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Consultant: RNDr. Klára Kalousová, Ph.D., Charles University, Faculty of
Mathematics and Physics, Department of Geophysics

Abstract: This thesis studies the continuum poro-damage mechanics (CPDM)
and its application in the ice crack propagation model. The model is tested by
the finite element method implementation - using the open-source library pack-
age FEniCS. The study examines the model’s sensitivity and the crack depth on
model parameters for a water-free crack. Furthermore, the thesis concentrates on
the effect of applied additional longitudinal stress. Lastly, the model is tested on a
water-filled crevasse. The water-free and water-filled cases follow the known the-
oretical predictions by the linear elastic fracture mechanics (LEFM), particularly
considering deeper crevasses in the water-free case.

Keywords: hydrofracturing, icy moons, continuum poro-damage mechanics

iii



Contents

Introduction 2

1 Model Formulation and Implementation 4
1.1 Continuum Damage Mechanics Approach . . . . . . . . . . . . . . 4
1.2 Model Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.1 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . 9
1.2.3 Initial and Boundary Conditions . . . . . . . . . . . . . . . 10
1.2.4 The Overview of Physical Parameters . . . . . . . . . . . . 10

1.3 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 The Finite Element Method . . . . . . . . . . . . . . . . . 11
1.3.2 Weak Formulation . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 FEniCS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2 Numerical Experiments 15
2.1 Water-free Crevasse Propagation and Sensitivity to Model Param-

eters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 The Dependence of the Water-free Crevasse Depth on Model Pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 The Effect of Applied Longitudinal Stress . . . . . . . . . . . . . 27

2.3.1 The Damage and the Crevasse Depth Evolution . . . . . . 27
2.3.2 The Evolution of Other Model Relevant Physical Quantities 30

2.4 Water-free vs. Water-filled Crevasse . . . . . . . . . . . . . . . . . 41

Conclusion 44

Bibliography 45

List of Figures 48

List of Tables 49

List of Abbreviations 50

A Attachments 51
A.1 The LEFM Approach . . . . . . . . . . . . . . . . . . . . . . . . . 51

1



Introduction
Hydrofracturing is a process of fracture propagation in a medium assisted by fluid
pressure inside the fractures. On Earth, this process plays an essential role in the
calving of the ice shelves and has been shown to allow for very rapid drainage
of supraglacial lakes (e.g. Krawczynski et al., 2009), and in a much more exotic
context, such drainage mechanism could be active in the outer water-ice shells of
water worlds such as Jupiter’s moon Europa or Saturn’s Enceladus.

There are several important differences between the hydrofracturing processes
on Earth and icy moons, however. On terrestrial glaciers,
a fracture typically originates on the top of the glacier, where dynamic stresses
may bring the ice to a tensional regime. Due to surface melting, crevasses may
easily get filled with liquid water, which then further facilitates crack propagation
downwards, possibly all the way to the glacier bed. The physical setting on icy
moons is very different - the very low surface temperature (approx. 100 K for Eu-
ropa (Ojakangas and Stevenson, 1989) or approx. 59 K for Enceladus, (Beuthe,
2018)), do not allow for any meltwater on the surface. Melt, if produced at all,
would most likely appear deeper in bulk or at strike-slip fault due to mechanical
dissipation (Kalousová et al., 2016). At these depths, typically a few kilometers
below the surface, hydrofracturing becomes less likely due to the overburden pres-
sure limiting crack initiation. Also, even if cracks would develop, the predicted
meltwater production rates are lower by few orders of magnitude compared to
the terrestrial supply during the melting season (Hock, 2005). Consequently,
the resulting meltwater supply would be most likely insufficient to feed the
crevasses by an appropriate amount of meltwater required for hydrofracturing
across the whole ice layer, particularly when competing with possibly rapid re-
freezing in the cold environment.

However, it has been hypothesized that fractures could propagate upwards
from the internal oceans under suitable dynamic conditions as the ocean body
would provide an effectively unlimited supply of meltwater. Crawford and Steven-
son (1988) applied linear elastic fracture mechanics to investigate the possibility
of upward propagation of water-filled cracks and also downward water-free crack
propagation. While they exclude the possibility of water-free cracks extending
across the whole ice shell, they argue that water-filled cracks propagating up-
wards might reach Europa’s surface provided they contain enough exsolved gas.
Recently, Lee et al. (2005) and Rudolph and Manga (2009) revisited the subject
of ice shell cracking under applied tensional stresses (e.g., due to tides, non-
synchronous rotation, or ice shell thickening). While the former study found that
surface cracks may penetrate through the entire outer brittle layer, the latter’s
results indicate that the entire shell would be completely cracked only when suf-
ficiently thin. Both of these studies study water-free cracks originating at the
surface.

The original goal of this thesis was to investigate the possibility of crack ini-
tiation from below a subsurface liquid water ocean and quantify the dynamic
conditions required to propagate the crack across the whole layer. We devise a
numerical model of the process of fracture propagation based on the finite element
numerical code developed by Duddu et al. (2020). If formulated in the frame-
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work of continuum damage mechanics (CDM), the model couples the mechanical
equations for ice with the evolution of an internal parameter, the damage, that
characterizes the concentration of microcracks in the medium and represents
a continuum counterpart to the notion of a crack within the material.

As it turned out during the work on this project, the original goal was too
ambitious regarding the planetary applications. As a result, we shall remain in
the terrestrial setting, studying downward crack propagation of a floating ice
slab (ice shelf) in a suitably simplified setting, and we will focus on the study
of effects of principal model parameters, the presence of water, and dynamical
regime within the ice slab on the crack propagation process. We compare the
results with the results predicted by the analytical estimates based on linear
elastic fracture mechanics (LEFM), intending to quantitatively test the CDM
approach and prepare the ground for future planetary applications.

Figure 1: Europa and Enceladus. (Credit: NASA.)

Figure 2: Hydrofracturing. (Credit: NASA.)
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1. Model Formulation and
Implementation
To understand the process of hydrofracturing in glaciers or planetary ice layers, we
need a physically consistent model that can enable us to examine the conditions
upon which the crevasse propagation or ice calving are possible. Traditionally,
the problem of crack propagation in glaciers has been adopted in the framework
of linear elastic fracture mechanics (LEFM), see, for instance - Smith (1976),
Weertman (1973), van der Veen (1998a), van der Veen (1998b). Such an approach
allows one to characterize crack propagation of a single crevasse in a typically
semi-infinite elastic medium by analytical or semi-analytical estimates of stress
conditions at the crevasse tip and by formulating crack propagation criteria.

Here, the goal is to investigate the problem of crack propagation by an alter-
native formulation - the continuum poro-damage mechanics (CPDM), formulated
in Duddu et al. (2020), which characterizes the crack propagation in terms of an
evolving scalar field D (damage), representing the density of microcracks in the
material. A significant advantage of such an approach is that it allows for a uni-
fied continuum-mechanics formulation for the undamaged ice and the damaged
one (representing the crack). This approach allows us to implement such a model
by using the finite element method (FEM) and employ standard FEM tools.

In the following section, we will first introduce in detail the continuum poro-
damage mechanics (CPDM) model by Duddu et al. (2020) and summarize the
governing equations coupling the mechanical problem with the evolution of a
damage D. We will discuss a specific variant of the model, which allows us to
include the hydrofracturing, i.e., the effect of liquid water filling the microcracks
on the stress field (thus on crack propagation, too).

1.1 Continuum Damage Mechanics Approach
Our model is based on the non-local continuum poro-damage mechanics (CPDM)
model formulated in the study by Duddu et al. (2020) published in Journal of
Glaciology. The CPDM model is broadly speaking an extension of the contin-
uum damage mechanics (CDM) introduced in a series of papers by Jiménez et al.
(2017) and Mobasher et al. (2016). In general, the CPDM model reduces un-
wanted mesh-size sensitivity and artificial diffusion of damage in crevasse propa-
gation simulations that can occur if one uses the CDM model. The CPDM also
provides feedback between viscous or elastic processes and damage processes at
the crevasse tip.

In particular, in our model, the damage D variable is introduced as an isotropic
scalar quantity that can acquire values between D = 0 (represents an undam-
aged state) and D = 1 (represents a fully damaged state). Therefore, by using
the damage D variable, we can describe the level of material degradation at each
material point in the continuum. Intuitively, continuum points with 0 < D < 1
describe areas, which can be interpreted as zones where the material is partially
damaged (e.g., severe microcracks or microvoids), yet before failure. Areas with
the damage variable D = 1 represent an open crack after failure. Such a crack is
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physically interpreted as an air-filled (or water-filled) crack.
Based on the principle of effective stress (Kachanov, 1958), (Rabotnov, 1963),

and hypothesis of strain equivalence, the effective Cauchy stress tensor σ̄ is de-
fined as

σ̄ = σ

(1 − D) , (1.1)

where σ is Cauchy stress tensor. According to Duddu et al. (2020), in a finite
thickness zone saturated with water within an otherwise undamaged ice slab, we
interpret the isotropic damage D variable as the ratio of the area of microcracks
and microvoids to the total area on a planar surface through representative vol-
ume element (RVE). Note that for D = 0, the effective Cauchy stress tensor
coincides with the ”classical” Cauchy stress tensor. On the other hand, assuming
the partially damaged RVE - the effective Cauchy stress increase proportionally,
which can be interpreted as the stress concentrating in the reduced area. From
this point of view, the damage D variable is related to porosity ϕ, which is de-
fined as the ratio of the volume of microvoids to the total volume within RVE
(analogically in 2D).

A damaged ice zone is usually partially filled with water; therefore Duddu
et al. (2020) extend the CDM model by adding a hydrostatic pressure exerted by
water in the crevasse. Microcracks and microvoids located in the damaged zone
of the physical RVE are exposed to hydraulic pressure pw, while the remaining
undamaged ice sustains effective Cauchy stress. Consequently, we define the
macroscopic Cauchy stress σ in saturated damaged ice as given by Mobasher
et al. (2016)

σ = (1 − D) σ̄ − D pw I , (1.2)

where I denotes the identity tensor. Depending on a particular aplication, ice is
usually described by two different rheological models. On a short time scale (hours
and less), ice is best characterized as a linear elastic (or viscoelastic) solid. On the
other hand, glacier or ice-sheet over a long time period (days to years) flows as
a non-linearly viscous (non-Newtonian) fluid. We decided to perform numerical
simulations with ”only” linear elastic rheology, despite investigating longer time
periods. The reason is the difficulty and complexity of non-linear viscosity, but
also the intention to make a quantitive comparison with the results predicted by
the standard linear elastic fracture mechanics (LEFM) model. Assuming the ice
to be incompressible, we can decompose the effective stress into deviatoric and
volumetric parts as

σ̄ = τ̄ − p I , (1.3)

where p = −1
3 Tr[σ̄] is the effective pressure and τ̄ is the effective deviatoric

Cauchy stress, determined by a constitutive model of a linear elastic solid (see
equation 1.6 below).

The mechanical part of the problem is described by strandard set of balance
equations of continuum mechanics - the balance of mass, the balance of linear
and angular momentum. The considered problem is formally formulated on a
fixed domain. Thus, the Lagrangian (Martinec, 2019) description is appropriate.
However, if assuming small deformations within linearized theory, one may neglect
the differences between the Lagrangian and the Eulerian description and employ
the latter, for simplicity. Assuming the incompressibility and neglecting the effect

5



of inertia, the balance of mass and linear momentum, respectively, yields

∇ · u = 0 , (1.4)
∇ · σ + b = 0 , (1.5)

where u is the displacement vector, the Cauchy stress tensor σ is symmetric as
a consequence of balance of angular momentum, and b represents a body force.

If we consider the ice to be an isotropic and incompressible elastic solid, the
deviatoric stress τ̄ can be defined as

τ̄ = E

(1 + ν) ϵ . (1.6)

where E represents the Young’s modulus and ν is the Poisson’s ratio, and ϵ is the
small strain tensor. Poisson’s ratio for perfectly incompressible isotropic material
deformed elastically at small strains is ν = 0.5. The small strain tensor ϵ is
defined as a symmetric gradient of the displacement field u

ϵ = 1
2 (∇u + ∇T u) . (1.7)

By combining equations 1.3 and 1.6 and substituting them into equation 1.2,
we obtain the following rheological expression for the Cauchy stress tensor of a
damaged ice filled with pressurized water

σ = (1 − D)
(︄

E

(1 + ν) ϵ − p I

)︄
− D pw I . (1.8)

Note that the case D = 0 describes undamaged ice, whereas D = 1 yields the
stress condition within the fully damaged ice - water- or air-filled crevasse. For the
damage (D) in the range between the mentioned values, the stress is determined
as a combination of the solid ice stress and fluid water (air) stress according to
their respective ratios.

To model time-dependent propagation of crevasse, we use the gradient non-
local continuum damage mechanics formulation, first presented in Jiménez et al.
(2017). The failure of ice is usually described by the progressive accumulation of
micro-cracks and micro-voids. However, in our case - using the continuum damage
mechanics, the law of crevasse propagation is formulated phenomenologically and
does not explicitly identify void or crack growth or coalescence and other micro-
mechanical mechanisms. The damage evolution law we take into account does
not allow anisotropy dependent on micro-crack orientation induced by a damage,
because the damage D variable is a scalar. Also in the considered model, we allow
the damage D to increase only if the pressure is negative, which is equivalent to
the material in a tensile stress state. According to Duddu et al. (2020), we define
the material local damage time-derivative, which acts as a source term in the
damage evolution equation (see eq. 1.14 below), as

Ḋ
loc =

⎧⎪⎨⎪⎩B
⟨χ̄⟩r

(1 − D)kσ
if p̄ < 0,

0 if p̄ ≥ 0 .
(1.9)
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Note that expression 1.9 cannot be negative (see below), therefore the model
prohibits healing process of the material as the damage can only increase. Pa-
rameter B is a damage rate coefficient, r is a damage rate exponent and kσ, which
is experimentally calibrated, represents the local damage rate enhancement due
to a prior damage. We use parameter B = 5.23 × 10−7 MPa−r · s−1, assumed by
Duddu and Waisman (2012). Parameter kσ depends on the stress state, and is
defined as

kσ = k1 + k2 Tr[σ] , (1.10)

where k1 and k2 are constants. In equation 1.9, ⟨χ̄⟩ represents the positive part of
the effective Hayhurst stress invariant (Hayhurst, 1972), (Murakami et al., 1988),
defined as

χ̄ = ασ̄(I) + βσ̄v + (1 − α − β) Tr[σ̄] . (1.11)

Parameters α and β determine brittle vs ductile regime of the crevasse propaga-
tion. In the definiton of the effective Hayhurst stress invariant, σ̄(I) is the effective
maximum principal stress, and σ̄v is the effective von Mises stress, defined as

σ̄(I) = σ̄xx + σ̄yy

2 +
√︄(︃

σ̄xx − σ̄yy

2

)︃2
+ τ̄ 2

xy , (1.12)

σ̄v =
√︄

3
2 τ̄ : τ̄ , (1.13)

where ”:” represents the inner product.
Conditions set on the local damage rate in equation 1.9 allow the damage

growth only in locations where the material is in a tensional regime. At the ini-
tial stages of crevasse propagation problem, the term (1 − D)kσ has usually no
significant effect as D ≪ 1. As a consequence, the damage rate is mainly deter-
mined by the Hayhurst stress χ. The Hayhurst stress expresses the propagation
and nucleation of the crevasse at sub-critical conditions (D < 1) (Weiss, 2004).

Parameters that affect the value of the effective Hayhurst stress invariant,
as can be seen in equation 1.11, are constrained by the condition α + β ≤ 1.
For α → 1, the effective Hayhurst stress coincides with the maximum principal
stress, which describes brittle failure behaviour. On the other side, β leads the
Hayhurst stress invariant toward the von Mises stress, which describes ductile
failure behaviour. Whereas no well calibrated values of these parameters are
available, there are some estimates based on laboratory experiments, such as
α = 0.21 and β = 0.63 in (Pralong and Funk, 2005), which we used for this
thesis. Parameters k1, k2, which evaluates kσ parameter in equation 1.9 are also
assumed from (Pralong and Funk, 2005), k1 = −2.63 and k2 = 7.24 MPa−1.

A non-local implicit gradient formulation for the damage evolution is estab-
lished (Jiménez et al., 2017) to maintain thermodynamic consistency and alleviate
mesh-size sensitivity. The (material) time derivative of the damage is governed
by the following elliptic equation

Ḋ − 1
2 l2

c∆Ḋ = Ḋloc , (1.14)

where a non-local length scale lc, if appropriately chosen, protects the local dam-
age model from the undesirably large dependency of the damage zone on the finite
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element mesh size and other pathological mesh-size dependence. The principle
behind this approach is based on the idea of smearing the damage within the
damage zone in a regularized way, while lc has to be sufficiently bigger than the
finite element mesh size (Duddu and Waisman, 2013), which ensures thermody-
namic consistency. Despite all, the length scale parameter lc impacts the length
of the fracture process zone ahead of the crack tip. As can be seen above, the
suitable value of lc is important. Following Duddu et al. (2020), we will adopt
the estimate based on the article by A. Hillerborg et al. (1976)

lc ≈ K2
Ic (1 − ν2)

σ2
c

, (1.15)

where KIc is the critical stress intensity factor and σc is the cohesive strength.
The critical stress intensity factor is the parameter that well describes the fracture
toughness of glacier ice, a typical range for KIc is 0.1 − 0.4 MPa m1/2 (Paterson,
1994), (van der Veen, 1998b).

The cohesive strength σc has usually much lower values in comparison with
the tensile yield strength of the ice, with various estimates - van der Veen (1998b)
suggests it as the value of stress that necessary to form a crevasse, which puts
σc in the range 30 − 80 kPa. Pralong and Funk (2005), and Krug et al. (2014)
rather connect σc to a stress threshold necessary for damage initiation, which is
in the range of 10 − 200 kPa. Given the above, we assume σc = 0.1 MPa. This
provides us with lc ≈ 0.75 to 12 m (Weiss, 2003).

The continuum damage mechanics (CDM) allows us to transfer from a clas-
sical description of crack propagation in the framework of linear elastics fracture
mechanics (LEFM) based on estimates of the stress at the crack tip and propa-
gation criteria to a description by single scalar field D (damage) characterizing
the density of microcracks. The evolution of this scalar field D is given by the
effective Cauchy stress tensor σ̄. Some of the advantages of such a model are
validity for any arbitrary geometry (or boundary condition) of a glacier. In addi-
tion, no initial crack or damage is required to start to form and spread crevasses.
Nevertheless, there are several important limitations of the CDM model. Diffi-
culties come with parameters necessary for computation by the CDM approach
- several empirical parameters cannot be precisely determined from yet existing
measurements and observations, which directly affects the model’s predictive ca-
pability. Furthermore, when the so-called full Stokes numerical formulation is
considered to describe an ice flow, the CDM model is computationally expen-
sive for investigating a crevasse propagation in a real glacier. However, using
some effective adjustments (like higher-order Stokes approximations instead of
full Stokes formulations) can reduce uncertainty. Therefore, the CDM model is a
useful tool for a better understanding of the crevasse propagation problem when
various physical conditions are taken into account.

1.2 Model Formulation
This section details the studied problem by defining the model’s geometry, specify-
ing the initial and boundary conditions, and providing the values of used material
and model parameters.
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1.2.1 Geometry
As a test case, we consider a two-dimensional freely floating ice slab with an
initial surface crack propagating downwards. The considered modelling domain
is a rectangular subdomain of the slab. The modelling subdomain is of dimensions
500 m × 125 m (length × height). We assume the length-to-height aspect ratio
of the whole ice slab to be very large (in accordance with the standard geometry
of terrestrial ice shelves). The density of ice ρi, the density of water ρw and other
related parameters are listed in table 1.1. The illustration of the model geometry
is shown in figure 1.1.

Figure 1.1: The illustration of a studied model geometry. The stress σxx acting
on the right boundary of the modeled (light red) domain Ω comprises the litho-
static pressure of overburden ice pi and a dynamic ”far field” longitudinal stress
contribution σi; pw denotes the hydrostatic pressure. The red mark represents
the initially damaged area.

1.2.2 Governing Equations
While the deformation of ice is a thermo-mechanically coupled problem, we re-
strict ourselves in this work to a purely mechanical setting. Plugging in the as-
sumed elastic rheology (1.8) and the definition of strain (1.7) into the balance of
linear momentum (in the quasi-static approximation) (1.5), together with the in-
compressibility assumption (1.4) yields the following set of mechanical equations
for the displacement u and the effective pressure p̄ in the reference domain Ω

∇ ·
[︄
(1 − D) E

(1 + ν) (∇u + ∇T u)
]︄

− ∇ [(1 − D) p] − ∇(D pw) + b = 0 , (1.16)

∇ · u = 0 , (1.17)

with Ω representing the block of ice (light red) illustrated in figure 1.1,
b = (0, ρi · g) is the external body force vector, which in our case represents
gravity. These equations (1.16 and 1.17) together with governing equation for
the damage D (eq. 1.14) that describes the evolution of D in Ω

Ḋ − 1
2 l2

c ∆Ḋ = Ḋloc , (1.18)
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form a full set of governing equations describing the crevasse propagation model,
where the damage source term Ḋloc is given by eq. 1.9. Thus the process of
finding the solution consists of solving the set of the governing equations (1.16,
1.17 and 1.18) for variables p (the effective pressure), u (the displacement vector
field) and the damage D.

1.2.3 Initial and Boundary Conditions
To define the problem properly, it is essential to specify the conditions on the
problem domain boundaries. There are two main types of boundary condition
(BC) - Dirichlet BC (restricts the value of the solution itself at the boundary
of the domain) and Neumann BC (specifies the value of the normal derivative
of solution at the domain boundary). Alongside the boundary conditions, for
time-dependent problems, it is necessary to specify also the initial condition (IC)
to find the unique solution from the family of general solutions.

To simplify the considered problem, we suppose the ice slab to be freely float-
ing in the underlying ocean, which we approximate by the so-called free-slip
condition. This condition is applied on the bottom boundary, denoted as Γ1 in
figure 1.1. The top edge of the ice slab, denoted as Γ4 is stress free, i.e., subjected
to a homogeneous Neumann boundary condition. To avoid a free translation (a
rigid body motion) of the whole glacier, we will also employ a free-slip along the
left edge, which complies with the symmetry of the problem - this part of the
boundary is denoted as Γ2 in figure 1.1. The right-hand side of the rectangular
subdomain (denoted as Γ3 in figure 1.1) is subject to a horizontal stress condition
represented by σxx. According to Weertman (1957) and Duddu et al. (2020), we
can suppose the long wavelength approximation for an incompressible fluid, in
which the horizontal Cauchy stress σxx is dependent on the depth linearly. Then
σxx can be decomposed to a lithostatic pi and a ”far-field” dynamic stress σi

σxx (d) = −pi (d) + σi , (1.19)
pi (d) = ρi g d , (1.20)

where d is the depth from the surface of the ice slab, g is the magnitude of
gravity, and the far field tensile stress is given by Duddu et al. (2020, AP-
PENDIX A, eq. A2)

σi = 1
2 ρi g H − 1

2
ρ2

i
ρw

g H , (1.21)

where H is the height of the ice slab. Concerning damage D, we apply homoge-
neous Neumann boundary conditions on all boundaries.

The only variable involving explicit time derivative and thus requiring an
initial condition is the damage D. The initial condition for the test case set the
ice to be undamaged (D = 0) on the whole rectangular subdomain, except for
the square of tiny dimensions (relatively to the subdomain dimensions), where
we consider the ice to be fully damaged (D = 1).

1.2.4 The Overview of Physical Parameters
Material properties and other parameters appearing in the model formulation
are listed in table 1.1. Additionally, we establish the maximum value of damage
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Dmax (that henceforth represents fully damaged ice) to prevent ill-conditioning
that occurs for D = 1.

Table 1.1: The overview of physical parameters used for simulation of the damage
propagation.

Parameter Value Units

E 9.5×109 Pa

ν 0.5 -

ρi 920 kg·m−3

ρw 1000 kg·m−3

g 9.81 m·s−2

B 5.232×10−7 MPa−r · s−1

r 0.43 -

α 0.21 -

β 0.63 -

k1 -2.63 -

k2 7.24 MPa−1

Dmax 0.99 -

lc 2.5 - 10 m

1.3 Numerical Implementation
Now that we have formulated the governing equations of our problem and set
the idea of realization, we will get to the main principle behind the FEM and
subsequently formulate the so-called weak formulation of our governing equations.
Afterwards, we will suggest a specific FEM implementation using the FEniCS
library.

1.3.1 The Finite Element Method
The finite element method (FEM) is a powerful, irreplaceable method for find-
ing the numerical solution of initial- and boundary-value problems for partial
differential equations (PDEs). It is widely used for complicated geometries and
material properties where analytical solutions cannot be obtained. The FEM
is employed extensively to analyze solids, fluids, structures, heat transfer, and
basically in every field of engineering analysis that covers continuum mechanics.

The FEM is built on two fundamental attributes, which lie behind its suc-
cessful usage and utility. At first, the FEM is based on the principle of bounded
partitioning domains into several smaller, non-overlapping subdomains (the finite
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elements). Functions over these finite elements are approximated by local func-
tions, usually polynomials. Secondly, the initial- and boundary-value problems
we apply this solving method on are formulated in a so-called weak (integral)
form. Consequently, the contributions of each subdomain to the global integrals
sum up to produce an integral characterizing the problem over the whole domain.

Formally, the weak formulation is found by multiplying the differential equa-
tion by a test function and integrating over the whole domain, while we integrate
by parts via Green’s theorem. The choice of the function spaces typically reflects
both the structure of the PDE, as well as the (Dirichlet) boundary conditions -
e.g., both the sought solution and the test function have to be zero at some part
of the domain boundary. As a result, we get a differential equation with weaker
conditions on the smoothness of solutions and test functions in the so-called weak
form (Bathe, 2006).

1.3.2 Weak Formulation
According to the aforementioned, to be able to solve the problem numerically
using the finite elements method (FEM), we need to formulate the problem in
the so-called weak formulation. The equations 1.22 and 1.23 represent the weak
formulation of the mechanical governing equations (1.16 and 1.17), while equation
1.24 represents the weak form of governing equation (1.18) for damage D∫︂

Ω
(1 − D) E

(1 + ν) ∇w : (∇u + ∇T u) dx

−
∫︂

Ω
(1 − D) ∇ · w p dx −

∫︂
Ω

∇ · w (Dpw) dx

−
∫︂

Ω
b · w dx = 0 on Ω (1.22)∫︂

Ω
q ∇ · u dx = 0 on Ω , (1.23)∫︂

Ω
Ḋ v dx + 1

2 l2
c

∫︂
Ω

∇Ḋ · ∇v dx −
∫︂

Ω
Ḋ

loc
v dx = 0 on Ω , (1.24)

where w, q, and v are (arbitrary) test functions from suitably chosen function
spaces.

1.3.3 FEniCS
Numerical implementation of the weak form of equations 1.22 - 1.24 was per-
formed in a finite element open-source library package FEniCS (Alnaes et al.,
2015).

Our implementation was written from scratch, but we follow closely the im-
plementation of Duddu et al. (2020), in particular the delicate choices concerning
finite element function spaces. The original code was implemented in FEniCS v.
2016, we rewrote it in FEniCS v. 2019.

We employed internal FEniCS meshing subroutines to generate the computa-
tional mesh according to geometry mentioned above (fig. 1.1), and replaced the
initially damaged zone by a tiny notch (of the same size) in the domain geometry.

At first, we generate a mesh representing the modeling domain Ω with the
value of the mesh-resolution parameter set to 50. The rectangle area (symmet-
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rically placed with respect to the notch representing the pre-damaged zone) of
dimensions 40 m × 125 m of generated mesh is twice refined, and similarly lo-
cated area (20 m × 125 m) is refined one more time. This should provide us
with a better resolution of the crack propagation at the tip on one hand and save
us some computing power and time on the other hand (compared to the whole
domain having such mesh resolution).

Now, we are ready to present the finite element approximation of the prob-
lem 1.22 - 1.24. For the mechanical problem, we used Taylor-Hood elements
(CG 2, CG 1) for (uh, p̄h), the finite element approximations of (u, p̄). Here,
”CG” denotes the Continuous Galerkin (the standard Lagrange family of piece-
wise polynomial elements), and the number determines a degree of polynomi-
als. For the damage problem, we used a special class of so-called Quadrature
elements (denoted as ”Q”) that allow to robustly deal with the nonlinearities
and activation phenomena in the damage evolution. So the finite-element set-
ting is as follows. At each time level k, we look for the triplet u k

h , p̄ k
h , D k

h ∈
U (CG 2) × P (CG 1) × D (Q), such that

∫︂
Ωh

(1 − D k - 1
h ) E

(1 + ν)∇wh : (∇u k
h + ∇T u k

h ) dx

−
∫︂

Ωh

(1 − D k - 1
h )∇ · wh p k

h dx −
∫︂

Ωh

∇ · wh (D k-1
h p k

w) dx

−
∫︂

Ωh

b k
h · wh dx = 0 , (1.25)∫︂

Ωh

qh ∇ · u k
h dx = 0 , (1.26)∫︂

Ωh

Ḋ
k
h vh dx + 1

2 l2
c

∫︂
Ωh

∇Ḋ
k
h · ∇vh dx −

∫︂
Ωh

Ḋ
loc k
h vh dx = 0 , (1.27)

for all (wh, qh, vh) ∈ U × P × D. The symbol Ωh denotes the triangulation of
the domain Ω. The space U is explicitly endowed with a homogeneous Dirichlet
boundary condition for the normal component of vectors on the boundaries Γ1 and
Γ2, where the free-slip condition is prescribed. We use the notation A (t k) ≡ A k.
In the FEM implementation of the problem, we used a decoupled procedure ex-
plicit in time. At each time step, we perform two computations - the first consists
of solving the FEM implementation of the weak form of the mechanical problem
(eq. 1.25 and 1.26), which provides us with the solution for the displacement u
and the effective pressure p; while the second provides us with the solution for
the damage rate Ḋ by solving the FEM implementation of the weak form of the
governing equation for the damage D (eq. 1.27). Note that in the first computa-
tion, at time step tk, the damage is hold constant with value from the previous
time step from the second computation - D k - 1. Analogically, solutions for u and
p from the first computation are used in the latter; however, computed at the
same time step.

The solution of Ḋ is used at each time step to update D directly in the
corresponding degrees of freedom by

D k = min {Ḋ
k - 1 · dt + D k - 1 , Dmax} . (1.28)

We used a uniform time step dt = 1.2 months, which makes up 400 time steps
for a forty-year long simulation.

13



The complete source code consisting of the mesh generator and the main
problem solver for the FEniCS project simulation is attached to the electronic
version of the thesis.
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2. Numerical Experiments
In this section we provide results of a set of simulations of the top-crack propa-
gation through an ice slab, designed to test the solution dependence on various
model parameters and to compare the results quantitatively with the standard
crack propagation theory in the framework of linear elastic fracture mechanics
(LEFM) - see A.1.

All of the simulations were solved for a two-dimensional block of ice of di-
mensions 500 m × 125 m. However, all of the visual outputs are cropped to
90 m × 90 m (horizontally symmetrical and connected to the upper edge) squares
for better comparison. All of the results were visualized using ParaView (Ahrens
et al., 2005). The boundary and initial conditions together with the model param-
eters are those that have been specified in the previous section (1.2.3). The time
period was set to 40 years with respect to ”test simulations” that showed the con-
vergence of the problem in approximately 35 years for time step dt = 1.2 months,
which we used as a default in all simulations. The initial stage of the crevasse is
represented by the initially damaged area (IDA) - a square notch of width 2.5 m
at default.

2.1 Water-free Crevasse Propagation and Sen-
sitivity to Model Parameters

The first application of the model was the FEM simulations for the water-free
crevasse, where we compare the effect of model parameters on the final shape of
the crack. The parameters are listed in table 2.1, which also contains default val-
ues of the parameters. The first investigated parameter is a time step dt, which
represents the time interval between two points in time, as we approximate the
real continuous time by a finite number of discrete time steps. One can see that
dt appears explicitly in the damage evolution (in eq. 1.28) and therefore can
affect it. All performed simulations modeled the evolution over 40 years, there-
fore using default dt = 1.2 months means 400 time steps per simulation, unless
explicitly stated otherwise. The second studied model parameter is the length
scale parameter lc introduced in eq. 1.14 with estimated value 1.15 in publication
A. Hillerborg et al. (1976). The lc predicts the length of the crevasse propagation
process zone ahead of the tip (Duddu et al., 2020). The third examined param-
eter, a mesh resolution, is arbitrary in the FEniCS environment. It changes the
resolution of generated mesh in the FEM implementation, which directly changes
the resolution of the output simultaneously with the computational costs. The
fourth reviewed parameter is the width of damage active zone (WDAZ) that we
have to employ to restrict the horizontal propagation of the damage from the
crack tip to a finite size area (Duddu et al., 2020), in order to be consistent
with the LEFM model - in simulations approximated by a strip of finite size.
This is one of the weaker parts of the model, as the absence of such restriction
would result in the disruption of the whole modeled domain because the whole
top boundary is subject to tension, and the damage would gradually increase
there (due to the absence of healing in the model). The last studied parameter
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is the initially damaged area (IDA), which expresses the fully damaged ice at the
beginning of the simulation - it serves as a part of the initial condition; thus,
it directly affects the simulation. In the numerical implementation, we replaced
the area (where D(0) = Dmax) by the notch in the mesh geometry as mentioned
above.

Table 2.1: The overview of model parameters used for simulation of the damage
propagation.

Parameter Default value

dt (time step size) 1.2 months

lc (length scale parameter) 5 m

mesh resolution 50

the WDAZ (the width of damage active zone) 20 m

the IDA (the initially damaged area) 2.5 × 2.5 m2

The effect of each of the parameters was examined with other parameters fixed
at their default value. Figures 2.1 to 2.5 display the final state (t = 40 years) of a
top water-free crevasse for three different values of each parameter, the left-hand
side of these figures also displays the mesh geometry. The damage D is on a
logarithmic scale.

Figure 2.1 shows the crack evolution for different values of time step size -
dt = 7.3 days, 1.2 months and6 months. Parameter dt does not seem to have a
visible impact on crevasse propagation - regarding the shape or size of the final
stage.

Figure 2.2 shows the crack evolution for different values of the length scale
parameter - lc = 2.5 m, 5 m and 10 m. Parameter lc clearly affects both-the shape
and size of final stage of the crevasse. As expected from the character of lc
parameter, the greater the parameter gets, the larger is the damaged area. Note
that for smaller value of the parameter, we can see the change of the shape to
the rectangular-like (compared to the circle-like for greater values).

Figure 2.3 shows the crack evolution for different values of the arbitrary mesh
resolution parameter - mesh resolution = 25, 50 and 100. A mesh resolution
does not seem to have the qualitative difference on the final crack stage that
corresponds with the CPDM model - it should reduce the mesh size sensitivity
for appropriately selected lc; yet, naturally, we can observe the difference in the
smoothness of the damage.

Figure 2.4 shows the crack evolution for different values of the width of damage
active zone - WDAZ = 10 m, 20 m and 40 m. The width of damage active zone
influences the width of the final shape, which is the direct consequence of the
definition of such parameter as it is restricts the horizontal damage propagation at
the crack tip to selected area. Therefore the WDAZ parameter has an important
effect on the final crevasse shape.

Figure 2.5 shows the crack evolution for different values of the initially dam-
aged area - IDA = 1.25 × 1.25 m2, 2.5 × 2.5 m2 and 5 × 5 m2. The size of the
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initially damaged area clearly affects the final depth of shallow crevasse (what
originates from the change of the geometry), however, one might expect this
effect to vanish for deep crevasses - e.g., cases with higher tensile stress.

To sum up, parameters lc and the WDAZ have the most notable effect on the
water-free crevasse propagation, together with the IDA parameter having a sub-
stantial effect only for shallow crevasses. The effect of parameters dt and the mesh
resolution on the model sensitivity is almost none (considered the smoothness for
the finest mesh did not change the size or shape of the crevasse).
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(a) dt = 7.3 days (b) dt = 1.2 months (c) dt = 6 months

Figure 2.1: The effect of time step dt size on crevasse propagation.

(a) lc = 2.5 m (b) lc = 5 m (c) lc = 10 m

Figure 2.2: The effect of lc parameter on crevasse propagation.

(a) mesh resolution 25 (b) mesh resolution 50 (c) mesh resolution 100

Figure 2.3: The effect of a mesh resolution on crevasse propagation.
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(a) the width of damage ac-
tive zone = 10 m

(b) the width of damage ac-
tive zone = 20 m

(c) the width of damage ac-
tive zone = 40 m

Figure 2.4: The effect of the width of damage active zone on crevasse propagation.

(a) IDA = 1.25 × 1.25 m2 (b) IDA = 2.5 × 2.5 m2 (c) IDA = 5 × 5 m2

Figure 2.5: The effect of the initially damaged area on crevasse propagation.
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2.2 The Dependence of the Water-free Crevasse
Depth on Model Parameters

We also examine the evolution of crack depth and its dependence on the same
set of model parameters as above (2.1). The effect of such parameters on time
evolution of the crevasse depth can be seen in figures 2.6 to 2.10. However, the
crack depth in the considered model has to be defined in terms of a selected
damage value threshold for D (looking for the position of the lowermost point of
selected iso-contour) - we consider values D = 0.5, 0.6, 0.7, 0.8 and 0.9.

Figure 2.6 shows the crack depth evolution for different values of time step size
- dt = 7.3 days, 1.2 months and 6 months. The size of dt has a relatively small,
but noticeable effect on smoothness of the depth evolution (mainly in early stages
of the crack propagation). However, one can see by comparing 2.6a and 2.6b that
we do not observe ”jump” in the depth evolution of D = 0.9 for small dt, which
can be interpreted by having sufficient time resolution time steps to cover the
initial sudden phase of the crack propagation. On the other hand, it seems that
for greater time steps (than default) we do not observe significant changes in
depth evolution, but could expect a loss of accuracy and potential instabilities
for very large time steps (with respect to simulated time period).

Figure 2.7 shows the crack depth evolution for different values of the length
scale parameter - lc = 2.5 m, 5 m and 10 m. Observations indicates that lc has
an impact on the speed of a damage propagation and its distribution across
the space - for smaller lc we notice the propagation of all selected damage iso-
contours has relatively unified profile, while for greater lc values selected damage
iso-contours pull back from each other and more damaged areas occur much later.
The distribution across space affects also the depth of the crevasse - one can see
deeper penetration for D = 0.5, but more shallow penetration for D = 0.8 (or
absence of D = 0.9) for greater lc.

Figure 2.8 shows the crack depth evolution for different values of the arbitrary
mesh resolution parameter - mesh resolution = 25, 50 and 100. For mesh resolu-
tion changes, we do not observe significant changes in the crevasse depth trends,
which should be one of the main features of using the CPDM model. However,
some smoothness fluctuations occur between individual cases as the fine (rough)
structure provides more (less) points for the depth investigation (as we look for
the lowermost point of selected damage iso-contour).

Figure 2.9 shows the crack depth evolution for different values of the width
of damage active zone - WDAZ = 10 m, 20 m and 40 m. The dependence of
crack depth on the WDAZ seems to be influenced only in the sense of the rate of
the penetration (the slower penetration for the larger the WDAZ as the damage
spreads over a larger area, this effect is significant mainly for damage values close
to Dmax).

Figure 2.10 shows the crack depth evolution for different values of the initially
damaged area - IDA = 1.25 × 1.25 m2, 2.5 × 2.5 m2 and 5 × 5 m2. The size of
initially damaged area play significant role in the depth investigation of shallow
crevasses. The primary reason of such behaviour is the size of studied case -
for IDA = 5 × 5 m2, the size of IDA is almost the size of the final depth for
the default IDA size case. Thus, one can see that the depth of shallow crevasse
strongly depends on the size of the IDA - for instance the ratio of final depth for
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the IDA = 5×5 and IDA = 1.25×1.25 m2 is 1.76 (D = 0.5) and 4.20 (D = 0.9).
To conclude, the parameters with the most significant effect on the crevasse’s

final depth are lc and the IDA, with dt and the WDAZ having a small effect, and
the mesh resolution having almost none.
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(a) The evolution of the depth of water-free crevasse for a time step dt = 7.3 days.

(b) The evolution of the depth of water-free crevasse for a time step dt = 1.2 months.

(c) The evolution of the depth of water-free crevasse for a time step dt = 6 months.

Figure 2.6: The comparison of the evolution of the depth of water-free crevasse
with respect to the time step dt size.
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(a) The evolution of the depth of water-free crevasse for the length scale parameter
lc = 2.5 m.

(b) The evolution of the depth of water-free crevasse for the length scale parameter
lc = 5 m.

(c) The evolution of the depth of water-free crevasse for the length scale parameter
lc = 10 m.

Figure 2.7: The comparison of the evolution of the depth of water-free crevasse
with respect to the length scale parameter lc.
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(a) Mesh resolution 25.

(b) Mesh resolution 50.

(c) Mesh resolution 100.

Figure 2.8: The comparison of the evolution of the depth of water-free crevasse
with respect to the mesh resolution.
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(a) The width of damage active zone = 10 m.

(b) The width of damage active zone = 20 m.

(c) The width of damage active zone = 40 m.

Figure 2.9: The comparison of the evolution of the depth of water-free crevasse
with respect to the width of damage active zone.
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(a) The initially damaged area = 1.25 × 1.25 m2.

(b) The initially damaged area = 2.5 × 2.5 m2.

(c) The initially damaged area = 5 × 5 m2.

Figure 2.10: The comparison of the evolution of the depth of water-free crevasse
with respect to the size of the initially damaged area.
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2.3 The Effect of Applied Longitudinal Stress
We explore how the crack propagation depends on the applied stress on the right
boundary. We compare the default simulation (σxx given by 1.19), with a case,
where we apply the additional tensile (depth independent) stress of magnitude
σ+ = 314 000 Pa; and juxtapose both cases with the theoretical expectations
based on the LEFM by Weertman (1973).

2.3.1 The Damage and the Crevasse Depth Evolution
Working with the additional tensile stress provides us with ”more visible” outputs
and enables us to compare the numerical results with the theoretical expectations
for another state. Figure 2.11 shows the comparison of the time evolution of two
water-free cracks - the default simulation with tensile stress σxx (left column)
and the simulation with additional tensile stress σ+ applied (right column). We
selected the time snapshots that cover the visual evolution stages rather than
have a uniform time step between each other. As expected, the fastest crack
propagation occurs at the beginning of the simulation (due to the increasing
compressive overburden pressure with crack depth). The damage (D) is displayed
in a logarithmic scale. For better clarity we plotted the depth as a function of
time as can be seen in figure 2.12, where we also compare it with theoretical
expectations (see below).

According to Weertman (1973), the maximal penetration depth of a top water-
free crack Ltop

max in a free-floating glacier is given by

Ltop
max = π

2 ρi g
σxx , (2.1)

where σxx is the tensile stress, which appears within the ice block. Considered
the values of physical parameters (table 1.1), and the case with additional tensile
stress σ+ applied, using eq. 2.1 we get the values listed in table 2.2 (denoted
as Theoretical). Table 2.2 also contains values obtained by the FEM, for each
of selected iso-contours (D = 0.5 − 0.9). It is necessary to note that while the
theoretical value of the depth for σxx was computed, in the case with additional
tensile stress σ+ applied, we demanded the depth to be H

2 = 62.5 m - therefore
the magnitude of increment to default σxx longitudinal tensile stress is (according
to 2.1 and 1.19) σ+ = 314 000 Pa.
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(a) t = 0 years (b) t = 0 years

(c) t = 10 months (d) t = 10 months

(e) t = 13 years (f) t = 13 years

(g) t = 32.5 years (h) t = 32.5 years

Figure 2.11: The crevasse evolution of two different tensile stress cases - σxx (left
column) and σxx + σ+ (right column).
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Figure 2.12: The crevasse depth evolution of two different tensile stress cases -
σxx and σxx + σ+.

Figure 2.12 shows the evolution of crevasse depth for water-free crevasses with
the default values of model parameters (tab. 2.1). Damage levels D mark the case
with standard tensile stress σxx and Weertman describes the theoretical maximal
depth that crevasse should reach, considering the eq. 2.1. Damage levels D+

mark the case with additional tensile stress σ+ applied, Weertman+ describes the
theoretical maximal depth that crevasse should reach, considered the respective
case. It can be seen that depth predictions by the damage based model have a
relatively good quantitative agreement with the theoretical predictions based on
the linear elastic fracture mechanics (LEFM). The relative error is 2.9 − 5.1 %
(depends on selected damage value) for the case with additional tensile stress
applied. On the other hand, for the shallow crack, the relative error in crack
depth is pretty significant, reaching up to 37 − 62 %.

Table 2.2: The depth comparison of the theoretical prediction with the FEM
results for top water-free crevasses.

Theoretical FEM

Tensile stress D = 0.5 D = 0.6 D = 0.7 D = 0.8 D = 0.9

σxx 7.9 m 5.0 m 4.5 m 4.1 m 3.6 m 3.0 m

σxx + σ+ 62.5 m 60.7 m 60.3 m 59.9 m 59.6 m 59.3 m
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2.3.2 The Evolution of Other Model Relevant Physical
Quantities

To provide a more complete picture, in this subsection, we document the evo-
lution of all relevant physical quantities in the simulation with applied addi-
tional tensile stress σ+ (mentioned at the beginning of section 2.3). The studied
case is the top water-free crevasse. The evolution of all considered quantities is
shown in 6 snapshots distributed through the investigated time period unevenly
(t = 70 days, 130 days, 190 days, 315 days, 2.5 years and 40 years) to capture the
evolution more precisely.

Figure 2.13 shows the time evolution of the damage D that propagates as
expected concerning the examples above.

Figure 2.14 displays the evolution of the damage rate Ḋ; one can see that the
area of the fastest damage rate is the largest at the beginning of the simulation
and progressively concentrates at the tip as the crack propagates deeper.

Figure 2.15 displays the evolution of the local damage increment Ḋ
loc · dt,

which again concentrates at the tip and gradually disappears as reaching the
crevasse’s final depth.

Figures 2.16 to 2.22 display the evolution of (in order): the effective maximum
principal stress σ̄(I), the effective von Mises stress σ̄v, the effective Hayhurst stress
χ̄, the effective pressure p̄ and components of the effective Cauchy stress tensor
- σ̄xx, σ̄xy, σ̄yy. We will briefly comment only on the effective Hayhurst stress χ̄
as it depends on the other mentioned quantities - note that in fig. 2.18a (at the
beginning of the simulation) χ̄ concentrates below the IDA, while in fig. 2.18f
χ̄ goes to negative values, what causes the crack propagation to stop.
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(a) t = 70 days (b) t = 130 days

(c) t = 190 days (d) t = 315 days

(e) t = 2.5 years (f) t = 40 years

Figure 2.13: The evolution of the damage D quantity of the water-free crevasse
propagation with default parameter values and increased longitudinal stress. The
damage D quantity is displayed in a logarithmic scale.
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(a) t = 70 days (b) t = 130 days

(c) t = 190 days (d) t = 315 days

(e) t = 2.5 years (f) t = 40 years

Figure 2.14: The evolution of the damage rate Ḋ of the water-free crevasse prop-
agation with default parameter values and increased longitudinal stress. The
damage rate Ḋ is displayed in a logarithmic scale.
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(a) t = 70 days (b) t = 130 days

(c) t = 190 days (d) t = 315 days

(e) t = 2.5 years (f) t = 40 years

Figure 2.15: The evolution of the local damage increment Ḋ
loc ·dt of the water-free

crevasse propagation with default parameter values and increased longitudinal
stress. The local damage increment Ḋ

loc · dt is displayed in a logarithmic scale.
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(a) t = 70 days (b) t = 130 days

(c) t = 190 days (d) t = 315 days

(e) t = 2.5 years (f) t = 40 years

Figure 2.16: The evolution of the effective maximum principal stress σ̄(I) of the
water-free crevasse propagation with default parameter values and increased lon-
gitudinal stress.
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(a) t = 70 days (b) t = 130 days

(c) t = 190 days (d) t = 315 days

(e) t = 2.5 years (f) t = 40 years

Figure 2.17: The evolution of the effective von Mises stress σ̄v of the water-free
crevasse propagation with default parameter values and increased longitudinal
stress.
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(a) t = 70 days (b) t = 130 days

(c) t = 190 days (d) t = 315 days

(e) t = 2.5 years (f) t = 40 years

Figure 2.18: The evolution of the effective Hayhurst stress χ̄ of the water-free
crevasse propagation with default parameter values and increased longitudinal
stress.
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(a) t = 70 days (b) t = 130 days

(c) t = 190 days (d) t = 315 days

(e) t = 2.5 years (f) t = 40 years

Figure 2.19: The evolution of the effective pressure p̄ of the water-free crevasse
propagation with default parameter values and increased longitudinal stress.
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(a) t = 70 days (b) t = 130 days

(c) t = 190 days (d) t = 315 days

(e) t = 2.5 years (f) t = 40 years

Figure 2.20: The evolution of the σ̄xx component of the effective Cauchy stress
tensor, of the water-free crevasse propagation with default parameter values and
increased longitudinal stress.
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(a) t = 70 days (b) t = 130 days

(c) t = 190 days (d) t = 315 days

(e) t = 2.5 years (f) t = 40 years

Figure 2.21: The evolution of the σ̄xy component of the effective Cauchy stress
tensor, of the water-free crevasse propagation with default parameter values and
increased longitudinal stress.
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(a) t = 70 days (b) t = 130 days

(c) t = 190 days (d) t = 315 days

(e) t = 2.5 years (f) t = 40 years

Figure 2.22: The evolution of the σ̄yy component of the effective Cauchy stress
tensor, of the water-free crevasse propagation with default parameter values and
increased longitudinal stress.
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2.4 Water-free vs. Water-filled Crevasse
Let us now demonstrate the hydrofracturing effect. So far we assumed cracks to
be water-free, which corresponds to setting pw = 0 in equation 1.8 (resp. 1.2).
Now, we are going to compare the reference simulation with the case, when pw is
set to pw (d) = ρwgd, which corresponds to a crack that is completely filled with
water throughout its whole evolution.

Fig. 2.23 shows the comparison of D in several time snapshots for two cases
- water-free (left column) and water-filled (right column), both with model pa-
rameters at their default values (tab. 2.1), with D presented in a logarithmic
scale. As one can see, the water-filled crevasse penetrated through the whole ice
slab in almost 11 years, in contrast to water-free crack. The quantitative analysis
of the crack penetration is better represented by figure 2.24, which shows the
crevasse depth as a function of time for both mentioned cases - Dw represents
the respective levels of the lowermost point of selected damage iso-contour for
water-filled case, while D marks the standard water-free setup. It can be seen
that the water-filled crevasse propagates relatively slowly in approximately the
first 10.5 years of the simulation and then spread rapidly in a range of months
until it reaches the bottom of the ice slab. Penetrating through the whole domain
in the water-filled case matches with the conclusion of Weertman (1973) that ”...
there is no limit to the depth of an isolated water-filled crevasse. There is no
reason why such a crevasse may not penetrate the bottom surface of a glacier.”
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(a) t = 0 years (b) t = 0 years

(c) t = 5.7 years (d) t = 5.7 years

(e) t = 10.9 years (f) t = 10.9 years

(g) t = 11.1 years (h) t = 11.1 years

Figure 2.23: The evolution of a water-free (left column) vs. water-filled (right
column) crevasse.
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Figure 2.24: The crevasse depth evolution of a water-filled vs. water-free crevasse.
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Conclusion
This thesis deals with the continuum poro-damage mechanics (CPDM) and its
application in the investigation of ice crack propagation using the finite element
method (FEM). The essential principle of the CPDM is the description of the
crack via a single scalar field (the damage D) Duddu et al. (2020). In this
study, we considered the linear elastic rheology of the ice and did not concern the
temperature effects.

After formulating the governing equations of the problem (subsection 1.2.2)
and of the corresponding weak formulation (subsection 1.3.2), we present the
model setup - domain geometry and boundary and initial conditions. The bound-
aries are subject to two free-slip and two Neumann boundary conditions, while
the initial state reflects a small top surface crack (see fig. 1.1). The numerical
implementation consists of using the FEM-based open-source library package -
FEniCS (Alnaes et al., 2015).

The first studied feature of the model was its sensitivity to model parameters:
dt (time step size), lc (length scale parameter), a mesh resolution, the WDAZ (the
width of damage active zone), and the IDA (the initially damaged area). The
most notable effect on the water-free crevasse propagation was observed for pa-
rameters lc and the WDAZ, with the IDA parameter having a substantial effect
only for shallow crevasses.

The second investigated process is the dependence of the water-free crevasse
depth propagation on the aforementioned model parameters. The conclusion is
that parameters lc and the IDA have the most significant effect on the crevasse’s
final depth, with dt and the WDAZ having a small effect and the mesh resolution
having almost none.

The application of the additional longitudinal tensile stress σ+ (regarding a
top water-free crevasse) allowed us to discuss and compare the numerical results
for the maximal depth of top water-free crevasse with the linear elastic fracture
mechanics predictions (Weertman, 1973). While the relative error is significant
considering the shallow crevasse case (up to 62 %), the numerical results for the
deep crevasse are following the LEFM with relative error reaching max. 5.1 %.
For σ+ application, we also provide the evolution of other model related physical
quantities (subsection 2.3.2).

The simulation of the water-filled crevasse confirms the conclusion formulated
by Weertman (1973) that a single top-based water-filled crevasse can reach the
bottom of a freely floating ice slab.

The preparation and usage of the model for future planetary applications
should follow further model testing and calibration, its reformulation for basal
water-filled crevasse, and another testing for basal crevasses. Note that introduc-
ing a viscosity into the model may be necessary. After calibration of the basal
crevasse cases, the final version of the model shall be applied on icy moons con-
ditions to investigate the possibility of the hydrofracturing of the outer shells of
icy moons, particularly Europa and Enceladus in response to mechanical loading
by tidal, or as a result of pressurizing the internal ocean.
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A. Attachments

A.1 The LEFM Approach
The traditional approach to describe ice crevasses is the linear elastic fracture
mechanics (LEFM). The existence of bottom crevasses was suggested for the first
time in 1973 by Weertman (1973). The principle comes from the idea that bottom
crevasses on floating glaciers are filled with seawater. Consequently, the water
pressure in the crevasse partially balances the weight-induced lithostatic stress,
which otherwise prevents crevasse propagation.

According to Weertman (1973), an isolated water-free crevasse on the top of
a semi-infinite ice slab subject to gravity can penetrate to maximal depth Ltop

max

given by
Ltop

max = π

2 ρi g
σxx , (A.1)

where σxx is the far-field tensile stress. Building up on the Ltop
max given by equation

A.1, we can apply the tensile stress σxx from van der Veen (1998a), where he uses
the tensile stress of free-floating ice as

σxx = 1
2 ρi g H − 1

2
ρ2

i
ρw

g H . (A.2)

This expression represents an estimate of the dynamic tensional stress for a freely-
floating ice slab. By substituting equation A.2 into A.1, we get the maximal
length of a single water-free crevasse in a floating ice shelf, which can be useful
for calibration of continuum (poro-) damage mechanics (CDM or CPDM, respec-
tively) based models

Ltop
max = πH

4
ρw − ρi

ρw
. (A.3)
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