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Chapter 1

Introduction

The availability of high frequency data collections and powerful computational devices
were motivations for enhanced research in the field of market microstructure - both the-
oretical and empirical. Among others new econometric models were developed. [ER98]
propose an econometric model which takes into account the irregular spacing of the data.
They call their model the Autoregressive Conditional Duration model (ACD). They treat
the transaction data as a sequence of arrival times and characteristics associated with the
arrival times.

The concept of the ACD model was further developed by [BG00], who introduce the
log-ACD model, [GM98] and [Lun98], who propose models based on Burr distribution
and Gamma distribution (respectivelly).

[BZ06] apply the log-ACD model to the quote data of 3 stocks traded at the Prague
Stock Exchange. They study the information content implicit to the waiting times be-
tween market events and they test different market microstructure theories concerning
the impact of volume, spread and intensity of trading. Their empirical result is, that only
the spread shows a consistent negative impact on the expected durations.

[ER05] proposed further extension of the ACD model. Besides the waiting times
between events they study the associated price changes. They decompose the joint dis-
tribution of the discrete price changes and time intervals into a product of conditional
distribution of price changes and marginal distribution of the waiting times. The distri-
bution of waiting times is modeled by the ACD model and the conditional distribution
of the price changes is described by the Autoregressive Conditional Multinomial (ACM)
model. The ACM model allows different specifications to capture all possible intertem-
poral dependencies displayed by high-frequency transaction data.

In this study we present an application of the ACD model and of the ACD-ACM model
to the trade and quote data from the Prague Stock Exchange. The study is organized
as follows: following the introduction a brief insight in the development of the market
microstructure theories and in the trading at the Prague Stock Exchange is presented.
In the 2nd chapter the ACD model is introduced. In the next chapter we summarize the
fundamental theories which are necessary for the estimation of the coefficients using the
ACD model. 4th chapter contains general description of the trade dataset of the KB stock
and the model estimates of the ACD model based on the exponential and the Weibull
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distribution. Chapter 5 introduces the ACM model for the discrete price changes and in
chapter 6 the log-ACD-ACM model estimates for the Telecom stock are presented.

1.1 Brief History of Market Microstructure Theories

The first theoretical models explaining the market maker behavior appeared in the 70ies.
[Gar86] introduces a monopolistic model. One market maker faces the succession of buy
and sell orders. To prevent himself from bancrupcy he sets different buy and sell prices
(bid and ask price).

In [GM85] a fully new approach was introduced. In their information based model,
market maker and traders do not possess the same information concerning the traded
stock. There are two kinds of traders: informed and uninformed traders. Market maker
has to deal with both kinds of traders and thus to protect himself from the loss, he
sets different bid and ask prices. By observing the duration between the trades or the
volume of trades he can learn about the new information. When he sees possible signals
of informed trading he adjusts the bid and ask spread to reflect the probability of trading
with an informed trader. Following, if an informed trader possesses a good news he has
to act quickly to make profit from these superior news. If the news is bad, the informed
trader has no motivation to buy and even by selling he has to be careful not to disclose
his information. This means that high activity on the market signals good news and low
activity signals bad news.

This model was further developed by [EO92]. Easley and O’Hara believe that the
clustering of trades contains an important information. Uninformed traders trade for
liquidity reasons to rebalance their portfolio and they are supposed to arrive with constant
probability. Informed traders enter the market only when they possess (or when they think
to possess) a superior information. They buy when the news is good and sell when the
news is bad. This behavior shortens the duration between trades. When the duration is
long, there is likely to be no new information and the probability of dealing with informed
traders is low. As a consequence, the market maker decreases the bid and ask spread.
On the contrary, if the durations are short, it signals there may be a superior information
and the market maker increases the bid and ask spread.

Different approach is presented by [AP88]. According to their model, the volatility
clustering is a consequence of the random clustering of liquidity traders. Hence long
duration means the absence of liquidity traders, high fraction of informed traders and as
a consequence also higher volatility and increased bid and ask spread.

All the models presented above are based on a market with a monopolistic market
maker. Later the differences between stock exchanges with monopolistic market maker
(e.g. NYSE) and competing market makers (Prague Stock Exchange, NASDAQ) are ex-
plored. [CCS95] observed the intraday patterns of the bid-ask spreads on the market with
a single specialist (NYSE) and on the market with competing market makers (NASDAQ).
In the first case the bid-ask spread follows the well known U shape (the spread is the high-
est in the morning, it lowers in the middle of the trading day and raises again before the
end of trading), whereas on the market with competing market makers the spread remains
stable throughout the day and it even narrows at the end of the trading day. [CCS95]
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conclude that the price formation process as well as the bid-ask spread dynamics follow
different causalities in these two cases.

1.2 The Prague Stock Exchange

1

Prague Stock Exchange (PSE) was founded in 1992 and now it is the biggest organiser
of the securities market in the Czech Republic. Only licensed dealers - members of the
PSE - are entitled to conclude trades. PSE is an electronic exchange, that means that
trading is based on an automated processing of instructions to buy and sell securities. The
types of trades are Automatic, SPAD, Block trades. In this study we will concentrate on
the data from the SPAD.

1.2.1 SPAD (System for Support of the Share and Bond Mar-
kets)

The SPAD trading is based on the activities of the market makers and it is divided into
two phases, an open phase and a closed phase. The closed phase serves basically to the
market makers to clear the trades. The open phase stands from 9:30 - 16:00 CET. During
the open phase market makers are obliged to continually quote purchase and sale prices
of the issues for which they act as market makers. These quotes must lie within the
allowable spread, defined by the best quotation increased by 0.5% in each direction. The
members of the PSE shall also report all over-the-counter (OTC) trades they perform
within 5 minutes during the open phase and within 60 minutes during the closed phase of
the SPAD. During the open phase, the OTC trades with SPAD securities are also subject
to price limitations.

1Source: [Exc]
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Chapter 2

The ACD Model

2.1 Background

Consider a stochastic process that is a sequence of arrival times {t0, t1, . . .}. The counting
function N(t) indicates the number of events which have occurred by time t. If there
is any characteristics associated with the arrival times, they are called marks and the
process is then called marked point process.1

The conditional intensity process for ti, N(t) is defined by

λ(t|N(t), t0, t1, . . . , tN(t)) = lim
∆t→0

P (N(t + ∆t) > N(t)|N(t), t0, t1, . . . , tN(t))

∆t
. (2.1)

The conditional intensity2 process is a self-exciting point process, because the past
events impact the probability structure of the future events. If the intensity is influenced
only by m most recent events we call it the m-memory self-exciting process.

There are many ways how to parameterize the conditional intensity. For example the
model can be formulated in calender time:

λ(t|N(t), t0, t1, . . . , tN(t)) = ω +

N(t)∑
i=1

πi(t− ti), (2.2)

ω ∈ R, πi is a function

or based on the intervals between events:

λ(t|N(t), t0, t1, . . . , tN(t)) = ω +

N(t)∑
i=1

πi(tN(t)−i+1 − tN(t)−i), (2.3)

ω ∈ R, πi is a function.

1A more precise definition can be found for instant in [Dal02]
2In this case we consider the intensity to be a function of the condition.
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2.2 Specification

The ACD model was introduced by [ER98]. They have suggested a model where the
process of the durations xi between events is specified by:

xi = ϕi(xi−1, . . . , x1; θ)εi xi = ti − ti−1, i = 1 . . . n (2.4)

where ϕi is a function of the past durations and a deterministic parameter θ and where
εi is an i.i.d. sequence of random variables with the density p(ε, φ) and the expectation
E(εi) = 1.

Given this settings, ϕi is equal to the conditional expectation of the ith duration:

E(xi|xi−1, . . . , x1; θ) = ϕi(xi−1, . . . , x1; θ). (2.5)

Let p0 be the density function of ε and S0 be the associated survival function.3 Let’s
define the baseline hazard as

λ0(t) =
p0(t)

S0(t)
. (2.6)

The the conditional intensity of the ACD model may be expressed as

λ(t|N(t), t1, . . . , tN(t)) = λ0

(
t− tN(t)

ϕN(t)+1

)
1

ϕN(t)+1

. (2.7)

2.3 Parameterization of ϕi

The following parameterization of ϕi was suggested by [ER98]:

ϕi = ω +

p∑
j=0

αjxi−j +

q∑
j=0

βjϕi−j (2.8)

To assure the non-negativity of the expected durations, we set restrictions ω > 0, αj ≥ 0,
βj ≥ 0 and to assure the stability we require αj + βj < 1 for all j.

The autoregressive conditional model using the specification (2.8) is called the ACD(p,q).
In general, ACD(1,1) through ACD(3,3) seem to be sufficient for practical purposes.

If we want to study the influence of some marks associated with the arrival times, we
add them to the specification:

ϕi = ω +
m∑

j=0

αjxi−j +

q∑
j=0

βjϕi−j + γTzi (2.9)

where γ is an r-dimensional parameter vector, γj > 0, j = 1 . . . r, and zi is a vector of r
nonnegative exogenous variables associated with the i-th arrival time. The variables can
be for instance the volume or the spread associated with the last event.

3Survival function describes the probability that an event did not happen until the moment t: S0(t) =
1−

∫ t

0
p0(s)ds
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[BG00] introduced the log-ACD model, in which we do not need to imply the non-
negativity restrictions on the parameters:

log(ϕi) = ω +
m∑

j=0

αj log(xi−j) +

q∑
j=0

βj log(ϕi−j) + ~γT
i zi (2.10)

With this specification the non-negativity of the expected durations is guaranteed regard-
less of the parameter values. This is very helpful if we want to perform empirical testing
of the market microstructure theories.

2.4 Distribution of ε

[ER98] suggest two possible specifications for the density of ε. The simplest one is to
assume, that εi, i = 1 . . . n, have the exponential distribution with the parameter λ = 1.
The baseline hazard λ0(t) is then equal to 1 and the conditional intensity is

λ(t|N(t), t1, . . . , tN(t)) = ϕ−1
N(t)+1. (2.11)

This model is called the exponential ACD model (EACD).
In the EACD model we actually assume, that the probability that the event N(t0)+1

arrives in the time interval (t, t + ∆t), t > t0 is independent on the distance t− t0 (until
the arrival of the event N(t0) + 1).

A more flexible option, also suggested by [ER98], is to apply the Weibull distribution
as the density of εi. The density of the Weibull distribution is:

w(x; κ, γ) = γκγxγ−1 exp {−(κx)γ} . (2.12)

To assume, that a x has Weibull distribution, is equivalent to the assumption, that xγ

has the exponential distribution. So, if γ equals 1, the Weibull distribution is equivalent
to the exponential distribution with the parameter κ. In the ACD model a necessary
condition for the distribution of εi is a unit mean, whereas the mean of the Weibull dis-
tribution equals κ−γΓ (1 + 1/γ). So we define εi to have the Weibull distribution divided
by the mean, where κ is equal to 1. Then the density of εi is:

w∗(u; 1, γ) = γΓ (1 + 1/γ)γ uγ−1 exp {−(Γ (1 + 1/γ) u)γ} (2.13)

The survival function derived from the transformed Weibull distribution w∗(u; 1, γ)
equals S0 = e−(Γ(1+1/γ)u)γ

and the relevant baseline hazard function equals

λ0(u) = γΓ (1 + 1/γ)γ uγ−1. (2.14)

The baseline hazard is now either increasing or decreasing. Long durations are more
likely in case that γ is smaller than 1 or less likely if γ is greater than 1. The conditional
intensity equals:

λ(t|xN(t), . . . , x1) = γ

(
Γ (1 + 1/γ)

ϕN(t)+1

)γ

(t− tN(t))
γ−1. (2.15)
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This model is called the Weibull-ACD model (WACD).
[Lun98] introduced a modification of the ACD model using the generalized gamma

distribution and [GM98] studied a model based on the Burr distribution. These models
are more flexible because the shapes of their hazard functions can be constant, monotonic
as well as U-shaped. The exponential and Weibull distributions are special cases of those
distributions.

2.5 The Log-likelihood Function

Now we can derive the log-likelihood functions for the EACD and the WACD model.
Let εi be i.i.d with exponential distribution and parameter λ = 1. The conditional

density of xi, xi = ϕiεi, is

fi(x) = e
− x

ϕi
1

ϕi

, (2.16)

hence the log-likelihood function for EACD model is equal to

L(θ) = −
N(T )∑
i=1

{
log(ϕi) +

xi

ϕi

}
. (2.17)

Now let εi be i.i.d with Weibull distribution w∗. The density of xi is

fi(x) = γxγ−1

(
Γ (1 + 1/γ)

ϕi

)γ

exp

{
−
(

Γ (1 + 1/γ) x

ϕi

)γ}
(2.18)

and the log-likelihood function for the WACD model equals

L(θ) =

N(T )∑
i=1

log

(
γ

xi

)
+ γ log

(
Γ(1 + 1/γ)xi

ϕi

)
−
(

Γ(1 + 1/γ)xi

ϕi

)γ

. (2.19)
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Chapter 3

MLE

To obtain the estimates of the parameters in the ACD model the multivariate maximum
likelihood method is used. In this section we would like to approach some theoretical
issues concerning the MLE and its approximation.

The objective is to find the maximum of the log-likelihood function L(θ). Assuming
L(θ) is differentiable, we define the score function as a vector of the first derivatives

S(θ) =
∂

∂θ
L(θ), (3.1)

so the MLE θ̂ is the solution of the equation S(θ) = 0.
We further define the observed Fisher information matrix I(θ) as

I(θ) = − ∂2

∂θ2
L(θ) (3.2)

and the expected Fisher information matrix Jn(θ) = EθI(θ). Under usual regularity
conditions1 it holds that I(θ) = Jn(θ) and Jn(θ) = nJ(θ).

In the next three sections we approach the problem of the consistency of the estimates.
In the ACD model we assume that εi are i.i.d. with exponential or Weibull distribution,
in reality we usually see, that the residuals are neither i.i.d. nor do they follow the
assumed distributions. Using the results of [GMT84] and [LH94] we will show, that MLE
estimations of the EACD model and the WACD(1,1) model are consistent.

3.1 MLE under a Wrong Model

In this section we would like to investigate the robustness of our estimates against a wrong
model. Let θ̂ be a consistent MLE estimate of the vector θ0 based on an assumed model
fθ(x). Let’s assume that we do not know the right model. We define:

Γ ≡ E

(
∂ log fθ(X)

∂θ

)(
∂ log fθ(X)

∂θ′

)
|θ=θ0 (3.3)

1The regularity conditions can be found i.e. in [And02].
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and, similarly as in (3.2),

I ≡ −E
∂2 log fθ(X)

∂θ∂θ′
|θ=θ0 . (3.4)

The expected value is taken with respect to the true but unknown distribution. If fθ(x)
is the true model, the matrices (3.3) and (3.4) are equal.

The following theorem from [Paw01] describes the asymptotic behavior of the MLE
estimates under the assumption of a wrong model.

Theorem 3.1.1 Let x1, . . . xn be an iid. sample. Under usual regularity conditions 2

√
n(θ̂ − θ0)

d→ N(0, I−1ΓI−1). (3.5)

Unfortunately this helpful theorem cannot be applied in the case of the EACD and
the WACD model because the residuals εi are not likely to be i.i.d. In the next three
sections we will search for a generalization of this theorem.

3.2 The Pseudo Maximum Likelihood Estimation

[GMT84] have studied the properties of an estimator obtained by maximizing a log-
likelihood function associated with a family, which does not necessarily contain the true
probability distribution. They call this method the pseudo maximum likelihood method.

[GMT84] show that the log-likelihood functions based on a linear exponential family
give consistent and asymptotically normal estimators of the parameters:

Definition 3.2.1 A family of probability measures on Rm, indexed by parameter χ ∈
M ⊂ Rm is called linear exponential, if:

• every element of the family has a density function with respect to a given measure
ν(du) and this density can be written as

l(u, χ) = exp {A(χ) + B(u) + C(χ)u} , u ∈ Rm, (3.6)

where A(χ) and B(u) are scalars and C(χ) is a row vector of size m;

• χ is the mean of the distribution distribution, whose density is equal to l(u, χ).

We estimate θ0 in the model:

yt = f(xt, θ0) + et, (3.7)

where θ0 ∈ Θ ⊂ Rk, xt ∈ Rp, yt ∈ Rm and et ∈ Rk. Let’s assume that the conditional
distribution of e1, . . . , eT given x1, . . . , xT is equal to the product of the conditional dis-
tributions L(et, xt), where L(et, xt = x) = L(es, xs = x), t 6= s. The true unknown

2[And02]
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conditional distribution of yt given xt, will be denoted as λ0(xt, θ0). Further assume that
E(yt|xt) = f(xt, θ0) and that conditional variance matrix Ω0(xt) exists for all xt. Under
these assumptions [GMT84] prove that the estimates of θ0 obtained by maximizing of

T∑
t=1

log l(yt, f(xt, θ)), (3.8)

where l(u, χ) is a family of probability distribution functions, are strongly consistent.
Further they prove following theorem:

Theorem 3.2.2 If (l(u, χ), χ ∈M) is a linear exponential family, the pseudo maximum
likelihood estimator θ̂T is such that:

√
T (θ̂T − θ0)

d→ N(0, I−1ΓI−1) (3.9)

where I and Γ are matrices (3.3) and (3.4), respectively (Section 3.1).

To apply their approach for the EACD(p,q) model we need to realize two things:

1. The results of [GMT84] remain valid even if we consider a slightly different initial
model:

yt = f(xt, θ0)et. (3.10)

Proof: In their study, [GMT84] do not use the form (3.7) of the model in any of
the proofs. Thus we may consider the model (3.7) to be only illustrative. If we use
another form of the model, the results presented by [GMT84] remain valid as long
as the log-likelihood function has the appropriate form.

�

2. For the exponential ACD model l(u, χ) takes following form:

l(xi, ϕi) = e
− xi

ϕi
1

ϕi

= e
− xi

ϕi
−log(ϕi). (3.11)

Thus the likelihood function of the exponential ACD model belongs to the linear
exponential family, where A(ϕi) = − log(ϕi) and C(ϕi) = − 1

ϕi
. This linear expo-

nential family is also known as the Gamma exponential family.

From the statements 1 and 2 above we may conclude, that the estimates of the pa-
rameters in the EACD(p,q) model are consistent and asymptotically normal.

The Weibull distribution belongs to the exponential family, but not to the linear
exponential family and thus we cannot apply the results obtained by [GMT84]. In the
next two sections we will study a different approach to this problem, which can be used
for the Weibull ACD(1,1) model.
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3.3 Consistency of the EACD(1,1) Based on [LH94]

[ER98] point out the analogy between the ACD model and the GARCH model. The
ARCH model was originally introduced by [Eng82] and the generalized ARCH (GARCH)
by [Bol86]. [LH94] proved the consistency of the quasi-maximum likelihood3 estimates in
the GARCH(1,1) model. Using the analogy between the ACD and GARCH model, [ER98]
derive the consistency of the quasi-maximum likelihood estimates in the EACD(1,1)
model.

In the first part of this section we summarize the results from [LH94]. In the second
part we discuss a theorem from [ER98]. In this theorem they prove that the EACD(1,1)
model can be linked to the results obtained by [LH94].

[LH94] consider an observed sequence yt such that

yt = γ0 + εt, t = 1, . . . , n, (3.12)

where E(εt|It−1) = 0 and It = σ(εt, εt−1, . . .).
ht is defined as the conditional variance of yt:

ht ≡ E(ε2
t |It−1) (3.13)

and we assume, that ht follows the GARCH(1,1) process:

ht = ω(1− β) + αε2
t−1 + βht−1 a.s., (3.14)

where θ ≡ [γ, ω, α, β]′ and h1(θ) = ω, θ ∈ Θ, Θ is a compact parameter space.
Further we define the rescaled variable

zt =
εt

h
1/2
t

(3.15)

From the definitions of zt and ht, E(zt|It−1) = 0 a.s. and E(z2
t |It−1) = 1 a.s.

The estimation of GARCH is frequently done under the assumption, that zt is i.i.d.
with N(0, 1) distribution. In that case, the log-likelihood takes the form (ignoring con-
stants)

Ln(θ) =
1

2n

n∑
t=1

lt(θ) lt(θ) = −
(

log ht(θ) +
e2

t

ht(θ)

)
. (3.16)

However, in reality we do not know the correct density of zt. Thus we refer to the
likelihood as a quasi-likelihood.

The objective of [LH94] was to prove, that under following assumptions, the log-
likelihood function defined in (3.16) will consistently estimate the parameters of the
GARCH(1,1) model even if the random variable zt is neither Gaussian nor i.i.d..

The assumptions stated by [LH94] are:

3In contrast to the full likelihood, in the quasi-maximum likelihood framework we do not specify
the probability structure, but only the mean and variance function. The study of [LH94] is based on
the assumption, that the mean and variance functions of the model is specified correctly, and then the
Gaussian likelihood is used as a vehicle to estimate the parameters.
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Assumptions 3.3.1 (i) zt is strictly stationary and ergodic and z2
t is nondegenerate.

(ii) suptE(log(β + αz2
t )|It−1) < 0 a.s.

(iii) E(z4
t |It−1) ≤ K ≤ ∞ a.s. (uniformly bounded conditional fourth moment of zt)

(iv) θ lies in the interior of Θ

[LH94] prove that following theorem holds:

Theorem 3.3.2 Under Assumptions 3.3.1

θ̂n
p→ θ0, (3.17)

where θ̂n = argmaxθ∈ΘLn(θ).

They further present a result concerning the asymptotic normality of the quasi-MLE:

Theorem 3.3.3 Under Assumptions 3.3.1

√
n(θ̂n − θ0)

D→ N(0, I−1ΓI−1) (3.18)

where I and Γ are matrices (3.3) and (3.4), respectively (Section 3.1).

The following equation provides a consistent estimate of the matrix Γ:

Γ̂n(θ) =
1

n

n∑
t=1

∂lt(θ)∂lt(θ)
′, Γ̂n = Γ̂n(θ̂n) (3.19)

Corollary to [LH94], [ER98] link the EACD(1,1) model to the GARCH(1,1) model:

Lemma 3.3.4 Consider a model
xi = ϕiεi. (3.20)

where E(xi|Ii−1) = ϕi:
ϕi = ω + αxi−1 + βϕi−1. (3.21)

and for εi it holds:

(i) εi is strictly stationary and ergodic, nondegenerate

(ii) supiE[log(β + αεi|Ii−1)] < 0 a.s.

(iii) εi has bounded conditional second moments.

(iv) θ = [ω, α, β]′ is in the interior of Θ

(v) ϕ1 = ω/(1− β) (a start-up condition)
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then the maximizer of L,

L(θ) = −
N(T )∑
i=1

{
log(ϕi) +

xi

ϕi

}
(3.22)

will be consistent estimator of θ0 and asymptotically normal with the covariance matrix
given in (3.18).

Sketch of the proof: Let’s define:

yi = di

√
xi, (3.23)

where di is independent of xi and it is i.i.d. and equal to 1 with probability 0.5 and to -1
with probability 0.5.

Then the expected value of yi is γ0 = E(yi) = 0 and the variance of yi equals ϕi. Thus
the random variable yi/

√
ϕi is analogous to zi defined in (3.15).

If we substitute (3.23) in the log-likelihood given in (3.22) we receive the Gaussian
likelihood presented in (3.16).

The last step to prove the consistency of the quasi-maximum likelihood estimates is to
ensure, that yi/

√
ϕi will meet the Assumptions 3.3.1 requested by [LH94]. This maintain

the conditions (i) through (v) in Lemma 3.3.4.
Assumption 3.3.1 (i) follows from the condition (i) in Lemma 3.3.4 because the square

root of a strictly stationary, ergodic and nondegenerate positive random variable is also
strictly stationary, ergodic and nondegenerate. Assumptions 3.3.1 (ii), (iii) and (iv) are
equivalent to the conditions (ii), (iii) and (iv) of Lemma 3.3.4.

�

Theorem 3.3.5 Let’s consider the EACD(1,1) model, where εi is not i.i.d. with expo-
nential distribution, but it is:

(i) strictly stationary, ergodic and nondegenerate

(ii) Eεi = 1

(iii) εi has bounded conditional second moments

(iv) ϕ1 = ω/(1− β).

Then the estimates of the parameters obtained by maximizing the log-likelihood function
given in (2.17) are consistent and asymptotically normal quasi-maximum likelihood esti-
mates.

Proof: Theorem 3.3.5 follows from the fact that the EACD(1,1) model fulfills the
conditions given in Lemma 3.3.4.

�

The great advantage of this result is that it covers the cases, when εi is not i.i.d.
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3.4 The Consistency of the Quasi-Maximum Likeli-

hood Estimates for the WACD(1,1) Model

[ER98] expect that the result from previous section can not be easily extended above
EACD(1,1) but they express a believe that similar results will be true for higher order
models.

Here we would like to present a proof that similar results as in the previous section
are also valid for the Weibull ACD(1,1) model. The following lemma is a modification of
Lemma 3.3.4:

Lemma 3.4.1 Consider a model
xi = ϕiεi. (3.24)

where E(xi|Ii−1) = ϕi,
ϕi = ω + αxi−1 + βϕi−1. (3.25)

and for εi it holds:

(i) εi = xi/ϕi is strictly stationary and ergodic, nondegenerate

(ii) supiE[log(β + αΓ(1 + 1/γ)γεγ
i |Ii−1)] < 0 a.s.

(iii) εγ
i has bounded conditional second moments

(iv) θ0 = [ω0, α0, β0]
′ is the interior of Θ

(v) ϕ1 = ω/(1− β)

(vi) 0 < γ ≤ K < ∞.

Then the maximizer of L,

L(θ) =

N(T )∑
i=1

log

(
γ

xi

)
+ γ log

(
Γ(1 + 1/γ)xi

ϕi

)
−
(

Γ(1 + 1/γ)xi

ϕi

)γ

(3.26)

will be consistent quasi-maximum likelihood estimator of θ0 and asymptotically normal
with the robust covariance matrix given in 3.18.

Proof: Let’s denote

ρi =
Γ(1 + 1/γ)γ

ϕγ−1
i

.

We define a random process yi, i = 1 . . . n

yi = di

√
ρix

γ
i . (3.27)

The expected value of yi equals 0 and the variance equals:

var(yi) = E(yi)
2 = ρiE(xi)

γ. (3.28)
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E(xi)
γ =

∫ ∞

0

xγ
i γxγ−1

i

(
Γ (1 + 1/γ)

ϕi

)γ

exp

{
−
(

Γ (1 + 1/γ) xi

ϕi

)γ}
dxi

We substitute u =
(

Γ(1+1/γ)xi

ϕi

)γ

and we receive:

E(xi)
γ =

(
ϕi

Γ (1 + 1/γ)

)γ ∫ ∞

0

u exp {−u} du

=

(
ϕi

Γ (1 + 1/γ)

)γ {[
−ue(−u)

]∞
0

+

∫ ∞

0

e(−u)du

}
=

(
ϕi

Γ (1 + 1/γ)

)γ

Thus
var(yi) = ϕi.

So the expected value as well as the variance of yi/
√

ϕi are equal to the expected value
and variance of zi.

Further we need to verify that if we substitute yi from (3.27) in the density function of
the Weibull distribution (with mean 1) we receive the quasi log-likelihood formula from
[LH94] given in (3.16).

The density function of Weibull distribution with mean 1 is (Equation 2.18):

f(xi) = γxγ−1
i

(
ρi

ϕi

)
exp

{
−
(

ρix
γ
i

ϕi

)}
(3.29)

and the inverse function to (3.27) and its derivative equal:

xi =

(
y2

i

ρi

) 1
γ ∂xi

∂yi

=
2

γ ρ
1/γ
i

y
2−γ

γ

i . (3.30)

We can see that di disappears from the equation.
We substitute (3.30) into (3.29) and we receive the density function of yi:

g(yi) = 2yi exp

{
y2

i

ϕi

}
1

ϕi

The log-likelihood function derived from this density (ignoring constants) equals:

L̃(θ) = −
n∑

i=1

(
log(ϕi) +

y2
i

ϕi

)
. (3.31)

and this is equal to the log-likelihood given in (3.16).
Finally we need to prove, that yi meets Assumptions 3.3.1.
The assumption (i) follows from realizing, that finite positive power of a strictly sta-

tionary, ergodic and nondegenerate positive random variable is also strictly stationary,
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ergodic and nondegenerate. If we multiple this strictly stationary, ergodic and nondegen-
erate random variable by a constant it will keep these characteristics.

To fulfill the assumption (ii), following equation must hold:

supiE[log(β + α (yi/
√

ϕi)
2 |Ii−1)] < 0.

We substitute (3.27) and we receive:

supiE[log(β +αΓ(1 + 1/γ)γ

(
xi

ϕi

)γ

|Ii−1)] = supiE[log(β +αΓ(1 + 1/γ)γεγ
i |Ii−1)]. (3.32)

From the assumption (iii) we have: E(y4
i |Ii−1) < K < ∞.

E(y4
i |Ii−1) = E

[
(ρi xγ

i )
2 |Ii−1

]
= E

[
(ρi (ϕiεi)

γ)
2 |Ii−1

]
= Γ(1 + 1/γ)2γϕ2

i E(ε2γ
i |Ii−1)

Thus E(ε2γ
i |Ii−1) < K ′ < ∞→ E(y4

i |Ii−1) < K < ∞.
Assumptions 3.3.1 (iv) and (v) are equivalent to the conditions (iv) and (v) of the

Lemma.

�

Theorem 3.4.2 Let’s consider the WACD(1,1) model, where εi is not i.i.d. with Weibull
distribution, but it is:

(i) strictly stationary, ergodic and nondegenerate

(ii) Eεγ
i ≤

1−β
α Γ(1+1/γ)γ

(iii) εγ
i has bounded conditional second moments

(iv) ϕ1 = ω/(1− β).

Then the estimates of the parameters obtained by maximizing the log-likelihood function
given in (2.19) are consistent and asymptotically normal quasi-maximum likelihood esti-
mates.

Proof: We want to apply Lemma 3.4.1. The conditions of the Lemma 3.4.1, except for
the condition (ii), follow trivially from the conditions of Theorem 3.4.2 and the definition
of the WACD(1,1) model. To prove the condition (ii) we use the Jensen’s inequality:

supiE [log(β + αΓ(1 + 1/γ)γεγ
i )|Ii−1] ≤ supi {log E [β + αΓ(1 + 1/γ)γεγ

i |Ii−1]} . (3.33)

Further, from the condition (ii) of Theorem 3.4.2 follows:

E [β + αΓ(1 + 1/γ)γεγ
i |Ii−1] = β + αΓ(1 + 1/γ)γE(εγ

i |Ii−1) ≤ 1,

which, in the combination with (3.33), verifies (ii) of Lemma 3.4.1.

�
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Chapter 4

Modeling of the Intervals Between
Trades of KB Stock Using the ACD
Model

4.1 Data Description

The study is based on the data extracted from the Trade and Quote dataset provided by
the Prague Stock Exchange. The period lasts from 5th January 2000 to 12th November
2004. The data concern twelve securities, which were traded in SPAD during this period.
There are two datasets: intra-day trade data and intra-day quote data. The first dataset
contains detailed information on every single trade; the time and date of the trade, the
price, the volume, the number of shares sold and the information whether the trade was
conducted within the open phase of the SPAD or not. The latter dataset records the
quote process; the date and time of the quote posted, the relevant bid and ask price and
the instantaneous allowable spread.

We use the ACD model to describe the process of the waiting times (further in this
study we will call them durations) between the trades of Komerčńı Banka stock in the
period from 2nd January 2004 to 12th November 2004. We delete the trades, which were
performed during the closed phase of SPAD and if there are multiple trades within one
second, we consider them to be only one trade. After these adjustments we are left with
17319 trades.

We ignore the overnight waiting times and we calculate the durations between trades.
The minimum time between two trades is 1 second, maximum duration is 16900 (4 hours,
41 minutes and 40 seconds). The average duration equals 297 seconds (4 minutes and 57
seconds).

In Figure 4.1 a histogram of the durations is plotted.
The ACD model is proposed especially for correlated durations. Table 4.1 contains

autocorrelations and partial autocorrelations of the durations. We use the Ljung-Box
statistic1 to test the hypothesis, that the first 10 autocorrelations are equal to zero. The

1The Ljung-Box statistic was introduced by [LB78]. They refined the portmanteau test of white noise,
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Figure 4.1: Histogram of the durations between trades.

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10

ACF 0.130 0.046 0.049 0.048 0.026 0.014 0.026 0.009 0.001 0.017
PACF 0.130 0.030 0.041 0.036 0.013 0.005 0.019 -0.001 -0.004 0.014

Table 4.1: Autocorrelations and partial autocorrelations of the durations between trades.

5% critical value equals 18.3, so we reject the null hypothesis with the test statistic equal
to 443.4 and the corresponding p− value < 2.2e−16.

4.2 Daily Pattern of the Transaction Durations

In the previous studies of this topic ([ER98], [BZ06]) it was shown, that the durations
between trades exhibit strong diurnal pattern. The trading activity is high at the begin-
ning of the open phase, becomes lower in the middle of the day and raises again at the
end of the trading. The rise after 15:00 in the afternoon may be also connected with the
opening of the stock markets in the USA.

Therefore we can view the duration process as if it consisted of two components;
deterministic component specified by the time-of-day effect and a stochastic component
described by the ACD model. Following [ER98], we will define the time-of-day effect as

which was introduced in [BP70]. They present the statistic

Qm = n(n + 2)
m∑

k=1

(n− k)−1r2
k,

where

rk =
1/n

∑n
t=k+1(εt − ε̄)(εt−k − ε̄)

1/n
∑n

t=1(εt − ε̄)2
.

They show that for white noise sequence εi, where n is large enough and m << n, the Qm statistic has
approximately χ2

m distribution.
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Figure 4.2: The estimate of a daily pattern for transaction durations.

a multiplicative component:
x̃i = xiφi (4.1)

where x̃i are the original raw durations between trades, xi are diurnally adjusted durations
and φi is a function describing the time-of-day effect.

The time-of-day function can be either included in the model and the parameters can
be estimated simultaneously with the parameters of the ACD model or it can be removed
before the estimation of the ACD. [ER98] perform the joint estimation of the parameters
and diurnal effect but they report, that the results are very similar for both procedures.
The majority of the empirical studies (i.e. [BG00], [BZ06]) use the two-step procedure.

In this part of the study we follow the two-step procedure as it was described by
[BG00]. We calculate the smoothed durations for every time point t of the trading day
as follows: we average the durations over t ± 5 minute interval and then we smooth the
time-of-day function by a cubic spline.

In Figure 4.2 the time-of-day function φ is plotted. The gray line designates the
durations averaged over t± 5 minutes intervals, the solid black line plots the cubic spline
with 19 equidistant nods. This picture illustrates the general pattern (inverted U shape),
the daily patterns of the durations may differ quite strongly on daily or weekly basis.

Finally we calculate the diurnally adjusted durations. The minimum of the adjusted
durations is 0.00197, average lies at 0.988 and maximum at 117.8. In Figure 4.3 the
histogram of the diurnally adjusted durations is plotted.

In Table 4.2 the autocorrelations and partial autocorrelations of the adjusted durations
are recorded. We calculate the Ljung-Box statistic of the null hypothesis that the first
10 autocorrelations are equal to zero. The hypothesis is rejected with the test statistic
equal to 316 and the corresponding p− value < 2.2× 10−16. The autocorrelations of the
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Figure 4.3: Histogram of the diurnally adjusted durations.

Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 10

ACF 0.110 0.036 0.031 0.037 0.027 0.013 0.031 0.016 0.007 0.015
PACF 0.110 0.024 0.025 0.030 0.019 0.005 .027 0.008 0.001 0.012

Table 4.2: Autocorrelations and partial autocorrelations of the diurnally adjusted dura-
tions.

adjusted durations are lower than by the raw durations, but they are still significantly
different from zero, which signals that the autocorrelation of the raw durations are not
only a result of the daily factor.

4.3 The Exponential ACD Model of the Adjusted

Durations

We want to perform the maximum likelihood estimation of the EACD(1,1) and EACD(2,2)
models. For the maximization of the likelihood function the BHHH algorithm2 with
analytical derivatives is used.

In the case of the EACD(2,2) model the estimate of the parameter α2 does not signifi-
cantly differ from zero. Therefore we omit the parameter α2 in the model and we perform
the estimation of the parameters of the EACD(1,2).

In Table 4.3 the estimated parameters are listed.
The sums α1 + β1 = 0.5536 for the EACD(1,1) model and α1 + β1 + β2 = 0.6089 for

the EACD(1,2) are low in comparison to the results obtained by [ER98], which indicates
that in this model the past durations and past expected durations have rather low impact
on the present durations.

2The BHHH algorithm was introduced by [BHHH74].
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EACD (1,1)

ω α1 β1

Estimate 0.4489 0.2855 0.2678
p-value 0.00042 1.79× 10−8 0.162

EACD (1,2)

ω α1 β1 β2

Estimate 0.4324 0.2852 0.2233 0.1004
p-value 0.0235 1.01× 10−06 0.1864 0.2858

Table 4.3: Parameter estimates for the exponential ACD(1,1) and exponential ACD(1,2)
model. Notes: ϕi = ω + α1xi−1 + β1ϕi−1 in ACD(1,1) resp. ϕi = ω + α1xi−1 + β1ϕi−1 +
β2ϕi−2 in ACD(1,2), ω is positive, α1, β1 and β2 are positive and ∈ (0; 1).

Bellow each parameter the appropriate p − value for the test of H0: parameter is
equal to 0 is presented. The test is performed using the normal approximation with
the covariance matrix I−1ΓI−1 defined in Section 3.1. The consistency and asymptotic
normality for the EACD estimates, when the residuals εi are not i.i.d. with exponential
distribution, was discussed in Section 3.2 and for the EACD(1,1) additionally in Section
3.3. For the matrix Γ we use the approximation (3.19) presented by [LH94].

In Picture 4.4 the raw durations, their estimates and the time-of-day effect for one day
are plotted. As it is mentioned above, the daily pattern of the durations may differ heavily
from the time-of-day function. This day is one of the days with rather higher number of
trades, therefore the time-of-day function is generally higher than the durations.

We test the hypothesis H0: EACD(1,1) against H1: EACD(1,2). The likelihood ratio
statistic equals 56 and it has asymptotically χ2

1 distribution. Thus we reject H0 with
p-value equal to 3.5× 10−13.

4.3.1 Standardized Durations

The ACD model is supposed to capture the intertemporal correlations of the durations
(or diurnally adjusted durations). The model assumes that the stochastic information of
the model (in our model described as εi) is i.i.d. To test this assumption let’s define the
standardized durations:

ε̂i =
xi

ϕ̂i

=
x̃i

ϕ̂iφi

(4.2)

where xi (x̃i) are diurnally adjusted durations (raw durations), ϕi are the estimations
of the expected durations and φi is the time-of-day function. The statistics about the
standardized durations are in Table 4.4.

We perform the Ljung-Box test with 10 lags to test the hypothesis, that the auto-
correlations are equal to zero. The Ljung-Box test statistic for the standardized resid-
uals from the EACD(1,1) model equals 53.3 with the corresponding p − value equal to
6.676 × 10−8 and for the standardized residuals from the EACD(1,2) model it is 55.9,
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Figure 4.4: Plot of the estimated durations on 10.5.2004. The solid line shows the raw
durations, dashed line are the estimated durations and the gray line presents the time-of-
day effect.
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EACD (1,1) EACD (1,2)

Mean 0.9999 1.004
Standard deviation 2.640 2.667
Ljung box (lag 10) 53.3 55.9

Table 4.4: Statistic from the standardized durations.

Figure 4.5: The QQ-Plots of the standardized durations from the EACD (1,1) resp. EACD
(1,2) model and a random selection from exponential distribution.

p − value = 2.086 × 10−8 . This is much less than the original values for the diurnally
adjusted durations (316), but it is still much higher than the 5% critical value of the χ2

10

distribution (18.3). This shows that the model was not fully successful in capturing the
intertemporal dependencies.

We performed the calculation under the assumption, that the standardized residuals
have exponential distribution with parameter λ = 1. From the qq-plot in Figure 4.5
we see, that the standardized durations do not seem to have exponential distribution.
Further evidence comes from the high values of standard deviations of the standardized
durations.

4.4 The Weibull ACD Model of the Adjusted Dura-

tions

The maximum likelihood estimation of the WACD(1,1) and the WACD(1,2) is performed
using the BHHH algorithm with analytical derivatives. The WACD(1,2) model is pre-
sented instead of the WACD(2,2) model because the estimates of α2 in the WACD(2,2)
model do not differ significantly from zero. In Table 4.5 the estimated parameters are
listed. The consistency and the asymptotic normality of the WACD(1,1) model was proved
in Theorem 3.4.2. In the case of the WACD(1,2) model the consistency and asymptotic
normality has not been proved until now so the results should be taken only as informative.
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WACD (1,1)

ω α1 β1 γ
Estimate 0.4956 0.5870 0.04832 0.4444
p-value 0 7.9× 10−16 0.073 0

WACD (1,2)

ω α1 β1 β2 γ
Estimate 0.4883 0.5872 0.04123 0.01295 0.4445
p-value 0 1.3× 10−15 0.0951 0.0234 0

Table 4.5: Parameter estimates for the WACD(1,1) and the WACD(1,2) model. Notes:
ϕi = ω + α1xi−1 + β1ϕi−1 (WACD(1,1)) resp. ϕi = ω + α1xi−1 + β1ϕi−1 + β2ϕi−2

(WACD(1,2)), ω is positive, α1, α2, β1 and β2 are positive and ∈ (0; 1).

WACD (1,1) WACD (1,2)

ε̂ ε̂γ ε̂ ε̂γ

Mean 1.1467 0.6597 1.146 0.660
Standard deviation 3.235 0.7279 3.223 0.728
Ljung box (lag 10) 96.2 36.6 91.5 36.01

Table 4.6: Statistic from the standardized durations and transformed standardized dura-
tions.

From Table 4.5 we see that the values of the estimated parameters in the WACD
models are different from the values in the EACD model. The high value of the estimate
of α1 signals strong influence of the previous durations on the present durations. The
estimated value of γ is smaller than 1, thus the baseline hazard function is decreasing.

The WACD model is equivalent to the EACD model with γ equal to one. We use
the likelihood ratio to test H0 : γ = 1 (EACD(1,1) or EACD(1,2)) against H1 : γ 6= 1
(WACD(1,1) or WACD(1,2)). The test strongly rejects the null hypothesis in both cases.

4.4.1 Standardized Durations

If the Weibull specification is correct, then if we raise the standardized durations ε̂i defined
in 4.2 to the power γ the obtained process should be i.i.d with exponential distribution,
where λ = 1.

In Table 4.6 the mean, standard deviation and the Ljung-Box test statistic for the
standardized durations ε̂i and the transformed standardized durations ε̂i

γ are presented.
We can see, that neither the mean nor the standard deviation of ε̂i

γ are at least close to
1 and thus ε̂i

γ is not a random sample from exponential distribution.
Similar as [ER98], we conclude that neither the EACD nor the WACD model has

successfully estimated the distribution of the residuals. Lately, models based on other
distributions with non-monotonic hazard functions were presented. For a good review of
these models see [Vuo06]. These models outperform the exponential ACD and the Weibull
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Figure 4.6: Plot of the estimated durations on 10.5.2004. The solid line shows the raw
durations, dashed line are the durations estimated with WACD(1,1) (upper plot) and
WACD(1,2) (lower plot) and the gray line presents the time of day function.
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ACD model and they show the way for the future research.
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Chapter 5

The ACM Model

The goal of the ACM model is to develop an econometric model for discrete-valued,
irregularly-spaced time series data. The model estimates the joint distribution of the
discrete price changes yi and the durations τi = ti− ti−1 between them conditional on the
past durations and price changes and other explanatory variables such as volume, spread
e.g.

Let pi be the price associated with the ith transaction and yi = pi − pi−1 the cor-
responding price change. The price changes yi are discrete and they can take k unique
values.

Let’s denote the conditional density as follows:

f(yi, τi|yi−1, τ i−1), (5.1)

where yi−1 = (yi−1, ..., y1) and τ i−1 = (τi−1, ..., τ1).
[ER05] operate with the decomposition of the joint conditional density into a product

of the conditional density of the price changes yi and marginal density of the durations
τi.

f(yi, τi|yi−1, τ i−1) = g(yi|yi−1, τ i)q(τi|yi−1, τ i−1) (5.2)

Thanks to the decomposition (5.2) we can study the price changes and the durations
separately.

The instantaneous probability that the ith event exits to state Y , given the duration
τ since the last event, is called the hazard function. The hazard function is defined by:

θi(y, τ) = lim
∆t→0

P (yi = Y, τ ≤ τi ≤ τ + ∆t|τi ≥ τ,yi−1, τ i−1)

∆t
(5.3)

For small values of ∆t Equation 5.3 is approximately equal to the probability, that the
process exits to state Y in the time period [τ, τ + ∆t], given that there is no event by the
duration τ since the last event. Thus the hazard function can be obtained from (5.2) by
dividing the marginal density of the durations by the probability, that the event has not
occurred by the time τ :

θi(y, τ) = κ(τ |yi−1, τ i−1)g(y|yi−1, τ i) (5.4)
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where

κ(τ |yi−1, τ i−1) =
q(τi|yi−1, τ i−1)

1−
∫ τ

0
q(s|yi−1, τ i−1)ds

is the hazard function associated with the distribution of the durations.
For the modeling of q(.) we will use the ACD model, the specification of g(.) will be

discussed in the next section.

5.1 The Specification of g(.)

Let k denote the number of states which can be taken by the random variable yi.
Let x̃i be a k-dimensional unit vector. The vector x̃i has 1 at the jth position, if the

ith event yi takes the j-th state. At other positions of the vector x̃i there is a zero.
Let π̃i denote the k-dimensional vector of conditional probabilities associated with the

i-th event: the j-th position of π̃i describes the conditional probability, that the i-th event
takes the j-th state (that is the probability, that the j-th element of x̃i will equal 1).

The following equation links these two vectors:

π̃i = Px̃i−1 (5.5)

where P is a (k × k)-dimensional transition matrix.
A transition matrix must satisfy:

1. all elements are non-negative

2. each column must sum to unity.

For the first order Markov chain, the transition matrix is constant. In more general
settings, the matrix P can be conditional on past events and their arrival times and it
may vary with the information available at the time ti−1. To satisfy the restrictions 1.
and 2. in the case of a time-varying conditional transition matrix [ER05] use the inverse
logistic transformation.

Let π̃im and x̃ij denote the m-th and j-th element of the vectors π̃i and x̃i respectively.
We denote:

h(πi) = log


π̃i1

π̃ik
...

π̃i(k−1)

π̃ik

 = log

(
πi

1− 1′ πi

)
(5.6)

where πi is a (k− 1)-dimensional vector created from π̃i by erasing the kth element of the
vector. (From here on, letters with tildes (x̃i, π̃i) will describe k-dimensional vectors and
letters without tilde (xi, πi) will describe (k − 1)-dimensional vectors obtained through
erasing one of the elements of the vector.)

We define:

h(πi) = P∗xi−1 + c (5.7)
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where P∗ is a (k− 1)× (k− 1)-dimensional matrix and c is a (k− 1)-dimensional vector.
Given (5.7) the vector π̃i can be recovered from any values of P∗ and c by

πi =
exp(P∗xi−1 + c)

1 + 1′ exp(P∗xi−1 + c)
, (5.8)

where exp(P∗) is interpreted as a matrix with the m, n element equal to exp(Pm,n).
From this expression we can see that all probabilities π̃im including the probability for

the kth state (π̃ik = 1− 1′πi) are positive and sum to unity.
From (5.7) we also obtain the expression for the transition matrix P:

Pmn =
exp(P ∗

mn + cm)

1 +
∑k−1

j=1 exp(P ∗
jn + cj)

, m, n = 1 . . . (k − 1) (5.9)

Pkn = 1−
k−1∑
j=1

Pjn, n = 1 . . . (k − 1) (5.10)

Pmk =
π̃i −

∑k−1
j=1 Pn,jx̃j

x̃k

, m = 1 . . . k (5.11)

where (5.10) is obtained from condition 2. and (5.11) comes from Equation 5.5:
All elements of P are positive and the columns sum to unity. It follows that if we

estimate the matrix P∗ and the vector c we do not need to imply any restrictions on the
parameters.

By generalizing (5.7) we receive a more elaborative dynamic structure with the de-
pendence on richer information. In the following definition we generalize the transition
matrix from a time-invariant one into a time-varying conditional transition matrix.

Definition 5.1.1 The Autoregressive Conditional Model ACM(p,q,r) is given by

h(πi) =

p∑
j=1

Aj(xi−j − πi−j) +

q∑
j=1

Bjh(πi−j) + Czi (5.12)

where Aj, Bj denote (k − 1) × (k − 1)-dimensional parameter matrices with time
subscripts, Bj is a diagonal matrix,

zi is an (r + 1)-dimensional vector,
C denotes a (k − 1)× (r + 1)-dimensional parameter matrix.

The specification in (5.12) describes the transition probabilities of the random variable
yi. The vector zi contains 1 in the first element to form a constant and r explanatory
variables such as duration, spread, volume of the past trades etc.
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From Definition 5.1.1 it is apparent how the history impacts the transition probabili-
ties. The (k − 1)-dimensional vector of probabilities πi is obtained from:

πi =

[
exp

(
p∑

j=1

Aj(xi−j − πi−j) +

q∑
j=1

Bjh(πi−j) + Czi

)]

×

[
1 + 1′exp

(
p∑

j=1

Aj(xi−j − πi−j) +

q∑
j=1

Bjh(πi−j) + Czi

)]−1

, (5.13)

and the kth probability is recovered from the condition, that all elements mus sum to
unity. At the time i− 1 knowing all past x and π we can calculate the πi. Consequently
given some starting values we can construct a full sequence of the probabilities π from
the observations x. From this the likelihood function and its numerical derivatives can
be evaluated.

5.2 The Log-Likelihood Function for the ACD-ACM

Model

Given initial conditions we can calculate the entire path of the πi. Hence the likelihood
can be constructed as a product of the conditional densities. The log-likelihood of the
ACM model is then expressed as

L =
N∑

i=1

k∑
j=1

x̃ij log(π̃ij) =
N∑

i=1

x̃′i log(π̃i) (5.14)

where x̃ij is the jth element of x̃i, π̃ij denotes the jth element of π̃i and N denotes the
number of observations. Under the usual regularity conditions1 the parameter estimates
are consistent and asymptotically normal.

Each of the likelihood functions depend on different parameters, thus the estimation of
the ACD and ACM parameters may be done separately by maximizing two log-likelihood
functions: the ACM log-likelihood given in (5.14) and

∑N
i=1 q(τi|yi−1, τ i−1), which is

specified by the ACD model.

5.3 Model Diagnostic

We denote the conditional variance matrix of xi as Vi:

Vi = Var(xi|I i−1) (5.15)

where I i−1 is the information available at the time i− 1.

Vi = E(xix
′
j)− E(xi)E(x′j) = diag(πi)− πiπj

′ (5.16)

1[And02]
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If we substitute πi with π̂i we obtain the sample variance matrix.
[ER05] suggest following model diagnostic tests: Let’s consider a sequence of errors

v∗i = xi − πi. (5.17)

v∗i forms a heteroscedastic difference sequence, whose conditional variance matrix equals
Vi.

Standardized errors are constructed by premultiplying v∗i by the Cholesky decomposi-
tion of the conditional variance matrix. The Cholesky decomposition matrix Li is a lower
triangular matrix, for which holds: Vi = LiL

T
i .

Thus the standardized errors equal:

vi = L−1
i v∗i . (5.18)

vi should be uncorrelated with the past and its variance matrix should be equal to the
(k − 1)× (k − 1) identity matrix. The series of the sample standardized residuals v̂i are
constructed using the parameter estimates: v̂i = xi− π̂i. To see how good does the ACM
model capture the intertemporal correlations of the data we test whether the sequence of
the sample standardized residuals v̂i is uncorrelated.
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Chapter 6

Modeling of the ACM-ACD process

6.1 Data

Using the ACM-ACD model we will analyze the intra-day quote data of the Telecom
stock. The period analyzed lasts from 2nd January 2004 to 17th November 2004. In this
period the trading activity was higher than in the prior years.

First we have perform minor adjustments of the data. If there are 2 quotes within one
second, only the better one is chosen for the model. After these adjustments we are left
with 25078 individual events in the sample.

We ignore the overnight waiting times and we calculate the durations ti between
quotes. The average waiting time in the observed period is 205 seconds (6 minutes and 25
seconds), the minimum duration is 1 second and the maximum duration is 13670 seconds
(3 hours, 47 minutes and 50 seconds).

The mid-price pi is obtained by averaging the bid and ask price. The average mid
price in the observed period is 323.7 Kč. We define the price change ∆pi as the change
in the mid-price: ∆pi = pi − pi−1. The minimum price change in the observed period is
0 Kč, the maximum positive change is 6.55 Kč and the maximum negative change is 18.7
Kč.

The ACM model is based on the discrete price changes. From the histogram in Figure
6.1 we can see, that the price changes of ±0.5 Kč, ±0.25 Kč and 0 Kč are the most
frequent ones, although all other possible values are represented as well. For the purpose
of the ACM analysis we divide the price changes into 5 groups. The instant price change
is represented by the state vector xi:

xi =


[1, 0, 0, 0] if ∆pi ≤ −0.5
[0, 1, 0, 0] if ∆pi ∈ (−0.5;−0.25]
[0, 0, 0, 0] if ∆pi ∈ (−0.25; 0.25)
[0, 0, 1, 0] if ∆pi ∈ [0.25; 0.5)
[0, 0, 0, 1] if ∆pi ≥ 0.5

(6.1)
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Figure 6.1: Histogram of the price changes.

6.2 The Sample Cross-Correlations of the State Vec-

tor Elements

To analyze the inter-temporal dependencies between the price changes we calculate the
sample cross-correlations Cs of the state vector xi. Denoting the mean of xi as x̄ the sth
sample cross-correlation matrix is calculated as follows:

Cs =
N − 1

N − s− 1

[
N∑

i=1

(xi − x̄)(xi − x̄)′

]−1 [ N∑
i=s+1

(xi − x̄)(xi−s − x̄)′

]
(6.2)

Following [BT81] the sample cross-correlations are presented in the matrix form in
Table 6.1. We test the hypothesis whether the cross-correlations are equal to zero. The
signs ’+’ or ’-’ designate that the positive and negative cross-correlations (respectively)
have exceeded the 5% significance level (1.96×N−1/2) and ’.’ designates, that the value
is within the 5% confidence interval.

From Table 6.1 it is apparent that there are significant inter-temporal dependencies
between the price changes. The upper left and lower right quadrants signal continuation
of the price changes and the upper right and lower left quadrants correspond to reversals
of the changes. For lag 1 we can see that the extreme price changes (±0.5 Kč) are likely to
be reversed but smaller price changes tend to be continued. Beyond the first lag, the main
diagonal correlations are generally positive signaling that the started trend is likely to be
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s = 1 2 3 4
− + − +
. + − .
. − + .
+ − + −




+ + . .
− + − −
− − + −
. − + +




+ + − +
. + − −
− − + .
+ − + +




+ . − .
. + − −
− − + .
. − . +


s = 5 6 7 8

+ . − +
+ . − −
− − + .
+ − . +




+ . − .
. + − −
− . + .
+ − . +




+ . − +
+ . − −
− − + .
+ − . +




+ . − .
. + − −
− . + .
. − . +


s = 9 10

+ . . +
. . − .
− . . .
+ . . +




+ . . +
. + − .
− . + .
+ − . +


Table 6.1: Tiao-Box representation of the sample cross-correlations of the state vector xi.

followed. Significantly positive values in the corners signal, that the bigger price changes
are likely to be followed by bigger price changes in either directions whereas smaller price
changes are not very likely to be reversed.

The Tiao-Box plot presented by [ER05] is different from ours. We suppose that the
main reason is that in their study Engle and Russel operate with the trades dataset
and not with the quotes. In the case of the trade process the Tiao-Box plot is strongly
influenced by the fact, that both (buy and sell) prices are recorded. Thus many of the
price changes are caused by the difference between the buy and the sell price and not by
any change on the market.

Finally let’s turn our interest to the symmetry of the sample cross-correlation matrices.
In most of the matrices we can see that the signs of the correlations reflected through the
center of the matrices are the same. This signals that there may be some symmetry in
the price process. We discuss this issue later in this study in Section 6.5.

6.3 The Diurnal Effect in the Price Changes Process

As shown in the study [ER98] the durations between trades as well as the durations
between price changes follow the inverted U-shape. [BZ06] show, that the durations of
the quote process of the stocks traded at the Prague Stock Exchange exhibit similar shape.
Surprisingly [ER05] do not observe any daily pattern in the behavior of the state vector
xi.

To see if the state vectors xi follow any periodic pattern through the day, we treat each
of the elements of xi as a univariate time series. We place nodes at each hour of trading.
We denote the nodes u0, . . . , u7, where u0 and u7 equal the beginning of trading at 9:30
and the end of trading at 16:00, respectively. The last time interval [u6, u7) lasts only 30
minutes. We fit a linear spline in the time of the day by a logistic regression model.
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We define θij, i = 1 . . . n, j = 1 . . . 4 to be the probability that the ith element of the
univariate time series x.j equals 1. The logistic regression model takes following form:

log

(
θij

1− θij

)
= d0+d1I1(xij)+d2I2(xij)+d3I3(xij)+d4I4(xij)+d5I5(xij)+d6I6(xij) (6.3)

where d0 . . . d6 are the estimated parameters and Ik(xij), k = 1 . . . 6 are functions, which
indicate, whether the ith event happened during the kth time interval [uk−1, uk). Given
the observed data, the likelihood function for the logistic regression model equals:

L(d0, . . . , d6) =
n∏

i=1

θij
xij(1− θij)

1−xij . (6.4)

The results of the logistic regression are listed in Table 6.2. If there is no diurnal
effect, the coefficients d1 through d6 should be close to zero. We test the hypothesis
that the coefficients d1 through d6 are equal to zero using the likelihood ratio test. The
test statistic has χ2 distribution with 6 degrees of freedom. In Table 6.2 the estimated
coefficients, value of the test statistic and the appropriate p− value are listed.

d0 d1 d2 d3 d4 d5 d6

x.1 -2.073 0.342 0.284 0.216 0.298 0.192 0.174
(p-value) (< 2 · 10−16) (1.2 · 10−7) (7.5 · 10−5) (0.004) (8.4 · 10−5) (0.013) (0.018)

LR statistic: 33.5 p-value: 8.4× 10−6

x.2 -1.630 -0.013 0.110 0.041 -0.062 0.033 0.040
(p-value) (< 2 · 10−16) (0.816) (0.079) (0.532) (0.366) (0.624) (0.539)

LR-statistic: 8.4 p-value: 0.2
x.3 -1.425 -0.141 -0.157 -0.094 -0.081 -0.225 -0.162
(p-value) (< 2 · 10−16) (0.009) (0.011) (0.140) (0.213) (0.001) (0.010)

LR-statistic: 14.7 p-value: 0.023
x.4 -2.001 0.352 0.165 0.217 0.194 0.062 0.015
(p-value) (< 2 · 10−16) (1.9 · 10−8) (0.02) (0.003) (0.010) (0.425) (0.832)

LR-statistic: 50.6 p-value: 3.5× 10−9

Table 6.2: Estimation of the diurnal factor of the state vector using the logistic regression.

For comparison we also test the diurnal factor of the durations. The durations are
fitted by least squares to a linear spline. Nodes are placed at each hour of the trading
with the last interval lasting only half an hour. In Table 6.3 the values of the estimated
parameters are presented. An F-statistic with 6 and 25071 degrees of freedom is provided
to assess the null hypothesis that the parameters d1, . . . , d6 are equal to zero - in other
words that there is no diurnal effect.

From Table 6.2 we see that for the small upward and downward price change we reject
the diurnal effect on the 1% level but for the big upward and downward price change,
the p-value of the test is very small. In both cases the parameter d1 has the highest
value and the smallest p-value thus we may assume, that the diurnal effect has the most
influence at the beginning of the day. The reason for that may be, that in the morning the
market-makers are correcting the prices to reflect the changes and trades which happened
overnight. Thus big price changes are more likely to happen.
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d0 d1 d2 d3 d4 d5 d6

Durations 155.211 -40.771 52.246 85.162 123.178 130.561 105.476
(t-statistic) (15.961) (-3.334) (3.822) (5.936) (8.422) (8.909) (7.582)
R2: 0.0125 F statistic 131.6525 p-value: (< 2 · 10−16)

Table 6.3: Estimation of the diurnal factor of the quote durations using least square
fitting.

The smallest p−value for the test of the diurnal effect has the duration process (Table
6.3). We follow [ER05] and we ignore the diurnal effect of the state vector in the further
analyzis but we will calculate with the diurnal effect in the process of durations.

6.4 Selection of the Model

The state vector x̃i, which will be substituted in the log-likelihood function equals:

x̃i =


[1, 0, 0, 0, 0] if ∆pi ≤ −0.5
[0, 1, 0, 0, 0] if ∆pi ∈ (−0.5;−0.25]
[0, 0, 1, 0, 0] if ∆pi ∈ (−0.25; 0.25)
[0, 0, 0, 1, 0] if ∆pi ∈ [0.25; 0.5)
[0, 0, 0, 0, 1] if ∆pi ≥ 0.5

(6.5)

Complicated recursive structure of the ACM log-likelihood function hinders from using
analytical derivatives. In combination with a large sample size and a large number of
parameters to be estimated, the calculations become very time consuming. Therefore we
follow the ’simple to general’ model selection procedure. For the selection of the model
we use a sample of 1000 observations.

In Table 6.4 the results of the comparison of the nested models using the likelihood
ratio statistic are listed. The table shows that we do not reject ACM(2,2) in favor of
ACM(3,2) but we have to reject ACM(2,2) in favor of ACM(2,3). Then we do not reject
ACM(2,3) in favor of ACM(3,3). Thus we choose the ACM(2,3) model for the modeling
of the price dynamics.

In case of the ACD model we reject ACD(1,1) in favor of ACD(1,2) and then the
ACD(1,2) is not rejected for ACD(2,2). We can see that there is almost no improvement
of the likelihood function from ACD(1,2) to ACD(2,2).

6.5 Symmetry in Price Dynamics

Let us define matrix Q to be a rotated identity matrix:

Q =


0 1

·
·

·
1 0

 . (6.6)
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ACM(p,q): h(πi) = µ +
∑p

j=1 Ajxi−j +
∑q

j=1 Cjh(πi−j).

H0 H1 LR df 5% critical value of χ2
df 1% critical value of χ2

df

ACM(1,1) ACM(2,1) 59.9 16 26.3 31.1
ACM(1,1) ACM(1,2) 59.8 4 9.5 13.3
ACM(2,1) ACM(2,2) 49.6 4 9.5 13.3
ACM(1,2) ACM(2,2) 49 16 26.3 31.1
ACM(2,2) ACM(2,3) 16 4 9.5 13.3
ACM(2,2) ACM(3,2) 6 16 26.3 31.1
ACM(2,3) ACM(3,3) 25 16 26.3 31.1

ACD(m,n): ϕi = ω +
∑m

j=1 αjti−j +
∑n

j=1 βjϕi−j + γTi−1

H0 H1 LR df 5% critical value of χ2
df 1% critical value of χ2

df

ACD(1,1) ACD(2,2) 16 2 6.0 9.2
ACD(1,1) ACD(1,2) 14.66 1 3.8 6.6
ACD(1,2) ACD(2,2) 1.34 1 3.8 6.6

Table 6.4: Results of the likelihood ratio test for ACM and ACD models

Based on [ER05] we define the symmetry in price dynamics as follows:

Definition 6.5.1 For the ACM(p,q) model we say, that the transaction price process is
dynamic-symmetric for prices if for the matrices Ai and Bj holds:

AiQ = QAi, resp. BjQ = QBj, i = 1 . . . p, j = 1 . . . q. (6.7)

Further we say that the transaction price process is dynamic-symmetric for the j-th ele-
ment of zi if the corresponding j-th column of the matrix C is a symmetric vector.

The matrices Ai and Bi which hold (6.7) are called response symmetric. [ER05] prove
that if the ACM model is dynamic-symmetric for price changes and for all elements of
zi, the mirror image history of price changes and zi produces a mirror image transition
probabilities:

Qπi(xi−1,xi−2, . . . , zi) = πi(Qxi−1,Qxi−2, . . . ,Qzi) (6.8)

Now we can test the hypothesis that the ACM(2,3) model is dynamic-symmetric for
prices and for the vector of constants µ. On the dynamic-symmetric ACM(2,3) model we
imply following restrictions:

The vector of constants:
µ = (µ1, µ2, µ2, µ1)

′ (6.9)

The matrix Ai equals:

Ai =


ai

11 ai
12 ai

13 ai
14

ai
21 ai

22 ai
23 ai

24

ai
24 ai

23 ai
22 ai

21

ai
14 ai

13 ai
12 ai

11

 , i = 1, 2. (6.10)
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And the diagonal matrix Bj equals:

Bj =


bj
11 0 0 0

0 bj
22 0 0

0 0 bj
22 0

0 0 0 bj
11

 j = 1, 2, 3. (6.11)

We test the hypothesis H0: dynamic-symmetric ACM(2,3) against H1: unrestricted
ACM(2,3). The likelihood ratio statistic equals 23.8 with 24 degrees of freedom and so we
do not reject H0 neither on 1% level with critical value of 43 nor on 5% level with critical
value of 36.4. Thus for testing further hypothesis we will use the symmetric ACM(2,3)
model.

6.6 Explanatory Variables in the ACD-ACM Model

Prior to the estimation we include the influence of the durations in the ACM model. We
add the logarithm of the past durations to the ACM model. The likelihood ratio test
suggest, that 2 lags of log-durations should be added to the ACM model. If we add the
third lag, the improvement of the log-likelihood function is negligible.

Thus we estimate the parameters of the ACM(2,3) model in the following form:

h(πi) = µ + A1(xi−1 − πi−1) + A2(xi−2 − πi−2)

+B1h(πi−1) + B2h(πi−2) + B3h(πi−3) + d1τi−1 + d2τi−2 (6.12)

where Ai, Bj denote (4× 4)-dimensional response symmetric parameter matrices, Bj are
diagonal matrices, µ denotes a parameter vector of length 4, representing the constant in
the model and di are parameter vectors with 4 elements, linking the influence of the past
durations.

Further we need to estimate the q(τi|yi−1, τ i−1). We use the exponential log-ACD
model. In the log-ACD model has been chosen because we do not need to impose any
restrictions on the parameters. Thus it is more suitable for adding further explanatory
variables into the model.

In order to improve the flexibility of the model we add the time-of-day function as an
explanatory variable to the model. We use following procedure: at first, we estimate the
time-of-day function using the same approach as in Section 4.2. We denote this time-of-
day function as T (t). The appropriate values of T (t) are added to the model with the
weight γ. We estimate the parameter γ jointly with other parameters in the model. The
estimated value of the parameter γ shows, to which extent is the diurnal factor responsible
for the changes in the durations throughout the trading day.

Further we add the past price changes as explanatory variables to the log-ACD model.
The likelihood ratio test suggests that every lag of price changes brings a significant
improvement of the log-likelihood function. Anyways adding of too many past lags of
the price changes to the model would result in a very high number of parameters in the
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. . . .
. . . .




+ . . +
. . . .
. . . .
. . . .


Table 6.5: Tiao-Box representation of the sample cross-correlations of the standardized
residual errors v̂i.

model. Subsequently the estimation would become very time consuming. Therefore we
add just 2 lags of the past price changes to the model.

After these adjustments the log-ACD model has the following form:

log(ϕi) = ω+α1 log(τi−1)+β1 log(ϕi−1)+β2 log(ϕi−2)+γT (ti−1)+δ1x(i−1)+δ2x(i−2) (6.13)

where ω, α1, βj and γ are scalar parameters and δj are parameter vectors of length 4.

6.6.1 Model Diagnostics

Before discussing the parameter estimates, we will examine the model diagnostics.
We calculate the standardized errors v̂i and their sample cross-correlations. The Tiao-

Box representation of the sample cross-correlations is shown in the table 6.5. The cross-
correlations which are significant at the 5% level (exceeding 1.96

√
N) are denoted by ”+”

and ”-”. The results are presented in Table 6.5. From the table we can see that many of the
significant correlations were eliminated. Anyways the first lag sample cross-correlations
of the standardized errors are still significantly positive.

The standardized durations ε̂i from the log-ACD are calculated from Equation 4.2
(Section 4.3.1). ε̂i should be distributed as i.i.d. and unit exponential. The Ljung-Box
test of the null hypothesis, that the first 10 lags of ε̂ are uncorrelated has a p-value equal
to 0.02. Thus on 1% level we do not reject the hypothesis that ε̂i are uncorrelated. We
can say that we were successful in eliminating the intertemporal dependencies from the
data. This may be due to the added explanatory variables or due to a different approach
to the diurnal factor in comparison to the procedure presented in Section 4.2.
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In Table 6.6 statistics from the standardized residuals are presented. The high value
of standard error signals, that the ε̂i is not a random sample from unit exponential dis-
tribution.

EACD (1,2)

Mean 1.000
Standard deviation 2.590
Ljung box (lag 10) 21

Table 6.6: Statistic from the standardized durations.

6.6.2 Interpretation of the Results

Finally we turn to the interpretation of the results. The estimated parameters are listed
in Table 6.7.

Particularly high coefficients in matrices Ai show a strong impact of the past price
changes on contemporaneous ones. The values in A2 are higher then the values in A1,
which designates, that the market reacts with protracted lag on the past price changes.

The sums of j-th diagonal elements of matrices Bi characterize the persistence of the
j-th state. The persistence is the tendency for continuation in the price process - if the
price change is likely to be followed by a price change of the same magnitude. The values
of the sums are rather moderate: 0.481 for the bigger price changes and 0.69 for the
smaller price changes. This signals low persistence of the price changes.

Further we would like to investigate about the duration×price change relationship.
From the vector δi in the ACD model we can see that large negative changes in the prices
are associated with shorter durations. This assumption is supported by the values of
vectors di in the ACM model. We may conclude that large negative price changes result
in higher activity in the market.

In the ACD model the high value of β1 + β2 signals strong persistence of the waiting
times between quotes. Further interesting result is the small value of γ which equals 0.323.
This shows, that the impact of the time of day function is not so strong as we assume
when remove the diurnal factor prior to the estimation of the parameters.
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ACM(2,3)

c -0.129 -0.660 -0.660 -0.129
(0.340) (0.167)

A1 0.194 1.827 -1.053 1.938 A2 0.883 -0.679 1.217 -0.515
(0.130) (0) (0.154) (0) (0.467) (0.234) (0.127) (0.292)
0.051 0.071 -0.343 0.483 0.503 1.371 0.742 0.447

(0.112) (0.013) (0) (0.00004) (0.012) (0) (0.012) (0.212)
0.483 -0.343 0.071 0.051 0.447 0.742 1.371 0.503
1.938 -1.053 1.827 0.194 -0.515 1.217 -0.679 0.883

B1 0.312 0 0 0 B2 0.321 0 0 0
(0.376) (0.486)

0 0.617 0 0 0 0.084 0 0
(0.382) (0.016)

0 0 0.617 0 0 0 0.084 0
0 0 0 0.312 0 0 0 0.321

B3 -0.152 0 0 0 d1 -0.003 d2 0.001
(0.418) (0.470) (0.479)

0 -0.011 0 0 -0.028 0.037
(0.223) (0.383) (0.293)

0 0 -0.011 0 0.082 -0.023
(0.252) (0.388)

0 0 0 -0.152 -0.014 -0.012
(0.471) (0.477)

ACD(1,2)

ω α1 β1 β2 γ δ1 0.133 δ1 0.191
(0.306) (0.285)

-0.537 0.206 0.491 0.152 0.323 0.125 -0.209
(0.424) (0.004) (0.043) (0.047) (0.039) (0.286) (0.178)

0.023 -0.117
(0.451) (0.291)
-0.050 -0.332
(0.445) (0.102)

Table 6.7: Parameter estimates for the ACD(1,2)-ACM(2,3) model. The numbers in
brackets represent the p− value of the test for zero of the estimated parameters.
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Chapter 7

Conclusion

In this study we applied the ACD model and the ACD-ACM model to the stocks traded
at the Prague Stock Exchange. The first half of the study was concentrated on the ex-
ponential and the Weibull ACD model. We used several approaches to generalize the
asymptotic properties of the estimates. Based on the study [GMT84] we derived the
asymptotic properties of the EACD(p,q) model. Corollary to [ER98] we used the anal-
ogy with the GARCH model to prove the consistency of the quasi-maximum likelihood
estimates of the Weibull ACD(1,1) model.

We applied the EACD and WACD model to the market data of the Komerčńı Banka
stock. We used a two step procedure; first we removed the diurnal factor from the data
and then we applied the ACD model. The removement of the diurnal factor did not reduce
the large value of the Ljung-Box statistics associated with the waiting times between the
transactions. This signals that the large autocorrelations of the durations cannot be
explained by the diurnal factor. In contrary, the standardized residuals obtained from the
EACD and the WACD model have much lower values of the Ljung-Box statistics, which
shows that in both cases the ACD model did a good job in removing the intertemporal
dependencies of the durations. The large values of the standard deviation showed that
the standardized residuals did not have the assumed exponential or Weibull distribution.
Hence neither the EACD model nor the WACD model are a fully appropriate model and
in the future research, different distributions should be tested.

In the second half of the study we applied the ACD-ACM model to the quote data
of the Telecom stock at the Prague Stock Exchange. Thanks to the assumptions we
made we could estimate the price changes and the arrival times separately. We used the
autoregressive conditional multinomial model (ACM) to model the price changes and the
ACD for the marginal distribution of the durations.

We divided the price changes into 5 groups and we used an autoregressive model to
estimate the price transition probabilities. The sample cross-correlation matrix indicated
that there were significant intertemporal dependencies between the price changes. The
simple to general model selection procedure suggested to use the ACM(2,3) model, which
was dynamic-symmetric for price changes. The sample cross-correlations of the standard-
ized residuals were much less significant than the sample cross-correlations of the original
price changes, which signaled that the model was successful in capturing the intertempo-
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ral dependencies in the price changes. From the values of the parameters we concluded
that large negative price changes were associated with shorter durations, but, as we were
concentrated only on one stock, we can not draw any general judgments.

To model the marginal distributions of the durations we used the log-ACD model.
The likelihood ratio tests suggested that the log-EACD(1,2) model was suitable for the
analysis. Generally we may conclude that the log-ACD model did a very good job in
reducing the large value of the Ljung Box statistic.

We consider the ACD-ACM model to be a good vehicle to test the market microstruc-
ture hypotheses. It can be used to test the influence of the volume, the spread etc. on
the durations and on the price changes. The explanatory variables can be easily added
to the model and due to the straightforwardness of the model, it is easy to interpret the
results.
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