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Introduction
Many real-world complex systems, such as the brain or the Internet, consists of
small components that are connected, they have a network structure. Among
other examples of networks, that describe the world around us, is the social
network mapping friendships, the transportation network showing which cities
are connected, or the food web network depicting who-eats-whom in a given
ecosystem. [1].

Network science, a subfield of complexity science, is an interdisciplinary field
that combines knowledge and ideas from mathematics, physics, and computer
science but also from biology, ecology, neuroscience and many other areas. It
most heavily draws from graph theory, but also from probability and statistics.
[2]

Network science applications ranges from fighting epidemics to designing ro-
bust power networks that won’t be affected by blackouts. Studying network helps
us develop new drugs or understand the climate better.

One of the building blocks of network science are network models, which are
used for studying networks of similar properties and can be represented as a
sequence of graphs. On the other side, we have the rigorous mathematical field
of graph theory. This thesis attempts to both these fields closer together.

In 2008 Nešetřil and de Mendez introduced graph classes with bounded ex-
pansion [3]. In later works, they build a whole new theory of structurally sparse
graphs and showed that structural sparsity is in some sense the right notion of
sparsity and has many algorithmic applications. [4]

In the last few years, a lot of work in the intersection of structural sparsity and
network science has been done, such as [5], [6], [7] or [8]. To our knowledge, this
thesis is the most comprehensive review of what is known about the intersection
of these to topics, and we attempted to bridge the gap between them even further.

Furthermore, as most of real-world networks are not static, but evolve in time,
we also focus on the question of structural sparsity in networks that grow and
change in time, which is our largest contribution.

In the first chapter, we introduce and formalize complex networks concepts.
We classify network models and distinguish between two types of dynamic net-
works: evolving networks that involve growth, and time-varying, which do not.

In chapter 2, we present the theory of structural sparsity by defining struc-
turally sparse classes bounded expansion and nowhere dense.

In chapter 3, we dive deeper into properties of bounded expansion classes and
mention some of the algorithmic application they offer.

Chapter 4 connects structural sparsity and network models. We present and
discuss previous results about sparsity of networks are static, they don’t change
in time.

In chapter 5, we examine sparsity of evolving networks, which grow in time.
In addition to previous results, we suggest possible future directions.

Chapter 6 is dedicated to time-varying networks. We discuss how can be
sparsity affected by random changes and generalize a previous result. We also
suggest two possible definitions of sparsity in dynamic networks that might be
used in future works.
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Lastly, in chapter 7, we discuss how can be structural sparsity exploited in
network science applications.
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1. Complex networks
In this chapter, we will introduce basic network notions, give examples and
present several applications. Some examples are included because they are rele-
vant in the later chapters, some because they are important in the context of the
field or its intersection with graph theory.
Remark. Unless stated otherwise, we use network to denote a simple undirected
graph. We use the notions graph and network interchangeably, depending on the
context. Sometimes we also denote edges by links and vertices by nodes, as is the
custom in the network science literature.

The set of edges and vertices of a graph G is denoted by E(G) and V (G),
respectively. By |G| we denote the size of the graph, that is V (G), and by ||G||
the size of E(G).

1.1 Network models
Network models are used for studying networks with similar properties or of the
same generating method. A natural way of modeling complex networks is to use
a sequence of random graphs [9].

Definition 1 (random graph model). A random graph model is a sequence
(Gn)n∈N of random variables over n-vertex graphs.

Graphs in the sequence can be dependent (i.e. the sequence represents growth
of a graph) or generated independently. The second case can be formalized via
the following definition.

Definition 2 (parametrization [5]). A parametrization of a random graph model
is a function ρ : N → Rt that creates a tuple of t parameters depending on n, the
number of vertices, which parameterize the probability distribution of each vari-
able Gn. The random variable Gn that is drawn from the probability distribution
prescribes by ρ(n) is denoted by G(n, ρ(n)).

With ρ(n) possibly different for each n, we allow different parameterization
with graph size, although often ρ(n) = const..

One of the most studied examples of a random graph model is the Erdős–Rényi
model, where ρ(n) ∈ [0, 1] and G(n, ρ(n)) is a graph with n edges in which each
edge is present in the graph with probability ρ(n), independently of every other
edge in the graph. Often, ρ(n) = p ∈ [0, 1], that is, the probability is constant.
Observation. Erdős–Rényi graph G(n, p) has in expectation n(n−1)

2 p edges and the
expected degree of each vertex is (n − 1)p.

Degree distributions

An important property of networks and network models is the degree distribution,
that is, the probability distribution of degrees of vertices. We will follow notation
from [5].
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Name pk Parameters

Exponential pk = e−λk λ > 0
Power law pk = k−α α > 2
Power law w/ cut-off pk = k−αe−λk α > 2, λ > 0

Table 1.1: Common degree distributions of network models

Definition 3 (degree distribution). An n-vertex degree distribution is a random
variable D with probability mass function p such that

• p(k) = 0 for k ≤ 0 and k ≥ n − 1, and

• nf(k) ∈ N0 for all k ∈ N.

Let G be an n-vertex graph and D its associated degree distribution. Then
the probability mass function is given by

p(k) = 1
n

n∑︂
i=1

1{di=k}.

Thus p(k) describes the probability, that a vertex has degree k.
For example, the Erdős–Rényi graph G(n, p) has a Poisson degree distribution,

that is
p(k) = (np)ke−np

k! .

To describe the degree distributions of random graph models, we use degree
distribution sequences.

Definition 4 (degree distribution sequence). A degree distribution sequence is
an infinite sequence (Dn)n∈N of n-vertex degree distributions. If (Dn) → D, we
say that the limiting probability distribution D is the limit of the sequence.

Degree distribution sequence of a random graph model is a sequence (Dn)n∈N
, where Dn is the degree distribution of Gn. If the sequence has a limit D, we
call it the degree distribution of the model and denote by pk the probability that
a vertex has degree k.

It has been shown that real-world networks are often scale-free [10], which
means that their degree distributions follow a power law, i.e. pk = k−α for α > 2.
An important example of a scale free network is the Barabási-Albert model,
which will be formally defined in section 5.1.1. Recently, it has been discussed
that other distributions such as exponential or power law distribution with a cut-
off might be better suitable for modelling real-world networks [11]. That is also
one of the indications that the Erdős–Rényi model, in which individual graphs
follow a Poisson degree distribution, is not a good choice for modelling real-world
networks. See table 1.1 for a comparison of common degree distributions.

In later chapters, we will need the concept of a tail-bound of a distribution.
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Definition 5 (tail-bound as stated in [5]). A degree distribution sequence (Dn)n∈N
with limit D has the function h as its tail-bound if there is a constant τ ≥ 0 such
that for all d ≥ τ and large enough n it holds that

Pr[Dn ≥ d] = O

(︄
1

h(d)

)︄
.

All degree distributions in the table 1.1 have a tail-bound that is at least
quadratic.

Classification of network models

Barabasi [12] divides network models into three main classes: static, generative,
and evolving network models.

• Static models have a given number of nodes and place links between them
using some stochastic algorithm. The topology of the network is not time
dependent. An example is the Erdős–Rényi model or the Watts-Strogatz
small world model (see section 1.2.3).

• Generative models generate a network with a specific predefined degree
distribution. That enables studying properties of networks with certain
degree distributions. Similarly to static networks, they are not time de-
pendent, but contrary to them, they can’t tell us why a certain degree
distribution develops. Both configuration and Chung-Lu models described
in section 4.3.1 are examples of generative models.

• Evolving network models are used to describe how the network changes
in time, in particular, how the network growths. They help us understand
how different ways of network creation and aging influence the network
topological properties. The entire chapter 5 is dedicated to evolving net-
works and provides many examples.

1.2 Network measures and metrics

1.2.1 Network centralities
One of the questions we can ask about a network is which nodes or edges are
the most important or central. There are many ways how could the question
be answered. We will define a couple measures of centrality that are commonly
studied [1].

Degree centrality

The simplest centrality measure of a node is the degree centrality, which is simple
just its degree.
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Betweenness centrality

Another example is the betweenness centrality, which measures how often a node
lies on paths between other nodes [1]. Let ni

uv be 1 the if the node i lies on
some shortest path between nodes u and v and 0 otherwise. Then we define the
betweenness centrality as

cb(i) =
∑︂

u,v∈VG

ni
uv.

For example, in the case of the transportation network, the nodes with the highest
betweenness centrality are exactly the transportation hubs.

In section 1.1 we will see that localized versions of some other centrality
measures can be effectively computed on classes with bounded expansion.

1.2.2 Clustering coefficient
Clustering coefficient is an example of a simple measure that is very useful for
studying network structure.

For a vertex vi ∈ G with degree ki, the local clustering coefficient is defined
as

Ci = 2Li

ki(ki − 1) ,

where Li denotes the number of edges between the ki neighbors of vi.
The clustering coefficient indicates how much the neighbors of a given degree

link to each other, and ranges from 0 (no edges among the neighbors of i) to 1
(the neighborhood of i is a complete graph).

The global clustering coefficient of a graph of size n is defined as the average
of local clustering coefficients of all vertices.

CC =
n∑︂

i=1

Ci

n

The clustering coefficient evaluates the density of triangles in a graph. The
fact that the clustering coefficient of Erdős–Rényi graphs is different to real-world
networks is another indicator that for many applications, this model is not the
most suitable [1].

1.2.3 Small world networks
A small world phenomenon first describes the property of real-life social networks,
where any two individuals can be connected by a short chain of acquaintances,
also known as the concept called ”the six degrees of separations”. [12]

Mathematically, we say that a class of graphs or a network model have the
small world property if the average path length is at most logarithmic in the size
of the network (up to multiplicative constants).

An example of a model with the small world property is the Watts-Strogatz
model introduced in [13]. Informally, the model starts with a square grid of
vertices, each of them connected to its neighbors. With some probability p, each
edge is rewired to a randomly chosen vertex, thus creating short distances in the
network. We will discuss a generalization of this model in section 4.2.3.
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1.3 Sparsity in graphs and complex networks
In both graph theory and network science, sparsity doesn’t have a single formal
meaning. Often it is just used as an informal label stating that the number of
edges in the network or a graph is quite small, e.g. linear with the number of
vertices.

Claiming that a graph G is sparse also sometimes mean that it’s density is
low, where density is defined as

ρ = ||G||(︂
|G|
2

)︂ ,

that is, as the ratio of the number of edges to the maximal number of possible
edges. In this context, dense graphs are those with density bounded away from
0 by a constant.

This definition has deep limitations: consider what happens, when we subdi-
vide each edge of a graph: the structure of the graph remains in many important
respects very similar, but the density dropped significantly.

In the rest of the thesis, we will almost always use “sparsity” in the sense of
structural sparsity defined by Nešetřil and de Mendez [4]. Structural sparsity is
not defined for individual graphs, but for whole graph classes, which removes the
limitations of unstable density mentioned in this section.

1.4 Dynamic networks
Most real-world networks such as social networks, the Internet and others are
not static but change over time. The terminology is not fixed but in this thesis,
we will continue using the term evolving network for time evolution that involves
growth (i.e. the addition of nodes) and temporal or time-varying network for
a network with fixed number of nodes (i.e. changes of link activation only).
A comprehensive survey of time-varying networks and their properties can be
found in [14].
Chapter 5 is dedicated to structural sparsity in evolving networks, while chapter 6
discusses structural sparsity in time-varying networks.

1.5 Dynamical processes on networks
Dynamical network processes are operations or procedures that occur on top
of the networks. Real-world examples of dynamical processes on networks are
disease spreading, or a blackout affecting the power network. Studying dynam-
ical processes on various network models can help us understand how network
topology influence the behavior of a given process. [15]

Percolation and resilience

Percolation theory has roots in fluid physics and provides a framework to under-
stand the topological properties of a network when nodes or links are removed.
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For example, when np > 1, an Erdős–Rényi graph G(n, p) has a giant com-
ponent, i.e. it has a connected component that contains a finite fraction of all
nodes. [12]

Resilience refers to the study of attacks that remove nodes, where attacks can
be either targeted or affecting all nodes uniformly.

Spreading phenomena

Spreading phenomena refers to variations of a process, that starts with a subset of
”infected” nodes, which can spread the infection to their neighbors. A prominent
example is the SIR model used for modeling epidemics, in which each node can
either be susceptible, infected or recovered and the status of each node changes
with time depending on the status of its neighbors.

1.6 Algorithmic problems

1.6.1 Counting network motifs
It was observed that in some networks, certain small patterns appear repeat-
edly. These small subgraphs are called motifs. Evaluation of motif density and
comparing it to a random graph can help us understand the network.

Then makes the problem of efficient motif (i.e. subgraph) counting an impor-
tant algorithmic question. In chapter 7, we will discuss a fast algorithm for motif
counting in structurally sparse networks.

1.6.2 Community structure
Another algorithmic problem with real-world applications is determining if a given
network has a community structure. Informally, a network has a community
structure, if the nodes can be divided into groups, such that nodes inside the
same group are densely connected, but there are only a few links between groups.
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2. Structural sparsity in graphs
In [3], Nešetřil et al. introduced structural sparsity as a property of graph classes.

In this section, we will define the building block of structural sparsity, shallow
minors, and the structurally sparse nowhere dense classes and structurally dense
somewhere dense classes, and we will describe why somewhere and nowhere dense
classes create a natural dichotomy of sparsity. We will define the structurally
sparse classes with bounded expansion, which, as we will show in later chapters,
have many desirable features and offer many algorithmic applications, and provide
examples of classes with this property.

We will follow the terminology of [4] unless stated otherwise.

2.1 Shallow minors
We’ll continue using standard graph terminology. The set of edges and vertices
of a graph G is denoted by E(G) and V (G) respectively and by |G| we denote
the size of the graph, that is V (G), and by ||G|| the size of E(G). Given a subset
of vertices V ′ ⊂ V , G[V ′] is the subgraph of G induced by V ′. The distance of
vertices x, y in a graph G is the length of the minimum path connecting these
two vertices, or ∞ if they don’t belong to the same component. The diameter
of a graph is the greatest distance between any two vertices of the graph. A
subdivision of a graph G is a graph created by subdividing edges of G, i.e. .
replacing any of its edges by paths of any length.

The building block of the theory of structural sparsity are shallow minors,
which are, informally, created by contracting subgraphs. In contrast with regular
graph minors, which are formed by contracting edges and deleting edges and
vertices, the subgraphs contracted to form a shallow minor need to have small
diameter.

Definition 6 (shallow minor). For any graphs H and G and any integer d, the
graph H is said to be a shallow minor of G at depth d if there exists a collection
P of disjoint subsets V1, ..., Vp of V (G) such that:

• Each graph G[Vi] has radius at most d: there exists in each set Vi a vertex
xi (a center) such that every vertex in Vi is at distance at most d from xi

in G[Vi],

• H is a subgraph of the graph G/P: each vertex v of H corresponds (in an
injective way) to a set Vi(v) ∈ P and two adjacent vertices u and v of H
correspond to two sets Vi(u) and Vi(v) linked by at least one edge.

See Figure 2.1 for an illustration.
We denote the set of all shallow minors of G at depth d by G▽d. In particular,

G▽0 is the set of all subgraphs of G and G▽∞ is the set of (non-shallow) minors
of G.
Observation. For every graph G, we have the following sequence of sets

G ∈ G▽0 ⊆ G▽1 ⊆ · · · ⊆ G▽d ⊆ · · · ⊆ G▽∞.

11



Figure 2.1: Example of a shallow minor operation at depth 2. The dashed lines
indicate the contracted subgraphs G[Vi], two vertices are left out and removed.
Non-trivial subgraphs contract to the highlighted square vertices.

A stricter notion than minor is one of topological minor. A graph H is the
topological minor of a graph G if a subdivision of H is isomorphic to a subgraph
of G. Similarly, we can define a shallow topological minor.

Definition 7 (shallow topological minor ). A shallow topological minor of a
graph G of depth a (where a is a half-integer) is a graph H obtained from G by
taking a subgraph and then replacing an internally vertex disjoint family of paths
of length at most 2a + 1 by single edges.

Alternatively, H is a shallow topological minor at depth a if a ≤ 2a-subdivision
of H is a subgraph of G, where k-subdivision may replace each edge of G by a
path of length at most k (only the original edges of G may get replaced this way).
See Figure 2.2 for an illustration.

Figure 2.2: Example of a shallow topological minor at depth 2. Some vertices
and edges are deleted, the internal vertices of the 4 dashed and dash-dotted paths
are replaced with an edge. Note that the contracted paths may share endpoints.

We denote the set of all shallow topological minors of G at depth d by G˜︁▽d.
As in the case of shallow minors, G˜︁▽0 is the set of all subgraphs of G and G˜︁▽∞
corresponds to all (non-shallow) topological minors of G.

12



Observation. It is easy to see from definitions that for all integers d, a shallow
topological minor at depth d is also a shallow minor at depth d, that is

G˜︁▽d ⊆ G▽d.

The inclusion does not hold in the opposite direction. An example of a shallow
minor that is not a topological minor can be seen at figure 2.3.

Figure 2.3: K5 (right) is a 1-shallow minor of the Petersen graph (left), since we
can obtain K5 by contracting the dashed edges. K5 is, however, not a topological
minor of the Petersen graph of any depth, for example, since topological minors
do not increase the maximum degree of the graph.

Remark. The definition of shallow minors can be extended to half integers, i.e.
we can define G▽(d − 1

2) for d > 1. We will not describe the details here, as it
has little importance in the later chapters, but we will consider shallow minors
also for half integers in the rest of this chapter. For all integers d > 1, it holds

G˜︁▽(︃d − 1
2

)︃
⊆ G▽

(︃
d − 1

2

)︃
.

2.2 Dichotomy of sparsity
The theory of shallow minors enables us to divide all infinite graph classes into
two types: sparse nowhere dense classes and dense somewhere dense classes.

The clique number ω(G) is the maximum order of a clique of G, that is, the
maximum order of a complete subgraph of G. We define the clique number of a
graph class C as ω(C) = sup{ω(G) : G ∈ C}.

Definition 8 (somewhere dense and nowhere dense). An infinite class C of graphs
is somewhere dense if there exists a finite half-integer t such that ω(C▽t) = ∞.
Otherwise, if ω(C▽i) < ∞ for all half-integers i, the class C is nowhere dense.

Note that if it holds that ω(C▽t) = ∞ for some graph class C and for some half
integer t , then the class C▽t contains complete subgraphs of all sizes and their
subgraphs, hence it is equal to the class containing all graphs GRAPH. Thus,
an equivalent definition of a somewhere dense class is that C▽t = GRAPH for
some half integer t.

The following theorem shows that somewhere and nowhere dense classes can
be analogously defined using shallow topological minors.

13



Theorem 1. Let G be a graph and let a be a half-integer. Then

ω(G˜︁▽a) ≤ ω(G▽a) ≤ 2ω(G˜︁▽a)|a|+1

.

This result is very practical, as shallow topological minors are usually easier
to work with.

2.2.1 Logarithmic density
In an informal sense, dense classes are those with quadratically many edges. Thus,
it makes sense to consider the following measure of logarithmic density.

Definition 9 (logarithmic density). Let G be a graph, we define the logarithmic
density ldens(G) of G as

ldens(G) =
{︄

−∞ if ||G|| = 0
log ||G||
log |G| otherwise

The following trichotomy theorem shows that the distinction between nowhere
and somewhere dense classes is not arbitrary, but that it actually corresponds to
a form of a natural dichotomy of structural sparseness.

Theorem 2 (Trichotomy theorem). Let C be an infinite class of graphs (asymp-
totically not all edgeless). Then the limit

ldens(C▽) = lim
i→∞

lim sup
G∈C▽i

log ||G||
|G|

may take only three values, namely 0, 1, and 2. Moreover, we have:

• ldens(C▽) = 0 or 1 if and only if C is nowhere dense,

• ldens(C▽) = 2 if and only if C is somewhere dense.

We will introduce other characterizations in the next chapter.

2.3 Bounded expansion
In this section, we will define the sparse class bounded expansion. As we will
see in the next chapters, this subclass of the nowhere dense class is particularly
useful and important because it is useful for algorithmic applications while also
covering a wide range of graph classes.

2.3.1 Grads and top-grads
To define bounded expansion, we will introduce the notion of the greatest reduced
average density, which describes the density of shallow minors of a graph.
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Definition 10 (greatest reduced average density ). The greatest reduced average
density (shortly grad) with rank r of a graph G is defined by a formula

∇r(G) = max
{︄

||H||
|H|

: H ∈ G▽r

}︄
Analogously, we define topological greatest reduced average density.

Definition 11 (topological greatest reduced average density ). The topological
greatest reduced average density (shortly top-grad) with rank r of a graph G is
defined by a formula

˜︂∇r(G) = max
{︄

||H||
|H|

: H ∈ G˜︁▽r

}︄

Polynomial equivalence

From our previous observation about the inclusion of the set of shallow topological
minors and the set of shallow minors of the same depth, it follows that ˜︂∇r(G) ≤
∇r(G). The opposite does not hold, but as in the case of the clique number, there
is polynomial equivalence between grad and top-grad.
Theorem 3. For every graph H and every integer r ≥ 1 holds˜︂∇r(G) ≤ ∇r(G) ≤ 4(˜︂∇r(G))(r+1)2

.

Now we have everything we need to define the class of bounded expansion.

2.3.2 Defining bounded expansion
We can say that graphs in classes with bounded expansion have a type of commu-
nity structure: they consist of small, dense parts that are only sparsely connected.
Formally, they have bounded grad.
Definition 12 (bounded expansion). A class C has bounded expansion if for
every t there exists c(t) such that

||G||
|G|

≤ c(t)

for every graph G ∈ C▽t. In other words, for every t, we have

∇t(C) ≤ c(t).
We call the function c(t) the expansion function. As per Theorem 3, the

class of bounded expansion can be alternatively defined as a one with bounded
top-grad, that is for every t, we have˜︂∇t(C) ≤ c(t).

Again, this allows us to choose the type of shallow minor that is better suitable
for our application. Bounded expansion was originally defined in [3] using grad,
but top-grad is often easier to work with.

It is easy to see that bounded expansion is a subclass of the nowhere dense
class
Remark. In nowhere dense classes, the edge density of every graph G in G▽t is
bounded by |G|o(1)
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2.3.3 Examples of classes with bounded expansion
Here, we will give examples of some notable classes with bounded expansion.
More classes and inclusion between them are shown at figure 2.4.

Classes with bounded tree-width

Informally, tree-width of a graph tells how dissimilar is the given graph to a tree.
To define tree-width, we will first define a tree decomposition of a graph.

Definition 13 (tree decomposition). A tree decomposition of a graph G is a
pair (X, T ), where X = X1, ..., Xn is a family of subsets of V (G), and T is a tree
whose nodes are the subsets such that

• V (G) = ⋃︁n
i=1 Xi,

• E(G) ⊂ ⋃︁n
i=1

(︂
Xi

2

)︂
, and

• ∀v ∈ V (G), T [{Xi : v ∈ Xi}] is connected.

Definition 14 (tree-width). The tree-width tw(G) of a graph G is the minimum
over all tree decompositions (X, T ) of G of maxi |Xi| − 1.

Classes with bounded tree-width have bounded expansion.

Classes with bounded tree-depth

Informally, tree-width of a graph tells how dissimilar is the given graph to a star,
that is from a tree with only one internal node.

Definition 15 (tree-depth). Let closure clos(F ) of a rooted forest be the graph
with vertex set V (F ) and edge set {{x, y} : x is an ancestor of y in F}. Then
the tree-depth td(G) of a graph G is the minimum height of a rooted forest F
such that G ⊂ clos(F ).

Classes with bounded tree-depth have bounded expansion.

Minor closed and topologically closed classes

Definition 16 (minor closed class). A class C is minor closed if for every graph
G ∈ C and every minor G′ of G holds, that G′ ∈ C.

Definition 17 (topologically minor closed class). A class C is topologically closed
if for every graph G ∈ C and every topological minor G′ of G holds, that G′ ∈ C.

Minor closed and topologically closed classes have bounded expansion.
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Minor closed

Bounded tree-width
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Planar Bounded degree

Figure 2.4: Inclusion between structurally sparse graph classes [16].
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3. Properties of bounded
expansion classes
In this chapter, we will seek deeper understanding of bounded expansion classes
by stating different equivalent definitions.

Then we will focus on coloring and decomposition of graph in bounded ex-
pansion classes and other applications that these classes offer.

3.1 Characterizations
The classes with bounded expansion admit various different characterization. Of-
ten, controlling some parameter allows us to characterize both bounded expansion
and nowhere dense classes, as was the case with shallow minors.

Intuitively, these characterizations have in common that all of them capture
in some sense a concept of depth.

3.1.1 Controlling dense parts
Theorem 4 ([4]). Let the class C be a class of graphs. Then C has bounded
expansion if and only if there exists functions Ford, Fdeg, F▽, Fprop : R+ → R such
that the following two conditions hold:

• ∀ϵ > 0, ∀G ∈ C, |G| > Fprop ⇒ |{v∈G:d(v)≥Fdeg(ϵ)}|
|G| ≤ ϵ

• ∀r ∈ N, ∀H ⊂ G ∈ C, ˜︂∇r(H) > F▽(r) ⇒ |H| > Fprop(r)|G|

The first condition can be informally paraphrased, that large enough graphs in
bounded expansion classes have only a small fraction of vertices of a large degree.
The second condition tells us, that subgraphs with large density necessarily cover
a large portion of the graph.

This definition is particularly useful for showing which random graph models
have bounded expansion.

3.1.2 Degeneracy
Degeneracy is another property that is sometimes used to informally measure
sparsity.

Definition 18 (degeneracy). A graph G is k-degenerate if each nonempty sub-
graph of G contains a vertex of degree at most k.

Degeneracy has the following connection with bounded expansion.

Theorem 5 ([4]). The class C has bounded expansion if and only if for each t,
the class C▽t is a class of degenerate graphs.
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3.1.3 Neighborhood complexity
Reidel et al. [17] introduced a measure of neighborhood complexity. Let us denote
by N(v) the neighborhood of a vertex v and by N r[v] the r-th closed neighborhood
around a vertex v, i.e. the set of all vertices w such that d(v, w) ≤ r.

Definition 19 (neighborhood complexity). For a graph G, the neighborhood com-
plexity is a function vr defined as

vr(G) = max
H⊆G,∅≠X⊆V (H)

|{N r[v] ∩ X}v∈V [H]|
|X|

We extend the definition to a graph class C as vr(C) = supG∈C vr(G).

This value tells us in how many ways can vertices be connected to the vertex
set X via paths of length at most r.

Theorem 6. A class C has bounded expansion if and only if it has bounded
neighborhood complexity, i.e. there exists a function f such that for all r it holds
that vr(C) ≤ f(r).

3.1.4 Low tree-depth and tree-width coloring
One way of studying the structure of graphs is looking at the number of colors in
vertex coloring, in which every few-color classes induce some simple subgraph. In
the case of structural sparsity, we look at colorings where these induced subgraphs
have low tree-depth or tree-width.

Definition 20 (low tree-depth coloring). A p-tree-depth coloring of a graph G is
a vertex coloring of G where each p′ ≤ p colors induce a subgraph with tree-depth
at most p′.

A class C has a low tree-depth coloring if for every p ≥ 1 there is N(p) such
that every G ∈ C has p-tree-depth-coloring using at most N(p) colors.

Definition 21 (low tree-width coloring). A p-tree-width coloring of a graph G is
a vertex coloring of G where each p′ ≤ p colors induce a subgraph with tree-width
at most p − 1.

A class C has a low tree-width coloring if for every p ≥ 1 there is N(p) such
that every G ∈ C has p-tree-width-coloring using at most N(p) colors.

The following theorem then states that having low tree-depth and low tree-
width colorings is equivalent with bounded expansion.

Theorem 7 ([4], [3] Thm 7.1). Let C be a graph class, then the following condi-
tions are equivalent:

• C has bounded expansion,

• each G ∈ C has a low tree-depth colorings,

• each G ∈ C has a low tree-width colorings.
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3.2 Robustness
It is easy to see that if we add a fixed number of edges to each graph in a bounded
expansion class, the resulting class still has bounded expansion (but the grad of
the class might have increased). In such cases, we say that a bounded expansion
class is BE-robust under taking such a (class) operation.
Observation. All bounded expansion classes are robust under operations which
add a fixed number of edges, or under operations which add a vertex with a fixed
number of edges.

The following two operations are examples of nontrivial class operations under
which are all bounded expansion classes BE-robust.

Adding an apex

Let G + v denote the operation of adding an apex v to a graph G, that is, the
addition of a new universal vertex. Let C be a bounded expansion class, then the
class C + v = {G + v : G ∈ C} also has bounded expansion. [6]

Lexicographical product with a small graph

Definition 22 (lexicographical product). Let G and H be graphs. The lexico-
graphical product G • H is defined by

• V (G • H) = V (G) × V (H)

• E(G • H) = {{(x, y), (x′, y′)} : {x, x′} ∈ E(G) or x = x′ and {y, y′} ∈
E(H)}.

Let p ≥ 2 be an integer and let C be a bounded expansion class. Then the
class C • Kp = {G • Kp : G ∈ C} has bounded expansion.[4]

3.3 Coloring and decomposition
In this section, we will again follow [4].

In addition to low tree-depth and tree-with colorings, we will define a notion
of a p-centered coloring.

Definition 23 (p-centered coloring). A p-centered coloring of a graph G is a
vertex coloring such that, for any (induced) connected subgraph H, either some
color c(H) appears exactly once in H, or H gets at least p colors.

The following lemma tells us that having a p-centered colorings, we can obtain
low tree-depth colorings.

Lemma 8. Let p be an integer, let G be a graph, and let c be a p-centered coloring
of G. Then any i < p colors induce a subgraph of tree-depth at most i.

In [4], a procedure using so-called transitive fraternal augmentation, that can
be used to find p-centered colorings, is described. We won’t give details of the
procedure, but present the following result.
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Figure 3.1: An example of a graph of tree-depth td(G) = 5. The directed edges
of G constitute a rooted forest T such that G ⊆ closure(T ), showing td(G) ≤ 5.
The coloring is an example of a 5-centered coloring of G, and also of a 5-tree-dept
coloring.

Theorem 9. There exists a procedure such that for every integer p, there exists
a polynomial Pp (of degree about 22p) such that for every graph G a (p + 1)-
centered coloring of G with Np(G) ≤ Pp(˜︂∇2p−2+ 1

2
(G)) colors can be find in time

O(Np(G)n).

In particular, theorem 9 with combination with lemma 8 tells us, that for
graphs in classes with bounded expansion, a p-tree-depth coloring can be com-
puted in linear time.
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4. Network models and
structural sparsity
In this chapter, we will first give the definitions of structural sparsity for random
graph models. Then, we will use the classification of network models from sec-
tion 1.1, and we will focus on sparsity of static and generative network models
including the Erdős–Rényi and the configuration model.

Evolving network models will be discussed separately in the following chapter.

4.1 Structural sparsity in random graph models
So far, we have defined the notions of bounded expansion and nowhere dense only
for classes. To be able to describe the sparsity of random graph models, we need
to adapt it for sequences of graphs. We will follow terminology from [5].

For a random graph model G(n, ρ(n))n∈N and an integer r, the notation
G(n, ρ(n))▽r denotes a random variable over graphs with n vertices whose prob-
ability distribution is given by

Pr[G(n, ρ(n))▽r = A] =
∑︂

H:H=G▽r

Pr[G(n, ρ(n)) = G].

This way, a grad of G(n, ρ(n)) is correctly defined.
We will start with the definition of bounded expansion.

Definition 24 (bounded expansion a.a.s., w.h.p.). A graph model G(n, ρ(n))n∈N
has asymptotically almost surely (a.a.s.) bounded expansion if there exists a
function f such that for all r ≥ 0

lim
n→∞

Pr[∇r(G(n, ρ(n))) < f(r)] = 1.

It has bounded expansion with high probability (w.h.p.) if for every c ≥ 1
there exists a function f such that, for all r ≥ 0,

Pr[∇r(G(n, ρ(n))) < f(r)] ≥ 1 − O(n−c).

The definition of somewhere and nowhere dense is analogous.

Definition 25 (nowhere dense a.a.s., w.h.p.). A graph model G(n, ρ(n))n∈N is
a.a.s. nowhere dense if there exists a function f such that for all r ≥ 0

lim
n→∞

Pr[ω(G(n, ρ(n))▽r) < f(r)] = 1.

It is nowhere dense w.h.p. if for every c ≥ 1 there exists a function f such
that, for all r ≥ 0,

Pr[ω(G(n, ρ(n))▽r) < f(r)] ≥ 1 − O(n−c).
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Definition 26 (somewhere dense a.a.s.). A graph model G(n, ρ(n))n∈N is a.a.s.
somewhere dense if there exists a function f such that for all r ≥ 0

lim
n→∞

Pr[ω(G(n, ρ(n))▽r) > f(r)] = 1.

In contrast to classes, the definitions of a.a.s. nowhere and somewhere dense
are not a complementary, i.e. there exists random graph models that are neither
a.a.s. nowhere nor a.a.s. somewhere dense.

For that reason, we will also give the definition of a random graph model that
is not nowhere dense a.a.s..

Definition 27 (not nowhere dense a.a.s.). A graph model G(n, ρ(n))n∈N is not
nowhere dense a.a.s. if there exists r ∈ N such that for all functions f it holds
that,

lim
n→∞

Pr[ω(G(n, ρ(n))▽r) > f(r)] > 0.

All definition from this section could be also equivalently stated via shallow
topological minors.

4.2 Static network models
Let us recall that static models are those with a fixed number of vertices and
with edges generated according to some stochastic process.

4.2.1 Erdős–Rényi random graphs
We described the well studied random model in section 1.1. In [4], it was shown
that the Erdős–Rényi model with bounded average degree belongs a.a.s. to a
bounded expansion class. That is, the random graph model G(n, d/n) has a.a.s.
bounded expansion.

In [7], another proof was given by Dreier et al. that additionally provided
bounds on the size of r-shallow topological minors.

Theorem 10. For d ≥ 16 the probability that the Erdős–Rényi random graph
G(n, d/n) contains some r-shallow topological minor of size k and at least 8kd2r+1

edges is at most {n−2k, 2−n2/3}. For d < 16 the same result holds for at least
8k162r+1 edges.

In the same paper, the theorem following was proved

Theorem 11 ( [7]). Let d(n) = no(1), then the Erdős–Rényi random graph
G(n, d(n)/n) has a.a.s. locally bounded treewidth.

From that follows that G(n, d(n)/n) for d(n) = no(1) is a.a.s. nowhere dense.
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4.2.2 Random intersection graphs
Random intersection graphs were introduced by Singer in 1996 [18]. Their cre-
ation was motivated by the idea that nodes with the same attributes or properties
are often connected, that is, a link between two nodes might represent the fact
that they have something in common. Recently, it has been shown, that random
intersection graph can have many properties that are desirable for modelling real-
world networks [19].

Formally, the random intersection graph G(n, m, p) consists of n vertices and
every vertex can have some of the m attributes, each of them with probability p.
Vertices that share the same attribute are connected.

In [20], Farrell et al. investigated structural properties of random intersection
graphs, including sparsity. They provided the following modified parametrized
definition.

Definition 28 (random intersection graph). Fix positive constants α, β and γ.
Let B be a random bipartite graph on parts of size n and m = βnα with each edge
present independently with probability p = γn−(1+α)/2. Let V (vertices) denote
the part of size n and A (attributes) the part of size m. The associated random
intersection graph G = G(n, m, p) is defined on the vertices V : two vertices are
connected in G if they share at least one attribute in A, or in other words, if they
are both adjacent to the same vertex in B.

Next, they proved that the structural sparsity of the random intersection
graphs can be completely characterized using the parameter α.

Theorem 12 ([20]). Fix constants α, β and γ. Let m = βnα and p = γn−(1+α)/2.
Let GσG(n, m, p). Then the following hold with high probability.

• If α < 1, G(n, m, p) is somewhere dense.

• If α = 1, G(n, m, p) is somewhere dense.

• If α > 1, G(n, m, p) has bounded expansion.

Additionally, they checked their results experimentally and concluded that
not only is the grad for α > 1 bounded, but also small enough to be used in
algorithmic applications such as those described in section 7.

4.2.3 Kleinberg model
In section 1.2.3 we introduced the small world property and the Watts-Strogatz
small world model. Though this model generates networks with the small world
property, i.e. the distances between nodes are short, these paths cannot be effec-
tively found. We call the problem of finding the paths the small world routing
problem.

In [21], Kleinberg provided a generalization of the Watts-Strogatz model, in
which the routing problem can be solved using decentralized search.

The Kleinberg model graph G(n, p, q, r) for n = m × m is constructed from
nodes on a m × m grid. Each node is connected to all other nodes within a
grid distance p. Each node also has q random long distance neighbors, which are
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determinated by a clustering exponent r: Let d(u, v) denote the grid distance
between nodes u and v. The random long distance link from a node u has the
probability proportional to d(u, w)−r of ending in a node w.

The Watts-Strogatz model is a special case of the Kleinberg model for q = 0
and p = 1.

It can be shown that the routing problem can be solved the most efficiently for
r = 2, that is, when the random links follow an inverse square root distribution.

In [5], Demaine et al. proved that the Kleinberg model which enables efficient
routing not only doesn’t have bounded expansion, but is somewhere dense with
high probability.

Theorem 13 ([5]). The Kleinberg model G(n, p, q, r) with parameters p = q = 1
and r = 2 is somewhere dense w.h.p.

This result might suggest that networks which were created with the aim that
all nodes can efficiently communicate, might be inherently dense.

4.3 Generative network models
Generative network models are those that allow generating networks with a cer-
tain prescribed degree distribution.

4.3.1 Chung-Lu and configuration models
Given a degree distribution sequence (Dn)n∈N, we want to be able to sample
graphs that match this distribution. Among other things, this would allow as to
generate and study scale-free graphs.

Configuration and Chung-Lu models offer two ways of doing so. Next, we will
describe formalizations of these models from [5].

Configuration model

Configuration model is a classic method for generating graphs with a given degree
sequence.

To sample a graph G of size n with vertices v1, ..., vn, we first construct a
degree sequence (di)1≤i≤n that matches (Dn). Then, we build a vertex set VC =
{v1

i , ..., vdi
i }, which consists of di copies of each vertex vi. Next, we generate

an auxiliary graph H on the vertex set VC and random matching as its edge
set. We assemble the multigraph G′ with vertex set v1, ..., vn and the edge set
corresponding to the auxiliary graph H, that is, we connect vertices vi and vj

with as many edges as there are between all their copies in H. Finally, we get
the graph G by removing multiedges and loops from G′.

Graphs generated this way are denoted by GCF (Dn).

Chung-Lu model

Chung-Lu model was first introduced in [22] and its generating process is simpler
than in the case of the configuration model.
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To sample a Chung-Lu graph of size n, we again construct a degree sequence
(di)1≤i≤n that matches (Dn). We call di the weight of vertex vi. Next, we create
a graph on n vertices v1, ..., vn and connect each pair of vertices vi, vj, i < j with
probability didj

m
, where m = Σn

k=0dk is the total sum of weights.
Graphs generated this way are denoted by GCL(Dn).

Structural sparsity of configuration and Chung-Lu model

To describe structural sparsity of these model, we need to define one more prop-
erty of distribution sequences.

Definition 29 (sparse degree distribution sequence). We say that a degree dis-
tribution sequence (Dn)n∈N is sparse, if the following holds

• E[D] < ∞, and

• (E[Dn])n∈N → E[D].

We are now ready to fully describe structural sparsity of Chung-Lu and con-
figuration models with degree distributions that are often found in real-world
networks.

Theorem 14 ([5]). Let (Dn) be a sparse degree distribution sequence with tail
O(1/dγ). Then both the configuration model GCF (Dn)n ∈ N and the Chung-Lu
model GCL(Dn)n∈N, with high probability

• have bounded expansion for γ > 3,

• are nowhere dense (with unbounded expansion) for γ = 3

• and are somewhere dense for γ < 3.
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5. Sparsity in evolving networks
Many real-world networks were created by gradual growth, and evolving mod-
els are trying to imitate this process. Studying them can help us understand
how can be structural sparsity formed, or what type of growth processes lead to
structurally sparse or dense graphs.

We will use the following formalization of evolving networks.

Definition 30 (evolving graph model). Evolving graph model is a random graph
model (Gn)n∈N, in which each Gt is build from Gt−1 by a specific generating
process that adds a single vertex and adds or removes arbitrary many edges.

In this chapter, we will first focus on evolving models generated only by the
attachment of a new vertex, describe two important representative models and
discuss if these models or their variations are structurally sparse. Then we will
consider how edge changes influences sparsity.

5.1 Attachment models
A generating process is called an attachment process, if it consists only of adding
a new vertex and connecting it to older ones, that is, it doesn’t add or remove
edges between older vertices. Models generated this way are called attachment
models. Often, the number of added edges that connect the new vertex to older
ones is fixed, and we call it the attachment parameter.

Some real-life networks such us the citation network don’t lose or gain links
between older nodes and are well suited for modelling with attachment models.
But many other networks (e.g. the social network) change as they continue to
grow. Nevertheless, attachment models might still be useful as they are easier to
analyze.

The following theorem shows us that all attachment processes that have at-
tachment parameter at least two and can attach new edges to all vertices can’t
be nowhere dense a.a.s.

Theorem 15 ([6]). Let (Gi) be an evolving random graph model generated by an
attachment process that

• attaches a new vertex by at least two edges, and

• has a non-zero attachment probability for all vertices

Then for every t ≥ 1, Gn contains a one-subdivision of Kt with probability at
least f(t) > 0, for some function f that depends on the model.

As was discussed in section 4.1, this does not imply that these model are
somewhere dense.
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5.1.1 Barabasi-Albert model
The most notable example of an attachment model is the Barabasi-Albert model,
first introduced in [10]. The model is motivated by the observation that in some
networks, new nodes tend to link to nodes with higher degree, also called the ”rich
get richer phenomenon” or preferential attachment. In Barabasi-Albert model,
the new vertex links to m older ones and the probability of linking to each vertex
is directly proportional to its degree.

The properties of the Barabasi-Albert model are well studied. It has a scale-
free degree distribution with parameter α = 3, that is pk = k−3, thus it contains
a small number of nodes with high degree, so-called hubs. It also has very short
path lengths, the average path length increases logarithmically with the size of
the graph, which is less than in the case of the Erdős–Rényi graphs.

Generating process

There are few possibly ways how to define the random process generating the
Barabasi-Albert model rigorously, as we somehow have to deal with arising mul-
tiedges and whether to add new edges simultaneously or not. The following
definition of the process is adapted from [8].

For a fixed m, the process starts with a single vertex and iteratively adds
vertices with m edges, thus constructing a graph sequence Ḡ

1
m, Ḡ

2
m, ..., Ḡ

t

m, where
Ḡ

t

m has t vertices and mt edges, some of which might be self loops. We denote
the degree of a vertex v in Ḡ

t

m by dt
m(v).

For m = 1, the process works in the following way. A random graph Ḡ
1
1 is

started that has only one vertex v1 with exactly one self loop. We define the rest
of the process inductively: Given Ḡ

t−1
1 with vertex set {v1, ..., vt−1}, we construct

Ḡ
t

1 by adding a new single vertex vt together with one edge connecting vt with
vi, where i is chosen at random from {1, ..., t} with

Pr[i = s] =
⎧⎨⎩ dt−1

1 (vs)
2t−1 if 1 ≤ s ≤ t
1

2t−1 if s = t.

For m > 1, we create Ḡ
t

m by merging every m consecutive vertices from Ḡ
mt

1 to
a single vertex. The graph Ḡ

t

m is a multigraph with self-loops. To obtain a simple
random graph Gt

m, that is, the B-A-graph at time t with attachment parameter
m, we take Ḡ

t

m, remove self loops and replace multiple edges by a single edge.

Structural sparsity of the model

Thanks to theorem 15, we know that the B-A model is not a.a.s. nowhere dense.
There remained a question if it is actually a.a.s. somewhere dense, or if it doesn’t
fall into either category.

In [7], Dreier et al. experimentally evaluated structural properties of B-A
graphs and formed a conjecture, that the model is a.a.s. somewhere dense. In [8],
the same authors studied structural sparsity of the Barabasi-Albert model and
confirmed the conjecture by proving the following theorem.
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Theorem 16 ([8]). There exists a constant c such that for m, n ∈ N, m ≥ 2,
n ≥ c, the B-A graph Gn

m contains a one-subdivided clique of size at least log(n)1/4

with a probability of at least 1 − e− log(n)1/4/c.

Resilience of the model

It is known that in scale-free networks, removing only a tiny fraction of the hubs,
i.e. the highest degree nodes, results in a fragmented network without the giant
component [12]. This means that scale-free networks, such us B-A graphs, are
vulnerable to targeted attacks.

In [8], similar property was described from structural sparsity point of view.
The following theorem was proved.

Theorem 17 ([8]). There exists a constant c such that for l, n, m ∈ N+ and
b − log⌈(n)cl2mcl⌉ a.a.s. every r-neighborhood of Gn

m[vb+1, ..., vn] is either a tree
or a tree with one additional edge.

This means, that removing only polylogarithmically many vertices results in
a graph that has a tree-like structure, it is locally extremely sparse.

Variations of the model

If the probability of attaching to a vertex with degree k is proportional to kα for
α > 1, we call it superlinear attachment. It is easy to see that for large α, the
graph resembles a star. Though superlinear attachment still generates models
that are not nowhere dense, we hypothesize they are not somewhere dense.

If α ∈ (0, 1), we call the generating process sublinear attachment. When α = 0,
i.e. all vertices are equally likely to be chosen, we call it uniform attachment.

5.1.2 Copying network model
The copying network model, also known as the node-copying model, offers an
alternative explanation of how the scale-free property of networks can arise.

The creation of the copying network model was driven by the observation that
in some cases, networks share a large fraction of their neighbors. For example, in
a citation network, papers from the same field often cite similar papers. Thus,
in the copying network model, neighbors of a new vertex are copied from some
other one that is picked at random. The copying is not perfect, but has some
error rate.

Generating process

Here, we formalize the description of the model given in [1].
Let m be the attachment parameter and let γ be the error probability. While

generating the model, we assume that the graphs are oriented, all their vertices
have the same outdegree m and multiedges are allowed. To achieve that, the
graphs G1, ...Gm are not defined, and we start with Ḡm+1 which consist of m + 1
vertices, each pointing to m other ones, making Ḡm+1 is a multigraph.

We define the rest inductively. Given Ḡt−1, we define by adding a new vertex
vt and making it point to some m older vertices, which we chose the following
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way: We choose a random vertex u ∈ {v1, ...vt−1} at random. For each of the m
vertices that u points to, we either

• with probability γ point vt to this vertex, or

• with probability 1 − γ point vt to any other from the graph.

We obtain Gt from Gt
¯ by forgetting edge orientation and replacing multiedges

with single edges.

Model properties and application

The degree distribution of the model follows a power law with exponent α = 1+ 1
γ
,

that is pk = k−(1+ 1
γ

). This shows that there are other ways to generate a scale-
free network other than the preferential attachment in the Barabasi-Albert model.
However, these models differ in other metrics and thus are not equivalent.

The fact that copying networks are generated by imperfect duplication suggest
that they might serve as a good model for some biological networks, such as the
protein interaction networks [1].

Sparsity of the model and its variations

First, we will discuss the degenerate cases for γ ∈ {0, 1}. For γ = 0, all new
vertices connect only to a subset of the first m + 1 vertices, and it’s easy to see
that such a model has bounded expansion. For γ = 1, the new vertices attach to
others purely at random, making the process equivalent to uniform attachment
described in section 5.1.1.

For γ > 0, it follows from theorem 15 that the model is not a.a.s. nowhere
dense. The question if it is also a.a.s. somewhere dense remains or if it depends
on the parameter γ remains open.

In [23], a different version of a copying model was studied. In this version,
the edges weren’t oriented, parameter m unbounded and γ set to 0. The authors
proved the following.

Theorem 18 ([23]). For all d ∈ N,

lim
t→∞

Pr[Gt contains a complete bipartite graph Kd,d].

Thus showing that the model is a.a.s. somewhere dense.

5.2 Inner edges changes
We will call the edges between older edges inner edges. In some real-world net-
works, the deletion of older edges corresponds to the aging process.

In this section, we will briefly discuss how can the deletion of inner edges as
a step in the generating process of evolving model influence sparsity.
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Erdős–Rényi as an evolving model

In [9], it is discussed that some static models can also be seen as evolving models.
In particular, we can generate the Erdős–Rényi graph G(n, d/n): We build the
graph Gi inductively by adding a new vertex to Gi−1, connecting it with each
older vertex with probability d/n and deleting (in expectation) d/2 older edges
chosen at random.

Notice that if we omitted the step of deleting d/2 edges, we would get the
generating process of uniform attachment described earlier in this chapter.

This tells us, that a deletion of only constantly many edges at each generating
step makes the difference between a model with bounded expansion and a model,
that is not even nowhere dense.

This observation might be used in future work dedicated to structural sparsity
of evolving network models.
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6. Sparsity in time-varying
networks
In this section, we will discuss structural sparsity in time-varying networks, that
is in dynamic networks, that don’t change the number of vertices.

First, we will extend the notion of robustness to random graph models and
discuss which sparse model stay sparse after addition of a few random edges.

Then, we will state two definitions of structural sparsity for time-varying net-
works. The first definition describes when time-varying networks gains structural
sparsity, the second describes when a time-varying networks keeps structural
sparsity within the same bounds.

Throughout this chapter, T will always denote a graph operation that changes
only edges, i.e. doesn’t add or delete any vertices. For a graph G, we inductively
define T t(G) = T (T t−1(G)).

We will call a random graph model (Gn)n∈N together with a graph operation
T a time-varying random model. T t((Gn))n∈N denotes the time-varying random
model at time t.

6.1 Robustness
In section 3.2 we defined what does it mean for a bounded expansion class to be
robust under taking some operation. Here, we will define robustness of a random
graph model.

Definition 31 (BE-robustness of a random graph model). Let (Gn)n∈N be a
random graph model that has a.a.s. bounded expansion (or has bounded expansion
w.h.p.) and let T be a graph operation on edges (i.e. it doesn’t change the number
of vertices). If the random graph model (T (Gn))ninN has a.a.s. bounded expansion
(or has bounded expansion w.h.p. respectively), then we say that the random graph
model is BE-robust under taking the operation T .

Analogously, we could also define a (nowhere dense)-robustness.

6.1.1 Random perturbations
A question we can ask is whether graph models are BE-robust under adding a
few random edges, or which models stay structurally sparse when we do so.

We will use the formalization of this process from [5].

Definition 32 (random perturbations of a graph). Let G∗ be some base graph
with n vertices. Then we will denote by G = G∗ + G(n, µ/n) the graph obtained
from G∗ by adding every possible edge not already contained in G∗ independently
with probability µ/n. This process is called random perturbations.

We can view this as a generalization of the sparse Erdős–Rényi model that
is in fact more flexible than many other generalizations, such as the generalized
random graph [9].
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Perturbations of bounded degree graphs

For a fixed graph G, we will denote by Dr,G the distribution of |N r(x)|, that is
the size of r-th neighborhood of a randomly chosen vertex x ∈ G:

Pr[Dr,G = d] = |{x ∈ G : |Nr(x)| = d}|
|G|

.

In [5], the following lemma describing random perturbation of bounded ex-
pansion classes with tail-bounded r-th neighborhood distribution was proved.

Lemma 19 ([5]). Let G be a class of graphs with the following properties:

• G has bounded expansion, and

• for G ∈ G and every r ∈ N the distribution of N r has a tail-bound h with
h(d) = Ω(d3+ϵ) for some ϵ > 0.

Let GG be a random graph model which draws graphs from G with an arbitrary
probability distribution. Then GG(n)+G(n, µ/n) has bounded expansion with high
probability.

The proof relies on estimating grads using the results about structural sparsity
of Chung-Lu graphs with the same tail-bound described in section 4.3.1.

The second condition from lemma 19 is true specifically for bounded-degree
graphs, thus the following theorem holds.

Theorem 20 ([5]). Let G be a class of bounded-degree graphs and µ a constant.
Let GG be a random graph model which draws graphs from G with an arbitrary
probability distribution. Then the composite model GG(n)+G(n, µ/n) has bounded
expansion with high probability.

This applies to G(n, µ/n)n∈N itself, providing an additional proof that the
Erdős–Rényi model is sparse. The result carries over to the sparse stochastic
block model, a model with community structure used for studying algorithms for
community detection [24].

Perturbations of bounded degree models

Recall that ∆G denotes the maximal degree of a graph G. We will define what
does it mean for a graph model to have bounded degree.

Definition 33 (bounded degree of a random graph model). We say that a random
graph model has bounded degree if

Pr[lim
n∈N

∆Gn < ∞] = 1.

Lemma 19 can be extended such that it holds not only for graph classes
with bounded expansion, but also for random graph models that have bounded
expansion w.h.p.

Lemma 21. Let (Gn)n∈N be a random graph model with the following properties:

• (Gn)n∈N has bounded expansion with high probability, and
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• for every Gn ∈ (Gn)n∈N and every r ∈ N the distribution of N r has a
tail-bound h with h(d) = Ω(d3+ϵ) for some ϵ > 0.

Then the model (Gn)n∈N +G(n, µ/n) has bounded expansion with high probability.

Proof. We prove the lemma in appendix A as it requires only a small modification
of the original proof.

The lemma induces the following theorem.

Theorem 22. Let (Gn)n∈N be a random graph model with the following properties:

• (Gn)n∈N has bounded expansion with high probability, and

• (Gn)n∈N has bounded degree

Then the model (Gn)n∈N is BE-robust under random perturbations G(n, µ/n).

Or in other words, random perturbations of a bounded degree random graph
model with bounded expansion result in a bounded expansion model.

6.2 Gaining structural sparsity
We would like to understand, which time-varying processes on random graph
models lead to structural sparsity. To formalize this question, we offer the fol-
lowing definition.

Definition 34 (gaining bounded expansion). Let (Gn)n∈N be a random graph
model and let T be a graph operation on edges (i.e. it doesn’t change the number
of vertices). We say that (Gn)n∈N gains bounded expansion through the operation
T if one of the following conditions holds.

• There exists a function f such that for all r ≥ 0

lim
t→∞

lim
n→∞

Pr[∇r(T t(Gn) < f(r)] = 1.

• There exists a function f such that for all r ≥ 0, there exists tr
0 such that

for all t ≥ tr
0

Pr[∇r(T t(Gn) < f(r)] ≥ 1 − O(n−c).

6.2.1 Time-varying static models
In [25], Zhang et al. proposed a simple time-varying variants of some static
random graph models that is governed by continuous-time Markov processes.
We will illustrate this idea on the Erdős–Rényi model.
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Erdős–Rényi

The process is governed by parameters λ and µ. Let λ be the rate in continuous
time at which an edge appears between two nodes where there previously was
none. Similarly, let µ be the rate at which an existing edge disappears.

Let Gn be an arbitrary n-vertex graph and let us fix parameters α and β that
will govern the transition process. We start with Gn at time t = 0. At every time
step, each vertex pair not connected by an edge gains an edge with probability
α, or not with probability 1 − α. Similarly, each existing edge disappears with
the probability β, or not with probability 1 − β. We denote this operation T and
we denote by T t(Gn) our graph after the time step t.

If the process goes on indefinitely, the average probability of an edge between
two arbitrary vertices converges to

α

α + β
.

Thus, if we set α = c · d/n and β = c · (1 − d/n) where c ∈ (0, 1) is a constant,
the process converges to the Erdős–Rényi graph G(n, d/n).

Therefore, we can say, that any random graph model gains bounded expansion
through T.

6.3 Conserving structural sparsity
Another problem we would like to understand is, which time-varying random
models, keep the random graph model structurally sparse, while also keeping
grads (or some other measure) bounded. Answering this question is useful, be-
cause many algorithms exploiting structural sparsity described in chapter 7 have
running time dependent on grad.

We offer the following definition to formalize the problem.

Definition 35. Let (Gn)ninN be a random graph model that has a.a.s. bounded
expansion or has bounded expansion w.h.p., and let T be a graph operation on
edges only. We say that the operation T conserves bounded expansion of the
graph model (Gn)ninN

• if there exists a function f such that for all r ≥ 0 and for all t ≥ 0

lim
n→∞

Pr[∇r(T t(Gn) < f(r)] = 1,

• or if there exists a function f such that for all r ≥ 0 and for all t ≥ 0

Pr[∇r(T t(Gn) < f(r)] ≥ 1 − O(n−c),

respectively.
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7. Applications of sparsity in
complex networks
In this section, we will discuss how can be the theory of structural sparsity applied
to network science problems.

First, we will discuss if real-world networks are actually sparse. Then we
will describe how can be network measures such us motif density and network
centralities efficiently computed on structurally sparse graphs. The section ends
with discussion of the spreading phenomena on structurally spare networks.

7.1 Structural sparsity in real-world networks
An important question is whether structural sparsity can be found in real-world
networks. The obvious constraint in answering it is, that the notions of nowhere
dense and bounded expansion are defined for classes and not for individual graphs.
In chapters 4 and 5, we tried to overcome this obstacle by studying network
models which are assumed to be an approximation of how are real-world networks
formed or generated, but the results are inconclusive.

In [5], the authors tried a different way of answering the question by calcu-
lating the upper bounds on the p-centered coloring number χp. To compute it,
they implemented the transitive fraternal augmentation procedure mentioned in
section 3.3. They computed the number χ3 of a wide range of real-world net-
works of various sizes, including the co-authorship network [26] or the protein
interaction network [27], and compared it to the 3-centered coloring number of
a configuration model with the same degree distribution. As was concluded in
section 4.3.1, such configuration models likely have bounded expansion with high
probability.

The experimental result showed that χ3 of real-world networks in the chosen
dataset is always smaller, with only one exception. This result suggests that
algorithms exploiting bounded expansion such us subgraph counting from the
next section can be applicable to real-world networks.

7.2 Motif counting
In section 1.6.1, we introduced the problem of motif counting.

In [4], an algorithm for counting the number of occurrences of small graphs
was described. This algorithm runs in time O(2hthtn), where h is the size of
the subgraph, n is the size of the host graph and t is its tree-depth. Thus, the
algorithm runs in linear time on classes with bounded expansion.

In [5] a faster, though still only linear, algorithm was presented.

Theorem 23 ([5]). Given a graph H and a graph G belonging to a class of
bounded expansion, there exists an algorithm to count the appearances of H as a
subgraph of G in time

O

(︄(︄
f(h)

h

)︄
6hhh+2n

)︄
.
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where f is a function depending only on the graph class.

The algorithm work in the following way: First, the (h+1)-tree-depth coloring
of the host graph is computed. As described in section 3.3, on graphs from
bounded expansion classes, this can be done in linear time. Next, in all parts
with i < h colors, we count the number of occurrences of H. We get the resulting
number of occurrences by applying the inclusion-exclusion principle.

The algorithm can be also extended to nowhere dense classes, because for
any ϵ > 0, sufficiently large graphs have a p-tree-depth coloring with at most nϵ

colors.

Theorem 24 ([5]). Let G be a nowhere dense class and let H be a graph. For
every ϵ > 0 there exists Nϵ ∈ N, such that for any graph G ∈ G, |G| > Nϵ, there
exists an algorithm to count the appearances of H as a subgraph of G in time

O(6hhh+2n1+ϵ).

Another, slightly faster variant of the algorithms was also described in [28].
Software that realizes the algorithm for subgraph counting that exploits struc-

tural sparsity and can visualize the p-tree-depth coloring process was implemented
in [29] and [30].

A biological application of fast subgraph counting on bounded expansion
graphs was described in [31], where authors exploited the sparsity of DNA assem-
bly graphs and created a data structure that can efficiently retrieve metagenomic
data.

7.3 Localized centralities
We introduced network centralities in section 1.2.1. Some centralities can be
also defined locally. We will describe two centralities and their local versions,
which can be efficiently computed in bounded expansion classes. Throughout
this section, we will follow [5].

Closeness centrality

Closeness centrality of a vertex is the inverse of the sum of all shortest paths to this
vertex. In the localized variant, only paths to vertices in a certain neighborhood
are considered. The higher the closeness centrality is, the closer it is to other
vertices, or vertices in its neighborhood, respectively.

Definition 36 (closeness centrality). Closeness centrality of a vertex v is defined
as

cC(v) =
⎛⎝ ∑︂

u∈V (G)
d(v, u)

⎞⎠−1

,

let r ∈ N be an integer, localized closeness centrality of a vertex v is defined as

cC(v)r =
⎛⎝ ∑︂

u∈Nr(v)
d(v, u)

⎞⎠−1

.
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Harmonic centrality

Harmonic centrality is similar to closeness centrality, but the operations of sum
and taking the inverse are reversed.

Definition 37 (harmonic centrality). Harmonic centrality of a vertex v is defined
as

cH(v) =
∑︂

u∈V (G)
d(v, u)−1,

let r ∈ N be an integer, localized harmonic centrality of a vertex v is defined as

cH(v)r =
∑︂

u∈Nr(v)
d(v, u)−1.

Experimental evidence suggests, that localized variants are good enough ap-
proximations that for certain applications, they can successfully be used in prac-
tice.

To compute the closeness or the harmonic centrality of all vertices, we need to
compute the shortest distance between any two vertices. In general, this requires
at least quadratic time. For bounded expansion classes, it was proved that we
can compute localized variants of these centralities in linear time.

Theorem 25 ([5]). Let C be a class with bounded expansion, G ∈ C and r ∈ N
an integer. Then the r-centric closeness centrality and harmonic centrality can
be computed for all vertices of G in total time O|(V (G)|).

7.4 Spreading phenomena

7.4.1 Bootstrap percolation
Bootstrap percolation is an example of a simple spreading process on graphs. Let
r ∈ N be an integer. At the start of the process, only some vertices are infected.
At every time step, all vertices with at least r infected neighbors become infected.
The process ends when there aren’t any susceptible vertices left, in particular,
when the whole graph becomes infected.

Formally, following the notation from [32], we will denote the set of initially
infected vertices by A0 and we will denote by At the set of vertices infected at
time t, that is At = At−1 ∪ {v ∈ V : |N(v) ∩ At−1 ≥ r}.

The final set of infected vertices is denoted by Af . It holds that Af = ⋃︁
i∈N Ai.

We call the minimum time τ such that Af = Aτ the running time.
The following holds for a bootstrap percolation process on degenerate graphs.

Theorem 26 ([32]). Let G be a d-degenerate graph with n vertices, and let r ≥ d
be an integer. Then the running time τ of the r-bootstrap process with a given set
A0 is bounded by

τ ≤ d

r − d
|A0|.

Specifically, this holds for graphs from classes with bounded expansion.
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7.4.2 Discussion
On the example of bootstrap percolation, it can be seen that notions related
to structural sparsity such us degeneracy can be used to describe properties of
spreading phenomena.

This observation suggests that structural sparsity could be exploited in this
way too, and opens a window for both new theoretic and real-world applications,
that can be explored in future work.
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Conclusion
This thesis examined the intersection of the theory of structural sparsity and
network science. We presented past work that has been done in this area and
to our knowledge, this thesis is the most comprehensive review of what is known
about the intersection of these to topics, and we attempted to bridge the gap
between them even further.

Our main addition lies in extending the theory of structural sparsity to dy-
namic networks, chapters 5 and 6 are dedicated to this. In chapter 5, we also
generalized theorem 22 so that it can be applied to network models.

Dynamic definition of structural sparsity in chapter 6 suggest direction for
future research in trying to understand, how can be structural sparsity in networks
created or how can be efficient algorithms applied even in time-varying networks.
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[3] Jaroslav Nešetřil and Patrice Ossona de Mendez. Grad and classes with
bounded expansion i. decompositions. European Journal of Combinatorics,
29, 09 2005.
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A. Proof of lemma 21
Lemma . Let (Gn)n∈N be a random graph model with the following properties:

• (Gn)n∈N has bounded expansion with high probability, and

• for every Gn ∈ (Gn)n∈N and every r ∈ N the distribution of N r has a
tail-bound h with h(d) = Ω(d3+ϵ) for some ϵ > 0.

Then the model (Gn)n∈N +G(n, µ/n) has bounded expansion with high probability.

Proof. Let us fix n and Gn, let G̃ = G(n, µ/n) and let G = Gn + G̃. Assume H is
an r-shallow topological of G and consider an embedding ΦV , ΦE of H witnessing
the fact. Since ˜︂∇r(Gn) is a constant, we want to bound the density of topological
minors whose embedding use at least one edge of G̃: each component of P
E(G̃) is contained in a subgraph Gn[N r(v)] for some vertex v. Let N1, ..., Np be
these subgraphs of the path P : then we can bound the probability that P exists
by considering the probability that there exist at least one edge between Ni and
Ni+1 in G̃ for 1 ≤ i ≤ p − 1.

Since the probability that two r-neighborhoods N r(u), N r(v) in Gn are con-
nected by an edge in G̃ is at most

µ|N r(u)||N r(u)|
n

,

we can stochastically bound the occurrence of r paths in G by the occurrence
of edges in GCL(Dr,G). Hence, we have that, stochastically,

˜︂∇r(G) ≤ ˜︂∇r(Gn) +˜︂∇r(GCL(Dr,G)).
Let c ≥ 1 be an integer, from theorem 14, we know that there exist a function

f1 such that

P1 = Pr[˜︂∇r(GCL(Dr,G)n) < f1(r)] ≥ 1 − O(n−c).
From assumption, we also know there exist a function f2 such that

P2 = Pr[˜︂∇r(Gn) < f2(r)] ≥ 1 − O(n−c).
Let f = f1 + f2, then

Pr[˜︂∇r(G) < f(r)] ≥ P1 × P2.

From union bound, we get that

Pr[˜︂∇r(G) < f(r)] ≥ 1 − O(n−c).
Hence, the model (Gn)n∈N+G(n, µ/n) has bounded expansion with high prob-

ability.

46


	Introduction
	Complex networks
	Network models
	Network measures and metrics
	Network centralities
	Clustering coefficient
	Small world networks

	Sparsity in graphs and complex networks
	Dynamic networks
	Dynamical processes on networks
	Algorithmic problems
	Counting network motifs
	Community structure


	Structural sparsity in graphs
	Shallow minors
	Dichotomy of sparsity
	Logarithmic density

	Bounded expansion
	Grads and top-grads
	Defining bounded expansion
	Examples of classes with bounded expansion


	Properties of bounded expansion classes
	Characterizations
	Controlling dense parts
	Degeneracy
	Neighborhood complexity
	Low tree-depth and tree-width coloring

	Robustness
	Coloring and decomposition

	Network models and structural sparsity
	Structural sparsity in random graph models
	Static network models
	Erdős–Rényi random graphs
	Random intersection graphs
	Kleinberg model

	Generative network models
	Chung-Lu and configuration models


	Sparsity in evolving networks
	Attachment models
	Barabasi-Albert model
	Copying network model

	Inner edges changes

	Sparsity in time-varying networks
	Robustness
	Random perturbations

	Gaining structural sparsity
	Time-varying static models

	Conserving structural sparsity

	Applications of sparsity in complex networks
	Structural sparsity in real-world networks
	Motif counting
	Localized centralities
	Spreading phenomena
	Bootstrap percolation
	Discussion


	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Proof of lemma 21

