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Study program: Matematika
Study specialization: Probability, Mathematical Statistics and Econometrics

Study plan: Mathematical Statistics



Contents

1 Introduction 4

2 Autocovariance and spectral density 6
2.1 Autocovariance of transformed Gaussian processes . . . . . . . . . . . . . . 6

2.1.1 Application to three transformations . . . . . . . . . . . . . . . . . 8
2.1.2 Application to ARMA processes . . . . . . . . . . . . . . . . . . . . 10

2.2 General innovations and the square transformation . . . . . . . . . . . . . 14
2.3 Generalized transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Spectral representation of transformed processes . . . . . . . . . . . . . . . 17

3 Predictions 19
3.1 Optimal, naive and linear predictions . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 Optimal prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 Naive prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 Linear prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Three transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Exponential transformation . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 Quadratic transformation . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Cubic transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Predictions using spectral density . . . . . . . . . . . . . . . . . . . . . . . 31

4 Application to ARMA processes 34
4.1 MA(1) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Exponential transformation . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Quadratic transformation . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Cubic transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 MA(∞) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.1 Exponential transformation . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Quadratic transformation . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Cubic transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 AR(1) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Exponential transformation . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Quadratic transformation . . . . . . . . . . . . . . . . . . . . . . . 40

1



CONTENTS 2

4.3.3 Cubic transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 ARMA(1, 1) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4.1 Exponential transformation . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2 Quadratic transformation . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.3 Cubic transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Empirical part 45

6 Conclusion 49

7 Appendix A - Properties of Hermite polynomials 50

8 Appendix B - Best linear prediction using spectral density 53
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Chapter 1

Introduction

Suppose we observe time series Xt, but we wish to find prediction for non-linear transfor-
mation of this time series, say Yt = T (Xt). We will assume that the series Xt follows some

simple model, such as ARMA, which enables us to find prediction X̂t+h for the original
series. The obvious method of simply transforming this prediction to obtain prediction
Ŷt+h = T (X̂t+h) for the new series Yt may sometimes lead to very poor results. It is the
so-called “naive prediction”.

The aim of this diploma thesis is to describe the methods, which provide better results
than the naive prediction and to evaluate the mean square errors for these predictions.

In general it can be said that the problem of finding the best prediction, or at least
the best linear prediction, of the transformed series, is the problem of understanding the
“generating mechanism” of the transformed series. Once we have enough information about
the autocovariance structure of the transformed series or about its spectral density there
are well-developed methods for using this knowledge to find the best linear prediction.
However, under certain circumstances (Gaussian processes, simple transformations) it is
possible to use direct formulas that greatly facilitate finding the prediction and estimating
its mean square error.

Granger and Newbold [6] developed a direct method of finding the optimal and other
predictions for transformations, which can be expressed by means of Hermite polynomials.
The authors restricted themselves to Gaussian series only, on the other hand the results are
very simple to implement and offer very quick yet accurate way of finding good predictions.

Somewhat similar approach via Hermite polynomials can be found in Hannan [8]. The
author proves formula for the autocovariance function and spectral density of processes
transformed from the original series, with known spectral density, by a linear combina-
tion of Hermite polynomials. Once we know the autocovariance function or the spectral
density of transformed process we can use this information for making the prediction, see
e.g. Grenander and Rosenblatt [7]. However no “ready-to-go” results were provided.

Choi and Taniguchi [5] studied the naive and bias-adjusted predictions for the square-
transformed processes using the spectral density. The results they obtained are, as ex-
pected, in accordance with the results obtained by Granger and Newbold [6] via the au-
tocovariance function. It is worth to mention that Choi and Taniguchi in their article
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CHAPTER 1. INTRODUCTION 5

derived the expected square prediction error of the naive prediction also for non-Gaussian
processes and made somewhat surprising finding that in certain cases the expected square
error is smaller for non-Gaussian than for Gaussian series.

Palma and Zevallos [10] considered only the square transformation, but with more
general innovations. They provided specific formula for the autocorrelation of the square-
transformed processes.

When dealing with transformations for which it is impossible or impractical to use
expansion with Hermite polynomials, such as fractional powers, one of the possibilities is to
study similar transformation that can be expressed using the Hermite polynomials. In case
that more accurate results are required Abadir and Talmain [1] offer a very general theorem,
which creates a link between the autocovariance functions of two transforms of a process.
As a special case the theorem establishes a link between autocovariance functions of a
process and its transform. Once the autocovariance structure of the transformed process
is known standard prediction methods can be used for finding the optimal prediction.



Chapter 2

Autocovariance and spectral density

In this chapter we will look at the methods of finding the autocovariance and spectral
density of the transformed series.

2.1 Autocovariance of transformed Gaussian processes

Granger and Newbold [6] derived exact formulas for general class of instantaneous trans-
formations of a stationary Gaussian time series. The formulas use expansion of the trans-
formation with Hermite polynomials, which can theoretically be found for almost any real
function in the form

T (x) =
∞∑

j=0

αjHj(x),

using Formula (7.6) (see Appendix A - Properties of Hermite polynomials), however the
derivation is in most cases very complicated. Expansion for the exponential function can
be found from the generating function (7.4), and the expansion for polynomial functions
can be found using e.g. the table in Abramowitz[2], p. 801 or Formulas (7.7) and (7.8).

Theorem 2.1. Let Xt be a stationary Gaussian time series with mean µ, variance σ2 and
autocorrelation function corr(Xt, Xt+τ ) = ρτ . Define

Zt =
Xt − µ

σ
for all t.

Then Zt and Zt+τ have bivariate normal distribution with zero means, unit variance and
correlation ρτ . Define series Yt = T (Zt), where T (Zt) =

∑M
j=0 αjHj(Zt) and Hj(Zt) are

Hermite polynomials. Then the mean of the transformed series is

E(Yt) = α0, (2.1)

the covariance between the original and transformed series is

cov(Xt, Yt+τ ) = α1ρτσ (2.2)

6



CHAPTER 2. AUTOCOVARIANCE AND SPECTRAL DENSITY 7

and finally the autocovariance function of the transformed series is

cov(Yt, Yt+τ ) =
M∑

j=1

j!α2
jρ

j
τ . (2.3)

Proof. The first statement follows from the basic properties of normal distribution. Now
consider the orthogonality of the system of Hermite polynomials (7.3), which implies

E [Hj(Zt)Hk(Zt+τ )] =

{
0, j 6= k,
j!ρj

τ , j = k.

For the formula (2.1) we write

E(Yt) = E[H0(Zt)Yt] = E

[
H0(Zt)

M∑
j=0

αjHj(Zt)

]

=
M∑

j=0

αjE [H0(Zt)Hj(Zt)] = α0E [H0(Zt)H0(Zt)] = α0.

Now we have

cov(Xt, Yt+τ ) = E(XtYt+τ )− E(Xt)E(Yt+τ )

= E [(σZt + µ)Yt+τ ]− µα0

= σE(ZtYt+τ ) + E(µYt+τ )− µα0

= σE

[
H1(Zt)

M∑
j=0

αjHj(Zt+τ )

]
+ E

[
µ

M∑
j=0

αjHj(Zt+τ )

]
− µα0

= σα1ρτ + µα0 − µα0 = α1ρτσ

and finally

cov(Yt, Yt+τ ) = E

[
M∑

j=0

αjHj(Zt)
M∑
i=0

αiHi(Zt+τ )

]

=
M∑

j=1

M∑
i=1

αjαiE [Hj(Zt)Hi(Zt+τ )]

=
M∑

j=1

j!α2
jρ

j
τ .

Let us now apply this theorem to three transformations: exponential, quadratic and
cubic. First it is necessary to find the Hermite expansion for each of these transformations.
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2.1.1 Application to three transformations

Corollary 2.2. (Exponential transformation) Using the expression for the generating
function of Hermite polynomials (7.4) we can write for the exponential transformation

Yt = exp(Xt) = exp

(
σZt + µ− 1

2
σ2 +

1

2
σ2

)
= exp

(
µ+

1

2
σ2

)
exp

(
σZt −

1

2
σ2

)
= exp

(
µ+

1

2
σ2

) ∞∑
j=o

σj

j!
Hj(Zt).

Define αj = exp
(
µ+ 1

2
σ2
)

σj

j!
. Then

Yt = exp(Xt) =
∞∑

j=0

αjHj(Zt).

From formulas (2.1), (2.2) and (2.3) it follows that the mean of the transformed series is

E(Yt) = α0 = exp

(
µ+

1

2
σ2

)
,

the covariance between the original and the transformed series is

cov(Xt, Yt+τ ) = α1ρτσ = exp

(
µ+

1

2
σ2

)
σ2ρτ ,

and finally the autocovariance function of the transformed series is

cov(Yt, Yt+τ ) =
M∑

j=1

j!α2
jρ

j
τ = exp

(
2µ+ σ2

) ∞∑
j=1

(σ2ρτ )
j

j!
= exp

(
2µ+ σ2

) (
exp(σ2ρτ )− 1

)
.

(2.4)

Corollary 2.3. (Quadratic transformation) Recall that

H0(x) = 1,

H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x.

Consider the transformation

Yt = X2
t = (σZt + µ)2 = µ2 + 2µσZt + σ2Z2

t

= µ2 + σ2 + 2σµZt + σ2Z2
t − σ2.
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Denoting

α0 = µ2 + σ2,

α1 = 2σµ,

α2 = σ2

we obtain the Hermite expansion for the quadratic transformation

Yt = X2
t = α0 + α1H1(Zt) + α2H2(Zt).

Using again formulas (2.1), (2.2) and (2.3) we write the mean of the transformed series

E(Yt) = α0 = µ2 + σ2,

the covariance between the original and the transformed series

cov(Xt, Yt+τ ) = α1ρτσ = 2σ2µρτ

and finally the autocovariance function of the transformed series

cov(Yt, Yt+τ ) =
M∑

j=1

j!α2
jρ

j
τ = α2

1ρτ + 2α2
2ρ

2
τ = 4σ2µ2ρτ + 2σ4ρ2

τ . (2.5)

Corollary 2.4. (Cubic transformation) Consider the transformation

Yt = X3
t = (σZt + µ)3

= µ3 + 3σµ2Zt + 3σ2µZ2
t + 3σ3Z3

t

= µ3 + 3σ2µ+
(
3σµ2 + 3σ3

)
Zt + 3σ2µZ2

t − 3σ2µ+ 3σ3Z3
t − 3σ3Zt.

Denoting

α0 = µ3 + 3σ2µ,

α1 = 3σµ2 + 3σ3,

α2 = 3σ2µ,

α3 = σ3

we obtain the Hermite expansion for the cubic transformation

α0 + α1H1(Zt) + α2H2(Zt) + α3H3(Zt).

The mean of the transformed series is then

E(Yt) = α0 = µ3 + 3σ2µ,

the covariance between the original and the transformed series is

cov(Xt, Yt+τ ) = α1ρτσ = 3σ2µ2ρτ + 3σ4ρτ

and finally the autocovariance function of the transformed series is

cov(Yt, Yt+τ ) =
M∑

j=1

j!α2
jρ

j
τ = α2

1ρτ + 2α2
2ρ

2
τ + 6α2

3ρτ
3 (2.6)

=
(
3σµ2 + 3σ3

)2
ρτ + 2

(
3σ2µ

)2
ρ2

τ + 6(σ3)2ρ3
τ . (2.7)
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2.1.2 Application to ARMA processes

In order to apply general formulas to a given process we need to know its mean µ and
variance σ2, as well as its autocorrelation function ρτ . This is very easy to calculate for
MA(∞) process.

Example 2.5. Consider a MA(∞) process Xt defined by

Xt =
∞∑
i=0

θiεt−i,

where θ0 = 1,
∑∞

i=0 θ
2
i <∞ and εt ∼ N(0, σ2

ε ). The mean of this process is obviously zero,
its variance is

σ2 = var(Xt) = var

(
∞∑
i=0

θiεt−i

)
=

∞∑
i=0

θ2
i var(εt−i) = σ2

ε

∞∑
i=0

θ2
i ,

the autocovariance function is

cov(Xt, Xt+τ ) = σ2
ε

∞∑
t=0

θtθt+τ

and the autocorrelation function is

ρτ =
cov(Xt, Xt+τ )

var(Xt)
=

∑∞
t=0 θtθt+τ∑∞

i=0 θ
2
i

.

Using the derived formulas we can write for the exponential transformation Yt = exp(Xt):

E(Yt) = exp

(
1

2
σ2

ε

∞∑
i=0

θ2
i

)
,

cov(Xt, Yt+τ ) = exp

(
1

2
σ2

ε

∞∑
i=0

θ2
i

)(
σ2

ε

∞∑
t=0

θtθt+τ

)
,

cov(Yt, Yt+τ ) = exp

(
σ2

ε

∞∑
i=0

θ2
i

)[
exp

(
σ2

ε

∞∑
t=0

θtθt+τ

)
− 1

]
,

for the square transformation Yt = X2
t :

E(Yt) = σ2
ε

∞∑
i=0

θ2
i ,

cov(Xt, Yt+τ ) = 0,

cov(Yt, Yt+τ ) = 2σ4
ε

(
∞∑

t=0

θtθt+τ

)2
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and finally for Yt = X3
t :

E(Yt) = 0,

cov(Xt, Yt+τ ) = 3σ4
ε

(
∞∑
i=0

θ2
i

)(
∞∑

t=0

θtθt+τ

)
,

cov(Yt, Yt+τ ) = 9σ6
ε

(
∞∑
i=0

θ2
i

)2( ∞∑
t=0

θtθt+τ

)
+ 6σ6

ε

(
∞∑

t=0

θtθt+τ

)3

.

Example 2.6. As a special case of the previous example consider the following AR(1)
process

Xt = ϕXt−1 + εt,

where εt ∼ N(0, 1) are i.i.d. This process can also be written in the form

Xt =
∞∑

j=0

ϕjεt−j.

The mean of this process is zero, µ = 0, and its variance is

σ2 = var(Xt) =
∞∑

j=0

ϕ2j =
1

1− ϕ2
,

taking into consideration that εt are i.i.d. The autocovariance function of this process is

RX(τ) = cov(Xt, Xt+τ ) = cov

(
∞∑

j=0

ϕjεt−j,
∞∑

j=0

ϕjεt+τ−j

)

=
∞∑

j=0

ϕj+τϕjvar(εt−j+τεt+τ−j) =
∞∑

j=0

ϕ2j+τ =
ϕτ

1− ϕ2
.

The autocorrelation function is then

ρτ =
RX(τ)

var(Xt)
= ϕτ .

Using formula (2.4) we can find the autocovariance function of the transformed series
Yt = exp(Xt)

R
(1)
Y (τ) = cov(Yt, Yt+τ ) = exp

(
2µ+ σ2

) (
exp(σ2ρτ )− 1

)
= exp

(
1

1− ϕ2

)[
exp

(
ϕτ

1− ϕ2

)
− 1

]
.
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Using formula (2.5) we can find the autocovariance function of the transformed series
Yt = X2

t

R
(2)
Y (τ) = cov(Yt, Yt+τ ) = 4σ2µ2ρτ + 2σ4ρ2

τ

= 2ϕτ

(
1

1− ϕ2

)2

.

Finally, using formula (2.6) we can find the autocovariance function of the transformed
series Yt = X3

t

R
(3)
Y (τ) = cov(Yt, Yt+τ ) =

(
3σµ3 + 3σ3

)2
ρτ + 2

(
3σ2µ

)2
ρ2

τ + 6σ6ρ3
τ

= 9ϕτ

(
1

1− ϕ2

)3

+ 6

(
ϕτ

1− ϕ2

)3

= (9ϕτ + 6ϕ3τ )

(
1

1− ϕ2

)3

.

In Figure 2.1 there is autocovariance function of AR(1) process, as well as the autoco-
variance functions of the transformed series exp(Xt), X

2
t and X3

t .

Example 2.7. Finally, let us consider the following MA(1) process

Xt = εt + θεt−1,

where εt ∼ N(0, 1) are i.i.d. The mean of this process is zero, µ = 0, and its variance is

σ2 = var(Xt) = (1 + θ2).

The autocovariance function of this process is

RX(τ) = cov(Xt, Xt+τ ) = cov(εt + θεt−1, εt+τ + θεt+τ−1)

=


1 + θ2, if τ = 0,
θ, if τ = 1 or τ = −1,
0, otherwise

and its the autocorrelation function is

ρX(τ) =


1, if τ = 0,

θ
1+θ2 , if τ = 1 or τ = −1,

0, otherwise.

The autocovariance function of the transformed process Yt = exp(Xt) is from (2.4) calcu-
lated using the formula

R
(1)
Y (τ) = exp(1 + θ2)

[
exp

(
(1 + θ2)ρX(τ)

)
− 1
]

and so

R
(1)
Y (τ) =


exp(1 + θ2) [exp(1 + θ2)− 1] , if τ = 0,
exp(1 + θ2) (exp(θ)− 1) , if τ = 1 or τ = −1,
0, otherwise.
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Figure 2.1: Autocovariance functions of the original process AR(1) and its transforms.
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The autocovariance function of the transformed process Yt = X2
t is from (2.5) calculated

using the formula
R

(2)
Y (τ) = 2(1 + θ2)2ρ2

X(τ)

and so

R
(2)
Y (τ) =


2(1 + θ2)2, if τ = 0,
2θ2, if τ = 1 or τ = −1,
0, otherwise.

Finally, the autocovariance function of the transformed process Yt = X3
t is from (2.6)

R
(3)
Y (τ) = 9(1 + θ2)3ρX(τ) + 6(1 + θ2)3ρ3

X(τ)

and so

R
(3)
Y (τ) =


9(1 + θ2)3 + 6(1 + θ2)3ρ3

X(τ), if τ = 0,
9θ(1 + θ2)2 + 6θ3, if τ = 1 or τ = −1,
0, otherwise

For illustration table 2.1 contains the values of autocovariance of the original and trans-
formed series for the MA(1) process.

θ = 0.25 τ = 0 τ = 1 θ = 0.75 τ = 0 τ = 1
Xt 1.063 0.250 Xt 1.562 0.750

exp(Xt) 5.479 0.723 exp(Xt) 17.989 3.578
X2

t 2.258 0.265 X2
t 4.882 1.172

X3
t 10.795 2.540 X3

t 34.332 16.479

Table 2.1: Autocovariance of MA(1) process and its transforms.

2.2 General innovations and the square transforma-

tion

Palma and Zevallos in [10] studied the behavior of the autocorrelation function of the
square of a time series with the following expansion

Xt = Ψ(B)εt,

where

Ψ(B) =
∞∑
i=0

ψiB
i, ψ0 = 1,

∞∑
i=0

ψ2
i <∞,

εt has finite kurtosis η and B is the lag operator. In the following we will assume that εt
are uncorrelated, but not necessarily independent.
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Theorem 2.8. Let us assume that εt are i.i.d. random variables with zero mean, finite
kurtosis, η = E(ε4t )/ [E(ε2t )]

2
. Let us assume that

E(εuεv) =

{
σ2

ε , if u = v,
0, otherwise,

autocorrelation function function of ε2t is ρε2(τ) and

E(εsεtεuεv) =


[1 + (η − 1)ρε2(s− v)]σ4

ε , if s = t, u = v or s = u, t = v,
[1 + (η − 1)ρε2(s− t)]σ4

ε , if s = v, t = u,
0, otherwise.

Consider now process Xt defined by formula

Xt =
∞∑
i=0

θiεt−i,

where θ0 = 1 and
∑∞

i=0 θ
2
i <∞. The autocorrelation function of the process Xt is

corr(Xt, Xt+τ ) = ρX(τ) =

∑∞
t=0 θtθt+τ∑∞

i=0 θ
2
i

.

Let us define

α(τ) =

∑∞
t=0 θ

2
t θ

2
t+τ∑∞

i=0 θ
4
i

,

∆(τ) =

∑∞
s=0

∑∞
t=0 θtθsθt+τθs+τρε2(t− s)

(
∑∞

i=0 θ
2
i )

2 ,

φ(τ) =

∑∞
s=0

∑∞
t=0 θ

2
sθ

2
t ρε2(τ + t− s)

(
∑∞

i=0 θ
2
i )

2 ,

κ = 3− 2η

∑∞
i=0 θ

4
i

(
∑∞

i=0 θ
2
i )

2 + 3(η − 1)∆(0),

where κ is kurtosis of Yt . Then the autocorrelation function of the squared process Yt =
(Xt)

2 is given by

corr(Yt, Yt+τ ) = ρY (τ) =
2

κ− 1
ρ2

X(τ) +
κ− 3

κ− 1
α(τ) +

η − 1

κ− 1
[φ(τ) + 2∆(τ)− 3∆(0)α(τ)] .

Proof. See Palma and Zevallos [10].

Corollary 2.9. (Linear process)
Let εt be i.i.d. random variables with zero mean and finite kurtosis η, i.e. εt is strict white
noise. Then

ρY (τ) =
2

κ− 1
ρ2

X(τ) +
κ− 3

κ− 1
α(τ),

where κ is the kurtosis of Yt given by

κ = (η − 3)

∑∞
i=0 θ

4
i

(
∑∞

i=0 θ
2
i )

2 + 3
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Proof. In this case we can write

φ(τ) = ∆(τ) = ∆(0)α(τ) =

∑∞
t=0 θ

2
t θ

2
t+τ

(
∑∞

i=0 θ
2
i )

2

and therefore φ(τ) + 2∆(τ)− 3∆(0)α(τ) = 0, also

∆(0) =

∑∞
i=0 θ

4
i

(
∑∞

i=0 θ
2
i )

2 .

The expected results follow immediately.

The above general theorem and corollary are useful generalizations, however the prin-
cipal focus of this work is on ARMA processes and in the following we show that when
considering the MA(∞) as a special case we obtain the same results as with the method
developed earlier.

Example 2.10. Consider the MA(∞) process

Xt =
∞∑
i=0

θiεt−i,

with θ0 = 1,
∑∞

i=0 θ
2
i < ∞ and εt ∼ N(0, σ2

ε ). Autocorrelation sequence of ε2t is ρε2(t) = 1
for t = 0 and 0 otherwise. From the basic properties of the normal distribution we know
that kurtosis of εt is η = 3. Hence

ρY (τ) = ρ2
X(τ),

where the autocorrelation of the original series (see Example (2.5)) is

ρ(τ) = corr(Xt, Xt+τ ) =
cov(Xt, Xt+τ )√

[var(Xt)]2[var(Xt+τ )]2
=

∑∞
t=0 θtθt+τ∑∞

i=0 θ
2
i

.

This result is in accordance with the results obtained in example 2.5, because

ρY (τ) =
cov(Yt, Yt+τ )

var(Yt)
=

2σ4
ε (
∑∞

t=0 θtθt+τ )
2

2σ4
ε (
∑∞

t=0 θ
2)

2 = ρ2
X(τ).

2.3 Generalized transformations

A different approach was offered by Abadir and Talmain [1], who established a link between
the autocovariance functions of two transforms of a process. The problem investigated
in this work can be considered a special case, one of the transforms being the identical
transformation. However, more detailed description of this rather general theorem exceeds
the scope of this work and will not be included.
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2.4 Spectral representation of transformed processes

Hannan [8] derived the same results regarding the autocovariance of transformed processes
as Granger and Newbold [6], moreover he derived also a formula for the spectral density
of the transformed process.

Theorem 2.11. Consider a Gaussian process Xt with zero mean, unit variance, autoco-
variance function R(τ) and spectral density f(λ). Then the autocovariance of the trans-
formed series

Yt =
M∑

j=0

αjHj(Xt)

is

RY (τ) = cov(Yt, Yt+τ ) =
M∑

j=0

j!α2
jR

j(τ) (2.8)

and

Rj(τ) =

∫ ∞

−∞
f ∗j(λ)dλ,

where f ∗j(λ) is the j-fold convolution of f(λ) with itself, f ∗0(λ) is defined as δ(λ), the Dirac
delta function. The spectral density of the transformed process Yt is

fY (λ) =
M∑

j=0

j!α2
jf

∗j(λ), (2.9)

Proof. The idea behind the proof of (2.8) is the same as that of (2.3) in Theorem 2.1, note
only that we assume unit variance of the process, hence

ρτ = corr(Yt, Yt+τ ) = cov(Yt, Yt+τ ) = R(τ).

For the rest of the proof see Hannan [8], p. 82.

As an illustration of application of this Theorem we consider MA(1) process.

Example 2.12. Consider the following MA(1) process

Xt = εt + θεt−1,

where εt ∼ N(0, 1) are i.i.d. Recall that we have already studied this case in Example 2.7.
In the following we will show that the previous theorem leads to the same results. The
density of this MA(1) process is

f(λ) =
1

2π
|1 + θe−iλ|2 ,whereλ ∈ [−π, π].
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Consider the square transformation of this process, i.e. process

Yt = X2
t = α0H0(Xt) + α2H2(Xt),

where α0 = 1 and α2 = 1. Using (2.9) the density of this transformed process is

fY (λ) = α2
0f

∗0 + 2!α2
2f

∗2 = δ(λ) + 2f ∗2

and

f ∗2 =

∫ π

−π

f(λ− a)f(a) da =

∫ π

−π

1

2π
|1 + θe−i(λ−a)|2 1

2π
|1 + θe−ia|2 da

=
1

4π2

∫ ∞

−∞

(
1 + θe−i(λ−a)

) (
1 + θei(λ−a)

) (
1 + θe−ia

) (
1 + θeia

)
da

=
1

4π2

∫ π

−π

(
1 + θe−i(λ−a) + θei(λ−a) + θ2

) (
1 + θe−ia + θeia + θ2

)
da

=
1

4π2

∫ π

−π

(
1 + θ2 + 2θ cos(λ− a)

) (
1 + θ2 + 2θ cos(a)

)
da

=
1

4π2

∫ π

−π

[
(1 + θ2)2 + 4θ2 cos(a) cos(λ− a)

]
da

=
1

4π2

[
2π(1 + θ2)2 + 4πθ2 cos(λ)

]
=

1

2π
(1 + θ2)2 +

1

π
θ2 cos(λ).

Hence the spectral density of the transformed process is

fY (λ) = δ(λ) +
1

π

[
(1 + θ2)2 + 2θ2 cos(λ)

]
.

To show that this is indeed in accordance with the results in example 2.7 we will use the
following relationship between the autocovariance function and spectral density (see e.g.
Prášková [11], p. 28).

R(t) =

∫ π

−π

eitλf(λ) dλ.

In our case

R
(2)
Y (τ) =

1

π

∫ π

−π

eitλ
[
πδ(λ) + (1 + θ2)2 + 2θ2 cos(λ)

]
dλ.

Calculating this integral for concrete values of τ we have

R
(2)
Y (0) = 2(1 + θ2)2,

R
(2)
Y (1) = R

(2)
Y (−1) = 2θ2,

R
(2)
Y (τ) = 0, for τ ≥ 2,

which is in accordance with the results derived in example 2.7.



Chapter 3

Predictions

We have already addressed the issue of autocovariance and spectral properties of trans-
formed time series and thus obtained tools for predicting future realizations of the trans-
formed series. All that is required is to apply the standard methods for predictions. How-
ever, Granger and Newbold [6] derived explicit formulas that can be used without the need
of investigating the autocovariance or spectral properties of the transformed time series.

3.1 Optimal, naive and linear predictions

3.1.1 Optimal prediction

Theorem 3.1. (Optimal prediction) Let Xt be a Gaussian stationary process with mean

µ and variance σ2, and X̂t+h be the optimal h-step ahead prediction of Xt+h, given the in-
formation set It (previous observations Xt, Xt−1, . . .), i.e. X̂t+h = E(Xt+h|It). Assume that

the error of prediction et+h = Xt+h − X̂t+h given It has conditionally normal distribution

with zero mean and variance S2(h). Define Zt = Xt−µ
σ

∼ N(0, 1) and A =
√

1− S2(h)
σ2 .

Consider the following transformation

Yt = T (Zt) =
M∑
i=0

αiHi(Zt).

Define random variable

Wt+h =
Xt+h − X̂t+h

S(h)
.

Then constants γi can be found such that Yt =
∑M

i=0 γiHi(Wt). The h-step ahead optimal
prediction of Yt+h is

Ŷ
(1)
t+h = γ0 (3.1)

19
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and the unconditional mean square error of this prediction is

V (1)(h) = E
(
Xt+h − X̂t+h

)2

=
M∑

j=1

j!α2
j (1− A2j).

Proof. The h-step ahead prediction of Yt+h is in fact the conditional expectation of this
random variable. Hence we can use the results from theorem 2.1 and the formula (3.1)
follows immediately.

Random variable Xt+h has conditionally normal distribution with mean X̂t+h and vari-
ance S2(h) and therefore random variable Wt+h, is conditionally, given It, distributed as a

standard normal variable. Define B =
√

1− A2 =
√

S2(h)
σ2 and C = X̂t+h−µ√

σ2−S2(h)
. We have

Zt+h =
Xt+h − µ

σ
=
Wt+hS(h) + X̂t+h − µ

σ

=
S(h)

σ
Wt+h +

√
1− S2(h)

σ2

X̂t+h − µ√
σ2 − S2(h)

= BWt+h + AC.

Note that A2 + B2 = 1, hence we can use the summation formula (7.5). For each j ∈ N
we can write

Hj(Zt+h) = Hj(BWt+h + AC)

=

j∑
k=0

(
j

k

)
BkAj−kHj−k(C)Hk(Wt+h).

Recall that the Hermite polynomials have the following property (7.1)

E[Hk(Wt+h)] =

{
0, k > 0,
1, k = 0.

Now we have the optimal prediction in the quadratic loss sense:

Ŷ
(1)
t+h = E(Yt+h) = E

[
M∑

j=0

αjHj(Zt+h)

]
= E

[
M∑

j=0

αjHj(BWt+h + AC)

]
=

=
M∑

j=0

αj

j∑
k=0

(
j

k

)
BkAj−kHj−k(C)E[Hk(Wt+h)] =

M∑
j=0

αjA
jHj(C).

To calculate the unconditional mean square error we first write

V (1)(h) = E
[
Yt+h − Ŷ

(1)
t+h

]2
= E [Yt+h]

2 − 2E
[
Yt+hŶ

(1)
t+h

]
+ E

[
Ŷ

(1)
t+h

]2
. (3.2)
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Recall from the properties of Hermite polynomials, formula (7.3), that

E{Hi(Zt+h)Hj(Zt+h)} =

{
0, i 6= j,
j!1j, i = j.

Therefore

E [Yt+h]
2 = E

[
M∑

j=0

αjHj(Zt+h)

]2

=
M∑
i=0

M∑
j=0

αiαjE [Hi(Zt+h)Hj(Zt+h)] =
M∑
i=0

j!α2
j .

Similarly,

E
[
Ŷ

(1)
t+h

]2
= E

[
M∑

j=0

αjA
jHj(C)

]2

=
M∑
i=0

M∑
j=0

αiαjA
i+jE [Hi(C)Hj(C)] =

M∑
i=0

j!α2
jA

2j,

because C ∼ N(0, 1). Since cov(X̂t+h, et+h) = 0 and cov(et+h, et+h) = S2(h) we can write

cov(Xn+h, X̂t+h) = cov(Xt+h, Xt+h − et+h) = cov(Xt+h, Xt+h)− cov(Xt+h, et+h)

= σ2 − cov(X̂t+h + et+h, et+h) = σ2 − cov(X̂t+h, et+h)− cov(et+h, et+h)

= σ2 − S2(h)

and so the autocorrelation between Zt+h and C is

ρ = corr(Zt+h, C) =
cov(Zt+h, C)√
var(Zt+h)var(C)

= cov(Zt+h, C)

= cov

[
Xt+h − µ

σ
,

X̂t+h − µ√
σ2 − S2(h)

]
=

1

σ
√
σ2 − S2(h)

cov(Xn+h, X̂t+h)

=
1

σ
√
σ2 − S2(h)

(σ2 − S2(h)) =

√
σ2 − S2(h)

σ2
= A.

Now we can write

2E
[
Ŷ

(1)
t+hYt+h

]
= 2E

[
M∑
i=0

αiHi(Zt+h)

][
M∑

j=0

αjA
jHj(P )

]

= 2E

[
M∑
i=0

M∑
j=0

αiαjA
jHi(Zt+h)Hj(C)

]

= 2
M∑

j=0

j!α2
jA

jρj = 2
M∑

j=0

j!α2
jA

2j.
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Returning back to formula (3.2) we derived the expected expression for the forecast error

V (1)(h) =
M∑

j=0

α2
jj!− 2

M∑
j=0

α2
jA

2jj! +
M∑

j=0

α2
jA

2jj!

=
M∑

j=0

α2
jj!
(
1− A2j

)
.

3.1.2 Naive prediction

In the following we will be using the notation bXc for the integer part of a real number.

Theorem 3.2. (Naive prediction) Under the same assumptions as in Theorem 3.1
consider the naive h-step ahead prediction of Yt+h

Ŷ
(2)
t+h = T

(
X̂t+h − µ

σ

)
.

Then the mean square error of this prediction is

V (2)(h) =
M∑

j=1

α2
jj!(1− A2j) +

M∑
j=0

A2j

j!

b 1
2
(M−j)c∑
k=1

αj+2k
(j + 2k)!

k!

(
−1

2
B2

)k
2

. (3.3)

Proof. We have

V (2)(h) = E
[
Yt+h − Ŷ

(2)
t+h

]2
= E

[(
Yt+h − Ŷ (1)(h)

)
−
(
Y

(2)
t+h − Y

(1)
t+h

)]2
= E

(
Yt+h − Ŷ (1)(h)

)2

− 2E
(
Yt+h − Ŷ (1)(h)

)(
Y

(2)
t+h − Y

(1)
t+h

)
+ E

(
Y

(2)
t+h − Y

(1)
t+h

)2

.

The first term in (3.3) is V (1)(h) from Theorem 3.1. The second term is derived in similar
manner using the properties of Hermite polynomials. See also Granger and Newbold [6].

3.1.3 Linear prediction

Theorem 3.3. (Linear prediction) Under the same assumptions as in Theorem 3.1
consider h-step ahead prediction of Yt+h, which is optimal in the quadratic loss sense in
the class of forecasts that are linear in Xt−j, j ≥ 0. Then this prediction can be written as
follows:

Ŷ
(3)
t+h = α0 + α1

X̂t+h − µ

σ
.
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The expected square error of this prediction is

V (3)(h) =
M∑

j=2

j!α2
j +

α2
1S

2(h)

σ2
.

Proof. The covariance between Xt and Yt+h is given by (2.2). The cross spectrum between
Xt and Yt will be therefore a constant times the spectrum of Xt. Hence

Ŷ
(3)
t+h = α0 + α1

X̂t+h − µ

σ
.

The mean square prediction error is

V (3)(h) = E
(
Yt+h − Ŷ

(3)
t+h

)2

= E (Yt+h)
2 − 2E

(
Yt+hŶ

(3)
t+h

)
+ E

(
Ŷ

(3)
t+h

)2

where

E [Yt+h]
2 =

M∑
j=0

j!α2
j .

Notice that the remaining two terms are special cases of the corresponding terms in (3.2),
because

Ŷ
(3)
t+h =

1∑
j=0

αjHj

(
X̂t+h − µ

σ

)
=

1∑
j=0

αjA
jHj(C) = a0 + a1AH1(C),

see Theorem 3.1. Hence we have

E
(
Yt+hŶ

(3)
t+h

)2

= E
(
Ŷ

(3)
t+h

)2

=
1∑

j=0

j!α2
jA

2j.

And so the mean square prediction error is

V (3)(h) =
M∑

j=0

j!α2
j −

1∑
j=0

j!α2
jA

2j =
M∑

j=0

j!α2
j − α2

0 − α2
1A

2 =
M∑

j=1

j!α2
j − α2

1A
2 =

=
M∑

j=2

j!α2
j + α2

1

(
1− A2

)
=

M∑
j=2

j!α2
j + α2

1B
2 =

M∑
j=2

j!α2
j +

α2
1S

2(h)

σ2
.
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3.2 Three transformations

In this section three transformations are considered and all three predictions are calculated
for each of the transformation, together with the mean square prediction errors of these
predictions. The predictions are compared on the basis of the proportional increase in
mean square error, defined as follows

G(2)(h) =
V (2)(h)− V (1)(h)

V (1)(h)
, (3.4)

G(3)(h) =
V (3)(h)− V (1)(h)

V (1)(h)
. (3.5)

3.2.1 Exponential transformation

Let us first consider the exponential transformation and apply the formulas derived in the
previous section to find the optimal, naive and linear predictions and their mean square
errors.

Corollary 3.4. Consider the transformation

Yt = exp(Xt) =
∞∑

j=0

αjHj(Zt) =
∞∑

j=0

γjHj(Wt),

where

αj = exp

[
µ+

1

2
σ2

]
σj

j!
,

γj = exp

[
X̂t+h +

1

2
S2(h)

]
Sj(h)

j!
.

Then the predictions for the transformed series are

Ŷ
(1)
t+h = exp

[
X̂t+h +

1

2
S2(h)

]
,

Ŷ
(2)
t+h = exp

[
X̂t+h

]
,

Ŷ
(3)
t+h = exp

[
µ+

1

2
σ2

](
1 + X̂t+h − µ

)
,

their mean square prediction errors

V (1)(h) = exp
[
2(µ+ σ2)

] [
1− exp(−S2(h))

]
,

V (2)(h) = exp
[
2(µ+ σ2)

] [
1− 2 exp

(
−3

2
S2(h)

)
+ exp

(
−2S2(h)

)]
,

V (3)(h) = exp(2µ+ σ2)
[
exp(σ2)− 1− σ2 + S2(h)

]
,
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and the proportional increase in the mean square error for the naive and linear predictions

G(2)(h) =

[
exp(−1

2
S2(h))− exp(−S2(h))

]2
1− exp(−S2(h))

,

G(3)(h) =
exp(−σ2) [S2(h)− 1− σ2] + exp(−S2(h))

1− exp(−S2(h))
.

Proof. The coefficients of Hermite expansion αi were derived using the generating function
of Hermite polynomials (formula (7.4)), see Corollary 2.2. To show the expressions for γi

recall from Theorem 3.1 that by definitionWt+h = (Xt+h−X̂t+h)/S(h) and Zt = (Xt−µ)/σ,

where Zt ∼ N(0, 1) and (Xt+h−X̂t+h) has conditionally normal distribution with zero mean
and variance S2(h). Hence if we know the coefficients αj from Corollary 2.2 we also know

the coefficients γj; they will have X̂t+h instead of µ and S2(h) instead of σ2.
Using Theorem 3.1 we have

Ŷ
(1)
t+h = γ0 = exp

[
X̂t+h +

1

2
S2(h)

]
and

V (1)(h) =
∞∑

j=1

j!α2
j

(
1− A2j

)
= exp

(
2µ+ σ2

) ∞∑
j=1

j!
σ2j

(j!)2

(
1− A2j

)
= exp

(
2µ+ σ2

) [ ∞∑
j=1

σ2j

j!
−

∞∑
j=1

σ2j

j!
A2j

]
= exp

(
2µ+ σ2

) [
exp(σ2)− 1− exp(σ2A2) + 1

]
= exp

[
2(µ+ σ2)

] [
1− exp(σ2A2 − σ2)

]
= exp

[
2(µ+ σ2)

] [
1− exp(−S2(h))

]
,

Using Theorem 3.2 we have
Ŷ

(2)
t+h = exp(Xt+h)
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and to evaluate V (1)(h) we need first to calculate the second term in (3.3)

lim
M→∞

M∑
j=0

A2j(j!)−1

b 1
2
(M−j)c∑
k=1

αj+2k
(j + 2k)!

k!

(
−1

2
B2

)k
2

= lim
M→∞

exp(2µ+ σ2)
M∑

j=0

(A2σ2)j

j!

b 1
2
(M−j)c∑
k=1

1

k!

(
−1

2
B2σ2

)k
2

= exp(2µ+ σ2) exp(σ2A2)

[
exp

(
−1

2
B2σ2

)
− 1

]2

= exp(2µ+ σ2) exp(σ2 − S2(h))

[
1− exp

(
−1

2
S2(h)

)]2

= exp
[
2(µ+ σ2)

] [
exp

(
−1

2
S2(h)

)
− exp(−S2(h))

]2

.

Now we can write

V (2)(h) = exp
[
2(µ+ σ2)

] [
1− exp(−S2(h)) +

[
exp

(
−1

2
S2(h)

)
− exp(−S2(h))

]2
]

= exp
[
2(µ+ σ2)

](
1− 2 exp

(
−3

2
S2(h)

)
+ exp(−2S2(h))

)
.

Using Theorem 3.3 we have

Ŷ
(3)
t+h = α0 + α1

X̂t+h − µ

σ
= exp

[
µ+

1

2
σ2

](
1 + σ

X̂t+h − µ

σ

)

= exp

[
µ+

1

2
σ2

](
1 + X̂t+h − µ

)
and

V (3)(h) = lim
M→∞

M∑
j=2

j!α2
j +

α2
1S

2(h)

σ2

= exp

(
µ+

1

2
σ2

)2
[
∞∑

j=0

σ2j

(j!)2
j!− 1− σ1 + S2(h)

]
= exp(2µ+ σ2)

[
exp(σ2)− 1− σ2 + S2(h)

]
.

The proportional increase in mean square prediction error for the naive prediction and
for the linear prediction follow immediately from the definition ((3.4) and (3.5)) and the
derived expressions for V (1)(h), V (2)(h) and V (3)(h).
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3.2.2 Quadratic transformation

Let us now consider the quadratic transformation Yt = X2
t . We know from Corollary 2.3

that only the first three coefficients of the Hermite expansions (α0, α1 and α2) are greater
than zero, therefore finding the predictions and their errors will be much easier than in the
case of the exponential transformation.

Corollary 3.5. (Quadratic transformation) Consider the transformation

Yt = X2
t =

2∑
i=0

αiHi(Zt) =
2∑

i=0

γiHi(Wt),

where

α0 = µ2 + σ2,

α1 = 2σµ,

α2 = σ2,

γ0 = X̂2
t+h + S2(h),

γ1 = 2X̂t+hS(h),

γ2 = S2(h),

see corollary 2.3. Then the predictions for the transformed series are

Ŷ
(1)
t+h = X̂2

t+h + S2(h),

Ŷ
(2)
t+h = X̂2

t+h,

Ŷ
(3)
t+h = σ2 − µ2 + 2µX̂t+h,

their mean square expected errors

V (1)(h) = 4(µ2 + σ2)S2(h)− 2S4(h),

V (2)(h) = 4(µ2 + σ2)S2(h)− S4(h),

V (3)(h) = 2σ4 + 4µ2S2(h),

and the proportional increase in the mean square error for the naive and linear predictions

G(2)(h) =
S4(h)

4(µ2 + σ2)− 2S4(h)
,

G(3)(h) =
[σ2 − S2(h)]2

2(µ2 + σ2)S2(h)− S4(h)
.

Proof. The coefficients of the Hermite expansion αi were derived in Corollary 2.3. Using
the same reasoning as in the previous proof can say that the coefficients γi will be the same
as αi, but with X̂t+h instead of µ and S2(h) instead of σ2. Using Theorem 3.1 we write

Ŷ
(1)
t+h = γ0 = X̂2

t+h + S2(h)
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and

V (1)(h) = α2
1(1− A2) + α2

2(1− A4)

= 4σ2µ2

(
S2(h)

σ2

)
+ 2σ4

[
1−

(
1− S2(h)

σ2

)2
]

= 4µ2S2(h) + 2
[
σ4 − (σ2 − S2(h))2

]
= 4(µ2 + σ2)S2(h)− 2S4(h).

Using Theorem 3.2 we write
Ŷ

(2)
t+h = X̂2

t+h

and the second term in (3.3) (only the term with k = 1 is greater than zero)

M∑
j=1

α2
jj!(1− A2j) +

M∑
j=0

A2j(j!)−1

b 1
2
(M−j)c∑
k=1

αj+2k
(j + 2k)!

k!

(
−1

2
B2

)k
2

=

[
2α2

(
−1

2
B2

)]2

=

[
σ2S

2(h)

σ2

]2

= S4(h),

hence
V (2)(h) = 4(µ2 + σ2)S2(h)− 2S4(h) + S4(h).

Finally using Theorem 3.3 we have

Ŷ
(3)
t+h = α0 + α1

X̂t+h − µ

σ

= µ2 + σ2 + 2σµ
X̂t+h − µ

σ
= σ2 − µ2 + 2µXt+h

and

V (3)(h) = 2α2
2 +

α2
1S

2(h)

σ2
= 2σ2 + 4µ2S2(h).

Again, the proportional increase in mean square prediction error for the naive prediction
and for the linear prediction follow immediately from the definition ((3.4) and (3.5)) and
the derived expressions for V (1)(h), V (2)(h) and V (3)(h).

3.2.3 Cubic transformation

Finally let us look at the the cubic transformation. From Corollary 2.4 we know that only
the first four coefficients (α0, α1, α2 and α3) in the Hermite expansion are greater than
zero. The application of the Theorems 3.1, 3.2 and 3.3 is very similar to the case of the
quadratic transformation, although a little more tedious.
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Corollary 3.6. (Cubic transformation) Consider the transformation

Yt = X3
t =

3∑
i=0

αiHi(Zt) =
3∑

i=0

γiHi(Wt),

where

α0 = µ3 + 3σ2µ,

α1 = 3σµ2 + 3σ3,

α2 = 3σ2µ,

α3 = σ3,

γ0 = X̂3
t+h + 3S2(h)X̂t+h,

γ1 = 3X̂2
t+hS(h) + 3S3(h),

γ2 = 3S2(h)X̂t+h, γ3 = S3(h),

see corollary 2.4. Then the predictions for the transformed series are Then

Ŷ
(1)
t+h = X̂3

t+h + 3S2(h)X̂t+h,

Ŷ
(2)
t+h = X̂3

t+h,

Ŷ
(3)
t+h = 3(µ3 + σ2)X̂t+h − 2µ3

their mean square errors

V (1)(h) = S2(h)
[
9(µ2 + σ2)2 + 6S4(h)− 18µ2S2(h) + 18σ2(2µ2 + σ2 − S2(h))

]
,

V (2)(h) = V (1)(h) + 9S4(h)(µ2 + σ2 − S2(h)),

V (3)(h) = 6σ4(3µ2 + σ2) + 9S2(h)(µ2 + σ2)2,

and the proportional increase in the mean square error for the naive and linear predictions

G(2)(h) =
3S2(h)(µ2 + σ2 − S2(h))

3(µ2 + σ2)2 + 2S4(h)− 6µ2S2(h) + 6σ2(2µ2 + σ2 − S2(h))
,

G(3)(h) =
6σ4(3µ2 + σ2)− S2(h)(6S4(h)− 18µ2S2(h) + 18σ2(2µ2 + σ2 − S2(h)))

S2(h) [9(µ2 + σ2)2 + 6S4(h)− 18µ2S2(h) + 18σ2(2µ2 + σ2 − S2(h))]
.

Proof. To see that the coefficients αj are calculated correctly we write:

Yt =
4∑

j=0

αjHj(Zt)

= µ3 + 3σ2µ+ (3σµ2 + 3σ3)
Xt − µ

σ
+

+3σ2µ

[(
Xt − µ

σ

)2

− 1

]
+ σ3

[(
Xt − µ

σ

)3

− 3
Xt − µ

σ

]
= X3

t .
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The coefficients γj are obtained in similar way as in the case previous transformations;

with X̂t+h instead of µ and S2(h) instead of σ2. Using Theorem 3.1 we write

Ŷ
(1)
t+h = γ0 = X̂3

t+h + 3S2(h)X̂t+h

and

V (1)(h) =
4∑

j=1

j!α2
j

(
1− A2j

)
= (3σµ2 + 3σ3)2

[
1− σ2 − S2(h)

σ2

]
+ 2(3σ2µ)2

[
1−

(
σ2 − S2(h)

σ2

)2
]

+

+6(σ3)2

[
1−

(
σ2 − S2(h)

σ2

)3
]

= S2(h)
{
9(µ2 + σ2)2 + 6S4(h)− 18µ2S2(h) + 18σ2(2µ2 + σ2 − S2(h))

}
.

Using Theorem 3.2 we write
Ŷ

(2)
t+h = X̂3

t+h.

The second term in (3.3) the only non-zero terms are

j = 0 and k = 1 :

[
2α2

(
−1

2
B2

)]2

= α2
2B

4

j = 0 and k = 1 : A2

[
3!α3

(
−1

2
B2

)]2

= 9α2
3A

2B4.

Hence

V (2)(h) = V (1)(h) +B4(α2
2 + 9α2

3A
2)

= V (1)(h) +
S4(h)

σ4

[
9σ4µ2 + 9σ6

(
σ2 − S2(h)

σ2

)]
= V (1)(h) + 9S4(h)(µ2 + σ2 − S2(h)).

Finally, using Theorem 3.3 we have

Ŷ
(3)
t+h = α0 + α1

(
X̂t+h − µ

σ

)
= µ3 + 3σ2µ+ (3σµ2 + 3σ3)

(
X̂t+h − µ

σ

)
= 3(µ3 + σ2)X̂t+h − 2µ3
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and

V (3)(h) =
3∑

j=2

j!α2
j + α2

1

S2(h)

σ2

= 18σ4µ2 + 6σ6 + (3σµ2 + 3σ3)2S
2(h)

σ2

= 6σ4(3µ2 + σ2) + 9S2(h)(µ2 + σ2)2,

Again, the proportional increase in mean square prediction error for the naive prediction
and for the linear prediction follow immediately from the definition ((3.4) and (3.5)) and
the derived expressions for V (1)(h), V (2)(h) and V (3)(h).

3.3 Predictions using spectral density

Theorem 2.11 provides the framework for finding the spectral density of a transformation
of a Gaussian process. Once we know the spectral density of the transformed series, we can
find the best linear predictor for the transformed series. Methods for finding the optimal
linear prediction using the spectral density are described in Anděl [3] and in Grenander and
Rosenblatt [7]. General Theorem is given in Appendix B. This method, however general,
is not very practical. In special cases much simpler formulas can be derived.

Choi and Taniguchi [5] derived formula for the mean square prediction error of the naive
prediction for square-transformed Gaussian process and compared the naive prediction with
the bias-adjusted prediction.

Theorem 3.7. (Naive prediction) Let Xt be Gaussian stationary process with zero
mean and variance σ2 and spectral density

g(λ) =
1

2π
|c(e−iλ)|2, |c(0)|2 = σ2

e ,

where c(z) 6= 0 for |z| ≤ 1. Then the mean square prediction error of the naive prediction
is

E[X2
t+1 − X̂2

t+1]
2 = 4σ2

eσ
2 − σ4

e ,

where X̂t+1 is the optimal predictor of Xt+1.

Proof. Process Xt can be expressed using its spectral density (see e.g. Anděl [3] or
Prášková [11]) in the following way

Xt =

∫ π

−π

eitλ dz(λ).

The best linear prediction (see Theorem 8.1 in Appendix B and Grenander and Rosen-
blatt [7]) is

X̂t+1 =

∫ π

−π

ei(t+1)λ c(e
−iλ)− c(0)

c(e−iλ)
dz(λ).
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Define et+1 = Xt+1 − X̂t+1. Then E(et+1) = 0 and

εt+1 =

∫ π

−π

ei(t+1)λ dz(λ)−
∫ π

−π

ei(t+1)λ c(e
−iλ)− c(0)

c(e−iλ)
dz(λ) =

= c(0)

∫ π

−π

ei(t+1)λ

c(e−iλ)
dz(λ)

and so
E(et+1)

2 = σ2
e .

Because we assume that Xt is Gaussian also εt+1 is Gaussian and from the basic properties
of the normal distribution (see e.g. Anděl [4]) we have Eε3t+1 = 0 and Eε4t+1 = 3σ4

e . Hence
we can write

EX2
t+1 = E(εt+1 + X̂t+1)

2 = Eε2t+1 + 2Eεt+1X̂t+1 + EX̂2
t+1 = EX̂2

t+1 + σ2
e .

The mean square prediction error is then

E[X2
t+1 − X̂2

t+1]
2 = E[(εt+1 + X̂t+1)

2 − X̂2
t+1]

2 = E[ε2t+1 + 2εt+1X̂t+1]
2

= E[ε4t+1 + 4ε3t+1X̂t+1 + 4ε2t+1X̂
2
t+1] = Eε4t+1 + 4E(ε3t+1X̂t+1) + 4E(ε2t+1X̂

2
t+1)

= 3σ4
e + 4Eε3t+1EX̂t+1 + 4Eε2t+1X̂

2
t+1 = 3σ4

e + 4σ2
eEX̂

2
t+1

= 3σ4
e + 4σ2

e(EX
2
t+1 − σ2

e) = 3σ4
e + 4σ2

eEX
2
t+1 − 4σ4

e = 4σ2
eEX

2
t+1 − σ4

e

= 4σ2
eσ

2 − σ4
e = V (2)(1).

Notation V (2)(1) was chosen in accordance with previously used notation.

Theorem 3.8. (The bias-adjusted prediction) Under the same assumptions as in the
Theorem 3.7 consider now bias-adjusted transformed series Vt = Yt−EYt = X2

t −EX2
t and

bias-adjusted prediction V̂t+1 = Ŷt+1 − EŶt+j = X̂2
t+1 − EX̂2

t+1. The expected error of the
bias-adjusted prediction is

E
(
Vt+1 − V̂t+1

)2

= V (2)(1)−
(
σ2 − σ2

e

)2
.

Proof. We have

E
(
Vt+1 − V̂t+1

)2

= E
[(
X2

t+1 − EX2
t+1

)
−
(
X̂2

t+1 − EX̂2
t+1

)]2
=

= E
[(
X2

t+1 − X̂2
t+1

)
−
(
EX2

t+1 − EX̂2
t+1

)]2
=

= E (Ut+1 − EUt+1)
2 = EU2

t+1 − (EUt+1)
2 ,

where Ut = X2
t − X̂2

t . Now we have

EU2
t+1 = E

(
X2

t+1 − X̂2
t+1

)2

= V (2)(1)

EUt+1 = EX2
t+1 − EX̂2

t+1 = σ2 − σ2
e .
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Further comparison of the naive and bias-adjusted predictions in case of the square-
transformed process can be found in Choi and Taniguchi [5].



Chapter 4

Application to ARMA processes

In this chapter we will apply the derived formulas to the three predictions (optimal, naive
and linear) and their mean square errors on each of the three transformations (exponential,
quadratic and cubic) of processes MA(1), AR(1) and ARMA(1, 1). From Corollaries 3.4,
3.5 and 3.6 we know that the predictions and their mean square errors are functions of
the following four parameters: the mean µ and variance σ2 of the original series Xt, the
optimal prediction in the original series X̂t+h and its error S2(h).

4.1 MA(1) process

Consider the following MA(1) process

Xt = εt + θεt−1,

where εt ∼ N(0, σ2
ε ) are i.i.d. Obviously µ = 0. Variance of the process is

σ2 = var(Xt) = σ2
ε (1 + θ2)

The optimal prediction is

X̂t+1 = θεt = −
∞∑

j=1

(−θ)jXt+1−j

and the error of the 1-step ahead prediction is

S2(1) = σ2
ε .

Now we can use the general formulas to find the predictions and their mean square errors
for this process.

34
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4.1.1 Exponential transformation

Consider the transformation
Yt = exp(Xt).

From corollary 3.4 the predictions for this transformation are

Ŷ
(1)
t+1 = exp

(
−

∞∑
j=1

(−θ)jXt+1−j +
1

2
σ2

ε

)
,

Ŷ
(2)
t+1 = exp

[
−

∞∑
j=1

(−θ)jXt+1−j

]
,

Ŷ
(3)
t+1 = exp

[
1

2
σ2

ε (1 + θ2)

][
1−

∞∑
j=1

(−θ)jXt+1−j

]

and the mean square errors of these predictions are

V (1)(1) = exp[2σ2
ε (1 + θ2)]

[
1− exp(σ2

ε )
]
,

V (2)(1) = exp[2σ2
ε (1 + θ2)]

[
1− 2 exp

(
−3

2
σ2

ε

)
+ exp(−2σ2

ε )

]
,

V (3)(1) = exp
[
σ2

ε (1 + θ2)
] [

exp[σ2
ε (1 + θ2)]− 1− σ2

ε θ
2
]
.

4.1.2 Quadratic transformation

Consider the transformation
Yt = X2

t .

From corollary 3.5 the predictions for this transformation are

Ŷ
(1)
t+1 =

[
−

∞∑
j=1

(−θ)jXt+1−j

]2

+ σ2
ε ,

Ŷ
(1)
t+1 =

[
−

∞∑
j=1

(−θ)jXt+1−j

]2

,

Ŷ
(1)
t+1 = σ2

ε (1 + θ2)

and the mean square errors of these predictions are

V (1)(1) = 4
[
σ2

ε (1 + θ2)
]
σ2

ε − 2(σ2
ε )

2,

V (2)(1) = 4
[
σ2

ε (1 + θ2)
]
σ2

ε − (σ2
ε )

2,

V (3)(1) = 2
[
σ2

ε (1 + θ2)
]2
.
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4.1.3 Cubic transformation

Consider the transformation
Yt = X3

t .

From corollary 3.6 the predictions for this transformations are

Ŷ
(1)
t+1 =

[
−

∞∑
j=1

(−θ)jXt+1−j

]3

+ 3σ2
ε

(
−

∞∑
j=1

(−θ)jXt+1−j

)
,

Ŷ
(2)
t+1 =

[
−

∞∑
j=1

(−θ)jXt+1−j

]3

,

Ŷ
(3)
t+1 = 3σ2

ε (1 + θ2)

(
−

∞∑
j=1

(−θ)jXt+1−j

)

and the mean square prediction errors

V (1)(1) = 6σ6
ε

[
4 + 6θ2 + 3θ4

]
V (2)(1) = V (1)(h) + 9θ2σ6

ε ,

V (3)(1) = 3σ6
ε

(
1 + θ2

)3 (
5 + 3θ2

)
.

Yt = exp(Xt) h = 1 h = 2 h = 3

θ = 0.25 G(2)(h) 0.015 0.015 0.015

θ = 0.25 G(3)(h) 4.097 4.097 4.097

θ = 0.75 G(2)(h) 0.080 0.080 0.080

θ = 0.75 G(3)(h) 0.350 0.350 0.350

Table 4.1: MA(1), Yt = exp(Xt), proportional increase in mean square prediction error

Yt = X2
t h = 1 h = 2 h = 3

θ = 0.25 G(2)(h) 0.015 0.015 0.015

θ = 0.25 G(3)(h) 7.758 7.758 7.758

θ = 0.75 G(2)(h) 0.110 0.110 0.110

θ = 0.75 G(3)(h) 0.694 0.694 0.694

Table 4.2: MA(1), Yt = X2
t , proportional increase in mean square prediction error
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Yt = X3
t h = 1 h = 2 h = 3

θ = 0.25 G(2)(h) 0.019 0.019 0.019

θ = 0.25 G(3)(h) 3.275 3.275 3.275

θ = 0.75 G(2)(h) 0.097 0.097 0.097

θ = 0.75 G(3)(h) 0.205 0.205 0.205

Table 4.3: MA(1), Yt = X3
t , proportional increase in mean square prediction error

4.2 MA(∞) process

It is very simple to extend the previous case to MA(∞) process

Xt = εt + θ1εt−1 + θ2εt−2 · · · ,

where again εt ∼ N(0, σ2
ε ) are i.i.d. The variance of this process is

σ2 = var(Xt) = σ2
ε

∞∑
j=0

θ2
j ,

where θ0 = 1. The optimal prediction can be calculated by means of standard methods,
we will use the notation X̂t+1. The error of this prediction is, as in the previous case,

S2(1) = σ2
ε .

Now we can use the general formulas to find the predictions and their mean square errors
for this process.

4.2.1 Exponential transformation

Consider the transformation
Yt = exp(Xt).

From corollary 3.4 the predictions for this transformation are

Ŷ
(1)
t+1 = exp

(
X̂t+1 +

1

2
σ2

ε

)
,

Ŷ
(2)
t+1 = exp

[
X̂t+1

]
,

Ŷ
(3)
t+1 = exp

[
1

2
σ2

ε

∞∑
j=0

θ2
j

] [
1 + X̂t+1

]
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and the mean square errors of these predictions are

V (1)(1) = exp

(
2σ2

ε

∞∑
j=0

θ2
j

)[
1− exp(σ2

ε )
]
,

V (2)(1) = exp

(
2σ2

ε

∞∑
j=0

θ2
j

)[
1− 2 exp

(
−3

2
σ2

ε

)
+ exp(−2σ2

ε )

]
,

V (3)(1) = exp

[
σ2

ε

∞∑
j=0

θ2
j

][
exp

(
σ2

ε

∞∑
j=0

θ2
j

)
− 1− σ2

ε

∞∑
j=0

θ2
j + σ2

ε

]
.

4.2.2 Quadratic transformation

Consider the transformation
Yt = exp(Xt).

From corollary 3.5 the predictions for this transformation are

Ŷ
(1)
t+1 = X̂2

t+1 + σ2
ε ,

Ŷ
(2)
t+1 = X̂2

t+1,

Ŷ
(3)
t+1 = σ2

ε

∞∑
j=0

θ2
j

and the mean square errors of these predictions are

V (1)(1) = 4

[
σ2

ε

∞∑
j=0

θ2
j

]
σ2

ε − 2σ4
ε ,

V (2)(1) = 4

[
σ2

ε

∞∑
j=0

θ2
j

]
σ2

ε − σ4
ε ,

V (3)(1) = 2

[
σ2

ε

∞∑
j=0

θ2
j

]2

.

4.2.3 Cubic transformation

Consider the transformation
Yt = X3

t .

From corollary 3.6 the predictions for this transformation are

Ŷ
(1)
t+1 = X̂3

t+1 + 3σ2
ε X̂t+1,

Ŷ
(2)
t+1 = X̂3

t+1,

Ŷ
(3)
t+1 = 3σ2

ε X̂t+1
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and the mean square prediction errors are

V (1)(1) = 3σ6
ε

9

(
∞∑

j=0

θ2
j

)2

+ 6
∞∑

j=0

θ2
j + 2


V (2)(1) = V (1)(1) + 9σ6

ε

[(
∞∑

j=0

θ2
j

)
− 1

]
,

V (3)(1) = 3σ6
ε

(
∞∑

j=0

θ2
j

)3(
2 + 3

∞∑
j=0

θ2
j

)
.

4.3 AR(1) process

Consider now the AR(1) process

Xt = ϕXt−1 + εt,

where εt ∼ N(0, σ2
ε ) are i.i.d. This process can be also written in the following form

Xt =
∞∑

j=0

ϕjεt−j

from which it is obvious that the variance of the process is

σ2 = var(Xt) = σ2
ε

∞∑
j=0

ϕ2j =
σ2

ε

1− ϕ2
.

The optimal prediction is
X̂t+1 = ϕXt

and the mean square prediction error is

S2(1) = σ2
ε .

Now we can use the general formulas to find the predictions and their mean square errors
for this process.

4.3.1 Exponential transformation

Consider the transformation
Yt = exp(Xt).
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The predictions for this transformation are

Ŷ
(1)
t+1 = exp

[
ϕXt +

1

2
σ2

ε

]
,

Ŷ
(2)
t+1 = exp [ϕXt] ,

Ŷ
(3)
t+1 = exp

[
σ2

ε

2(1− ϕ2)

]
(1 + ϕXt)

and the mean square errors of these predictions are

V (1)(1) = exp

(
2

σ2
ε

1− ϕ2

)[
1− exp(−σ2

ε )
]
,

V (2)(1) = exp

(
2

σ2
ε

1− ϕ2

)[
1− 2 exp

(
−3

2
σ2

ε

)
+ exp

(
−2σ2

ε

)]
,

V (3)(1) = exp

(
σ2

ε

1− ϕ2

)[
exp

(
σ2

ε

1− ϕ2

)
− 1− σ2

ε

1− ϕ2
+ σ2

ε

]
.

4.3.2 Quadratic transformation

Consider the transformation
Yt = X2

t

The predictions for this transformation are

Ŷ
(1)
t+1 = ϕX2

t + σ2
ε ,

Ŷ
(1)
t+1 = ϕX2

t ,

Ŷ
(1)
t+1 =

σ2
ε

1− ϕ2

and the mean square errors of these predictions are

V (1)(1) = 4

(
σ4

ε

1− ϕ2

)
− 2σ4

ε ,

V (2)(1) = 4

(
σ4

ε

1− ϕ2

)
− σ4

ε ,

V (3)(1) = 2

(
σ2

ε

1− ϕ2

)2

.

4.3.3 Cubic transformation

Consider the transformation
Yt = X3

t
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The predictions for this transformation are

Ŷ
(1)
t+1 = ϕX3

t + 3σ2
ε X̂t+h,

Ŷ
(2)
t+1 = ϕX3

t ,

Ŷ
(3)
t+1 = 3

(
σ2

ε

∞∑
j=0

ϕ2j

)
X̂t+1

and the mean square errors of these predictions are

V (1)(1) = 3σ6
ε

[
9

(
1

1− ϕ2

)2

+ 6

(
1

1− ϕ2

)
+ 2

]
,

V (2)(1) = V (1) + 9σ6
ε

(
ϕ2

1− ϕ2

)
,

V (3)(1) = 3σ6
ε

(
1

1− ϕ2

)2 [
2

1− ϕ2
+ 3

]
.

Yt = exp(Xt) h = 1 h = 2 h = 3

ϕ = 0.25 G(2)(h) 0.015 0.016 0.016

ϕ = 0.25 G(3)(h) 4.120 3.850 3.834

ϕ = 0.75 G(2)(h) 0.080 0.090 0.090

ϕ = 0.75 G(3)(h) 0.681 0.292 0.185

Table 4.4: AR(1), Yt = exp(Xt), proportional increase in mean square prediction error

Yt = X2
t h = 1 h = 2 h = 3

ϕ = 0.25 G(2)(h) 0.015 0.016 0.016

ϕ = 0.25 G(3)(h) 7.791 7.289 7.260

ϕ = 0.75 G(2)(h) 0.070 0.119 0.150

ϕ = 0.75 G(3)(h) 1.317 0.610 0.407

Table 4.5: AR(1), Yt = X2
t , proportional increase in mean square prediction error

4.4 ARMA(1, 1) process

Consider now the ARMA(1, 1) process

Xt = ϕXt−1 + εt + θεt−1,
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Yt = X3
t h = 1 h = 2 h = 3

ϕ = 0.25 G(2)(h) 0.019 0.020 0.020

ϕ = 0.25 G(3)(h) 3.290 3.068 3.055

ϕ = 0.75 G(2)(h) 0.073 0.102 0.112

ϕ = 0.75 G(3)(h) 0.456 0.174 0.101

Table 4.6: AR(1), Yt = X3
t , proportional increase in mean square prediction error

where εt ∼ N(0, σ2
ε ) are i.i.d. If |ϕ| < 1 then this process can be also written in the following

form

Xt =
∞∑

j=0

cjεt−j,

where
c0 = 1, cj = ϕj−1(θ + ϕ), j ≥ 1,

see for example Prášková [11], p. 69. The variance of this process is

σ2 = σ2
ε

1 + 2ϕθ + θ2

1− ϕ2

The optimal prediction can be calculated by means of standard methods, we will use the
notation X̂t+1. The error of this prediction is, as in the previous case, and the mean square
prediction error is

S2(1) = σ2
ε

Now we can use the general formulas to find the predictions and their mean square errors
for this process.

4.4.1 Exponential transformation

Consider the transformation
Yt = exp(Xt)

The predictions for this transformation are

Ŷ
(1)
t+1 = exp

(
X̂t+1 +

1

2
σ2

ε

)
,

Ŷ
(2)
t+1 = exp

(
X̂t+1

)
,

Ŷ
(3)
t+1 = exp

(
1

2
σ2

ε

1 + ϕθ + θ2

1− ϕ2

)
(1 + X̂t+1)
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and the mean square errors of these predictions are

V (1)(1) = exp

(
2σ2

ε

1 + ϕθ + θ2

1− ϕ2

)[
1− exp(−σ2

ε )
]
,

V (2)(1) = exp

(
2σ2

ε

1 + ϕθ + θ2

1− ϕ2

)[
1− 2 exp

(
−3

2
σ2

ε

)
+ exp

(
−2σ2

ε

)]
,

V (3)(1) = exp

[
σ2

ε

1 + 2ϕθ + θ2

1− ϕ2

] [
exp

(
σ2

ε

1 + 2ϕθ + θ2

1− ϕ2

)
− 1− σ2

ε

1 + 2ϕθ + θ2

1− ϕ2
+ σ2

ε

]
.

4.4.2 Quadratic transformation

Consider the transformation
Yt = X2

t

The predictions for this transformation are

Ŷ
(1)
t+1 = ϕX2

t + σ2
ε ,

Ŷ
(2)
t+1 = ϕX2

t ,

Ŷ
(3)
t+1 = σ2

ε

1 + 2ϕθ + θ2

1− ϕ2

and the mean square errors of these predictions are

V (1)(1) = 4σ4
ε

1 + 2ϕθ + θ2

1− ϕ2
− 2σ2

ε ,

V (2)(1) = 4σ4
ε

1 + 2ϕθ + θ2

1− ϕ2
− σ2

ε ,

V (3)(1) = 2σ4

(
1 + 2ϕθ + θ2

1− ϕ2

)2

.

4.4.3 Cubic transformation

Consider the transformation
Yt = X3

t

The predictions for this transformation are

Ŷ
(1)
t+1 = ϕX3

t + 3σ2
ε X̂t+1,

Ŷ
(2)
t+1 = ϕX3

t ,

Ŷ
(3)
t+1 = 3

(
σ2

ε

1 + 2ϕθ + θ2

1− ϕ2

)
X̂t+1
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and the mean square errors of these predictions are

V (1)(1) = 3σ6
ε

[
9

(
1 + 2ϕθ + θ2

1− ϕ2

)2

+ 6

(
1 + 2ϕθ + θ2

1− ϕ2

)
+ 2

]
,

V (2)(1) = V (1) + 9σ6
ε

(
1 + 2ϕθ + θ2

1− ϕ2
− 1

)
,

V (3)(1) = 3σ6
ε

(
1 + 2ϕθ + θ2

1− ϕ2

)2 [
2
1 + 2ϕθ + θ2

1− ϕ2
+ 3

]
.
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Empirical part

The formulas derived in the previous chapter were verified in a simulation. Tested were
three models; MA(1), AR(1) and ARMA(1, 1) with various parameters, but constant vari-
ance of innovations var(ε) = σ2

ε = 1. The observed average squared errors for each predic-
tion

V
(1)

(1) =

∑n
i=1(Ŷ

(1)
t+1 − Y

(1)
t+1)

2

n

V
(2)

(1) =

∑n
i=1(Ŷ

(2)
t+1 − Y

(2)
t+1)

2

n

V
(3)

(1) =

∑n
i=1(Ŷ

(3)
t+1 − Y

(3)
t+1)

2

n

were compared with the theoretical values V (1)(1), V (2)(1) and V (3)(1). The variance of
innovations is in all cases σ2

ε = 1 and therefore error of the 1-step ahead prediction Xt+1 is
in all cases S2(1) = 1. The simulation was carried out for n = 20 000 observations.

Note that in each row the observed average squared error of the optimal prediction
is better than that of the naive and linear predictions, which is in accordance with the
expectations. For each transformation it can be said that with increasing coefficient θ also
the error of the prediction increases, which is also in accordance with the expectations.
In general, exponential transformation leads to very large errors for large AR coefficients
(ϕ close to 1), but the prediction for cubic-transformed process has larger error for small
values of the AR coefficient.

We can also see significant difference between the theoretical mean square error and
calculated average square error and that especially in case of the exponential transformation
(see e.g. table 5.7) for large values of ϕ. Similar discrepancies can be observed in case of
the cubic transformation, while in case of the quadratic transformation the theoretical and
observed errors are relatively close. After running the simulation several times we recorded
very large positive as well as negative differences between the theoretical and calculated
errors. Together with the fact that simulations with more observations lead in general to
reduction and gradual elimination of these differences we came to the conclusion that there

45
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is no systematic error. It seems that in case of large values of ϕ any randomly occurring
perturbations are projected within the process very far, thus distorting the calculated
average square errors of predictions.

In general it can be said that the simulation verified the results derived in the previous
chapters.

θ σ2 V
(1)

(1) V (1)(1) V
(2)

(1) V (2)(1) V
(3)

(1) V (3)(1)

0.1 1.010 4.702 4.765 5.150 5.194 4.702 4.765
0.5 1.250 7.586 7.701 8.243 8.395 7.671 7.920
0.9 1.810 23.629 23.602 25.671 25.728 26.331 26.278

Table 5.1: MA(1) process, Yt = exp(Xt)

θ σ2 V
(1)

(1) V (1)(1) V
(2)

(1) V (2)(1) V
(3)

(1) V (3)(1)

0.1 1.010 2.053 2.040 3.079 3.040 2.054 2.040
0.5 1.250 3.102 3.000 4.119 4.000 3.239 3.125
0.9 1.810 5.212 5.240 6.198 6.240 6.519 6.552

Table 5.2: MA(1) process, Yt = X2
t

θ σ2 V
(1)

(1) V (1)(1) V
(2)

(1) V (2)(1) V
(3)

(1) V (3)(1)

0.1 1.010 15.829 15.363 15.946 15.453 15.829 15.363
0.5 1.250 27.595 25.688 30.100 27.938 27.722 25.781
0.9 1.810 67.526 61.875 75.532 69.165 71.205 65.063

Table 5.3: MA(1) process, Yt = X3
t
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ϕ σ2 V
(1)

(1) V (1)(1) V
(2)

(1) V (2)(1) V
(3)

(1) V (3)(1)

0.1 1.010 4.518 4.766 4.935 5.196 4.518 4.766
0.5 1.333 9.293 9.097 10.155 9.917 9.543 9.334
0.9 5.263 8 203 23 567 8 811 25 691 13 629 36 267

Table 5.4: AR(1) process, Yt = exp(Xt)

ϕ σ2 V
(1)

(1) V (1)(1) V
(2)

(1) V (2)(1) V
(3)

(1) V (3)(1)

0.1 1.010 2.019 2.040 3.011 3.040 2.020 2.041
0.5 1.333 3.389 3.333 4.408 4.333 3.611 3.55600
0.9 5.263 19.634 19.053 20.669 20.053 57.215 55.402

Table 5.5: AR(1) process, Yt = X2
t

ϕ σ2 V
(1)

(1) V (1)(1) V
(2)

(1) V (2)(1) V
(3)

(1) V (3)(1)

0.1 1.010 15.875 15.366 15.997 15.457 15.875 15.366
0.5 1.333 34.177 30.000 37.795 33.000 34.482 30.222
0.9 5.263 771.326 659.186 819.446 697.554 1471.947 1124.071

Table 5.6: AR(1) process, Yt = X3
t

(ϕ, θ) σ2 V
(1)

(1) V (1)(1) V
(2)

(1) V (2)(1) V
(3)

(1) V (3)(1)

(0.25,0.25) 1.267 9.220 7.962 10.033 8.679 9.383 8.100
(0.75,0.25) 3.286 388.534 451.580 418.022 492.268 534.034 626.569
(0.25,0.75) 2.067 49.236 39.435 53.018 42.988 55.565 46.062
(0.75,0.75) 6.142 56 338 136 904 32 703 149 239 40 816 213 721

Table 5.7: ARMA(1, 1) process, Yt = exp(Xt)

(ϕ, θ) σ2 V
(1)

(1) V (1)(1) V
(2)

(1) V (2)(1) V
(3)

(1) V (3)(1)

(0.25,0.25) 1.267 3.211 3.067 4.234 4.067 3.375 3.209
(0.75,0.25) 3.286 12.152 11.143 13.233 12.143 24.935 21.592
(0.25,0.75) 2.067 6.637 6.267 7.668 7.267 9.080 8.542
(0.75,0.75) 6.142 22.976 22.571 23.978 23.571 77.575 75.469

Table 5.8: ARMA(1, 1)process, Yt = X2
t
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(ϕ, θ) σ2 V
(1)

(1) V (1)(1) V
(2)

(1) V (2)(1) V
(3)

(1) V (3)(1)

(0.25,0.25) 1.267 29.205 26.520 31.974 28.920 29.353 26.634
(0.75,0.25) 3.286 290.404 238.347 317.687 258.918 405.426 309.997
(0.25,0.75) 2.067 94.258 84.120 105.163 93.720 102.832 91.402
(0.75,0.75) 6.142 882.115 914.265 924.160 960.551 1637.966 1730.405

Table 5.9: ARMA(1, 1) process, Yt = X3
t
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Conclusion

The aim of this diploma thesis was to find and evaluate predictions for transformed time
series. We considered a class of transformations that can be written as linear combinations
of Hermite polynomials. This enabled derivation of explicit formulas for the general class
of Gaussian processes. The main focus was on situations when the original series can be
described by a simple ARMA process. Explicit formulas were derived for three concrete
transformations.

In the second chapter we investigated the autocovariance function and spectral den-
sity of the transformed series, specific results were derived and some further topics were
outlined.

In the third chapter general theorems for three types of predictions were stated and
applied to three concrete transformations. Also some results were derived using the spectral
density. Theorems from the third chapter were further developed in the fourth chapter and
derived were explicit results for simple ARMA models.

Finally in the fifth chapter the formulas for the simple ARMA processes were verified
in a simulation.
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Appendix A - Properties of Hermite
polynomials

Hermite polynomials Hn(x) are orthogonal polynomials over the domain (−∞,∞) with
weighting function exp(−x2).

Definition 7.1. (Hermite polynomials) The system of Hermite polynomials Hn(x) is
defined in terms of the standard normal distribution as

Hn(x) = (−1)n exp

(
x2

2

)
dn

dxn
exp

(
x2

2

)
,

Hn(x) = (−1)nφ
(n)(x)

φ(x)

where φ(x) is the standard normal probability density function.
Explicitly, we can write

Hn(x) = n!

bn/2c∑
m=0

(−1)m 2mm!(n− 2m)!

xn−2m

where bNc is the integer part of N .

We have

H0(x) = 1,

H1(x) = x,

H2(x) = x2 − 1,

H3(x) = x3 − 3x,

H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x
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and so on. Define operators E0 and E by

E0 {ψ(x)} =
1√
2π

∫ ∞

−∞
ψ(x) exp

(
−x2

2

)
dx,

E {ψ(x)} =
1√

2πσ2

∫ ∞

−∞
ψ(x) exp

(
−(x− µ)2

2σ2

)
dx.

The Hermite polynomials constitute an orthogonal system with respect to the standard
normal probability density function, so that

E0{Hn(x)Hk(x)} =

{
0, n 6= k,
n!, n = k,

(7.1)

and since H0(x) = 1, it follows that

E0{Hn(x)} = 0 for n > 0. (7.2)

If X and Y have bivariate normal distribution with zero means, unit variances and corre-
lation coefficient ρ then

E{Hn(X)|Y = y} = ρnHn(y)

and

E{Hn(X)Hk(Y )} =

{
0, n 6= k,
n!ρn, n = k.

(7.3)

The Hermite polynomials obey the recursion formula

Hn+1(x)− xHn(x) + nHn−1(x) = 0

and have the following generating function:

exp

(
tx− t2

2

)
=

∞∑
n=0

Hn(x)
tn

n!
. (7.4)

For all x, y and A, B such that A2 +B2 = 1 we have

Hn(Ax+By) =
n∑

k=0

(
n

k

)
AkBn−kHk(x)Hn−k(y). (7.5)

In general, the coefficients αj for Hermite polynomial expansion of a function

T (x) =
∞∑

j=0

αjHj(x)
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are given by

αn = E0

{
dn

dxn

T (x)

n!

}
. (7.6)

To find Hermite expansion polynomial functions it is possible to use the following formulas:

x2p =
(2p)!

22p

p∑
j=0

H2j(x)

(2j)!(p− j)!
, p = 0, 1, 2, . . . (7.7)

and

x2p+1 =
(2p+ 1)!

22p+1

p∑
j=0

H2j+1(x)

(2j + 1)!(p− j)!
, p = 0, 1, 2, . . . . (7.8)

More examples can be found in [9], along with comprehensive account of the properties of
Hermite polynomials. For more information see also [2].
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Appendix B - Best linear prediction
using spectral density

The following Theorem provides a method for finding the optimal linear prediction when
the spectral density is known. More on this topic can be found in Anděl [3] and in Grenan-
der and Rosenblatt [7].

Theorem 8.1. (Optimal linear predictor) Let Xt be a process with spectral density
f(λ) and absolutely continuous spectral distribution function

F (λ) =

∫ λ

−π

f(x) dx,

where ∫ π

−π

log f(λ) dλ > −∞.

Let z(λ) be the random measure corresponding to the process Xt and

c(z) =
∞∑

j=0

cjz
j

is such that
1

2π
|c(e−iλ)|2 = f(λ).

Then the best linear h-step ahead prediction is

X̂t+h =

∫ π

−π

ei(t+h)λ

∑∞
j=h cje

−ijλ

c(e−iλ)
dz(λ).

The one-step ahead prediction is given by

X̂t+1 =

∫ π

−π

ei(t+1)λ c(e
−iλ)− c(0)

c(e−iλ)
dz(λ)
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and the mean square error of this prediction is

E(Xt+1 − X̂t+1)
2 = 2π exp

(
1

2π

∫ π

−π

log f(λ)dλ

)
> 0.

Proof: See Grenander and Rosenblatt [7], p. 69.
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