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Abstract 

Kallikrein-related peptidases (KLKs) are a subgroup of serine proteases of 

undisputable importance for a variety of functions, whose dysregulation has been 

linked to several pathological phenotypes. Among those pathologies, the Netherton 

syndrome stands out, since it is one of the very few that has its mechanism directly 

linked to KLK proteases as the main culprit of the disease, namely KLK5, KLK7 and 

to a lesser degree, KLK14. In this case, a mutation in the SPINK5 gene leads to 

uncontrolled hyperactivity of those proteases, which results in epidermal barrier 

breach due to excessive epidermal desquamation and severe inflammation of the skin. 

Inflammation mechanisms of NS are still relatively poorly understood, with important 

roles being attributed to the activities of KLKs in the processing of immune system 

molecules and also to the dysregulation of the cutaneous microbiome.  

TNFα signalling plays a key role in the homeostasis and immune response in the skin. 

Chronic skin infections may lead to deleterious effects with strong participation of 

TNFα signalling. To address the degree of its effects on the pathogenesis of NS, we 

have created a mouse model where the TNFR1 is disrupted by knockout of the Tnfr1 

gene on the background of a previously established mouse model of the Netherton 

syndrome. 

 We have successfully created the Tnfr1-/- mouse model and subsequently produced 

the desired Sp5-/- Klk5-/- Tnfr1-/- mice. Surprisingly, subsequent analyses suggest that 

not only Tnfr1 ablation does not alleviate cutaneous inflammation present in 

previously created mouse models, but further increases its severity. 
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Abstract (CZ) 

Kallikreinové peptidázy (KLKs) jsou podskupinou serinových proteáz se zásadní 

důležitostí pro řadu funkcí, jejichž dysregulace přispívá k řadě patologických 

fenotypů. Nethertonův syndrom zaujímá mezi těmito patologiemi zásadní postavení, 

jelikož deregulace kallikreinových proteáz hraje klíčovou roli, především KLK5, 

KLK7 a do menší miry také KLK14. V případě této patologie je narušen gen hlavního 

regulačního proteinu těchto proteáz v kůži, kterým je SPINK5. To vede k 

nekontrolované hyprreaktivitě těchto proteáz a následnému narušení epidermální 

bariéry díky nadměrné epidermální deskvamaci a vážnému zánětu kůže. Zánětlivé 

mechanismy Nethertonova syndromu jsou v tuto chvíli relativně málo objasněné a 

panuje přesvědčení, že hlavní roli hraje zpracování imunitních molekul pomocí těchto 

proteáz a dysregulace kožního mikrobiomu. 

 TNFα signalizace hraje klíčovou roli v imunitní odpovědi proti mikrobům a 

chronické kožní záněty mohou vest k závažným zdravotním stavům, ve kterých je 

TNFα důležitým komponentem. Abychom adresovali vliv TNFα signalizace v 

kontextu kallikreinových proteáz a Nethertonova syndromu, tak jsme vytvořili myší 

model, ve kterém je narušen gen Tnfr1 kódující protein receptor TNFR1 na pozadí již 

vytvořených modelů Nethertonova syndromu.  

 Úspěšně jsme vytvořili Tnfr1-/- myší model a následně jsme vyprodukovali 

požadovaný Sp5-/- Klk5-/- Tnfr1-/- model. Dosavadní výsledky naznačují, že narušení 

funkce tohoto genu tuto patologii nejen nezmírňuje, ale naopak vede ke zhoršení 

kožního zánětu. 
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Introduction 

Kallikrein-related peptidases (KLKs) are a part of a sub-group of serine proteases, 

with their family containing 14 members in total (Emami and Diamandis, 2007). 

These proteases have a variety of physiological activities, among them being the 

regulation of skin desquamation, and protease-activated receptor 2 (PAR2)-mediated 

inflammation, which contributes to adequate homeostatic conditions of the skin 

(Prassas et al., 2015).  

 The hyperactivity of KLK5, KLK7, and KLK14 has been previously shown as the 

primary culprit behind the pathological state known as the Netherton syndrome (NS) 

(Furio and Hovnanian, 2014). In this disease, the serine protease inhibitor Kazal-type 

(SPINK) 5  gene, which codes for a protein product called lympho-epithelial Kazal-

type-related inhibitor (LEKTI), is mutated, which leads to the aforementioned 

dysregulation (Bitoun et al., 2003). The severity of this dysregulation is dependent on 

the site of the specific mutation, as the LEKTI protein is composed of 15 inhibitory 

domains, with different regulatory targets, thus leading to different levels of KLK 

activities. KLKs themselves then exert deleterious effects in the skin when left 

unchecked, namely severe inflammation and uncontrolled desquamation of the skin, 

leading to recurrent infections and the necessity of periodic treatment of the skin in 

the afflicted. Unfortunately, there is a lack of a reasonably effective treatment for NS 

patients, since there is still much to be elucidated in regards to the exact molecular 

mechanisms of this disease. As of now, the treatment options provide a temporal and 

not entirely effective solution to this problem, although there are several possible 

treatment options in the making with different levels of persistence (Petrova and 

Hovnanian, 2020). 

 Tumour necrosis factor (TNF)α serves a key role in a plethora of immunological 

conditions and manifests its effects through two different receptors, TNF receptor 

(TNFR)1 and TNFR2 (Holbrook et al., 2019). These effects are exerted through 

different mechanisms of action for each receptor and will be elaborated on further 

later in the thesis. TNFα has been previously linked to several other pathological skin 

conditions and the TNFα inhibitors (TNFIs) are readily available for the treatment of 

such conditions (Monaco et al., 2015), making it an interesting option to explore, as it 
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would greatly speed up possible treatment if there would be a connection between 

TNFα signalling and NS-related inflammation. 

 In this work, we aim to test this possibility by creating a Tnfr1 knock-out mouse to 

elucidate its effects on the NS-like phenotype of a previously established mouse 

model. 
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1. Literature review 

This literature review summarizes the immense complexities of underlying 

mechanisms surrounding KLKs, TNFα signalling and related skin pathologies. 

Chapter 1 describes KLKs and their physiological and pathophysiological functions in 

the skin. Chapter 2 provides a brief description of TNFα signalling and exploitation of 

our knowledge of said signalling in therapeutic applications. And lastly, chapter 3 

provides a brief overview of several diseases in which both KLK proteases and TNFα 

signalling play their role in initiating and maintenance of said pathologies. Lastly, 

chapter 3 also provides a brief comparison of the most important differences between 

human and murine skin.  

1.1 Overview of kallikrein proteases – roles in health, disease and 

their regulation 

Kallikrein proteases are a family of serine proteases, divided into two sub-groups, 

plasma kallikreins and tissue kallikreins. The first one contains one member, KLK1B, 

and is of no interest to the topic of this thesis. The second sub-group is composed of 

15 members, of which 14 (KLK2-14) bear the name KLKs. They are characterized by 

trypsin- and chymotrypsin-like activities and this sub-group specifically is located on 

the largest protease gene cluster both in humans and in mice, with its location being 

chromosome 19 and chromosome 4, respectively. Tissue kallikreins retain a high 

degree of homology across species and varying degrees of homology (35 – 80%) 

among themselves (Prassas et al., 2015) (Emami and Diamandis, 2007).  

 Their relevance for a variety of physiological processes is readily visible through a 

plethora of research done on these proteases, the most important and described being 

their role in the kinin system (Kayashima et al., 2012), semen liquefaction 

(Anamthathmakula and Winuthayanon, 2020), tooth enamel formation (Bartlett and 

Simmer, 2014), cancer progression, neural development (Mella et al., 2020) and skin 

homeostasis (Nauroy and Nyström, 2020). Albeit the amount of data relating to these 

proteases is ever-increasing and their effects on health and disease are being 

elucidated, there is still much to be desired as their exact effects on physiology often 

remain unclear. Among the main reasons is that studies on these proteases have been 

oftentimes carried in an in vitro setup, which may result in significantly different 
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activities when compared to the in vivo milieu. Nevertheless, the recent advent of 

genome editing technologies, like clustered regularly interspaced short palindromic 

repeats (CRISPR)/CRISPR-associated protein 9 (Cas9), and, in extension, highly 

efficient and fast production of transgenic animals, is enabling scientists to research 

KLKs in vivo effects at a hitherto unattainable pace.    

 Since this work focuses on the skin, the physiological effects of KLKs will be 

discussed exclusively in this context and I direct any potential readers to a few 

reviews that have been cited above that discuss KLKs more comprehensively. 

1.1.1 Physiological functions of kallikreins in the skin 

KLKs are produced firstly as pre-pro-peptides, where the pre- portion serves as an 

export signal to the extracellular space and the pro- portion makes the KLKs inactive 

prior to proteolytic cleavage, after which they become active and exert their given 

function (Prassas et al., 2015). The proteolysis step that activates KLKs is best 

characterized as a complex proteolytic cascade, in which mainly KLKs themselves are 

responsible for pro-peptide processing. The key player in this cascade is KLK5, which 

activates a variety of KLKs (KLK5, KLK6, KLK7 and KLK14) (Yoon et al., 2007) 

and also the plasmin protease (Michael et al., 2005), which is capable of processing 

KLK6 and KLK14 into its active form (Yoon et al., 2008) (Figure 1.1).   

 Furthermore, their activity is being directly modulated by the pH levels of the 

extracellular milieu, which serves as a mechanism of spatial regulation for these 

proteases. As an example, KLK5 activity is restricted to the upper granular layer by 

the formation of a complex with, primarily, D8-D11 LEKTI-derived peptide 

fragments, and only after its transport in the extracellular matrix (ECM) along the pH 

gradient is the KLK5 released and may participate in the processes related to the 

maintenance of skin homeostasis (Deraison et al., 2007). 
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Figure 1.1 KLK proteolytic cascade in the skin. Activities of KLKs are a delicate balance of an array 

of factors and its focal point is the KLK5 protease. It serves as the main modulator for itself (although 

to a lesser degree, pro-KLK5 is also processed by mesotrypsin and matriptase; not shown), KLK7 and 

KLK14 and to a limited degree, for KLK6. KLK6 is primarily activated via enterokinase. Regulation of 

KLK proteases is mediated by the LEKTI family of serine protease inhibitors. Green arrows are 

visualizing the activation modality, whereas red lines are showing inhibitory properties of this 

cascade´s components. Adapted from Nauroy and Nyström, 2020.  

 

 The most important roles for KLKs in skin homeostasis are as follows: regulation of 

skin desquamation, pro-filaggrin (FLG) processing and degradation of mature FLG, 

keratinocyte proliferation and migration, and their role in the modulation of the innate 

immune response. 

 Skin desquamation is a process during which the outermost layer of the epidermis, 

stratum corneum, periodically sheds its terminally differentiated keratinocytes called 

the corneocytes. These cells are held together by three proteins, transmembrane 

proteins desmocollin 1 and desmoglein 1, and by an extracellular protein 

corneodesmosin which together form a structure called the corneodesmosome. 

Various KLKs are exerting different amounts of ability to process these proteins and 

KLK5 again plays the most important part in this process, as it is capable of 

processing all three of them (Borgoño et al., 2007; Caubet et al., 2004).  
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 The processing of pro-FLG into mature FLG is a key part of the maintenance of skin 

homeostasis, as FLG is a key contributor to the envelope which surrounds 

corneocytes and significantly contributes to the faultless workings of the first line of 

defence, the mechanical barrier of the skin. The final result of FLG activity is its 

contribution to pH levels maintenance and water retention. FLG can be processed by 

several KLKs, with KLK5 again being the most important player (Sakabe et al., 2013; 

Williams et al., 2017).  

 Keratinocytes are the main cell type of which the skin is composed, and thus are the 

focal point of skin biology. It comes as no surprise, that plethora of their exerted 

activities is of paramount importance in a variety of skin biology-related aspects, like 

wound healing (Pastar et al., 2014) and skin inflammation (Pastore et al., 2006). In the 

context of wound healing, KLKs regulate this process in as of yet not fully elucidated 

manner. However, their importance was made obvious in several studies, pointing the 

research community in the direction that KLKs are at least partially responsible for 

correct keratinocyte-related wound healing actions. Among those actions are fibrin 

clot formation (Soley et al., 2016), E-cadherin shedding (Klucky et al., 2007), ECM 

remodelling via cleavage of a variety of ECM components like collagen I, collagen III 

and collagen IV, metalloproteinase 9 and others (Wells et al., 2016), and the 

regulation of surface receptor amounts, which may result in a modulation of a 

downstream response and impairment of correct ECM structuralization (Loessner et 

al., 2012).  

1.1.1.1 Functions of KLKs in immunity 

KLKs are crucial in the processing of several important components in innate 

immunity. Antimicrobial peptides, namely cathelicidin and its active form, LL-37, are 

processed by KLKs. KLK5 has been shown as the only KLK protease clearly linked 

to the LL-37 production (Yamasaki et al., 2006). KLK5, KLK8 and KLK14 have 

been shown to be able to process LL-37 into smaller fragments, although this has 

been shown only in vitro in the case of KLK8 and KLK14 (Eissa et al., 2011). KLK7 

also seems to be able to produce these shorter fragments, although it may serve more 

as a controlling mechanism of active fragment production, instead of being directly 

involved in their production on a scale comparable to KLK5 (Yamasaki et al., 2006). 
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  Furthermore, KLK7 is directly participating in innate immune response modulation 

by pro-interleukin (IL)-1β processing (Nylander-Lundqvist and Egelrud, 1997) and by 

activation of PAR2, which is mediated mainly by KLK5, but also by KLK4, KLK6, 

and KLK14 (Heuberger and Schuepbach, 2019).  

 There is also evidence of proinflammatory effects mediated by KLKs through an as 

of yet undiscovered means, apart from the effects induced by PAR2 activation (Zhu et 

al., 2017). It is very likely that this is not the end of the scope by which KLKs are able 

to exert their modulatory effects, but the available data are insufficient to draw any 

further conclusions. 

1.1.1.2 Regulation of kallikrein activities by protease inhibitors 

Without any sort of efficient regulation, unrestrained activities of KLKs would result 

in serious damage and dysregulation of the homeostatic state. The lympho-epithelial 

Kazal-type inhibitor (LEKTI) family of serine protease inhibitors fulfils that essential 

role. There are 3 members of this family which are relevant for KLK regulation in the 

skin, LEKTI (Deraison et al., 2007), LEKTI-2 (Meyer-Hoffert et al., 2009) and 

SPINK6 (Fischer et al., 2014), encoded by SPINK5, SPINK9 and SPINK9 genes 

respectively. Of these 3, LEKTI is by far the most important according to all available 

data. LEKTI protein is first synthesized as a protein composed of 15 domains (D1-

D15) with serine protease inhibitory properties, that are afterwards cleaved into active 

peptide fragments with a variety of inhibitory targets.  

1.1.2 Pathophysiological functions of kallikreins in the skin 

Dysregulation of KLK proteases is clearly linked to several skin disorders and may be 

possibly linked to even more skin-related pathologies. The ones that have been clearly 

identified are NS (Petrova and Hovnanian, 2020), Atopic dermatitis (AD) (Morizane, 

2019), psoriasis (Komatsu et al., 2007) (Eissa et al., 2013) and acne rosacea (Two and 

Del Rosso, 2014). In these diseases, the lack of control over their activities results in a 

state that the very mechanisms by which KLKs normally maintain the skin 

homeostasis are turned into activities with severe deleterious effects. 

 Among the most notable of these effects in the context of related pathologies are 

impaired water retention leading to severe transepidermal water loss, impaired wound 

healing, excessive skin desquamation, inflammation and periodic infections. Those 
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conditions and the afflictions in which they play a crucial role will be discussed more 

comprehensively later in the thesis 

1.2 TNFα signalling 

TNFα was first fully described in 1975 (Carswell et al., 1975), although indirect hints 

of its importance were already present (Shear and Perrault, 1944). Nevertheless, prior 

descriptions of its effects were limited in the scope of the understanding of the actual 

process. After its initial characterization, it seemed like an ideal candidate for cancer 

treatment for the world of cancer research, but this enthusiasm proved to be short-

lived, as its effects were not fully elucidated and led to widespread inflammation and 

death of patients treated with TNFα (Tracey et al., 1988). Since that time, the 

mechanisms and subsequent outcomes of TNFα signalling have been in many ways 

solved and described. However, there is still much to be desired in terms of the scope 

of knowledge regarding TNFα mainly due to the immense complexities of its 

downstream effects, which oftentimes lead to surprising outcomes even after nearly 

50 years have passed since its initial characterization. 

 TNFα belongs to the TNF superfamily (TNFSF) of proteins, which contains 19 

members in total. TNFSF proteins have two functionally important forms, both being 

active as homotrimers. They are first synthesized as type II transmembrane proteins, 

with the exception of LTα3, and are then converted to their soluble form by a variety 

of proteases, with metalloproteinase ADAM17, also known as TNFα-converting 

enzyme (TACE), being the most important in the shedding of membrane TNFα 

(mTNF) and its conversion to soluble TNFα (sTNF) (Gooz, 2010). Both of these 

forms are exerting a variety of different outcomes, which may sometimes be 

overlapping in their downstream effects. The key structure among the TNFSF proteins 

is their TNF homology domain (THD), which facilitates the trimerization process and 

also the binding of TNFSF proteins to their cognate receptors (Bodmer et al., 2002). 

 TNF receptor superfamily (TNFRSF) is the group of proteins that are responsible for 

the downstream effects of TNFSF proteins. TNFRSF is composed of 29 members, 

which are predominantly type I transmembrane proteins, but a few are type III 

transmembrane proteins (f.e. B cell maturation antigen). TNFRSF receptors form 

either parallel or antiparallel dimers, with their parallel form being the one able to 

bind its cognate ligand. The key characteristic of their structure is a cysteine-rich 
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domain, which enables them to bind to their ligands via the THD (Vanamee and 

Faustman, 2018). TNFRSF receptors are divided into two groups: death receptors and 

non-death receptors. As the name would suggest, death receptors are usually 

responsible for the majority of pro-apoptotic effects, which are mediated by a 

conserved sequence called the death domain (DD) located in their cytoplasmic part. 

Non-death receptors lack the DD and are often exhibiting pro-survival signals 

(Dostert et al., 2019). Nevertheless, this presumption is not always the case (Lawlor et 

al., 2017).  

 There are two TNFRSF receptors that are responsible for mediating the effects of 

TNFα, TNFR1 and TNFR2. Whereas TNFR1 belongs to the DD subgroup of 

TNFRSF receptors, TNFR2 is a non-death receptor. TNFR1 is expressed ubiquitously 

on all cells and as a death receptor, its effects are mostly pro-apoptotic and pro-

inflammatory. TNFR2 expression is much more restricted, mostly to immune cells, 

but also a few other cell types, like endothelial and neuronal cells and it has mostly 

regulative and pro-survival functions (Dostert et al., 2019). However, their 

downstream effects are not straightforward and it is not so uncommon to see 

counterintuitive effects, further hampering easy prediction of possible outcomes 

(Siegmund et al., 2016, 2018). 

 It is important to note, that the processes described below are the bare minimum in 

the complex labyrinth of TNFα signalling. To try to fully describe the immense 

variabilities would be a futile attempt far beyond the scope of this thesis and very 

possibly beyond the scope of our current understanding of TNFα signalling in general. 

1.2.1 TNFR1 signalling 

TNFR1 is able to be activated by both mTNF and sTNF, but primarily by sTNF, and 

its activation leads to the recruitment of TNFR1-associated death domain protein 

(TRADD) and several subsequent possible outcomes. Those outcomes are regulated 

by the ubiquitination and phosphorylation status of receptor-interacting 

serine/threonine-protein kinase 1 (RIPK1) and result in the formation of 4 possible 

complexes, dubbed complex I, complex IIa, complex IIb and complex IIc (Brenner et 

al., 2015). 
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1.2.1.1 Complex I 

Complex I formation begins with the binding of TNFR1 DD to the adaptor protein 

TRADD, upon TNFR1 activation (Hsu et al., 1995). It is followed by the recruitment 

of RIPK1 and subsequently TNF receptor-associated factor (TRAF) 2 and TRAF5 

(Shi and Sun, 2018). Afterwards, this protein complex then recruits the E3 ubiquitin 

ligase cellular inhibitor of apoptosis (cIAP) 1 and cIAP2 (Mahoney et al., 2008), 

which marks the completion of complex I formation. Ubiquitination status of RIPK1 

is then modified by cIAP1 and cIAP2 via the addition of K63 polyubiquitin chains, 

which enables the recruitment of linear ubiquitin chain complex (LUBAC) that 

additionally modifies RIPK1 by the addition of M1 polyubiquitin chains and finalizes 

the ubiquitin machinery of complex I (Haas et al., 2009). Upon finalization of 

complex I ubiquitin scaffold, assembly of two protein complexes is concurrently 

initiated. First of these two complexes is the inhibitor of kappa B (IκB) kinase (IKK) 

complex, composed of 3 subunits (Israël, 2010) and the second one is TGFβ-activated 

kinase 1 (TAK1) - TGF-β-activated kinase 1 and MAP3K7-binding proteins (TABs) 

complex, also composed of 3 subunits. These complexes interact with each other in a 

way that facilitates the final output of the complex I signalling. Specifically, TAK1 

phosphorylates the IKKβ which then becomes activated, leading to the activation of 

the canonical nuclear factor kappa B (NFκB) pathway. Additionally, TAK1 mediates 

the activation of JUN N-terminal kinase (JNK) and p38 pathways (Xu and Lei, 2021). 

Thus, the final output of complex I activation is as follows: JNK signalling, p38 

signalling and canonical NFκB signalling (Figure 1.2).  

Figure 1.2 Complex I 

signalling by TNFR1 and 

TNFR 2 receptors. After 

TNFα activates TNFR1, 

complex I formation is 

initiated. TRADD binds to 

DD of TNFR1 and serves as 

a scaffold for other 

components and recruits 

RIPK1, TRAF2/5 and 

cIAP1/2. Polyubiquitination 

of RIPK1 by cIAP1/2 and 

LUBAC leads to 

recruitment of IKK and 

TAK1-TAB complexes, 

which are responsible for 

activation of JNK, p38 and 

canonical NFκB signalling. 

TNFR2 is able to assemble 
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complex 1 without TRADD and with the use of TRAF1/2, instead of TRAF2/5. Activation of complex 

I-associated pathways via TNFR2 is significantly less efficient than through the TNFR1 receptor. 

Adapted from Brenner et al., 2015. 

 

 

 1.2.1.2 Complex IIa 

Complex IIa assembly occurs after the RIPK1 is deubiquitinated by deubiquitinating 

enzymes, the most prominent in this process being cylindromatosis (CYLD) (Sun, 

2010). After CYLD deubiquitinates RIPK1, it moves to the cytosol and associates 

with a complex composed of TRADD, Fas-associated death domain (FADD), the 

long isoform of FLICE-like inhibitory protein (FLIP) and pro-caspase-8 (Micheau and 

Tschopp, 2003). RIPK1 and RIPK3, which role is central for the apoptosis/survival 

versus necroptosis direction (Li et al., 2012), are then deactivated by the activity of 

this complex, specifically by activated caspase-8 homodimer, or by pro-caspase-8 and 

FLIPL heterodimer (Oberst et al., 2011). RIPK1 serves a role in the assembly of this 

complex and plays no further role in the downstream signalling. For the apoptotic 

events to occur, pro-caspase-8 homodimer has to form and must be activated into its 

caspase-8 homodimer form via pro-caspase 8 autocleavage, after which it triggers 

signalling for apoptosis induction (Figure 1.3) (Wang et al., 2008).  
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Figure 1.3 TNFR1-mediated complex IIa and complex IIb signalling. If RIPK1 is deubiquitinated 

by CYLD or other deubiquitinating enzymes, it dissociated from the membrane-bound complex and 

moves to the cytosol and interacts with TRADD, FADD, FLIPL/pro-caspase 8 heterodimer and pro-

caspase 8 homodimer. This complex is dubbed complex IIa and depending on the abundance of FLIPL 

may lead either to pro-survival or apoptotic signalling. Complex IIb is formed if the cIAP1/2 of 

complex I are depleted and RIPK1 dissociates without any ubiquitin chains. Afterwards, 

phosphorylated RIPK1, RIPK3, FADD pro-caspase 8 homodimer and FLIPX/pro-caspase 8 

heterodimer form the complex IIb. Subsequent effects elicited by complex IIb are then comparable 

with those of complex IIa. Cytosolic RIPK1 and RIPK3 inactivation by complex IIa and complex IIb is 

a key function for inhibition of the necroptotic pathway.  Adapted from Brenner et al., 2015. 

    

 

 1.2.1.3 Complex IIb 

As is the case with the complex IIa, RIPK1 is also necessary for the formation of 

complex IIb. In this case, however, RIPK1 is not or is just barely ubiquitinated and 

dissociates from pre-complex I assembly. This is because the main mediators of 

RIPK1 ubiquitination, cIAP1 and cIAP2, are depleted due to K48 autoubiquitination, 

which leads to their degradation (Wang et al., 2008). This occurs with the help of the 

second mitochondria-derived activator caspase (SMAC) that seems to bind to the IAP 

repeat of cIAP1 and cIAP2, which triggers the autoubiquitination and subsequent 

dissociation of RIPK1 (Du et al., 2000). Phosphorylated RIPK1 assembles with 

RIPK3, this heterodimer serves a similar role as the TRADD protein in the case of 
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complex I and from this point forward, signalling of these two complexes merge and 

similar pathway to that outlined above (Figure 1.3) (Brenner et al., 2015).  

 1.2.1.3 Complex IIc  

Lastly, if RIPK1 and RIPK3 are not degraded via either pro-caspase 8/FLIPL 

heterodimer or caspase 8 homodimer, which abrogates the kinase activity of RIPK1 

and RIPK3, formation of complex IIc, also known as the necrosome, occurs. In this 

instance, phosphorylated RIPK1 and many phosphorylated RIPK3 molecules form the 

necrosome structure. RIPK3 then phosphorylates mixed-lineage kinase domain-like 

protein (MLKL) that subsequently translocates from the cytosol to the cellular 

membrane and disrupts its integrity via binding to phosphatidylinositides. This leads 

to rupture of the cell membrane and release of its contents, finishing the inflammatory 

process called the necroptosis (Figure 1.4) (Newton and Manning, 2016).   

Figure 1.4 Necroptotic pathway of 

TNFR1 signalling. In the case that 

RIPK1 and RIPK3 are not inactivated by 

proteolytic activities of complexes 

mentioned above, the structure called the 

necrosome forms. In this case, complex 

that bears some similarity to complex IIb 

forms, although in this case, RIPK1 is 

bound by numerous RIPK3 molecules 

and kinase activities of these kinases 

result in MLKL phosphorylation. 

Phosphorylated MLKL then initiates 

downstream effects which result in a cell 

death process called necroptosis, in 

which the cell membrane ruptures that 

results in the release of proinflammatory 

signals. Adapted from Brenner et al., 

2015. 
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1.2.2 TNFR2 signalling 

The scope of knowledge available in our understanding of TNFR2 receptor signalling 

is severely behind that of TNFR1. TNFR2 is incapable of being activated via sTNF 

and is activated exclusively via mTNF. It is known that TNFR2 downstream effects 

overlap, to a certain degree, with those of TNFR1, as TNFR2 is also capable of 

forming complex I, although without TRADD and with the utilization of 

TRAF1/TRAF2, in contrast to TNFR1 usage of TRAF2/TRAF5 (Figure 1.2) (Dostert 

et al., 2019). It is worth noting that TRAF affinity for TNFR2 is much lower than that 

for TRADD (Park et al., 2000). 

 TNFR2 is capable of activating the non-canonical NFκB pathway. The protein 

complex that serves a central role in this process is composed of TRAF2, TRAF3, 

cIAP1, cIAP2 and NFκB-inducing kinase (NIK). Without mTNF signal, cIAP 

proteins degrade NIK and no signalling occurs. However, after mTNF binds and 

activates TNFR2, cIAP proteins degrade TRAF3 instead of NIK, leading to the 

release of NIK. NIK is then capable of phosphorylating IKKα. IKKα phosphorylates 

the p100 protein in the RelB/p100 heterodimer which leads to p100 processing into 

p52. RelB/p52 transcription factor then enters the nucleus and activates a plethora of 

genes, finalizing the non-canonical NFκB pathway activation  (Figure 1.5) (Sun, 

2017). 
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Figure 1.5 TNFR2-mediated non-canonical NFκB pathway activation. Without TNFR2 activation, 

the cytosolic complex composed of TRAF2/3, NIK and cIAP1/2 is inactive due to cIAP1/2-mediated 

NIK degradation. Upon TNFR2 engagement, cIAP1/2 mediated the degradation of TRAF3 instead of 

NIK, leading to the release of NIK. NIK then phosphorylates IKKα which subsequently phosphorylates 

p100 protein of the p100/RelB heterodimer, leading to p100 proteolytic processing. Subsequently, as 

the result of said processing, the p52/RelB heterodimer is capable of entering the nucleus and activates 

transcription of its associated genes. Adapted from Dostert et al., 2019. 

 

 

1.2.3 Regulation of TNFα signalling 

Since the exact mechanisms and subsequent outputs of TNFα signalling are far from 

being completely elucidated, due to the immense complexities surrounding them, 

regulation of these mechanisms is to blame to a large degree. In this subchapter, I will 

try to describe some of the most important mechanisms. For our purposes, TNFα 

signalling regulation may be divided into three categories: regulation of the 

state/presence of individual components on a molecular level, regulation of chromatin 

accessibility and regulation via soluble TNFR (sTNFR). These categories are 

mutually connected, so it is important to think about them in this manner and not as 

individual regulatory layers. 

1.2.3.1 Component regulation 

Regulation of individual components of TNFα signalling is by far the most described 

of the three categories that are described in this subchapter. As an example, the 

regulation of two processes will be vaguely described, those being ubiquitination of 

RIPK1 and the role of FLIP isoforms on complex IIb/complex IIc formation. 

 In the case of RIPK1, it has been found that its activity is not modulated solely by the 

addition of K63 and M1 polyubiquitin chains, but that also K48 and K11 

polyubiquitin chains are actively added, which result in different outcomes. K48 

modification results in RIPK1 degradation via the proteasome, thus hampering 

RIPK1-mediated signalling. K11 polyubiquitin chains, on the other hand, may result 

either in positive or negative regulation of RIPK1-mediated signalling (Annibaldi et 

al., 2018). Difficulties related to the study of ubiquitination processes are hampering 

the elucidation of the exact relative contributions of various proteins mediating those 

modifications. 

 FLIPL is an important component of complex IIa and complex IIb functions, 

specifically by directing downstream effects towards pro-survival signalling. Its 

expression is modulated by both canonical and non-canonical NFκB pathways. FLIPL 
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is one of three protein isoforms of FLIP, the others being FLIPS and FLIPR. A delicate 

balance of expression levels of these components is one of the major regulatory parts 

in complex IIa formation and even more so in the case of complex IIb since in the 

case of complex IIa, pro-caspase 8 is the component responsible for the binding of 

pro-caspase 8/FLIPL heterodimer to FADD, which serves as a scaffold for their 

downstream functions. However, in the case of complex IIb, FLIP isoforms mediate 

the binding of FLIPX/pro-caspase 8 heterodimers to FADD, further complicating any 

precise predictions related to this pathway as those isoforms have different activities 

(Brenner et al., 2015). 

 Overall, it may be summarized that this type of regulation is a delicate balance of 

expression levels, phosphorylation states, ubiquitination states among other 

parameters and combination thereof which are intermingled with each other to one 

very tight and extremely complex knot. 

1.2.3.2 Chromatin accessibility 

Chromatin accessibility is one of the main reasons for the pleiotropic effects of NFκB 

signalling. Since NFκB transcription factors are not capable of opening the chromatin 

to enable their access themselves, they are dependent on a variety of factors to 

regulate the chromatin landscape to be able to bind to their target sequences and 

transcribe NFκB inducible genes. NFκB transcription factors are able to recruit 

chromatin remodelling factors, but this is dependent on, for example, posttranslational 

modifications, which are in turn modulated by factors like cell type, among others 

(Bhatt and Ghosh, 2014). Analysis on a single cell level may facilitate the bare 

possibility of tackling this problem comprehensively. 

1.2.3.3 sTNFR-mediated inhibition 

Shedding of membrane-bound TNFRs via associated proteases, mainly TACE, is 

another important aspect in the regulation of this labyrinthine-like signalling pathway. 

These soluble receptors are thought to balance the TNFα-mediated inflammation 

levels by binding sTNF and thus hampering their binding to mTNFRs (Van Zee et al., 

1992). However, it is important to note the existence of a process called “reverse 

signalling”, in which the mTNF itself serves as a signal transductor upon sTNFR 

binding (Juhász et al., 2013). 
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1.2.4 TNFα-signalling inhibitors in therapeutic applications  

TNFI are an attractive and commercially successful approach in the treatment of 

various inflammatory pathologies, like psoriasis, rheumatoid arthritis, Crohn´s 

disease, hidradenitis suppurativa and others. Their efficiency for treating various 

pathologies is without question and a wide array of TNFIs with a variety of 

mechanisms is currently commercially available or in clinical trials. Different 

approaches to TNFα signalling regulation have been undertaken with modulatory 

actions being targeted at TNFα, TNFR1 and TNFR2 in order to achieve specific 

interrogation and modulation of TNFα signalling effects for each condition that is to 

be treated with TNFIs. Among notable and the most used TNFIs are the antibodies, or 

their parts/modifications, targeting the TNFα signalling in general, Infliximab, 

Etanercept, Certolizumab pegol and Adalimumab (Kontermann et al., 2009) (Fischer 

et al., 2020). 

 Nevertheless, their undisputable utility notwithstanding, due to the beforehand 

mentioned complexities and lack of clarity in TNFα signalling, their application may 

sometimes lead to either creating new pathological states, or amplification of the 

current pathology in treated patients. Most notably, in relation to skin disorders, 

treatment with TNFIs may lead to TNFI-induced psoriasis, and to manifestations of 

opportunistic infections due to disruption of adequate immune reaction mediated by 

TNFα (Li et al., 2019) (Garcovich et al., 2019). Great caution and due diligence in the 

analysis of the state of each patient is thus advised prior to treatment with TNFIs.    

1.3 KLK-related diseases of the skin 

Skin is the largest organ of the human body, serving a key role in the protection from 

the external environment as the first line of defence. It serves its role via different 

mechanisms, with the most important being mechanical barrier of the corneocytes, 

associated acidic pH levels and upon breach of these two levels of defence, by its 

residential immune cells and other cell types that are ready to elicit a rapid response to 

most of the external challenges by possibly harmful substances and organisms 

(Kabashima et al., 2019).  

 Due to its immense importance in providing said protection, any dysregulation of 

related processes may result in effects with varying levels of severity, depending on 

their nature. Description of these dysregulations and associated pathologies is far 
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beyond the scope of this thesis and I will focus on describing the basic features of 

skin-related pathologies and their treatment to which the activity of KLKs has been 

linked. Those diseases are the NS (Petrova and Hovnanian, 2020), AD (Morizane, 

2019), psoriasis (Komatsu et al., 2007) and acne rosacea (Buddenkotte and Steinhoff, 

2018). 

 It is important to say that description of said diseases in this chapter will revolve 

around the basic characteristics of said pathologies, thus omitting details that may be 

relevant to get a broader picture of them. However, a detailed description of these 

afflictions is far beyond the scope of this thesis and because of that will not be 

undertaken. 

1.3.1 Netherton syndrome 

NS is a skin pathology belonging to a group of skin diseases called ichthyoses, which 

are characterized by the presence of scaly, dry skin (Oji et al., 2010). It is quite rare 

compared to other diseases mentioned in this chapter, with its prevalence estimated to 

be 1 out of 200000. This estimate may not be accurate due to its relatively high 

neonatal mortality rate. Typical signs of NS are frequent infections and severe 

inflammation, various types of skin lesions, itch, abnormalities in the growth of hair 

known as the “bamboo hair”, food allergies, impairment of normal growth, disbalance 

of the skin microbiota and many more, which either result in or are the cause of these 

symptoms. However, there is a large degree of variability in the severity of those 

symptoms, resulting in various levels of danger and reduction in the quality of life for 

those that are afflicted. The most severe manifestations of its deleterious effects are 

typically seen in younger patients and during their upbringing, the gravity of related 

symptoms is usually retracting. As with most pathologies of the skin, symptoms of 

NS show a certain periodicity and variability in the amount of lesional presence 

(Petrova and Hovnanian, 2020).   

1.3.1.2 Pathophysiology of Netherton syndrome  

Deficiency in LEKTI as a result of a variety of mutations in the SPINK5 has been 

proved to be the main culprit behind the pathology of NS. This autosomal recessive 

deficiency leads to severely reduced control over the activities of several KLKs 

connected to NS pathology, namely KLK5, KLK7, KLK14 (Furio and Hovnanian, 

2014; Gouin et al., 2020) and possibly also KLK6 (Zingkou et al., 2019). The main 
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proteases responsible for the manifestations of this pathology are KLK5 and KLK7, 

as their ablation proved to be enough to reverse the most severe symptoms of NS in 

mice (Kasparek et al., 2017). The severity of NS is directly correlated to the location 

of mutations in the SPINK5 gene, which may result in a broad scale of severity of this 

disease (Sprecher et al., 2001). 

 Dysregulation of NS-associated KLKs leads to deleterious systemic effects that are 

most pronounced in the skin (Figure 1.6). From a structural standpoint, KLK 

hyperactivity leads to breach of the epidermal barrier due to premature shedding of 

the corneocytes that leads to uncontrolled desquamation, which is the result of 

corneodesmosome destruction (Borgoño et al., 2007; Caubet et al., 2004; Descargues 

et al., 2006). This enables a variety of pathogens to enter the epidermal milieu and 

participate in the initiation of severe inflammation and epidermal barrier breach 

mentioned above, with the leading responsible pathogen being Staphylococcus aureus 

and Staphylococcus epidermidis (Williams et al., 2020). Breach of the barrier also 

results in excessive transepidermal water loss, which is an important contributing 

factor in the impairment of growth and failure to thrive associated with NS (Erickson 

et al., 2020). 

 KLKs are also major players in the immune signalling dysregulation associated with 

inflammation present in NS patients. KLK5 and to a lesser degree KLK14 are 

important initiators of PAR2-mediated inflammation in the skin (Stefansson et al., 

2008). The role of KLK6-mediated PAR2 activation in the skin is not yet clear. PAR2 

activation is connected to the activation of several immune pathways and secretion of 

a variety of inflammatory cytokines, like thymic stromal lymphopoietin (TSLP), 

intracellular adhesion molecule 1 (ICAM-1), IL-8 and TNFα, which then participate 

in the creation and sustainment of inflammation via activation and recruitment of 

different immune cell types (Rothmeier and Ruf, 2012). KLK7 on the other hand 

works in PAR2-independent mechanisms that are as of yet not fully elucidated, but its 

ability to process pro-IL-1β may be of significance for inflammatory progression in 

NS (Nylander-Lundqvist and Egelrud, 1997). Furthermore, KLKs are promoting 

infectious events by disrupting the normal processing of cathelicidin, which is an 

important player in the defence against microbial pathogens (Eissa et al., 2011; 

Yamasaki et al., 2006). 
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 Neutrophils, eosinophils and mast cells are the most important cell subtypes of innate 

immunity that are found in NS lesional skin in abnormal amounts. As for the presence 

and relevance of cell types of adaptive immunity, activated immunoglobulin (Ig) E-

producing B cells and TH17 cells are the most significant T helper cell subset in NS 

with TH2 cell subset also playing a major role (Eränkö et al., 2018) (Petrova and 

Hovnanian, 2020). From the presence of eosinophils and mast cells, one can deduce 

that IgE is the most important immunoglobulin subset in this pathology and its 

dysregulation is one of the few stable commonalities present in NS, with other Ig 

classes apparently not being of major relevance (Petrova and Hovnanian, 2020). It is 

also worth noting, that TH2 cytokines are responsible for partial inhibition of 

expression of genes coding some epidermal structural proteins, further amplifying the 

barrier defects (Hönzke et al., 2016). The exact knowledge of functions and 

contributions of various immune subsets is still under debate.   

1.3.1.2 Therapeutic options for Netherton syndrome 

Therapy of the NS is at this point limited to the effects and not directly targeting the 

cause of this disease, although this may change in the future with the advent of novel 

therapeutic approaches. Currently used approaches encompass, but are not limited to, 

cleansing of the skin with acidic oils, moisturization of the skin (Lodén, 2003) and 

treatment with antibiotics (Eränkö et al., 2018), corticosteroids (Sarkar, 2018) and 

calcineurin inhibitors (Oji et al., 2005). 

 Future therapeutic endeavours focus on a much more targeted approach in the 

treatment of the NS. Those treatment options may be divided into several categories, 

namely KLK inhibitors, recombinant serine protease inhibitors and inhibitors of 

cytokines that are the major players in this pathology (Petrova and Hovnanian, 2020). 

Lastly, a gene therapy treatment option for NS may prove to be the most effective and 

permanent causative treatment (Di et al., 2011), since it would remove the prime 

problem behind this disease and enable normal LEKTI-mediated inhibition. 
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Figure 1.6 Overview of NS mechanisms. Dysregulation of epidermal proteases due to LEKTI 

deficiency leads to epidermal barrier defects due to proteolysis of structural proteins of the epidermis, 

inflammation associated with the processing of cathelicidin, PAR2 activation and pro-IL-1β processing 

and pruritus. This leads to the secretion of pro-inflammatory cytokines and chemokines, primarily by 

the keratinocytes and innate immune cells, like IL-1β, TSLP, ICAM1, TNFα and others. Downstream 

outcomes of these effects include but are not limited to, recruitment and activation of TH17 and TH2 

cells, recruitment of innate immune cells like eosinophils, mast cells and neutrophils, secretion of IgE 

which increases the severity of pruritus, and further damage to the epidermal barrier. This leads to a 

feedback loop that results in an increment in the severity of inflammation and epidermal barrier defects 

and leads to the chronic nature of the progression of this disease. Adapted from Petrova and 

Hovnanian, 2020. 
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1.3.2 Atopic dermatitis 

AD is a chronic inflammatory disease of the skin with episodes of AD symptoms 

manifestation and subsequent remission. Intense itch and eczematous lesions are 

associated with the active phase of AD. It has the largest prevalence among cutaneous 

inflammatory pathologies with children being the most commonly afflicted, although 

AD can manifest at any point during life. Depending on the geographical location, 

prevalence among children may be as high as 25% and among adults, it may be as 

high as 10%. Its most common symptoms are eczematous lesions and itch that lead to 

a subsequent decrease in the quality of life for those stricken with the disease by a 

variety of subsequent effects. It is worth noting, that the severity is highly variable 

and associated symptoms presence may range anywhere from several places on the 

skin to its entirety (Weidinger et al., 2018).    

1.3.2.1 Pathophysiology of Atopic dermatitis 

Unlike the NS, the main causative reasons behind AD remain to be elucidated. Family 

history of AD is by far the best prognostic tool in AD (Apfelbacher et al., 2011; 

Wadonda-Kabondo et al., 2004), although several genetic factors have been linked to 

its manifestation and progression (Paternoster et al., 2015). Among them, the most 

important are mutations in FLG, an important structural protein of the skin, and its 

aberrant function very likely leads to higher skin permeability and subsequent 

inflammation and T cell infiltration (Irvine et al., 2011). However, defective FLG has 

been shown to not be enough to cause AD on its own and is not necessary at all in the 

manifestation of AD (Baurecht et al., 2007; Weidinger et al., 2008). To summarize, 

there is still much to be discovered about the intricacies of AD, but it is thought that 

AD manifests as a result of a combination of genetic and environmental factors. 

 Structurally, probably the most important parameter in the severity of epidermal 

barrier disruption associated with AD is the aforementioned dysfunctional FLG 

protein. Apart from FLG, TH2-associated cytokines like IL-4 and IL-13 actively 

reduce the expression of epidermal structural proteins and contribute to its disruption 

(Figure 1.7) (Cole et al., 2014; Seltmann et al., 2015). Moreover, the associated itch 

and subsequent scratching of the skin is responsible for further damage (Correale et 

al., 1999). As is with the NS, the microbiota of patients stricken with AD is also 

dysregulated, with the presence of Staphylococcus aureus again being the most 
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significantly increased (Kong et al., 2012). KLK-mediated effects are probably also 

an important aspect in the severity of AD, although there is nowhere near the degree 

of clarity as is the case in NS. Several KLKs are dysregulated in AD lesions and are 

thus thought to participate in the epidermal dysregulations, namely KLK5, KLK6, 

KLK7, KLK8, KLK10, KLK11, KLK13 and KLK14, with KLK7 seemingly playing 

the most important role (Morizane, 2019). As previously mentioned, KLK7 is likely 

capable of degrading cathelicidin and its active form, LL-37, and it was reported that 

the abundance of LL-37 is severely reduced in AD lesions (Ong et al., 2002). LEKTI 

is also overexpressed in AD lesions, making the interpretation of KLKs 

overexpression and the effects they may have on the disease progression difficult 

(Igawa et al., 2017). Lack of data clearly elucidating the degree to which KLKs 

participate in AD pathogenesis warrants further research of the KLKs/AD 

relationship.  

 From the immunological point of view, AD is predominantly associated with TH2 

and TH22 cluster of differentiation (CD)4+ T cell activity (Gittler et al., 2012). TH1 

and TH17 contributions are less clear, but genes associated with these subtypes, 

especially TH17-associated genes, are also elevated (Gittler et al., 2012; Noda et al., 

2015). In the lesional skin, increased presence of various CD4+ T cell subtypes and 

Langerhans cells (Yoshida et al., 2014) is the mainstay across all AD patients with 

innate lymphoid cell (ILC) 2 and γδ T cells also present in elevated numbers, although 

their exact role, apart from productions of cytokines related to AD, is less clear (Chen 

et al., 2020). Genes that modify the activity of keratinocytes and modulate the 

infiltration of T cells are upregulated in lesional skin (Gittler et al., 2012). IgE is the 

main immunoglobulin associated with AD, which sensitizes the loci of its presence to 

antigens derived from keratinocytes and exogenous antigens of different origins 

(Gandhi et al., 2016; Tang et al., 2012).  

 

1.3.2.2 Therapeutic options for Atopic dermatitis 

Therapeutic options for AD are severely limited by our lack of understanding of 

mechanisms governing this pathology. Thus, it is limited to the treatment of its 

manifestations, as causative treatment is not possible at this point. Because of that, 

treatment options of AD bear many similarities with those used in the case of NS. 

Among usual strategies of treating AD are skin moisturization (Simpson et al., 2014), 
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application of topical corticosteroids (Brunner et al., 2016), topical calcineurin 

inhibitors (Carr, 2013), cAMP-specific 3´, 5´-cyclic phosphodiesterase 4 inhibitors 

(Zebda and Paller, 2018), phototherapy (Garritsen et al., 2014) and administration of 

systemic immunosuppressants and immunomodulating agents (Weidinger et al., 

2018). 

 

Figure 1.7 Overview of AD mechanism. The damage to the epidermal barrier by external cues leads 

to the expression of cytokines and chemokines by keratinocytes and innate immune cells, like IL-1β, 

IL-33, TSLP and others. This leads to TH2 and ILC2 expression of cytokines like IL-4, IL-5, IL-13 

among other mediators of immune response, that subsequently promote inflammation by recruitment of 

additional immune cell types and secretion of proinflammatory mediators and production of IgE. 

Activities of TH22, eosinophils, and activated B-cell- secreted IgE leads to severe pruritus which 

contributes to epidermal barrier disruption. Immune dysregulations associated with AD lead to 

different manifestations in the healthy and lesional skin, as is shown in the upper part of the figure. 

Adapted from Weidinger et al., 2018. 
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1.3.3 Psoriasis 

Psoriasis is an inflammatory disease mediated by dysregulation of the immune 

system. Since its cutaneous symptoms may be vastly different in its pathophysiology 

and severity, with psoriasis being separated into several different types, it is hard to 

generally describe its manifestations and readers are delegated to a review that 

discusses variants of psoriasis and associated defects more thoroughly (Sarac et al., 

2016). The main feature is dysregulation of a variety of primarily immune system 

components and associated pathways that result in excessive activation of both innate 

and adaptive immune cell subsets and the release of inflammatory molecules that lead 

to this disease. Psoriasis is very often associated with various comorbidities, the most 

common being psoriatic arthritis. As with previously mentioned diseases, the 

prevalence of all psoriatic variants varies across the globe, with the overall occurrence 

of all types of psoriasis being estimated at 2-3% worldwide. It is characterised by 

recurring phases of active severe inflammation and remission that may affect 

anywhere from a few per cent of body surface area in milder cases to the entirety of 

the skin in the most severe cases. Manifestation of psoriasis is most common between 

the ages of 18-39 years and 50-69 years, although it may manifest at any point in life 

(Greb et al., 2016). 

1.3.1.3 Pathophysiology of Psoriasis 

All psoriatic types are associated with severe dysregulation of the immune system that 

behaves aberrantly upon external challenge, and there have been many genes and 

genetic regions that have been linked to these types. The most important of these 

regions is a locus containing genes coding for human leukocyte antigens (HLA) called 

the psoriasis susceptibility region (PSORS) 1 (Veal et al., 2002), although others, like 

PSORS2 (Tomfohrde et al., 1994), PSORS4 (Capon et al., 1999), PSORS6 (Lee et al., 

2000) and PSORS7 (Veal et al., 2001), most of them containing genes coding for 

components of the immune system, have been linked to this disease with as of yet 

unknown relative contributions. Overall, the history of psoriasis within any given 

family is still the best and most rapid prognostic approach available (Solmaz et al., 

2020). 

 From a structural standpoint, the mainstay among all psoriatic variants is acanthosis 

and epidermal hyperplasia, although this histological feature is further modified and 
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expanded among said variants and for detailed description, readers are again referred 

to a much more descriptive review on this subject (Sarac et al., 2016). 

 The most common immune dysregulations of psoriasis are associated with excessive 

activation of TH17, TH1 and TH22 cells with important contributions from dendritic 

cells and keratinocytes (Diani et al., 2016; Li et al., 2020) with additional possible 

roles of ILC3 and γδ T cells, although their role is less clear (Chen et al., 2020).  IL-

22 is a signature cytokine associated with psoriatic lesions (Ma et al., 2008; 

Wawrzycki et al., 2019). Cathelicidin, produced mainly by keratinocytes in this case, 

along with other AMPs plays a key role in the initiation of the psoriatic inflammatory 

feedback loop (Figure 1.8) (Dombrowski and Schauber, 2012). This may hint at the 

possible important role of KLK8, which is severely upregulated in psoriatic lesional 

skin (Eissa et al., 2013) since it has the potential ability to convert it into its active 

form and thus may be a contributor to its deleterious activity (Eissa et al., 2011). 

Additionally, KLK8 has been shown to be capable of inducing the production of IL-

36 family members, which are inflammatory cytokines that have been shown to have 

a role in psoriatic inflammation (Iinuma et al., 2015). KLK6 is another KLK that has 

been proposed to have a role in the development of psoriatic lesions in a mouse model 

of psoriasis, although the mechanism behind his role remains to be elucidated (Iinuma 

et al., 2017). 
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Figure 1.8 Overview of psoriasis mechanisms. Upon an external insult, the release of self-nucleotides 

that associate with AMPs, like cathelicidin, leads to activation of TLRs on plasmacytoid dendritic cells 

(pDCs). This leads to activation and subsequent clonal expansion of CD8+ T cells which mediate the 

expression of proinflammatory cytokines upon their binding to keratinocytes (mainly). Concomitantly, 

secretion of IFNα and IFNβ by pDCs stimulates myeloid dendritic cells (mDCs) to secrete cytokines 

responsible for the activation of several subsets of TH cells. Subsets activated by mDCs include TH17, 

TH1 and TH22 and their activities lead to further progression of the disease by several activities 

depicted in the figure. Among the most important of these activities are secretion or induction of 

further secretion of IL-17, IL-22, TNFα, chemokine (C-C motif) ligand (CCL) 20 and AMPs. An 

increment in the expression of vascular adhesion factors further contributes to the recruitment of 

additional immune cells that participate in the manifestations of psoriasis. Adapted from Greb et al., 

2016. 

 

1.3.1.3 Therapeutic options for Psoriasis 

Depending on the type and severity of the psoriatic phenotype, several treatment 

options are available to tackle this disease. For less severe manifestations, various 

topical treatments are being regularly used (Freeman et al., 2003; Lebwohl et al., 

1998). If topical treatment becomes less practical due to the scale of psoriatic 

manifestations, phototherapy is an approach that is used to supplement topical 

therapies of the most severe lesions (Nolan et al., 2010). In the case of increasing 

severity of this disease, a systemic approach is undertaken and there is a large 

inventory of agents used for this purpose. Inhibitor of 5-aminoimidazole-4-

carboxamide ribonucleotide transformylase (Methotrexate) (Goldminz et al., 2016), 

inhibitors of T cell activity (Acitretin) (Lebwohl et al., 2001), TNFIs (Etanercept, 
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Infliximab) (Tobin and Kirby, 2005), inhibitors of phosphodiesterase 4 (Apremilast) 

(Schafer, 2012), anti-IL-17A inhibitors (Secukinumab) (Canavan et al., 2016) and 

anti-IL-12/IL-23 (Ustekinumab) (Jeon et al., 2017) are among those commonly used.  

1.3.4 Acne rosacea 

Acne rosacea also called simply rosacea, is a poorly understood inflammatory disease 

of the skin, with its effects restricted primarily to the face of the afflicted. The main 

features of rosacea are the presence of inflammatory pustules and papules, transient 

erythema, telangiectasia and overall dryness of the skin due to a variety of causative 

symptoms. Classification of rosacea that was undertaken in recent years has divided 

this disease into several subtypes with their given characteristics, although this 

division is not of a permanent nature, since the manifestation of its symptoms may 

shift from one subtype to the other and oftentimes, characteristics of various subtypes 

are present and once. Prevalence of rosacea is hard to estimate due to lack of data, but 

the current estimate is upwards of 5%, with its nature being age- and gender-specific, 

preferentially manifesting in the younger population in some subtypes and in the older 

population in other (Buddenkotte and Steinhoff, 2018). 

1.3.4.1 Pathophysiology of Acne rosacea 

As was stated above, rosacea is still a very poorly understood disease and that 

definitely entails the details of its pathophysiology. Genetic factors that have been 

linked to its pathophysiology are for example butyrophilin-like 2 (Chang et al., 2015), 

glutathione S-transferase (Yazici et al., 2006) and nucleotide-binding oligomerization 

domain-containing protein 2 (van Steensel et al., 2008), although the degree of 

relevance from the aforementioned studies must be taken with a grain of salt and 

additional confirmatory analyses must be undertaken prior to making any conclusions. 

 Several pathogens are thought to have some effect on the severity and nature of 

rosacea manifestations, like Demodex spp. or Helicobacter pylori among others, but 

again, data for conclusive interpretation of their effects on rosacea are still lacking 

(Jarmuda et al., 2012; Jørgensen et al., 2017). 

 Rosacea is strongly associated with TH1 and TH17 CD4+ T cells and CD4+ T cells 

are the main components of the immune cell infiltrates where rosacea-associated 

symptoms are present. Along with these cell types, cells of innate immunity, mostly 
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macrophages, neutrophils and plasma cells are present in elevated numbers (Figure 

1.9) (Buhl et al., 2015). 

 Key immunological features linked to rosacea are excessive levels and activation of 

PAR2 and Toll-like receptor (TLR) 2 (Kim et al., 2014; Yamasaki et al., 2011). 

Cathelicidin is present in severely elevated amounts (Kim et al., 2014), which along 

with the aforementioned heightened levels of PAR2 and TLR2, points out the possible 

importance of microbes in the progression of this skin disease. In previous chapters, I 

discussed the role of KLKs in the activation of PAR2 and cathelicidin processing. 

Indeed, KLK5 expression is elevated in rosacea patients, which highlights its likely 

important role in this disease (Two and Del Rosso, 2014). However, more research is 

warranted in order to draw any definitive conclusions. 

1.3.4.2 Therapeutic options for Acne rosacea 

Therapeutic approaches tackling the pathophysiology of rosacea are targeted at 

symptoms of individual subtypes, apart from general skincare that is recommended 

for all patients. Therapies may be of topical or systemic nature, depending on the 

severity of rosacea manifestation (Buddenkotte and Steinhoff, 2018). Common 

therapy that is shared across all subtypes is laser therapy, but its usage may be limited 

by the individual to be treated, mainly if they are excessively pain-sensitive (Lonne-

Rahm et al., 2004). Lastly, the use of serine protease inhibitors improved the course of 

rosacea in a small pilot study, which highlights the importance of further research on 

the role of KLK proteases in rosacea (Two et al., 2014). 
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Figure 1.9 Overview of acne rosacea mechanisms. After initiation of this pathology by a variety of 

triggers depicted in the upper part of the figure, several possible mechanisms have been attributed to 

the progression of this affliction. Among them, PAR2 and TLR2 activation either by endogenous or 

pathogen-derived proteases seem to have a key role, leading to the production of inflammatory 

cytokines, like TSLP, TNFα and IL-1β and subsequent initiation of additional immune cells. TH17 and 

TH1 are thought to play a key role in rosacea, as are several innate immune cell types, like neutrophils, 

mast cells and macrophages. Several initiators of rosacea also participate in the activation of receptors 

associated with pruritus, like TRPV1 and TRPV4. Finally, AMPs, and most notably cathelicidin and its 

active form, LL-37, play a key role in inflammatory processes associated with rosacea.  Adapted from 

Buddenkotte and Steinhoff, 2018. 

 

1.3.5 Mouse models in skin immunology 

Animal models are enabling researchers to tackle various questions in an environment 

that provides them with an unparalleled similarity to the workings of human 

organisms and indeed, many mechanisms have been elucidated with their utilization. 

This has been further supported with the “golden age” of genetic manipulation that 

has been brought by the genome editing technologies like Zinc-finger nucleases, 

TALENs and most importantly, CRISPR/Cas9, which enabled the production of 

animal models at speeds vastly superior to previously used approaches based 

primarily on embryonic stem cells. 
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 Mice are in particular very useful in these endeavours, as they offer rapid generation 

time, high similarity to humans in their genetic makeup and relatively low cost of 

maintenance and an array of materials and methods available when compared to other 

viable alternatives. Many models pertaining to diseases mentioned in the previous 

chapter have been created, in particular for atopic dermatitis (Gilhar et al., 2021; 

Nakajima et al., 2019) and psoriasis (Nakajima and Sano, 2018; Schön et al., 2021) 

and are responsible for a large amount of data and in extension, our knowledge about 

mechanisms of these pathologies. 

 Nevertheless, it is important to take the differences between mouse and human skin 

and their immunological makeup into consideration when one is trying to interpret 

obtained data and transfer the knowledge to humans in order to elucidate any given 

mechanism, because incorrect interpretations may possibly lead to devastating effects, 

mainly in the context of therapeutic interventions. 

1.3.5.1 Comparison of mouse and human skin 

In this sub-chapter, I would like to briefly depict the main structural and 

immunological differences between mouse and human skin. Despite their apparent 

similarities which have been appreciated in research for a long time, the importance of 

these differences is still incompletely understood which, to a degree, hampers the 

correct interpretation of obtained data and also poses the question if mice can be 

thought of as a relevant model in certain research areas.  

1.3.5.1.1 Structural comparison 

On a basic histological level, mouse and human skin are divided into the same general 

compartments, dermis and epidermis with hypodermis sometimes also being included 

(Wong et al., 2016). Epidermis is further divided into stratum basale, stratum 

spinosum, stratum granulosum and stratum corneum (Wickett and Visscher, 2006). 

However, human skin is significantly thicker than that of mice, and the epidermal 

layer is usually composed of 5 to 10 cells, compared to that of mice, which is usually 

2 to 3 cells, depending on the localization on the body. Additionally, the murine 

epidermis is much more loosely attached to the dermis underneath than its human 

counterpart (Zomer and Trentin, 2018). This may prove troublesome in the 

assessment of skin diseases in which damage of epidermal barrier plays a significant 

role since thinner and looser epidermis of mice leads to more rapid damaging and thus 
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may distort our view of the seriousness and adequacy of any given mouse model 

created for its associated pathology. 

 Apart from the thickness parameter, mouse skin is nearly ubiquitously covered in hair 

and contains associated hair follicles, which are an important immune-related and skin 

repair niche, whereas, in humans, hair follicles are relatively sparse on most sites of 

the body. There is also a significant difference in the hair cycle between human and 

murine hair follicles (Zomer and Trentin, 2018). Wound healing is, in general, a 

rather similar process in humans and mice, although mice rely much more on 

contraction in healing skin wounds than humans do, which may, among other things, 

result in problems in wound healing research in mice. Indeed, usage of larger animals 

with similar wound healing process properties, like pigs, is advisable when the 

circumstances and available materials are on hand (Masson-Meyers et al., 2020). 

 Finally, several structures present in human skin are absent in its murine counterpart. 

Those structures are eccrine sweat glands and so-called Rete ridges which play an 

important role in skin homeostasis, wound healing and immune response in human 

skin. 

1.3.5.1.2 Immunological comparison 

From the perspective of immunology, several notable differences exist that are of 

interest in the context of correct interpretations of relative contributors to 

inflammatory phenotypes.  

 Immune cell populations in the murine epidermis are primarily made of CD8+ T 

cells, Langerhans cells and dendritic epidermal T cells (DETCs), a γδ T cell subset. 

Whereas both CD8+ T cells and Langerhans cells are prominent cell types in the 

human epidermis, DETCs are completely absent. In the underlying dermal layer, the 

single most striking difference is the substantial presence of γδ T cells to murine 

cutaneous immunity, whereas, in humans, they represent only a minor fraction of T 

cells present (Figure 1.10) (Pasparakis et al., 2014). The importance of the 

contributions these cells make to cutaneous inflammation has been noted and due to 

the fact that they are absent or present in negligible amounts in human skin, these cell 

types represent a major issue in the correct interpretation of underlying inflammatory 

mechanisms of skin diseases based on data obtained from mouse models (Chen et al., 

2020; Polese et al., 2020).   
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 Additionally, there are several observed differences in cytokine, chemokine (Zlotnik 

and Yoshie, 2012) and AMP production in human and murine skin, notably defensins 

(Gerber et al., 2014; Schittek et al., 2001). Since the skin microbiome plays a large 

role in skin diseases that were previously briefly discussed, cutaneous immune 

response to them is of great importance and AMPs are very important contributors to 

this process (Schauber and Gallo, 2008).  

 Differences of the aforementioned nature make the creation of an adequate mouse 

model equivalent to human diseases a rather challenging effort (Gilhar et al., 2021; 

Nakajima and Sano, 2018; Nakajima et al., 2019; Schön et al., 2021). 

 

Figure 1.10 Comparison of human and murine skin structure and immune cell populations. 

Structurally, the main differences between human and murine skin are the thickness of epidermis and 

dermis, the almost ubiquitous presence of hair follicles in murine skin compared to large interfollicular 

areas in most parts of human skin and the presence of some additional structures in the human skin, 

like the Rete ridges. From the immunological point of view, there are indeed several important 

differences that may affect the mechanisms of immune response. Firstly, populations that are present in 

both human and murine skin may be represented in different amounts, for example, the neutrophils (not 

shown). Additionally, hair follicles are important mediators of immune response and their presence or 

absence may significantly alter the immune process, as does their different structure. Lastly, several 

cell types are completely or nearly absent from human skin, with those cell types being DETCs in the 

epidermis and gamma delta T cells in the underlying dermis. Adapted from Pasparakis et al., 2014. 
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2. Materials and methods 

2.1 Materials 

2.1.1 Animals 

Animals used in this study were of C57BL/6N background and mutant mice were 

either created de novo (Tnfr1-/-) or produced previously (Sp5-/ Klk5-/-) by Mgr. Petr 

Kasparek, PhD in Czech Centre for Phenogenomics. Breedings were performed in the 

animal facility of The Institute of Molecular Genetics AS CR, v.v.i. in BIOCEV in 

individually ventilated cages under specific-pathogen-free conditions. Prior to 

euthanasia, mice were photographed and weighted.  

Animal experiments were performed according to the relevant European directive 

pertaining to experimentation on animals (2010/63/EU) and were approved by the 

Czech Central Commission for Animal Welfare. 

2.1.2 CRISPR crRNAs 

Both guide RNAs were ordered from IDT in 2 nmol concentration and lyophilized 

format. 

ID Sequence (5´-3´) 

gr68 CACTCAGGTAGCGTTGGAAC 

gr70 GTAATTCTGGGAAGCCGTAA 

 

2.1.3 Primers 

All primers were ordered from Sigma-Aldrich® in lyophilized form and purified by 

desalting.  

2.1.3.1 Genotyping primers  

Tnfr1 genotyping primers 

ID Sequence (5´-3´) 

Tnfr F2 CGGCTTCTTTTGCTTGTTTC 
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Tnfr R2 TGTGGGAAAGCGGTTAAGAC 

Tnfr1 cDNA F GGCTCTGCTGATGGGGATAC 

Tnfr1 cDNA R AGATAACCAGGGGCAACAGC 

*All primers were designed using Primer3 design tool. 

Klk5 genotyping primers 

ID Sequence (5´-3´) 

Klk5 KO F1 TGCATGGTTTGGTATGGAGC 

Klk5 KO R1 TCCATTCTAGAGCCAATCCTAAATTC 

Klk5 KO LacZ CTCCTGGAGCCCGTCAGTAT 

*All primers were designed using Primer3 design tool. 

Spink5 genotyping primers 

ID Sequence (5´-3´) 

Spink 5-5 F CCTGTCTCTGCCTTCAGACC 

Spink 5-5 R GGCTGTGGTAACTGTCCAAAA 

Sp5 ARMSin F1 TGTGAACTGTGTGCTGAGAATG 

Sp5 ARMSin R2 GGGTACTCACGCATTCTAGATCA 

*All primers were designed using Primer3 design tool. 

 

2.1.3.2 RT-qPCR primers 

Target 

gene 

name 

Target gene 

Ensembl ID 

Sequence (5´-3´) 

Forward Reverse 

Il1a ENSMUSG0000002

7399 

TTCTGAAGAAGAGACGGCTGA CTGATCTGGGTTGGATGGTC 

 

Il1b ENSMUST0000002

8881 

AGTTGACGGACCCCAAAAGA GTGCTGCTGCGAGATTTGAA 
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Il18 ENSMUSG0000003

9217 

CCAAGTTCTCTTCGTTGACAAAA CAGTCTGGTCTGGGGTTCAC 

Il23a ENSMUSG0000002

5383 

GTTGTGACCCACAAGGACTCA CAGGCTCCCCTTTGAAGATGT 

Il36a ENSMUSG0000002

6984 

ACTGGGGGAAATCTTCATCAC GGGGTGTCTTTGATTGCTTCT 

Il36b ENSMUSG0000002

6985 

CAACAGATGGTATGGGTCCTG CATCTTGGAATTCCGTGTCTCT 

Il36g ENSMUSG0000004

4103 

GTTCCACGAAGCCACAGAGT AATGGCAATCCCTTTGTCCT 

Ccl20 ENSMUSG0000002

6166 

CTGCTCTTCCTTGCTTTGGC GTCGTAGTTGCTTGCTGCTT 

Ccl22 ENSMUSG0000003

1779 

ACCCTCTGCCATCACGTTTA TCGGTTCTTGACGGTTATCAA 

Cxcl1 ENSMUSG0000002

9380 

AGACCATGGCTGGGATTCAC CGCGACCATTCTTGAGTGTG 

Icam1 ENSMUSG0000003

7405 

GTCACCGTTGTGATCCCTG AACAGTTCACCTGCACGGAC 

Il6 ENSMUSG0000002

5746 

AGCCAGAGTCCTTCAGAGAGAT TGGAAATTGGGGTAGGAAGGAC 

Tslp ENSMUSG0000002

4379 

AGAAGCCCTCAATGACCACTGC TCTTGTGCCATTTCCTGAGTACC

G 

Il33 ENSMUSG0000002

4810 

GCAGGAAAGTACAGCATTCAAG

A 

GGGGAAATCTTGGAGTTGGAAT

AC 

Tnfr1 ENSMUSG0000003

0341 

TAACTGCCATGCAGGGTTCT CTGGGGGTTTGTGACATTTG 

Actb ENSMUST0000010

0497 

CTAAGGCCAACCGTGAAAAG ACCAGAGGCATACAGGGACA 
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Tbp ENSMUSG0000001

4767 

ACAGCCTTCCACCTTATGCTC TGGAGTAAGTCCTGTGCCGT 

* All primers were designed by UCSC Genome Browser qPCR track or by using Primer3 design tool.  

 

2.2 Methods 

2.2.1 Zygote electroporation 

Mouse carrying a null mutation in the Tnfrsf1a gene, designated as Tnfr1-/-, was 

generated in a C57BL/6N using a CRISPR/Cas9 genome-editing system. Specific 

guide RNAs (gRNAs) recognizing exon 3 and exon 4 of the Tnfrsf1a gene were 

designed and off-target analyses were performed using the online software CRISPOR 

Design Tool (http://crispor.tefor.net/). Sequences of designed gRNAs are noted in 

section 2.1.2. CRISPR RNAs (crRNAs) (IDT; Alt-R® CRISPR-Cas9 crRNA, 2nmol) 

and trans-activating CRISPR RNAs (tracrRNA) (IDT; Cat. No. 1072532) were 

diluted in Nuclease-Free Duplex Buffer (IDT™; Cat. No. 11-05-01-03) to the final 

concentration of 100 μM. 5 μl of crRNAs were mixed with 5 μl of tracrRNA each and 

heated at 95°C for 3 minutes to facilitate the crRNA:tracrRNA duplex formation of a 

50 μM final concentration. Subsequently, 40 μl of OptiMEM media was added to 

each crRNA:tracrRNA duplex which achieved a final concentration of 10 μM. 

SpCas9 protein (made by Cyril Bařinka´s lab) diluted in OptiMEM media (500 ng/μl) 

(Thermo Scientific™; Cat. No. 31985062) and gRNAs (5 μM each) were used for 

zygote electroporation, using an electroporation protocol described elsewhere 

(Jenickova et al., 2021). Correct genome editing events were confirmed by PCR 

(section 2.2.3) in the founder mice. 

2.2.2 DNA isolation 

DNA isolation was performed by the neutralized phenol:chloroform:isoamyl alcohol 

method. Lysis buffer (1M TRIS HCl, 1M NaCl, 0,5M EDTA, 10% SDS) was 

supplemented with Proteinase K to achieve final concentration of 0,2 mg/ml prior to 

extraction. 0,5 ml of supplemented lysis buffer was then added to harvested mouse 

tails and incubated at 55°C overnight. Afterwards, tubes were centrifuged in a 

microcentrifuge (Eppendorf™ 5424 R) for 20 seconds at 13000 x rpm and 0,5 ml of 

neutralized phenol:chloroform:isoamyl alcohol (ROTH®; Cat. No. A156.1) was 

added to each tube and all tubes were shaken vigorously for 1 minute. Subsequently, 

http://crispor.tefor.net/
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samples were centrifuged for 4,5 minutes at 13000 x rpm and 400 μl of the upper 

aqueous layer was transferred to new microtubes. 0,5 ml of ice-cold 96% EtOH 

(VWR™; Cat. No. 20823.293) was added to each sample and all samples were 

inverted 10 times to facilitate DNA precipitation. Following precipitation, samples 

were centrifuged for 4,5 minutes at 13000 x rpm at 4°C and the supernatant was 

removed by decanting. 0,5 ml of ice-cold 75% EtOH was added to each sample and 

samples were again centrifuged for 4,5 minutes at 13000 x rpm at 4°C. The 

supernatant was then carefully removed by pipetting and the resulting pellets were air-

dried for 30 minutes. After drying, 200 μl of ddH2O was added to each sample to 

resuspend the DNA pellet and after resuspension, samples were either directly used 

for PCR or placed in a -20°C freezer until further processing. 

2.2.3 Mice genotyping 

PCR was performed in order to genotype the mice with the use of primers from Table 

X and PCR protocols for each locus as denoted under this text. PCR mix used for all 

PCR reactions had the following composition: 1 μl of each primer (section 2.1.3.1) 

(10 μM), 2,5 μl of DreamTaq Green Buffer (10X; Thermo Scientific™; Cat. No. 

EP0714) 0,5 μl of dNTPs (10 mM; Sigma-Aldrich® Cat. No. D7295) mix, 0,2 μl of 

0,2 µl DreamTaq DNA Polymerase (5U/μl; Thermo Scientific™; Cat. No. EP0714), 3 

μl of DNA and appropriate amount of ddH2O to achieve the final volume of 25 μl per 

reaction. PCR reaction was carried out in BIO-RAD T100™ Thermal Cycler and 

subsequently separated on agarose gel by agarose gel electrophoresis on 2% agarose 

gel. Electrophoresis was performed at a fixed voltage (90V) for 30 minutes. Agarose 

gel used for this analysis was prepared from TAE buffer (40 mM Tris, 20 mM acetic 

acid, 1 mM EDTA) and SeaKem® LE Agarose (Lonza ; Cat. No. 50004). 8 μl of each 

PCR reaction was used in this process, along with 4 μl of GeneRuler 1 kb Plus DNA 

Ladder (Thermo Scientific™; Cat. No. SM1331) to appropriately measure the DNA 

size. The resulting gel was then analysed on ChemiDoc™ MP Imaging System (Bio-

Rad; Cat. No 1708280).  
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Example electrophoresis results 

 

 

Tnfr1 genotyping PCR protocol 

Temperature (°C) Time (s)  

95 180  

95 20  

   34x 
60 25 

72 60 

72 180  

12 Inf  

 

Spink5 genotyping PCR protocol 

Temperature (°C) Time (s)  

95 180  

95 20  

   34x 
61 25 

72 25 

72 180  

12 Inf  
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Klk5 genotyping PCR protocol 

Temperature (°C) Time (s)  

95 180  

95 20  

   34x 
63 25 

72 30 

72 180  

12 Inf  

 

Tnfr1 cDNA PCR protocol 

Temperature (°C) Time (s)  

95 180  

95 20  

   34x 
60 25 

72 40 

72 180  

12 Inf  

 

2.2.4 Serum preparation 

Mice were gently taken by the neck and sedated by injection of 100 μl/25g of 30% 

Zoletil/Rometar (4:1; diluted in PBS) to each of their thighs. After sedation was 

confirmed by the lack of responsiveness to pain stimuli, approximately 0,5 mL of 

blood of each mouse was extracted by inserting a glass capillary into the retro-orbital 
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plexus and collected into a microtube. Collected blood was left for 10 minutes and 

then placed on ice for 1 hour. In the meantime, mice were euthanized by cervical 

dislocation. After 1 hour, blood was centrifuged at 5000 x g for 10 minutes at 4°C in a 

microcentrifuge (Eppendorf™ 5424 R). Subsequently, serum (upper phase) was 

transferred to a new microtube and samples were stored at -20°C until further 

processing. 

2.2.5 Enzyme-linked immunosorbent assay (ELISA) 

Mouse sTNF RI/TNFRSF1A DuoSet ® ELISA (R&D Systems ®; Cat. No. DY425) 

was used to perform the analysis of serum abundance of sTNFR1 according to a 

modified manufacturers protocol. The capture antibody was diluted to a working 

concentration (2 μg/mL) in PBS and an adequate number of wells of a 96-well 

microplate was coated with this solution, with 100 μl per well. The microplate with 

capture antibody was then incubated overnight in the fridge. The next day, the capture 

antibody was removed by aspiration and washed three times with 200 μl of Wash 

Buffer (0,05% Tween ® 20 in PBS; R&D Systems ®; Cat. No. WA126). When 

necessary, residual Wash Buffer still present after decanting was carefully removed 

with a paper towel. Subsequently, the microplate was blocked by adding 200 μl of 

Reagent Diluent (1% BSA in PBS, 0,2 um filtered, pH 7,2 - 7,4; R&D Systems ®; 

Cat. No. DY995) and left to incubate for 1 hour at room temperature. After 1 hour, 

Reagent Diluent was removed and the wash step outlined above was repeated. Next, 

50 μl of samples and standards diluted in Reagent Diluent were added in duplicates 

and left to incubate at room temperature for 2 hours. The washing procedure was then 

repeated and 100 μl of detection antibody diluted in Reagent Diluent to working 

concentration of 200 ng/mL was added to each well and incubated at room 

temperature for 2 hours. The detection antibody was then decanted and the wash 

procedure was performed again. Afterwards, 100 μl of Streptavidin-HRP solution 

diluted to a working concentration (40:1 in Reagent Diluent) was added to each well 

and incubated for 20 minutes at room temperature in total darkness. After 20 minutes, 

the wash step was again repeated and 100 μl of Substrate Solution (H2O2 and 

Tetramethylbenzidine, 1:1; R&D Systems ® Cat. No. DY999)   was added to each 

well, again incubated at room temperature for 20 minutes in total darkness. After 20 

minutes, 50 μl of Stop Solution (2N H2SO4; R&D Systems ® Cat. No. DY994) was 

added to each well. Absorbance was then determined on Epoch™ Microplate 
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Spectrophotometer set to 450 nm. 540 nm wavelength was also measured and 

subtracted from 450 nm values to correct for optical imperfections of the plate. The 

concentration of sTNFR1 was then determined by plotting the concentration of 

standards against their corrected absorbance values, creation of a linear standard curve 

sample standard dilution series (500, 250, 125, 62.5, 31.25, 15.625, 7.8125, 0; pg/mL) 

and calculation of linear regression equation for each sample. 

2.2.6 RNA isolation 

Dorsal skin RNA was isolated by TRI Reagent ® (Sigma-Aldrich®; Cat. No. T9424) 

solution following an optimized manufacturers protocol. Dorsal skin samples in 

microcentrifuge tubes were submerged in liquid nitrogen for 5 seconds and then 

crushed to fine particles on dry ice. Afterwards, 600 μl of TRI Reagent ® was added 

and the samples were mixed by pipetting until they seemed to be homogenous by 

visual inspection and allowed to stand for 5 minutes at room temperature. After 5 

minutes, 120 μl of chloroform was added to every sample, vigorously shaken by hand 

for 15 seconds and incubated for 15 minutes at room temperature. The resulting 

mixture was centrifuged at 12000 x g for 15 minutes in a microcentrifuge 

(Eppendorf™ 5424 R) pre-cooled to 4°C. The upper aqueous phase was then 

transferred to a fresh microcentrifuge tube and 300 μl of 2-propanol was added to 

each transferred sample to precipitate RNA. After 10 minutes at room temperature, 

samples were centrifuged at 12000 x g for 10 minutes at 4°C after which there could 

be seen a formed RNA pellet at the bottom of each microcentrifuge tube. The 

supernatant was removed by pipetting, 600 μl of 75% EtOH was added and samples 

were briefly vortexed. Samples were then centrifuged at 12000 x g for 5 minutes at 

4°C. The supernatant was then removed and 75% EtOH addition and subsequent 

centrifugation step were repeated. After the second washing step, the supernatant was 

removed by pipetting and resulting RNA pellets were allowed to dry, after which they 

were resuspended in 31 μl RNAse-free H2O (Thermo Scietific™; Cat No. W4502). 

Concentrations of the resulting RNA solutions were measured with Implen 

NanoPhotometer® N50. Analysis of RNA quality was performed by agarose gel 

electrophoresis on 2% agarose gel and electrophoresis was performed at a fixed 

voltage (90V) for 30 minutes. Agarose gel used for this analysis was prepared from 

TAE buffer (40 mM Tris, 20 mM acetic acid, 1 mM EDTA) and SeaKem® LE 
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Agarose (Lonza; Cat. No. 50004). The resulting gel was then analysed on 

ChemiDoc™ MP Imaging System (Bio-Rad; Cat. No 1708280). 

2.2.7 In vitro reverse transcription 

In vitro reverse transcription was performed with the use of M-MLV Reverse 

Transcriptase (Promega; Cat. No. M1705) and was performed using an upscaled 

manufacturers protocol. Firstly, 3 μg of RNA, 6 μl of oligo(dT)23 (35 μM) were mixed 

and adjusted to a final reaction volume of 22,5 μl. Next, samples were incubated at 

70°C for 5 minutes for oligo(dT)23 annealing and melting RNA secondary structures. 

After 5 minutes, samples were immediately placed on ice to avoid secondary structure 

reformation. 7,5 μl of M-MLV buffer (Cat. No. M5313; Promega), 1,875 μl of 

deoxynucleotide mix (10 mM, Sigma Aldrich®), 1,5 μl of RNAsin® Ribonuclease 

Inhibitor (Cat. No. N2515; Promega), 1,5 μl M-MLV Reverse Transcriptase (Cat. No. 

M1705; Promega) and 2,625 μl of RNAse-free water (Thermo Scientific™; Cat No. 

W4502) was added to each sample to a total volume of 37,5 μl and samples were 

incubated in a thermal block (BIOER; Cat No. MB-102) at 42°C for 1 hour. After 

incubation, samples were diluted by adding 112,5 μl of ddH2O and were frozen at -

20°C until further processing. 

2.2.8 Reverse transcription quantitative PCR (RT-qPCR) 

RT-qPCR was performed with the utilization of LightCycler® 480 SYBR Green I 

Master (Roche s.r.o.; Cat. No. 4887352001) and were performed as follows. 3 μl of 

cDNA, 0,25 μl of each primer (10µM),  1,5 μl of ddH2O and 5 µl of LightCycler® 480 

SYBR Green I Master (Roche s.r.o.; Cat. No. 4887352001) were mixed, in duplicates 

for each sample. The RT-qPCR reaction was then performed according to the protocol 

below on Light Cycler® 480 (Roche) and relative mRNA levels were calculated with 

the use of the 2-∆∆Ct method with Actb and Tbp genes used for normalization. 

 

 

 

 

 



64 

 

RT-qPCR protocol 

Temperature (°C) Time (s) Ramp (°C/s) Mode 

95 120 4,8 Initial denaturation 

95 15 4,8 Quantification 

50x 
60 20 2,5 

72 20 4,8 

95  0,1 Melt Curve Analysis 

 

2.2.9 Dorsal skin dissection and processing  

Harvest of dorsal skin was performed on P2 mice. Firstly, mice were euthanized via 

decapitation and then placed on a polystyrene board covered with aluminium foil, 

where they were fastened by pins through each of their limbs. About 0,5 cm of tail 

tissue was taken for DNA extraction and subsequent genotyping. Dorsal skins were 

then harvested for histological and RT-qPCR analyses. For histological analysis, half 

of the dorsal skins were placed into embedding cassettes (Leica Biosystems; Cat. No. 

39LC-500-1) with a filter paper and fixed in phosphate buffered 4% formaldehyde 

solution (Sigma-Aldrich®; Cat. No. 1004969011) for 24 hours and then dehydrated 

and conserved in 70% EtOH at 4°C until further processing. For RT-qPCR, the other 

half of the dorsal skins were cut into 3 pieces of similar dimensions and snap freezed 

on dry ice until dissections were finished and then transferred to a -80°C freezer 

before RNA isolation was performed. 

2.2.10 Paraffin block preparation and processing  

Tissue samples were automatically processed in Leica ASP6025 Tissue Processor 

prior to paraffin block preparation. Samples were subjected to a series of ethanol 

solutions to dehydrate the samples (EtOH, 37°C) (VWR™; Cat. No. 20821.296) and 

saturate them with paraffin-dissolving solvent (xylene, 45°C) (VWR™; Cat. No. 

28973.294). Afterwards, samples were saturated with liquid paraffin (Leica 

Biosystems; Cat. No. 39603002) at 60°C, which ended the automatic processing. 

Subsequently, samples were taken to Leica EG1150 Embedding Station, on which 
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samples were moved from embedding cassettes into metal moulds, liquid paraffin 

heated to 60°C was poured on individual samples and samples were correctly 

localized. This process was undertaken on a continuously heated surface to avoid 

paraffin solidification. Moulds were then moved to a cooling surface on which the 

paraffin solidified. After solidifying, additional paraffin was added to fill the moulds 

completely and samples were again left to solidify. Finished paraffin blocks were then 

processed on Leica RM2255 microtome. Two tissue sections with a thickness of 5 μm 

were cut from each block and placed on individual glass slides (2 tissue 

sections/slide) for further processing.  

 

2.2.11 Hematoxylin and eosin (H&E) staining  

Prior to the H&E staining itself, dried tissue sections on slides were deparaffinized 

and rehydrated, during which slides were submerged in a series of solutions in 

separate cuvettes. These solutions were: xylene (10 minutes) → xylene (5 minutes) → 

isopropanol (5 minutes) (VWR™; Cat. No. 20842.312) → isopropanol/absolute EtOH 

(1:1; 5 minutes) → absolute EtOH (5 minutes) → 96% EtOH (5 minutes) → 70% 

EtOH (5 minutes) → ddH2O. 

 Following deparaffinization, slides were placed into a cuvette with Hematoxylin 

solution (Sigma-Aldrich®; Cat. No. MHS16-500ML) for 5 minutes. Slides were 

washed under a continuous indirect flow of ddH2O for 1 minute and then left to stand 

in ddH2O for 10 minutes. Afterwards, slides were placed into a cuvette with 0,5% 

aqueous solution of eosin (Leica Biosystems; Cat. No. 3801590BBE) for 1 minute. 

Slides were washed under a continuous indirect flow of ddH2O for 1 minute. After 

staining, samples were dehydrated and brightened by submerging the slides in a series 

of solutions in separate cuvettes. These solutions were: 70% EtOH (1 minute) → 96% 

EtOH (1 minute) → absolute EtOH (1 minute) → isopropanol/absolute EtOH (1:1; 3 

minutes) → isopropanol (3 minutes) → xylene (5 minutes) → xylene (10 minutes). 

After dehydration and brightening, samples were mounted with a drop of Pertex™ 

(VWR™; Cat. No. 720-2343) mounting medium, covered with a covering glass, left 

to dry overnight and examined by light microscopy on ZEISS Axio Imager Z.2.  
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2.2.12 Naphthol AS-D chloroacetate (NASDCL) staining  

NASDCL staining was done with Naphthol AS-D Chloroacetate (Specific Esterase) 

Kit (Sigma-Aldrich®; Cat. No. 91C-1KT). Prior to the staining itself, slides were 

deparaffinised as described in section 2.2.11. NASDCL staining solution was 

prepared as follows. 1 mL of Red Violet solution and 1 mL of Sodium Nitrate 

solution was mixed and left to stand for 2 minutes and added to 40 mL of ddH2O pre-

warmed to 37°C. Afterwards, 5 mL of TRIZMA solution was added, the solution was 

mixed and 1 mL of NASDCL was added and the solution was again thoroughly 

mixed. Slides were then placed in a staining cuvette, submerged in the NASDCL 

staining solution and left to incubate for 1 hour at 37°C. After 1 hour, NASDCL 

staining solution was removed and slides were washed under a continuous indirect 

flow of ddH2O for 2 minutes. After washing, samples were counterstained with 

Hematoxylin Gill for 20 seconds and washed with a continuous indirect flow of 

ddH2O for 1 minute. Slides were then mounted with Aquatex (Sigma-Aldrich®; Cat. 

No. 1085620057) mounting agent, covered with a covering glass and left to dry 

overnight. After drying, samples were analysed by light microscopy on ZEISS Axio 

Imager Z.2. For granulocyte infiltration statistical analysis, four consecutive fields 

(magnification - 200x) of view were taken from each specimen and NASDCL+ cells 

were counted in the ImageJ software. 

 
  

 2.2.13 Statistical analysis 

All statistical analyses and associated graphs were performed and created in 

GraphPad Prism software (version 8.4.3 (686), June 17, 2021 release). One-way 

ANOVA followed by Bonferroni correction was used for all statistical analyses. 

Column bar graphs represent mean values with error bars depicting the standard 

deviation. Asterisks above bars are representing p-values of individual comparisons, 

those values being: p > 0.05 (ns), p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***), p ≤ 

0.0001 (****). 
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3. Aims of this thesis 

Previous research performed in our lab revealed that Sp5-/- mutant mice, a model for 

NS, show early postnatal lethality that can be rescued by simultaneous ablation of 

proteases Klk5 and Klk7. In contrast, a single ablation of Klk5 results in only a partial 

rescue of NS model lethality, with severe cutaneous inflammation and skin barrier 

defects at P3-P5. The aim of this work is to elucidate the role of TNFα in the 

inflammatory phenotype of NS mouse models. Specifically, the aims were set as 

follows: 

• Produce Generation of a Tnfr1-/- mice on the C57BL6/N background. 

• Combination of Tnfr1-/- mice with Klk5-/-Spink5-/- line 

• Analysis of the gross, histologic and molecular phenotype of individual 

mouse models 
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4. Results 

The primary aims of this work were twofold. First, we wanted to create and validate a 

Tnfr1-/- transgenic mouse model on the C57BL/6N genetic background. Second, 

cross-breeding with Sp5-/- Klk5-/- mice on the C57BL/6N genetic background, creation 

of a Sp5-/- Klk5-/- Tnfr1-/- triple knockout mode and analyses of said strain for studying 

the role of TNFα signalling via the TNFR1 receptor on the Sp5-/- Klk5-/- mouse model.   

4.1 Transgenic mouse design and production 

In order to study KLKs role in inflammation, the Tnfr1-/- mouse was created with the 

utilization of the CRISPR/Cas9 system on the C57BL/6N mouse strain background. 

Targeting was designed to create a premature stop codon preceding the 

transmembrane domain that would result in a nonsense product without any 

functional activity. Typically, this results in rapid degradation of mRNA level via 

nonsense-mediated decay (NMD), degradation of the truncated protein, or a 

combination of both. 

4.1.1 Cas9-mediated Tnfr1 knockout design 

Two gRNAs were designed in the CRISPOR software to target exon 3 and exon 4 

respectively (Figure 4.1) and selected according to the CRISPOR scoring system for 

in silico assessment of on-target and off-target potential of respective gRNA 

sequences (Concordet and Haeussler, 2018). Zygote electroporation and subsequent 

implantation were performed according to its description in the 2.2.1 subchapter. 

Successful deletion of parts of exon 3 and 4 and the intron in between was verified by 

Sanger sequencing and founder mice were chosen accordingly (Figure 4.2). Created 

Tnfr1-/- mice were viable, with their phenotype being comparable to previously 

established Tnfr1-/- mouse models. 

 

 
Figure 4.1 Targeting strategy of Tnfrsf1a (Tnfr1) locus. gRNA sequences are highlighted in red. 

Gene structure was adapted from Ensembl.org. 

GGGCACCTTTACGGCTTCCCAGAATTACCTCAGGCA GAGAACCAGTTCCAACGCTACCTGAGTGAGACACAC 
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WT 

GAACCTACTTGGTGAGTGACTGTCCGAGCCCAGGGCGGGATACAGTCTGC

AGGGAGTGTGAAAAGGGCACCTTTACGGCTTCCCAGAATTACCTCAGGCA

GTGTCTCAGTTGCAAGACATGTCGGAAAGGTAAGCCTTGGGATTGGGCCA

GGGCTATAGAAGGTGCATGGTGTGTGAAGACGTGCGAACATGTGTGTGTG

TCCGTGGGTGTTGGCCAGGAGGTCAGGATTTCGAATCTGCTCGTGAGTGT

GGCGGTAGTATGCATGCGTGCACATGCAAGCTCGGGCCTGTGTGCGTAGG

AGGAGTGTCTGTTACAAAGACGAATGCCATGTGGCAGAGCCAGGGGGCG

TCAAGATTTGTGTGGGAAAAGGGATGTGAGACTCACACACCATTTCCTTC

CCTCTTCAGAAATGTCCCAGGTGGAGATCTCTCCTTGCCAAGCTGACAAG

GACACGGTGTGTGGCTGTAAGGAGAACCAGTTCCAACGCTACCTGAGTGA

GACACACTTCCAGTGCGTGGACTGCAGCCCCTGCTTCAACGGCACCGTGA

CAATCCCCT 

Tnfr1-/- 

GAACCTACTTGGTGAGTGACTGTCCGAGCCCAGGGCGGGATACAGTCTGC

AGGGAGTGTGAAAAGGGCACCTGAGTGAGACACACTTCCAGTGCGTGGA

CTGCAGCCCCTGCTTCAACGGCACCGTGACAATCCCCT 

 

Figure 4.2 Comparison of WT and Tnfr1-/- sequence. Exon 3 and 4 sequences are highlighted with 

green shading and the intron 3 sequence is shaded yellow. Sequences of gRNAs are in red and the 

nascent stop codon is in bold. Sequencing results of the knockout allele are at the bottom of the picture 

(Downloaded from Benchling). 
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4.1.3 Tnfr1 mRNA level analysis 

Tnfr1 relative mRNA level was measured in Tnfr1-/- and WT mice by RT-qPCR to 

assess the effect of NMD on Tnfr1 expression. This analysis revealed that WT and 

Tnfr1-/- mice exhibit comparable levels of Tnfr1 mRNA Although the sample size was 

small (n=1), it was clear that NMD on its own does not significantly degrade Tnfr1-/- 

mRNA (Figure 4.3). RNA was also analysed by Sanger sequencing to exclude the 

option of exon skipping in Tnfr1-/- mice and the results clearly showed that the 

prevalent mRNA present in mice is the one that results in a premature stop codon 

(data not shown).  

 

 

 

Figure 4.3 RT-qPCR analyses of Tnfr1 mRNA in WT and knockout mice.  NMD does not occur or 

only to a little degree in Tnfr1-/- mice; n = 1; Actb gene was used for normalization. 

 

4.1.4 sTNFR1 protein level analysis 

To assess the potential presence of TNFR1 protein and functionally verify the 

knockout, ELISA analysis was performed. Levels of sTNFR1 in serum ranged from 

550 pg/mL to 650 pg/mL in WT mice and were undetectable in Tnfr1-/- mice (n = 3) 

(Figure 4.4). ELISA confirmed that generated Tnfr1-/- mice are indeed a functional 

knockout that is viable in further downstream applications. This result finalized 

analyses of the Tnfr1-/- mice validity as a functional knockout. 
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Figure 4.4 ELISA analysis of sTNFR1 levels. ELISA clearly shows the absence of sTNFR1 in the 

serum of Tnfr1-/- mice; n = 3.  

 

4.2 Breeding and Analyses of Sp5-/- Klk5-/- Tnfr1-/- mice 

Sp5-/- Klk5-/- mice exhibit a lethal phenotype due to the Spink5 deficiency, which 

increased the difficulty of creating the Sp5-/- Klk5-/- Tnfr1-/- mice and the breeding 

scheme was set up accordingly. Sp5+/- Klk5-/- mice, which were previously created in 

our laboratory were bred to Tnfr1-/- to obtain the desired triple knockout mouse.  

Sp5+/- Klk5-/- mice were bred together to obtain the Sp5-/- Klk5-/- mice. Due to apparent 

complications in breeding, if one was to aim for obtaining WT littermates, control 

WT mice were bred separately. 

It is important to note, that Sp5-/- Klk5-/- mice previously died at P5, but now only a 

negligible amount of this genotype survived to P3 with most dying on P2. This was 

attributed to probable changes in the environment of the animal facility where these 

mice were bred. Indeed, this hampers possible direct comparison with previously 

obtained data, which makes interpretation of the results difficult. 

4.2.1 Visual analyses of Sp5-/- Klk5-/- Tnfr1-/- mice 

Visual inspection of the phenotype of Sp5-/- Klk5-/- Tnfr1-/- mice did not reveal any 

significant features that would stand out when compared to Sp5-/- Klk5-/- mice (Figure 

4.5). Both genotypes showed a degree of peeling skin and slight growth retardation, 

probably due to transepidermal water loss as was observed for Sp5-/- Klk5-/- mice in a 

previous analysis of said genotype. The average weight of both Sp5-/- Klk5-/- Tnfr1-/- 

and Sp5-/- Klk5-/- mice was significantly lower than that of WT mice (Figure 4.6). This 
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WT 

Spink5
-/-  

Klk5
-/- 

Spink5
-/- 

Klk5
-/- 

Tnfr1
-/- 

was attributed primarily to transepidermal water loss that was previously observed in 

Sp5-/- Klk5-/- mice.   

 

 

Figure 4.5 Phenotype of P2 pups. Compared to WT mice, peeling skin was visible both in Sp5-/- Klk5-

/- and Spink5-/- Klk5-/- Tnfr1-/- mice. Condition of Sp5-/- Klk5-/- Tnfr1-/- mice seemed to be more severe, 

although negligibly. 

 

 

Figure 4.6 Weight of P2 mice. Differences in weight were 

readily apparent between WT and the Sp5-/- Klk5-/- and Sp5-/- 

Klk5-/- Tnfr1-/- mice; n ≥ 7.  
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4.2.2 RNA expression analysis 

Analysis of expression of inflammatory cytokines in the dorsal skin was done in order 

to assess the severity of inflammation progression by RT-qPCR analysis. Previously, 

Sp5-/- Klk5-/- mice showed elevated expression levels of mostly TH17- associated 

cytokines which were in line with the observation that NS-associated inflammation is 

predominantly mediated by the TH17 axis.  

 Compared to Sp5-/- Klk5-/- mice, Sp5-/- Klk5-/- Tnfr1-/- mice showed an increase in 

nearly all proinflammatory cytokines that were measured. Although the significance 

of these analyses was sometimes not enough, warranting additional confirmation, the 

trend was nearly ubiquitously present to various levels. The most significantly 

different cytokines that were expressed in Sp5-/- Klk5-/- Tnfr1-/- mice compared to the 

other two genotypes were Il1a, Il36 family members and Ccl22. Ccl22 stands out in 

this analysis due to the fact that it had a heightened expression level exclusively in 

Sp5-/- Klk5-/- Tnfr1-/- mice. It is likely that the expression of Ccl20 is also severely 

heightened in some of the Sp5-/- Klk5-/- Tnfr1-/- mice, but the spread of obtained values 

did not achieve statistical significance. Interestingly, Il1b expression was not different 

between Sp5-/- Klk5-/- and Sp5-/- Klk5-/- Tnfr1-/- mice. The only cytokine whose 

expression level was higher in WT compared to both knockout genotypes was Il23a, 

although the spread of obtained values in the case of WT was too wide to be 

statistically significant (Figure 4.7). 

 Surprisingly, it seems that inflammation is more severe Sp5-/- Klk5-/- Tnfr1-/- mice than 

in the Sp5-/- Klk5-/- mice, but the enormous spread in the expression levels of some 

cytokines prevented us to conclusively determine the significance of obtained results 

for the whole panel. This was attributed to the fact that the epidermal damage was 

partially done by the mechanical chafing of mice, which is variable. 

 It is important to note that several additional cytokines were going to be included in 

this panel but their analysis failed, very likely due to the primers that were used. 

Unfortunately, these cytokines are extremely important in the studied context, namely 

Il4, Il12, Il13, Il17a, Ccl17, Il22, and Ifng. Future experiments would encompass 

additional analysis of these cytokines. 
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Figure 4.7 RT-qPCR analyses of inflammatory cytokines in the skin. Sp5-/- Klk5-/- Tnfr1-/- mice 

showed an overall increase in the expression of inflammatory cytokines across the whole panel with the 

expression Il1a, Il36 family members and Ccl22 being the most markedly upregulated. Il23a is the only 

cytokine that was significantly downregulated compared to WT mice; n ≥ 7; Tbp gene was used for 

normalization.    
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4.2.3 Histological analyses  

To analyse the structural and immunological features of the dorsal skin of studied 

mice, two histological stainings were performed to assess them. Those staining were 

H & E staining and NASDCL staining. H & E staining was performed to assess the 

basic structural features and NASDCL was performed to assess the level of 

infiltration of granulocytes, predominantly the neutrophils. 

4.2.3.1 H & E staining 

H & E staining did not show any clear signs of structural differences among the 

studied genotypes (Figure 4.8). It is hard to determine if the features previously 

associated with Sp5-/- Klk5-/-, like acanthosis, would manifest later since the time point 

at which those features were showed was at P5 compared to the P2 time point 

analysed in this thesis and how would the  Sp5-/- Klk5-/- Tnfr1-/- mice be affected.  

4.2.3.2 NASDCL staining 

NASDCL staining did show a slight trend of increased granulocyte infiltration 

compared to WT mice both in Sp5-/- Klk5-/- and Sp5-/- Klk5-/- Tnfr1-/- mice (Figure 4.8) 

and subsequent evaluation of NASDCL positive cells did indeed point in this 

direction, albeit without statistical significance (Figure 4.9). It is important to note 

that sample sections showed varying levels of staining intensities, probably owing to 

the exact spots where the sections were cut.  
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Figure 4.8 H & E staining and NASDCL staining. H & E staining is on the left side of the figure and 

NASDCL staining is on the right side. Purple cells in the NASDCL-stained sections are the ones 

showing NASDCL-specific esterase activity. Scale bars represent 100 μm.    
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Figure 4.9 Statistical analysis of granulocyte infiltration. The 

trend of a slight increase in granulocyte infiltration was observed 

in Sp5-/ Klk5-/- and Sp5-/- Klk5-/- Tnfr1-/- mice, although without 

being statistically significant, warranting the need for additional 

analysis to conclusively confirm its relevance; n ≥ 3. 
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5. Discussion 

KLKs are increasingly appreciated as important contributors to inflammatory 

processes, especially in the skin (Nauroy and Nyström, 2020). Two of the most 

important KLKs in the skin in terms of inflammation, KLK5 and KLK7 have different 

means of how to elicit their contribution to inflammatory processes. Whereas the 

mechanism of inflammation induction via KLK5 has been mainly associated with 

PAR2 receptor signalling (Stefansson et al., 2008) and AMP processing (Yamasaki et 

al., 2006), the role of KLK7 and its mechanism is much less clear, with the known 

possible mechanisms being pro-IL-1β processing (Nylander-Lundqvist and Egelrud, 

1997) or its contribution to hyperproliferation of keratinocytes (Ny and Egelrud, 

2004). In this work, we aimed at addressing this by the production of a Sp5-/- Klk5-/- 

Tnfr1-/- transgenic mouse and its subsequent analysis. This would not only enable us 

to address this question but additionally, explore the possibility of using selective 

TNFR1 inhibitors in the treatment of cutaneous diseases in which KLK7 contributes 

to the disease-associated immune dysregulation, with the most emphasis being placed 

on the NS. Global TNFα knockout proved to be enough to rescue the lethal phenotype 

of Sp5-/-Klk5-/- mice (Zingkou, 2018). However, targeted inhibition of TNFα 

signalling is a preferred option when possible, due to risks associated with disruption 

of such an important pathway in this manner (Fischer et al., 2020). 

 Successful production of the Tnfr1-/- mouse model was a necessary prerequisite to 

proceed with the main focus of this thesis. CRISPR/Cas9 system was chosen for this 

effort since its usefulness and flexibility for transgenic mice production is without 

parallel and it is quicker and cheaper to produce knockout mouse de novo by this 

system than to import already existing models. It was expected that due to the location 

of the newly created stop codon in exon 4, NMD would play a significant role and 

destroy nascent transcripts, but strangely, this was not the case even though 

appropriate design rules were followed (Popp and Maquat, 2016). Although the 

validity of the knockout was verified on the functional level by the detection of 

sTNFR1 protein in the serum of Tnfr1-/- mice, it has to be noted that the truncated 

mRNA may still be translated into non-functional truncated protein. Nevertheless, due 

to the nature of the editing, it is highly unlikely that these effects would result in 
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functional TNFR1-mediated signalling, which was independently validated by a 

collaborating laboratory (data not shown).  

   In the previous work on this topic in our laboratory, it was shown that Sp5-/- mice 

die almost immediately at P0, Sp5-/- Klk5-/- mice at P5 and Sp5-/- Klk5-/- Klk7-/- have 

their lethal phenotype rescued and live up to adulthood, although with slight 

differences when compared to WT mice (Kasparek et al., 2017). Surprisingly, Sp5-/- 

Klk5-/- mice exhibited a different phenotype upon changing the animal breeding 

facility, with most of them dying on P2 instead of P5. This may be because the 

environment somehow changed in regards to the microbiota present in the animal 

facility in which these mice were bred. The cutaneous microbiome is a key aspect in 

the homeostasis of the skin and as was discussed in the literature review, plays a key 

role in the associated diseases. It was previously published that colonization of the 

skin with various microbial populations and their proportional distribution in the skin 

of NS patients results in various levels in the severity of disease progression 

(Williams et al., 2020). This issue brings forth two aspects of interest. Firstly, due to 

the aforementioned discrepancies, any direct immune comparison with previously 

published work is impossible. Secondly, it highlights the importance of the 

microbiome in this particular disease and maybe even warrants periodic screenings of 

skin microbial populations to ensure the validity and comparability of measured data. 

 As discussed in the literature review, TNFR1-mediated signalling leads primarily to 

pro-inflammatory effects, whereas TNFR2 largely elicits regulatory outcomes 

(Dostert et al., 2019). However, in the cutaneous context, several aspects of TNFα 

signalling may result in pro-inflammatory effects in the absence of TNFR1 signalling. 

TNFα signalling is a key aspect of processes like immune response (Kalliolias and 

Ivashkiv, 2016) and wound healing (Nosenko et al., 2019). Although global TNFα 

inhibition may be beneficial to reduce its overall deleterious effects, selective 

inhibition of either receptor is likely to dysregulate normal TNFα signalling that may 

result in unforeseeable effects that ultimately result in a further increment in the 

severity of the pathology. Additionally, ablation of TNFR1 would likely result in an 

increased abundance of mTNF that under normal circumstances engages mTNFR1. 

This would result in increased potential for signalling via the TNFR2 receptor and 

also for reverse signalling through the mTNF itself by engagement of TNFR2. 

Whereas the effect of an increase in TNFR2-mediated signalling is hard to estimate 
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since it has the potential to ultimately elicit similar responses as TNFR1 under 

specific circumstances, it has been previously published that reverse signalling by 

mTNF/TNFR2 (Qu et al., 2017) has one key effect that may significantly alter the 

cutaneous environment, although not experimentally proven to be relevant in 

epidermal cells. Keratinocyte differentiation is positively regulated by the presence of 

calcium and this type of signalling results in an increase of calcium concentration by 

activation of ERK1/2, thus speeding up this process. Additionally, this signalling 

directly increases TNFα production which may result in a positive feedback loop that 

would further dysregulate the regular keratinocyte differentiation process (Rossol et 

al., 2007).  

 Several of the cytokines whose expression levels were significantly increased 

compared both to WT and Sp5-/-Klk5-/- mice are very strongly associated with barrier 

defence and associated inflammation, namely IL-1α (Di Paolo and Shayakhmetov, 

2016) and the IL-36 subfamily (Buhl and Wenzel, 2019), both being a part of the IL-1 

superfamily of cytokines. In contrast to IL-1β, IL-1α is produced under homeostatic 

conditions and has been attributed many roles, especially in epithelial tissues. In the 

context of our mouse model, its role as an alarmin and local inflammatory driver may 

be the most important since epidermal damage is one of the central features present in 

these mice and thus Il1a overexpression may signal more severe epidermal damage. 

IL-36 subfamily has been experimentally proven as being a key player in the 

epidermal compartment of the skin. In a recent publication, it was shown that IL-36 

and especially IL-36α played a crucial role in initiation and sustainment of the 

inflammatory state upon an epidermal challenge by S. aureus, whereas IL-1β was not 

playing a significant role, only doing so after intradermal challenge (Liu et al., 2017). 

In the light of our results, one of the possible explanations is that TNFR1 ablation 

may result in a decreased capacity for microbe removal from the epidermis in a timely 

manner, which is fueling the inflammation in which IL-36 subfamily cytokines play a 

significant role. Expression of Il1b was similar between Sp5-/- Klk5-/- Tnfr1-/- and Sp5-

/- Klk5-/- mice, suggesting that the epidermal barrier was not further compromised. 

Additional experiments are necessary to validate all of these hypotheses. Furthermore, 

Ccl22 expression was elevated in Sp5-/- Klk5-/- Tnfr1-/- mice compared both to Sp5-/- 

Klk5-/-  and WT mice. This suggests a possible more significant role of TH2 and Treg 

cells (Yoshie and Matsushima, 2015) in the phenotype of Sp5-/- Klk5-/- Tnfr1-/- mice. 
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Lastly, Il23a expression was lower both in Sp5-/- Klk5-/- Tnfr1-/- and Sp5-/- Klk5-/- mice 

compared to WT mice, although the difference was not enough to be statistically 

significant in the case of Sp5-/- Klk5-/- /WT mice comparison. This comes as a surprise 

since IL-23 is a driver of TH17 cells expansion and maintenance (Gaffen et al., 2014) 

and TH17 cells play a substantial role in the pathology of NS (Petrova and Hovnanian, 

2020).  

  



85 

 

 

  



86 

 

6. Conclusions and prospects 

This work aimed to elucidate the role of the TNFα signalling pathway in the 

inflammatory phenotype of NS mouse models. Our main findings are as follows: 

• Tnfr1-/- mice were successfully produced by CRISPR based mutagenesis. 

Ablation of TNFR1 on the protein level was demonstrated by ELISA. The 

mice are viable and their phenotype is comparable to previously established 

TNFR1 deficient mouse models. 

 

• Environmental factors play a significant role in the phenotypic manifestations 

of NS mouse models, as different breeding facilities altered the resulting 

phenotype of previously studied Sp5-/- Klk5-/- mice. 

 

• TNFR1 ablation does not rescue the inflammatory phenotype of Sp5-/-Klk5-/- 

mice. Sp5-/- Klk5-/- Tnfr1-/- are not viable and most of them die at P2, 

comparably to Sp5-/- Klk5-/-. Analysis of cytokine expression suggests that the 

inflammatory phenotype is even more severe than in Sp5-/- Klk5-/- mice. 

In conclusion, this work presents a novel mouse model for the study of KLKs in the 

context of NS and the effects of TNFR1 signalling on the previously established Sp5-/- 

Klk5-/- mouse model. Although a thorough assessment of the phenotype of Sp5-/- Klk5-

/- Tnfr1-/- mice was not done at the time of admission of this thesis, it is clear that the 

ablation of TNFR1 in Sp5-/- Klk5-/- Tnfr1-/- mice does not alleviate the inflammatory 

phenotype. In extension, Sp5-/- Klk5-/- Tnfr1-/-
 mice provide a valuable platform for the 

study of TNFR1 ablation in the context of KLK-associated pathologies like the NS.  
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