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Abstract: I give a proof of the cut-elimination theorem (Gentzen’s Hauptsatz)
for an intuitionistic multi-succedent calculus. The proof follows the strategy of
eliminating topmost maximal-rank cuts that allows for a straightforward way to
measure the upper bound of the increase of derivations during the procedure. The
elimination of all cut inferences generates a superexponential increase. I follow
the structure of the proof for classical logic given in Svejdar’s [I8], modifying
only the critical cases related to two restricted rules. Motivated by the diversity
found in the early literature on this topic, I survey selected aspects of various
formulations of sequent calculi. These are reflected in the proof of the Hauptsatz
and its preliminaries. In the end I give one corollary of cut elimination, the
Midsequent theorem, which is one of the three applications to be found already
in Gentzen’s [10].

Keywords: cut rule, sequent calculus, lengths of proofs

1ii



Contents

(Introductionl

[1 A survey of sequent calculil

[L1 Tonversiond . . . . . . . .

[3 Aspects of cut elimination|
[3.1 Eliminating topmost cuts|. . . . . . . . ... ... .. ... ...
3.2 Miscellaneous remarksl . . . . . . ... ... oL,
[3.3 Applications — Midsequent theorem| . . . . . . . . . .. ... ...

Conclusion|

(Bibliography|

34
34
35
36

42

43



Introduction

In 1935 Gerhard Gentzen published the article [9] where he presented two novel
formal systems for classical and intuitionistic first-order logic, natural deduction
and sequent calculus. The latter was supposed to provide a convenient formaliza-
tion of a normalization theorem for derivations in natural deduction style. This
central theorem or Hauptsatz is usually referred to as the cut-elimination theorem
in the setting of a sequent calculus.

Unlike systems consisting of several axiom schemes and one or two inference
rules sequent calculi for pure logic are formulated in the opposite way. There is
usually one axiom scheme and several inference rules most of which say under
which circumstances can a complex formula be introduced into discourse. Besides
rules that correspond to the meaning of logical connectives in this sense, there are
those which do not make formulas more complex, but rather add or delete their
occurrences. The only rule that allows a formula to completely disappear from a
derivation is the cut rule. It can be said that this rule allows detours via (possibly)
complex formulas that do not occur as components in the final result, and the
procedure of cut elimination which Gentzen so famously introduced shows that
these detours are unnecessary. This is to say that the rule of cut is redundant
and everything that can be proved with it can be proved without it as well.

Derivations containing no instances of the cut rule have a rather determinate
structure. If we take the complexity of a formula to be for example the number
of its logical symbols (propositional connectives and quantifiers), the formula to
be proved controls the complexity and structure of formulas that are contained in
its derivation which does not use cut[f] This is a very important property which
for instance directly entails the consistency of first-order logic. More generally,
it allows for direct demonstrations of underivability results, such as the law of
excluded middle in intuitionistic logic.

On the other hand, there may be a huge expansion in size of proofs | The pro-
cedure of cut elimination comprises several transformations which replace certain
subderivations by another containing either no cuts or cuts that are simpler than
the original. The size of these substitute derivations can be measured in terms of
the size of the original subderivations. The iteration of such simplifications yields
derivations without cuts altogether. Since at each step we can provide an upper
bound on the increase of the subderivation in question and the inductive iterations
can be bounded as well, there is a straightforward way to measure the expansion
of size during the procedure. This expansion turns out to be superexponentia]ﬁ]
for first-order logic and the height of the stack of exponents is proportionate to
the complexity of the most complex cut inferences in the original derivation. It
can be said that although the cut rule does not give the calculus in question more
inferential power, it can greatly shorten some proofs.

I This is more formally treated in the beginning of the first chapter.

2 T use “derivation” and “proof” interchangeably to refer to the formal objects of logical
systems such as well-defined sequences or proof-trees of formulas. On the metalevel, for instance
in the phrase “the proof of cut elimination”, I do not use the term “derivation”.

3 This means that there is no fixed stack of exponents such that for an arbitrary given
derivation the size of the modified derivation containing no cuts fits into this bound.



The central topic of this thesis is to expand on the proof of cut elimination
for classical logic given in [18] and modify it for intuitionistic logic, providing the
corresponding upper bound on the increase of size of derivations. The particular
calculus chosen for this purpose restricts two inference rules but otherwise is kept
very close to its classical counterpart. This allows for a very similar treatment of
some parts of the proof. And although in intuitionistic logic there are more cases
to be distinguished as the two modified rules are not symmetric, the method and
basic structure of the proof remains the same as that for classical logic. This is
the topic of chapter [2]

Besides exemplifying the procedure on one particular calculus I was also in-
terested in the aspects of different formulations of sequent calculi regarding both
the structural features and their influence on the subsequent proofs of elementary
properties (such as cut elimination). The analysis of various classes of sequent
calculi has been present in logical textbooks already since the early 50’s due to
great mathematicians like Stephen Cole Kleene ([12]) or Haskell Curry ([6]). In
the first chapter I discuss three selected topics that mark some turning points
in the development of these systems. Invertible formulations of some rules are
a stepping stone for both root-first proof search in propositional fragments and,
which is important for us, absorbing the properties of one problematic rule into
the others so that it needs not to be assumed. This is the rule of contraction,
and systems that have it built into the other rules are called contraction-free
calculi. Derivations in these systems behave differently than derivations in those
with explicit contraction, such as Gentzen’s original formalisms LK and LJ of [9].
Correspondingly, structural properties such as the eliminability of cut may have
dissimilar proofs. The last topic of chapter [I|focuses only on intuitionistic systems
and it has to do with the problem of staying as close to classical logic as possible.
That is to retain, whenever possible, the symmetrical nature of derivations in
classical systems.

In the beginning of the last chapter I briefly comment on a different method of
proving cut elimination and three notions that play a crucial role in the whole pro-
cedure. In the second section of his seminal paper from 1935 Gentzen gave three
different applications of his Hauptsatz, the decidability of intuitionistic proposi-
tional logic, the Midsequent theorem and its consequence in demonstrating the
consistency of a particular induction-free arithmetical theory. The proof of the
Midsequent theorem has a computational character, the central method being
the reordering of rule applications on a given derivation, and it can be regarded
as an extension of the procedure of cut elimination. I discuss this in the second
part of chapter 3



1. A survey of sequent calculi

In this chapter I discuss sequent calculi for classical and intuitionistic logic in gen-
eral. Besides introducing some basic concepts, two sections deal with invertibility
and admissibility of inference rules, respectively. These two concepts are related
to the particular method of proving cut elimination that is given later. They are
also illustrated on a few selected systems that are of historical importance.

First-order formulas are built up from atomic formulas P(s), Q(y), R(x,t) ...,
propositional connectives =, A, V, — and quantifiers V, 4. In some cases the con-
stant L is used instead of negation. If the arity of the respective predicate symbols
is irrelevant, atomic formulas are sometimes denoted by p, ¢, r ... Arbitrary for-
mulas are denoted by lowercase Greek letters ¢, ¥, x ..., finite collections of
formulas by uppercase Greek letters I', A, II ... The only complexity measure of
formulas used below is the depth d(¢) of a formula ¢. This is defined inductively
for all formulas by

o d(L)=d(p) =0 for atomic p,
o d(pA) =d(p V) =d(e = ¢) =1+ max{d(p),d(¥)},
o d(—¢) = d(Vay) = d(Fzy) = 14+ d(v).

Sequent calculi derive objects which are slightly more complex than formulas.
A sequent (I' = A) is a pair of finite sequences of formulas, I' is the antecedent
of a sequent and A is its succedent. Sometimes I write S : (I"' = A), which means
that S is the sequent (I"' = A). In contrast to Hilbert-style formalisms, sequent
calculi usually have few axioms and they mostly consist of a family of inference
rules. These are of two sorts, structural rules modify sequents by adding or
eliminating occurrences of formulas, and logical rules construct new formulas from
old ones by means of logical symbols. Both structural and logical rules (except for
the cut rule) have two parts, the left one for altering antecedents and the right
one for altering succedents. Four structural rules, ezchange, weakening (W),
contraction (C) and cut, which are used throughout, are the following:

<H7¢Jw7FjA> <F:>A7()07’lp7‘/\>
<H7w7907F:>A> <F:>A7w7(p7‘/\>

(I = A) (I' = A)
(p,' = A) (I' = Ajp)

(o, 0,7 = A) (T'= Ap,p)
(o, = A) (T'= A,p)

(I'= Ap) (oIl = A)
(ILT = A,A)




Logical rules introduce complex formulas into antecedents and succedents. They
are denoted by Lo or Ro, depending on which logical symbol o is the outermost
in the formula introduced into an antecedent (L) or a succedent (R) of a sequent.
The following example is the introduction of disjunction to the antecedent, writ-
ten as LV.
(o, ' = A) (P, = A)
(VI = A)

Besides inference rules with one or two premises there are also sequents which
can be asserted independently of any other sequents. These are called initial
sequents and usually have the structure (p,I" = A, ) for arbitrary formula ¢,
or (L, I' = A).

The formula ¢ V1 in the conclusion of LV is the principal formula of this rule,
formulas ¢ and # in its left and right premises are the active formulas, and I"; A
are side formulas (or contexrts). Every logical rule has one principal formula and
one or two active formulas, depending on whether it has one or two premises.
Among the structural rules, weakening has no active formula and cut has no
principal formula. Its active formula ¢ is the cut formula.

Examples of particular calculi are given in the following sections, for now as-
sume that a calculus C' consists of a certain set of inference rules together with
the initial sequents. A derivation is a finite tree whose nodes and transitions are
labeled by sequents and inference rules, respectively. Its leaves are initial sequents
and the root is the endsequent. A proof (derivation) of a sequent S is a deriva-
tion having S as its endsequent. Derivations are denoted by P, P', P, P, ...
The depth d(P) of a derivation P is the maximum number of successive applica-
tions of rules in P. This is to say that d(P) is the length of a maximal branch
in P. So initial sequents (viewed as single-noded trees) have depth 0 and if we
have for instance the rule LV applied on the endsequents of two derivations P;
and P,, which can be depicted as

P, P,
(p, ' = A) (T = A)
(pV, I = A),

the depth of the resulting derivation P is equal to 1 + max{d(P;),d(P)}.

Although strictly speaking we are dealing exclusively with sequents, they are
in a natural correspondence with formulas, and therefore the distinction between
derivable sequents and derivable formulas can sometimes be omitted. On one
hand, the formula ¢ being derivable in a calculus C' amounts to the sequent
( = ) being C-derivable. On the other hand if we have a sequent (I' = A),
its standard interpretation is the formula AT' — \/ A.

A derivation is called cut-free if it contains no instances of the cut rule. The
procedure of cut elimination accepts an arbitrary derivation and produces a cut-
free derivation of the same endsequent. This is the central topic of the next
chapter, for now let me mention one immediate consequence of cut elimination.

The relation of being a subformula is defined for arbitrary formulas ¢ and 1 as
follows. Every formula is a subformula of itself, ¢ is a subformula of —p, ¢ and ¥
are subformulas of ¢ o for any binary connective o, and ¢, (t) is a subformula
of Vzy and dzy for any t free for z in .




Besides cut all the inference rules that we will encounter, both structural
and logical, preserve subformulas of all formulas from their premises onto their
conclusions. This means for instance that there are no occurrences of a formula
in any derivation that would be more complex than the formulas present in the
respective endsequent, which is precisely what the cut rule allows. Although
formally this property depends on the set of rules in question, as its demonstration
requires checking the rules one by one, let me state it now without proof and
without reference to a particular calculus. The following proposition holds for
every derivation in the calculi presented in the following sections and chapters.

Proposition 1.0.1 (Subformula property). Every formula in a cut-free deriva-
tion P is a subformula of a formula in the endsequent. If there are no instances of
rules for negation and implication in P, every formula in a succedent of a sequent
is a subformula of a formula in the succedent of the endsequent, and similarly for
antecedents.

A one-premise (unary) rule R is said to be admissible in a calculus C' (al-
ternatively, C' is closed under R), if when the premise of R is C-derivable, so
is its conclusion. A two-premise (binary) rule R is admissible in C, if whenever
both premises of R are derivable there is also a derivation of its conclusion. A
somewhat stronger form of the admissibility of cut for one intuitionistic calculus
is established in the next chapter. If cut is admissible for C', every C-derivable se-
quent has a cut-free proof, and such a proof enjoys the subformula property. One
of the immediate consequences of cut admissibility is the consistency of first-order
logic, which is usually stated as the underivability of the empty sequent { = ).
Were this sequent derivable, take its cut-free proof P. All formulas in P must be
subformulas of formulas in { = ). Initial sequents may never be empty, hence P
is not a derivation, hence ( = ) is not derivable.

1.1 Inversions

In this section and in the following one I discuss four calculi. The first three of
them come, respectively, from Gentzen’s paper [9] and Kleene’s book [12]. As the
order of formulas in cedents is usually considered irrelevant I drop the exchange
rule in the formulations.

Gentzen’s calculus LK for classical logic allows initial sequents of the form
(¢ = ) for arbitrary formula ¢ and consists of the three structural rules of
weakening, contraction and cut together with the following logical rules:

(0i, T = A) (I'= Ap) (T'= A9)
(po N1, I = A) (I'= A pAY)
(VT = A) (T'= Ao V)
(I'= A,p) (I = A) (o, = A9)
(¢ =¥, I 11 = AA) (I' = Ao =)



(I' = A)p) (o, = A)
<—\90,F:>A> <F:>A,—|g0>

(pe(y), I = A) (T = A ¢u(y))
(Jzp, I = A) (I' = A,Vzp)

(p=(1), T = A) (I = A,0u(t))
(Vep,I' = A) (I' = A, Jzp)

The bottom pair of quantifier rules is called specification rules, the one above
generalization rules. In the specification rules the term t is free for x in ]
The variable y in the generalization rules is free for = in . It is called the
eigenvariable of the respective rule instance. This pair of rules is subject to the
eigenvariable condition which says that y may not occur free in the conclusion of
these rules, that is in T'U A U {Vzp} or T UA U {Jzp}.

LK and its intuitionistic counterpart LJ are the first two sequent calculi to
appear in print, both in the paper [9]. Basically all other formalisms working with
sequents derive from and are inspired by these two calculi. The systems which we
come across in the following are in each case certain modifications, usually only as
regards the choice of a few particular rules. But, as we will see, certain structural
properties of sequent calculi can vary with only slightly different formulations of
some logical rules.

Let me give two examples of derivations in LK.

Example 1.1.1. The formula -Vz—¢ — Jz¢, which is not provable in intuition-
istic logic, has the following derivation in LK:

(pz(y) = wa(y))
(pz(y) = Fap)

(= Jzp,~p(y))
(= Jzp,Vrp)

(Vo = Jzp)

(= Ve — Jzp)

It is only important to first apply the specification rule (R3) and only then the
generalization rule (RY), since the latter would not be applicable if y had free
occurrences in .

1 Gentzen formulated the specification rules only for variables, the term ¢ that is substituted
for x in ¢ is a variable z.



Example 1.1.2. The formula (¢ — (¢ — ¥)) = (¢ — ) is derivable in LK
with the help of weakening and contraction.

(=1 = p—v)
(p=09) (=Y =p—=299)
(= (=)0 = p—1)
(= (=) = o= v,029)
(= (p—=Y) = p—1)
(= (p—= (¢ =) = (¢ =)

Definition 1. A unary rule R in a sequent calculus is invertible, if the provability
of its conclusion implies the provability of its premise. A binary rule is invertible
if both its premises are provable when its conclusion is.

To rephrase the definition, an invertible rule R does not permit to infer a
derivable sequent from underivable premises. Invertibility is a very useful device
for the study of decidability of propositional logics (see e.g. [15]) because it is
the case that the premises of propositional invertible rules are uniquely deter-
mined when their conclusions are written down. The notion of invertibility was
introduced by Ketonen in his dissertation thesis from 1944, which in turn became
well-known through Bernays’ review [I] from 1945.

Notice that the rules LA, RV and L— in LK are not invertible. For the first
two this is caused by the fact that we do not know which of the two formulas ¢ or ¢
was used to derive the complex formula. The law of excluded middle, ¢ V =, is
a theorem of classical logic. Its derivation in LK may take the following form:

(p = ¢)

(= ©,7p)
(= o V-p,p)
(= Vo, V-p)
(= pV-p)

The rule RV was used twice, firstly on ¢ and secondly on —¢. If we started from
the bottom and did not consider that contraction may have been used in the last
step, we would have to try to decompose the complex formula using the right
rule for disjunction. But neither ( = ¢ ), nor ( = —¢) is a theorem of LK. This
shows that, as stated, RV is not invertible and analogously neither is LA. In case
of L— the non-invertibility is caused by the rule having independent contexts in
the premises, the sequences I' U A and II U A may consist of different formulas.
Ketonen considered the following invertible variants of the three rules:

(0,0, T = A) (I'= A, 0,0) (I'= Ap) (T = A)
(oA, T = A) (T'= A, pV) (o=, T = A)

In the presence of weakening and contraction the Ketonen and Gentzen versions
of all three rules are inter-derivable, their equivalence is shown in [6]. It is obvi-
ous that the premises of the Ketonen rules are determined by their conclusions.

8



When contrasted with the Gentzen variants, in case of A and V this is because
the principal formula determines the active formulas, and with — because the
contexts in the premises are the same as the contexts in the conclusion. In this
case we say that L— is a context-sharing ruleE]

A proof of invertibility for a few rules is given later, for now I briefly comment
on three aspects about invertible rules that will be relevant later. Firstly, it
is important that demonstrations of inversions do not require the use of cut.
This is because in the proof of cut elimination invertibility is used as a tool in
certain transformation steps on a particular derivation, and if the use of inversions
introduced new cuts, it might hinder the overall procedureE]

A unary rule is called depth—preservingﬁ (dp-) invertible, if for any given deriva-
tion P of its conclusion we can find a derivation P’ of its premise such that
d(P') < d(P), and similarly for a binary rule. Depth-preserving inversions are
again utilized in the proof of cut elimination. The procedure allows to keep track
of the increase of the original derivation in the process of replacing some of its
subderivations by new ones, and one of the reasons for this is that some of the
rules are dp-invertible[’

Lastly, when I speak about invertibility of rules for conjunction, disjunction
and implication in what follows, I always mean the formulation using the premises
of the respective Ketonen variants. Take for example the original Gentzen L—.
This rule is, as we know, not invertible, but nevertheless it may (and will) be
useful to formulate an inversion lemma for its right premise. And since it will
be sufficient to know that the derivability of (¢ — ¥, II,I' = A, A) entails the
derivability of (¢, II,T" = A, A), the formulation corresponds to the invertibility
of Ketonen’s L—.

1.2 Admissible rules and intuitionistic systems

The admissibility of R with the premise S; and the conclusion S in a calculus C
can be formally written as

CFS =CFS,

and similarly if R has two premises. Note that we do not demand that there is
a sequence of inferences leading from the premises of R to its conclusion. If this
stronger condition obtains we say that R is derivable in C'. We can appreciate the
distinction between these two relations on an example with the cut rule. It is the
central topic of the next chapter to show the admissibility of cut for a particular
intuitionistic calculus. The proof shows how to transform any derivation into a
cut-free one by successively replacing certain subderivations by derivations that
only contain simpler cuts (or no cuts at all).ﬂ It is usually not the case that
we could apply a series of inferences to the premises of a cut and obtain its
conclusion. In LK this could be done only if the cut formula already appeared

2 A nice exposition of the reasons that led Gentzen to choose the particular rules for LK is
given in [22].

3 Ketonen used cut to demonstrate invertibility, the first author to prove inversions without
reference to the cut rule is Schiitte in [I7].

4 The terminology is taken from [20], in [15] the authors use height-preserving instead.

5 Inversion lemmas with explicit reference to the preservation of depth are first given in [6].

6 A complexity measure for instances of cut is introduced in [chapter 2



in the conclusion (using multiple weakenings and one or two contractions on
the premises), as otherwise besides cut no LK-rule permits the elimination of
formulas/[]

A unary rule is depth-preserving (dp-) admissible if for a given derivation P
of its premise there is a derivation P’ of its conclusion such that d(P’) < d(P),
and similarly if R is a binary rule.

Example 1.2.1. If the initial sequents of LK are modified so as to allow arbitrary
contexts, i.e. if all sequents of the form (p,I" = A, ¢ ) are considered initial, then
weakening becomes dp-admissible in the calculus LK — W. The proof is given
in the next chapter for a different calculus, but its structure is the same as in
case of LK. We only need to make certain assumptions about free variables in the
principal formula ¢ of weakening explicit, afterwards the demonstration follows
by induction on the depth of the derivation of (I" = A).

1.2.1 Contraction

Invertible rules have another useful application that concerns itself with the sec-
ond structural rule, contraction. In the proof of cut elimination for calculi having
contraction as an explicit rule (such as LK) there is one case which is rather diffi-
cult to handle. I do not go into details, as I have not yet described the procedure
of cut elimination, but only make a few remarks.

The central lemma of the proof shows how to eliminate instances of cut whose
cut formula has the greatest depth among other cut formulas in the subderiva-
tion of this cutf| It proceeds by distinguishing cases according to the way this
complex cut formula has been introduced into the premises of the cut. One of
these is when the right premise S of the cut has been derived by means of con-
traction on the cut formula ¢, i.e. the respective premise S; of S contains at
least two occurrences of ¢ in the antecedent. There are two basic methods of
eliminating the complex cut that apply to all other cases in Gentzen’s proof for
LK, but neither is sufficient to remove both occurrences of ¢ from S;. In order
to be able to deal with this case in a similar manner as the other cases, Gentzen
introduced a generalized rule of cut, called mix or multicut, that allows to “cut
out” any number of occurrences of a formula in one step. Mix is in the presence of
contraction and weakening equivalent to cut and the problematic case is handled
by eliminating all occurrences of ¢ from the succedent of the left premise of the
cut and the antecedent of S; and, if necessary, using some weakenings to restore
the original contexts. Due to the overall structure of proving the lemma this step
is sufficient to remove the complex cut.

Von Plato showed in [21] that this step actually does not require introducing
multicut. He proceeds by analysing the structure of the subderivation above Sy
and demonstrates that the complex cut can be eliminated by the standard meth-
ods with the help of appropriate inversion lemmas for LA, RV and L—)E]

However, a rather simpler approach to the proof is available if the calculus C
is formulated in such way that contraction is not needed, that is if the logical rules

7 Contraction only reduces the number of occurrences of a formula.

8 See Lemma for a more precise description.

9 These inversions need not preserve depth because in LK weakening is an explicit rule. For
details see [21].

10



are reformulated so as to make contraction admissible for C', and invertible rules
play a crucial part here. These contraction-free systems are discussed already in
the early 50’s by Curry in [4] (part II, theorem 3) and by Kleene in [12]. Both
authors use these calculi to study decidability of propositional fragments, since
as contraction is admissible for them (and weakening can be made so easily) and
the premises of all propositional rules are determined by their conclusions, it is
rather easy to formulate a decision procedure["]

For our purpose the advantage of calculi with admissible structural rules lies
in that they facilitate the proof of cut elimination to some extent. The first and
most obvious point is that some cases need not be considered, secondly one does
not have to introduce multicut or produce a deep analysis of one particular case
to show that it allows for the standard approach (as von Plato did). But one of
the most important points is that the structure of derivations in these systems is
determinate in the sense that there are no chains of structural inferences which
are not bounded by either of the two measures used in the proof, the depth
of derivations and the depth of formulas. As generally these two are the only
measures used to give an upper bound of the increase of derivations during cut
elimination, the extraction of this bound (based on these particular measures)
is not possible for calculi with explicit contraction. There are ways to provide
bounds even for such systems, but instead of the depth of derivation one needs to
use something else. For instance Buss in [2] uses the number of strong inferences,
another possibility is to use what is called logical depth in [20] and in both cases
contractions and weakenings are not counted.

Let me briefly discuss an early contraction-free calculus by one of the founding
fathers of these systems, Stephen Cole Kleene. This is the intuitionistic system G3
from [12] (§ 80). Since then the class of intuitionistic contraction-free calculi has
extended far beyond just one calculus and this class is usually denoted by G3i.
I call the particular Kleene’s calculus K-G3i, so that the name denotes only one
system.

Gentzen gave his proof of cut elimination simultaneously for both classical
and intuitionistic logic, using two calculi LK and LJ, respectively. LJ has the
same rules as LK with the restriction that all succedents may contain at most
one formula, in which case the class of provable formulas coincides with the
intuitionistically logically valid formulas. Due to this restriction LJ and other
systems that satisfy it are called single-succedent calculi. K-G3i is a modification
of LJ. Kleene uses the Ketonen variants of the three propositional rules and the
remaining modification applies only to the left logical rules. It can be stated
by requiring that the principal formulas of all left rules must be present in the
antecedents of all their premises.

As an example I give the left rule for implication:

(p=, T =) (o= = A)
(o=, T = A)

There is at most one formula in A and this is the same in both premises, so
these are determined by the conclusion and we can say that it is an example of
a context-sharing rule for left implication. K-G3i allows general initial sequents
and is therefore closed under weakening.

10 See [6].

11



Contraction is also dp-admissible for K-G3i. The requirements on a calculus C'
to have admissible contraction are stated in a general form in [6], p. 231. Each
premise in all rules of C' must satisfy one of the following conditions: either
the principal formula appears in it as a side formula, or the rule is invertible
with respect to this premise. Notice that although the left premise of L— is
not invertible, it contains ¢ — 1 as a side formula, and hence satisfies the
requirement. The right premise need not contain ¢ — 1 as a side formula
because L— is dp-invertible with respect to this premise in either case.

A proof of dp-admissibility of contraction proceed by induction on the depth of
a derivation. Firstly we distinguish two cases, either the contraction formula ¢ is
principal in the last inference R or it is not. In the latter the induction hypotheses
on the premise(s) of R gives derivation(s) with ¢ contracted, and the subsequent
application of R procudes the original conclusion with ¢ contracted. If ¢ is
principal in R the cases are distinguished relative to its outermost symbol. In
each of these cases we either use the invertibility or the second option, namely
the presence of ¢ in the respective premise. For a detailed proof see [15] or [20].

As I remark above, derivations in systems with admissible structural rules have
a rather determinate structure. I mentioned three motivations for such systems
that are of certain importance. The first is simply that there are good reasons
to avoid explicit contraction, one of which was demonstrated on the problematic
case in the proof of cut elimination for LK. Secondly, if a propositional system
has only logical rules, the number of possibilities in a bottom-up proof search
for a given sequent is drastically reduced. The third one is that by avoiding the
use of structural rules we can calculate the growth of derivations during certain
transformations, particularly cut elimination. Lastly I want to remark that the
proof of cut elimination for contraction-free calculi is very similar to calculi whose
sequents are pairs of sets of formulas, since as contraction becomes implicit in
these systems, their derivations behave similarly.

Let me close this part citing a remark of Curry ([4], p. 37) on another feature
of contraction-free calculi, one which may be taken to motivate them on the basis
of more philosophically oriented considerations. It applies only to calculi such as
K-G3i whose all rules contain the principal formula in each premise (whenever
this does not go against the single-succedent restriction). Curry notes that the
derivations in these calculi are strictly cumulative: “... [in the rules] all con-
stituents present in the conclusion must be present in the premises; and hence, in
any derivation, all constituents must be present in the prime statements [= initial
sequents]. The essential function of the rules is then to eliminate components.”

Example 1.2.2. The following derivation of (¢ — (¢ — ¥)) = (¢ — V)
in K-G3i is an example of this cumulativeness, in single-succedent systems char-
acteristic only for antecedents. Let me denote the premise ¢ — (¢ — ) by v
and the conclusion ¢ — ¢ by 9.
(6,7, = ¢) (¥, 6,7,0 = ¢)
(1.0 = ) (0,7, = )
(v = ¥)
(v =14)
(=v—=9)
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1.2.2 Multi-succedent calculi

It is natural to ask why restrict all succedents to contain at most one formula when
the only rules that permit derivations of formulas which are not intuitionistic laws
are the right rules for negation, implication and universal quantifier. Call these
the critical rules. Gentzen’s formulation of LLJ was motivated by his proof of cut
elimination for both logics. Since the rules of L.J are special cases of rules for LK,
the corresponding derivations in LJ are always derivations in LK (but not vice
versa). Consequently, the proof of cut elimination for LK yields a proof of cut
elimination for LJ as a byproduct, provided the transformations of LJ-derivations
only produce LJ-derivations, i.e. that the single-succedent restriction is preserved.
This is verified by Gentzen in the last part of [9].

Already in 1937 (published two years later as [3]) Curry noted that the equiv-
alence between LJ and a Hilbert-style axiomatization of intuitionistic logic could
be proved without imposing the single-succedent restriction on the non-critical
rules. A system for intuitionistic logic which only restricts the critical rules is
called multi-succedent calculus. Such a system was probably first explicitly for-
mulated in [I4] as an auxiliary calculus (Hilfskalkil). A systematic study of
multi-succedent calculi is first given by Curry in [6] where he develops several
formulations of calculi for classical and intuitionistic logic and provides their
metalogical analysis. A rather influential calculus called GHPC, whose variants
are discussed in [20] and [15], was given by Dragalin in [7].

The main idea behind the study of these systems is that they preserve as much
symmetry between the logical rules as possible, and as a result the structure of
their derivations is kept quite close to that of classical logic. Accordingly, proofs
of their metalogical properties very much resemble the corresponding proofs for
classical systems. In the following chapter I give a proof of cut elimination for a
particular multi-succedent calculus and this follows basically the same pattern as
the proof of cut elimination for classical logic given in [I§], deviating only in the
critical cases.

An example of an intuitionistic multi-succedent system which is closed under
weakening and contraction is the calculus GHPC. Instead of negation Dragalin
takes | as a primitive constant[] GHPC allows two kinds of initial sequents,
(p,I' = A,p) where p is an atomic formula and ( L, I' = A).

(0,0, = A) (I'=Ap) (T'= A9)
(oA, T = A) (I'= A, pAY)

(p, 0= A) (I = A) (I'= A, p,9)
(VoI = A) (I' = Ao Vi)

(p=, T = ¢) (P, = A) (o, = ¥)
(o=, ' = A) (I'= A,p—=19)

(Ya(y), I = A) (T' = u(y))
(Jzy,T = A) (T = A,Vap)

1 The idea that absurdity is a primitive notion in intuitionistic logic is discussed e.g. in [T1],
chapter VII.
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(Vo 9o (1), 1 = A) (T = A, 3¢, ¢u(1))
(Vay,I' = A) (I' = A, 3zy)

Generalization rules are subject to the eigenvariable condition. There are several
differences between the rules of GHPC and LJ (or K-G3i). Firstly, since L
is primitive, there are additional initial sequents which stand for the rules of
negation (below I show that these are derivable in GHPC). Secondly, notice that
only the rules R— and RV have restricted succedents. This is the characteristic
feature of intuitionistic multi-succedent calculi, to deviate as little as possible
from the corresponding classical systems. Preservation of dp-admissibility of
weakening is guaranteed by the context A in the conclusion of the critical rules,
as in the other rules there are arbitrary contexts in both premises and conclusions.
Next, since LA and RV are formulated in the Ketonen variants these rules need
not contain the principal formula in the premises to absorb the properties of
contraction. The above given observation by Curry says that their invertibility
is sufficient for this purpose. In contrast to K-G3i this observation is made use
of also in the case of the right premise of L—, both premises of LV and the left
generalization rule.

Example 1.2.3. If we define —p as ¢ — L the following pair of rules for negation
from K-G3i are derivable in GHPC:

(-, T = ) (o, =)
(=p, [ = A) (I'= —p)

As K-G3i is a single-succedent system, A is either empty or consists of an arbitrary
formula. In case of R— first use dp-admissibility of weakening of GHPC to obtain a
derivation of the sequent ( o, ' = L), and then apply R— to get the conclusion.
The conclusion of L— is obtained from the derivation P; of its premise as follows:

P
(o= L T'=¢) (LT =A)
(p—> L, T = A)

Notice that we did not use the assumption that A contains at most one formula
because L— is formulated for arbitrary contexts.

A calculus for classical logic can be obtained from GHPC by permitting ar-
bitrary contexts in the premises of the two critical rules R— and RV. In case
of L— the side formula ¢ — % in its left premise would become redundant, as
the provability of (I' = A, ¢) follows from the provability of (¢ — ¢, T = A)
in classical logic.

A detailed proof of cut elimination for GHPC is given in [§]. Compared to
the corresponding proof for classical systems with admissible contraction two
subcases in one of the four main cases need to be further divided according to the
outermost symbol of the cut formula. These concern the critical rules R— and RV.
Otherwise no modifications are needed and the structure of the proof remains the
same. Cut eliminations for both classical and intuitionistic multi-succedent calculi
for calculi based on sequences with admissible structural rules is proved in [20]
(systems G3c and m-G3i) and [15] (systems G3c and G3im).
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2. The cut-elimination theorem

This chapter is devoted to a detailed proof of cut elimination for one particular
multi-succedent calculus for intuitionistic logic that I call smG3i. It begins with
the formulation of smG3i together with a few observations regarding its structural
properties. In the central second section I give the proof of the Hauptsatz, together
with an upper bound on the increase of depths of derivations after the cuts have
been eliminated.

2.1 The calculus smG3i

The intuitionistic calculus smG3{l] has the following logical rules:

(po A1, T = A) (I'= Ajpnt)
<Q0\/¢,F:>A> <F:>A,900\/901>
(I' = Ap) (I = A) (o, = )
(o =, ILT = AA) (I' = Ao =)
(z(y), T = A) (T = ¢.(y))
(Jzp, T = A) (I' = A)Vzp)

(pa(t), 0 = A) (I = A,p.(1))
(Vep,I' = A) (I' = A, Jzp)

Sequents are built from sets of formulas. The system allows two types of initial
sequents, Ax : (p,I' = A p) for an atomic formula p and LL : (L, I' = A),
in both cases for arbitrary sets of formulas I' and A. Generalization rules are
subject to the eigenvariable condition, and in the specification rules t is free for
z in . The calculus with cut is denoted by smG3i 4 Cut.

Definition 2. The cut rank of a derivation P, v(P), is equal to 0 in case P is
cut-free. Otherwise, it is computed as:

r(P) =1+ max{d(¢); ¢ is a cut formula in P}.

Cut rank is the most important complexity measure of derivations in the proof
of cut elimination. The exact formulation above is quite useful in the sense that
whenever a derivation has zero cut rank, it contains no cuts.

! mG3i denotes the class of intuitionistic multi-succedent systems (e.g. in [20]), “s” stands
for “set”. For instance in contrast to GHPC the rule L— in smG3i does not need to contain the
principal formula in the left premise because contraction is implicit (see chapter . Similarly
the principal formula does not need to occur in the premises of the specification rules.
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Example 2.1.1. The left rule for implication, L—, is not invertible with respect
to its left premise in smG3i, and the sequent S : (p — ¢ = p — ¢) demonstrates
this. As I mentioned in the previous chapter we can formulate inversion lemmas
even for non-invertible rules, but the statements can only relate to their respective
Ketonen variants. For L— the context-sharing version is

(I' = Ap) (v, = A)
(p—=9,T = A),

so the lemma about the invertibility of S with respect to its left premise would
claim the derivability of S; : ( = p — ¢,p). However, there is no cut-free proof
of S} in intuitionistic logic due to the restricted R—.

Example 2.1.2. The following rule is admissible in smG3i:
(I' = A, L)
(I' = A)
Let P be a proof of §: (I' = A, L ). The proof proceeds by induction on d(P).

If S is an initial sequent, sois (I' = A). Otherwise S has been obtained through
a logical inference R, for instance L—, in which case P ends as follows:

P Py
(I' = Ay, L) (Y, Iy = Ay, L)
<30_>¢7F:>A7J—>7

where I'yUl'; = I" and A UA, = A. Induction hypotheses allows us to remove L
from both premises of S, and the required endsequent is obtained again via an
application of L—. The same pattern works also for every other rule of smG3i,
first use IH on the premise(s) of R, then conclude with R. If R is one of the two
restricted rules, it suffices to derive the conclusion without L in the succedent.
Also the new derivations do not have greater depth.

A sequent S is regular if no variable has both free and bound occurrences
in S. A proof P of a sequent S is regular if no variable has both free and
bound occurrences in P, instances of generalization rules in P have different
eigenvariables and these variables occur only in the respective subderivations of
the generalization rules.

Instances of cut are eliminated from derivations of regular sequents. This
restriction is not limiting, since by renaming bound variables in non-regular se-
quents we can always arrive at regular ones. However, it is a necessary restriction
as is demonstrated by the sequent S : (VaVy(Q(y) A R(z)) = R(y)), where
@ and R are unary predicates] Assume P is a cut-free proof of S. Since cut-free
proofs enjoy the subformula property and — does not occur in S, every formula
in an antecedent of a sequent of P is a subformula of a formula in the endsequent
of P, and similarly for the succedents. The only subformula of R(y) is R(y).
But R(y) is not a subformula of VaVy(Q(y) A R(z)) because y is not free for z in
Vy(Q(y) A R(z)). This argument shows that S has no cut-free proof.

2 This is an example from Kleene’s [12].
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Regular derivations are useful in the proof of cut elimination, as well as in
some of its preliminaries. The following lemma shows that given a proof P of a
regular sequent S we can assume that P is a regular proof.

Lemma 2.1.3. FEvery proof of a reqular sequent S can be modified into a reqular
proof P’ of S whose depth and cut rank remain unchanged.

Proof. The idea is to first rename the bound variables that also have free occur-
rences in P by fresh ones, so that the sets of free and bound variables in P are
disjoint. Then, if necessary, rename the eigenvariables in the subderivations of
those rules that generalize over the same variable, or those whose eigenvariables
also occur in another part of P. If always the topmost instances of such rules are
processed at a time, and if the renaming is made by fresh variables which do not
occur anywhere in P, the eigenvariable condition guarantees that the modified
subtrees remain derivations of the same sequents. Therefore P’ is a regular proof
of S. A detailed proof can be found in [I8] (Lemma 3.3.7). O

In the proof of cut elimination it is sometimes necessary to substitute a term
occurring in one part of a derivation into another part of the same derivation.
For this reason it is convenient to make explicit the conditions under which we
can substitute terms throughout an entire proof. These are spelled out in the
following lemma.

Lemma 2.1.4. If a reqular sequent S has a proof P, a variable x is not generalized
in P, and no variable in t is either quantified or generalized in P, then Plx/t] is
a proof of S[z/t]. The substitution does not change the depth or cut rank of the
original derivation.

Proof. Again, I only give the basic idea, a detailed proof can be found in [15].
We can assume by Lemma 1.1 that P is a regular proof. Since no variable in ¢ is
quantified in P, t can be substituted for x in every formula. The most important
thing to verify is the preservation of correct applications of generalization rules.
Firstly, since by assumption x is not generalized in P, each RV and L3 generalizes
over the same variable before and after the substitution. And the condition that
no eigenvariable occurs free in the conclusion of any application of RV or L3 is
also satisfied, because no variable in ¢ is generalized in P. O

The initial sequents of smG3i denoted by Ax may seem somewhat restrictive.
It is natural to require from any calculus of intuitionistic logic to derive all se-
quents whose antecedents and succedents have an arbitrary formula in common.
Still the restriction on atomic formulas has its reasons, as it will become clear in
the proof of inversion lemma, and it does not deprive smG3i of any inferential
power.

Example 2.1.5. By induction on d(¢) we can show that all sequents of the form
S: (¢ = ) are derivable in smG3i. If ¢ is an atomic formula, S is an instance
of Ax. Among the binary connectives let me consider the case ¢ =¥ — . By
induction hypothesis there are derivations P; and P, of the sequents (¢ = 1)
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and (x = x). The sequent (¢» — x = ¥ — x) is constructed as follows:

Py Py
(v=v) (x=x)
(V0 = x = Xx)
(V= x=v—x)

Let ¢ = Va9 and assume y is not quantified in . Induction hypothesis gives a
derivation P; of the sequent S; : (¥, (y) = v.(y)). The result is obtained as
follows:

Py
(1h2(y) = ¥a(y))
(Vo = ¢u(y))
(Vo) = Vo)
The same holds for the symbols A,V and 3 as well.

The following two lemmas concern some basic properties of smG3i. The cal-
culus is formulated so as to have admissible all structural rules, working with
sets means that contraction and exchange are implicit, and dp-admissibility of
weakening is guaranteed by the fact that initial sequents allow arbitrary contexts.
This property of smG3i proves quite useful in the proof of cut elimination.

Lemma 2.1.6. If a sequent S : (I' = A) has a reqular proof P in smG3i+ Cut
and I1, A are arbitrary sets of formulas such that they contain no free variable that
is generalized in P, there is also a proof P' of the sequent S" : (IILLT = A, A)
such that d(P") < d(P) and r(P’) < r(P).

Proof. By induction on the depth P. If S is an initial sequent, so is S’. Let the
final inference of P be LA:
P

<907F1 = A)
<S0/\¢a1_‘1 = A>7

with {o A} UT; =T. If ¢ € II, it suffices to use the induction hypotheses
(IH) on the premise, adding the set II U {¢ A 9} to its antecedent and A to
its succedent. Otherwise IH applied on the endsequent of P; gives the sequent
(o, II,T; = A A), and the ensuing application of LA produces the required
sequent S’ : (@ A, I,T; = A, A). It holds for the obtained proof P’ that
d(P’) < d(P) and r(P’) = r(P).

Let P end with RV:

Py
(T = ¢.(y))
(I' = Ay, Vap)
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By assumption y ¢ Var(ILU A). Apply IH on the antecedent of the premise to
obtain the sequent (II,T' = ¢,(y) ), and conclude with RY to derive the required
(ILT = Ay, A V).

Similarly we can show that the rest of the rules preserve adding formulas to
both cedents as well. ]

Whenever there is an appeal to dp-admissibility of weakening in the rest of
this chapter, e.g. “Sy is obtained from Sy by dp-admissibility of weakening”, I
shall simply write “S; is obtained from Sy by (through) W”.

The last ingredience is the inversion lemma for six rules. Again, although
some of them are, in fact, not invertible, for the transformations needed in cut
elimination the inversions formulated for their Ketonen variants suffice.

Lemma 2.1.7. Whenever in cases (i)-(v) a sequent in the left column has a
proof P with depth n and cut rank k, each sequent in the same row in the right
column has a proof P’ with depth and cut rank bounded by n and k, respectively.
The same holds for (vi) provided P is reqular, t is free for x in ¢ and no variable
in t is generalized or quantified in P.

(i) (e AY, T = A) (0,1 = A)

(i) (pV o, T = A) (o, = A), (),T = A)
(iii) (T = A, AN) (I' = Ap), (T = A9)
(iv) (I = A,oV¥) (I'= Ao, ¢)

(v) (¢ =¥, = A) (v, = A)

(vi) (3xp, T = A) (o (t),T = A)

Proof. In each case we proceed by induction on n. Also in each case we are given
a derivation of the respective sequent and for this derivation I always use the
same name P, though it is important to remember that P differs from case to
case.

Let me consider (i) in detail. The base step of the induction is very similar in
each case, so I discuss it only here. S : (@ A, ' = A) is an initial sequent, so
either 1. € T" or there is an atom p such that p € I' N A. In both cases it holds
that S : (p, 9, ' = A) is also an initial sequent. Note that it may very well
happen that ¢ € I' or ¢ € T', but this is inconsequential to the proof. The base
step of the induction is actually the reason why initial sequents are formulated
with an atomic formula occurring in both cedents. If we allowed the cedents to
share an arbitrary formula, which is e.g. what Gentzen did in his LK, then the
proof of the inversion lemma would not go through.

In the induction step we distinguish whether ¢ A ¢ is a principal formula
in the last inference R of P or not. If the former holds, then R is LA and it
suffices to take its premise (p,I" = A) (alternatively with v in place of ) and
the rest follows by W. So assume that ¢ A 1 is not the principal formula of R.
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Let R be L—, then P has the following structure:

Py Py
<¢A¢7F1:>A177> <57S0/\¢a1—‘2:>A2>
(p A,y =0, T = A),

Note that ¢ A ¢ may not occur as a context in one of the premises, but this is
not relevant to the following approach. Induction hypotheses (IH) applied on the
premises gives derivations P and Py of the sequents S} : (¢, ¥, 'y = Ay, v) and
Sy (1,0, = Ay) with depths bounded by d(F;) and d(F2), respectively.
It may happen that ¢ or ¥ occurs in the contexts I'y or I'y, or that one them is
the formula §. In any case the rule L— remains applicable on S| and S} and its
conclusion is the sequent (p, 1,y — §,I' = A). The same pattern works also for
any other rule R, For instance if R is unary, IH on its premise gives a derivation
of the respective sequent without the complex formula ¢ A 1 as a context, and
the subsequent application of R finishes the proof.

Let us move to case (ii). If ¢ V % is principal in the last inference R of P,
simply take its premises. Otherwise let R be for instance L3, then P ends as
follows:

P

(Vi xe(y),I = A)
(e Vi, Vax,I' = A)

IH on the endsequent of P; produces derivations P, and P; of the sequents S5 :
(o, xz(y), T = A)and S5 : (¢, x(y),[ = A), respectively. Potential implicit
contractions of either ¢ or v do hinder the procedure. The eigenvariable condition
guarantees that the rule L3 is applicable on both S5 and S3. Other rules can be
dealt with in a similar manner. Also case (iii) proceeds the same way.

I show an example case of (iv), others are dealt with as in (i). The last
inference R of P is the restricted rule R—:

P
(v, =9)
(T'= A,oVih,y—=9)

In this case there is naturally no appeal to IH, as ¢ V ¢ does not occur in the
premise of R, but we can derive (I" = Ay, p, 1,7 — §) directly from the endse-
quent of P;.

Case (v) also follows the standard pattern, if ¢ — 1) occurs in a premise of
the last inference rule R of P, use IH on this premise to obtain the simplified
sequent, and conclude with the application of R.

In the final case we make use of substitution lemma. Let Jxy be principal in
the last rule R of P, i.e. Ris L3. P ends as follows:

P

(pe(y), I = A)
(Jzp, T = A)
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Let t be a term such that no variable in ¢ is generalized or quantified in P. Since P
is regular, the variable y is not generalized in P; and we can use substitution
lemma on P and ¢ to obtain a derivation P [y/t] of the sequent (. (t),I' = A).
Assume now that R is the rule RV:

Py

(zp, T = ¥y(y))
(Jzp, ' = A Vo)

Let t be a term satisfying the assumption of the lemma. In particular this means
that y € Var(t). Use IH on the endsequent of P;, obtain a derivation of the
sequent (@, (t),I' = 1,(y) ), and conclude with RV. Similarly for all other cases
where Jdzy is not principal in R. O

2.2 Cut elimination for smG3i with an upper bound

In this section I give a proof of cut elimination for the calculus smG3i + Cut
together with an upper bound on the increase of depths of derivations during
the procedure. Most of the lemmas discussed in the previous section are used
throughout, although I always try to explicitly state when a lemma is employed.
First let me briefly mention the overall method which is followed in the course of
the proof.

We are given an arbitrary derivation of smG3i + Cut. In the first step we
mark all the cut inferences whose cut formulas have maximal depth d such that
1 + d is the cut rank of the entire derivation. Among these maximal-rank cuts
we select a topmost one, i.e. one such that its respective subderivation does
not contain another maximal-rank cut. The principal lemma of the entire proof
establishes that this subderivation P can be transformed into a derivation P’ (of
the same endsequent) with r(P’) < r(P). Two basic methods are employed, the
permutation of the cut upwards over another inference rule, and the replacement
of a complex cut for cuts on formulas of lower complexity. Once the cut rank
of P has been decreased by at least 1, the procedure is iterated for the rest of
the maximal-rank cuts, always processing a topmost one at a time. This way the
cut rank of the entire derivation is decreased, and the outer induction on the cut
rank finishes the proof.

If we take the superexponential function with base 2 defined as

n __ n __ o2y
o =n, 2. =2

it is shown that any derivation P of a regular sequent S can be transformed into
a cut-free P’ of S with d(P) < 2rd((£)). The central lemma reduces a topmost
maximal-rank cut, which causes at most doubles the depth of the respective
subderivation. The reduction of all maximal-rank cuts in P by at least 1 causes
an exponential increase of P, and its iteration until a cut-free P’ is obtained
generates a superexponential increase.

The organization follows the proof of cut elimination for classical logic given

in [18] ]

3 This was first given in Ivo Kylar’s master’s thesis [L3].
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Lemma 2.2.1 (Cut reduction). Let P be a regular proof of S : (II,LI' = A/A)
whose last inference is a cut on a formula ¢ such that for every other cut formula
Y in P it holds that d(v) < d(p):

Py Py
(I'=Ap) (ol =A)
(ILT = A,A)

Denote k = d(Py) + d(P;). Then there is a proof P of S with r(P") < r(P)
and d(P'") < k.

Proof. We proceed by induction on k, which is sometimes called the cut level of
the respective cut inference. There are four main cases, each of which nests into
several subcases.

1. Either premise is an initial sequent.

2. The cut formula ¢ is not principal in the left premise.

3.  is principal in the left premise and not principal in the right premise.
4. ¢ is principal in both premisesﬁ

Case 1 concerns arbitrary arrangements in the base step of the induction and it
is also the easiest to deal with.

In case 2 the subcases are distinguished according to the last inference R of P;.
The general pattern which works for all cases is the following: since ¢ is not
principal in Py, it has to appear in the succedent(s) of the premise(s) of R. We
are proving the reduction lemma by induction on the cut level, hence the induction
hypotheses can be applied on any derivation ending with a topmost maximal-rank
cut inference whose cut level is strictly less than k. Therefore taking a premise of
(I' = A, ) together with (¢, II = A) and cutting out ¢ produces a derivation
on which TH can be applied. This yields a derivation of a sequent dependent on R
whose depth is bounded by £ — 1, and the subsequent application of R gives the
endsequent (II,I" = A, A) of the original cut satisfying both conditions required
by the lemma.

Case 3 proceeds as the previous one, most subcases are symmetric but R—
and RV have to be further analyzed. This is also the only part of the proof
of cut elimination which is characteristic of intuitionistic logic. The reason for
the failure of the straightforward approach of permuting cut over R— or RV
without distinguishing the last inference of P is the following: if S; is a premise
of (¢, 1T = A) and Sy is the result of applying cut on ((I' = A, ), S1,¢), we
can apply IH on this derivation of S;. However, in the case when R is R— or RV
these rules may not be applicable on the endsequent of the obtained derivation
because of the possibly nonempty context A in its succedent.

In the last case 4 the cut formula ¢ has just been introduced into the premises
S1 and S of the cut inference. Here the idea is to analyze the premises of
S1 and S,. If p appears in their contexts, which is the most involved case, the idea

4 In classical logic cases 2 and 3 are symmetric.
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is to use inversions to obtain simpler sequents with no occurrence of ¢ and which
possibly contain only the immediate subformulas of ¢. These get eliminated by
the application of one or two cut inferences and that way we obtain the original
endsequent (possibly through W). Note that such an introduction of new cuts
does not hinder the overall procedure (and is in fact necessary), because the cut
formulas of these inferences are strictly simpler than .

Case 1. Either premise is an initial sequent.

1.1 The left premise S; is an initial sequent. S contains either an atom p in
both cedents, or L in the antecedent. If p is the cut formula ¢, the endsequent
is obtained through W. Otherwise the endsequent is an initial sequent, and the
same is true if L € T'.

1.2 The right premise S5 is an initial sequent. The cases p € IIN A for an atom p
and | € II are dealt with exactly as above. What remains is the case when
the cut formula ¢ is the constant L. This means that S; is (I' = A, L), by
example there is a derivation P| of S’ : (I' = A) with d(P]) < d(P;), and
the endsequent is obtained through W.

Case 2. The cut formula ¢ is not principal in the left premise. In this case it
is irrelevant whether the principal formula ¢ of R also appears in its premise(s),
because the general approach is to apply first cut and then R, at which point
gets implicitly contracted. So I formulate the cases without ¢ recurring in the
premises.

2.1 LA (the principal formula of R is 1) A x)

Py
(p,T7 = Ap) Py
(VAX, 1= Ap) (o= A)
(YAX LT = AJA),

with {x Ax}UT; =T. Denote S5 : (¢¥,I'1 = A,p), So: (o, Il = A). Because
d(P3) +d(P2) < k = d(P,) + d(P,), we can apply the induction hypotheses on
the triple (S3, Ss, ), which produces a proof Py of S": (¢, I,y = A, A) with
r(Py) < r(P). If ¢ € 11, the result is obtained through W. Otherwise applying LA
on S’ gives the proof P’ of original endsequent. Also it holds that d(P;) < k —1,
hence d(P’) < k. The transformation of the original proof P can be depicted as
follows:

P3 Py
<w7F1:>A790> <()07H:>A>
(P, 1,77 = AA)
<w/\X7H7F1:>A7A>
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Cut is permuted over LA. For the sake of completeness I give the final proof P’

Py
(P, 1T = AA)
<¢/\X,H>F1 = A7A>

2.2 RA

P has the following structure:

Py P,
<F:>A17wa§0> <F:>A17X7(10> P2
(T = ALY Ax,p) (o, 11 = A)

<HaF = A17A7¢/\X>7

with {¢) A x} UA; = A. In the case of binary rules, such as RA, cut has to
permuted above both premises of these rules. This means that it gets dupli-
cated, instead of one occurrence of cut in the original proof there are two in the
transformed proof. Again, this does not hinder the elimination of these cuts,
since both have strictly lower cut level and IH guarantees that they can be re-
placed by derivations of the same endsequents with strictly lower cut ranks. This
transformation produces the following derivation:

NA O NR/ N AR

(I' = A ,0) (T =AY (T'= A x,e (o, 11 = A)
<H,F:>A1,A,¢> <H,F:>A1,A,X>
<H7F:>A17A>¢/\X>

If » € A or x € Ay, the result follows by W[ Otherwise IH on both immediate
subderivations separately gives derivations of the respective endsequents, each of
which has strictly lower cut rank and has depth bounded by & — 1. Then P’ is
obtained by RA, and so d(P') < k.

2.3 LV — similar to 2.2

2.4 RV — similar to 2.1

25 L—
Py Py
(I = Anp) (T2 = Agp) \ Py ;
(v = x,To = Ap) (o, 1T = A)

<¢_>X7H7F0 = A7A>7

5 In the following I usually only give the original proof P and the transformation. I think it
is illustrative to see the transformation step, it indicates the ideas behind the general pattern
of the proof and the structure of the few final inferences of P’ can be inferred from it.

6 This may happen in every one of the discussed cases, so I will not consider it again.
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with Ty UTy =To, A UAy = A and {¢p — x} UTq =T. Again, first rearrange
the proof so that cuts on ¢ precede L—.

;P3; ;P2; ;P4; iPQ;
<F1:>A1777D790> <307H:>A> <X7F2:>A27(70> <90?H:>A>

<H,F1:>A,A,¢> <X7H7F2:>A7A>
<¢_>X7H7FO = A>A>

By IH both premises of L— have derivations with strictly lower cut rank than P
and depth bounded by k — 1, hence d(P’) < k.

2.6 R—
In the original proof P

P3
(,T = x) Py
(D= A= x,0) (@l =A)
(ILT = A, A0 — x),

with {¢p — x} UA; = A, the formula ¢ has been introduced by R— in the left
premise of the cut and eliminated in the next step, so the easiest way to get the
original endsequent is by not deriving (.

Py

(4, = x)
(I' = ¢ —x),

and the rest follows by W.

2.7 LV
The cut in the original derivation P

Ps
<1/}x(t),F1 = A;QD> P2
<\VI$@/J7F1:>A,QO> <907H:>A>
(Vo ILT) = AA)

is permuted over LV

Py P
(o(t),T1 = A,p) (@I = A)
<wx(t)7H7F1 = A7A>
<wa,H,F1 = A7A>7
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and [H followed by the application of LV derives the original endsequent.

2.8 RV
Py
(I' = 4(y)) P
<F:>A17VZE1/),QO> <¢7H:>A>
<H,F = Al,A,VIdJ>

As in 2.6 the introduction of ¢ was redundant.

Py
(I' = 4a(y))
(I' = Va),
the rest follows by W.
2.9 L3
Py
(Va(y), 1 = A ) P

(F2, 1 = Ap) (@Il = A)
(2, ILT, = A, A)

This is the first place where we use the regularity of P. In particular this assump-
tion guarantees that y ¢ Var{Il U A}, and therefore adding IT and A as contexts
does not disrupt the subsequent application of Ld.

Py P,
<¢r(y)7F1:>A7§O> <907H:>A>
<%(3/>7H7F1 = A7A>
(Fzp, ILT) = AA)

2.10 R4 Similar to 2.7.

2.11 Cut
Assume that the cut formula ¢ occurs in both succedents in the premises of the
upper cut inference.

P P,
<F1:>A1;907¢> <77D7F2:>A2780> \ P2 ;
(T' = Ap) (o, 1 = A)
(ILT = AA),

I'MUI'y, =T and A; U Ay = A. The pattern is the same, the lower cut inference
gets duplicated as it is permuted over the upper one, but both of its instances
have lower level afterwards.
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; Py / ; Py ; ; Py ; \ Py ;
<F1 :>A17307¢> <907H:>A> <1/}7F2 :>A27<)0> <QO7H:>A>
<H7F1 = A17A7w> <¢7H7F2 = A27A>

(ILT = A/A)

Both premises of the lower cut inference have derivations of strictly lower cut
rank than P by IH, and these derivations have depths bounded by k — 1, hence
the conditions of the lemma are satisfied.

Case 3. @ is principal in the left premise and not principal in the right premise.
The cases in which R is an unrestricted inference rule are symmetric to the
previous cases. For illustration I give one example, R is L—.

3.1 L—
The original derivation P

Ps Py
P1 <¢7H1 :>A1>¢> <X7§07H2:>A2>
<F:>A7S0> <907w_>X7HO:>A>

<¢—>X7H0,F = A7A>>

with ITy UTly = Iy, Ay UAy = A and {¢p — x} UIly = 1II, is first transformed into

Py Py Py Py
<F:>A790> <()07H1:>A17w> <F:>A7%0> <X7907H2:>A2>
<H17F = A7A17¢> <X7H27F = A>A2>

<¢ — X>H07F = A>A>7
and [H guarantees the existence of suitable derivations of the premises of L—.

Now we get to the part of the proof of cut elimination which is characteristic
of intuitionistic logic. The restricted rules do not allow for a straightforward
application of the general method of cases 2 and 3 which works for the rest of
the rules, i.e. permuting cut over R. This is because if cut was applied before
R— (RY), a possibly nonempty context A (coming from the left premise of the
original cut) might appear in the succedent of the conclusion of this cut inference,
and therefore R— (RV) would no longer be applicable. The idea is to use the
assumption that ¢ is now principal in the left premise of the cut. This means
that ¢ is not an atomic formula and we can ask which rule has introduced it
into the left premise. There are five possibilities for both rules and the simpler
ones are R— and RV. In these two cases it suffices to modify the last inference
of P; so that there is no A in the succedent of its conclusion. This is a permitted
step, because by definition of the restricted rules A may be empty. Afterwards
it suffices to proceed as above, permuting cut over R— (RV) and using IH to
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obtain an appropriate derivation of the premise of R— (RV). The remaining
three cases, RA, RV and R4 are slightly more complex, because here we cannot
eliminate the context A, and therefore we cannot permute cut over R. Now we
apply the method which is characteristic of case 4, first use a suitable inversion
on the right premise of the cut, and then replace the cut by one or two cuts on
simpler formulas[] T give all five cases for RV and these can be basically copied
for R—.

3.2 RV

321 p=~v—94.

Ps Py
(7. = 0) (v = 0,11 = ¢u(y))
(I' = Ay —=0)  (y— 6,11 = A, Vay)
(ILT = A, Ay, Vo)

First derive the left premise of the cut without A (call the derivation Pj), then
use the standard transformation:

P! P,
(D= ~v—=6) (y—=01I = ¥.(y))

(ILT = v4(y))
<H,F = A,Al,VZL'ZZJ)

By IH there is a derivation of the sequent (II,I" = ,(¢)) with decreased cut
rank and with depth bounded by £ —1. Also by the regularity of P the variable y
does not occur in I' U A, hence RV remains applicable on the endsequent of this
derivation.
3.2.2 ¢ =Yy
Ps Py
(I' = xu(t)) (Vox, 1T = ¥u(y))
(I' = AVox) (Vox,II = Ay, Vay)
<H,F = A,Al,Vl’w>

P Py
(I' = Yox) (Yox,IT = ¢.(y))

(ILT = u(y))
<H7F = A>A17V$¢>

Again, after applying IH and obtaining a suitable derivation of the sequent
(II,T' = 1,(y) ), the rule RV remains applicable because P is regular.

7 This shows the necessity of inversions for LA, LV and L3.
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323 p=9AN0

Py Py
(' = A,y) (' = A)9) Py
(I' = Ay A9d) (v N6 = Ay, V)

<H7F = A,Al,\V/wa>

Use inversion lemma on the endsequent of P, and the formula vy A §, obtain a
derivation Pj of the sequent (7,d,II = Ay,Vae). P is constructed as follows:

Py Py
Py (T'= A0) (6,710 = AL Vay)
(I'= Av) (7 ILT = A Ay, Vay)

<H,F = A,Al,Va:zM
As there is no appeal to IH, d(P’) < max{d(P,) + 1,d(FP) + 1} < k.

324 p=vVI

Ps
(I' = A7) Py
(I' = A, yVvéd)y (yVoIl = Ay Vay)
(ILT = A, Ay, Vo)

Inversion lemma on the right premise of the cut and the formula v Vv § gives a
derivation Py of the sequent (7,11 = Ay, V).

; P; / \ P ;
<F:>A7/7> <%H:>A1,VI¢>
<H,F = A,Al,Vm/J)

(r :>}ZA3,XU(75M \ Py ;

(' = A, Jux)  (Fox,lI = Ay, Vay)
<H7F = A7A17VI,¢)>

Since P is regular, no variable of t is generalized or quantified in P, and hence
we can apply the inversion lemma on the right premise of the cut and the for-
mula Jvy. This produces a derivation Pj of the sequent ( x,(t),II = Ay,Vze)).

Py B

(0= Ax(t)  Ow(®), I = Ay, Vry)
(TLT = A, Ay, V)

3.2.5 ¢ =dxy
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Case 4. ¢ is principal in both premises. There are five possibilities according to
the outermost symbol of ¢. Fach time I assume the case in which the principal
formula also appears in the premise(s) of the respective rule. The general method
is to use inversions to get rid of the complex formula, and then to apply cuts only
on formulas of lower depths.

41 o= Ny

Py ; Py ; P
(T'=ApAxv) (= AYAxx) (L,OoAxI=A)
(T' = A Ax) (pAx,IT = A)
(ILT = AA)

Inversion lemmas on Ps, P, and Ps give derivations Pj, P, and P: of the sequents
(I' = Aj), (T' = A, x)and (¢, x,II = A), respectively. These are arranged
to form the final proof P’ satisfying both conditions required by the lemma:

by B
Ps (D= Ax) (¢, =A)

<F:>A,2/}> <1/}7H7F:>A7A>

(ILT = AA)
42 p=19YVy
Py Py b
(I'= A9 Vvix) (Vv x Il = A)
(ILT = A/A)

Use inversions on the endsequents of P53, P, and Ps to obtain derivations of these
sequents without the occurrences of 1 V x. Then apply two cuts on the endse-
quents of those derivations as follows:

P} P;
(I'= A, x) (¢, = A) By
(ILT = AJA x) (x, I = A)
(ILT = AA)
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43 =9 —x
This is one of the two most involved cases of the entire lemma, as it combines
using both the inversion lemma and IH.

Py ; Py ; Ps
<F7¢:>X> <77Z)_>X7H1:A1’¢> <X,¢—>X,H2$A2>
(I' = A = x) (0= x, 11 = Ay)
(ILT = A/A)

First use inversion lemma on the endsequent of P5 and the formula ¢y — x to
obtain a derivation P of (x,I's = As). Now transform P so that the cut on
the complex formula ¢ — x has lower level (i.e. so that IH becomes applicable).
This is done as follows:

P P, ; P ; Pg
(D= Ad—yx) (v—=xIh = ALY) (D =x) (1= A)
<H17F:>A7Alvw> <¢7H27F:>A2>
(ILT = A/A)

By IH the sequent (II;,I" = A A, ) has a derivation of depth at most £ —1, so
the resulting proof P’ still fits the bound. Also the cut on the complex formula
has been replaced by two cuts on simpler formulas, and hence r(P’') < r(P).

4.4 ¢ =V
P3 P4
(T'= va(y))  (Wu(t), Vo, 1T = A)
(I' = A,Vay) (Vo I1 = A)
(ILT = AA)

Since P is regular, no variable in ¢ is quantified or generalized in P5; and also y is
not generalized in P;. So by substitution lemma there is a derivation Ps[y/t] of
the sequent (I' = ,(t)). The transformation proceeds as follows:

P Py
Psly/t] (D= AVap)  (a(t), Yoy, Il = A)
(I = (1)) (¢.(0), ILT = A A)
(ILT = AA)

The right premise of the lower cut has a derivation with decreased cut rank by
IH, whose depth is bounded by k£ — 1.
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4.5 ¢ = dxy

Same pattern as with —: use inversion lemma followed by rearranging the com-
plex cut inference, so that it has lower level, and in the last step eliminate the
simpler formula.

Ps
(I' = A, 3z, 1,(t)) Py
(T = A, 3ayp) (Jap, 1T = A)
(ILT = AA)

By the regularity of P no variable in ¢ is quantified or generalized in P;, and so we
can consider the following two steps: first use inversion lemma on the endsequent
of P, and the formula Jx1i). We can choose any term s satisfying the condition
of the inversion lemma, so let s be ¢t. This yields a derivation P} of the sequent
(¥.(t),I1 = A). Now eliminate the complex formula 3z one level above the
original cut:

Py Py
(I' = Az, (t)) (Fey, 1T = A) P,
(ILT = A A u(t)) (Ua(t), 11 = A)
(ILT = AA)

IH guarantees the existence of a suitable derivation of the left premise of the
lower cut. O]

Lemma 2.2.2 (Iteration of cut reduction). Let P be a regular proof of S with
r(P) > 0. Then there is a proof P’ of S such thatt(P') < r(P) and d(P') < 24,

Proof. The idea is to successively decrease the cut rank of all subderivations whose
last inference is a cut on a formula of maximal complexity among cut formulas
in P, proceeding from the top to the bottom, in each case using reduction lemma.
The proof proceeds by induction on d(P).

Let the last inference R of P be a binary rule with conclusion S and premises
S1 and Sy, whose respective subderivations are P; and P,, and denote d(P;) = I,
d(P2) = k. By IH S; and S also have derivations P; and Py with r(P;) < r(P),
r(Py) < r(P) and d(P)) < 2%, d(Py) < 2L,

If R is not a maximal-rank cut inference, P’ is obtained from P and P; by R,
d(P") = 1+max{2',2F} < 24) and r(P’) < r(P). The same holds if R is a unary
rule.

Let R be a cut on a formula ¢ of maximal depth. Then both P| and P, have
cut rank at most d(¢). Since P is a regular proof, S is a regular sequent, so
we can assume by Lemma that the proof P, obtained from P| and Pj by
applying cut on ¢ is also regular. By reduction lemma there is a derivation P’
of S with r(P’) < r(Fy) = r(P) and

A(P) < d(P)) +d(Py) < 2! + 2k < 24
because d(P) = 1 + max{l, k}. O
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The previous lemma shows that the cut rank of any derivation can be de-
creased by 1. This procedure is iterated until the derivation contains no instances
of cut.

Theorem 2.2.3 (Cut elimination for smG3i). Cut is admissible for smG3i. If
a reqular sequent S has a proof P containing instances of cut, there is a cut-free
proof P' of S whose depth is bounded by 2‘3((5)).

Proof. By induction on r(P). If r(P) = 0, the derivation is cut-free by defini-
tion. Otherwise by Lemma there is a proof Py of S with r(Fy) < r(P) and
d(Py)) < 2P We can apply IH on Py to obtain a cut-free P' with

d(Ry)) 9d(P) d(P)
d(P) < 2 < 2% = 20f)

33



3. Aspects of cut elimination

The final chapter discusses a few selected topics directly connected to the proce-
dure of cut elimination. I briefly mention a different method of proof than the
one used in the previous chapter. After some general remarks, I move on to give
one particular application of cut-free systems, the Midsequent theorem, which is
already considered by Gentzen in [10].

3.1 Eliminating topmost cuts

The method of proving cut elimination used in the previous chapter is due to
Tait’s [19], the first paper to explicitly state an upper bound for the increase of
derivation during the procedure in classical logic. Schwichtenberg in [16] works
with a simplified calculus, follows the same strategy and also gives an upper
bound. Since Tait’s result is a corollary of a corresponding theorem stated for
infinitary derivations, Schwichtenberg’s paper is rather easier to follow. Besides
the fact that the proof for his calculus requires fewer cases to consider, because
not all connectives are considered primitive, its structure is basically the same as
the proof for smG3i. The extension to full classical logic is given in [I8] and the
proof from the previous section is a slight modification for intuitionistic logic.

Recall that the strategy of eliminating topmost maximal-rank cuts consists in
successively decreasing the cut rank of the subderivations of cuts with maximal
rank from the top to the bottom. This procedure is iterated until the derivation
is cut-free, so the main induction is on the cut rank. There is another more
common method of eliminating cuts that goes back to Gentzen’s seminal paper.
In this approach we first mark all cut inferences in the given derivation and select
a topmost one. By induction on the cut rank with a subinduction on the level of
the cut inference it is shown that the cut can be removed altogether. Replace the
original subderivation of the cut by the respective cut-free derivation of the same
endsequent and process another topmost cut in the same way. This time the
outer induction is on the number of cut inferences in the whole derivation, but
the central lemma of the proof is rather similar to the cut reduction lemma for
the former strategy. Let me call these two approaches of proving cut elimination
Tait’s and Gentzen’s method, respectively.

For either strategy there are preliminaries of the Hauptsatz that are needed
when the calculus is based on sequences. Since contraction is no longer implicit,
it must either be assumed as a rule of the calculus or the logical rules must be
reformulated to absorb its properties. If it is taken as an explicit rule one must
somehow deal with the case when the right premise of the cut was derived by
contraction on the cut formula. To this end the authors of calculi similar to LK
(e.g. Kleene’s G2 systems) eliminate multicut instead of cut. Another option is
to ensure the calculus is closed under contraction, that each premise of the logical
rules either contains the principal formula or the rule is invertible with respect
to this premise. This possibility is discussed by Kleene in [I12] (G3-systems) and
Curry in [6] (formulation III of his LA and LC systems)[]

1 See chapter
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Under Tait’s strategy of eliminating topmost maximal-rank cuts for a cal-
culus C' we have to ensure that contraction is admissible for C' + Cut. This is
because the appeal to closure under contraction during the proof of the central
lemma is conditioned by the absorption of contraction also in the rule of cut, due
to the possible occurrences of less complex cut inferences in the subderivation.
This is not necessary if we first fully eliminate a topmost cut before process-
ing the others, that is if we follow Gentzen’s method. Under this strategy the
particular formulation of cut that I have been using throughout is perfectly suffi-
cient. But notice that it does not conform to the above condition (by Curry) on
contraction-free systems because the contexts may be different in each premise.
Hence under Tait’s strategy for contraction-free calculi what must be eliminated
is the following context-sharing version of cut, Cute:

(I' = Ap) (o, = A)
(I' = A)

Instances of Cut can be replaced by instances of Cut. without increasing the
depth of the derivation, so the elimination of Cut is a consequence of the elimina-
tion of Cut.s. The various initial settings of the Hauptsatz for G3-calculi, namely
what strategy is followed and what version of cut is eliminated are discussed in
[20] (p.100-101). In [I5] all proofs of admissibility proceed by eliminating the
topmost instance of the respective rule.

3.2 Miscellaneous remarks

The procedure of cut elimination differs to some extent in systems with explicit
contraction and in those based on sets or those having contraction admissible.
The difference is most notably manifested in case 4 in which the cut formula
is principal in both premises of the cut. If the outermost symbol of the cut
formula is — or 3 (subcases 4.3 and 4.5) the solution requires more than the
application of cut to formulas of lower depth, which is a local modification of the
derivation. Since contraction is implicit in calculi based on sets the option needs
to be considered when the cut formula also appears in the respective places in
the premises of both the left and the right premise of the cut. A straightforward
application of the method characteristic of this stage of the proof, the replacement
of the complex cut by cuts on simpler formulas, does not remove the occurrences
of the cut formula in these sequents. Therefore what is needed is a more global
modification of their subderivations and the elimination of the complex formula
is achieved by means of inversion lemmas. A similar phenomenon occurs when
the system is based on sequences and contraction is absorbed in the logical rules
(G3-systems).

When contraction is considered a rule of the calculus this duplication of the
cut formula above the cut premises does not occur in case of logical inferences, and
thus the transformations of this stage only consist of rearranging the derivation
so that cuts on simpler formulas suffice to produce the endsequent. The problem
appears with the cut formula being introduced into the right premise of cut by
(left) contraction and the solution (besides using multicut) is still to use global
inversion lemmas on suitable sequents in the subderivation of the right premise.
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The most important complexity measure of proofs used in the procedure is
cut rank. This was defined as the mazimal depth among cut formulas (+1) in the
derivation. Regardless whether we take the complexity of formulas to be their
depth or size (the number of logical symbols, possibly plus the number of atomic
formulas), the advantage of the corresponding notion of cut rank defined this way
is that it is global and can be used as the central induction measure for Tait’s
strategy. Gentzen’s original definition is restricted to the subderivation of an
uppermost instance of cut (see [9], p.197). This is perfectly fine for his approach,
but since this definition does not apply to the whole derivation containing multiple
cut inferences, it needs to be extended in case we follow Tait’s method. This is
simply because the outer induction on the cut rank presupposes that this notion
applies globally.

The notion of cut rank which applies to entire derivations (and is not local
to particular cut inferences) that is used in the previous chapter is assumed in
[16], [18] and [20]. A slight variant is also used in [I5], where the depth of
formulas is replaced by the weight of formulas that assigns 0 to L, 1 to atomic
formulas and the weight of a complex formula is the sum of the weights of its
constituents. Gentzen in [J] and Kleene in [I2] define the complexity of formulas
as the number of logical symbols and the cut rank (Grad, grade) is assigned only
to one uppermost cut instance at a time.

The distinction between the notions of cut elimination and cut admissibil-
ity should by now be more transparent. The former implies the latter, but the
admissibility of cut is commonly established semantically, as a consequence of
the completeness of the calculus in question with respect to suitable semantics
(because cut is sound both in classical and in intuitionistic logic). The term
“(structural) cut elimination” is usually reserved for a procedure which shows
how to gradually transform a derivation into a cut-free onef| This is stronger
than cut admissibility because certain computational content can be extracted
from this procedure, and in our case this content is manifested by establishing
an upper bound for cut-free derivations. Another aspect of cut elimination which
may be considered advantageous when compared to more common proofs of cut
admissibility is that it consists of certain syntactic transformations of proofs and
does not require the introduction of (possibly rather complicated) semantic no-
tions.

3.3 Applications — Midsequent theorem

The following topic is an application of the Hauptsatz that was already considered
by Gentzen in [10]. Although he took it as such, the Midsequent theorem is also a
consequence of the admissibility of cut. This is because what is assumed is (only)
that certain sequents have cut-free proofs. But since in contrast to cut admissi-
bility the procedure of cut elimination provides a particular (non-deterministic)
algorithm, if considered a consequence of the Hauptsatz the Midsequent theorem
is of certain computational interest. Still the following applications are generally
to be understood as applications of cut-free systems, that is systems for which
cut is admissible.

2 See [20], p.92-93.
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Example 3.3.1. Let me first illustrate another application on a rather self-
contained example, one that is also already considered by Gentzen (§ 2, 1.3),
namely the unprovability of the law of excluded middle in LJ. The merit of
demonstrating that this law does not hold in intuitionistic logic by showing that
the construction of its cut-free derivation must fail lies in that the process is
rather straightforwardﬁ Assume that the sequent S': ( = ¢ V =) is derivable
in LJ and let P be its cut-free proof. By virtue of the subformula property every
formula in P is a subformula of ¢ V —p. Since every succedent must contain at
most one formula there are only two rules that may have been used in the last
step of P, weakening and RV. The three possibilities are thus the following:

; P ; ; Py ; ; Py ;
(=) (= ¢) (= —p)
(= ©V-p) (= ©V-p) (= oV-p)

The empty sequent S; : ( = ) is underivable (see chapter |I) and so the first
option is ruled out. But since ¢ is arbitrary the two sequents Sy : { = ¢) and
Ss 1 ( = =) are clearly not derivable either. The formula ¢ could not have been
introduced by weakening into S; and other options are excluded on account of
¢ being any well-formed formula (in particular it may be an atom p). Similarly
for S5 weakening could not have been used in the last step, so what remains
is R—. But then its premise would be (¢ = ) and the pattern repeats itself.

The main topic of this section is another important consequence of the ad-
missibility of cut, the Midsequent theorem. As the proof of this theorem is again
essentially constructive it is natural to regard it as an extension of cut elimination.
Its statement and proof are given by Gentzen in [10], § 2.

The theorem is given only for classical logic. This is because there is a neces-
sary assumption in its formulation that all formulas in a certain derivable sequent
are in prenex normal form. And although this assumption is unrestrictive for clas-
sical logic, in intuitionistic logic there is no way of equivalently rewriting formulas
this way/[]]

Let the underlying calculus be smG3i with the following classical versions of
the two critical rules R— and RV

(o, I = A9) (T = A, 0a(y))
(' = Ao =) (I' = A)Vzyp)
and the context-independent variants of RA and LV[]
(I'= Ap) (Il = Avy) (o, ' = A) (¢, 11 = A)
(ILT = A Ao AY) (Vi ILT = AA),

3 This is debatable for more complicated formulas when contraction is explicit because at any
point in the bottom-up construction of a derivation it must be considered that an occurrence
of a formula gets duplicated one level above.

4 For this see e.g. [15], chapter 4.

5 These are inter-derivable with the context-sharing versions. Their advantage in the proof
of the Midsequent theorem lies in that after a permutation of two successive rule applications
the contexts in the premise of the second inference in the transformed derivation may well be
different. See the examples below.
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Theorem 3.3.2 (Midsequent theorem). Let S be a classically derivable reqular
sequent whose formulas are in prenex form. Then there is a cut-free proof P
of S such that all propositional inferences precede all quantifier inferences in P.
There is a sequent S" in P such that all inferences above S" are propositional, all
those below S’ are quantifier and all formulas in S’ are quantifier-free substitution
instances of formulas in S. S’ is called the midsequent (Mittelsequenz) of P.

Since each quantifier inference has a single premise the part between the mid-
sequent S” and the endsequent S is a linear thread and the derivation P can first
branch above S’. Also note that both assumptions of the theorem are essentialﬁ
The regularity of S is necessary because the demonstration of the theorem re-
quires a regular derivation of S and the condition that all formulas in S are in
prenex form is needed to ensure that all quantifier inferences can come after all
propositional inferences.

Proof. The central method of the proof is the permutation of lower propositional
inferences over quantifier inferences so as to arrive at the required derivation
with the lower part consisting of all the original quantifier inferences only. These
permutations, the reordering of rule applications, can be correctly demonstrated
on a sufficiently simplified derivation, i.e. a cut-free one. So let P be a regular
cut-free derivation of S. In order to formally capture the process let us define the
following measure of how many propositional inferences are yet to be permuted
upwards: the order of a quantifier inference R is the number of propositional
inferences between the conclusion of R and the endsequent S. The order o(P) of
the derivation P is the sum of the orders of all quantifier inferences in P. The
proof of the theorem is by induction on o(P).

First assume that P has been brought to the desired form and that o(P) = 0.
Follow the branch from S upwards until the conclusion S” of the first propositional
inference is arrived at. S” may still contain quantified formulas because they
can get implicitly contracted below. But since there are no quantifier inferences
above S” these quantified formulas must occur as contexts in at least some initial
sequents (not necessarily in all of them because binary rule do not have shared
contexts) and none of them is either principal or active in the subderivation
P, of S”. So remove all occurrences of these formulas from P;. Afterwards
all propositional rules remain correctly applied and the endsequent of P; is the
required midsequent S’ containing only quantifier-free substitution instances of
formulas from the endsequent S of the whole derivation P. Adjoin the lower part
of this original derivation below S’. Quantifier inferences remain applicable as
their active formulas remain in S’. The upper part of the resulting derivation
contains only propositional inferences, S’ is the borderline and the lower part
contains quantifier inferences only.

In the inductive step the goal is to reduce the order of P. This stage in-
cludes several possibilities of permutations, but these are somewhat limited by
the assumption of the theorem that the formulas in S are in prenex form. Firstly
we only permute a propositional inference Ry over a quantifier inference R; at a
time, and secondly it cannot happen that the principal formula of R; is an active
formula of Ry because the respective principal formula of Ry would contain a
quantifier within the scope of a propositional symbol and such a formula cannot

6 The third assumption that S is classically derivable is a prerequisite for the last one.
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occur in the required derivation because of the subformula property. Another
important thing to notice is that we start with a regular derivation of S. This
is a necessary preparatory step which guarantees that the whenever a proposi-
tional inference is permuted upwards over a generalization rule, this rule remains
applicable in the modified derivation.

Take a lowest quantifier inference Ry in P which is immediately followed by
a propositional inference Ry. Let R; be RV and R, be RV.

P
(T = A, pa(y),v)
(I' = A Vop,v)
(T' = AVzp, ¥ V)

These two inferences are easily permuted as follows:

Py

(T = A, 0.(y), )

(T = A, pa(y), ¥ Vx)
(T'= AVzp, ¥ V)

The variable y is not free in y because the original derivation is regular, and hence
the rules can be permuted. Similarly if R, is another unary rule, LA or R—. If Ry
is a different quantifier rule the pattern works as well. The order of R; is decreased
by 1 and the rest follows from IH.

Let Ry be RA.

P
(D = A, ou(y), ) Py
(I' = AVep,v) (I = Ax)
(ILT = A A Vzp, Y A x)

By the regularity of P the variable y is not free in IIU AU {x} and the rules can
be permuted as follows:

Py Py
(T'= A pu(y)y) (= Ax)

(ILT = AN 0u(y), Y Ax)
(ILT = A A Vap, ¢ Ax)

If some occurrences of formulas get contracted during the transformation, if for
instance @, (y) = ¥ A, the result follows by weakening. A similar pattern works
in case Ry precedes the other premise of L—, for the other two binary proposi-
tional rules LV and L— and (or) in case R; is a different quantifier rule. Again
the order of R; is decreased and the procedure is iterated until the quantifier
rules are below all the propositional rules. O
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Gentzen proved the Midsequent theorem for his calculus LK and applied it to
a consistency proof of a particular arithmetical theory without induction in § 3.
There are some differences in his proof because in contrast to smG3i both weak-
ening and contraction are explicit and principal formulas of initial sequents can
be quantified. This last point can present difficulties in the step where all per-
mutations have already been made and the task is to remove the occurrences of
the remaining quantified formulas above the “temporary” midsequent. If some
of these formulas can be traced back to the principal formulas of some initial
sequents, they cannot simply be deleted. Gentzen offers the following solution.
When given the regular cut-free derivation, first replace all instances of initial se-
quents with quantified principal formulas, i.e. sequents of the form (Vzp = Vayp)
(and analogously for 3) by the following;:

(pz(y) = w2(y))
(Voo = @.(y))
(Ve = Vayp)

If the principal formula contains more quantifiers (necessarily on the outside) this
method is repeated until the initial sequent contains quantifier-free formulas only.
A similar problem obtains when a quantified formula is introduced by weakening.
Following Gentzen’s approach, Curry in [5] suggests the replacement of inferences
of the form

P1 Pl
(I' = A) (I' = A)
(I' = A,Vzp) (I' = A, Jzp),

and similarly for left weakening, by the following inferences with the principal
formula of the weakening being restricted to one that is quantifier-free.

P Py
(I' = A) (I' = A)
(I'= A, 0a(y)) (T = A0u(y))
(I' = A, Vzp) (I' = A, Jzp)

In both cases y is a fresh variable not occurring anywhere in the original deriva-
tion P. Analogously, whenever there are more nested quantifiers on the outside
of the formula introduced by weakening, one can always use weakening only on
the respective quantifier-free instance containing fresh variables and apply several
quantifier inferences (in a suitable order) afterwards.

Curry’s paper [5] contains an interesting hint on how to deal with the case
when the three binary rules in the underlying calculus have shared contexts. This
presents some difficulty in that if the following two inferences

; Py /
(¥ = ¢a(y)) Py

(v = Vap)  (x = Vzp)
(vVx = Vo)
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are permuted the rule LV is generally not applicable due to the different contexts
in the succedents of its premises. He proposes the following approach (p. 247):
first permute all quantifier rules below all one-premise rules until there is no such
possibility left. Then select a highest binary rule R, with a quantifier rule R;
above one of its premises. If Ry precedes Ry on both sides these two rules can
be permuted. (In the example above this corresponds to the case with the last
inference of P, being RV.) Otherwise there is an inference R| like R; on the
other side higher up in the derivation (on account of the preliminary solution to
the cases when a quantified formula is either principal in an initial sequent or
it is introduced by weakening). The inferences between R} and Ry may only be
quantifier or structural since otherwise Rs is not the highest binary rule with the
respective property or not all possible permutations of unary propositional rules
with quantifier rules have been made. Moreover these intermediate quantifier
inferences do not relate to the principal formula of R since otherwise the contexts
in the premises of Ry would be different. Now Curry proposes that we simply
permute R; below these quantifier inferences down up to the respective premise
of Ry after which R; and Ry can be permuted. This procedure decreases the
order of P and its iteration brings P to the required form.

It is only the assumption of the last step in Curry’s procedure that is somewhat
mysterious. This is that in a regular derivation quantifier inferences relating to
different formulas can be permuted. Consider the following derivation consisting
of two inferences, LV and RV:

(P(z) = P(2))
(VaP(z) = P(2))
(VaP(z) = YyP(y))

This is a regular derivation, no variable occurs both free and bound and the eigen-
variable z occurs only above the generalization rule. It is evident that we cannot
interchange these two inferences as the eigenvariable condition would be violated.
And if LV is the rule R} that needs to be brought down the derivation over a
premise of a binary rule with shared contexts such straightforward interchanges of
successive quantifier inferences do not apply in this case, and one needs to come
up with a different way to guarantee that all contexts remain the same after
some permutations are made. This is also why I chose the context-independent
variants of the three binary rules.
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Conclusion

The central part of the thesis provides a detailed proof of cut elimination for an
intuitionistic multi-succedent calculus based on pairs of sets of formulas. The
proof strategy consists in iteratively decreasing the cut rank of a highest cut in-
ference among those with maximal cut rank. One of the advantage of this method
of proving Gentzen’s Hauptsatz is that it can be regarded as a slight modification
of the corresponding proof for classical logic whose systems do not need to con-
tain restricted inference rules. Common approaches of proving cut elimination
for intuitionistic systems include working with single-succedent systems based on
(possibly unordered) sequences and following a different strategy of fully elim-
inating a topmost cut inference at a time. Calculi that work with sequences
of formulas allow for some diversity, most importantly regarding the structural
rule of contraction. Some general observations and historical remarks regarding
this rule together with comments on the aspects of allowing arbitrary number
of formulas in the succedents of sequents are given in the first chapter. In the
final chapter I briefly discuss the alternative strategy of proving cut elimination
and the second part concerns one of its important corollaries, the Midsequent
theorem.

42



Bibliography

[1]

2]

P. Bernays. Reviews - Oiva Ketonen. Untersuchungen zum Pradikatenkalkiil.
Journal of Symbolic Logic, 10(4):127-130, 1945.

Samuel R. Buss. An introduction to proof theory. In Samuel R. Buss,
editor, Handbook of Proof Theory, number 137 in Studies in Logic and the
Foundations of Mathematics, chapter I, pages 1-78. Elsevier, 1998.

H. B. Curry. A note on the reduction of Gentzen’s calculus LJ. Bulletin of
the American Mathematical Society, 45(4):288-293, 1939.

H. B. Curry. A Theory of Formal Deducibility. Notre Dame mathematical
lectures. University of Notre Dame, 1950.

H. B. Curry. The permutability of rules in the classical inferential calculus.
J. Symb. Log., 17:245-248  1952.

H. B. Curry. Foundations of Mathematical Logic. Dover Publications, 1963.

A.G. Dragalin. Mathematical Intuitionism: Introduction to Proof Theory.
Translations of mathematical monographs. American Mathematical Society,
1988.

R. Dyckhoff. Dragalin’s proofs of cut-admissibility for the intuitionistic se-
quent calculi G3i and G3i’. University of St Andrews Report CS/97/8, 1997.

G. Gentzen. Untersuchungen iiber das logische SchlieSen 1. Mathematische
Zeitschrift, 35:176-210, 1935.

G. Gentzen. Untersuchungen tiber das logische Schlielen II. Mathematische
Zeitschrift, 39:405-431, 1935.

A. Heyting. Intuitionism: An Introduction. Studies in logic and the founda-
tions of mathematics. North-Holland, 1956.

S.C. Kleene. Introduction to Metamathematics. North-Holland, 1952.

Ivo Kylar. Eliminace fezu v klasické predikatové logice (Cut elimination in
classical predicate logic). Master’s thesis, Dept. of Logic, School of Arts,
Charles Univ. in Prague, 2000.

S. Maehara. Eine Darstellung der intuitionistischen Logik in der klassischen.
Nagoya Mathematical Journal, 7:45-64, 1954.

S. Negri, J. von Plato, and A. Ranta. Structural Proof Theory. Cambridge
University Press, 2001.

H. Schwichtenberg. Proof theory: Some applications of cut-elimination. In
Jon Barwise, editor, Handbook of Mathematical Logic, volume 90 of Studies
in Logic and the Foundations of Mathematics, pages 867-895. Elsevier, 1977.

43



[17] K. Schiitte. Schlufiweisen-Kalkiile der Pradikatenlogik. Mathematische An-
nalen, 122:47-65, 1950/51.

[18] V. Svejdar. Logika: nedplnost, sloZitost a nutnost (Logic: Incompleteness,
Complexity, and Necessity). Academia, Praha, 2002.

[19] W. Tait. Normal derivability in classical logic. In Jon Barwise, editor, The
Syntax and Semantics of Infinitary Languages. Berlin: Springer, 1968.

[20] A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2000.

[21] J. von Plato. A proof of Gentzen’s Hauptsatz without multicut. Archive for
Mathematical Logic, 40(1):9-18, 2001.

[22] J. von Plato. Rereading Gentzen. Synthese, 137(1-2):195-209, 2003.

44



	Introduction
	A survey of sequent calculi
	Inversions
	Admissible rules and intuitionistic systems
	Contraction
	Multi-succedent calculi


	The cut-elimination theorem
	The calculus smG3i
	Cut elimination for smG3i with an upper bound

	Aspects of cut elimination
	Eliminating topmost cuts
	Miscellaneous remarks
	Applications – Midsequent theorem

	Conclusion
	Bibliography

