 Geographical Random Forest with local tuning

Lastly, a new variant of spatial RF was developed. LT GRF further expand
the idea of Georganos et al. (2019). In the GRF case, bandwidth and local



4.3 performance and vulnerability assessment 40

weight are universal for all samples. However, in LT GRF for each sample is
found best possible bandwidth and local weight.

Tuning local bandwidth does not require more runtime than GRF. Similarly
to GRF, the model is repeated for each value of bandwidth. Local weight
is estimated from prediction after training time, therefore does not requires
training at all.

4.3 performance and vulnerability assessment

4.3.1 Accuracy assessment

After finding optimal parameters, each model is tested on the testing dataset.
Four variants of RF algorithms were evaluated. RF with spatial coordinates
model (RF XY model) is trained on a training set. After training, the model
is fit to testing data and new values are predicted. These values are com-
pared to real values and RMSE and MAE are calculated from differences.
Relative values of metrics are calculated for better interpretability. Secondly,
RF without spatial covariates (RF model) is tested. Benefit of including spa-
tial covariates is assessed as difference in error. GRF is tested with the same
parameters as regular RF and with bandwidth and global weight find dur-
ing the tuning process. Local parameters for GRF were found only for the
training set and must be interpolated for the test set. Inverse distance inter-
polation was used. It is unknown if the type of interpolation significantly
affects the performance of the model. Lastly, the LT GRF model with a
global weight and local bandwidths is tested. Testing of separate LT GRF
is executed to found if the model can be improved significantly with local
weighting.

4.3.2 Variable importance

The process of extracting variable importance from the model is described in
the previous chapter (Section 3.2.2). From two possible options Gini Impu-
rity was chosen for the following reasons; compare to random permutations,
the chosen method does not overestimate the importance of correlated pre-
dictors and is widely used and available. Random permutations options
might be especially unstable with low bandwidth parameters in GRF.

Variable importance is computed from the RF model once for all observa-
tions. In GRF and LT GRF variable importance is computed from all local
models, which is n times more. To make these results readable, values are
aggregated and compared to the global model. Values are visualized for
each location on a map.
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4.3.3 Vulnerability assessment

Lastly, a vulnerability map is produced from the best geographical model
(GRF or LT GRF) in terms of prediction power. Meteorological features im-
portance (temperature and precipitation) are summed. This value would be
relative indicator a drought hazard. It is assumed, that high importance of
temporal features is indicative of low resilience to extreme events such as
precipitation deficit or heat waves. However, this approach does not take
into account actual precipitation and temperature condition, which varies
across space. If meteorological features are important and at the same time
precipitation is adequate, region is not vulnerable to drought.

The uneven distribution of meteorological variables is compensated by weight-
ing the feature importance by relative precipitation and temperature. Rela-
tive value vrel for each location is calculated by;

vrel =
vm − vp

vm
× 100

where vi is long-term (2012 - 2017) mean value for selected period for all
study area and vp is actual value for each locations. Relative values are
scaled, averaged (weighted mean based on importances) and multiplied by
importance.

Due to filtering of dataset by land cover condition, data grid contains gaps.
Intermittent grid is difficult to interpret, therefore a new hexagon grid was
created with radius of 3 km. Values within each cell are averaged.

4.4 summary

The chapter describes individual steps from selecting and pre-processing
data to model building and vulnerability assessment. In the first stage, fea-
tures are selected based on theoretical links to drought hazard. Selection
of drought indicators was more difficult as only a handful of research stud-
ies focus on machine learning drought assessment. Similarly, delimitation
of the time period was not studied at all and therefore might be a source
of inaccuracy. In the next step, all datasets are standardized and filtered
by conditions. Land cover features remained preserved despite their dimin-
ished information value after filtering. If their contribution to model fitting
remains significant, even a small share of given land cover can alter drought
severity.

In the second stage, three models are tuned. Firstly, datasets are divided into
test and train dataset. Parameter number of trees, maximum features and
minimum samples leaf are tuned for regular RF and bandwidth and local
weight for GRF.

Tuned models are tested on a testing set and their accuracy is evaluated
by RMSE and MAE metrics. Secondly, variable importance output is inter-
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preted and compared to global importance. Lastly, a vulnerability assess-
ment from a best geographical model is produced. Meteorological features
importances from model are summed and visualized.



5 DATA , TOOLS AND STUDY AREA

This chapter contains a description of datasets sources, study area and tools
used in the thesis. The chapter aims to provide an evaluation of available
data sources in terms of their accuracy, spatial and temporal resolution and
other qualities. Choice of datasets is important as it was one of the prereq-
uisites to feature selection. The next subsection determines the study area.
Lastly, tools used in the thesis were listed.

5.1 datasets

Drought indicator - SWI is available in sufficient spatial resolution within
Copernicus Global Land Service. SCATSAR-SWI is computed from data
fuse of products Sentinel-1 SSM and ASCAT SSM/SWI, which assess soil
moisture. The first product provides high spatial resolution (1/112°), second
provides high temporal (1 day). Both datasets are resampled to an indepen-
dent spatial grid. The correlation layer is created by calculating Pearson cor-
relation coefficient. Next, the weighting layer is formed from signal to noise
values, which are interpreted as quality scores. The score is provided in a
separate layer for each day and location. Values of two datasets are matched
using the cumulative distribution function. An important parameter in the
final calculation is variable T , which determines weights for observations in
time. Higher T values will results in higher weights for older observations
(Bauer-Marschallinger and Pfeil, 2021). Dataset is provided with various T

values from 1 to 100. Values of 20 is selected correlated best with subsoil
conditions (10 - 20 cm below surface) (Paulik et al., 2014) and have uniform
quality score across the study area. T value was selected in consideration of
other datasets, mainly soil properties.

Accuracy assessment of the product is done by comparison to in situ mea-
surements. There is no dedicated soil moisture network for the study region,
closest is WegenerNet in Austria and TERENO in Germany. However, RMSE
for all stations is consistent with a value of approximately 0.04, which can
be considered as accurate (Bauer-Marschallinger and Pfeil, 2021). Dataset is
provided with a daily temporal resolution from the year 2015 and a spatial
resolution of 1 km. It is also available with a coarser spatial resolution of 12.5
km with temporal resolution from the year 2007. Data are in WGS 84

1 coor-
dinate system which results in higher spatial resolution in the study region
(approximately 650 m). However, not all values are available. Especially in
winter and spring snow cover prevents soil moisture assessment resulting
in absent information. Network Common Data Form (netCDF) format was

1 World Geodetic System 1984. EPSG: 4326

43



5.1 datasets 44

used to distribute data.

European Digital Elevation Model (EU-DEM) was designated as the input
dataset for elevation features and derived terrain characteristics because of
availability and good accuracy. EU-DEM was created as a data fuse between
SRTM2 and Aster GDEM by weighted approach and it is administered by
European Environment Agency under the framework of the Copernicus pro-
gramme. The first version of EU-DEM was available in 2009. Vertical accu-
racy south of 60 °N is assessed to have RMSE of 2.23 metres with a mean
error of -0.56 m. Should be noted that the model becomes less accurate
with increasing slope and density of tree cover (Tøttrup and Sørensen, 2014).
According to citeeuropean2021eudem, in the current version (EU-DEM 1.1)
several improvements were achieved, for example, removal of artefacts or
systematic correction of geo-positioning issues. EU-DEM v1.1 is available at
25 m spatial resolution and in 32bits GeoTIFF format. Model is provided in
ETRS89-LAEA coordinate system.

All soil properties except Soil organic matter were acquired from Topsoil
Physical Properties for the Europe dataset (TPPE), which is based on Land
Use and Cover Area frame Statistical Survey (LUCAS) dataset. LUCAS is the
largest harmonized soil dataset in Europe overseed by the Statistical Office
of the European Union, which consisted of in situ measurements from more
than 22 000 locations (Orgiazzi et al., 2018). The first survey was conducted
in 2009. TPPE dataset consists of interpolated values from LUCAS dataset
using Multivariate Adaptive Regression Splines with a normalized error be-
tween 4 % and 10 % (Ballabio et al., 2016). Besides LUCAS soil samples other
environmental covariates were included in the model, for example, normal-
ized difference vegetation index and enhanced vegetation index, CLC, cli-
mate data and soil data from European Soil Database. TPPE is delivered in
a high spatial resolution of 500 m.

Another dataset derived from LUCAS is Soil Organic Matter (SOM) fractions.
Cotrufo et al., 2019 utilized more than 9 400 points, to interpolate point data
to a grid with 1 km spatial resolution using RF algorithm. Organic mat-
ter is divided by size into particulate and mineral-associated organic matter
(less than 53µm). Datasets are delivered in GeoTiff data format and ETRS89-
LAEA coordinate system. Both datasets, TPPE and SOM are distributed by
European Soil Data Centre (Panagos et al., 2012). Other datasets were con-
sidered, for example, European Soil Database v2

3 in the raster version offers
more soil attributes, on the other hand, datasets are in categorical values.

Land cover information was obtained from CLC. Dataset provides a raster
or vector representation of land cover classified into 44 classes. The current
version was produced in the years 2017 - 2018, published in 2020 and it is the
fifth iteration of the product. CLC is created by manual and semi-automatic
classification of satellite data, mostly imagery from Sentinel-2. Evaluation
of dataset was done by blind interpretation of classes on samples generated

2 Shuttle Radar Topography Mission
3 https://esdac.jrc.ec.europa.eu/content/european-soil-database-v2-raster-library-1kmx1km
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by stratified sampling to independent imagery, for example, Bing maps or
Google maps. According to product manual (Büttner et al., 2021) overall ac-
curacy reached 93.2 % for blind analysis. CLC is delivered in raster GeoTIFF
with a spatial resolution of 100 m or vector with a minimum mapping unit
of 25 ha in ETRS89-LAEA coordinate system.

Features were created by aggregating existing CLC classes. Classes were se-
lected based on general knowledge of land cover. New, generalized features
and original classes are listed in the table below;

Table 2: Original and aggregated classes for land cover.

Aggregated
class

Former classes

Built-up
area

Continuous urban fabric, Discontinuous urban fabric, Industrial
or commercial units, Road and rail networks and associated land,
Port areas, Airports, Mineral extraction sites, Dump sites, Con-
struction sites

Agricultural
area

Non-irrigated arable land, Vineyards, Fruit trees and berry plan-
tations, Annual crops associated with permanent crops, Complex
cultivation patterns

Grassland Pastures, Natural grasslands, Moors and heathland
Forest Broad-leaved forest, Coniferous forest, Mixed forest, Transitional

woodland-shrub

CLC was compared to Pan-European High-Resolution Layers, which con-
tains classes similar to aggregated classes. However, the agricultural area is
not included. The importance of agriculture to drought was described ear-
lier (Section 3.1.3), therefore CLC is preferred.

Meteorological data are acquired from E-OBS dataset maintained by Euro-
pean Climate Assessment & Dataset project. E-OBS is interpolated from
point data gathered from the national meteorological station across Europe.
According to project website (Project Team ECA&D, 2021) Czechia has above
average density of stations (770 km2 for precipitation and 913 km2 for tem-
perature per station). Point data are interpolated with an extended linear
model (generalized additive model) with an RMSE of 3.63 mm for precipita-
tion and 1.15 °C for temperature (Cornes et al., 2018). The dataset is available
in netCDF format with a 12.5 km resolution. Data were downloaded in ver-
sion 23.1e, which was available in March 2021.

5.2 study area

State boundaries of Czechia encompass the study area. Due to the nature
of GRF, locations outside the country which are close to borders are part of
the train set. Extent reaches approximately 50 km beyond border north to
Poland, west to Germany, south to Austria and east to Slovakia. Total area
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of Czechia is 78,871 km2. The total number of observations with a spatial
resolution of 1 km is 78 975. Condition satisfied (forest and built-up area
share) 25 011 observation or 31.67 % of the country. The area and dominant
land cover is shown below (Figure 2).

50 150 km1000

Dominant land cover (more than 50 %)
Forest
Grassland

Agricultural area
Built-up area

Analyzed area

Figure 2: Dominant land cover and filtered study area.

5.3 tools

Python programming language was the main tool for processing, visualiza-
tion, analysis and model building. Numerous python libraries were utilized
to expand python functionality namely;

• Xarray, Pandas and NumPy to make possible import and pre-processing
of datasets in effective manner.

• SciPy for interpolation of data.

• Scikit-learn provides tools for machine learning model building.

• Matplotlib and Seaborn are libraries which facilities data visualization.

QGIS was used for cartographic visualization, visual exploration of spatial
data and together with SAGA GIS to create terrain analysis which would be
impractical in python.
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5.4 summary

The chapter describes selected data, designated study area and used tools.
The drought indicator dataset is in satisfactory spatial and temporal resolu-
tion. Most reviewed and selected datasets are created and maintained by
institutions or projects subordinated to European Commission. All datasets
are available for free. As the study area is within one Czechia, national data
sources were considered. Unfortunately, at the time of gathering the data na-
tional institution have not been providing desired datasets for free. All used
datasets are available for Europe, which makes thesis results more transmit-
table. Similarly to datasets, all tools are freely available.



6 RESULT AND D ISCUSS ION

The aim of the chapter is to present the results of experiments in an appropri-
ate form, describe and discuss them. The chapter is structured similarly to
methodology. Firstly, visualization of original data is presented. The focus
is on the exploration of a possible relation between dependent and indepen-
dent variables. Next, the choice of sampling method is described. Secondly,
results of the tuning process for regular RF, GRF and LT GRF are presented.
In the last section, the final results are presented. Accuracy metrics are
listed for each tested model and their performance is discussed. Variable
importance output for the regular and geographical model is visualized and
compared. Finally, vulnerability assessment is presented and compared to
other assessments.

6.1 pre-processing

6.1.1 Exploration

SWI, the dependent variable has an approximately normal distribution. The
minimal value is 10.89 and the maximal is 78.74, range of values is 67.85. If
taken into account dataset without outliers (1 - 99 %) range shrinks to 47.39,
with a minimum value of 17.71 and maximal value of 65.11. The range of
values with a higher percentile (5 - 95 %) further shrinks to 36.14 with a
maximum of 58.22 and a minimum of 22.07. Determine the range of values
for the majority is important for the final assessment of accuracy, outliers
might skew the perception of accuracy for the tested model.
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Figure 3: Histogram for SWI.
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The correlation between SWI and features is not high in general. The high-
est positive correlation is x-coordinate (0.5), which is relatively small. The
highest negative correlation is with Y-coordinate (0.4), which is even smaller.
The highest positive and negative correlation is shown in the table. A small
north-western gradient can be identified, SWI increase from west to east and
from north to south.

Table 3: Highest positive and negative correlation between features and indicator.

Positive Negative
Feature Value Feature Value

X-coordinate 0.504 Y-coordinate -0.419

Precipitation 0.294 Coarse fragments -0.224

Temperature 0.188 Bulk density -0.079

Forest 0.089 Agriculture area -0.073

Clay content 0.066 Water proximity -0.042

High correlation (> 0.7 or < −0.7 ) exists between several features. TWI is
highly correlated with slope (-0.8), AWC with clay content (0.93). High cor-
relation is expected because of the known relation between them; the slope
is input in the calculation of TWI and sandy soil are well to known to have
lower AWC. Next, a high correlation between elevation and temperature (-
0.72), and elevation and bulk density (0.73).
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Figure 4: Correlation matrix.
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6.1.2 Sampling

Sampling was repeated numerous times with different number of drawn
samples. Mean difference and mean standard deviation of all features from
original dataset were visualized in plot (Figure 5). Values of stratified and
random sampling are oscillating around zero with maximal values of 12

and 30 for standard deviation, which is 0.12 % and 0.3 %. Values of LHS
are much more higher. At 2000 samples difference of mean is more than
250, with rising sampling size value decline to 150. Similar trend reports
standard deviation. Achieved values of LHS are too high to be suitable. Ac-
cording to theory, LHS should be most accurate in sampling from original
dataset. The most probable explanation is that, the instance could not high
share of sampled dataset size to original dataset size in high dimensional
space. In sampling from existing dataset LHS effectively becomes true strat-
ified sampling, which does not work in high dimensional dataset. Stratified
sampling was selected as sampling method.
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Figure 5: Mean and standard deviation difference for sampling methods.

6.2 model building

The first model to be tuned is regular RF using the OOB method. Tuned
(max features and min samples leaf) parameters and tested values are in the
table below. Optimal values are highlighted. The difference in accuracy in
the tuned and not tuned model is not substantial. The performance for pa-
rameter recommended in literature (max features = n/3 = 6) RMSE is 3.69,
for optimal (max features = 16) is 3.51. The decrease is 0.18, which is 0.26 %
or 0.38 % for range without outliers.

Table 4: Tuned parameters for RF

parameter values

max features 4 (sqrt), 6 (n/3), 8, 10, 12, 14, 16
min samples leaf 5, 10, 20, 30, 40, 50, 60, 70
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The decrease in error due to a higher number of trees is even more marginal.
RMSE steeply decrease in interval 100 to 300 trees, from 3.545 to 3.515, then
decrease with diminishing returns. A value of 300 was chosen as a break-
point value.
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Figure 6: Number of trees and RMSE.

As the second step in the model building process, GRF parameters band-
width and local weight were tuned. Following values for parameter band-
width (number of closest samples) were tested; 25, 50, 75, 100, 150, 200, 250,
500, 750 and 1000. For local weight values from 0 to 1 with 0.1 increments
were tested. Model is tested with the adaptive kernel, locations average dis-
tance to observations varies. The relation between bandwidth and absolute
distance is displayed in the boxplot (Figure 7). The minimal average dis-
tance for bandwidth 25 is 1992 m for locations in observation rich areas, the
maximal average distance is 17 407 m in very sparsely populated (by obser-
vations) regions. The average distance is 3206 m. The distance increase by
the square root of bandwidth.
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Figure 7: Distance and bandwidth values.

The error values for parameters are displayed in a line plot (Figure 8). Errors
values are higher than values of tuned regular RF. This discrepancy resulted
from different tuning methods, regular RF was tuned with OOB samples.
RMSE of RF in the case of tuning GRF is 3.74 (MAE = 2.82), compare to
RMSE of 3.51 of regular RF. OOB method tends to underestimate error.

The optimal bandwidth is 25 observations, which is also the smallest one.
Bandwidth achieved RMSE of 3.58 or 2.67 MAE (for full weight for local
models). The decrease is small. Even smaller is the contribution of global
to local weight. Optimal weight is 0.7 for local models (70 % of local model
values, 30 % of global). Combined weight decrease RMSE from 3.58 to 3.56

and MAE from 2.67 to 2.662. With increasing bandwidth accuracy decreases
and converges to the regular RF error values. The biggest jump is within the
first 100 observations, then accuracy decreases slower.

The low value of bandwidth can be partly explained by the nature of phe-
nomena and the way the dependent variable is created. The indicator was
created by upsampling low-resolution products to a higher resolution. As
most of the observations remain in grid, the surrounding of each observation
contains very similar samples. They are similar no only in the value of the
indicator, but also in features value. For example, sand content, elevation or
precipitation values tend to change gradually and not abruptly over space.
The smallest possible bandwidth value is a result of continuous values of
independent and dependent variables.

Several studies concerning GRF address the tuning process. Georganos et al.
(2019) tuned parameter bandwidth in range 100 to 1000 observations (adap-
tive kernel). Low values of bandwidth display high error, with increasing
bandwidth error, decreases and later increases. Optimal bandwidth is within
the range of 300 to 500 observations. Three local weights were tested, 0.75 in
favour of the global model was found to be most accurate. Santos et al. (2019)
tested a similar range of values and found a value of 400 to be optimal. A
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smaller bandwidth size of 25 found Hokstad and Tiganj (2020), which tested
range from 25 to 100. The optimal local weight was found to be 0.5.
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Figure 8: RMSE and parameters of GRF.

During tuning of LT GRF is for each training observation found the best
bandwidth and local weight. The count of each value of the parameter is
displayed in a histogram (Figure 9). The most abundant value for band-
width is 25 constituting 33.4 % of all values. Second place belongs to value
50 with 12.9 % share. Other values constitute a smaller portion than 10 %.
GRF assign to all locations one universal value, however, as can be seen, it
is not optimal for the vast majority of locations. In the case of local weight,
the situation is more uneven. The most abundant local weight value is 1

(only local model is employed) which constitutes 68.3 % of all values. The
second most populous is value 0 (only global model is employed) with 10%
contribution to all values. Other values are represented less, the count de-
creases with lower local weight. However, the best value achieved by GRF
tuning is 0.7. This value is not optimal for more than 97 % of all locations.
Therefore it is assumed that LT GRF can improve accuracy. The RMSE for
the training set is 2.75 and 1.74 for MAE, which is a significant decrease in
error. However, the applicability of LT GRF is dependent on the existence of
spatial patterns in parameter values.
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Figure 9: Histogram for bandwidth and local weight for LT GRF.

Spatial patterns of parameters were examined and displayed in a map (figure
9). No clusters of similar values were detected by visual exploration. Correla-
tion between geographical coordinates or other geographical features were
not detected. Values appear to be localized randomly. Visual exploration
conclusion is further supported by variogram (Figure 11). The sill (corre-
lated range) does not exists as first lag value (2) is similar to all others.
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Figure 10: Spatial patterns of LT GRF parameters.
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Figure 11: Variogram for local weight.

6.3 performance and vulnerability assessment

6.3.1 Accuracy assessment

Each tuned model was trained and tested. The train set comprises 60 817

samples and a test set of 8862. The ratio is not strict 80/20, because ob-
servations outside the study area bounding box were deleted. RF without
spatial covariates achieved RMSE 5.04 (MAE of 3.8), RF with spatial covari-
ates achieved RMSE of 3.748 (MAE of 2.82), GRF of 3.6 (MAE of 2.69) and
LT GRF of 3.57 (MAE of 2.65). In relative values, RF has an accuracy of 94.47

%, GRF 94.69 % and LT GRF 94.74 %. With consideration of range without
outliers (1 - 99 %) accuracy is 92.09 %, 92.4 % and 92.46 %. Values are listed
in the table below.

Table 5: Accuracy metrics for each tested model expressed in relative and absolute
values.

RMSE MAE

abs rel [%] abs rel [%]
RF model 5.0421 92.569 3.79986 94.399

RF XY model 3.74811 94.476 2.82005 95.844

GRF model 3.60067 94.693 2.68956 96.036

LT GRF model 3.57132 94.736 2.65191 96.092

The best model in terms of accuracy is LT GRF. Compare to RF with spatial
covariates is more accurate by 0.177 RMSE and to GRF by 0.029 RMSE. New
method decrease error by 4.7 %. The decrease is very small. The minuscule
difference in error between models can be explained in several ways. Firstly,
regular RF achieves very good results. Accuracy of more than 92 % is very
high and room for improvement is limited. It is possible that model accuracy
can not be significantly improved any further. Secondly, spatial non-linearity
is explained well by spatial covariates, which are input features in the global
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model. In other words, the global model has not left any space for local mod-
els to improve. Difference between the RF model and RF XY model of 1.29

RMSE or decrease in 25.663 % support this claim. Lastly, between the RF XY
model and observation does not exist any significant spatial non-stationarity,
which could local models capture better than the global model. However,
this hypothesis is rejected based on the difference in accuracy between the
RF XY model and RF model and the examination of variable importance in
the next sections.

Surprisingly low decrease in RMSE is between GRF and LT GRF. Based on
tuning LT GRF, in which RMSE decrease to 2.75, is decreased from 3.6 to
3.57 very small. RMSE was almost the same for nearest neighbour and lin-
ear interpolation for location in the test set. The unconvincing result proves
the conclusion of visual examination for bandwidth. There is no or very
little spatial correlation between bandwidth and local weight and a decrease
in error. Values are localized randomly as a residue of random error.

GRF creates local models on a subset of original datasets. This process can
be reinterpreted as a huge number of created decision trees with a very small
number of observations. A similar situation can be recreated with regular
RF with parameter maximum samples set to a value of best bandwidth (25).
However, experiments show that such a model is very inaccurate (RMSE of
7.91) and this hypothesis can be declined.

Performance of GRF and LT GRF was compared to performance in other
studies. In the study by Georganos et al. (2019) GRF with spatial covariates
achieved RMSE of 0.606, the global model achieved RMSE of 0.65. The error
decreased by 6.76 %. Master thesis by Hokstad and Tiganj (2020) compared
RF with spatial covariates to GRF. RF achieved RMSE of 17 944 and GRF 16

705, 6.9% decrease in error. In both studies, a decrease in error between RF
with spatial coordinates and without them is more significant.

Improvement of GRF or LT GRF over regular RF is small and computational
runtime is much higher. For large datasets (more than 100 000 samples)
desktop PC is not sufficient and less accessible and a more expensive solu-
tion needs to be employed. Therefore, GRF might not be advantageous to
use. For example, if funds are limited and maximum accuracy is not imper-
ative, regular RF with spatial covariates is sufficient. However, in case every
decrease in error is transformed to higher profit and computational power
is not limited, GRF is a better option.

6.3.2 Feature importance assessment

Feature importances for RF model and GRF model are displayed in barplots
(Figure 12) and (Figure 13).
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Figure 12: Feature importances for RF.

The most important features for the RF are spatial covariates - x-coordinate
and y-coordinate. Together with accounts for almost two-third (35.3 % and
31 %). Third and fourth place occupy meteorological features. Precipitation
accounts for 10.7 % and temperature for 7.97 %. Elevation accounts for 4

% and other features are responsible for less than 2 % of importance. The
huge importance of spatial covariates points out to the spatial continuity of
predicted variable. Simply put, new values are mostly predicted from close
observations. The importance of meteorological features was expected. Pre-
cipitation and temperature affect soil water to a large degree. However, the
insignificance of soil properties is unexpected. Similarly to SWI, soil charac-
teristics change gradually in space, thus their change is captured by spatial
covariates. Secondly, many of them are correlated, therefore their impact is
underestimated.
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Figure 13: Feature importances for GRF.
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The feature importances for the local model are much more balanced. The
most important feature is water proximity with 8.5 %, followed by temper-
ature 7.9 % and precipitation 7.8 %. Other features are responsible for 4 %
to 7 % importance. Land cover classes (forest, grassland and built-up area)
are least important. Spatial covariates are much less significant compare to
the global model. Local kernel substitutes coordinates, which became mean-
ingless in a small subset of data. Soil properties constitute 30 %, which is
much more compared to the global model. Land cover classes occupy the
last position in both models. This can be interpreted as an absence of effect
on SWI. However, land cover classes often have a value of zero - class is
absent, which diminished its information value.

Most important feature by mean value - water proximity was examined more
closely (Figure 14). Importance varies over space. Maximum values reaches
60 %, on the other hand in many location importance is less than 5 %. Sev-
eral small cluster can be identified, for example cluster of high values north
of Kolı́n or cluster of low values south-west of Prague. The importance is
not dependent on value of water proximity. Correlation coefficient is only
0.036 which suggest no correlation at all. This is also suggested by visual
exploration. In conclusion, the impact of vicinity of water bodies need to be
investigated individually especially in places with high importance.
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Figure 14: Water proximity importance.

6.3.3 Vulnerability assessment

Lastly, a map of vulnerability assessment was created (Appendix 1) from
meteorological features importances of most accurate model (LT GRF) Loca-
tions of high (or low) vulnerability degrees are not grouped in a huge cluster
rather are intertwined with regions with low or medium vulnerability. De-
spite that, several vulnerable regions can be identified. Two big clusters can
be found in the South Moravia region - area in proximity of village Mikulov
and north-east of Hodonı́n. Higher vulnerability clusters are found in the
vicinity of cities Pardubice and Chrudim, near the city of Turnov and in the
Žatec region. Patches of vulnerable regions are located in the foothills of the
Šumava mountains.

Comparing vulnerability to the others studies is difficult because of differ-
ent scales, cartographic visualization used and filtered land cover applied
in thesis. Brázdil and Miroslav Trnka (2015) identified as highly vulnerable
regions Southern Moravia, Krušné hory region, area south-west of city of
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Kadaň, which is forested military area. Most highlighted regions are located
in forested regions, which were not included in thesis. Miroslav Trnka, Se-
merádová, et al. (2016) recognise as vulnerable areas Southern Moravia and
Krušné hory foothills. In general Southern Moravia region, Krušné hory
foothills and surrounding of the city of Kolı́n. Contrary, to regions listed
above thesis identified Šumava foothills as prone to drought.

The degree of vulnerability is not correlated with any of included features.
The highest correlation (positive or negative) is between elevation (-0.18).
The correlation is so small, that none of the features can be identified as
having any effect on vulnerability. Unfortunately, the assessment of drought
influences can not be investigated. Compare to other traditional approaches,
assessment from feature importances is not subjected to manual set up of
weights. The method is dependent on the selection of drought factors, espe-
cially meteorological features. Accuracy can be quantified by the accuracy
of the model. On the other hand, the validation of assessment is limited due
to the absence of similar studies or environmental vulnerability assessment
of Czechia.



7 CONCLUS ION AND FUTURE
DEVELOPMENT

7.1 conclusion

The thesis deals with building three regression models - RF, GRF and LT
GRF. Models are used to predict values of the drought indicator from en-
vironmental data. Feature importance is extracted from each model and
compared. Lastly, from meteorological features importances is created a vul-
nerability map.

The first task comprises of constructing and evaluating machine learning
models trained and tested on spatial data. It was assumed, that spatially
sensitive models will perform better. The RF model achieved RMSE of 5.04,
RF model with spatial covariates (coordinates) achieved RMSE of 3.74, GRF
of 3.6, and lastly LT GRF attained RMSE of 3.57. The biggest decrease results
from including spatial covariates. This option is from a computational stand-
point very easy; the new spatial features will not increase runtime and the
approach does not require additional programming in comparison to GRF.
The decrease in error to GRF is smaller (0.15 RMSE or 4.7 %). The decrease
is small but comparable to other studies, which used GRF. However, the
decrease from GRF to LT GRF model is minuscule (0.03 decrease in RMSE).
The LT GRF model is not benefiting from the tuning of bandwidth and local
weight parameters. It was found that there is no spatial continuity between
values of both parameters, implicitly by visual exploration and huge differ-
ence between values of RMSE from training and testing set, and explicitly
by variogram. LT GRF in this particular case does not decrease significantly
error. On the other hand, GRF might be useful in some cases, for example, if
the computational power is unlimited and accuracy requirements very high.

The second task was comprised of evaluating and comparing local variable
importance to the global one. The most important features in the global
model are spatial covariates. X and Y coordinate were responsible for more
than 66 % of importance, followed by meteorological features (precipitation
and temperature) with less than 19 %. The variable importance is divided
between features unevenly. The first four features account for more than 85

% of importance. The local models are very different. The spatial covariates
are not as important, which is the result of the small size of the subset. The
importances are divided much more evenly. The most important feature is
water proximity, followed by meteorological features and elevation. The soil
properties have a much higher share of importance than in the global model.
The water proximity feature was explored in closer detail, however, no corre-
lation between the importance and water proximity values or any significant
clusters were found, mainly because the importance is relatively low. The
local importances can serve to assess local causes of drought, which would

61
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not be possible from a global model.

The last task included developing of vulnerability assessment. As more vul-
nerable areas were identified southern Moravia, vicinity of cities Pardubice
and Chrudim or are north of the city of Kolı́n. The more vulnerable areas
are intertwined with relatively less vulnerable areas. This suggests incon-
sistency in the results. The validation process is hindered by the scarcity
of suitable vulnerability assessments of Czechia regions. These assessments
have insufficient scale or are not aimed at the agricultural land cover. On the
other hand, from a subjective standpoint, the results of the assessment look
promising.

In conclusion, the spatial version of RF - GRF provides several advantages
over aspatial algorithm. Besides a small increase in accuracy, the GRF pro-
vides variable importance, which is localized for each location. This feature
can be utilised in the development of vulnerability assessments.

7.2 future development

As a continuation of this thesis, several directions can be explored:

• Including higher number of features, especially meteorological one,
which could improve performance of GRF and vulnerability assess-
ment from feature importance values.

• Including higher number of training samples, from more than one
drought episodes. This would decrease variance and improve accu-
racy for feature importances.

• Extend the GRF concept to time dimension similarly to extension of
GWR (Fotheringham, Crespo, et al., 2015). Time dimension allows
creation of a more dynamic model, which would perform better in
context of climate change.
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