Abstract

Kallikrein-related peptidases (KLKs) are a subgroup of serine proteases of undisputable

importance for a variety of functions, whose dysregulation has been linked to several

pathological phenotypes. Among those pathologies, the Netherton syndrome stands out, since

it is one of the very few that has its mechanism directly linked to KLK proteases as the main

culprit of the disease, namely KLK5, KLK7 and to a lesser degree, KLK14. In this case, a

mutation in the SPINK5 gene leads to uncontrolled hyperactivity of those proteases, which

results in epidermal barrier breach due to excessive epidermal desquamation and severe

inflammation of the skin. Inflammation mechanisms of NS are still relatively poorly

understood, with important roles being attributed to the activities of KLKs in the processing

of immune system molecules and also to the dysregulation of the cutaneous microbiome.

TNFα signalling plays a key role in the homeostasis and immune response in the skin.

Chronic skin infections may lead to deleterious effects with strong participation of TNFa

signalling. To address the degree of its effects on the pathogenesis of NS, we have created a

mouse model where the TNFR1 is disrupted by knockout of the *Tnfr1* gene on the background

of a previously established mouse model of the Netherton syndrome.

We have successfully created the Tnfr1^{-/-} mouse model and subsequently produced the

desired Sp5^{-/-} Klk5^{-/-} Tnfr1^{-/-} mice. Surprisingly, subsequent analyses suggest that not only

Tnfr1 ablation does not alleviate cutaneous inflammation present in previously created mouse

models, but further increases its severity.

Key words: KLK, protease, skin, epidermis, inflammation, mouse model, CRISPR