
MASTER THESIS

Bc. Ivan Veinhardt Latták

Schema Inference for NoSQL Databases

Katedra softwarového inženýrstv́ı

Supervisor of the master thesis: Ing. Pavel Koupil
Study programme: Informatika

Study branch: Softwarové a datové inženýrstv́ı

Prague 2021

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

Dedicated to

my supervisor for
always being patient

and lending his expertise,

to the other research teams for
providing free access to their work,

to my wife for her undying love and support,

to my roommate and friend for his words of wisdom,

to our cats for their loyal, although entitled, companionship,

and, most of all, to my mom and grandparents for making me do it.

ii

Title: Schema Inference for NoSQL Databases

Author: Bc. Ivan Veinhardt Latták

Department: Katedra softwarového inženýrstv́ı

Supervisor: Ing. Pavel Koupil, Katedra softwarového inženýrstv́ı

Abstract: NoSQL databases are becoming increasingly more popular due to their
undeniable advantages in the context of storing and processing big data, mainly
horizontal scalability and the lack of a requirement to define a data schema up-
front. In the absence of explicit schema, however, an implicit schema inherent
to the stored data still exists and can be inferred. Once inferred, a schema is of
great value to the stakeholders and database maintainers. Nevertheless, the prob-
lem of schema inference is non-trivial and is still the subject of ongoing research.
We explore the many aspects of NoSQL schema inference and data modeling,
analyze a number of existing schema inference solutions in terms of their inner
workings and capabilities, point out their shortcomings, and devise (1) a novel
horizontally scalable approach based on the Apache Spark platform and (2) a new
NoSQL Schema metamodel capable of modeling i.a. inter-entity referential rela-
tionships and deeply nested JSON constructs. We then experimentally evaluate
the newly designed approach along with the preexisting solutions with respect to
their functional and performance capabilities.

Keywords: Schema inference, NoSQL databases, Document-based data stores,
JSON

iii

Contents

Introduction 4

1 Related Work 6

2 Research Work 8
2.1 Common concepts . 8

2.1.1 Schema features . 8
2.1.2 Approach properties . 11
2.1.3 Operational principles . 12
2.1.4 Technologies . 13
2.1.5 Running example . 17

2.2 Existing approaches . 21
2.2.1 Sevilla et al. 21
2.2.2 Klettke et al. 27
2.2.3 Baazizi et al. 30
2.2.4 Canovas et al. 34
2.2.5 Frozza et al. 38

2.3 Comparison . 42
2.3.1 Input format . 42
2.3.2 Input type . 42
2.3.3 Output format . 42
2.3.4 Implementation . 43
2.3.5 Simple data types . 43
2.3.6 Arrays . 43
2.3.7 Objects . 44
2.3.8 Aggregates . 44
2.3.9 References . 44
2.3.10 Optional properties . 44
2.3.11 Entity versions . 45
2.3.12 Union type . 45
2.3.13 Integrity constraints . 45
2.3.14 Scalability . 45
2.3.15 Incremental schema extensibility 46
2.3.16 Multi-model context . 46
2.3.17 Edge-case example . 46

3 Design 50
3.1 High-level design . 50
3.2 Inspiration and added value . 52
3.3 Technology . 52

3.3.1 Apache Spark . 52
3.4 NoSQL Schema metamodel . 53

3.4.1 Metamodel evolution . 55
3.4.2 Differences from the Sevilla et al. NoSQL-Schema metamodel 56

3.5 Detailed design . 57

1

3.5.1 Loading the data . 57
3.5.2 Removing structural duplicates 58
3.5.3 Injection into model . 59
3.5.4 Folding the models . 60
3.5.5 Entity reference inference 63
3.5.6 Schema extension . 63
3.5.7 Entity flattening . 63
3.5.8 Conversion to JSON Schema 67

4 Implementation 70
4.1 Overview . 70
4.2 New approach implementation . 71

4.2.1 Metamodel definition . 72
4.2.2 Implementation source code 72
4.2.3 Implementation limitations 76

4.3 Example applications . 77
4.4 Testing . 78
4.5 Running example . 78

5 Experimental analysis 80
5.1 Functional analysis . 80
5.2 Performance analysis . 81

5.2.1 Execution . 81
5.2.2 Results . 82
5.2.3 Evaluation . 88

6 Future work 90

Conclusion 91

Bibliography 92

List of Figures 96

Acronyms 98

Glossary 99

A Schemas inferred from the running example 100
A.1 Sevilla et al. 100
A.2 Klettke et al. 102
A.3 Baazizi et al., kind-equivalence . 103
A.4 Baazizi et al., label-equivalence 104
A.5 Canovas et al. 104
A.6 Frozza et al. 107

B Schemas inferred from the edge-case example 110
B.1 Sevilla et al. 110
B.2 Baazizi et al., kind-equivalence . 111
B.3 Baazizi et al., label-equivalence 111

2

B.4 Canovas et al. 111
B.5 Frozza et al. 113

C New schema inference approach 115
C.1 NoSQL Schema model for the running example 115
C.2 NoSQL Schema model for the running example, All entities flattened118
C.3 JSON Schema for the running example 120
C.4 NoSQL Schema model for the edge-case example 121

D Proof of theorem 3.1 124

3

Introduction
The general approach towards efficient data management and storage changed lit-
tle in the last three decades of the previous century. “The most often used . . . were
traditional database systems, relational, object, object-relational, XML, or others.
Among these the most popular are, without a doubt, relational databases.” [1,
p. 22] These usually enforce that the data contained conform to a strictly defined
schema—a description of the various fields contained, along with what data types
the fields are.

In the last two decades, however, many online services and applications grad-
ually started to generate, gather, store, and process data sets with vastly larger
volume (size), with a vastly higher variety (heterogeneity), and coming in at a
vastly higher velocity (rate of generation or processing). [1] Data having these
properties or any subset thereof is commonly dubbed big data [1].

Big data’s properties make traditional data storage technologies like relational
databases unfit for its handling. Thus, big data sparked a need for an alternative
at roughly the turn of the century. This need was answered in the form of new
database systems—key-value, columnar, document-based, graph, and others. [1,
p. 93] All these came to be collectively known as NoSQL, in contrast to the
relational databases, majority of which uses Structured Query Language (SQL)
as their primary querying language. NoSQL databases often do not enforce a
strict schema onto the data contained, example being MongoDB [2], Neo4j [3], or
Elasticsearch [4].

Taking a step back, we can see that “data may be present in multiple types
and formats — structured, semi-structured, and unstructured.” [5, p. 439] Struc-
tured data conforms to an explicit schema and includes e.g. data in relational
databases. Semi-structured data is not bound by an external schema but car-
ries some schematic information within itself. Its examples include Extensible
Markup Language (XML), JSON, and data in columnar databases. Last but
not least, unstructured data is not bound by any explicit schema and contains
no schematic information, example being a Comma-Separated Values (CSV) file
without a header row.

Although semi-structured and unstructured data is not bound by an explicit
schema, this is not to say the data is devoid of schema completely. Rather, the
schema is implicitly present and can therefore be inferred. A schema inferred
from a dataset is of great value—it can be used by stakeholders to reason about
the data, or by automated tools for data validation and migration or object code
generation. The inference process itself, however, is non-trivial. Several schema
inference approaches already exist but many are lacking in various ways.

One important aspect of this topic is how the schema is modeled. A data
schema can be modeled on either or both of two layers: (1) Conceptual layer,
which deals with conceptual entities and relationships between them as they
are in the real world, e.g. entity-relationship (ER) models or Unified Modeling
Language (UML). (2) Logical layer, which models data as it exists in the actual
system, e.g. UML, relational model schema, XML Schema, or JSON Schema. We
are interested in the logical layer since a schema inferred from data is inherently
dependent on that data’s representation.

4

Nevertheless, all existing schema-describing metamodels are either not stan-
dardized or are insufficient. The only standardized schema description meta-
model, UML [6], is unable to handle some concepts of NoSQL data such as union
types, etc. [7] This is why we are searching for a schema description format
suitable for both semi-structured data (document model) and data from other
models.

Our goal is to deeply analyze the problems of modeling of semi-structured
data and of inference of its schema, examine a number of existing solutions, un-
derstand their strengths and weaknesses, and propose and implement our own
solution which would cover their shortcomings. As our area of focus, we choose
semi-structured data, particularly document-based data, due to the higher com-
plexity of the document model and the overwhelming popularity of document-
based databases1 compared to key-value or columnar ones.

The rest of this thesis is organized as follows: Chapter 1 gives a brief summary
of other related work by other researchers in the field. In chapter 2, we conduct
a thorough research into the issue at hand and describe a number of existing
solutions. In chapter 3, we propose a design of our solution to the problem. In
chapter 4, we describe our implementation of the proposed solution. In chapter 5,
we present results of an experimental analysis of our solution in comparison to
the discussed existing solutions. Finally, in chapter 6, we give an overview of
possible future improvements to our solution and state the intended direction of
further research.

1https://db-engines.com/en/ranking

5

https://db-engines.com/en/ranking

1. Related Work
Research on schema inference of semi-structured data is not a new endeavor as it
concerns modern NoSQL databases as well as older technologies such as XML and
Resource Description Framework (RDF). There are numerous existing projects
related to our work, both in the field of schema inference and distributed data
processing. In this chapter, we summarize the most prominent and relevant of
these research projects.

Sevilla et al. present an approach for inferring versioned schemas from NoSQL
databases based on Model-Driven Engineering (MDE) along with example appli-
cations created from such inferred schemas. [8] This research is furthered by
Morales in his dissertation thesis. [9] Hernandez et al. tackle the issues of visu-
alization of schemas of aggregate-oriented NoSQL databases and propose desired
features visualization tools should support. [10] Most recently, Fernandez et al.
expand upon the metamodel from a previous article [8] by introducing a unified
metamodel capable of modeling both NoSQL and relational data. [11]

Scherzinger et al. introduce a platform-agnostic NoSQL data evolution man-
agement and schema maintenance solution. [12] The same research group later
proposes an approach for extraction of schema from JSON data stores, measur-
ing the degree of heterogeneity in the data and detecting structural outliers. [13]
Additionally, they introduce an approach for reconstructing the schema evolution
history of data lakes. [14]

Baazizi et al. propose a distributed approach for parameterized schema infer-
ence of massive JSON datasets and introduce a simple but expressive JSON type
language to represent the schema in. [15]

Canovas and Cabot bring an MDE approach for discovering schema of multiple
JSON web-based services [16] and later put it in practice as a web-based tool along
with a visualization tool. [17]

Frozza et al. introduce a graph-based approach for schema extraction of JSON
and Extended JSON document collections [18] and another inference process for
columnar NoSQL databases, specifically HBase. [19]

Wang et al. propose a document store schema inference and management
method composed of an inference algorithm based on equivalent sub-trees and a
new data structure for schema storage and querying. [20]

Moller et al. present jHound, a JSON data profiling tool which can be used
to report key characteristics of a dataset, find structural outliers, or detect doc-
uments violating best practices of data modeling. [21]

Fruth et al. present Josch, a tool that enables NoSQL database maintainers
to more easily extract a schema from JSON data, refactor it, then validate it
against the original dataset. [22]

DiScala and Abadi present an algorithm for automatic generation of relational
database schema from JSON data along with subsequent transformation of the
data itself. [23]

Mlýnková et al. provide an overview of the field of heuristic XML Schema
inference and summarize existing approaches and open problems. [24] Similarly,
Čontoš and Svoboda bring an article reviewing and comparing existing JSON
schema inference approaches and pointing out their shortcomings. [25]

6

Bex et al. introduce a method of inference of concise XML Document Type
Definitions (DTDs) by reducing the problem to one of learning concise regular
expressions from positive examples. [26]

Galinucci et al. propose a way to enable non-technical users to enrich RDF
data cubes by recognizing recurring patterns in Linked Open Data (LOD). [27]

Bouhamoum et al. delve into the issues of horizontal scaling of existing RDF
schema discovery approaches and present a method based on extracting a con-
densed representation of the initial dataset. [28]

7

2. Research Work
In this chapter, we present and explain a number of concepts and technologies
common to the researched existing inference approaches and define a set of qual-
ity measures and properties we consider to be important for a good inference
approach. Then, we define a running example of JSON documents used to illus-
trate the functional behavior of researched approaches and explain the rationale
behind its structure. Afterwards, we describe in greater detail each of the re-
searched approaches in terms of motivation, technology used, inner operating
principles. Finally, we compare the researched approaches w.r.t. the defined
quality measures.

2.1 Common concepts
When devising a non-trivial schema inference approach for NoSQL databases,
many functional and non-functional requirements taken into consideration stay
largely the same from one approach to another. These unchanging requirements
lead in turn to some degree of repetition in design choices made during develop-
ment. So although specifics of existing inference approaches vary considerably,
there are also multiple common aspects shared between them which are worth
mentioning.

This section enumerates some of these shared aspects. We divide them into
four categories:

• Schema features – heterogeneity features which can be recorded in the out-
put schema by a given approach.

• Approach properties – other external indicators which define what is desir-
able in a given approach.

• Principles – internal characteristics which help achieve the aforementioned
desired approach properties.

• Technologies – software tools commonly used in existing approaches.

2.1.1 Schema features
NoSQL data schemas carry information about different structural features present
in the data. This includes trivial features like entities, their primitive-type prop-
erties (boolean, number, string), and structural-type properties (arrays, nested
objects). However, even these trivial features have non-trivial aspects to them.
For instance, it can prove to be a difficult task to properly name all detected en-
tities and properties. Furthermore, an algorithm must be able to correctly infer
all primitive data types present in the target logical data model. For JSON data,
these are null, boolean, integer, and string, but this list can be different, if an
approach is to be used on data in other data models.

The bread and butter of advanced schema inference approaches is their ability
to handle heterogeneity in data. This heterogeneity can come in many forms.
Here we list a number of common heterogeneity features.

8

2.1.1.1 Optional properties

It is often the case in computing that a system must deal with a missing data
value. The causes for this are varied—the user opted to not provide it, it is
not applicable in the situation, or its retrieval from an external resource, like a
database, failed. If the absence of this value is not an error state for the system
in question—it is in some way acceptable or tolerated—then we call the value
optional.

Property optionality should be correctly modeled by an inferred schema, so
that the schema consumers can expect the value to be missing when consuming,
or choose to omit the value, when producing the data.

2.1.1.2 Entity versions

Given an entity, a set of its required properties, and a disjoint set of its optional
properties, one might incorrectly assume that the entity is in a correct configura-
tion when any subset of the optional properties is present. In reality, however, it
may be the case that not every combination of optional properties puts the entity
in a valid state.

For example, a point on a plane may be defined either by a pair of Cartesian
coordinates (x, y), or by a pair of radial coordinates (r, ϕ). Such point entity could
be modeled by having four optional properties, x, y, r, and ϕ. If that were the
case, however, this schema would also allow a point entity with a pair of properties
(x, r), or with a singular property ϕ, when in reality, such configurations do not
actually describe a single point on a plane.

We can see that the entity can only exist in one of two possible configurations
(versions), and no other combinations of properties are valid. Versioning entities
in this manner is an alternative to modeling each property as either required
or optional. This alternative brings a trade-off. Using the optional properties
approach tends to create more readable schema, while the nuance of entity con-
figuration correctness can be lost. On the other hand, entity versions preserve
the inter-property dependencies, but can lead to an exponential explosion in the
size of the schema, and in turn vast decrease in readability.

2.1.1.3 Union types

Another subcategory of data heterogeneity, is data type inconsistency. The same
property can happen to contain data of different types between its different in-
stances. One of the ways how to handle this inconsistency is to define the prop-
erty’s type as a union of the actual types it contains. Care must be taken to
ensure that the target schema format of the approach can handle these unions as
property types.

An alternative to the union type approach exists in the form of reducing the
occurrence types into their most generic type. Here the definition of the word
“generic” is left intentionally ambiguous, as the actual meaning is left to each
individual algorithm which wants to use this alternative approach. However, this
reduction causes us to lose actual type information, so it should only be used
when no other options are feasible.

9

2.1.1.4 Relationships

Inter-entity relationships can be divided into two categories: aggregation rela-
tionships (aggregations or aggregates) and referential relationships (references).

Aggregation relationship (aggregate) is a type of oriented relationship between
two entities, that expresses containment or ownership between them. There is an
aggregation from entity type A to entity type B (we say “A aggregates B” or “B
is an aggregate of A”) when an instance of B naturally belongs to or is naturally
contained by an instance of A. We differentiate between one-to-one aggregates,
where a single A instance contains or owns a single B instance, one-to-many
aggregates, where an A instance contains many B instances, and many-to-many
aggregates, where one A instance contains many B instances, each of which can
be contained by many A instances.

In the context of semi-structured data, aggregates can be used as an alternate
way of modeling nested JSON objects within documents. Instead of modeling
the encountered objects as unnamed entities, they are given a name and bound
by an aggregate to its parent object. In this way, one-to-one aggregates can be
used to model single nested objects, while objects contained within an array can
be modeled by a one-to-many aggregation.

Reference is another type of relationship between two entities. It describes a
relation where one entity contains or has access to something (identifier, token,
tag), which can uniquely identify another entity.

In the context of semi-structured data, references describe a state where one
object contains as one of its property values a token or tag, which uniquely
identifies another object. References are considerably more difficult to infer than
aggregations. An algorithm not only has to have a way how to reliably distinguish
between a reference and a primitive value without any special meaning, it must
then also detect which entity type it is referencing. Both of these partial tasks are
non-trivial. Algorithms may commit the mistake of considering a primitive value
a reference to an entity, or vice-versa, or even assigning the wrong entity type to
the referential relationship. In these scenarios, a direct hint from a human may
be necessary for this inference to be corrected.

Reference is another type of relationship between two entities. It expresses a
general type of relation where one entity is logically bound to another, without
conveying any ownership or containment.

2.1.1.5 Integrity constraints

In addition to schema features describing heterogeneity, integrity constraints are
logical rules which must be upheld for the data to “make sense”, i.e. be reasonably
processable by a user application. In relational databases, for example, integrity
constraints are part of the explicitly defined data schema. It follows that in semi-
structured data, such integrity constraints still exist, albeit implicitly defined by
the existing data. It is then the responsibility of an application to uphold these
constraints.

Being part of the implicit schema, it is only natural we want to infer integrity
constraints as well. However, inferring them is non-trivial; there are many as-
sumptions to be done on the part of the inference tool, which may or may not be
correct. Similarly to what we said before about inferring references, these assump-

10

tions can be corrected by a hint from a human. In fact, referential relationships
manifest as a special type of integrity constraint.

2.1.2 Approach properties
This section summarizes external properties of inference algorithms and their
benefits. Here, external means to look at an algorithm like a black box, without
inspecting its internal components.

2.1.2.1 Input type and format

Approaches differ by what type of input data they are able to process, and what
format that input is expected to be in.

By type we mean, whether an approach is:

• only able to process a single collection of aggregates at a time, consisting
of aggregates of only a single entity type; or if it is

• able to process multiple aggregate collections, each containing entities of a
single type, all of which are contained in the same logical data domain, and
correctly model relationships between these entities.

By format we mean, what physical data formats can an approach handle.
Some approaches can only work with JSON data, others are able to handle JSON
data with custom extensions, while others still may support other aggregate-
oriented data formats as well.

2.1.2.2 Output format

The inferred schema can be outputted in a host of different formats. One of the
viable output forms is a data model based on, e.g., the Eclipse Modeling Frame-
work (EMF) Ecore metamodel or its derivative. Users of approaches utilizing this
type of output can leverage a number of existing data validation tools and code
generation facilities. Another used output format is JSON Schema, which is fur-
ther described in section 2.1.4.4. Other approaches introduce their own schema
description language.

2.1.2.3 Scalability

As was already mentioned, data size and diversity are the main motivations be-
hind the inception of modern NoSQL databases. As such, the requirement of
being able to handle a very large amount of very diverse input data and to
reasonably scale upwards with growing input size is important in an inference
approach.

2.1.2.4 Incremental schema extensibility

Incremental schema extensibility is a property measuring ease with which a
schema can be further incrementally extended, possibly multiple times, after its
initial creation. The usage of such property is various. A user may decide due to
resource scarcity to infer partial schemas from chunks of the data set and merge

11

them together later. Existing experimental data set may be expanded by another
experiment and a user may want to extend the schema inferred from the partial
data with the rest, etc.

2.1.2.5 Multi-model context

Document or relational databases are examples of single-model solutions. Here
model refers to the logical data model, which the database system provides to its
users, like JSON documents, or database tables, respectively.

On the other hand, there exist database solutions able to store data in multiple
different logical models, example being PostgreSQL, version 9.2 and greater [29],
which traditionally provides the relational data model, but also the JSON docu-
ment data model, using the json and jsonb data types.

Moreover, applications may choose to store their data in a multitude of
database solutions, each with a different model, based on their needs. For ex-
ample, a social network-like application with a shopping feature may choose to
store users and their relationships in a graph database like Neo4j, product infor-
mation in a document database like MongoDB, and shopping cart information in
a relational database.

In this multi-model context, models may even overlap, trading off the cost of
data duplication for the benefit of added availability. There can also be present
referential relationships between entities in different models and other integrity
constraints spanning multiple models. This further increases inference difficulty.
Choosing an appropriate schema description language which can describe schema
features present in all of the involved models can also be a challenge in itself.

Taking the best practices from existing single-model inference solutions and
applying them all in a unified multi-model solution may look like the best ap-
proach. However, it is for the aforementioned reasons that the non-trivial task of
merging these single-model schemas together still stands.

2.1.3 Operational principles
This section describes internal design patterns and paradigms which have proven
repeatedly useful in solving problems described in previous sections.

2.1.3.1 Graph representation

Some existing approaches have decided to utilize techniques from graph theory
which allows them to infer more precise information about the nature of the input
data set. Graphs, and specifically trees, are useful for modeling JSON data and
other aggregate-oriented data, because of their conceptual similarity.

The experience of existing approaches shows that tree-like graph representa-
tion of aggregates and their properties is a powerful tool in inferring not only the
schema of an aggregate collection, but also other related metrics such as the fre-
quency of occurrence of properties and the measure of heterogeneity of documents
in a collection.

12

2.1.3.2 Model-Driven Engineering

Model-Driven Engineering (MDE) is an umbrella term for software and data en-
gineering techniques related to creating and manipulating domain models. In
the context of our problem, MDE techniques can be used to first create a do-
main model for given aggregates, then transform that model to infer the schema
features described in section 2.1.1.

2.1.3.3 Performance improvement techniques

Some reviewed algorithms contain recurring techniques or procedures aimed at
improving the performance.

One such technique reduces the input size by first transforming each input
aggregate into its raw schema by replacing all primitive values by their primitive
type names, then removing duplicates among these raw schemas. In collections
with a low degree of heterogeneity (i.e. high number of structurally identical
aggregates), this can considerably improve runtime performance. Moreover, this
step can be usually performed in a distributed manner, e.g. using a MapReduce
operation.

2.1.4 Technologies
2.1.4.1 JavaScript Object Notation

JavaScript Object Notation (JSON) [30, 31] is an open standard data interchange
and storage format based on the JavaScript programming language. It was de-
signed as a human-readable, semi-structured data format for stateless browser-
server communication.

Here we define the JSON data model.

Definition 1 (JSON Value). A JSON Value is:

• a Null value – null,

• a Boolean value – either true, or false,

• a Number value – with format similar to C or Java number literals, e.g. 5,
3.14, -2.76e14, etc.,

• a String value – zero or more Unicode characters, enclosed in quotes (""),
with backslash escapes, e.g. "", "Hello, world!", "\r\n", etc.,

• an Array value (sometimes also called list) – an opening left bracket ([),
followed by zero or more JSON Values, delimited by commas (,), followed
by a matching right bracket (]),

• an Object value (sometimes also record, map, or dictionary) – an open-
ing left brace ({), followed by zero or more JSON Properties, delimited by
commas (,), followed by a matching right brace (}).

Nothing else is a JSON Value.

13

Definition 2 (JSON Property). A JSON Property is composed of a JSON String
value (called “property key” or simply “key”), followed by a colon (:), followed
by a JSON Value (called “property value” or simply “value”).

Order of properties within an Object and white space outside of String values
has no effect on the semantics.

While the syntax standard permits duplicate property keys in an object, a
majority of existing libraries and solutions disallows them. Because of this, we
always assume unique keys in all objects.

Definition 3 (JSON Document Collection). Let I be a set of all valid JSON
String values. Then a JSON Document Collection is a triple (s, D, ι) where:

• s (collection name) is a non-empty string of characters, which can be also
represented by a JSON String value.

• D (collection proper) is a list of JSON Object values (called “Documents”
in the context of the collection).

• ι : D → I (ID function) is a function mapping documents in the collection
to their identifiers (IDs).

The document identifiers are unique within the collection, i.e.:

(∀d1 ∈ D)(∀d2 ∈ D) : d1 ̸= d2 → ι(d1) ̸= ι(d2)

The ID function implementation depends on the library or data store being
used. Some systems store document IDs as a special property (e.g. id) in the
document root, others keep documents in a map-like collection structure similar
to a JSON Object itself, with document IDs as property keys. Others still use a
combination of both or a different method.

2.1.4.2 Extended JSON

Extended JSON [32] is an extension of the JSON data format by MongoDB, which
increases coverage of use cases by introducing additional data types. It is fully
compatible with JSON, utilizing JSON objects as containers for specially named
property pairs, which are given special meaning by the Extended JSON data
type specification. Extended JSON is used as the data model of the MongoDB
database system.

2.1.4.3 Binary JSON

Binary JSON (BSON) [33] is a binary serialization scheme for JSON and Ex-
tended JSON formats. According to the authors, it was created to be lightweight
(minimizing the overhead space needed for storage of large JSON data sets),
traversable, and efficient (allowing for fast serialization and deserialization).

14

2.1.4.4 JSON Schema

JSON Schema is the result of an ongoing effort to create an open standard for
schematically describing, annotating, validating, and documenting JSON data
in a machine- and human-readable way. It can be used to define the expected
shape of JSON data, validate existing or incoming data against this definition,
and provide documentation for other parties.

It has not yet been standardized under any standards organization. The latest
draft as of the time of writing is dated December 2020 [34].

JSON Schemas are themselves JSON documents with specially named prop-
erties called keywords which specify different aspects of each particular schema.
Keywords are divided into three categories:

• Meta keywords (e.g. $schema or $id) – these are used to describe and
annotate the schema itself.

• Annotation keywords (e.g. title, deprecated, or readOnly) – these are
used to describe, annotate, or otherwise provide additional information
about the target JSON data object or about its individual properties or
other structural elements.

• Validation keywords (e.g. type, items, or properties) – these are used to
establish a set of criteria against which the target JSON data is validated.

Let’s focus more on the last subgroup. A very basic yet most notable vali-
dation keyword is type. It enables to validate data based on basic JSON types,
null, boolean, number, string, array, and object. After restricting a value’s
type, type-specific keywords can be used to further constrain the value.

Type-specific keywords. The properties keyword is type-specific for the ob-
ject type and can be used to impose constraints on the target object’s properties.
Each property within the properties object constrains the property with the
same name in the schema’s target object, if it exists. The property may or may
not be present in the target object, but if it is, it must conform.

The property’s presence, however, can be made required by using the re-
quired keyword. This keyword’s value is a list of names of properties, which are
required to be present in the target object.

The items keyword, which is type-specific for an array, can either be of type
object, or array of objects. In the former case, the value imposes constraints, to
which each of the target array’s items must conform. In the latter, each of the
array’s items must conform to the corresponding item in the keyword’s value, and
additionally the lengths must match.

Figure 2.1 shows an example JSON Schema illustrating the described key-
words. Below the schema, a table is included, which shows different target JSON
values, and whether each of them conforms to the given Schema, or not.

2.1.4.5 Eclipse Modeling Framework

Eclipse Modeling Framework (EMF) is a framework for building tools and de-
veloping applications which work with structured data models. It is based on
the Eclipse platform. EMF includes in its core module the Ecore metamodel,

15

{ "type": "object", "properties": {
"reqNum": { "type": "number" },
"optArr": { "type": "array",

"items": { "oneOf": [
{ "type": "string" },
{ "type": "boolean" }] } } },

"required": ["reqNum"] }
Target JSON Valid
{ } ✗

{ "reqNum": 0 } ✓

{ "reqNum": 0, "optArr": true } ✗

{ "reqNum": 0, "optArr": [] } ✓

{ "reqNum": 0, "optArr": [0] } ✗

{ "reqNum": 0, "optArr": ["str"] } ✓

{ "reqNum": 0, "optArr": [true] } ✓

Figure 2.1: An example JSON Schema, along with some JSON values and their
validity according to the Schema.

models
Model

is instance of

Custom metamodel

Ecore

Dataset

is instance of

Figure 2.2: Visualization of a common use-case of the Ecore metamodel

which supports i.a. modeling simple data types like integers (as the EInt Ecore
class) and strings (EString), and also classes (EClass) and their attributes
(EAttribute). Ecore is created to be very abstract, it is often too abstract for
direct use and is instead used as a meta-metamodel for creation of custom meta-
models. Instances of these metamodels are then used for actual data modeling.
This is visualized in figure 2.2.

2.1.4.6 MapReduce

MapReduce [35] is a programming model for designing highly concurrent, dis-
tributed data processing operations in a cluster environment. Its aim is to de-
couple the task of parallelizing data processing from the implementation itself.
It achieves this by allowing the programmer to define a complex operation as a
series (a pipeline) of atomic steps, which are then picked up by an orchestrator
and submitted as tasks to workers.

16

The most basic MapReduce pipeline consists of three main processing steps –
Map, Shuffle, and Reduce. Of these, only the Map and Reduce implementations
are provided by the user, while Shuffle is a trivial process.

First the input data is split into small chunks of roughly the same size. Then
these chunks are trivially transformed into key-value pairs, where the key is some
non-consequential unique identifier, and the value is the chunk itself. Afterwards,
a Map function is applied to each of these trivial pairs. The function emits a list of
zero or more key-value pairs, possibly from a different domain than the function
input:

function map(pair(k1, v1)): list(pair(k2, v2))

Afterwards, the orchestrator shuffles all key-value pairs emitted by all map
functions. It does this by grouping them by their key. The result of the Shuffle
step is a list of zero or more pairs k, V , where V = (v1, ..., vn) is the list of all
values which were emitted by a map function with the key k.

Lastly, a Reduce function is applied to each of the pairs from the Shuffle step.
The result is again a possibly empty list of key-value pairs, possibly from another
domain than the function input:

function reduce(pair(k2, list(v2))): list(pair(k3, v3))

The end result of the entire operation is the concatenation of lists obtained
from the Reduce functions.

This computational model can be extended by adding more Map steps into
the pipeline or introducing new types of operations, like Combine.

2.1.5 Running example
To help provide a baseline for a comparison of existing schema inference ap-

proaches, we present a running example of JSON documents in figure 2.3. The
running example is used to demonstrate the capabilities of an inference approach
to model various schema features, some of which are described in section 2.1.1.

The running example consists of a JSON document collection called articles,
which could be used to model articles on a news website or a blog. The collection
contains two documents with a somewhat similar but different structure.

The properties id, timestamp, author, ratings, and published are present
in both documents and they have the same type in both of them. Each of the
properties is of a different JSON type. The ratings array has a different size in
each document. The differences between the author JSON objects are further
described later.

The comments and body properties are also present in both documents, but
they have a different type in each document. The comments property is of JSON
type array (of strings) in document 1, modeling various comments on an article,
and string in document 2, modeling a single comment present. This mirrors the
behavior of some existing online services which do not wrap JSON values in an
array if the array would only contain one item. body is an object in the first
document and a string in the second one to model different MIME [36] types of
content an article can have.

17

{ "_id": 1, "timestamp": "2021-02-06T16:31:32.029Z",
"author": {

"first_name": "John",
"last_name": "Doe",
"phone_number": "518-555-0168",
"location": {

"latitude": "-48.875000",
"longitude": "-123.393333" } },

"ratings": [5, 4, 5, 5, 4],
"comments": ["I like this", ":)"],
"attachments": [

{ "url": "/image.png" },
{ "url": "/document.pdf" }],

"body": {
"content": "<p>Article body with HTML tags & entities<p>",
"mime_type": "text/html" },

"published": true }

{ "_id": 2, "body": "Plain text article body",
"timestamp": "2021-02-10T18:02:29.706Z",
"author": {

"first_name": "Václav",
"last_name": "Novák",
"phone_number": 321654987,
"location": {

"address": "Malostranské nám. 25, 118 00 Praha 1" } },
"ratings": [3, 1, 2],
"comments": "Too plain",
"article_id": 1,
"published": false }

Figure 2.3: Two JSON documents from the articles collection

18

Finally attachments and article id are each present in only one of the
documents. attachments is an array of objects which tests an approach’s ability
to describe a one-to-many object aggregation, as different approaches handle this
situation differently.

The article id property is used to model a reference relation between entities
in the model. It is supposed to represent a one-to-one or many-to-one relation to
another article in the collection, in this case the only other one. This reference can
express e.g. a parent-child relation or a reply-to relation. The name was chosen
deliberately to demonstrate the ability of the Sevilla et al. approach to detect
and model reference relations, Sevilla et al. being the only approach possessing
this ability that we cover.

The author object has two dissimilarities between its instances, first being
the phone number property, which is either a string or a number. The other
one is the location property, which is an object both times. However, it itself
has different properties each time, once containing a pair of coordinates and the
other time a written address. This inconsistency is used to emulate a situation,
where a JSON object always contains specific subsets of all possible properties,
i.e. the properties’ presence depends on one another. In this case, latitude
always appears alongside longitude, but not if address is present.

Another version of the running example is presented in figure 2.4, where some
property values are replaced by their more expressive Extended JSON variants.
Number-type document identifiers are replaced by Extended JSON type Objec-
tId. Timestamps encoded as ISO 8601 [37] strings are replaced by the Date type.
Finally, numeric reference in article id is replaced by the DBRef [38] structure.

This version with Extended JSON types is provided specifically for the Frozza
et al. approach, which is the only algorithm, among the ones we compare, capable
of inferring schema from Extended JSON data.

2.1.5.1 Edge-case example

Complementary to the main running example, we define an additional edge-case
example JSON document in figure 2.5. This example is constructed to examine,
how well different researched approaches handle JSON array edge cases within
documents.

The document contains four properties of type array. The first, empty array,
is self-explanatory.

The second two properties, nested ints and nested objects, are multi-
dimensional arrays of values. In JSON, arrays can be arbitrarily nested. Such
nested structures, however, can not be easily modeled using traditional data mod-
eling means, if at all. These properties are aimed to discover, how well MDE-based
approaches handle this situation.

The last property, simply called values, is an array containing all different
JSON value types, including arrays with and without items, and objects with and
without properties. This is to inspect, how approaches behave, when met with
this extreme level of heterogeneity.

19

{ "_id": ObjectId("000000000000000000000001"),
"timestamp": new Date("2021-02-06T16:31:32.029Z"),
"author": {

"first_name": "John",
"last_name": "Doe",
"phone_number": "518-555-0168",
"location": {

"latitude": "-48.875000",
"longitude": "-123.393333" } },

"ratings": [5, 4, 5, 5, 4],
"comments": ["I like this", ":)"],
"attachments": [

{ "url": "/image.png" },
{ "url": "/document.pdf" }],

"body": {
"content": "<p>Article body with HTML tags & entities<p>",
"mime_type": "text/html" },

"published": true }

{ "_id": ObjectId("000000000000000000000002"),
"body": "Plain text article body",
"timestamp": new Date("2021-02-10T18:02:29.706Z"),
"author": {

"first_name": "Václav",
"last_name": "Novák",
"phone_number": 321654987,
"location": {

"address": "Malostranské nám. 25, 118 00 Praha 1" } },
"ratings": [3, 1, 2],
"comments": "Too plain",
"article_id": DBRef("articles",

ObjectId("000000000000000000000001")),
"published": false }

Figure 2.4: articles collection with Extended JSON types

20

{ "empty_array": [],
"nested_ints": [

[0, 1, 2],
[3, 4, 5],
[6, 7, 8]],

"nested_objects": [
[{ "key": "value" }, { "key": "value" }],
[{ "key": "value" }, { "key": "value" }],
[{ "key": "value" }, { "key": "value" }]],

"values": [null, false, 0, "", [], [0], { },
{ "key": "value" }] }

Figure 2.5: Edge-case example JSON document

2.2 Existing approaches

2.2.1 Sevilla et al.
The approach by Sevilla et al. [8] is a parallelizable and scalable MDE-based
schema inference approach for NoSQL databases. It possesses a unique feature
of inferring multiple versions per each detected entity type.

The approach first reduces the size of the input using a MapReduce opera-
tion. This reduction is done without sacrificing any useful information about the
data. Afterwards it uses MDE techniques to infer the collective versioned im-
plicit schema of the entire aggregate-oriented NoSQL database (e.g. MongoDB
or HBase). The user is then able to use the inferred schema to generate additional
useful automated tools. As a proof of concept, the authors provide a generator
for a schema-driven document validator.

2.2.1.1 Motivation

The authors’ main motivation is to improve the experience and ease of use of
large aggregate-oriented NoSQL databases by inferring the implicit underlying
schema of the contained data. The authors claim that the inferred schema can
be used not only to improve the programmer’s or administrator’s understanding
of the data via a schema visualization tool, but also to help prevent future data
inconsistency thanks to automatically generated data validators. The article then
proposes examples of such automated tools.

According to the authors, one of the main advantages of their approach as
opposed to existing solutions, is the ability to infer versioned schemas. The
inferred versioned schema recognizes multiple versions for each type of entity
present in the inspected data. These versions can reflect database schema that
evolves over time with changing application requirements. Alternatively, multiple
entity versions can also reflect subsets of required properties of an entity.

21

MapReduceMapReduce

Inject

Version
Collection

One Document
per Version

Schema
Discovery

JSON
Model

JSON Object

Database

Collection

Document

Collection

Document

Collection

Document

Schema Model

Version 1
Version 2

Entity 1 ...
Entity, EntityVersion,

Attribute, Type,
and Pair Discovery

Aggregation
and Reference
Relationship

Discovery

Stage 1

Stage 2

Figure 2.6: Sevilla et al. approach execution high level diagram

22

2.2.1.2 Requirements

One of the main requirements for the approach is that it can be applied to any
NoSQL data store with an aggregate-oriented data model. Currently there are
three widely used aggregate-oriented NoSQL data store types, namely document-
based, key-value, and columnar.

Having established previously, NoSQL databases are generally used in highly
concurrent environments which produce and store large amounts of highly het-
erogeneous data. Because of this, an important requirement of the approach’s
design is that it scales well with big data. Furthermore, the efficiency of the
inference process plays a large role in the design stage.

2.2.1.3 Technology used

The approach uses the MapReduce computation model to reduce the number of
input documents by removing schematically equivalent duplicates. Specifically, a
built-in implementation in MongoDB or another database system is used.

MDE techniques are used extensively within the schema inference stage and
later also in the stage of automated tool generation.

The authors choose to use the JSON data format and object model as an inter-
mediate representation format within the algorithm to represent any aggregate-
oriented data. JSON was selected as the main focus of this approach because of
its predominance in the world of document-based NoSQL databases. It is also
simple and convenient to convert data from other aggregate-oriented NoSQL data
formats into JSON. The authors claim that: “. . . a piece of semi-structured data
can be formalized as a tree whose leaf nodes are atomic values of primitive types
(e.g. string, integer, float, or boolean) and the root and intermediate nodes are
objects (i.e. tuples) or either arrays of objects or values.” [8, p. 469] Such tree
structure directly corresponds to the JSON document data model.

2.2.1.4 Detailed algorithm description

First we will start with some definitions.

Definition 4 (Raw schema). For a JSON value V , the raw schema of V , S(V)
is defined as follows:

• S(V) = “Number” if V is a number-type primitive value;

• S(V) = “String” if V is a string-type primitive value;

• S(V) = “Boolean” if V is either “true” or “false”;

• S(V) = “Null” if V is “null”;

• S(V) = {a1 : S(V1), a2 : S(V2), ..., an : S(Vn)} if V = {a1 : V1, a2 :
V2, ..., an : Vn} is an object, where ai : Vi are the object’s properties, with ai

being the property names and Vi being the property values;

• S(V) = [S(V1), S(V2), ..., S(Vn)] if V = [V1, V2, ..., Vn] is an array, where Vi

are the array’s items.

23

Definition 5 (Canonical raw schema). For a JSON value V , the canonical raw
schema of V , Sc(V) is defined as follows:

• If V is an object, Sc(V) is created by sorting the properties of S(V) by their
names alphabetically;

• Sc(V) = S(V) otherwise.

Definition 6 (Schematic equivalence). Two JSON values V1 and V2 are schemat-
ically equivalent if

Sc(V1) = Sc(V2).

The authors mention, and directly support with their implementation, Mon-
goDB and CouchDB1, which are document-based databases, and HBase2, which
is a columnar database, but mention that other aggregate-oriented data stores
can be used as well.

The approach works on collections of JSON documents. JSON documents are
defined as JSON objects with the following additional requirements:

• they have a type name, defined either by a type property, or by the name
of the containing document collection,

• they have an identifier unique within the collection, defined by an id prop-
erty, or by other means.

If a user wants to use this approach with a type of aggregate-oriented database
other than document-based, the data must be first converted to JSON documents.
The authors offer the following as a way how to perform this conversion.

For a key-value store, each key-value pair is converted to a document, where
the key of the pair is the identifier of the document. The values must be JSON
objects themselves. The type name can either be defined using its property within
the object, or by other means, e.g. in Riak KV3 it can be defined by the name of
the bucket containing the key-value pair.

For a columnar store, each table is converted to a document collection with the
same name. Then each row of that table is converted to a JSON document within
that collection. Lastly, each column-value pair is converted to an equivalent name-
value property pair.

The next preliminary step of the inference process comprises the reduction of
the input data size. Since NoSQL databases can contain vast amounts of data, a
reduction of the input size can be crucial for reducing the overall computational
cost of the inference process. This step increases the speed of subsequent steps
while leaving the overall database schema information unchanged.

In a database, there will usually be present many schematically equivalent
objects, i.e. objects with identical canonical raw schema. Processing multiple
schematically equivalent objects would add no information to the schema infer-
ence process, but would slow down the process overall. Therefore it is beneficial

1https://couchdb.apache.org/
2https://hbase.apache.org/
3https://riak.com/products/riak-kv/

24

https://couchdb.apache.org/
https://hbase.apache.org/
https://riak.com/products/riak-kv/

to eliminate subsets of schematically equivalent objects within a collection, leav-
ing only one representative per schema. Sevilla et al. approach uses MapReduce
technology to perform this step.

The MapReduce operation is performed only once on the entire database. The
input of the Map step are all the individual documents in the database, along with
their type. The Map function is executed once for each of the documents. For
a document D of type t, the function first extracts the canonical raw schema of
the document S(D). Then it constructs a version identifier by concatenating the
type and the canonical raw schema tS(D) and emits a key-value pair (tS(D), D).

The input of the Reduce step are then all the documents in a collection,
grouped by their version identifier. The Reduce function is executed once for
each unique ⟨type, canonical raw schema⟩ pair in the collection, which would be
the first parameter. The second parameter of the Reduce function is a list of
all documents with that version identifier. The function arbitrarily chooses and
emits one of the documents in the list.

The output of the MapReduce operation is what the authors call a version
collection, that is, a set of documents, which is an arbitrary maximal subset of
the original database with each document having a different version identifier.
More formally:

Definition 7 (Version collection). For a database D = {D1, ..., Dn}, which is a
set of documents Di, each having a version identifier idV (Di): a version collection
of D is any set S ⊆ D, such that:

• (∀D1 ∈ S)(∀D2 ∈ S) : D1 ̸= D2 =⇒ idV (D1) ̸= idV (D2) (version
identifier uniqueness)

• (∀D1 ∈ D \ S)(∃D2 ∈ S) : idV (D1) = idV (D2) (maximality)

Canonical raw schemas of these remaining documents are later combined to
infer the overarching schema. Since only schematically equivalent documents are
removed during the extraction of the version collection, no schematic information
is lost. Therefore the schema inferred from the version collection is the same as
if it was inferred from the entire database.

After the version collection has been extracted from the database, reducing
the input size, the inference process itself can start.

The approach uses MDE techniques to extract entity, entity version, property,
and association information from the JSON data, and combine them to discover
its versioned schema. The JSON documents from the version collection are all
injected into the JSON metamodel, creating a JSON model for each.

A series of model transformation is then applied on these models, which grad-
ually transforms and accumulates them into a single collective NoSQL schema
model. Detailed information on these transformation steps can be found in the
original article.

When all JSON document models are processed, the schema inference process
is finished. The inferred NoSQL schema model can then be serialized into textual
representation. The authors decided to use their own proprietary textual report
language for this serialization. The language is shorter, more concise, and more
human-readable than JSON Schema but still expressive enough to describe all
the data schema features that the Sevilla et al. approach can infer.

25

2.2.1.5 Capabilities

When it comes to what schema features the algorithm is able to infer, Sevilla et
al. is unique in a number of aspects. It utilizes a unique approach for handling
data heterogeneity and evolution over time in the form of entity versions. In their
NoSQL schema model, each entity has one or more different versions, with each
version having a different set of properties.

Versions of the same entity can represent a state where different database
objects of the same type each have a different subset of the entity’s properties
defined, e.g. because the values of the remaining properties are unknown.

To illustrate, in the running example, either location object has defined a
different subset of all possible properties. One is missing a string-type property
named address and the other is missing two string-type properties named lat-
itude and longitude. In the resulting inferred schema, these two objects would
be instances of two different Location versions.

A significant feature unique to this approach is the ability to correctly detect
and model references to other entities present in the data set. In the running
example, the Article entity has a property article id which is a JSON number.
The algorithm can correctly infer the significance of this value as an identifier of
an Article entity if:

• the property name is of the form ⟨entity name⟩ id or ⟨entity name⟩ ids
and

• the property value is either

– a primitive value that is the identifier of a document of type ⟨entity -
name⟩, or

– an object which is an Extended JSON DBRef referencing a document
of type ⟨entity name⟩.

The approach is capable of inferring a collective schema for an entire database,
possibly spanning the entire data model of an application. This is in contrast with
some other existing approaches which are only capable of inferring the schema of
a single document collection at a time, leaving the task of merging such partial
schemas to be done afterwards.

The scalability of the approach given by removing schematically equivalent
documents from the input before further processing is also worth mentioning as
an advantage. However this property is also present in several other compared
approaches.

2.2.1.6 Running example

The output of this approach, included as attachment A.1, is a NoSQLSchema
model serialized in XML format. The NoSQLSchema root element contains en-
tities as sub-elements. For the running example, these are Articles, Author,
Attachment, Body, and Location. These entity names were inferred from the
collection name and from the property names, respectively.

26

Document
selection

Collection

Document SG
construction

Schema
generation

Structure
Identification

Graph
(SG)

JSON Schema
Document

Reduced
Collection

Figure 2.7: Klettke et al. approach execution high level diagram

Each entity has one or more variations4, each variation having a distinct set
of properties and their types. For instance, Location/1 has a single property of
type String called address, while Location/2 has two String properties called
latitude and longitude.

Properties can have three different types: Attribute, Aggregate, and Ref-
erence. Attribute type properties contain either a single or, in the case of a
JSON array, multiple PrimitiveType values wrapped in a PList.

Aggregate type properties contain a reference to a specific entity variation
contained in the model. E.g., property Author/2/location aggregates varia-
tion Location/2. Additionally, aggregation multiplicity is modeled by lower and
upper bounds.

Reference type properties contain a reference to an entity in the model.
E.g., property Articles/1/article id references entity Articles. Same as
with aggregation, lower and upper bounds define the relation multiplicity.

Each property specifies, whether it is optional or not. If a property is contained
and has the same type in all variations of an entity, it is required. Otherwise it
is optional and has an attribute optional="true".

Any data heterogeneity is handled using the entity versioning system. Both
property names and types are taken into account when comparing two entity
versions for equality. Alongside the versioning system, optionality of properties is
also recorded, as described before. The different sizes of ratings array instances
are not modeled.

2.2.2 Klettke et al.
The Klettke et al. approach [13] is a schema inference approach for NoSQL data
stores based on previous work with XML data [39]. It is designed primarily for
work with data in JSON format and outputs the inferred schema as a JSON
Schema.

2.2.2.1 Motivation

The approach takes its motivation from work with NoSQL data stores. The au-
thors claim it is crucial to have a reliable understanding of the schema during
both application development and analysis of scientific data sets to be able to
perform the task. The authors particularly mention the importance of awareness
of structural outliers in the data. Unfortunately, the schematic and outlier infor-
mation is often unknown or incomplete due to rapid application development or
mixing of data from multiple experiments within one database.

4variation describes the same concept as version. We use variation here because this term
is used in the model.

27

As a result, there is a need for a schema extraction approach that would detect
the schema of such heterogeneous data sets. The schema needs to be extracted
in a way that would allow us to detect the level of homogeneity of the inspected
data, as well as detect outliers in the data structure.

While the approach mainly focuses on data stored in the JSON format in
document-based NoSQL data stores, the authors note that it can be extended
to work with other aggregate-oriented data stores. The adaptation process is
identical to the one used by Sevilla et al., described in section 2.2.1.4.

2.2.2.2 Detailed algorithm description

The schema inference process is divided into several steps. First is the document
selection step, where the collection of inspected documents is narrowed down.
This step is optional. Second step is the construction of a Structure Identification
Graph (SG) from the selected documents. Third step is the generation of JSON
Schema from the SG. Additional steps can be then applied to the SG to determine
other valuable information on the data set, like structural outliers and the degree
of homogeneity.

Document selection step. This is a preliminary manual step during which the
user can decide whether to detect the schema of an entire document collection,
or to divide the documents into subsets according to some criterion, usually a
property value within the JSON document, and detect the schema of the subsets
separately.

This grouping property can describe e.g. entities of different versions or data
related to different scientific experiments. In the former case, the different output
schemas could be used to better illustrate evolution of data in the application.
In the latter, this step helps reduce the heterogeneity of the inferred schema.

SG construction step. The SG is a tree with valued nodes and edges. While
we summarize its properties, it is defined formally in the related article.

Its vertices reflect JSON nodes present within the inspected documents. Non-
leaf vertices represent JSON objects and arrays, while leaves represent nodes of
other types.

Let v be a vertex for a JSON node j occurring across one or more documents.
v carries the following additional data:

• NodeList(v) – a list of NodeID(j) for each occurrence of j across the doc-
uments. NodeID(j) is a pair (docID, i), docID is the ID of the document
containing j, and i is the unique identifier of j within that document

• Type(v) – information about the data type of j, if v is a leaf.

The graph’s edges reflect occurrences of parent-child pairs among nodes in the
data set. Given vertices v1 and v2 which reflect a JSON object j1 and another
JSON node j2, respectively, the graph contains an edge e = (v1, v2) if and only
if j2 is a property of j1 in at least one document. Moreover, the edge carries
EdgeList(e)—a list of NodeID(j1) for each occurrence of such parent-child pair
of nodes across the documents.

28

The SG is constructed by iterating over the input documents. In each iter-
ation, the document’s node structure is processed in preorder5. The processing
of each node extends the SG by adding new vertices and/or edges, or modifying
existing ones by appending to their NodeLists and EdgeLists.

JSON Schema generation step. In this step, the SG generated previously is
converted into a textual representation. The authors choose JSON Schema for
this purpose. The SG is processed in preorder, each vertex being converted to a
JSON Schema definition describing the node which the vertex represents.

When extracting the schema, optional and required properties can be distin-
guished based on data contained within their related vertices and edges in the SG.
Given an object j1 and its child node j2, two vertices v1 and v2 which correspond
to j1 and j2, respectively, and an edge e = (v1, v2), j2 is a required property of
j1 if and only if EdgeList(e) = NodeList(v1). In other words, j2 is a required
property if and only if j2 is a child of j1 in every document where j1 is present.
This is reflected in the generated JSON Schema using the "required" keyword.

For a leaf v reflecting a node j, Type(v) is encoded in the schema generated
for j. If j was of multiple different types in different documents, then Type(v) is
a union of those types, recorded in the schema using the oneOf or anyOf keyword.

Homogeneity and outliers inference. The SG is carries more information than
is needed just to construct a schema. Given two vertices v1 and v2 and an edge
e = (v1, v2), the size of EdgeList(e) can be compared to the size of NodeList(v1)
to detect the frequency of occurrence of that property in v1’s node.

This information can be used to detect structural outliers in the data set.
These outliers are divided into two kinds, additional properties and missing prop-
erties. Additional properties are those that are contained only in a very small
percentage of cases. Conversely, missing properties are contained in a very large
percentage of cases, but not 100 %. The definition of “very small” and “very
large” can be fine-tuned by the user by choosing an appropriate sensitivity.

More formally, the user chooses a number ϵ (sensitivity) between 0 and 1.
Then given v1 and v2 which correspond to an object j1 and its child node j2, and
an edge e = (v1, v2):

• j2 is an additional property of j1 if and only if |EdgeList(e)|
|NodeList(v1)| ≤ ϵ

• j2 is a missing property of j1 if and only if 1− ϵ ≤ |EdgeList(e)|
|NodeList(v1)| < 1

The SG can also be used to determine other useful metrics about the inspected
data by examining the EdgeLists and NodeLists. One of those is the degree
of coverage, which for a subset of documents specifies the level of structural
similarity or homogeneity within the subset.

The authors additionally propose a Reduced Structure Identification Graph
(RG) as an alternative to the SG. The RG is constructed very similarly to the SG,
except instead of each graph element containing a list of node IDs, the vertices
contain only a number of occurrences, which in SG would be the size of the
list. The edges in RG contain no additional information. This design variation
reduces the memory footprint of the approach by trading away some capabilities,

5a depth-first tree traversal order in which a tree’s root is first processed itself, then the left
subtree is processed recursively in preorder, then the right subtree

29

Collection

Document

Types

T1 T2 T3 ...

Map
Replace values
by their types

Inferred Type
(Schema)

Reduce
Parametric

type reduction

parameter

Equivalence
relation

E

Figure 2.8: Baazizi et al. approach execution high level diagram

e.g. outlier detection. The authors note that the outliers can still be detected
even when using the RG in some situations.

2.2.2.3 Running example

The output for the running example is included as attachment A.2. Being in
the JSON Schema format, its structure follows that of the individual documents
in the collection. Note that this output was created by hand and not by a
computer program, i.e. the approach algorithm was executed manually using
pen and paper according to the description in the article. The reason being that
the implementation of this approach was not acquired from the authors and was
not recreated due to time constraints.

All trivial JSON types are handled correctly in properties id, timestamp,
ratings, and published. comments property is inferred as either an array of
strings, or a string, using the oneOf JSON Schema syntax. Similarly, body is
inferred as either a string, or an object with two required properties.

attachments property is detected as an array of objects containing a url
string property. It is marked as optional by not being included in the "required"
list. Same goes for the article id property, which is inferred as just a number
without any special meaning.

The author object’s phone number property is inferred as a string or a num-
ber, again utilizing the oneOf construct. Finally, the location object has three
optional properties, latitude, longitude, and address. No dependency is in-
ferred between these three.

2.2.3 Baazizi et al.
Baazizi et al. introduce in their article [15] a schema inference approach for
massive JSON datasets. The approach is based on a formal definition and the
authors provide rigorous proofs of its properties. It can be parameterized by the
user to trade off conciseness for precision in the inferred schema. It is designed to
be easily parallelizable and scalable and outputs the inferred schema in a simple
yet expressive JSON-like type language. The authors provide an implementation
based on Apache Spark.6

6https://spark.apache.org/

30

https://spark.apache.org/

The algorithm accepts a single JSON document collection as input. It operates
in two steps. In the first step, a parallel Map operation transforms each of
the input documents into their simple type representations. The second step, a
Reduce operation over the results of the Map operation, parametrically reduces
the simple types into one resulting type.

2.2.3.1 Motivation

The authors of this approach quote as their motivation, the benefits of determin-
ing a schema for an already existing JSON document collection. These include
the ability to perform static checks of queries over the dataset, ability to use
schema-based querying optimization strategies, and the increased ease and speed
of producing correct code, which consumes the dataset.

The authors quote speed of the algorithm and precision and conciseness of the
resulting schema as their main focus points. They note that the latter two schema
properties are inherently contradictory. A precise schema is usually verbose, and
a concise schema risks not being able to describe the data completely. This
contradiction is solved by letting the user parameterize the inference process to
tweak the properties of the inferred schema.

Another focus point of the approach’s design is its ability to work with massive
datasets. This property is crucial for schema inference approaches in the Big
data context. To that end, this approach was designed from the ground up to be
parallelizable and horizontally scalable using MapReduce and the Apache Spark
framework.

Yet another important desired property of the generated schema is that it is a
path covering schema, i.e. each path that can be traversed within any of the input
documents can also be traversed in the schema. A schema with this property can
be used to enable many JSON query optimizations as mentioned in the article.

2.2.3.2 Technology used

The approach uses Apache Spark to provide scaling capabilities necessary to
handle even datasets of massive sizes. Apache Spark is a cluster data processing
framework with implicit parallelism, work distribution, and fault detection fea-
tures. It builds upon the MapReduce paradigm by allowing an arbitrary number
of steps in the data processing pipeline and storing the intermediate results in
distributed data structures in the memory.

2.2.3.3 Detailed algorithm description

As mentioned before, the algorithm divides into two steps, a Map step and a
Reduce step. These are executed sequentially on the input collection, however
each step can itself be parallelized and executed in a distributed environment.
We will now more closely describe their inner workings.

Map step. In this step, each JSON document in the collection is mapped
into its type. While the concept of a document’s type is not unlike that of raw
schemas, discussed previously in description of the approach of Sevilla et al. in
section 2.2.1.4, there are key differences.

31

Similar to a raw schema, a type keeps the original structure of the JSON value
and all primitive values inside it are replaced by the names of their primitive types.
However, unlike the raw schema, the types of JSON array elements are not kept
separate, instead they are reduced to their common supertype, using the same
type reduction process which is used later in the Reduce step. It is non-trivial so
we will describe it then.

More formally on the topic of mapping JSON values to types, the algorithm
recognizes types of 6 kinds. Four of them, Str, Num, Bool, and Null, correspond
to the JSON primitive types. The remaining two kinds of types are structural,
they describe the JSON array and the JSON object. The type of JSON array
A is [T], where T is a supertype of all elements of A. The type of JSON object
O = {a1 : V1, ..., an : Vn} is a record type {a1 : T1, ..., an : Tn}, where Ti is the
type of Vi for all i from 1 to n.

Reduce step. In this second and final step of the algorithm, all mapped types
from the previous step are reduced into one type. The only requirement for
this type is that it must be a common supertype for all of the input types.
This requirement is somewhat loose as there are many ways how to construct a
supertype for a set of given types. This looseness leaves room for parametrization
of the reduction process, which enables us to gain some control over the properties
of the reduced type.

This parametrization comes in the form of an equivalence relation E over
types. If two types T1 and T2 are E-equivalent (we write T1

E= T2), a more
succinct and possibly less precise reduction is used. Otherwise, a more precise
but possibly more verbose reduction will be used for two types which are not
E-equivalent. By correctly choosing the parameter E, we can achieve a desired
balance of conciseness and precision in the inferred schema.

Parameterized binary type reduction has been proven in the article to be
commutative and associative, which means that to reduce a set of types into a
common supertype, one only needs to repeatedly apply the binary reduction onto
the elements of the set, and the order of operations does not matter.

Two supertype constructors are used in the approach. The trivial supertype
constructor is a union. A union of two different types T1 and T2 is T1 +T2 and can
be used with all input types. However, it produces supertypes which are verbose
and can be hard to read and understand.

Another supertype constructor is a fusion, Fuse(T1, T2, E). It creates super-
types which are more concise but can lose information in the process. A fusion
can only be used for structural kinds and only for two types of the same kind.
A fusion of two array types is achieved by recursively reducing their component
types. A fusion of two record types is a record type, where:

• properties present in both record types are marked as required and their
types are recursively reduced

• properties present in only one of the types are marked as optional

The type reduction function is then defined as:

Reduce(T1, T2, E) =
{︄

Fuse(T1, T2, E), if T1
E= T2

T1 + T2, otherwise

32

Two different equivalence relations can be used by the user as possible pa-
rameters. One of them is a kind equivalence relation (KER) which fuses together
any two types of the same kind. This means that any two record types are fused
together regardless of the properties present. This may in some cases cause loss
of information related to property correlation in the data. On the other hand,
the resulting record type is nearly as readable as either of the two input types.

The other useful equivalence relation is a label equivalence relation (LER).
Similarly to KER, it fuses together types of the same kind, except for record
types, for which there is an additional requirement. LER fuses record types
together only if the property names within them match, i.e. they contain the
same number of properties with the same names, but not necessarily the same
types. This equivalence relation will preserve property correlation information in
the resulting type, at the expense of increasing the size and decreasing readability
of the type.

2.2.3.4 Running example

The output of this approach, included as attachments A.3 and A.4 is a textual
representation of the inferred type. The output has a similar structure as the
input in that the root elements of the schema correspond to the input documents.

We first describe the output of the approach using kind equivalence. Then we
describe the differences between that and the output of label equivalence.

Kind equivalence. The properties id, timestamp, and published are inferred
as Num, Str, and Bool respectively. ratings is inferred as [Num] type, the
difference in element count is not modeled.

comments property type is a union of Str and [Str], as these are two dis-
tinct types. Similarly, body property is inferred as a union of Str and a record
type { content: Str, mime type: Str }. And also the phone number prop-
erty of the author record is inferred as a union of Num and Str. This illustrates
the versatility of the union typing used by this approach.

attachments is simply modeled as an array of records [{ url: Str }].
The special meaning of article id is not inferred, as it is inferred simply as a
Num. Notably, the author/location record has three properties, all of which are
typed as Str.

In all of these three instance, properties are missing the quantifier ?, which
the article claims is used to model optional properties. An inspection of the
source code reveals that detection of optional properties was not implemented by
the author. However, this seems to be merely an oversight, as implementing this
functionality would be rather simple and straightforward.

With the detection of optional properties correctly implemented, all three
properties within the author record would have the type Str?. This would not,
however, correctly model the correlation between the latitude and longitude
properties, and their mutual exclusivity with the address property. This addi-
tional information can be inferred using the label equivalence.

Label equivalence. Using label equivalence yields two different versions for the
top-level record, as they have different properties each. Since both documents
are homogeneous within themselves, there are no other union types anywhere else
than the top level. An array with mixed element types could generate unions,
however there are no such arrays in the running example.

33

The output using label equivalence illustrates the aforementioned correlation
between the individual properties in the author/location record.

2.2.4 Canovas et al.
Canovas et al. propose another schema inference approach [16] based on MDE
principles. The algorithm is able to discover the schemas of multiple collections
of JSON documents, then merge them to form a complete view of the application
domain. In addition, it can use the inferred schema to discover dependencies (like
common entities) between multiple services and generate call execution chains for
the developer to get the data they require.

The approach’s execution consists of three steps, followed optionally by further
processing. Firstly, for each collection of JSON documents, those documents are
injected into a JSON metamodel generated by Xtext7, which yields a collection
of JSON models, one model for each document. This is called the Pre-discovery
phase. In the second step, so-called Single-service discovery, each JSON model
collection is reduced iteratively into a single domain model. Finally, in the third
step, so-called Multi-service discovery, all domain models are combined into a
single domain model for the entire application. Additionally, the domain model
can be analyzed to discover dependencies (like common entities) between the
collections.

2.2.4.1 Motivation

This approach’s motivations lie directly in facilitating developer’s work with ex-
isting JSON web-based services.

Designing applications which consume multiple related JSON services and
exchange data with them is a non-trivial task, during which the developer can
unintentionally commit costly mistakes.

A standardized language for schema definition of JSON documents does not
exist. The aforementioned JSON Schema project is promising but has not yet
reached Request for Comments (RFC) status with the Internet Engineering Task
Force (IETF). As a result, most of the available documentation for JSON services
is in plain human language with examples of requests and returned data. This
makes the issue with designing JSON service consumer applications even more
severe.

Generating and visualizing the data model of JSON services on demand would
greatly enhance a developer’s ability to understand the data format of single
services, infer the relationships between services, and even make it possible to
generate service request compositions, resulting in faster development of service
consumer applications.

JSON web services can be queried repeatedly to obtain JSON documents.
Different documents retrieved from a single service usually describe the same
entity or concept and are very similar to each other. In this sense, assuming a
representative set of documents has been retrieved from a web service, that set
of documents, and in fact also the web service itself, is equivalent to a document
collection of a document-based database. Then, a web application consisting

7Framework for developing programming languages, https://www.eclipse.org/Xtext/

34

https://www.eclipse.org/Xtext/

C
ol

le
ct

io
n

1

D
oc

um
en

t

Se
rv

ic
e

1

Pr
e-

di
sc

ov
er

y

JS
O

N
 M

od
el

s
1

M
od

el
Si

ng
le

-s
er

vi
ce

di
sc

ov
er

y
D

om
ai

n
M

od
el

 1

C
ol

le
ct

io
n

2

D
oc

um
en

t

Se
rv

ic
e

2

Pr
e-

di
sc

ov
er

y

JS
O

N
 M

od
el

s
2

M
od

el
Si

ng
le

-s
er

vi
ce

di
sc

ov
er

y
D

om
ai

n
M

od
el

 2

M
ul

ti-
se

rv
ic

e
di

sc
ov

er
y

D
om

ai
n

M
od

el

Fi
gu

re
2.

9:
C

an
ov

as
et

al
.

ap
pr

oa
ch

ex
ec

ut
io

n
hi

gh
le

ve
ld

ia
gr

am

35

of multiple services is equivalent to a database containing multiple document
collections.

We can then assume that the Canovas et al. approach accepts as input of
the algorithm JSON document collections themselves rather than web services
that serve them. We assume a representative sample of documents is retrieved
from each service to facilitate this reduction. While we still keep in mind the
motivational background of the approach and mention it where it’s due, this
assumption is beneficial for the sake of simplicity of our comparison.

2.2.4.2 Technology used

Xtext is a framework for development of programming languages and domain-
specific languages. It enables the user to formally define a custom language’s
syntax using Xtext’s language definition language. The language definition looks
and works in a way similar to a formal grammar. Xtext then uses this definition to
generate tools like parser, compiler, and converters to various non-textual formats
like EMF models.

2.2.4.3 Detailed algorithm description

The first prerequisite step of the schema inference (or schema discovery, as the
authors call it) process is provision of JSON documents by the user. The input of
the discovery process are textual JSON documents, which must first be extracted,
either manually or by an external automated tool, from the web-based services
which the user wants to infer the schema of. As we have assumed in section 2.2.4.1,
the sample must be large enough to be representative of the service’s data model.

The first phase of the discovery process proper is called the Pre-discovery
phase. As the authors say, the approach works with two different technical spaces,
grammarware and modelware. On the one hand, it takes its input in the form of
collections of JSON documents. Those conform to the JSON grammar and thus
belong to the grammarware technical space. On the other hand, the process-
ing and output of the approach are in JSON models which conform to a JSON
metamodel and belong to the modelware technical space.

For this approach, the authors use Xtext’s language definition syntax to cre-
ate an Xtext language definition D describing the syntax of JSON documents.
D defines a JSON formal grammar G to which all JSON documents conform.
Afterwards, they use Xtext to generate from D:

• a JSON metamodel M , and

• a so-called injector I.

I is a program that takes as input JSON documents in their textual repre-
sentation (conforming to G) and produces as output JSON models (instances of
M) which represent the input documents. This entire process is illustrated by
figure 2.10.

The second phase is called the Single-service discovery phase. During this
phase, collections of JSON models from each service, obtained from the Pre-
discovery phase, are iteratively folded to an Ecore domain model describing that
service. The identity for the fold is an empty Ecore model, and the combining

36

Figure 2.10: Pre-discovery phase

function is defined by a set of model transformation rules. Without further detail,
these rules are divided into two categories based on whether they create new
previously undiscovered concepts, or refine already discovered concepts.

Individual services provide different viewpoints on the application’s data.
Their domain models can be thus viewed as sub-models of the entire applica-
tion’s domain model. To be most helpful to the developer, they need to be com-
bined together and accessible as one whole. The third phase called Multi-service
discovery achieves this result.

This phase begins by creating a new model as a union of all partial models.
Afterwards it repeatedly matches the model against a set of transformation rules
to try to merge the sub-models. The resulting merged domain model describes
data of the entire application and is the result of the schema inference process.

Additional post-processing can be applied to the model. The authors describe
adding coverage information to the model, which contains the relationships be-
tween individual elements of the model and the services that return them. This
meta-data can be used to identify the services that need to be queried in order
to obtain a specific subset of properties.

The coverage information can be further expanded by the user manually spec-
ifying the input parameters of each service. This information can in turn be used
by the algorithm to discover dependencies between multiple services, where the
output of one service can be used as input of another. The inter-service dependen-
cies can be organized into an oriented graph. The dependency graph can then be
queried to find optimal sequences of service execution to obtain all desired data.

2.2.4.4 Capabilities

This approach is specialized towards JSON data format. This limits the ap-
proach’s usability, compared to e.g. Sevilla et al. approach which is applicable
to all aggregate-oriented NoSQL data stores.

The Canovas et al. approach is not able to detect optional properties of an
entity.

The ability to handle situations where the same entity property has values
of different simple types is also limited. Namely, the approach does not support
union types to resolve these situations, instead it reduces the involved types into

37

their most generic type.
The approach also cannot handle identifier-based references to other entities

in the data.
All phases of the discovery process up until and excluding Multi-service dis-

covery are parallelizable by design, although this fact is not specifically mentioned
by the authors. Instances of Pre-discovery and Single-service discovery could be
launched manually in parallel on multiple machines, since they are implemented
as separate software modules. Their output could then be processed by a single
instance of a Multi-service discoverer. This fact could facilitate good horizontal
scalability of this approach.

2.2.4.5 Running example

Being an Ecore model serialized as an XML document, this approach’s output is
similar to the output of the approach by Sevilla et al. It is included as attach-
ment A.5. The root element is an EPackage containing EClass elements. The
inferred EClasses are Article, Author, Attachment, Body, and Location. The
names are inferred from the name of the document collection and the names of
their respective JSON properties.

EClasses in turn contain EAttributes and EReferences. The former have an
EDataType which in our running example can be an EInt, (e.g., for id), EString
(for timestamp), or an EBoolean (published). The latter on the other hand have
an eType attribute, which defines the type of the referenced entity.

The different sizes of the ratings array are not mirrored in any way in the
schema. Different types of the comments property are reduced into the most
generic type, which is EString. Conversely, with the body property, the EString
version is lost and only the version referencing a nested Body object is retained.

attachments property’s optionality is not modeled directly using Ecore’s
lowerBound and upperBound attributes, but could be inferred from a nested
coverage element. Same applies to the optional property article id. Moreover,
the special meaning of article id as a reference to an Article entity was not
inferred.

Finally, let’s cover the author object. The phone number property’s type
was reduced into an EString which is the most generic type. As for the Loca-
tion EClass, only the latitude and longitude properties are present, while the
address property is missing entirely.

2.2.5 Frozza et al.
Frozza et al. propose an approach [18] for extracting a schema from a JSON or
MongoDB Extended JSON document collection. The approach utilizes aggre-
gation operations to generate schemas for uniquely structured documents in the
collection, then makes use of a graph structure to combine the partial schemas
into a collection schema. The approach outputs the inferred schema in the JSON
Schema format. An implementation of the approach is available as a web tool.8

8http://lisa.inf.ufsc.br/wiki/index.php/JSON_Schema_Discovery

38

http://lisa.inf.ufsc.br/wiki/index.php/JSON_Schema_Discovery

MongoDB Database

Collection

Ext. JSON
Document

Raw schema
generation

Raw schema
grouping

Raw schema
collection

Raw
schema

Raw schema
unification

Reduced raw
schema collection

JSON Schema
generation

RSUS

JSON Schema

Raw
schema

Raw schema grouping

Aggregation Property ordering Aggregation

Figure 2.11: Frozza et al. approach execution high level diagram

39

2.2.5.1 Motivation

The motivation for this approach is similar to previously discussed works. In
this instance, the authors focus on JSON document-based NoSQL stores, specif-
ically on MongoDB and its Extended JSON format, i.e. BSON. The fact that
there almost always exists implicit schema in the data despite the lack of explicit
schema definition is specifically mentioned. Examples are mentioned of web ser-
vices which provide data in JSON format, but do not define its schema, making
querying the data difficult.

2.2.5.2 Detailed algorithm description

The schema inference process is divided into four logical steps: Document raw
schema generation; Grouping of raw document schemas; Unification of document
raw schemas; and JSON Schema generation.

Document raw schema generation. This step is similar to the first step of the
Sevilla et al. approach described previously in section 2.2.1.4. A raw schema is
extracted from all documents, leaving the document structure with relation to
properties, nested arrays and objects intact, but replacing all primitive values
with the name of their type. This applies to both JSON and Extended JSON
primitive types. The resulting raw schemas are saved in a temporary MongoDB
collection.

Grouping of raw document schemas. The next step aggregates the raw sche-
mas in order to find their minimal subset sufficient for correct unified schema
generation. The aggregation is performed in three substeps.

First, a MongoDB aggregation is used to remove all duplicate raw schemas
from the collection. However, the document properties may not be in the same
order in all documents in the collection. The first aggregation would not re-
move duplicate raw schemas, which have their properties in a different order.
Therefore, in the second sub-step, all remaining schemas have their properties
sorted alphabetically. This sorting operation is executed on the documents and
recursively on their nested objects. Finally, another aggregation removes any
remaining duplicates.

Unification of document raw schemas. Thirdly, aggregated raw schemas are
unified into a tree-based hierarchical structure called the Raw Schema Unified
Structure (RSUS). RSUS is loosely defined in the article. It is a tree composed of
vertices of different types: FieldType, PrimitiveType, ExtendedType, ObjectType,
and ArrayType, which represent object properties, base JSON primitive types,
Extended JSON types, JSON objects, and arrays, respectively. Additionally, it
carries information about the path from document root to any node within the
document, and the number of occurrences of those nodes within the collection.

Authors claim that the usage of RSUS and the operations performed on it,
both its creation and later conversion into JSON Schema, are inspired by MDE
principles, which are suitable for data model transformations.

To construct the RSUS, the aggregated raw schemas are processed one by one.
Each raw schema, being a tree of JSON nodes, is processed in preorder. When
processing a JSON node, if the node has not been encountered yet, a new RSUS
vertex is created. Alternately, if a previously encountered node is encountered
again in another document, an extension of an existing RSUS vertex occurs.

40

JSON Schema generation. Lastly, the RSUS is converted into a JSON Schema
representation. A JSON Schema definition is generated for each vertex of RSUS,
based on its type, its path from document root, and its number of occurrences, and
then they are merged together, preserving the hierarchical structure. Notably,
the occurrence count in FieldType vertices is used to determine whether those
properties are required or optional.

2.2.5.3 Capabilities

Since the Frozza et al. approach is similar in its methodology to the approach
by Klettke et al., this translates into similarities in the approaches’ capabilities.
Speaking of structural features, the approach is able to detect both the optionality
of object properties, and the presence of union types in properties. These are
determined based on the numbers of occurrences of properties and data types
in the RSUS. The approach is not able to detect properties which represent
referential relations to entities.

The approach was built from ground up to work not only with data in JSON
but also Extended JSON as well. This gives it a major advantage in versatility
compared to other approaches we have researched due to the very high popularity
of MongoDB in the field.

Conversely, this approach carries the disadvantage of being unable to handle
large data sets efficiently and to scale. While this aspect was not yet tackled by
the authors, they claim “adopting parallel processing techniques” as one vector
of their future work.

2.2.5.4 Running example

For the Frozza et al. approach, the Extended JSON version of the running ex-
ample is used to illustrate its ability to infer schemas from Extended JSON data.
The output is included as attachment A.6.

The schema inferred for the running example follows the structure of the input
documents, as is standard for JSON Schema schemas.

All the common properties have their types correctly inferred, including the
Extended JSON-typed ones, id, timestamp, and article id. However, the
target of the last property was not detected.

Strangely, the number of items in the ratings array has been inferred to be
at least one.

comments property’s type was correctly inferred as a union of string and
array of string. The type of body was inferred as a union of string and
object, which is also correct. attachments property is also correctly modeled
as an array of objects. Same applies for the property author/phone number,
which is modeled as a union of string and number.

The attachments and article id properties are both treated as optional by
being omitted from the list of required properties. And, within the author/loca-
tion object, all three properties are optional, as the array of required properties
is empty. No property presence correlation is inferred.

41

2.3 Comparison
After researching and explaining in detail individual existing solutions and pre-
senting how they handle the running example, let us summarize the approaches’
properties and performance in regards to the quality criteria we established at
the beginning of this chapter.

For this section, difference between input format and type is as defined in
section 2.1.2.1.

2.3.1 Input format
Approach by Baazizi et al. expects input in JSON format and was designed solely
with this format in mind.

Canovas et al. approach article talks specifically about JSON documents
which are responses from JSON-based web services. Practically speaking, how-
ever, there is little difference between those and JSON document collections in a
database.

Frozza et al. approach offers a key advantage in that it supports also Extended
JSON data types.

Approaches by Sevilla et al. and Klettke et al. work primarily with JSON
data, however their articles mention how other aggregate-oriented databases can
be trivially converted to JSON. Notably, this conversion process can be applied
universally to aggregate-oriented data, so that in practice any schema inference
approach for JSON data can be used for key-value and columnar data as well.

2.3.2 Input type
Dividing the existing approaches by input type yields two categories. Sevilla et al.
and Canovas et al. approaches can process an entire JSON database with multiple
collections, while the other three, Klettke et al., Baazizi et al., and Frozza et al.
approaches support only inferring from a single document collection at a time.
Merging these collection schemas is then left up to the inference tool user.

Note that both approaches capable of handling multiple collections utilize
MDE to do so.

2.3.3 Output format
The output format criterion also divides the approaches into two main categories:
textual and model.

Klettke et al., Frozza et al., and Baazizi et al. approaches all output the
inferred schema in a textual format. The first two use JSON Schema, while the
last one uses its own type description language, more concise and user-readable
than JSON Schema, but still expressive enough to describe all schema features
the approach is able to infer.

The last two approaches by Sevilla et al. and Canovas et al. both output the
inferred schema as a data model. As their model’s metamodel, the latter approach
uses the basic Ecore model from EMF, while the former approach’s authors define
a new metamodel called NoSQLSchema specifically for this purpose.

42

Taking a look at this criterion with the multi-model context in mind, there
is a concern, how well-suited are these output formats for describing a schema
inferred from a multi-model inference approach. Since all of the existing infer-
ence approaches we consider are single-model, it is understandable that their
authors did not concern themselves with this aspect. Nevertheless, this question
is something that must be taken into account when designing such multi-model
solution.

2.3.4 Implementation
All five approaches were implemented for the purposes of their respective articles.
During our research, we only managed to obtain four out of five of these imple-
mentations. The article by Klettke et al. claims their approach was implemented
for performance testing as a Python application, however the source codes of this
implementation are unavailable.

The approaches of Sevilla et al. and Canovas et al. were implemented as Java
applications running on the Eclipse platform. Both of them offer usable Java API
and a simple web application wrapper for convenience.

Baazizi et al. implemented their approach as a Scala application designed to
run in an Apache Spark environment.

Frozza et al. approach is implemented as a JavaScript web application. The
app’s front end is written in TypeScript and provides the user with a presenta-
tion layer, while the back end is written using Node.js and contains the actual
implementation of the inference tool.

2.3.5 Simple data types
All researched approaches were primarily designed for work with JSON, and as
such, all of them support each simple (primitive) JSON data type: number, string,
boolean, and null.

2.3.6 Arrays
The approaches by Klettke et al. and Frozza et al. describe arrays by the
{"type":"array"} descriptor in the JSON Schema. The type of the items of
the array is inferred as a union (using oneOf keyword) of the individual types
present.

Baazizi et al. approach describes arrays in their type description language as
a pair of brackets ([]), with an element type inside. The element type is the
result of the parameterized reduction of the types of all items inside the array.
This reduction can result in a union, in which case the union operator (+) is used.

To reflect the concept of arrays in their output models, the approaches by
Sevilla et al. and Canovas et al. each use a different method to suit their meta-
models of choice.

Sevilla et al. approach uses a PList type to describe an array of primitives,
and an Aggregate property to model an array of objects.

When met with an array of simple values, Canovas et al. approach uses an
EAttribute structural feature with a removed upper bound (upperBound="-1").

43

When describing an array of objects, an EReference with containment="true"
is used instead.

2.3.7 Objects
The way of handling objects is analogous to handling arrays in all researched
algorithms.

In the JSON Schema-based approaches, objects are described by a {"type":
"object"} declaration, along with the "properties" keyword describing the
individual properties of the object, and the "required" keyword specifying the
properties’ optionality.

Baazizi et al. type language describes objects as a pair of braces ({}) con-
taining a key-value pair for each of the object’s properties.

2.3.8 Aggregates
Approaches by Sevilla et al. and Canovas et al. use an aggregation relation-
ship to model a nested object. They create an entity type for the object, then
link it with its parent using an appropriate structural feature. Sevilla et al. ap-
proach uses the Aggregate property type with the aggregates="..." attribute
to encode this relationship, while Canovas et al. uses an EReference with a
containment="true" attribute.

2.3.9 References
Out of all considered existing approaches, only the one by Sevilla et al. can
detect references to other entity type. The heuristics for this detection consists
of matching the property name for a specific pattern, e.g. "* id", and detecting
Extended JSON DBRef types. Constraint checking is performed on a detected
reference to increase the inference certainty.

There can be, and in practice many times are, references not matched by
these heuristics. E.g., in a company hierarchy domain, entity type Employee can
have a property named manager id, or simply manager, which is a reference to
another Employee. In this case, the simple heuristic approach would not detect
this property as a reference, because there is no entity type named Manager.
Moreover, the - id suffix may not be present at all.

Consequently, there is much room for improvement in the field of correctly
inferring referential relationships in semi-structured data.

2.3.10 Optional properties
All approaches except for Canovas et al. are able to describe optional properties
in their schemas. JSON Schema-based approaches, Klettke et al. and Frozza et
al., use the "required" keyword to enumerate the required properties, while all
omitted are optional. Baazizi et al. approach uses the optionality modifier (?)
to describe optional properties when a kind-equivalence relation is used in the
reduction.

Approach by Sevilla et al. can infer optional properties by merging all versions
of a single entity together, marking each property as required if it is present in

44

all of them, and optional if it isn’t. This merging process, transformation of
multiple entity versions to one version with optional properties, is analogous to
switching from using a label-equivalence relation to a kind-equivalence relation
in the Baazizi et al. approach.

2.3.11 Entity versions
Two approaches are able to infer multiple versions of entity types; Sevilla et al.
and Baazizi et al. The latter can infer multiple versions of the same entity when
using the label-equivalence relation in the reduction process. No other approaches
can infer entity versions.

2.3.12 Union type
Klettke et al., Frozza et al., and Baazizi et al. approaches can infer and express
union types in the schema. The first two use the oneOf JSON Schema keyword to
express them while the last one defines for this purpose the union type constructor
(+).

Approaches by Sevilla et al. and Canovas et al. do not support union types of
properties. Sevilla et al. approach uses entity versioning instead while Canovas et
al. uses the alternative approach of reducing different types to their most generic
type, like EString.

2.3.13 Integrity constraints
As far as integrity constraints go, only one specific type is detected only by the
inference approach by Sevilla et al. and that is referential relationships. No other
integrity constraints are inferred by any of the researched inference approaches
from the given data set.

2.3.14 Scalability
Approach by Sevilla et al. uses parallelizable technology MapReduce to decrease
the number of input documents that are considered in the rest of the schema
inference process. In the Map step, a raw schema is generated for each input
document in the collection and emitted as a key, with the value being the input
document itself. In the Reduce step, an arbitrary input document is selected and
emitted as a representative for its raw schema.

This process effectively eliminates from the input collection all documents with
the same raw schema, leaving only one representative per each raw schema. Since
the document’s raw schema is used in the remainder of the inference process, this
step has no effect on the resulting inferred schema, while also having the potential
to significantly reduce the size of the input collection. This reduction step allows
the inference approach to scale very well with the input collection size.

Approach by Frozza et al. includes a two-stage grouping step which extracts
a sub-collection of unique JSON objects. Having already generated and stored a
raw schema for each input document in a NoSQL database, first an aggregation
operation removes duplicate raw schemas from the database. Then the properties
of the raw schemas are recursively sorted in alphabetical order before another

45

aggregation operation removes all raw schema duplicates which were semantically
equivalent but their properties might not have been originally defined in the same
order.

2.3.15 Incremental schema extensibility
The approach by Baazizi et al. is incrementally extensible, given by the formal
proof of associativity and commutativity of the type reduction operation.

As far as the other inference approaches go, their main schema construction
steps are designed as a fold on a collection of partial schemas or documents.

Definition 8 (Fold). Given

• A, a non-empty set of input elements,

• B, a non-empty set of output and intermediate elements,

• f : A× B → B, a combining operator,

• b0 ∈ B, an initial value, and

• L = (a1, ..., an), a finite sequence (list) of elements of A.

Then fold (also called reduce) is a higher-order function F defined recursively as:

F (L, b0, f) =
{︄

b0 if L = () is empty,
f(a1, F ((a2, ..., an), b0, f)) otherwise

In the case of Sevilla et al., the fold is performed over a schema collection of
documents, the combining operator combines these into an initial empty model,
which is then returned. In the algorithm by Klettke et al., the input documents
are folded into an SG, which is then converted into JSON Schema. Similarly
in the approach by Frozza et al., except here, the documents are folded into an
RSUS. Lastly, Canovas et al. approach injects all of the available documents into
models, then performs one fold per document collection, then one final fold to
merge the collection schemas into one domain schema.

Each of these approaches provide an incrementally extensible schema as long
as the associativity and commutativity of the combining operators used in their
respective fold operations is guaranteed. The operators seem to have these qual-
ities, however a formal proof would clear out any doubts in this situation.

2.3.16 Multi-model context
All researched approaches are created for inferring schema from JSON documents.
These can be trivially extended to work with at most other aggregate-oriented
data models, as was described earlier. None of these, therefore, handle any other
than the single-model context of aggregate-oriented data.

2.3.17 Edge-case example
In this section we describe the outputs of individual researched approaches on
the additional edge-case example defined in section 2.1.5.1.

46

2.3.17.1 Sevilla et al.

The Sevilla et al. approach implementation has failed to execute when met with
the edge-case example. The exception is caused by the empty JSON array value
in the empty array property being incorrectly handled. After removal of this
property, the approach executes correctly and produces an output. This output
is included as attachment B.1.

The nested ints property is handled correctly; it is modeled in the result as
a PList of a PList (a two-dimensional PList) of Numbers.

The nested objects property’s value, on the other hand, is not handled
correctly. Its type is inferred as a two-dimensional PList of an unnamed primitive
type. There exists a definition for a Nested object entity in the model, but it is
not used.

The values property is detected as a PList whose element type is a PTuple.
The PTuple element type enumerates the inferred types of all the array elements
in order.

2.3.17.2 Klettke et al.

Unfortunately, we do not present an output for the Klettke et al. approach on
the edge-case example. There are two reasons for this decision: (1) a machine-
generated output can not be created since no implementation of the approach is
available, (2) unlike the running example, whose purpose to illustrate the func-
tional capabilities of an inference approach, the edge-case example’s purpose is
to test the limits of a inference approach’s design and implementation. During a
hypothetical manual pen-and-paper “execution” of the approach on the edge-case
example, one could easily create a different output than what would be outputted
by a proper approach implementation. This could in turn vastly change the ver-
dict of how well the approach can deal with edge-case JSON array inputs.

2.3.17.3 Baazizi et al.

Same as with the running example, approach by Baazizi et al. provides two
versions of inferred schema for the edge-case example as well, one for the kind-
equivalence (attachment B.2) and one for the label-equivalence relation (attach-
ment B.3). We first cover the former version, then we cover the differences be-
tween the two.

The empty array property is inferred as an array of the Empty() type, which
is a type that carries no information. The empty type is denoted in the related
article using ∅.

Property nested ints is inferred as a two-dimensional array of numbers,
[[Num]], and the nested objects property as a two-dimensional array of ob-
jects with a string-typed property called key, [[{ key: Str }]].

Finally, values is described as an array of a union of all types which were
present in the property, with some of those types merged together. Notably, the
empty object and object containing one property were merged together (although
the optionality modifier ? is missing), and the empty array and array of numbers
were merged into one type.

47

The only difference between the kind- and label-equivalence output is that in
the latter, the empty object type was not merged with the { key: Str } object
type.

2.3.17.4 Canovas et al.

The output of the Canovas et al. approach for the edge-case example is included
as attachment B.4.

The empty array property is inferred to be of type EString. This is probably
an artifact of reduction to the most generic type.

The nested ints property is detected as an EAttribute of EInts with an
infinite upperBound, which is simply an attribute of multiple integers. The multi-
dimensionality of the array is not reflected.

The nested objects property is inferred as an unbounded EReference to the
Nested object entity type – a one to many aggregation which, again, ignores the
multi-dimensionality of the array.

Lastly, the values property’s type is reduced to the most generic type, which
is an EString.

2.3.17.5 Frozza et al.

Frozza et al. approach’s output for the edge-case example is included as attach-
ment B.5.

The empty array edge case is not handled correctly by this approach. The
sub-schema generated is of the correct type, array, but specifies that its items
must conform to any of an empty array of schema options ("anyOf":[]). This
specification is not only wrong semantically, as the existential quantifier for an
empty set always yields false, but it also violates the JSON meta-schema, which
explicitly specifies there to be at least one member in an anyOf value.

The nested ints property is correctly detected as an array of arrays—a two-
dimensional array—of numbers. Same goes for nested objects, which is inferred
as a two-dimensional array of objects.

The values property is described in the output schema as an array with
union-typed items. The union contains the types inferred from the individual
items in an anyOf array.

48

Se
vi

lla
K

le
tt

ke
B

aa
zi

zi
C

an
ov

as
Fr

oz
za

A
lg

or
it

hm
M

ap
-R

ed
uc

e
+

M
D

E
Fo

ld
in

to
gr

ap
h

Ty
pe

re
du

ct
io

n
in

A
pa

ch
e

Sp
ar

k
M

D
E

A
gg

re
ga

tio
n

+
fo

ld
in

to
gr

ap
h

In
pu

t
fo

rm
at

A
gg

re
ga

te
-o

rie
nt

ed
N

oS
Q

L
da

ta
JS

O
N

JS
O

N
JS

O
N

we
b

se
rv

ic
e

re
sp

on
se

s
Ex

te
nd

ed
JS

O
N

In
pu

t
ty

pe
M

ul
tip

le
co

lle
ct

io
ns

Si
ng

le
co

lle
ct

io
n

Si
ng

le
co

lle
ct

io
n

M
ul

tip
le

co
lle

ct
io

ns
Si

ng
le

co
lle

ct
io

n

O
ut

pu
t

fo
rm

at
N

oS
Q

L
Sc

he
m

a
m

od
el

JS
O

N
Sc

he
m

a
C

us
to

m
te

xt
ua

l
ty

pe
la

ng
ua

ge
Ec

or
e

m
od

el
JS

O
N

Sc
he

m
a

Sc
he

m
a

ro
ot

En
tit

ie
s

D
oc

um
en

ts
D

oc
um

en
ts

En
tit

ie
s

D
oc

um
en

ts

Im
pl

em
en

ta
ti

on
Ec

lip
se

bu
nd

le
Py

th
on

ap
pl

ic
at

io
n

A
pa

ch
e

Sp
ar

k
ap

pl
ic

at
io

n
in

Sc
al

a
Ec

lip
se

bu
nd

le
N

od
e.

js
we

b
ap

pl
ic

at
io

n
O

pt
io

na
l

✓
✓

✓
✗

✓

E
nt

it
y

ve
rs

io
ns

✓
✗

✓
✗

✗

U
ni

on
ty

pe
✗

✓
✓

✗
✓

R
ef

er
en

ce
s

✓
✗

✗
✗

✗

Sc
al

ab
le

de
si

gn
✓

✗
✓

✓
✗

Sc
al

ab
le

im
pl

em
en

ta
ti

on
✓

✗
✓

✗
✗

Fi
gu

re
2.

12
:

C
om

pr
eh

en
siv

e
co

m
pa

ris
on

ta
bl

e
fo

r
al

ld
isc

us
se

d
ap

pr
oa

ch
es

49

3. Design
In this chapter, we provide a detailed description of a novel schema inference
approach, explain the motivations behind multiple of its design decisions, and
pinpoint the added value it brings.

To reiterate, the goal of our design is to create an approach able to model
heterogeneous aggregate-oriented data containing features like optional proper-
ties, versioned entities, union types, and aggregation and referential relationships.
The approach should then be able to infer the schema of this data in a format,
which should be easy to process further both manually and using existing tools
and applications. The approach should be able to handle a large amount of highly
heterogeneous data, and should be able to reasonably scale with the dataset size.

3.1 High-level design
Our approach is a vertically and horizontally scalable MDE-based Apache Spark
application. It is primarily designed with JSON in mind but can be easily adapted
for other aggregate-oriented data formats without any conceptual design changes
necessary. Along with the inference approach design, a new NoSQL Schema meta-
model serves as the primary schema representation format. Refer to figure 3.1
for the high-level diagram of the inference process.

As a precondition of the inference, we assume there to exist a possibly mas-
sive, possibly highly heterogeneous aggregate-oriented dataset present in a single
database. This data set can consist of multiple top-level entity types, each in its
own data collection within the database.

This data is loaded into an Apache Spark instance as a Resilient Distributed
Dataset (RDD) of documents. Then, structural duplicates, which provide no ad-
ditional schematic information, are removed from the dataset in a two step pro-
cess: first, all documents are transformed into raw schemas by replacing primitive
values with their type names. Second, duplicate raw schemas are then removed
from the RDD.

Afterwards, the remaining, unique, raw schemas are injected into the NoSQL
Schema metamodel to create NoSQL Schema models. Lastly, all of the models
in the RDD are folded in a non-deterministic order using a commutative and
associative binary operator, resulting in a single schema model describing the
entire input dataset. This concludes the main part of the inference process which
is depicted by solid (non-dashed) arrows and boxes within the high-level diagram,
figure 3.1.

The resulting NoSQL Schema model can be optionally further processed in
a number of ways which are depicted in the high-level diagram using dashed
arrows and boxes. One of these optional operations is extending the schema
with new data. Since the binary operator used for folding schema models in
the inference process is commutative and associative, an existing schema can be
extended with a new dataset by first subjecting the new dataset to the main part
of the inference process, then folding the resulting new schema into the existing
one using the folding operator.

Another optional schema modification is flattening an entity. As the schema is

50

D
oc

um
en

t
A

pa
ch

e
Sp

ar
k

pr
oc

es
si

ng

Ex
te

nd
 e

xi
st

in
g

Sc
he

m
a

C
on

ve
rt

to
 J

SO
N

 S
ch

em
a

N
oS

Q
L

Sc
he

m
a

N
oS

Q
L

D
at

ab
as

e
Se

rv
er

D
oc

um
en

t

D
oc

um
en

t

In
fe

r n
ew

 S
ch

em
a

Fl
at

te
n

En
tit

y

JS
O

N
 S

ch
em

a

Ap
ac

he
 S

pa
rk

m
ap

D
oc

um
en

ts
di

st
in

ct
R

aw
Sc

he
m

as
m

ap
D

is
tin

ct
 R

aw
Sc

he
m

as
fo

ld
N

oS
Q

L
Sc

he
m

a
M

od
el

s

M
er

ge
d

N
oS

Q
L

Sc
he

m
a

Ex
is

tin
g

Sc
he

m
a

D
at

ab
as

e
C

ol
le

ct
io

n
R

D
D

M
ai

n
op

er
at

io
n

O
pt

io
na

l o
pe

ra
tio

n

Fi
gu

re
3.

1:
H

ig
h-

le
ve

ld
ia

gr
am

of
th

e
ne

w
in

fe
re

nc
e

ap
pr

oa
ch

51

first inferred, it is versioned, meaning that even the most minor structural or type
distinction between two input documents results in the creation of two different
entity versions being modeled. The versions of a single entity can be flattened
(merged together), creating a single version, where some properties are possibly
optional, and some properties can have union types.

Since our approach focuses mainly on JSON data, we provide as an added
benefit a way to convert the NoSQL Schema model into a JSON Schema. The
JSON Schema can then be used to generate useful tools, e.g. for data validation,
migration, or object-data mapping.

3.2 Inspiration and added value
The approach takes inspiration from the MDE tools and techniques used by
Sevilla et al. [8] in their approach. However, unlike their approach, which uses
MapReduce framework to reduce the size of the input data in a scalable manner,
we use for this purpose the arguably more powerful Apache Spark framework.
The benefits of Apache Spark over MapReduce are explained in section 3.3.1.
Further, we make improvements over the NoSQL Schema metamodel by Sevilla
et al. These are described in more detail in section 3.4.2.

Approach by Baazizi et al. [15] is used as an inspiration for its use of Apache
Spark for ensuring horizontal scalability. The main structure of the Spark data
pipeline of our approach is very similar to that of the other approach. This is
intentional. In this sense, our NoSQL Schema metamodel takes the place of the
JSON type system of the Baazizi et al. approach. The operations “map to model”
and “fold schemas” of our Spark pipeline are equivalent to the “infer type” and
“reduce types” operations from the other approach.

The added value lies in the fact that unlike the type system of Baazizi et
al. which has documents as the top-level schema element, the top-level element
of a NoSQL Schema model is an entity. This allows our approach to infer col-
lective schema of an entire database of interdependent collections and model
same-structured nested JSON objects found in different parent entities as one
entity type.

3.3 Technology
Let us shortly describe the existing technology used in our inference approach,
its purpose and benefits.

3.3.1 Apache Spark
Apache Spark is a distributed data processing framework providing its user with
automatic data partitioning and replication, work distribution, checkpointing,
and failure detection. It takes inspiration from the MapReduce paradigm and is
heavily based on the Apache MapReduce implementation.

Compared to the base MapReduce computation model, Apache Spark pro-
vides multiple significant benefits. Spark extends the computation model by

52

allowing an arbitrary number of steps in the data processing pipeline. These op-
erations’ names and contracts are consistent with the collection operations avail-
able in Java and Scala: map applies a function to each element of the dataset,
replacing it with the function value; distinct discards duplicate elements from
the dataset; reduce and fold repeatedly apply a binary operator on the dataset,
reducing its elements to one; and many more.

Furthermore, Apache Spark achieves much higher performance in the general
use case than any MapReduce implementation. In a MapReduce computation,
the specification states that the intermediate results of each computation step are
written to a Hadoop Distributed File System (HDFS) storage, which writes them
to a hard drive. This makes it possible for any other worker node in the cluster
to reach that data in the next data shuffling phase. Since hard drives are several
orders of magnitude slower than operating memory, this writing and loading takes
considerable amount of time. Spark solves this performance problem by keeping
the intermediate data purely in distributed memory, instead of a distributed file
system.

The flexibility of the Spark computation model and the ability to keep inter-
mediate computation results solely in memory is achieved by introducing a new
distributed data storage construct: RDD. RDD is a distributed data collection,
meaning that the actual data is spread around the cluster nodes. As an abstrac-
tion layer, it provides to the Spark user an opaque handle for a collection, which
can be operated on using the aforementioned collection operations. As such, the
only responsibility left to the user is to implement the data processing as a se-
ries of collection operations, while Spark handles all of the technicalities of the
distributed computation: data replication, checkpointing, failure detection, data
reshuffling, workload balancing, network usage, etc.

3.4 NoSQL Schema metamodel
Let us describe in detail the newly designed NoSQL Schema metamodel, depicted
on figure 3.2, the motivations for its inception and evolution, and the distinguish-
ing factors from a similar solution.

The metamodel is designed to cover aggregate-oriented NoSQL data, with the
majority of design decisions being based on JSON, mainly due to its prevalence
in the industry. This is not to its hindrance, however, as the metamodel can be
easily extended with data types from other formats.

The metamodel is composed of several classes. On this layer, we will use this
terminology in favor of entity to avoid ambiguities in the text, since Entity is the
name of one of the classes in the metamodel. Each class can contain attributes
with simple types, as well as references to other classes in the metamodel.

The NoSQLSchema class is the entry point of the metamodel. NoSQLSchema
instances represent the inferred schemas themselves. For each instance, the en-
tities relation leads to the entities contained within the schema and a name
attribute provides basic context to the schema.

Instances of the Entity class represent object classes or entities inferred from
the data set. The name of the inferred entity is stored in the name attribute.
The versions relation represents a set of distinct entity versions of this entity
that were inferred from the data. In addition, the boolean-typed flattened

53

Figure 3.2: NoSQL Schema metamodel

attribute provides information on whether or not the entity is flattened. For
more information on entity flattening, see section 3.5.7.

The EntityVersion class and its instances represent distinct versions of an
entity. An entity version is defined by the set of its properties—two entity versions
are identical if they belong to the same entity and if their property set is identical,
otherwise, they are distinct. An entity version’s properties are reachable using
the properties relation. The root attribute contains information on whether or
not an instance of this entity version has appeared as the root object (document)
in the data set. The aggregates relation and the additionalCount attribute
are explained further below, in the section describing Aggregates.

Instances of the Property class represent properties of the entity versions –
name-type pairs with name being a string-typed attribute and type being a rela-
tion leading to a Type instance. Additionally, whether the property is optional or
required can be recorded in the optional attribute. The relation of this attribute
to the flattened attribute of the Entity class is better explained in section 3.5.7.

The different property types in the NoSQL Schema metamodel are organized
into the type hierarchy. The Type abstract class is the root of the hierarchy and
it has three direct subclasses: UnknownType, UnionType, and SingleType.

UnknownType is a non-abstract class which, by definition, contains and pro-
vides no knowledge about the underlying: A JSON property whose type is inferred
as UnknownType can contain any value whatsoever. It is the identity element of
the type-folding operator (see algorithm 2).

UnionType is a non-abstract class which represents the situation, where the
values of a property have been found to contain values of different actual types.
These two or more single types are reachable through the relation types.

SingleType is an abstract class designed as a logical counterpart to the Union-
Type. Subclasses of SingleType represent a situation, where the actual values
found within the data were all of the same type. There are three subclasses:
EntityReference, PrimitiveType, and ComplexType.

54

EntityReference represents a data type, which contains the unique identifier
of another entity. It is the NoSQL equivalent of the concept of foreign keys in
relational DBMS. The referenced entity is reached through the target relation,
while the actual data type used to refer is reachable as originalType.

As it stands, our approach is capable of inferring entity references in two
forms:

• references encoded as Extended JSON DBRef instances

• references encoded as simple object properties whose name is in the form of
"<entity name> id" or similar, and whose type is either a PrimitiveType
or an Array of PrimitiveTypes.

However, the NoSQL Schema metamodel is not bound to these methods of
entity reference inference, and other heuristic methods can be easily used.

The PrimitiveType class is an abstract parent for the three classes representing
the three JSON primitive data types: Boolean, Number, and String. The JSON
null value as it is not a type, rather a meta-value signifying a missing actual
value.

The ComplexType abstract class is a parent of the two concrete classes repre-
senting complex JSON types: Array for the JSON array, and Aggregate for the
JSON object. Array contains a relation named elementType which encodes the
type of the elements of the array. In case of values of different types contained
within the array, the elementType can be a UnionType, where in case of nested
arrays, it can be another Array.

Finally, the Aggregate class represents the aggregation relation between in-
ferred entities. In case of JSON, this means objects nested within other objects.
An Aggregate contains a relation named target which is a reference to the Enti-
tyVersion which represents the aggregated object. This is a bi-directional relation.
The other direction is named aggregates and provides the EntityVersion access
to all Aggregates of that version which are present in the schema. To preserve the
number of times the entity version was actually present in the data set, the addi-
tionalCount attribute contains the number of Aggregates of that version which
were removed from the schema (merged during type-folding, see algorithm 2).
The actual occurrence count of an entity version is then calculated as the sum of
the cardinality of its aggregates relation and its additionalCount attribute.

3.4.1 Metamodel evolution
Since the inception of the NoSQL Schema metamodel, there were significant
changes done to it. The initial proposal is depicted in figure 3.3. We describe
several key differences and their significance to the overall design.

The root attribute for signifying whether an object was present as the root of
the document was moved from the Entity class to the EntityVersion class. This
better expresses the property of “being a potential document root” and allows
for greater granularity in the decisions done throughout the inference process.

The id attribute was removed from the EntityVersion class, as it was found to
have no use, as the versions relation of the Entity class is defined to be ordered.

55

Figure 3.3: Initial prototype of the NoSQL Schema metamodel

The target relation from Aggregate to EntityVersion was made bi-directional
to allow for easier traversing of the schema graph. Also, the additionalCount
attribute was introduced to express the count of aggregates, which were lost in
the merging process.

Significantly, EntityReference was relocated within the type hierarchy from
being a child of Type to a child of SingleType. This allows it to be included in
the list of types within a UnionType, which we found desirable.

An additional abstract class named ComplexType was introduced as a parent
of Array and Aggregate to provide contrast with the PrimitiveType class.

Though there were other minor changes made in the design process, they are
not crucial.

3.4.2 Differences from the Sevilla et al. NoSQL-Schema
metamodel

It is no secret that our NoSQL Schema metamodel is inspired by the metamodel
conceived by Sevilla et al. in their related article [8]. Alongside similarities,
however, there is a key difference in our metamodel that opens up previously
unavailable possibilities.

Starting from the NoSQLSchema entry point, there are only minor differences,
until one reaches the Property class. In Sevilla et al. metamodel, Property and
related classes form a hierarchy which differentiates between associations (aggre-
gations and references) and attributes. A given property can be either one or the
other, and cannot be both at the same time, e.g. unionized by a UnionType. In
fact, the Sevilla et al. metamodel does not support the concept of union types at

56

Figure 3.4: Sevilla et al. NoSQL Schema metamodel for comparison

all.
Relocating the Aggregate and Reference classes to the type hierarchy enables

us to fully utilize the potential of union types. It allows us to more closely model
complicated JSON data structures with multidimensional arrays (by setting an
Array’s elementType to be another Array), arrays containing nested objects (Ag-
gregate), and heterogeneous arrays containing values of different types (Union-
Type), e.g. an array containing numbers and objects.

3.5 Detailed design
Here we describe in greater detail the individual steps our inference approach is
composed of, their significance, and their technicalities. Descriptions are comple-
mented by pseudo-code where appropriate.

3.5.1 Loading the data
The first step of our schema inference process is loading the data from the
database into Apache Spark. We want our approach to be compatible with differ-
ent JSON and non-JSON database technologies. To achieve this we separate the
responsibility of loading the data into Spark to an interface called DataLoader.
An implementation of this interface compatible with any desired JSON data stor-
age can be easily provided to the inference process. The inference process will
then use that implementor to load the dataset into Spark. An implementation
for the MongoDB JSON database is provided out-of-the-box.

While we bind our design to being primarily compatible with JSON, we want
our inference approach to be usable for other forms of aggregate-oriented data
as well. If a user of our inference approach needs to infer the schema of another
type of database, like key-value (Riak KV, Redis, etc.), or columnar (Cassandra),

57

loads into Spark

<<Interface>>
DataLoader

+ loadData(SparkContext): RDD<TypedDocument>

<<Interface>>
TypedDocument

+ getTypeName(): String
+ getDocument(): JsonDocument

Figure 3.5: DataLoader and its relation to the TypedDocument

they can provide a DataLoader implementation which loads the data from that
database, and converts it in a reasonable way into JSON documents. E.g. each
row in a Cassandra table can be converted into a simple JSON document by taking
each (column name, value) pair and transforming it into a property pair in the
document. In case the column value is itself a JSON document, that document
can be transformed into a nested object within the resulting document.

3.5.1.1 Data loader interface

The DataLoader interface is visualized in figure 3.5 along with its relation to the
TypedDocument interface. It has one abstract method:

• loadData(SparkContext), which loads the data from the database into
Spark as an RDD of TypedDocuments (RDD<TypedDocument>) using the
provided SparkContext.

TypedDocument is an interface providing access to a JSON document and the
name of its type. This name can be obtained from the name of the collection or
other collection-like structure in the database, e.g., table or bucket.

A DataLoader may need to perform costly transformations on the dataset
before returning it, especially in the case of a non-JSON underlying data storage.
Since the DataLoader has access to the SparkContext of an active Spark ses-
sion, all of these transformations can be performed within Spark as well, which
preserves the scalability of the approach.

3.5.2 Removing structural duplicates
After loading the data, the next step is removal of structural duplicates. This
is done, as previously mentioned, by first transforming the TypedDocuments into
typed raw schemas, then removing duplicate schemas from the data collection.

A typed raw schema is composed of two components, similar to a TypedDoc-
ument: a type name and a raw schema. The type name is taken unchanged from
the TypedDocument. The other component, the raw schema of a JSON document,
is created by traversing the structure of the document recursively, replacing all
primitive values in the document with a JSON string, containing the type name
of the primitive value.

This process keeps the structural shape of the document mostly intact. The
only exception are Extended JSON DBRef instances, which are encoded into plain
JSON as objects with special properties, similar to other Extended JSON types.
These are converted to string representation "reference(<entity name>)". E.g.

58

{ "_id": "number", "timestamp": "string",
"author": {

"first_name": "string",
"last_name": "string",
"phone_number": "string",
"location": {

"latitude": "string",
"longitude": "string" } },

"ratings": ["number", "number", "number", "number", "number"],
"comments": ["string", "string"],
"attachments": [

{ "url": "string" },
{ "url": "string" }],

"body": {
"content": "string",
"mime_type": "string" },

"published": "boolean" }

{ "_id": "number", "body": "string",
"timestamp": "string",
"author": {

"first_name": "string",
"last_name": "string",
"phone_number": "number",
"location": {

"address": "string" } },
"ratings": ["number", "number", "number"],
"comments": "string",
"article_id": "number",
"published": "boolean" }

Figure 3.6: Raw schemas for the JSON documents from the running example

a DBRef object {$ref:"articles",$id:"abcde"} will be transformed to "ref-
erence(articles)". For illustration, figure 3.6 showcases the raw schemas for
the running example.

After each TypedDocument in the RDD is transformed into a typed raw
schema, duplicate raw schemas are eliminated. When comparing two typed raw
schemas for equality, both the type name, and the raw schema is taken into con-
sideration. However, the order of properties within the document and nested
objects is not.

3.5.3 Injection into model
Afterwards, the typed raw schemas are injected into the NoSQL Schema meta-
model, creating a model for each of those typed raw schemas. The recursive in-

59

ject function from algorithm 1 is applied to each of the schemas using a map()
command in Apache Spark.

One needs to keep in mind that the input JSON document is a raw schema
of the actual document, not the original itself, therefore there are no primitive
values except for strings, and those strings carry the type information.

There is a number of functions left unimplemented in the algorithm pseudo-
code because we believe their implementation to be trivial, e.g. getOrAd-
dEntityWithName or getProperties. However we would like to clarify an
important detail of the function getOrAddIdenticalVersion called on line
33—when comparing entity versions for identity, their property names and the
properties’ types are considered, but the version aggregates and additional oc-
currence counts are not.

The foldTypes function is extracted into a separate algorithm definition.
This is intentional, as this function is also used at a later stage, during the entity
flattening process, section 3.5.7.

Important to note is that the injection step along with the previous raw schema
conversion does not detect all entity references. Only references encoded as Ex-
tended JSON DBRef objects are detected, the remaining simple-property refer-
ences are instead left as their original primitive types and are detected later. The
reason for this distinction is that in this stage of schema inference, only partial
information about the names of entity types is available. Since we cross-match
the property names with entity names during inference of primitive-typed entity
references, all entity type names from the data must already have been detected
to correctly find reference targets. Because of this, the inference of this type of
references is deferred until after the entire model is merged together.

3.5.4 Folding the models
Definition 9. Property-dependent difference of sets of entity versions (denoted
by \V) is a binary operator on sets of entity versions. Given two sets of entity
versions V1 and V2:

V1 \V V2 = {v|v ∈ V1 ∧ ¬(∃v′)(v′ ∈ V2 ∧ properties(v′) = properties(v))}

Definition 10. Property-dependent intersection of sets of entity versions (de-
noted by ∩V) is a binary operator on sets of entity versions. Given two sets of
entity versions V1 and V2, V1∩V V2 contains only elements decided by the following
rule:

For each entity version v1 in V1, if V2 contains an entity version v2 such that
properties(v1) = properties(v2), then V1 ∩V V2 contains an entity version
having:

• properties = properties(v1)

• root = root(v1) ∨ root(v2)

• aggregates = aggregates(v1) ∪ aggregates(v2)

• additionalCount = additionalCount(v1) + additionalCount(v2)

60

Algorithm 1 Injection of typed document into NoSQL Schema metamodel
1: function inject(s, j) ▷ s is the type name, j is the JSON value
2: E ← ∅ ▷ Set of detected entities
3: constructType(s, j, E, true)
4: return NoSQLSchema(E)
5: end function
6: function constructType(s, j, E, r) ▷ r - whether or not j is a root value
7: if j = "null" then
8: return UnknownType
9: else if j = "boolean" then

10: return BooleanType
11: else if j = "number" then
12: return NumberType
13: else if j = "string" then
14: return StringType
15: else if j = "reference(n)" then
16: return EntityReference(n)
17: else if j is an array then
18: T ← UnknownType ▷ Element type
19: for all e ∈ j do ▷ Iterate through array elements
20: Te ← constructType(s, e, E, false) ▷ Recursive call
21: T ← foldTypes(T, Te)
22: end for
23: return ArrayType(T)
24: else ▷ j is an object
25: e← getOrAddEntityWithName(E, s)
26: P ← empty associative array ▷ Property types
27: for all (s′, j′) ∈ getProperties(j) do
28: P [s′]← constructType(s′, j′, E, false) ▷ Recursive call
29: end for
30: v ← getOrAddIdenticalVersion(e, P)
31: if r then
32: isRoot(v)← true
33: end if
34: incrementOccurrenceCount(v)
35: return AggregateType(v)
36: end if
37: end function

61

Algorithm 2 Folding two types into one
1: function foldTypes(t1, t2)
2: T1 ← wrap(t1)
3: T2 ← wrap(t2)
4: return unwrap(T1 ∪ T2)
5: end function
6: function wrap(t) ▷ wraps type in a set
7: if t = UnknownType then
8: return ∅
9: else if t is a single type then

10: return {t}
11: else ▷ t is a union type
12: return getSingleTypes(t)
13: end if
14: end function
15: function unwrap(T) ▷ unwraps set into a type
16: if T = ∅ then
17: return UnknownType
18: else if t is a singleton then
19: return single element of T
20: else
21: return UnionType(T)
22: end if
23: end function

In this step, all the partial NoSQL Schema models are folded (merged) to-
gether into one final model by repeated application of the binary folding operator.
The folding operator, foldSchemas function, is defined using pseudo-code in
algorithm 3.

In addition to the folding operator, a zero-value element is supplied to the
fold operation as an argument. This can either be an empty schema—an identity
element for the folding operator—or an existing schema can be passed. If an
existing, non-empty schema is used, then the schema is effectively enriched with
the schematic information of the new dataset. This is used in the optional Schema
extension step, which is described in section 3.5.6.

In Apache Spark, the fold() command only roughly resembles the fold higher-
order function we know from functional programming, as the Spark specification
provides not guarantees to the order of operations. For maximum efficiency, the
fold is usually first performed within each of the Spark runners on the elements
present within the runner, then the intermediate results are sent to the Spark
master or another runner to be folded with one another, yielding the final answer,
but all of this is subject to implementation detail.

If the folding operator is commutative and associative, then for any set of
NoSQL Schema models with cardinality n, applying the operator a total of n− 1
times, each time reducing the cardinality by 1, will reach the same final result,
regardless of the order of operations. Therefore, the operation, and the whole
algorithm is only sound as long as the aforementioned properties on the folding
operator are maintained.

62

Algorithm 3 Folding two NoSQL Schema models into one
1: function foldSchemas(M1, M2) ▷ Two different NoSQL Schema models
2: E1 ← getEntities(M1)
3: E2 ← getEntities(M2)
4: N1 ← getNames(E1)
5: N2 ← getNames(E2)
6: E ← getEntitiesByNames(E1, N1 \N2)
7: E ← E ∪ getEntitiesByNames(E2, N2 \N1)
8: for all s ∈ N1 ∩N2 do
9: E ← E ∪ {foldEntities(E1[s], E2[s])}

10: end for
11: return NoSQLSchema(E)
12: end function
13: function foldEntities(e1, e2)
14: V1 ← getVersions(e1)
15: V2 ← getVersions(e2)
16: return Entity((V1 \V V2) ∪ (V2 \V V1) ∪ (V1 ∩V V2))
17: end function

Theorem 3.1. The foldSchemas function is commutative.

Theorem 3.2. The foldSchemas function is associative.

A proof for theorem 3.1 can be found in attachment D. We assume theorem 3.2
to be true despite it not being formally proven. This is due to overwhelming
evidence during manual algorithm testing. This property is also later covered by
unit tests in the implementation.

3.5.5 Entity reference inference
Only after the partial models are all folded together completely, the primitive-
typed entity references can be inferred. This can be considered as the finalization
step for the main part of the schema inference. This step is described in algo-
rithm 4.

3.5.6 Schema extension
Since the schema folding binary operator is commutative and associative, exist-
ing schema can be easily extended using additional batch of data. To achieve
this, the new dataset processed as if a new schema was being inferred, up until
the schema-folding step—the existing schema is provided as a zero-value element
to the fold() command in Spark. Then the resulting folded schema is final-
ized by the Entity reference inference step. The final schema contains schematic
information from the original schema, as well as the new dataset.

3.5.7 Entity flattening
Each entity within our NoSQL Schema model is either versioned or it is flattened
(also called flat), as recorded by the flattened attribute. When an entity is first

63

Algorithm 4 Inferring entity references within NoSQL Schema
1: function inferEntities(M)
2: E ← getEntities(M)
3: for all e ∈ E do
4: for all v ∈ getVersions(e) do
5: for all (s, t) ∈ getProperties(v) do ▷ Property name and type
6: tn ← getEntityReferenceType(s, t, E)
7: if tn ̸= ∅ then
8: setPropertyType(v, s, tn)
9: end if

10: end for
11: end for
12: end for
13: return M
14: end function
15: function getEntityReferenceType(s, t, E)
16: if t is a primitive type then
17: if s matches regular expression "⟨entity⟩(id|Id)" then
18: e← getEntityByName(⟨entity⟩, E)
19: return EntityReference(e, t)
20: end if
21: else if t is an array of primitive type t0 then
22: if s matches regular expression "⟨entity⟩(id|Id)s" then
23: e← getEntityByName(⟨entity⟩, E)
24: r ← EntityReference(e, t0)
25: return ArrayType(r)
26: end if
27: end if
28: return ∅
29: end function

64

created during the Injection step, it is versioned. It can be flattened by the user
on demand with the Flatten entity operation.

A versioned entity contains one or more entity versions. For each of those
entity versions, for each of that version’s properties, the following statements
hold:

• that property is not optional, and

• that property’s type is not a union type.

These invariants come from the way how entity versions are created during
the Injection step: When considering a document, an existing version is used only
if all of the properties’ types match, otherwise a new version is created instead
of using union types. Furthermore, all properties are created as required, not
optional.

The user can choose to flatten an entity on demand—merge all of its versions
into one, by applying a combining binary operator. This process is described by
pseudo-code in algorithm 5. The algorithm references method foldTypes on
line 24, whose pseudo-code is located in algorithm 2.

Algorithm 5 Flattening an entity
1: function flattenEntity(e)
2: V ← getVersions(e)
3: return foldLeft(V, foldVersions)
4: end function
5: function foldVersions(v1, v2)
6: isRoot(v1)← isRoot(v1) ∨ isRoot(v2)
7: aggregates(v1)← aggregates(v1) ∪ aggregates(v2)
8: additional(v1)← additional(v1) + additional(v2)
9: for all n ∈ getPropertyNames(v1) \ getPropertyNames(v2) do

10: p← getPropertyByName(n, v1)
11: isOptional(p)← true
12: end for
13: for all n ∈ getPropertyNames(v2) \ getPropertyNames(v1) do
14: p← getPropertyByName(n, v2)
15: isOptional(p)← true
16: addProperty(p, v1)
17: end for
18: for all n ∈ getPropertyNames(v1) ∩ getPropertyNames(v2) do
19: p1 ← getPropertyByName(n, v1)
20: p2 ← getPropertyByName(n, v2)
21: t1 ← getType(p1)
22: t2 ← getType(p2)
23: type(p1)← foldTypes(t1, t2)
24: end for
25: return v1
26: end function

The resulting flat entity’s version has the following properties:

65

• the set of names of its properties is a union of the sets of names of the
properties of all of the original versions,

• for each of its properties:

– that property is required if and only if a property with the same name
is present in each of the original versions, otherwise it is optional, and

– that property’s type is created by folding the types of properties with
the same name present in the original versions—resulting in either a
single type, if all of the original properties were of the same type, or a
union type otherwise.

3.5.7.1 Flattening entity containing root and non-root versions

In the initial—versioned—state, an Entity object of the NoSQL Schema model can
contain both root (root=true) and non-root (root=false) entity versions. This
can happen when a name of a document collection (and therefore a document’s
type name) coincides with the name of a property containing a nested object.
Both the entity versions inferred from the documents of that collection, and the
entity versions inferred from those nested objects, would belong to the same entity.
Flattening that entity would merge together root and non-root entity versions,
which might cause a majority or all of the properties to be marked as optional.
This behavior may be unexpected by the user, but it is correct by design. Let’s
take a closer look.

For the sake of illustrating this behavior, let us take the established running
example and expand upon it. The running example is composed of two JSON
documents contained within the articles collection. These documents represent
instances of the Article entity type. Since they are at the top-level, they contain
all or close to all of the information related to the objects they represent, resulting
in a high number of properties.

In a real-world application, however, JSON objects representing Articles might
also be included elsewhere, e.g. as nested objects within documents representing
other types. Suppose that alongside the articles collection, in the same database
there exists collection article groups. Suppose that each document within that
collection contains, among others, a property named articles, whose value is
an array of objects—an enumeration of all articles contained within that group.

Although these nested objects represent instances of the same type as the
top-level documents in the articles collection, they would usually contain only
some information about those articles. The reason for this is that in the use-case
of retrieving all relevant data about an article group, complete details about the
contained articles would not be necessary to include. Only the identifier (id)
and possibly some additional information (e.g. timestamp) would usually suffice,
and the requester could use the identifier to retrieve the complete object with the
remaining data from the articles collection if necessary.

Therefore, let’s suppose that the nested objects within the articles array
contain only the id property. Figure 3.7 contains an example JSON document
from the supposed article groups collection.

If we subject this extended example (the articles and article groups collection)
to our inference approach, the Article entity will contain three entity versions:

66

{ "_id": 1,
...,
"articles": [{ "_id": 1 }, { "_id": 18 }, { "_id": 347 }],
... }

Figure 3.7: An example JSON document from the article groups collection

• Two will be inferred from the documents within the articles collection.
These versions will be marked as root=true.

• The last version will be inferred from the nested objects within the arti-
cles array in the article groups collection. This version will be marked as
root=false.

Should the user then flatten the Article entity, the resulting entity’s version
would have all properties other than id marked as optional. The reason for
this is that one of the versions that will have been merged into the others—the
non-root one—will have contained only the id property.

3.5.8 Conversion to JSON Schema
The NoSQL Schema model, along with the options to extend it with further
data, and to flatten inferred entities, is the final product of the main part of the
inference process. However, to tie the NoSQL Schema model and the inference
approach back to the JSON data model, we provide an out-of-the-box way to
convert a NoSQL Schema model to a JSON Schema.

JSON Schema, despite being still a draft specification, has an expansive envi-
ronment of libraries and tools for data validation, data migration, code generation,
web user interface generation, and other utilities.

When a JSON document’s schema is inferred using our approach, the hierar-
chical structure of the document is converted into a flat one, where the top-level
elements are unique inferred entities. Since a JSON Schema’s structure is hi-
erarchical, similar to a JSON document, the hierarchical structure needs to be
recreated during the conversion.

For the purposes of this conversion, let us simplify the NoSQL Schema model
to a version graph, whose nodes are entity versions, and whose edges represent
aggregation relationship between two entity versions. More formally, for a NoSQL
Schema model M , its version graph is G = (V, E), where V is the set of all
entity versions of all entities within M , and E contains an edge (v1, v2) ∈ V ×
V for each Aggregate whose target is v2 and which is contained (directly or
indirectly through a chain of UnionTypes and/or Arrays) in a Property of v1. For
illustration, figure 3.8 contains the version graph for the running example NoSQL
Schema model.

The conversion process starts by the user specifying a root entity version or
entity. If an entity version is specified, it is the sole element in the set of starting
points of the conversion. If an entity is specified, the set of starting points is a
subset of that entity’s versions, determined by whether or not that version has

67

Author 1

Article 1

Location 1

Attachment 1Body 1

Article 2

Author 2

Location 2

Figure 3.8: Version graph for the running example

been observed in the dataset to be the root of a JSON document, as recorded by
the root attribute.

The conversion process then performs a search through the graph, starting
with the set of starting points, and collects all entity versions visited. Each
visited version is then converted into its JSON Schema representation.

An entity version produces the following JSON Schema definition:

• an $id keyword set to a value that uniquely identifies this entity version in
the generated JSON Schema, e.g. "article.1",

• a type keyword set to "object",

• an additionalProperties keyword set to false – this disallows any other
properties than the ones the inference process has detected,

• a required keyword containing names of this version’s required properties
– all other properties are optional

• a properties keyword containing the property type definitions

The type definitions for properties are constructed using the following JSON
Schema constructs:

• an empty schema (allows everything) for the UnknownType,

• "type":"boolean" for the Boolean type,

68

• "type":"number" for the Number type,

• "type":"string" for the String type,

• for the Array type, "type":"array" with the items keyword containing
the schema for the array’s elementType,

• for the UnionType, an anyOf keyword containing an array of schemas de-
scribing the contained types.

The version definitions—one for each version used in the JSON Schema—are
then placed in the definitions section of the JSON Schema. The definitions
do not recursively contain the definitions of other versions within themselves,
rather they link to them using the $ref JSON Schema keyword. The root of
the schema then contains a reference (again using the $ref keyword) to the root
entity version or versions, wrapped in an anyOf keyword if there are more than
one. To better understand the

For illustration, the attachment C.3 contains the converted JSON Schema
generated from the running example.

69

4. Implementation
In this chapter, we present the implementation of the new schema inference ap-
proach, its Application Programming Interface (API), and a simple example ap-
plication using the API. Then we describe in detail the implementation of the
NoSQL Schema metamodel, the inference approach itself, and the example ap-
plication. We explain the individual components they consist of, the interfaces
those components use to communicate, and the frameworks and libraries they de-
pend on. Later, we describe the unit tests and integration tests used to verify the
correctness of the implementation. Lastly, we present the result of running the
new inference approach against the running example presented in section 2.1.5.

4.1 Overview
The entire result of the implementation effort is located in a single Git repository,
hosted publicly on GitHub1. In the repository, we use the Gradle build tool to
organize the individual implemented projects and components.

Gradle2 is a software build tool written in Java. It is based on the Maven build
tool and integrates natively with the Maven specification of software artifacts
and repositories. Compared to Maven, however, it has a much wider variety of
features and is under active development. It is most commonly used for building
software written in Java and other Java Virtual Machine (JVM) languages, but
can be used for building C++, Python, or others, using its sprawling ecosystem
of plugins.

The repository hosts a Gradle multi-project build in its root. A non-exhaustive
diagram of the multi-project setup folder structure is shown in figure 4.1. In the
diagram, folders containing Gradle projects have blue color, the others have gray
color. The first line under each folder is the folder’s name. Project folders have
an additional line containing the project path. The root project’s project path is a
single colon (“:”). The project path is a Gradle project’s unique identifier within
a multi-project build and we will use it to identify projects also in the text.

The :impl project contains the actual implementation of the new schema
inference approach. The implementation is made accessible to consumers through
an API written in Java.

The root project (“:”) contains an example application for the new inference
approach. It uses the API within the :impl project to infer the schema of a
dataset contained within a single MongoDB database, then saves the inferred
schema in the NoSQL Schema model format locally to a file.

Additionally, there are four projects located within the approaches folder,
each containing an implementation of a preexisting schema inference approach.
The implementations were provided by their authors and modified for interoper-
ation with our repository structure.

1https://github.com/ivan-lattak/schema-inference
2https://gradle.org/

70

https://github.com/ivan-lattak/schema-inference
https://gradle.org/

/
:

approaches

sevilla
:sevilla

baazizi
:baazizi

canovas
:canovas

frozza
:frozza

impl
:impl

...

Figure 4.1: A diagram of the repository project structure

Notation:
In this chapter, we use the following path notation for expressing the path to
a file or a directory in the repository.

The path to a file or directory is given by “⟨project⟩/⟨file⟩”, where
⟨project⟩ is the project path of the file’s or directory’s nearest enclosing
project, and ⟨file⟩ is the relative path to that file or directory within that
project.

Examples:

• :impl/model – The model directory within the :impl project, trans-
lates to path /impl/model

• :sevilla/mapreduce/v2 – The mapreduce/v2 directory within the
:sevilla project, translates to path /approaches/sevilla/mapre-
duce/v2

4.2 New approach implementation
The new approach implementation is situated in the :impl project. The :impl/-
model directory contains files related to the NoSQL Schema metamodel definition,
while the implementation source code is located in :impl/src.

71

4.2.1 Metamodel definition
We used the EMF Eclipse plugin for defining the metamodel. This plugin pro-
vides useful features, such as the Ecore master metamodel for defining custom
metamodels, graphical model and diagram editors, and a model code generator.
The plugin’s editors can be used to inspect and edit the definition files.

The metamodel definition comprises three files:

• :impl/model/nosqlschema.ecore – contains the definition of the NoSQL
Schema metamodel—the file itself is serialization of a model, which is an
instance of the EMF Ecore metamodel.

• :impl/model/nosqlschema.aird – contains definition of diagrams visual-
izing the metamodel. In our case, the sole diagram contained is displayed
in figure 3.2.

• :impl/model/nosqlschema.genmodel – contains the presets for the model
code generator.

4.2.2 Implementation source code
It is composed of three source sets: main which contains the core of the implemen-
tation code and the API, model which contains the generated code implementa-
tion for the NoSQL Schema metamodel, and test which contains the unit tests
and integration tests. Let us focus on the main source set, where the majority of
implementation is—the model source set contains only generated code, and we
cover the test source set in section 4.4.

4.2.2.1 External API

The external API of the :impl project consists of the following java packages:

• In the main source set:

– cz.cuni.mff.ksi.nosql.s13e.impl – containing the SchemaInfer-
ence class, and the DataLoader and TypedDocument interfaces.

– cz.cuni.mff.ksi.nosql.s13e.impl.inference.mongo – containing
the MongoDataLoader class – a DataLoader implementation for the
MongoDB database system.

• In the model source set:

– cz.cuni.mff.ksi.nosql.s13e.impl.NoSQLSchema – containing gen-
erated code for the NoSQL Schema model. This code was generated
from the metamodel definition using the EMF code generator.

The cz.cuni.mff.ksi.nosql.s13e.impl package contains the SchemaIn-
ference uninstantiable class which is the implementation’s entry point. The
class’s methods can be used to launch schema inference to retrieve the schema as
a NoSQL Schema model, extend an existing schema with additional data, save

72

<<Interface>>
DataLoader

+ loadData(SparkContext): RDD<TypedDocument>

loads data from

MongoDataLoader

loads data from

Custom DataLoader
provides implementation of

invokes, provides DataLoader
instance as argument

API
Client

MongoDBAnother
DBMS

uses to load data
into Apache Spark

uses as
output format

<<uninstantiable>>
SchemaInference

+ infer(DataLoader, ...): NoSQLSchema
+ extend(NoSQLSchema, DataLoader, ...): NoSQLSchema
+ ...

cz.cuni.mff.ksi.nosql.s13e.impl.NoSQLSchema

Figure 4.2: Public API diagram of the :impl project

and load a schema to/from a file, flatten an entity inside the schema, or convert
a schema to the JSON Schema format.

Alongside that, the DataLoader and TypedDocument interfaces are located in
this package. The DataLoader interface abstracts away the specifics of retriev-
ing a dataset from a database, from an HDFS disk, from a local disk or from
the memory. The SchemaInference class’s infer and extend methods take a
DataLoader parameter and delegate the data loading to it.

A DataLoader implementation for MongoDB is provided out of the box. To
infer the schema of data located in another DBMS, or data in another format
entirely, a user can provide their own DataLoader implementation that facilitates
the retrieval. This is visualized in the diagram in figure 4.2.

4.2.2.2 Internals

The cz.cuni.mff.ksi.nosql.s13e.impl.inference package contains the im-
plementation itself.

Language of choice. Scala, a functional JVM language, was chosen as the
main language of the implementation. It was chosen for several reasons.

Firstly, the implementation works closely with Apache Spark. Spark’s com-
putational model works well together with the functional paradigm, as functions
need to be passed as first-class objects into Spark methods. Although the Java
Development Kit (JDK) package java.util.function introduced in Java 1.8

73

provides tools for the functional paradigm, Scala, being a functional language
first and foremost, still keeps its edge. Additionally, and for these very reasons,
Spark’s JVM API is designed to work best with Scala first.

Secondly, the preferred and industry-standard way of writing conditional code
in Scala is by using pattern matching (match-case) constructs instead of basic con-
ditional (if-else) constructs. Judging from the pseudo-code algorithm descriptions
in chapter 3, it was obvious that the implementation code was going to contain
a great number of branching of control flow based on the actual type of a given
variable (the instanceof keyword in Java). Scala’s pattern-matching paradigm
made it a great fit for the implementation of the algorithms.

Internal implementation components. Let us take a close look at the imple-
mentation of the main part of the inference approach. Following are abbreviated
contents of method createInternal in object SchemaInferenceImpl, lines 37
through 47:

37: val session = SparkSession.builder()
...

41: dataLoader.loadData(session.sparkContext)
42: .map(TypedDocumentImpl.apply)
43: .map(_.getRawSchema)
44: .distinct()
45: .map(Injector)
46: .fold(baseSchema)(SchemaFolder)
47: .named(schemaName)

This method’s contents nicely fit to the step-by-step design specification of the
main part of the inference approach. First, the preliminary. On lines 37 through
40, a SparkSession object is initialized using a builder pattern, starting an
Apache Spark session.

On line 41, the user-provided dataLoader is used to load the dataset from
the appropriate data source into Spark as an RDD. The dataLoader uses the
SparkContext argument to create the RDDs. The return type of this call is
RDD[TypedDocument].

Line 42 contains the transformation of the user-provided typed documents
into an internal type TypedDocumentImpl for the purposes of further processing.
Then, on line 43, the input documents are transformed into their raw schemas,
and on line 44, the duplicate raw schemas are discarded.

Next, line 45 effects the injection of the unique raw schemas into the NoSQL
Schema model and its return type is RDD[InternalNoSqlSchema]. Afterwards,
line 46 folds the schemas along with a baseSchema into a single Internal-
NoSqlSchema. The baseSchema can be either an empty model, or a schema
being extended. Finally, line 47 assigns a name to the folded schema.

For easier visualization, a diagram of components relevant to this process is
displayed as figure 4.3.

Generated model code and serializability. In the early stages of the imple-
mentation, a problem arose between the model code generated by the EMF code
generator and Apache Spark. Since Spark performs computations in a distributed

74

cz.cuni.mff.ksi.nosql.s13e.impl.inference

1. creates 2. loads data using

3. uses to extract raw schemas

4. uses to inject into model

5. uses to fold schemas

uses to represent model internally

SchemaInferenceImpl

SparkSession <<interface>>
DataLoader

uses implementation from

TypedDocumentImpl

RawSchema

uses to fold array element types

Injector

SchemaFolder

TypeFolder

schema

Figure 4.3: A class diagram of classes relevant to the implementation of the main
part of the inference approach

manner, data which is being operated with must be sent between individual run-
ners. To do this, Spark uses the default JVM serialization.

The general contract is that any class whose instances are wrapped within a
Spark RDD must implement interface java.io.Serializable and must other-
wise conform to the JVM serializable specification. However, the code generator
was not designed with serializability of the generated classes in mind.

There were two possible solutions considered for this problem. The first one
was to make the generated model code serializable according to the specification.
The first step towards this solution was to make all generated classes implement
java.io.Serializable. This was not difficult, as the code generator specifica-
tion file, :impl/model/nosqlschema.genmodel, contains a rootExtendsInter-
face setting, which can be set to include the java.io.Serializable interface.
This would cause all the model object interfaces in the cz.cuni.mff.ksi.nosql.
s13e.impl.NoSQLSchema package extend the required interface.

However, this would solve only part of the problem. The documentation for
the java.io.Serializable interface, JDK version 1.8, states the following:

“Classes that do not implement this interface will not have any of their state
serialized or deserialized. . . . To allow subtypes of non-serializable classes to be
serialized, the subtype may assume responsibility for saving and restoring the
state of the supertype’s public, protected, and (if accessible) package fields. . . .
During deserialization, the fields of non-serializable classes will be initialized using
the public or protected no-arg constructor of the class.” [40]

The superclass for the model objects used by the code generator is not serial-
izable and contains private fields. Therefore, these fields would not be serialized,
and the serializable subclass cannot take responsibility for their initialization, as
it cannot access them. The fields could be accessed using Java reflection but this
would be breaking encapsulation of the superclass. While it would be quicker to
implement, it would be what is usually called in the industry “a hack” and could
become rather expensive down the line by causing difficult to detect runtime is-

75

sues when updating to a new version of EMF or switching to a different model
object superclass.

The second solution was to create a serializable mirror implementation of the
model objects, and a utility, which would convert between the two implementa-
tions. This solution would be more time-consuming upfront, but would keep best
Object-Oriented Programming (OOP) practices and so would be generally better
sustainable. For those reasons, the second solution was chosen.

4.2.3 Implementation limitations
There are several limitations to the approach which were discovered during the
implementation phase. While are inclined to believe that they are merely lim-
itations caused by the current implementation—not inherent limitations of the
approach design—and so could be resolved, further research would be required
to prove or disprove this hypothesis.

4.2.3.1 No cycles in version graph

Invoking the definition of version graph from section 3.5.8, in the current imple-
mentation, the version graph of a schema must never contain cycles.

In a NoSQL Schema model, an entity’s versions must be unique in regards
to their properties, and a union type’s contained types must be unique. In our
implementation, this requirement is kept by having entity versions be comparable
to each other, having types be comparable to each other, and storing them within
tree sets implemented by red-black trees.

When operating on these containers, entity versions are compared to each
other to establish their ordering. To compare two entity versions, one has to
compare their properties by names and types. When comparing types, one might
encounter a situation where both compared types are aggregates. To compare two
aggregates, one needs to compare their target entity versions. This comparison
propagates along the edges of the version graph. If the version graph contains
a cycle, the comparison may loop within that cycle indefinitely and never stop.
Therefore, for the implementation to behave sanely, a schema’s version graph
must not contain cycles.

There is one operation in the inference approach design which might in certain
circumstances create a cycle within the version graph—entity flattening. Suppose
that a schema s has the following version graph. Versions A1 and A2 belong to
the same entity, A, and version B belongs to another entity.

A1 B A2

If the user decided to flatten entity A, then versions A1 and A2 would be
merged, and a cycle A1 = A2 → B → A1 = A2 would be created in the version
graph. To prevent this, the implementation of the entity-flattening operation
contains a preliminary check:

Let e be the entity being flattened. If the version graph contains a path
from any version of e to any other version of e, the flattening is aborted and an
exception is thrown alerting the user of the reason for the abort.

76

4.2.3.2 Entity flattening and schema extensibility

In the current implementation, flattening any entity within a schema makes that
schema ineligible for extension with additional data.

Entity flattening merges all versions of one entity, creating a single version
which may contain optional properties and properties with union types. Ex-
tending the enclosing schema afterwards might then add more versions into
the flattened entity, making it versioned again. However, the versioned entity
invariants—all properties are required and do not have union type—would be
violated.

This would put the entity into an intermediate state, invoking a number of
edge cases in other algorithms. To avoid them, we have decided to disallow
extending schemas containing flattened entities. With further work invested into
investigating and resolving the edge cases, this limitation could be lifted.

4.3 Example applications
Our implementation of the new inference approach is conceived as a Java library.
To let a non-technical user use it, it needs to be wrapped in an application with
a proper user interface, either command-line or graphical.

We present a simple example application that can be used out-of-the-box to
infer the schema of a dataset contained in a MongoDB database using a given
Apache Spark instance and then saved the inferred schema to a local file. This
application is located within the root project, denoted by the project path “:”.
The example application’s source code can also be examined for an example usage
of the approach implementation API.

Alongside the example application for the new approach, we created an ex-
ample application for four out of 5 discussed existing inference approaches, each
except the Klettke et al. approach. These applications provide the same func-
tionality as the first example application: infer the schema of a dataset contained
within a MongoDB database or database collection using the given inference ap-
proach, then save the inferred schema to a local file. All example applications
provide the same user interface and, thanks to Gradle, can even be launched
at the same time. This enables us and the user to easily compare the existing
approaches on any given input in regards to their inferred schema and runtime
performance.

Out of the existing approaches, the most complicated to wrap in an example
application was the implementation by Frozza et al. due to the fact, that it is a
Node.js application. Unlike other approaches, where delegating the inference to
the implementation comprises calling the appropriate API methods, the example
application for the Frozza et al. approach has to integrate with the Node.js
application’s Representational State Transfer (REST) API.

First, the example application logs in to the implementation application and
retrieves a session token which is then included in all further requests. Afterwards,
it creates a batch (an inference request), and waits for it complete. Finally, the
example application requests the inferred schema and saves it to a file.

The Node.js server must obviously be running for the inference to be available.
Since launching the Node.js server is a resource-heavy task, the launching and

77

stopping of the server is left up to manual actions by the user.
All approach implementations, both preexisting, and newly created ones, can

be launched through the run Gradle task in the corresponding Gradle project.
These launches can be parameterized using Gradle properties. More detailed
information on how to run and parameterize the example applications for the
inference approaches is available in the README.md file in the repository root.

4.4 Testing
We chose JUnit 5 as the main testing framework for the multi-project setup as it
is the recommended and default JVM testing framework for Gradle.

A user can command a test run by running the appropriate Gradle task, test.
Gradle interfaces with the JUnit Platform Launcher to launch the test run. The
JUnit Platform Engine discovers available test engines at runtime and commands
each to discover available unit tests on their class path. Then it selects which
tests should be actually run, according to the input parameters, and gives the
engines commands to run them. Finally, it collects and reports the test results
back to Gradle.

As far as test engines go, the JUnit Jupiter Engine, for example, is the default
test engine for JUnit 5 tests. A JUnit Vintage Engine is also provided by the
creators of JUnit 5 for integrating existing JUnit 4 and older tests into the new
platform. To integrate any other custom test API into the JUnit 5 Platform,
there must be a test engine for that API available and visible at runtime which
will provide the JUnit 5 Platform Engine with found test definitions on the launch
of a test run.

Unit tests and integration tests were created alongside the inference approach
implementation. These are located in directory :impl/src/test. Test code
is located in directory :impl/src/test/scala while the test resources are in
:impl/src/test/resources.

Since the majority of the implementation is done in Scala, a popular Scala
unit test API called ScalaTest was used for writing the tests. While ScalaTest
offers seamless integration into JUnit 4, integration with its successor, JUnit 5,
is lacking, as the creators of ScalaTest provide no test engine compatible with
JUnit 5 Platform as of yet.

Fortunately, we were not the first to have this issue. A GitHub community
member created a library for this use case called ScalaTest JUnit Runner and
published it via the JCenter Maven artifact repository. The source code and
documentation is available on GitHub3. This allows us to launch the Scala unit
tests written using ScalaTest, through the same interface as all other tests created
by the authors of the existing schema inference approach implementations.

4.5 Running example
Finally, let us take a look at the results of running our approach implementation
against the running example dataset, as well as the edge-case example dataset,
defined in sections 2.1.5 and 2.1.5.1.

3https://github.com/helmethair-co/scalatest-junit-runner

78

https://github.com/helmethair-co/scalatest-junit-runner

The output for the running example, included as attachment C.1, is a NoSQL
Schema model in XML format. At first glance, it looks very similar to the output
by the Sevilla et al. approach. Let us point out the key differences between the
two outputs.

In this output, properties are not subtyped themselves, instead they contain
a type element, which encodes the type information.

Unlike in Sevilla et al. output where aggregation and reference multiplicity
is given by lowerBound and upperBound attributes, in our output it is given by
those types being located either directly within a property element, or nested
within an Array type. For example, the property article.author expresses a
one-to-one aggregation because the Aggregate type is not wrapped in an Array.

Unlike Sevilla et al., our model does not immediately state the optionality of
a property. All properties are required inside a versioned entity. Flattening an
entity reveals the optionality of properties.

This can be seen in attachment C.2, which was based on the same dataset,
but all the entities were flattened. We can see, that the article.attachments
property is optional, because it is present in only one of the two original article
versions. On the other hand, the article.comments property is required as it
is present in both original versions. However, it has a union type consisting of
String and Array<String> as these were the types of that property in each
version.

Finally, attachment C.4 shows the output for the edge-case example. Here we
can see that the approach infers the collection.empty array property to be an
Array of UnknownType. The collection.nested ints property is inferred as a
two-dimensional array (Array of Array) of Number, and collection.nested -
objects is a two-dimensional array of Aggregates. Lastly, collection.values
is inferred as Array of UnionType containing all different detected types.

79

5. Experimental analysis
Previously, we have described existing schema inference approaches and created
a new approach that tackles unsolved problems. In this chapter we design, exe-
cute, and evaluate experiments which better demonstrate the behavior of individ-
ual approaches, identify points of failure, and illustrate differences between the
approaches.

The first experiment constitutes a functional analysis of the given approaches.
It exemplifies the functional behavior of individual approaches when met with
datasets containing different schema features.

The second and final experiment—performance analysis—compares the rel-
ative runtime performance of the approaches by executing them in an identical
environment and against an identical dataset.

5.1 Functional analysis
In a previous section, a running example is introduced which contains all schema
features of interest to us, and is used as input to show basic functional behavior
of the individual schema inference approaches, both existing ones and the novel
one. The running example was chosen to be complete in regards to the schema
features contained and small enough to be easily understandable by the reader.
However, due to the latter requirement, it may be too short and succinct to
clearly separate individual schema features. This may cause cross-influence of
the handling of different schema features and distort the results of the functional
analysis.

To prevent this we have created by hand a total of eight separate datasets
for this experiment, each focusing on a different schema feature: PrimitiveTypes,
SimpleArrays, SimpleObjects, ComplexArrays, ComplexObjects, Optional, Union,
and References, in no particular order. They are located in the /experiment
directory within the root of the GitHub repository1 as JSON files.

These datasets were each imported to a collection named articles, each
within a separate MongoDB database. Afterwards, all implemented inference
approaches were run against all of these databases. Since a majority of the
approaches behaved according to expectation with a majority of the datasets, we
will only focus on the abnormalities detected.

The SimpleArrays dataset features an empty JSON array in the nothings
property. The empty array is not handled correctly by the implementation of
the approach by Sevilla et al., the implementation throws an uncaught exception
during the inference. The implementation by Frozza et al. also has a problem
with this edge case, although not as severe one—the resulting JSON Schema is
invalid as it contains an invalid definition for the array element type.

The ComplexArrays dataset contains a two-dimensional array in the nested -
arrays property. The dimensionality is not handled correctly by the Canovas et
al. approach, which models the property as just a simple one-to-many relation-
ship.

1https://github.com/ivan-lattak/schema-inference

80

https://github.com/ivan-lattak/schema-inference

In the Optional dataset, the optional properties were not modeled by Canovas
et al. For unknown reason, the body.compressed optional property was not
inferred in the model at all.

Sevilla et al. approach and our new approach inferred the union types in
the Union dataset as versioned entities instead. In our approach, union type is
used as the element type of the heterogeneous array in the comments property.
This heterogeneous array is modeled by the Sevilla et al. approach as a tuple
containing a string and a number instead. In the schema inferred by the Canovas
et al. approach, the heterogeneous types are reduced to the most generic type—
string.

Finally, the References dataset contains references to entities in two forms: a
property named article id and a property containing an Extended JSON DBRef.
These proved difficult to handle for most inference approaches—the Sevilla et al.
approach and Canovas et al. approach output an empty schema and an empty
package definition, respectively, while the Frozza et al. approach ends with an
error and does not output a schema.

5.2 Performance analysis
In addition to testing functional correctness, it is also necessary to compare the
existing approaches and the new one in terms of runtime performance. This was
done using a series of performance experiments, running the existing implemen-
tations against a number of datasets and recording the runtimes.

5.2.1 Execution
First, we have generated a dataset of 500,000 JSON documents, serving as the
master dataset for our experiments. For this generation we have used the jsongen-
erator open-source library, whose source code is available on GitHub2 and which
is published as a Maven artifact in the JitPack repository. This library is able to
generate JSON values according to a given JSON Schema. As the schema for the
generation, we have chosen the JSON Schema inferred from the running example
using our new approach, attached as attachment C.3.

We conducted a total of 8 experiments, differing in sample size. The chosen
sample sizes were 1k, 2k, 4k, 8k, 16k, 32k, 64k, and 128k documents. Each
experiment was conducted using the following steps:

1. Extract a randomly sampled subset of the given size for the experiment.

2. Run each algorithm on the extracted subset 10 times in succession.

3. Repeat the previous steps a total of 30 times.

Experiments of different sizes were chosen because we want to measure the
performance of a given implementation as it changes depending on the number
of input documents.

If we had extracted just one random sample of a given size for an experiment,
the results could be distorted as the runtime performance of the algorithms could

2https://github.com/jimblackler/jsongenerator

81

https://github.com/jimblackler/jsongenerator

Ti
m

e
[m

s]

0

450

900

1350

1800

Approach (name)
Sevilla Baazizi Canovas Frozza Lattak

Figure 5.1: Average runtimes of measured inference approaches on data samples
of 1k documents

become dependent on the particularities of each random selection. Thirty differ-
ent random samples of a given size were extracted from the master dataset to
mitigate this distortion.

Furthermore, if only a single run of each algorithm was performed for a given
size, the results could be distorted by the runtime cost of algorithm initialization
and would not reflect the sustained performance of the algorithm. Additional
distortion could be caused by momentary decrease of system resources caused by
random external influences. To mitigate both of these, ten runs of each algorithm
were performed on each extracted subset.

In summary, for each of 8 experiment sizes, for each of 30 random subsets of
that size, for each of 5 existing algorithms, 10 measurements, equals a total of
8 · 30 · 5 · 10 = 12, 000 measurements were made.

The experiments were performed on a virtual machine running on VMware3

infrastructure with 64 gibibytes of memory and 8 single-thread processor cores.
Due to the virtual environment, we are unable to state further system specifica-
tions at the time of experiment.

When performing the measurements, the first run for each random sample for
each approach was significantly longer than the rest, a so-called warm-up run.
Measurements for these warm-up runs were dropped from the data so as not to
skew the results.

5.2.2 Results
Figures 5.1 through 5.8 contain bar charts representing data gathered from in-
dividual experiments. The bars represent individual measured approaches. The
y-axis is linear and represents the average runtime of that approach in millisec-
onds. At the top of each bar, the standard deviation for that approach is expressed
by whiskers.

3https://www.vmware.com/

82

https://www.vmware.com/

Ti
m

e
[m

s]

0

600

1200

1800

2400

Approach (name)
Sevilla Baazizi Canovas Frozza Lattak

Figure 5.2: Average runtimes of measured inference approaches on data samples
of 2k documents

Ti
m

e
[m

s]

0

750

1500

2250

3000

Approach (name)
Sevilla Baazizi Canovas Frozza Lattak

Figure 5.3: Average runtimes of measured inference approaches on data samples
of 4k documents

83

Ti
m

e
[m

s]

0

1000

2000

3000

4000

Approach (name)
Sevilla Baazizi Canovas Frozza Lattak

Figure 5.4: Average runtimes of measured inference approaches on data samples
of 8k documents

Ti
m

e
[m

s]

0

1500

3000

4500

6000

Approach (name)
Sevilla Baazizi Canovas Frozza Lattak

Figure 5.5: Average runtimes of measured inference approaches on data samples
of 16k documents

84

Ti
m

e
[m

s]

0

2500

5000

7500

10000

Approach (name)
Sevilla Baazizi Canovas Frozza Lattak

Figure 5.6: Average runtimes of measured inference approaches on data samples
of 32k documents

Ti
m

e
[m

s]

0

4500

9000

13500

18000

Approach (name)
Sevilla Baazizi Canovas Frozza Lattak

Figure 5.7: Average runtimes of measured inference approaches on data samples
of 64k documents

85

Ti
m

e
[m

s]

0

7500

15000

22500

30000

Approach (name)
Sevilla Baazizi Canovas Frozza Lattak

Figure 5.8: Average runtimes of measured inference approaches on data samples
of 128k documents

In the smaller-sized experiments, we generally see larger standard deviations
than in larger sizes. This is probably caused by external influences of the runtime
environment having a greater relative impact on each individual measurement.
Sevilla et al. runtime measurements seem to have a consistently low standard
deviation, even, and especially, in smaller-sized experiments across experiment
sizes.

The next two charts contain all the data from all of these eight partial charts
combined, except for the standard deviations. They provide a clearer visualiza-
tion of the dependence of runtime performance of each inference approach on the
size of the input dataset.

Figure 5.9 contains a line chart describing the behavior of each of the ap-
proaches in all experiments. The x-axis represents the different experiment sizes.
The y-axis is linear and represents the average runtime of each approach. The
legend above provides meaning to the different colors of the lines.

The linear scale of this chart shows well the differences in average runtimes for
large datasets. Frozza et al. performed best in the larger datasets, twice as fast
as the slowest approaches. In the 16k, 32k, and 64k experiments Sevilla et. al.,
Baazizi et al., and Canovas et al. kept roughly identical performance. However,
in the 128k experiment, Baazizi had significantly better performance compared
to the other two. The new approach performs the worst consistently across ex-
periment sizes except for the 1k experiment, where Baazizi et al. performed
worst.

Attachment 5.10 contains a line chart almost identical to the previous, except
the y-axis is logarithmic. This chart can better express the performance behav-
ior for smaller-sized experiments since the logarithmic scale exaggerates relative
differences in small numbers and shrinks them in large numbers.

More importantly, though, this chart demonstrates the linear scalability of
each of the measured approaches. All five approaches exhibit their performance
as more-or-less straight lines on the chart. Since both axes are logarithmic, this
expresses a linear relationship between the size of the input and the average

86

Ti
m

e
[m

s]

0

7500

15000

22500

30000

Documents [unit]
1k 2k 4k 8k 16k 32k 64k 128k

Sevilla Baazizi Canovas Frozza Lattak

Figure 5.9: Average runtimes of measured inference approaches across all exper-
iment sizes, linear scale

Ti
m

e
[m

s]

100

1000

10000

100000

Documents [unit]
1k 2k 4k 8k 16k 32k 64k 128k

Sevilla Baazizi Canovas Frozza Lattak

Figure 5.10: Average runtimes of measured inference approaches across all exper-
iment sizes, logarithmic scale

87

runtime.
Looking at the logarithmic line chart, we can see that the Frozza et al. and

especially Sevilla et al. and Canovas et al. approaches performed significantly
better for smaller sample sizes. This can be attributed mainly to the high over-
head cost of using Apache Spark in Baazizi et al. and the new approach.

This difference between (1) Sevilla et al. and Canovas et al. and (2) Baazizi
et al. and our new approach becomes less pronounced in larger sample sizes.
Baazizi et al. even started performing better in the largest experiment.

Performance of Baazizi et al. and our approach follows a very similar profile.
This is expected as both approaches use Apache Spark in a very similar way. The
performance advantage of the former compared to the latter is possibly caused
by more simple schema inference process not involving model transformations.

5.2.3 Evaluation
The results of the experiment provide useful insight to the performance of each
approach and the dependence of the performance on the size of the input data.

Different approaches are preferable to use performance-wise, depending on
the size of the input data. For small datasets, Sevilla et al., Canovas et al., even
Frozza et al. approaches are advisable, due to the fact that they do not incur
high flat overhead costs of the Apache Spark framework unlike Baazizi et al. and
our approach. Out of these, Sevilla et al. had the best performance. Combining
that with an impressive feature set makes it the best option for small datasets.

As far as large datasets are considered, Frozza et al. is the best option if
inference is to be run on a single machine. However, as MongoDB datasets
sometimes span multiple database nodes and can contain upwards of millions of
documents, horizontal scaling of schema inference may be desired. In that case,
Frozza et al. is unsuitable, as it cannot be horizontally scaled.

Sevilla et al. and Canovas et al. can scale horizontally by decreasing the
input size using MapReduce functionality built into MongoDB, in which case the
number of MongoDB cluster nodes is the scaling factor. However in the worst-
case scenario where every (or almost every) document has a unique raw schema
this may not significantly decrease the input size, in which case the algorithm
will run very slowly.

Baazizi et al. and our approach can linearly scale even for the describe worst-
case scenario simply by adding nodes to the Apache Spark cluster the approach
is being run with.

Between Baazizi et al. and our approach, the former runs faster so is the better
option if inference speed is paramount. Of course, there is also the functional
aspect to consider. Our approach provides more functionality: it can infer entity
references, can be easily extended to work with database systems other than
MongoDB, and provides more granular control over using versioned entities versus
optional properties and union types in the resulting schema.

The lacking performance of our approach can be improved by further work.
The performance of individual algorithm stages can be analyzed using a Java
runtime profiler, such as JProfiler4. This can provide useful insight into the
algorithm’s performance behavior and highlight places which need optimization

4https://www.ej-technologies.com/products/jprofiler/overview.html

88

https://www.ej-technologies.com/products/jprofiler/overview.html

the most. For profiling the runtime of Apache Spark, one can use either a native
tool, like the default Resource Manager of an Apache Spark node, or an external
tool like sparkMeasure5.

5https://github.com/LucaCanali/sparkMeasure

89

https://github.com/LucaCanali/sparkMeasure

6. Future work
The newly designed NoSQL Schema metamodel and the related NoSQL data
schema inference approach opens new horizons as it gives us another, in certain
aspects superior, way how to model NoSQL data and infer its schema. As with
everything, this allows us to see new possibilities of evolution for this metamodel
and inference approach.

We believe the proposal of associativity of the schema folding operator (the-
orem 3.2) made in section 3.5.4 to be true, since it is extensively tested by unit
tests. Nevertheless, it is not formally proven. A rigorous proof of the statement
would confirm the general soundness of the approach design.

During development and testing, it became apparent, that the granularity of
selectively certain entities and leaving others versioned is not sufficient. In some
use cases, a user may want to selectively merge some entity versions of a given
entity with others, while leaving other versions of that same entity untouched.

Since the performance analysis of the available approaches revealed that the
performance of our approach is suboptimal in comparison, further work should
be invested into improving this aspect, e.g. using profiling solutions described in
section 5.2.3.

There are some complex types which can not be modeled by the NoSQL
Schema metamodel, and whose integration into the metamodel and approach
could increase the approach’s usability: Maps, sometimes also called dictionaries,
are similar in structure to JSON objects but are semantically different because the
key set is not part of the schematic information (metadata), but is part of actual
data. Tuples are special cases of arrays—they have a fixed size and the types
of their positional elements must be modeled separately, not as a union. Tuples
in this sense are supported by the metamodel by Sevilla et al. Finally, sets—
unordered arrays—should be modeled distinctly from standard ordered arrays.

Another area of the approach that could be improved is the modeling of
entity references. Currently, to confirm that a property is an entity reference,
the inferred entities are searched to find one with matching name. To make this
heuristic stronger, the reference itself could be checked against existing objects of
the given entity type. Additionally, support for other than primitive-typed entity
references, such as references with composite keys, could be beneficial.

Finally, the NoSQL Schema metamodel could serve as a basis for a possible
future research into a proper multi-model approach, capable of modeling data
from NoSQL, relational, and other logical models within one single schema.

90

Conclusion
Working in the context of big data, designing, implementing, and using any data
processing algorithm only makes sense if its execution can be scaled horizontally,
similar to how the data is often stored using horizontally scalable technologies.

Despite there having been numerous attempts in the recent past to devise
an approach for schema inference from NoSQL data, there are still many areas
in which these need to be improved. From the ability to model even deeply
nested JSON structures, to various issues with the quite necessary horizontal
scalability, there is a significant number of aspects in which the existing solutions
are lacking. For instance, as far as we know, there still does not exist a schema
inference approach for NoSQL or even just JSON data able to infer and detect
other than very basic integrity constraints, i.e. inter-entity references, and even
those are inferred only using very simple heuristics.

Our work takes the best ideas and principles from some of these solutions and
applies them in a way suitable for the specific properties of NoSQL data, namely
massive size of datasets and high heterogeneity. Although there is much room for
improvement, we believe that our contribution can be used as a base for future
research on the intricacies of NoSQL schema inference.

The work does not stop there. As we have mentioned earlier, today it often
makes sense for a company to store different areas of their data using different
storage technologies and, consequently, in different logical models. This multi-
model context is especially difficult to develop a schema inference approach for
and correctly model data in.

The JSON document model is quite complex, as are schema inference ap-
proaches based on it. Due to this complexity they are fitting as a starting point
for the development of a true multi-model schema inference solution. A JSON
schema inference approach could be expanded to infer schemas spanning different
models, e.g. graph (Neo4j, RDF), key-value, or XML document model, and take
into account specifics of each individual model.

Even in the presence of such multi-model inference approach, detection and
modeling of inter-model entity references and other integrity constraints proves
to be a non-trivial task.

91

Bibliography
[1] Irena Holubová, Jǐŕı Kosek, Karel Minař́ık, and David Novák. Big Data a

NoSQL databáze. Grada Publishing a.s., Prague, Czech Republic, 2015.

[2] MongoDB Inc. Data Models – MongoDB Documentation. https://docs.
mongodb.com/v5.0/data-modeling/, 2021. Accessed: 2021-07-14.

[3] Neo4j Inc. Modeling Designs – Neo4j Documentation. https://neo4j.com/
developer/modeling-designs/, 2021. Accessed: 2021-07-14.

[4] Elasticsearch B.V. Data in: Documents and Indices – Elasticsearch
Documentation. https://www.elastic.co/guide/en/elasticsearch/
reference/7.x/documents-indices.html, 2021. Accessed: 2021-07-14.

[5] Irena Holubová, Martin Svoboda, and Jiaheng Lu. Unified Management
of Multi-model Data. In Conceptual Modeling, Lecture Notes in Computer
Science, pages 439–447, Cham, Switzerland, 2019. Springer International
Publishing Switzerland.

[6] Object Management Group. OMG Unified Modeling Language, Version
2.5.1. https://www.omg.org/spec/UML/2.5.1/PDF, 2017. Accessed: 2021-
07-14.

[7] Pavel Čontoš, Irena Holubová, and Martin Svoboda. Multi-Model Data
Modeling and Representation: State of the Art and Research Challenges. In
Proceedings 25th International Database Engineering & Applications Sympo-
sium, IDEAS, 2021. In press.

[8] Diego Sevilla Ruiz, Severino Feliciano Morales, and Jesus Garcia Molina.
Inferring Versioned Schemas from NoSQL Databases and Its Applications.
In Conceptual Modeling, Lecture Notes in Computer Science, pages 467–480,
Cham, Switzerland, 2015. Springer International Publishing Switzerland.

[9] Severino Feliciano Morales. Inferring NoSQL Data Schemas with Model-
Driven Engineering Techniques. PhD thesis, University of Murcia, Murcia,
Spain, March 2017.

[10] Alberto Hernandez Chillon, Severino Feliciano Morales, Diego Sevilla Ruiz,
and Jesus Garcia Molina. Exploring the Visualization of Schemas for
Aggregate-Oriented NoSQL Databases. 2017.

[11] Carlos Fernandez Candel, Diego Sevilla Ruiz, and Jesus Garcia-Molina. A
Unified Metamodel for NoSQL and Relational Databases. Computing Re-
search Repository, 2105.06494, 2021.

[12] Stefanie Scherzinger, Meike Klettke, and Uta Storl. Managing Schema Evo-
lution in NoSQL Data Stores. Computing Research Repository, 1308.0514,
2013.

92

https://docs.mongodb.com/v5.0/data-modeling/
https://docs.mongodb.com/v5.0/data-modeling/
https://neo4j.com/developer/modeling-designs/
https://neo4j.com/developer/modeling-designs/
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/documents-indices.html
https://www.elastic.co/guide/en/elasticsearch/reference/7.x/documents-indices.html
https://www.omg.org/spec/UML/2.5.1/PDF

[13] Meike Klettke, Uta Storl, and Stefanie Scherzinger. Schema Extraction and
Structural Outlier Detection for JSON-based NoSQL Data Stores. In Daten-
banksysteme für Business, Technologie und Web (BTW 2015), pages 425–
444, Bonn, Germany, 2015. Gesellschaft für Informatik e.V.

[14] Meike Klettke, Hannes Awolin, Uta Storl, Daniel Muller, and Stefanie
Scherzinger. Uncovering the Evolution History of Data Lakes. In 2017 IEEE
International Conference on Big Data, pages 2380–2389, New York, United
States, 2017. Institute of Electrical and Electronics Engineers Inc.

[15] Mohamed-Amine Baazizi, Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani.
Parametric schema inference for massive JSON datasets. The VLDB Journal,
28:497–521, 2019.

[16] Javier Luis Canovas Izquierdo and Jordi Cabot. Discovering Implicit
Schemas in JSON Data. In Web Engineering, Lecture Notes in Computer
Science, pages 68–83, Heidelberg, Germany, 2013. Springer-Verlag Berlin
Heidelberg.

[17] Javier Luis Canovas Izquierdo and Jordi Cabot. JSONDiscoverer: Visualiz-
ing the schema lurking behind JSON documents. Knowledge-Based Systems,
103:52–55, 2016.

[18] Angelo Augusto Frozza, Ronaldo dos Santos Mello, and Felipe de Souza da
Costa. An Approach for Schema Extraction of JSON and Extended JSON
Document Collections. In Proceedings from the 2018 IEEE International
Conference on Information Reuse and Integration for Data Science, IRI,
pages 356–363, 2018.

[19] Angelo Augusto Frozza, Eduardo Dias Defreyn, and Ronaldo dos San-
tos Mello. A Process for Inference of Columnar NoSQL Database Schemas.
In Anais do XXXV Simpósio Brasileiro de Bancos de Dados, pages 175–180,
Porto Alegre, RS, Brasil, 2020. SBC.

[20] Lanjun Wang, Oktie Hassanzadeh, Shuo Zhang, Juwei Shi, Limei Jiao, Jia
Zou, and Chen Wang. Schema Management for Document Stores. In Pro-
ceedings of the VLDB Endowment, pages 922–933, New York, United States,
2015. Association for Computing Machinery.

[21] Mark Lukas Moller, Nicolas Berton, Meike Klettke, Stefanie Scherzinger,
and Uta Storl. jHound: Large-Scale Profiling of Open JSON Data. In
Datenbanksysteme für Business, Technologie und Web (BTW 2019), pages
555–558, Bonn, Germany, 2019. Gesellschaft für Informatik e.V.

[22] Michael Fruth, Kai Dauberschmidt, and Stefanie Scherzinger. Josch: Manag-
ing Schemas for NoSQL Document Stores. In 2021 IEEE 37th International
Conference on Data Engineering, ICDE, pages 2693–2696, 2021.

[23] Michael DiScala and Daniel J. Abadi. Automatic Generation of Normalized
Relational Schemas from Nested Key-Value Data. In Proceedings of the 2016
International Conference on Management of Data, SIGMOD, pages 295—-
310, New York, United States, 2016. Association for Computing Machinery.

93

[24] Irena Mlýnková and Martin Nečaský. Heuristic Methods for Inference of
XML Schemas: Lessons Learned and Open Issues. Informatica, 24(4):577–
602, 2013.

[25] Pavel Čontoš and Martin Svoboda. JSON Schema Inference Approaches. In
Georg Grossmann and Sudha Ram, editors, Advances in Conceptual Model-
ing, pages 173–183, Cham, Switzerland, 2020. Springer International Pub-
lishing.

[26] Geert Jan Bex, Frank Neven, Thomas Schwentick, and Stijn Vansummeren.
Inference of Concise Regular Expressions and DTDs. ACM Transactions on
Database Systems, 35(2), 2010. Article no. 11, 47 p.

[27] Enrico Gallinucci, Matteo Golfarelli, Stefano Rizzi, Alberto Abello, and Os-
car Romero. Interactive multidimensional modeling of linked data for ex-
ploratory OLAP. Information Systems, 77:86–104, 2018.

[28] Redouane Bouhamoum, Kenza Kellou-Menouer, Stephane Lopes, and
Zoubida Kedad. Scaling Up Schema Discovery for RDF Datasets. In
2018 IEEE 34th International Conference on Data Engineering Workshops,
ICDEW, pages 84–89, 2018.

[29] The PostgreSQL Global Development Group. PostgreSQL 9.2.24 Documen-
tation. https://www.postgresql.org/docs/9.2/, 2017. Accessed: 2021-
04-11.

[30] International Organization for Standardization. ISO 21778:2017. https:
//www.iso.org/standard/71616.html, 2017. Accessed: 2021-04-05.

[31] Internet Engineering Task Force. The JavaScript Object Notation (JSON)
Data Interchange Format. https://tools.ietf.org/html/rfc8259, 2017.
Accessed: 2021-04-05.

[32] Luke Lovett and David Golden. SPEC-587. https://github.com/mongodb/
specifications/blob/master/source/extended-json.rst, 2020. Ac-
cessed: 2021-04-05.

[33] BSON (Binary JSON): Specification. https://bsonspec.org/spec.html.
Accessed: 2021-04-05.

[34] Greg Dennis. JSON Schema: A Media Type for Describing JSON
Documents, Draft 2020-12. https://json-schema.org/draft/2020-12/
json-schema-core.html, 2020. Accessed: 2021-04-05.

[35] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Process-
ing on Large Clusters. Communications of the ACM, 51(1):107–113, January
2008.

[36] Internet Engineering Task Force. Multipurpose Internet Mail Extensions
(MIME) Part Two: Media Types. https://datatracker.ietf.org/doc/
html/rfc2046, 1996. Accessed: 2021-07-17.

94

https://www.postgresql.org/docs/9.2/
https://www.iso.org/standard/71616.html
https://www.iso.org/standard/71616.html
https://tools.ietf.org/html/rfc8259
https://github.com/mongodb/specifications/blob/master/source/extended-json.rst
https://github.com/mongodb/specifications/blob/master/source/extended-json.rst
https://bsonspec.org/spec.html
https://json-schema.org/draft/2020-12/json-schema-core.html
https://json-schema.org/draft/2020-12/json-schema-core.html
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2046

[37] International Organization for Standardization. ISO 8601-1:2019. https:
//www.iso.org/standard/70907.html, 2019. Accessed: 2021-03-15.

[38] MongoDB Inc. Database References – MongoDB Documentation.
https://docs.mongodb.com/v5.0/reference/database-references/, 2021. Ac-
cessed: 2021-07-16.

[39] Chuang-Hue Moh, Ee-Peng Lim, and Wee-Keong Ng. DTD-Miner, a tool
for mining DTD from XML documents. In Proceedings from the Second
International Workshop on Advanced Issues of E-Commerce and Web-Based
Information Systems, WECWIS, pages 144–151, Washington, DC, United
States, 2000. IEEE Computer Society.

[40] Oracle Corporation. Serializable, Java Development Kit Standard Edition
8 Documentation. https://docs.oracle.com/javase/8/docs/api/java/
io/Serializable.html, 2014. Accessed: 2021-06-26.

95

https://www.iso.org/standard/70907.html
https://www.iso.org/standard/70907.html
https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/8/docs/api/java/io/Serializable.html

List of Figures

2.1 An example JSON Schema, along with some JSON values and
their validity according to the Schema. 16

2.2 Visualization of a common use-case of the Ecore metamodel . . . 16
2.3 Two JSON documents from the articles collection 18
2.4 articles collection with Extended JSON types 20
2.5 Edge-case example JSON document 21
2.6 Sevilla et al. approach execution high level diagram 22
2.7 Klettke et al. approach execution high level diagram 27
2.8 Baazizi et al. approach execution high level diagram 30
2.9 Canovas et al. approach execution high level diagram 35
2.10 Pre-discovery phase . 37
2.11 Frozza et al. approach execution high level diagram 39
2.12 Comprehensive comparison table for all discussed approaches . . . 49

3.1 High-level diagram of the new inference approach 51
3.2 NoSQL Schema metamodel . 54
3.3 Initial prototype of the NoSQL Schema metamodel 56
3.4 Sevilla et al. NoSQL Schema metamodel for comparison 57
3.5 DataLoader and its relation to the TypedDocument 58
3.6 Raw schemas for the JSON documents from the running example 59
3.7 An example JSON document from the article groups collection . . 67
3.8 Version graph for the running example 68

4.1 A diagram of the repository project structure 71
4.2 Public API diagram of the :impl project 73
4.3 A class diagram of classes relevant to the implementation of the

main part of the inference approach 75

5.1 Average runtimes of measured inference approaches on data sam-
ples of 1k documents . 82

5.2 Average runtimes of measured inference approaches on data sam-
ples of 2k documents . 83

5.3 Average runtimes of measured inference approaches on data sam-
ples of 4k documents . 83

5.4 Average runtimes of measured inference approaches on data sam-
ples of 8k documents . 84

5.5 Average runtimes of measured inference approaches on data sam-
ples of 16k documents . 84

5.6 Average runtimes of measured inference approaches on data sam-
ples of 32k documents . 85

5.7 Average runtimes of measured inference approaches on data sam-
ples of 64k documents . 85

5.8 Average runtimes of measured inference approaches on data sam-
ples of 128k documents . 86

5.9 Average runtimes of measured inference approaches across all ex-
periment sizes, linear scale . 87

96

5.10 Average runtimes of measured inference approaches across all ex-
periment sizes, logarithmic scale 87

97

Acronyms
API Application Programming Interface. 70, 72, 74, 77, 78

BSON Binary JSON. 14, 40

CSV Comma-Separated Values. 4

DTD Document Type Definition. 7

EMF Eclipse Modeling Framework. 11, 15, 36, 42, 72, 74, 76

HDFS Hadoop Distributed File System. 53, 73

IETF Internet Engineering Task Force. 34

JDK Java Development Kit. 73, 75

JVM Java Virtual Machine. 70, 73–75, 78

LOD Linked Open Data. 7

MDE Model-Driven Engineering. 6, 13, 19, 21, 23, 25, 34, 40, 42, 50, 52

OOP Object-Oriented Programming. 76

RDD Resilient Distributed Dataset. 50, 53, 58, 59, 74, 75

RDF Resource Description Framework. 6, 7, 91

REST Representational State Transfer. 77

RFC Request for Comments. 34

RSUS Raw Schema Unified Structure. 40, 41, 46

SG Structure Identification Graph. 28, 29, 46

SQL Structured Query Language. 4

UML Unified Modeling Language. 4, 5

XML Extensible Markup Language. 4, 6, 7, 26, 27, 38, 79, 91, 99

98

Glossary
aggregate-oriented A type of NoSQL databases that work with aggregated

data, i.e. data which is organized so as to group together related data
chunks. This is in contrast with data in relational database normal forms.
6, 11, 12, 21, 23, 24, 28, 37, 42, 46, 50, 53, 57

Extended JSON See section 2.1.4.2. 6, 14, 19, 26, 38, 40–42, 44, 55, 58, 60, 81

JSON Schema See section 2.1.4.4. 4, 11, 15, 25, 27–30, 34, 38, 40–46, 52,
67–69, 80, 81

MapReduce See section 2.1.4.6. 13, 16, 17, 21, 23, 25, 31, 45, 52, 53, 88

NoSQL A new generation of database technologies related to the big data move-
ment. They favor scalability, speed of data access, and ease of new appli-
cation development over the transactional correctness guarantees that tra-
ditional relational databases provide. They are usually schema-less. 4–6, 8,
11, 21, 23–28, 37, 40, 45, 50, 52–56, 59, 61–64, 66, 67, 70–72, 74, 76, 79, 90,
91

semi-structured Kind of data formats which use tags or other markers to define
named fields and other structural elements of the data. Unlike with fully
structured data, like that in relational databases, semi-structured data does
not follow an upfront strictly defined schema. Examples include XML and
JSON. 4–6, 10, 13, 44

99

A. Schemas inferred from the
running example

A.1 Sevilla et al.

<?xml version="1.0" encoding="UTF-8"?>
<NoSQLSchema:NoSQLSchema xmi:version="2.0" xmlns:xmi="http://www.omg.

org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns
:NoSQLSchema="http://www.modelum.es/NoSQLSchema" xsi:schemaLocation
="http://www.modelum.es/NoSQLSchema platform:/resource/es.um.nosql.
s13e/model/nosqlschema.ecore" name="inference">

<entities name="Articles" root="true">
<variations variationId="1" count="1">

<properties xsi:type="NoSQLSchema:Attribute" name="_id">
<type xsi:type="NoSQLSchema:PrimitiveType" name="Number"/>

</properties>
<properties xsi:type="NoSQLSchema:Aggregate" name="attachments"

optional="true" upperBound="1" aggregates="//@entities.2/
@variations.0"/>

<properties xsi:type="NoSQLSchema:Aggregate" name="author"
lowerBound="1" upperBound="1" aggregates="//@entities.1/
@variations.0"/>

<properties xsi:type="NoSQLSchema:Aggregate" name="body" optional
="true" lowerBound="1" upperBound="1" aggregates="//@entities
.3/@variations.0"/>

<properties xsi:type="NoSQLSchema:Attribute" name="comments"
optional="true">

<type xsi:type="NoSQLSchema:PList">
<elementType xsi:type="NoSQLSchema:PrimitiveType" name="String

"/>
</type>

</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="published">

<type xsi:type="NoSQLSchema:PrimitiveType" name="Boolean"/>
</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="ratings">

<type xsi:type="NoSQLSchema:PList">
<elementType xsi:type="NoSQLSchema:PrimitiveType" name="Number

"/>
</type>

</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="timestamp">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>

</variations>
<variations variationId="2" count="1">

<properties xsi:type="NoSQLSchema:Attribute" name="_id">
<type xsi:type="NoSQLSchema:PrimitiveType" name="Number"/>

100

</properties>
<properties xsi:type="NoSQLSchema:Reference" name="article_id"

optional="true" lowerBound="1" upperBound="1" refsTo="//
@entities.0" originalType="Number"/>

<properties xsi:type="NoSQLSchema:Aggregate" name="author"
lowerBound="1" upperBound="1" aggregates="//@entities.1/
@variations.1"/>

<properties xsi:type="NoSQLSchema:Attribute" name="body" optional
="true">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="comments"

optional="true">
<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>

</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="published">

<type xsi:type="NoSQLSchema:PrimitiveType" name="Boolean"/>
</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="ratings">

<type xsi:type="NoSQLSchema:PList">
<elementType xsi:type="NoSQLSchema:PrimitiveType" name="Number

"/>
</type>

</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="timestamp">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>

</variations>
</entities>
<entities name="Author">

<variations variationId="1" count="1">
<properties xsi:type="NoSQLSchema:Attribute" name="first_name">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="last_name">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>
<properties xsi:type="NoSQLSchema:Aggregate" name="location"

lowerBound="1" upperBound="1" aggregates="//@entities.4/
@variations.0"/>

<properties xsi:type="NoSQLSchema:Attribute" name="phone_number"
optional="true">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>

</variations>
<variations variationId="2" count="1">

<properties xsi:type="NoSQLSchema:Attribute" name="first_name">
<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>

</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="last_name">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>

101

</properties>
<properties xsi:type="NoSQLSchema:Aggregate" name="location"

lowerBound="1" upperBound="1" aggregates="//@entities.4/
@variations.1"/>

<properties xsi:type="NoSQLSchema:Attribute" name="phone_number"
optional="true">

<type xsi:type="NoSQLSchema:PrimitiveType" name="Number"/>
</properties>

</variations>
</entities>
<entities name="Attachment">

<variations variationId="1" count="1">
<properties xsi:type="NoSQLSchema:Attribute" name="url">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>

</variations>
</entities>
<entities name="Body">

<variations variationId="1" count="1">
<properties xsi:type="NoSQLSchema:Attribute" name="content">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="mime_type">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>

</variations>
</entities>
<entities name="Location">

<variations variationId="1" count="1">
<properties xsi:type="NoSQLSchema:Attribute" name="latitude"

optional="true">
<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>

</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="longitude"

optional="true">
<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>

</properties>
</variations>
<variations variationId="2" count="1">

<properties xsi:type="NoSQLSchema:Attribute" name="address"
optional="true">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>

</variations>
</entities>

</NoSQLSchema:NoSQLSchema>

A.2 Klettke et al.

{ "$schema": "http://json-schema.org/draft-06/schema#",
"properties": { "_id": { "type": "number" },

102

"timestamp": { "type": "string" },
"author": { "type": "object",

"properties": { "first_name": { "type": "string" },
"last_name": { "type": "string" },
"phone_number": {

"oneOf": [{ "type": "string" }, { "type": "number" }] },
"location": { "type": "object",

"properties": { "latitude": { "type": "string" },
"longitude": { "type": "string" },
"address": { "type": "string" } },

"additionalProperties": false, "required": [] } },
"additionalProperties": false,
"required": ["first_name", "last_name",

"phone_number", "location"] },
"ratings": { "type": "array", "items": { "type": "number" } },
"comments": {

"oneOf": [
{ "type": "array", "items": { "type": "string" } },
{ "type": "string" }] },

"attachments": { "type": "array",
"items": { "type": "object",

"properties": { "url": { "type": "string" } },
"additionalProperties": false, "required": ["url"] } },

"body": {
"oneOf": [

{ "type": "object",
"properties": { "content": { "type": "string" },

"mime_type": { "type": "string" } },
"additionalProperties": false,
"required": ["content", "mime_type"] },

{ "type": "string" }] },
"published": { "type": "boolean" },
"article_id": { "type": "number" } },

"additionalProperties": false,
"required": ["_id", "timestamp", "author", "ratings", "comments",

"body", "published"] }

A.3 Baazizi et al., kind-equivalence

{ _id: Num, article_id: Num,
attachments: [{ url: Str }],
author: { first_name: Str, last_name: Str,

location: { address: Str, latitude: Str, longitude: Str },
phone_number: Num + Str },

body: Str + { content: Str, mime_type: Str },
comments: Str + [Str],
published: Bool,
ratings: [Num],
timestamp: Str }

103

A.4 Baazizi et al., label-equivalence

{ _id: Num, article_id: Num,
author: { first_name: Str, last_name: Str,

location: { address: Str }, phone_number: Num },
body: Str, comments: Str,
published: Bool, ratings: [Num], timestamp: Str } +

{ _id: Num, attachments: [{ url: Str }],
author: { first_name: Str, last_name: Str,

location: { latitude: Str, longitude: Str },
phone_number: Str },

body: { content: Str, mime_type: Str },
comments: [Str], published: Bool,
ratings: [Num], timestamp: Str }

A.5 Canovas et al.

<?xml version="1.0" encoding="ASCII"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ecore="
http://www.eclipse.org/emf/2002/Ecore" name="articles" nsURI="http
://jsonDiscoverer/discovered/articles" nsPrefix="discoa">

<eClassifiers xsi:type="ecore:EClass" name="Article">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="_id"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EInt"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="timestamp"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference" name="author"

lowerBound="1" eType="//Author" containment="true">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
</eStructuralFeatures>

104

<eStructuralFeatures xsi:type="ecore:EAttribute" name="ratings"
lowerBound="1" upperBound="-1">

<eAnnotations source="coverage">
<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EInt"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="comments"

lowerBound="1" upperBound="-1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference" name="attachments"

lowerBound="1" upperBound="-1" eType="//Attachment" containment
="true">

<eAnnotations source="coverage">
<details key="totalFound" value="1"/>
<details key="ratioTotalFound" value="0.5"/>

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference" name="body"

lowerBound="1" eType="//Body" containment="true">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="published"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EBoolean"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="article_id">

<eAnnotations source="coverage">
<details key="totalFound" value="1"/>
<details key="ratioTotalFound" value="0.5"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EInt"/>
</eStructuralFeatures>

</eClassifiers>

105

<eClassifiers xsi:type="ecore:EClass" name="Author">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="first_name"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="last_name"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="phone_number"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference" name="location"

lowerBound="1" eType="//Location" containment="true">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Attachment">

<eAnnotations source="coverage">
<details key="totalFound" value="4"/>

</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="url"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="4"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>

106

</eStructuralFeatures>
</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Body">

<eAnnotations source="coverage">
<details key="totalFound" value="2"/>

</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="content"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="mime_type"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Location">

<eAnnotations source="coverage">
<details key="totalFound" value="2"/>

</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="latitude"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="longitude"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>

</eClassifiers>
</ecore:EPackage>

A.6 Frozza et al.

107

{ "$schema": "http://json-schema.org/draft-06/schema#",
"definitions": {

"ObjectID": { "title": "ObjectID", "type": "object",
"properties": { "$oid": { "type": "string" } },
"required": ["$oid"] },

"Date": { "title": "Date", "type": "object",
"properties": { "$date": { "type": "string" } },
"required": ["$date"] },

"DBRef": { "title": "DBRef", "type": "object",
"properties": { "$id": { "type": "string" },

"$ref": { "type": "string" } },
"required": ["$id", "$ref"] } },

"properties": { "_id": { "$ref": "#/definitions/ObjectID" },
"attachments": { "name": "attachments", "type": "array",

"items": { "type": "object",
"properties": { "url": { "name": "url", "type": "string" } },
"additionalProperties": false, "required": ["url"] },

"minItems": 1, "additionalItems": true },
"author": { "type": "object",

"properties": {
"first_name": { "name": "first_name", "type": "string" },
"last_name": { "name": "last_name", "type": "string" },
"location": { "type": "object",

"properties": {
"latitude": { "name": "latitude", "type": "string" },
"longitude": { "name": "longitude", "type": "string" },
"address": { "name": "address", "type": "string" } },

"additionalProperties": false, "required": [],
"name": "author.location" },

"phone_number": { "name": "phone_number",
"anyOf": [{ "type": "string" }, { "type": "number" }] }},

"additionalProperties": false,
"required": ["first_name", "last_name",

"location", "phone_number"],
"name": "author" },

"body": { "name": "body",
"anyOf": [

{ "type": "object",
"properties": {

"content": { "name": "content", "type": "string" },
"mime_type": { "name": "mime_type", "type": "string" } },

"additionalProperties": false,
"required": ["content", "mime_type"] },

{ "type": "string" }] },
"comments": { "name": "comments",

"anyOf": [
{ "name": "comments", "type": "array",

"items": { "type": "string" }, "minItems": 1,
"additionalItems": true },

{ "type": "string" }] },
"published": { "name": "published", "type": "boolean" },

108

"ratings": { "name": "ratings", "type": "array",
"items": { "type": "number" }, "minItems": 1,
"additionalItems": true },

"timestamp": { "$ref": "#/definitions/Date" },
"article_id": { "$ref": "#/definitions/DBRef" } },

"additionalProperties": false,
"required": ["_id", "author", "body", "comments", "published",

"ratings", "timestamp" }

109

B. Schemas inferred from the
edge-case example

B.1 Sevilla et al.

<?xml version="1.0" encoding="UTF-8"?>
<NoSQLSchema:NoSQLSchema xmi:version="2.0" xmlns:xmi="http://www.omg.

org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns
:NoSQLSchema="http://www.modelum.es/NoSQLSchema" xsi:schemaLocation
="http://www.modelum.es/NoSQLSchema platform:/resource/es.um.nosql.
s13e/model/nosqlschema.ecore" name="inferenceEdgeCases">

<entities name="Value">
<variations variationId="1" count="1"/>
<variations variationId="2" count="1">

<properties xsi:type="NoSQLSchema:Attribute" name="key" optional="
true">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>

</variations>
</entities>
<entities name="Collection" root="true">

<variations variationId="1" count="1">
<properties xsi:type="NoSQLSchema:Attribute" name="_id">

<type xsi:type="NoSQLSchema:PrimitiveType" name="ObjectId"/>
</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="nested_ints">

<type xsi:type="NoSQLSchema:PList">
<elementType xsi:type="NoSQLSchema:PList">

<elementType xsi:type="NoSQLSchema:PrimitiveType" name="
Number"/>

</elementType>
</type>

</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="nested_objects

">
<type xsi:type="NoSQLSchema:PList">

<elementType xsi:type="NoSQLSchema:PList">
<elementType xsi:type="NoSQLSchema:PrimitiveType" name=""/>

</elementType>
</type>

</properties>
<properties xsi:type="NoSQLSchema:Attribute" name="values">

<type xsi:type="NoSQLSchema:PTuple">
<elements xsi:type="NoSQLSchema:PrimitiveType" name=""/>
<elements xsi:type="NoSQLSchema:PrimitiveType" name="Boolean

"/>
<elements xsi:type="NoSQLSchema:PrimitiveType" name="Number"/>
<elements xsi:type="NoSQLSchema:PrimitiveType" name="String"/>

110

<elements xsi:type="NoSQLSchema:PList"/>
<elements xsi:type="NoSQLSchema:PList">

<elementType xsi:type="NoSQLSchema:PrimitiveType" name="
Number"/>

</elements>
<elements xsi:type="NoSQLSchema:PrimitiveType" name=""/>
<elements xsi:type="NoSQLSchema:PrimitiveType" name=""/>

</type>
</properties>

</variations>
</entities>
<entities name="Nested_object">

<variations variationId="1">
<properties xsi:type="NoSQLSchema:Attribute" name="key">

<type xsi:type="NoSQLSchema:PrimitiveType" name="String"/>
</properties>

</variations>
</entities>

</NoSQLSchema:NoSQLSchema>

B.2 Baazizi et al., kind-equivalence

{ _id: { $oid: Str }, empty_array: [Empty()],
nested_ints: [[Num]], nested_objects: [[{ key: Str }]],
values: [Null + Bool + Num + Str + { key: Str } + [Num]] }

B.3 Baazizi et al., label-equivalence

{ _id: { $oid: Str }, empty_array: [Empty()],
nested_ints: [[Num]], nested_objects: [[{ key: Str }]],
values: [Null + Bool + Num + Str + {} + { key: Str } + [Num]] }

B.4 Canovas et al.

<?xml version="1.0" encoding="ASCII"?>
<ecore:EPackage xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ecore="
http://www.eclipse.org/emf/2002/Ecore" name="collection" nsURI="http
://jsonDiscoverer/discovered/collection" nsPrefix="discoc">

<eClassifiers xsi:type="ecore:EClass" name="Collection">
<eAnnotations source="coverage">

<details key="totalFound" value="1"/>
</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EReference" name="_id"

lowerBound="1" eType="//_id" containment="true">
<eAnnotations source="coverage">

<details key="totalFound" value="1"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
</eStructuralFeatures>

111

<eStructuralFeatures xsi:type="ecore:EAttribute" name="empty_array"
lowerBound="1" upperBound="-1">

<eAnnotations source="coverage">
<details key="totalFound" value="1"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="nested_ints"

lowerBound="1" upperBound="-1">
<eAnnotations source="coverage">

<details key="totalFound" value="1"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EInt"/>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EReference" name="

nested_objects" lowerBound="1" upperBound="-1" eType="//
Nested_object" containment="true">

<eAnnotations source="coverage">
<details key="totalFound" value="1"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
</eStructuralFeatures>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="values"

lowerBound="1" upperBound="-1">
<eAnnotations source="coverage">

<details key="totalFound" value="1"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="_id">

<eAnnotations source="coverage">
<details key="totalFound" value="2"/>

</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="$oid"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="2"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>

</eClassifiers>
<eClassifiers xsi:type="ecore:EClass" name="Nested_object">

112

<eAnnotations source="coverage">
<details key="totalFound" value="12"/>

</eAnnotations>
<eStructuralFeatures xsi:type="ecore:EAttribute" name="key"

lowerBound="1">
<eAnnotations source="coverage">

<details key="totalFound" value="12"/>
<details key="ratioTotalFound" value="1.0"/>

</eAnnotations>
<eType xsi:type="ecore:EDataType" href="http://www.eclipse.org/emf

/2002/Ecore#//EString"/>
</eStructuralFeatures>

</eClassifiers>
</ecore:EPackage>

B.5 Frozza et al.

{ "$schema": "http://json-schema.org/draft-06/schema#",
"definitions": {

"ObjectID": { "title": "ObjectID", "type": "object",
"properties": { "$oid": { "type": "string" } },
"required": ["$oid"] } },

"properties": { "_id": { "$ref": "#/definitions/ObjectID" },
"empty_array": { "name": "empty_array", "type": "array",

"items": { "anyOf": [] }, "minItems": 0,
"additionalItems": true },

"nested_ints": { "name": "nested_ints", "type": "array",
"items": { "name": "nested_ints", "type": "array",

"items": { "type": "number" }, "minItems": 1,
"additionalItems": true }, "minItems": 1,

"additionalItems": true },
"nested_objects": { "name": "nested_objects", "type": "array",

"items": { "name": "nested_objects", "type": "array",
"items": { "type": "object",

"properties": {
"key": { "name": "key", "type": "string" } },

"additionalProperties": false, "required": ["key"] },
"minItems": 1, "additionalItems": true },

"minItems": 1, "additionalItems": true },
"values": { "name": "values", "type": "array",

"items": {
"anyOf": [

{ "name": "values", "type": "array",
"items": { "type": "number" },
"minItems": 0, "additionalItems": true },

{ "type": "boolean" },
{ "type": "null" },
{ "type": "number" },
{ "type": "string" },
{ "type": "object", "properties": {

"key": { "name": "key", "type": "string" } },

113

"additionalProperties": false, "required": [] }] },
"minItems": 1, "additionalItems": true } },

"additionalProperties": false, "required": ["_id", "empty_array",
"nested_ints", "nested_objects", "values"] }

114

C. New schema inference
approach

C.1 NoSQL Schema model for the running ex-
ample

<?xml version="1.0" encoding="UTF-8"?>
<NoSQLSchema:NoSQLSchema xmi:version="2.0" xmlns:xmi="http://www.omg.

org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns
:NoSQLSchema="http://www.ksi.mff.cuni.cz/NoSQLSchema" name="
Inference DB">

<entities name="article">
<versions root="true" additionalCount="1">

<properties name="_id">
<type xsi:type="NoSQLSchema:Number"/>

</properties>
<properties name="article_id">

<type xsi:type="NoSQLSchema:EntityReference" target="article">
<originalType xsi:type="NoSQLSchema:Number"/>

</type>
</properties>
<properties name="author">

<type xsi:type="NoSQLSchema:Aggregate" target="//@entities.2/
@versions.0"/>

</properties>
<properties name="body">

<type xsi:type="NoSQLSchema:String"/>
</properties>
<properties name="comments">

<type xsi:type="NoSQLSchema:String"/>
</properties>
<properties name="published">

<type xsi:type="NoSQLSchema:Boolean"/>
</properties>
<properties name="ratings">

<type xsi:type="NoSQLSchema:Array">
<elementType xsi:type="NoSQLSchema:Number"/>

</type>
</properties>
<properties name="timestamp">

<type xsi:type="NoSQLSchema:String"/>
</properties>

</versions>
<versions root="true" additionalCount="1">

<properties name="_id">
<type xsi:type="NoSQLSchema:Number"/>

</properties>
<properties name="attachments">

115

<type xsi:type="NoSQLSchema:Array">
<elementType xsi:type="NoSQLSchema:Aggregate" target="//

@entities.1/@versions.0"/>
</type>

</properties>
<properties name="author">

<type xsi:type="NoSQLSchema:Aggregate" target="//@entities.2/
@versions.1"/>

</properties>
<properties name="body">

<type xsi:type="NoSQLSchema:Aggregate" target="//@entities.3/
@versions.0"/>

</properties>
<properties name="comments">

<type xsi:type="NoSQLSchema:Array">
<elementType xsi:type="NoSQLSchema:String"/>

</type>
</properties>
<properties name="published">

<type xsi:type="NoSQLSchema:Boolean"/>
</properties>
<properties name="ratings">

<type xsi:type="NoSQLSchema:Array">
<elementType xsi:type="NoSQLSchema:Number"/>

</type>
</properties>
<properties name="timestamp">

<type xsi:type="NoSQLSchema:String"/>
</properties>

</versions>
</entities>
<entities name="attachment">

<versions additionalCount="1" aggregates="//@entities.0/@versions.1/
@properties.1/@type/@elementType">

<properties name="url">
<type xsi:type="NoSQLSchema:String"/>

</properties>
</versions>

</entities>
<entities name="author">

<versions aggregates="//@entities.0/@versions.0/@properties.2/@type
">

<properties name="first_name">
<type xsi:type="NoSQLSchema:String"/>

</properties>
<properties name="last_name">

<type xsi:type="NoSQLSchema:String"/>
</properties>
<properties name="location">

<type xsi:type="NoSQLSchema:Aggregate" target="//@entities.4/
@versions.0"/>

116

</properties>
<properties name="phone_number">

<type xsi:type="NoSQLSchema:Number"/>
</properties>

</versions>
<versions aggregates="//@entities.0/@versions.1/@properties.2/@type

">
<properties name="first_name">

<type xsi:type="NoSQLSchema:String"/>
</properties>
<properties name="last_name">

<type xsi:type="NoSQLSchema:String"/>
</properties>
<properties name="location">

<type xsi:type="NoSQLSchema:Aggregate" target="//@entities.4/
@versions.1"/>

</properties>
<properties name="phone_number">

<type xsi:type="NoSQLSchema:String"/>
</properties>

</versions>
</entities>
<entities name="body">

<versions aggregates="//@entities.0/@versions.1/@properties.3/@type
">

<properties name="content">
<type xsi:type="NoSQLSchema:String"/>

</properties>
<properties name="mime_type">

<type xsi:type="NoSQLSchema:String"/>
</properties>

</versions>
</entities>
<entities name="location">

<versions aggregates="//@entities.2/@versions.0/@properties.2/@type
">

<properties name="address">
<type xsi:type="NoSQLSchema:String"/>

</properties>
</versions>
<versions aggregates="//@entities.2/@versions.1/@properties.2/@type

">
<properties name="latitude">

<type xsi:type="NoSQLSchema:String"/>
</properties>
<properties name="longitude">

<type xsi:type="NoSQLSchema:String"/>
</properties>

</versions>
</entities>

</NoSQLSchema:NoSQLSchema>

117

C.2 NoSQL Schema model for the running ex-
ample, All entities flattened

<?xml version="1.0" encoding="UTF-8"?>
<NoSQLSchema:NoSQLSchema xmi:version="2.0" xmlns:xmi="http://www.omg.

org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns
:NoSQLSchema="http://www.ksi.mff.cuni.cz/NoSQLSchema" name="
Inference DB">

<entities name="article" flattened="true">
<versions root="true" additionalCount="2">

<properties name="_id">
<type xsi:type="NoSQLSchema:Number"/>

</properties>
<properties name="article_id" optional="true">

<type xsi:type="NoSQLSchema:EntityReference" target="article">
<originalType xsi:type="NoSQLSchema:Number"/>

</type>
</properties>
<properties name="attachments" optional="true">

<type xsi:type="NoSQLSchema:Array">
<elementType xsi:type="NoSQLSchema:Aggregate" target="//

@entities.1/@versions.0"/>
</type>

</properties>
<properties name="author">

<type xsi:type="NoSQLSchema:Aggregate" target="//@entities.2/
@versions.0"/>

</properties>
<properties name="body">

<type xsi:type="NoSQLSchema:UnionType">
<types xsi:type="NoSQLSchema:String"/>
<types xsi:type="NoSQLSchema:Aggregate" target="//@entities.3/

@versions.0"/>
</type>

</properties>
<properties name="comments">

<type xsi:type="NoSQLSchema:UnionType">
<types xsi:type="NoSQLSchema:String"/>
<types xsi:type="NoSQLSchema:Array">

<elementType xsi:type="NoSQLSchema:String"/>
</types>

</type>
</properties>
<properties name="published">

<type xsi:type="NoSQLSchema:Boolean"/>
</properties>
<properties name="ratings">

<type xsi:type="NoSQLSchema:Array">
<elementType xsi:type="NoSQLSchema:Number"/>

</type>

118

</properties>
<properties name="timestamp">

<type xsi:type="NoSQLSchema:String"/>
</properties>

</versions>
</entities>
<entities name="attachment">

<versions additionalCount="1" aggregates="//@entities.0/@versions.0/
@properties.2/@type/@elementType">

<properties name="url">
<type xsi:type="NoSQLSchema:String"/>

</properties>
</versions>

</entities>
<entities name="author" flattened="true">

<versions additionalCount="1" aggregates="//@entities.0/@versions.0/
@properties.3/@type">

<properties name="first_name">
<type xsi:type="NoSQLSchema:String"/>

</properties>
<properties name="last_name">

<type xsi:type="NoSQLSchema:String"/>
</properties>
<properties name="location">

<type xsi:type="NoSQLSchema:Aggregate" target="//@entities.4/
@versions.0"/>

</properties>
<properties name="phone_number">

<type xsi:type="NoSQLSchema:UnionType">
<types xsi:type="NoSQLSchema:Number"/>
<types xsi:type="NoSQLSchema:String"/>

</type>
</properties>

</versions>
</entities>
<entities name="body">

<versions aggregates="//@entities.0/@versions.0/@properties.4/@type/
@types.1">

<properties name="content">
<type xsi:type="NoSQLSchema:String"/>

</properties>
<properties name="mime_type">

<type xsi:type="NoSQLSchema:String"/>
</properties>

</versions>
</entities>
<entities name="location" flattened="true">

<versions additionalCount="1" aggregates="//@entities.2/@versions.0/
@properties.2/@type">

<properties name="address" optional="true">
<type xsi:type="NoSQLSchema:String"/>

119

</properties>
<properties name="latitude" optional="true">

<type xsi:type="NoSQLSchema:String"/>
</properties>
<properties name="longitude" optional="true">

<type xsi:type="NoSQLSchema:String"/>
</properties>

</versions>
</entities>

</NoSQLSchema:NoSQLSchema>

C.3 JSON Schema for the running example

{ "$id": "http://ksi.mff.cuni.cz/schemas/inferred",
"$schema": "http://json-schema.org/draft-07/schema#",
"description": "Inference DB",
"definitions": {

"#location.0": { "$id": "#location.0", "type": "object",
"additionalProperties": false, "required": ["address"],
"properties": { "address": { "type": "string" } } },

"#location.1": { "$id": "#location.1", "type": "object",
"additionalProperties": false,
"required": ["latitude", "longitude"],
"properties": {

"latitude": { "type": "string" },
"longitude": { "type": "string" } } },

"#author.0": { "$id": "#author.0", "type": "object",
"additionalProperties": false,
"required": ["first_name", "last_name", "location",

"phone_number"],
"properties": {

"first_name": { "type": "string" },
"last_name": { "type": "string" },
"location": { "$ref": "#location.0" },
"phone_number": { "type": "number" } } },

"#attachment.0": { "$id": "#attachment.0", "type": "object",
"additionalProperties": false, "required": ["url"],
"properties": { "url": { "type": "string" } } },

"#author.1": { "$id": "#author.1", "type": "object",
"additionalProperties": false,
"required": ["first_name", "last_name", "location",

"phone_number"],
"properties": {

"first_name": { "type": "string" },
"last_name": { "type": "string" },
"location": { "$ref": "#location.1" },
"phone_number": { "type": "string" } } },

"#body.0": { "$id": "#body.0", "type": "object",
"additionalProperties": false,
"required": ["content", "mime_type"],
"properties": {

120

"content": { "type": "string" },
"mime_type": { "type": "string" } } },

"#article.0": { "$id": "#article.0", "type": "object",
"additionalProperties": false,
"required": ["_id", "article_id", "author", "body", "comments",

"published", "ratings", "timestamp"],
"properties": {

"_id": { "type": "number" },
"article_id": {

"description": "A reference to the ’article’ entity",
"type": "number" },

"author": { "$ref": "#author.0" },
"body": { "type": "string" },
"comments": { "type": "string" },
"published": { "type": "boolean" },
"ratings": { "type": "array", "items": { "type": "number" } },
"timestamp": { "type": "string" } } },

"#article.1": { "$id": "#article.1", "type": "object",
"additionalProperties": false,
"required": ["_id", "attachments", "author", "body", "comments",

"published", "ratings", "timestamp"],
"properties": {

"_id": { "type": "number" },
"attachments": { "type": "array",

"items": { "$ref": "#attachment.0" } },
"author": { "$ref": "#author.1" },
"body": { "$ref": "#body.0" },
"comments": { "type": "array", "items": { "type": "string" } },
"published": { "type": "boolean" },
"ratings": { "type": "array", "items": { "type": "number" } },
"timestamp": { "type": "string" } } } },

"anyOf": [{ "$ref": "#article.0" }, { "$ref": "#article.1" }] }

C.4 NoSQL Schema model for the edge-case ex-
ample

<?xml version="1.0" encoding="UTF-8"?>
<NoSQLSchema:NoSQLSchema xmi:version="2.0" xmlns:xmi="http://www.omg.

org/XMI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns
:NoSQLSchema="http://www.ksi.mff.cuni.cz/NoSQLSchema" name="
Inference DB">

<entities name="_id">
<versions aggregates="//@entities.1/@versions.0/@properties.0/@type

">
<properties name="$oid">

<type xsi:type="NoSQLSchema:String"/>
</properties>

</versions>
</entities>
<entities name="collection">

<versions root="true" additionalCount="1">

121

<properties name="_id">
<type xsi:type="NoSQLSchema:Aggregate" target="//@entities.0/

@versions.0"/>
</properties>
<properties name="empty_array">

<type xsi:type="NoSQLSchema:Array">
<elementType xsi:type="NoSQLSchema:UnknownType"/>

</type>
</properties>
<properties name="nested_ints">

<type xsi:type="NoSQLSchema:Array">
<elementType xsi:type="NoSQLSchema:Array">

<elementType xsi:type="NoSQLSchema:Number"/>
</elementType>

</type>
</properties>
<properties name="nested_objects">

<type xsi:type="NoSQLSchema:Array">
<elementType xsi:type="NoSQLSchema:Array">

<elementType xsi:type="NoSQLSchema:Aggregate" target="//
@entities.2/@versions.0"/>

</elementType>
</type>

</properties>
<properties name="values">

<type xsi:type="NoSQLSchema:Array">
<elementType xsi:type="NoSQLSchema:UnionType">

<types xsi:type="NoSQLSchema:Boolean"/>
<types xsi:type="NoSQLSchema:Number"/>
<types xsi:type="NoSQLSchema:String"/>
<types xsi:type="NoSQLSchema:Array">

<elementType xsi:type="NoSQLSchema:Number"/>
</types>
<types xsi:type="NoSQLSchema:Aggregate" target="//@entities

.3/@versions.0"/>
<types xsi:type="NoSQLSchema:Aggregate" target="//@entities

.3/@versions.1"/>
</elementType>

</type>
</properties>

</versions>
</entities>
<entities name="nested_object">

<versions additionalCount="5" aggregates="//@entities.1/@versions.0/
@properties.3/@type/@elementType/@elementType">

<properties name="key">
<type xsi:type="NoSQLSchema:String"/>

</properties>
</versions>

</entities>
<entities name="value">

122

<versions aggregates="//@entities.1/@versions.0/@properties.4/@type/
@elementType/@types.4"/>

<versions aggregates="//@entities.1/@versions.0/@properties.4/@type/
@elementType/@types.5">

<properties name="key">
<type xsi:type="NoSQLSchema:String"/>

</properties>
</versions>

</entities>
</NoSQLSchema:NoSQLSchema>

123

D. Proof of theorem 3.1
For the following proof let’s shorten the names of functions for brevity’s sake:

• foldSchemas function → fS

• foldEntities function → fE

• extractor of properties from entity version → p.

fS is only defined for two argument schemas with the same name. Therefore,
the input arguments are each equivalent to the set of entities contained within
and we can freely interchange between the two in our reasoning.

Lemma 1. Property-dependent intersection of sets of entity versions is commu-
tative.

Proof. Given a set of versions V , let p be a function that applies the properties
extractor to every version in a set:

p(V) = {p(v)|v ∈ V }
Looking at the definition of property-dependent intersection for operands V1

and V2, we can see that the rule for deciding the result elements iterates over the
set p(V1) ∩ p(V2). Since set intersection is commutative, the contents of this set
do not depend on the order of operands.

For each element in that set, it constructs a new entity version. All parameters
of those versions are independent on the order of operands for the following
reasons:

• properties because the property set of v1 is equal to that of v2

• root because logical disjunction is commutative

• aggregates because set union is commutative

• additionalCount because integer addition is commutative

Lemma 2. The foldEntities function is commutative.

Proof.

fE(e1, e2) = (V1 \V V2) ∪ (V2 \V V1) ∪ (V1 ∩V V2) (D.1)
= (V2 \V V1) ∪ (V1 \V V2) ∪ (V1 ∩V V2) (D.2)
= (V2 \V V1) ∪ (V1 \V V2) ∪ (V2 ∩V V1) (D.3)
= fE(e2, e1) (D.4)

On line D.2, we swap the first two operands of the set union thanks to set union
commutativity. On line D.3, we swap the operands of the property-dependent in-
tersection within the last bracket thanks to commutativity of property-dependent
intersection.

124

Now we can proceed with the proof of theorem 3.1.

Proof. Given two input sets of entities M1 and M2. For each entity within M1,
either M2 contains an entity with the same name or it doesn’t. The same is true
vice-versa: For each entity within M2, either M1 contains an entity with the same
name or it doesn’t. Let’s introduce notation that will delimit these subsets. Each
input entity set is composed of two disjoint subsets:

M1 = M1E ∪M1C

M2 = M2E ∪M2C

where M1E is a set of entities which are Exclusive name-wise to M1, M1C is a set
of entities which M1 has in Common name-wise with M2, and similarly for M2E

and M2C .
fS takes name-wise exclusive entities from both schemas and leaves them

unchanged, but folds together matching pairs of name-wise common entities.
Let Ni be the set of names of entities in Mi. Let M [s] be an entity within M

with name s. Then:

fS(M1, M2) = M1E ∪M2E ∪

⎛⎝ ⋃︂
s∈N1∩N2

{fE(M1C [s], M2C [s])}
⎞⎠

Therefore we have the following:

fS(M1, M2) = M1E ∪M2E ∪

⎛⎝ ⋃︂
s∈N1∩N2

{fE(M1C [s], M2C [s])}
⎞⎠ (D.5)

= M2E ∪M1E ∪

⎛⎝ ⋃︂
s∈N1∩N2

{fE(M1C [s], M2C [s])}
⎞⎠ (D.6)

= M2E ∪M1E ∪

⎛⎝ ⋃︂
s∈N2∩N1

{fE(M1C [s], M2C [s])}
⎞⎠ (D.7)

= M2E ∪M1E ∪

⎛⎝ ⋃︂
s∈N2∩N1

{fE(M2C [s], M1C [s])}
⎞⎠ (D.8)

= fS(M2, M1) (D.9)

On line D.6, we swap the first two operands of the set union thanks to set union
commutativity. On line D.7, we swap the operands of the set intersection within
the big union limits thanks to commutativity of set intersection. On line D.8,
we swap the operands of the fE function because it is commutative as we have
proven.

125

	Introduction
	Related Work
	Research Work
	Common concepts
	Schema features
	Approach properties
	Operational principles
	Technologies
	Running example

	Existing approaches
	Sevilla et al.
	Klettke et al.
	Baazizi et al.
	Canovas et al.
	Frozza et al.

	Comparison
	Input format
	Input type
	Output format
	Implementation
	Simple data types
	Arrays
	Objects
	Aggregates
	References
	Optional properties
	Entity versions
	Union type
	Integrity constraints
	Scalability
	Incremental schema extensibility
	Multi-model context
	Edge-case example

	Design
	High-level design
	Inspiration and added value
	Technology
	Apache Spark

	NoSQL Schema metamodel
	Metamodel evolution
	Differences from the Sevilla et al. NoSQL-Schema metamodel

	Detailed design
	Loading the data
	Removing structural duplicates
	Injection into model
	Folding the models
	Entity reference inference
	Schema extension
	Entity flattening
	Conversion to JSON Schema

	Implementation
	Overview
	New approach implementation
	Metamodel definition
	Implementation source code
	Implementation limitations

	Example applications
	Testing
	Running example

	Experimental analysis
	Functional analysis
	Performance analysis
	Execution
	Results
	Evaluation

	Future work
	Conclusion
	Bibliography
	List of Figures
	Acronyms
	Glossary
	Schemas inferred from the running example
	Sevilla et al.
	Klettke et al.
	Baazizi et al., kind-equivalence
	Baazizi et al., label-equivalence
	Canovas et al.
	Frozza et al.

	Schemas inferred from the edge-case example
	Sevilla et al.
	Baazizi et al., kind-equivalence
	Baazizi et al., label-equivalence
	Canovas et al.
	Frozza et al.

	New schema inference approach
	NoSQL Schema model for the running example
	NoSQL Schema model for the running example, All entities flattened
	JSON Schema for the running example
	NoSQL Schema model for the edge-case example

	Proof of theorem 3.1

