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Abstract: Modern High-Performance Ray Casting toolkits, such as the Intel Em-

bree library, which is a de facto industry standard, are a cornerstone of the high-

performance levels seen in current CPU rendering. The purpose of Embree is an

easy integration into professional image synthesis environments to accelerate

rendering scenes with complex geometry, usually composed of many primitives.

Unfortunately, Embree does not offer support for rendering constructive solid

geometry (CSG), solids composed of a manageable amount of primitive solids by

using set operations. This is a significant drawback since CSG modeling is an in-

tuitive and powerful option for describing complex geometry. In this thesis, we

describe the integration of Embree into the predictive rendering system ART and

propose a method for rendering CSG by combining the traversal of Embree’s and

ART’s internal ray acceleration data structures. The tests we conducted with vir-

tual scenes containing CSG not being constructed from triangle meshes showed

that our method is competitive with the original ART renderer and often even

faster.
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Introduction

Ray tracing is a powerful image synthesis technique used in 3D computer graph-

ics, capable of simulating optical effects, such as reflection, refraction, and scat-

tering, with a high degree of visual realism. For this reason, it offers a variety of

applications. It is used in the entertainment industry, for product design, visual

prototyping, and for creating visualizations in scientific research [Ped19, pp. 91–

128]. Reasons for the popularity of ray tracing algorithms are the physical plau-

sibility of its generated images as well as their simplicity and "elegance".

The origins of ray tracing can be traced back as far as 1968. At that time, a

method was invented to shade wire-framed solids by shooting random light rays

from virtual light sources to the scene geometry and, if an intersection would

be found, placing a symbol at the intersection point [App68]. If enough rays

were generated, there would be a high concentration of these symbols at regions

with high light intensity, which would approximate physical realism. A decade

later, an elaboration of this idea to a shading model that takes global information

into account for calculating light intensities [Whi79], would revolutionize the

computer graphics field.

The calculation of intersection points between cast rays and scene geome-

try is a crucial part of ray tracing. How these points are calculated depends on

the representation of geometric primitives in the scene. Primitives can be rep-

resented analytically or approximated by polygon meshes. Another possibility

is the representation of a shape as a Constructive Solid Geometry (CSG). CSG is

a hierarchical ordering of a set of primitive shapes to which Boolean set opera-

tions have been applied to. This form of representation enjoys popularity in e.g.

Computer-aided geometric design.

Over the years, novel ray tracing algorithms were developed to increase the

physical correctness of rendered images. However, ray tracing remains to this

day a computationally demanding task. Much research was (and still is) devoted

to accelerating the ray tracing procedure to compensate for its computational

expense. Therefore, a wide range of researches focus on accelerating ray trac-

ing algorithms to get better performances. Additionally, ray tracing is by nature

is "embarrassingly parallel", meaning it is well suited for parallel processing by
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Figure 1 A frame of an animation [NVI18] form [Whi79], demonstrating recursive ray
tracing, featuring a glass sphere circulating a second defuse sphere. Both are casting
shadows on a diffuse checkerboard-like ground.

automatic vectorization. As Moore’s law predicted, the computational power in

CPUs gradually increased. Nowadays, modern computers admit an integrated

circuit with multiple cores on which the workload of ray tracing algorithms can

be distributed. While ray tracing was considered impractical when it was pio-

neered, it has now become more accessible thanks to the increase of CPU power

and specialized hardware.

Despite this, exploiting the computational power of modern processors to

their full potential for ray tracing remains challenging. This particular reason

served as the motivation for developing the award-winning ([Int21]), open-

source framework Embree [Wal+14]. Embree offers a set of ray tracing kernels

that maximize the compute capabilities of modern x86 CPU architectures.

One of the design goals behind Embree is to provide an easy integration of the

framework into existing professional ray tracing environments to achieve high

performance when ray tracing virtual scenes with high geometrical complexity.

Thesis subject and motivation
The goal of this thesis is a successful integration of the Embree framework into

the predictive rendering framework The Advanced Rendering Toolkit, to facilitate

the acceleration of ray tracing for constructive solid geometry. The Advanced

Rendering Toolkit will be referred to with its abbreviation ART throughout this
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thesis.

ART offers innovative features, such as efficient spectral rendering (by imple-

menting the "Hero Wavelength Spectral Sampling" technique [Wil+14]), proper

handling of bi-spectral materials (e.g., fluorescent surfaces) [MFW18] and a phys-

ically plausible sky dome lighting model [WH13]. Until the release of Mitsuba

2 [ND+19], ART was, to our best knowledge, the only rendering system that

would support rendering polarization effects, and remains the sole open source

rendering system to support bi-spectral reflectances. These features make ART

an interesting environment for computer graphics researchers interested in the

field of Predictive Rendering.

To ensure this features, ART relies on its proprietary internal data structures

that diverge to a significant degree from those present in other popular rendering

systems (e.g., PBRT [PJH16] or Mitsuba 2). Therefore, Embree’s integration into

ART is a non-trivial task, although Embree was developed with the intention of

it being "used in existing renderers with minimal programmer effort" [Wal+14,

p. 1]. Furthermore, Embree unfortunately does not directly support rendering

CSG.

If a successful integration of Embree into ART could be achieved, a com-

plex image synthesis system with unique predictive rendering features would be

adapted to the industry standard of ray tracing.

Thesis outline
This thesis is structured as follows:

• Chapter 1 provides fundamental background information, including a

brief introduction to the ray tracing technique, explanations of the most

common ray acceleration structures, and a brief overview of the function-

ality of the Embree framework.

• Chapter 2 provides a description of Embree can be used for ray tracing

and a brief introduction to ART, in which Embree will be integrated into.

• Chapter 3 is dedicated to the description of our approach on the inte-

gration of Embree into ART, as well as the implementation of the CSG

operations with Embree.

• Chapter 4 shows the results obtained by testing our implementation on

various virtual scenes.

• Lastly, Appendix B.1 provides a user guide for compiling ART with Em-

bree support.
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Chapter 1

Fundamentals

Under the term ray tracing we understand the utilization of algorithms that in-

volve the casting of virtual light rays for generating images. The purpose of these

light rays is to archive high visual realism by the simulation of real-life behavior.

We as persons can perceive nearby objects or persons due to the following:

Light sources, either natural or artificial, emit electromagnetic (EM) waves. This

radiation is reflected off objects in the scene (informally, it "bounces" on objects).

The human eye or a camera sensor interprets EM waves of different frequencies

as colors. The resulting transport of these EM waves in the scene to the human

eye or a camera sensor forms an image.

The purpose of ray tracing algorithms is to imitate this behavior, usually by

tracing these light rays in reverse order from a point in the scene, a virtual camera

or an "eye point", back to the emitting light source.

An advantage of these ray tracing algorithms is its core procedure being

straightforward when viewed from a theoretical point of view.

Figure 1.1 shows an example of a virtual scene. It is composed of an orange

sphere, a white ground plane, and a light source. Furthermore, an image plane

exists in the scene, on which the 2D image of the 3D scene will be projected. A

ray is consisting of two components, an origin point and a direction vector. The

EyePoint in 1.1 will serve as the origin of the cast rays. In the figure, the image

plane is composed of multiple quadratic "cells" that represent the actual pixels of

the resulting image. Through each of these cells, a ray is cast into the scene from

the eye point.

The subsequent step is to determine, whether that ray intersected a particular

geometry by performing intersection tests on all geometries in the scene
1
.

In case a geometry is intersected, a secondary ray is generated with its origin

1
Testing all geometries present in a complex scene for intersection is of course a naive ap-

proach and not practical at all. This procedure is solely mentioned here for the sake of illustration.

Section 1.3 introduces some common ray acceleration data structures to compensate for this.

6



Figure 1.1 Ray tracing procedure for calculating global illumination.

at the intersection point with the closest distance to the EyePoint and its direc-

tion toward the light source. In case this secondary light ray does not intersect

any other geometry between its origin and the light source, this means that the

first intersection point is exposed to light and the material color at that point is

used for the corresponding pixel (see R1 in figure 1.1). Otherwise, the intersec-

tion point must be in shadow (see R2). This procedure generates an image with

local illumination.

The following chapter is dedicated to providing background information on

ray tracing, shape representation in rendering systems, and ray acceleration data

structures. Furthermore, the Embree framework is introduced.

1.1 Ray tracing algorithms
The following section outlines the development of various ray tracing tech-

niques. The pioneering work of [App68] and [Whi79] will be briefly discussed.

Furthermore, the derivation from the definition of radiance to the rendering

equation [Kaj86], whose numerical solving via Monte Carlo integration is the

purpose of modern rendering environments, will be presented.

1.1.1 Origins of ray tracing
As briefly mentioned in the Introduction, ray tracing was pioneered in 1968 by

[App68]. His work aimed to provide basic shading for wire-framed solids to
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Figure 1.2 Original figures from [App68]. The left figure shows plain solid geometry
and the right figure shows the same solid with shading applied to it.

communicate better spatial relations and depth of objects in the rendered image.

To achieve this shading, virtual light rays were cast from a scene light source

in random directions. Whenever one such ray intersects a geometry, a character

or symbol (e.g., a small "plus"-symbol or square) was placed at that intersection

point. If enough rays were cast, areas on the solid exposed to light would be

shaded by these symbols. The result would then come to be by inverting the

shaded and non-shaded areas of the geometry.

Figure 1.2 shows a result of this approach. Without the additional shading

information, it would be difficult for the observer to perceive the position of

the upper geometry relative to the plane. To achieve convincing results, a high

number of rays had to be generated ("Even for about 1000 light rays, results were

splotchy." [App68, p 3]). At the time of publication, the available hardware was

hardly powerful enough for this shading method.

The idea of casting rays later became a key utilization for a shading model

that aimed for higher realism by taking the "global setting" of geometries into ac-

count [Whi79]. At that time, a variety of shading models existed which were able

to display optical effects convincingly. However, these models usually worked

only in special cases and not well with each other, as noted by Andrew Glassner

in the preface of his book An introduction to ray tracing [Gla89]. For example,

some models existed that were good at calculating reflection effects but could

not handle refraction effects well. And vice versa.

[Whi79] introduced a shading model that would truthfully simulate reflec-
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(a) Light is being reflected from other surfaces before

reaching the Eye Point.

(b) Tree structure storing

the individual reflection and

transmission components.

Figure 1.3 Figures based on the original figures from the paper “An improved illumi-
nation model for shaded display” [Whi79].

tion, shadows and refraction as well as the effects of other conventional shading

models at that time. The model is partially derived from an empirical reflection

model developed by [Pho75]. This so-called "Phong reflection model" assumes

that light, which is reflected from a surface, is composed of ambient reflection,

diffuse reflection and specular reflection. In contrast, Whitted’s model assumes

that the light intensity arriving at the EyePoint from an intersection point is

conglomerated by a specular reflection component and a transmission compo-

nent.

In real-life, light that is propagated towards an observer from a surface most

certainly has interacted with other surfaces before. If true realism of computer

generated images is desired, these previous interactions have to be taken into

consideration, even for virtual scenes with moderately complex geometry. An

example of such an event can be seen in Figure 1.3a.

This natural behavior is implemented in the following way. From the

EyePoint, a ray is cast towards the virtual scene and a possible intersection

point x with the scene geometry is calculated. The transmission and specular

component rays at that intersection point are then recursively calculated and

stored in a tree data structure which is shown in Figure 1.3b. To prevent a branch

of the tree from growing infinitely large, it is truncated as soon as an attempt

is made to access more storage than was previously made available for it. After

such a tree is created, it is traversed recursively in order to calculate the light

9



(a) (b)

Figure 1.4 The Cornell Box scene with direct illumination (Figure 1.4a) and global illu-
mination (Figure 1.4b). Both scenes were rendered by a simple ray tracing program that
was implemented by students attending the course Computer Graphics III - Physically
based rendering (NPGR010), held at Charles University in Prague [Kř19].

intensity at each node, finally resulting in the calculation of the total light inten-

sity that is reflected towards the EyePoint. Between two nodes, the intensity

is attenuated according to a distance function between the intersection points,

associated with the node and the node’s parent node. Such trees are created

and traversed for every pixel of the image plane. This procedure allows for the

convincing display of a variety of optical effects with the help of a single model.

1.1.2 The rendering equation
Figure 1.4a shows an image of the Cornell Box. The scene’s appearance results

from casting a ray into the scene, calculating a possible intersection point, and

then generating a second ray in the direction of the light source. However, the

appearance of the Cornell Box is not physically realistic because the ceiling is

not illuminated. This is since, with this approach, no light rays that interact

with surface points on the ceiling can directly reach the emissive area of the

light source. The degree of realism of the scene shown in Figure 1.4a can be

significantly improved by considering global illumination effects.

In 1986, an integral equation was developed by Kajiya [Kaj86], that would de-

scribe the total reflected radiance towards an observer as the "sum" (or integral)

of all light contributions over a hemisphere at a point on a surface. This math-

ematical model takes direct illumination (light from light sources) and indirect

illumination (light being reflected off other surfaces in the scene) into account.
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The so-called rendering equation is given by

L(x, ωo) = Le(x, ωo) +
∫︂

H(x)
L(x, ωi)fr(ωi → ωo) cos θ∂ωi (1.1)

where

• L(x, ωo) is the total reflected light intensity from a surface point x towards

the observer along the outgoing direction ωo,

• Le(x, ωo) is the radiance emitted at the surface point x and propagated

along ωo,

• H(x) is a hemisphere over surface point x,

• L(x, ωi) is the light intensity incident to x along direction ωi,

• fr(ωi → ωo) is the Bidirectional Reflectance Distribution Function (BRDF),

and

• cos θ is a term, compensating for Lambert’s cosine law.

For a better understanding of the individual terms of the rendering equation,

a definition of radiance and a brief explanation of the bidirectional reflectance

distribution function and the local reflection equation is provided in the follow-

ing subsections. The information provided by these subsections are collated from

the lecture notes of the course Computer Graphics III - Physically based rendering
(NPGR010) held at Charles University in Prague, Czech Republic [Kř19], from

the book Physically based rendering: From theory to implementation [PJH16] and

from the book Computer Graphics: Principles and Practice [Hug+13].

Definition of radiance

We define the radiance of a source, sometimes informally referred to as "bright-

ness", as the power per unit area ∂A perpendicular to the ray in the direction ωo

and per unit solid angle that is propagated along with it (see Figure 1.5a). The

following equation describes this:

L(ωo) = ∂2ϕ

∂ωo∂A cos θ
[W · sr−1 · m−2] (1.2)

where

• ωo is the outgoing direction

• ϕ is flux or radiance per unit time

• A is the surface area, and
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(a) Radiance is defined as the radiant

flux emitted, received or reflected per

solid angle ∂ωo per unit projected area

∂A.

(b) The BRDF is a function defining how much

light from the incoming directionωi is reflected

towards the viewer along the outgoing direction

ωo.

Figure 1.5 Diagrams visualizing radiance (Figure 1.5a) and the BRDF (Figure 1.5b).

• cos θ a term for compensating Lambert’s cosine law

From this definition we can derive the bidirectional reflectance distribution

function.

Bidirectional Reflectance Distrubution Function (BRDF)

The Bidirectional Reflectance Distribution Function (BRDF) is a mathematical

model describing the reflection properties of a given surface. To be precise, it

describes the probability of light energy, arriving at a point x on a surface from

direction ωi, being reflected along the reflection ωo. The BRDF model is defined

by:

fr(ωi → ωo) = ∂Lr(ωo)
Li(ωi) cos θ∂ωi

[sr−1] (1.3)

where

• Lr(ωo) is the reflected light energy from a surface point along the direction

ωo, and

• Li(ωi) is the incident light energy arriving at the surface point from direc-

tion ωi

Properties of BRDFs are the conservation of energy and the Helmholtz reci-

procity, which considers the incident and reflected light intensities in Equation

1.3 as interchangeable without affecting the result. There exist different types

12



of BRDFs: empirical BRDFs, physically based BRDFs, and BRDFs being an ap-

proximation of measured data. BRDFs are a crucial component when calculating

direct illumination with the local reflection equation.

Reflection equation

The Reflection Equation describes how much total light is reflected from a surface

point x towards an observer along a given direction ωo, taking the light intensi-

ties arriving at x from all incident directions into account. It is given by:

Lr(x, ωo) =
∫︂

H(x)
Li(x, ωi)fr(ωi → ωo) cos θ∂ωi (1.4)

where

• H(x) is a hemisphere over the surface point x.

The total amount of reflected energy is calculated by integrating all contributions

of incident radiance over the hemisphere H(x). The BRDF serves as a weight in

this equation because only the energy reflected along ωo is considered.

The rendering equation revisited

The rendering equation, which for reasons of convenience is shown again in

Equation 1.5 can be arguably regarded as an extension of the local reflection

equation.

L(x, ωo) = Le(x, ωo) +
∫︂

H(x)
L(x, ωi)fr(ωi → ωo) cos θ∂ωi (1.5)

Essentially, it describes the total reflection of energy towards direction ωo

from a surface point x as the "sum" or integral of all the light intensity, incident

to all directions over a hemisphere over the point x, together with the intensity

emitted from point x, if x is located on an emissive material. The unknown

variable L is present on both sides of this equation.

This function is a higher-order integral which is difficult to solve analytically.

The most common approach to solving this integral equation is the utilization of

Monte Carlo methods. Monte Carlo methods numerically approximate a given

integral by drawing random samples. The convergence speed of this procedure

is independent of the dimension of the integral. Most of today’s image synthe-

sis algorithms implement Monte Carlo methods to approximate the rendering

equation’s solution.
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Figure 1.6 Tracing a path for calculating global illumination.

Path tracing

Multiple approaches for solving the rendering equation exist, for example, the

radiosity method [Gor+84], which aims at solving it via the application of the

finite element method. However, the most commonly used techniques for solv-

ing the rendering equation are Monte Carlo methods. The Monte Carlo method

path tracing This method is based on the property that in a vacuum, radiance is

constant along straight lines.

When a given ray intersects scene geometry, a secondary ray can be spawned

at the intersection point, going along a direction that conforms to the BRDF as-

sociated with the intersected geometry. By repetition of this procedure, a "path"

of rays is generated.

To calculate light intensity at each pixel of an image, path tracing generates

such paths of rays, starting at the EyePoint and ending at a light source. An

example of such a path is visualized in Figure 1.6. At each intersection point

along the path, the intersected geometries are tested for occlusion concerning

the light sources available in the scene. If another geometry does not occlude

the shape, the direct contribution of the light sources is accumulated. To prevent

the calculations of unprofitable paths, a path is continued according to a so-called

"survival probability." This probability can, for example, be formulated as the re-

flectivity of the surface, which is intersected by a ray. If this surface, for example,

reflects only ten percent of light energy, the path is continued with a probabil-

ity of then percent. To approximate an integral part of the rendering equation,

numerous paths are generated at the intersection point x. To generate the final
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Figure 1.7 Original figure from [Kaj86].

color of the image pixels, the results calculated by the paths are averaged.

Concerning path tracing, we can re-write the rendering equation shown in

1.1 in the following way:

L(x, ωo) = Le(x, ωo) +
∫︂

H(x)
L(ray(x, ωi), −ωi)fr(ωi → ωo) cos θ∂ωi (1.6)

The term ray(x, ωi) is a function for recursively calculating all incoming ra-

diance arriving at the point x.

In comparison to the ray tracing method of [Whi79], path tracing is capable

of simulating advanced optical effects such as soft shadows and diffuse inter-

reflection. An example of this can be seen in Figure 1.4b.

1.2 Solid representations in 3D space
A crucial part of ray tracing algorithms is calculating intersection points between

rays and the scene geometry. Solid objects can be represented in the Euclidean

space in various ways. The intersection testing for these solids will depend on

their representation.

The following section illustrates three types of solid representations in image

synthesis environments, such as ART: Analytic surfaces, polygon meshes, and
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Figure 1.8 Intersection between a sphere S with its center point c and radius r, and
a ray with origin P and direction ω. We attempt to solve a quadradic equation in oder
to obtain points t0 and t1.

constructive solid geometry.

1.2.1 Analytical surfaces
Analytical surfaces are surfaces in three-dimensional Euclidean space, defined

by analytic functions. Common analytical surfaces are quadric shapes (or some-

times called quadrics). Examples of this type of surface representation are

spheres, cones, cylinders, and paraboloids. The equations describing these

shapes can be in implicit form, which has the pleasant property, that testing

whether a point p is located at the boundary of such a surface is easy.

Generally speaking, implicit equations are relations of the form

f(x0, x1, ..., xn−1) = 0 where f is a function of multiple variables. These vari-

ables can be considered coordinates of a point p in n-dimensional space and eval-

uated by function f . An evaluation of f will result in two possible outcomes: ei-

ther f(p) = 0, which means p is located on the surface of the shape, or f(p) ̸= 0,

which means the opposite.

Due to this straightforward evaluation, analytical shapes are well suited for

intersection testing during ray tracing.

In the following, we will provide an example of an intersection calculation

between a given unit sphere S with radius 1 and a given ray R.

The sphere S is implicitly defined by:

S(x, y, z) = x2 + y2 + z2 − 1 = 0 (1.7)

The ray R in its parametric form is defined by:

R(t) = P + tω (1.8)

where

• P is the origin of ray R, a point in Euclidean space,
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Figure 1.9 Polygon mesh of the famous Utah Teapot, rendered with Blender [Ble18]

• t a scalar, and

• ω is a normalized vector.

To obtain the two intersection points, the parametric equation defining R is

substituted into the implicit equation defining S:

(Px + tωx)2 + (Py + tωy)2 + (Pz + tωz)2 − 1 = 0 (1.9)

and then, since all variables with the exception of t are known, solved for t. Once

the two resulting values t0 and t1 are obtained, the two intersection points I0 and

I1 can be expressed as I0 = P + t0ω, and respectively I1 = P + t1ω.

1.2.2 Polygon meshes
Polygon meshes represent shapes as a composition of multiple smaller polygons

connected via shared edges. The higher the number of such polygons the mesh

exhibits, the higher the accuracy of the approximation of the represented shape.

The most common types of polygons used to form a mesh are triangles and quad-

rangles. An example of a representation of a shape as a triangle mesh can be seen

in Figure 1.9. The polygons are usually composed of vertices, edges connecting

these vertices, and a face, which is the area bounded by the vertices and edges.

This information is sufficient to describe a polygon in 3D space. Triangles are

commonly used polygons to form meshes due to their efficient storage in mem-

ory and the property that the vertices of a triangle cannot be co-planar.
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Various ray primitive intersection algorithms exist, for example, the Möller-

Trumbore intersection algorithm [MT97] for intersecting triangles. To test a

given ray for intersection with a polygon mesh, in theory, all polygons contained

in the mesh in question must be tested for intersection. This is, of course, a naive

and costly approach since the number of intersection tests that need to be per-

formed is linear in the number of polygons. As such, polygon meshes are often

composed of several thousand polygons, and testing them all for intersection

has a decisive influence on the performance of the rendering process. Section

1.3 introduces acceleration data structures, aiming at the minimization of those

intersection tests.

1.2.3 Constructive solid geometry (CSG)
The idea behind constructive solid geometry (CSG) is the representation of more

complex geometry by the application of Boolean set operations to a manageable

amount of geometric primitives. The Boolean set operators are union (logical

OR), intersection (logical AND) and difference (denoted as SUB-operator). The ge-

ometric primitives of which CSG are composed are usually analytically described

surfaces such as spheres, cones, and cylinders. However, polygon meshes can be

treated as such primitives, too.

The representation of solids as constructive solid geometry offers one sig-

nificant advantage: Complex geometry can be expressed via the composition

of a manageable amount of primitive shapes instead of large numbers of poly-

gons in a polygon mesh. Because testing whether a point lies inside or outside

a primitive is easy, as noted in Section 1.2.1. Since the number of primitives of a

composed CSG is usually lower than the number of polygons in a polygon mesh,

the number of intersection tests in each render pass is comparatively low and

computationally cheap.

Figure 1.10 shows the results of the application of each Boolean set operator

to two sphere primitives. The resulting shapes come about by evaluating the

intersections between a ray and the spheres, that have been calculated during

the ray tracing procedure, according to the respective set operation. Figure 1.11

provides a visual depiction of this.

Multiple such applications of set operations with geometric primitives can be

hierarchically ordered in a binary tree, which we will call the CSG tree. One ex-

ample of such CSG tree is provided in Figure 1.12. Its leaves are associated with

the geometry primitives, its interior nodes with set operations. Due to the pos-

sibility that two primitives can be translated, rotated, or scaled before a Boolean

operator is applied to them, the corresponding edges of the tree can be associated

with transformation information (this is indicated in Figure 1.12 with the matrix

icon).
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(a) Union of two spheres (OR
operator).

(b) Intersection of two

spheres (AND operator).

(c) Left sphere with the right

sphere "subtracted" from it

(SUB operator).

Figure 1.10 Boolean operators union (1.10a), intersection (1.10b) and difference
(1.10c) applied to two sphere objects.

The CSG tree is utilized during ray casting for calculating the intersections

between a ray and the CSG. The tree is traversed recursively. When visiting a

node’s child node, the ray is transformed according to the transformation infor-

mation associated with the edge between node and child node. If the visited node

is a leaf node, we calculate the intersection points between the ray and the solid

represented by that node. If the visited node is an internal node representing a

Boolean set operation, we determine two sets of intersections by recursively ap-

plying the procedure to the node’s two child nodes. The individual intersection

points are then inversely transformed to the current coordinate system of the

node and evaluated according to the set operation represented by it.

The first algorithm for ray tracing CSG was developed by [Rot82].

1.3 Acceleration data structures
The computational cost associated with ray tracing and path tracing algorithms

has always been regarded as a "necessary evil" one faces when desiring highly

realistic images. An often-cited fact is Whitted’s observation that, for complex

scenes, 95 percent of the time used by his algorithm is spent on intersection

calculations [Whi79, p 349].

It was only a logical consequence that new ideas were introduced over time,

aiming at accelerating the ray tracing process. Be it through the minimization

of the number of rays cast into the scene, the development of faster intersec-

tion testing algorithms, or the minimization of ray-primitive intersection tests.

Acceleration data structures are intended to address the latter. By utilizing these

structures, one essentially trades a a performance increase for a larger mem-
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(a) In total, the ray intersects both

spheres at four points.

(b) When applying a union set oper-

ation to the two spheres, the two in-

tersection points that lie in the interior

or boundary of both spheres are disre-

garded.

(c) Complementary to the union, the

intersection set operation disregards

the two intersection points that do not

lie in the interior or boundary of both

spheres.

(d) When a difference set operation is

applied to "subtract" the right sphere

from the left sphere, only the intersec-

tion points that lie in the interior or

boundary of the left sphere are consid-

ered.

Figure 1.11 Selection of calculated intersection points between a ray and two spheres
according to the Boolean set operations. The horizontal line illustrates the ray, and the
red circles depict the intersection points. The outlines of the two spheres depict a cross-
section of the 3D objects.
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Figure 1.12 Visualization of a CSG tree hierarchy, originally created by [Zot21] and
updated with a matrix icon symbolizing affine transformations of geometries.
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Figure 1.13 Example of a bounding volume hierarchy, published in [PJH16]. (a) rep-
resents a 2D scene, consisting of shapes enclosed with axis-aligned bounding boxes
(indicated by the rectangles with dashed edges). Further bounding boxes enclose the
bounding boxes of the two shapes in the bottom left and the whole scene. (b) shows the
associated BVH tree structure.

ory footprint. The following subsections focus on two popular acceleration data

structures commonly used: Bounding volume hierarchies and KD trees.

1.3.1 Bounding volume hierarchies
Bounding volume hierarchies (BVHs) are hierarchical structures of bounding vol-
umes, aiming at the reduction of unnecessary intersection tests. Bounding vol-

umes enclose geometries with an analytical shape, such as a sphere, a cylinder,

or a box. As previously discussed in Section 1.2.1, testing for an intersection be-

tween a given ray and an analytical shape is easy. If no intersection with such

volume is found, it is logical that an intersection between the ray and the en-

closed geometry is not possible. Therefore, the intersection calculation between

the ray and the enclosed geometry can be safely disregarded.

Bounding volumes should ideally be chosen to fit the enclosing geometry as

tight as possible to reduce the number of unnecessary intersection tests further.

However, a most commonly used volume is an axis aligned bounding box, a hy-
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perrectangle whose sides are parallel to the axis of the coordinate system. Such

boxes might not enclose the geometry as tight as possible. On the other side,

testing for intersections becomes computationally cheap, and not much memory

is needed to store them.

These bounding volumes can be again enclosed in a bounding volume, and

thus, complex hierarchies of bounding volumes can be formed. A BVH is a hi-

erarchy of multiple of such bounding volumes stored in a tree structure. The

leaves of the tree represent the bounding boxes of the geometry contained in the

scene, and the interior nodes are associated with bounding volumes enclosing

the node’s children. The bounding box associated with the tree root encloses the

entire scene. An example of such a tree structure is given by Figure 1.13.

A BVH that is build over n primitives obtains 2n − 1 total nodes, n leave

nodes and n − 1 interior nodes, as noted in [PJH16].

During ray tracing, the BVH is traversed, and a cast ray is tested for inter-

sections between the bounding box associated with the current tree node. If an

intersection is found, the traversal continues in the node’s children, otherwise

traversing the subtree rooted at that node is disregarded.

A variety of different variants of BVHs exists. Their individual strengths and

weaknesses depend on the target application (e.g., on whether it supports dy-

namic or static scenes) and the system architecture (e.g., on the CPU instruction

set)
2
.

1.3.2 KD trees
K-dimensional trees (or KD trees), which were introduced by [Ben75], belong to

the group of binary space partitioning trees (BSP trees). The crucial difference

between this tree structure and the BVH is that the BVH uses bounding boxes

to group geometric shapes, while BSP trees recursively subdivide k dimensional

space with k − 1 dimensional hyperplanes to group shapes.

One subdivision of space occurs when the number of geometric primitives

contained in it is greater than a specified threshold. When one such subdivi-

sion takes place, space is divided into two smaller half-spaces. This procedure

is repeated for each of the two half-spaces until the number of primitives in a

subdivided area is smaller or equal to the threshold. The hyperplanes that parti-

tion space are stored in a tree structure. The root of the tree is associated with

the hyperplane splitting the bounding volume of the entire scene. Its children

to the left are the hyper-planes and geometric objects in one half-space, and the

2
For more information on these various types of BVHs, we would like to re-direct the inter-

ested reader to the research article “A Survey on Bounding Volume Hierarchies for Ray Tracing”

[Mei+21].
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Figure 1.14 Partition of a 2D scene in subspaces A, B, C, and D with one-dimensional
lines 0, 1, and 2, subdividing the scene. This figure was originally published in [HH11].

children to the right are the planes and objects located in the other half-space.

The leaf nodes correspond to a list of geometries located in the area bounded by

the hyper-planes associated with their parent nodes in the tree.

KD trees are a specialized case where the split-planes are perpendicular to

one of the coordinate axes. In this subsection, we will only consider the subdi-

vision of three-dimensional space with KD trees. During the recursive splitting,

the axis to which the current plane is perpendicular is alternated. The tree’s root

represents the plane subdividing the bounding box enclosing the entire scene.

The traversal of the KD tree for calculating intersections between a ray and

the scene geometry is almost similar to the traversal of bounding volume hierar-

chies. The crucial difference lies in the calculation of volumes bounded by split

planes, as opposed to axis-aligned bounding boxes, before testing the contained

geometry for intersections.

When a given ray does not intersect the box containing the entire scene ge-

ometry, there is no need to traverse the KD tree. Otherwise, we test for intersec-

tions between the ray and the two volumes bounding the half-spaces, separated

by the split plane, represented by the tree root. These two half-spaces are as-

sociated with the children to the left and the right of the root node. If the ray

does not intersect one such half-space, bounded by the scene bounding box and

the split plane, the corresponding subtree is not further traversed. Otherwise,

the same procedure is recursively applied to the child nodes until a leaf node is

reached. In this case, the geometries in the list corresponding to the leaf node

are tested for intersection.

A variety of construction and traversal algorithms exists for KD trees, for

example the algorithm described in [WH06].
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1.4 Intel’s Embree framework
Despite the effect of various ray acceleration data structures and hardware opti-

mizations, exploiting the full capabilities of modern CPUs, which exhibit differ-

ent architectures and instruction sets and support different algorithms and data

structures, remains challenging for ray tracing applications.

Embree is a high performance rendering framework written in C99 which

addresses this problem. It offers a collection of vectorized kernels optimized

for communication with CPUs that support SSE, AVX, AVX2, AVX-512, and in-

struction sets. The provided kernels offer a variety of components, e.g., different

types of BVHs, traversal algorithms, and intersection algorithms, Figure 1.15

provides an overview. For rendering, Embree will decide on which are the best-

suited components to use for building the acceleration structure. It selects these

components based on the information provided by the user and on the target

CPU architecture. The latter is performed by the "Ray Tracing Kernel Selection"

layer of the hierarchy shown in Figure 1.15.

Interesting features of Embree are:

• Finding of the closest hit point, or alternatively any hit point,

• support for the cast of single rays, ray packets containing 4, 8 or 16 rays,

and so-called ray streams of any desired number of rays,

• high-quality BVH builders,

• support for the Intel SPMD Program Compiler (ISPC) and the Intel Thread-

ing Building Blocks (TBB), and

• independence from any other graphics API such as OpenGL or DirectX

An API for the integration into existing rendering systems is provided and

described in a detailed documentation [Int21]. This documentation furthermore

offers a tutorial for the familiarization of the framework to new users. The name

of the functions belonging to this API are preceded by the abbreviation rtc ("ray

tracing kernels"), data types have the abbreviation RTC predeceasing their name.

For example the variable RTCScene stores the virtual scene for Embree, and the

function rtcIntersect1 performs the intersection testing with a single ray.

Embree supports various geometric shapes such as triangles, quads, and cer-

tain types of curves, such as Bézier curves, B-Splines and Catmull-Rom-Splines.

Another notable feature of Embree is the support of custom geometries of the

rendering system it is integrated into. These will be referred to as user-defined
geometries.
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Figure 1.15 System overview of Embree. This figure is a slide from the SIGGRAPH
presentation Embree Ray Tracing Kernels 3.X: Overview and Features [Ben18].

Embree is open source and therefore publicly available. Supported platforms

are (32-bit and 64-bit), Linux (64-bit), and macOS (64-bit). The latest version of

Embree at the time of writing this thesis is 3.13.0.
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Chapter 2

Technical details of Embree and
ART

The following chapter is dedicated to the familiarization of the Embree library

and the target application ART, in which Embree will be integrated. However,

in this chapter, we will only consider the aspects that are relevant for our imple-

mentation. For a comprehensive overview of Embree, we would like to re-direct

the reader to the Embree user documentation [Int21], further information about

ART can be found in the ART Handbook [Wil+ndb] and the ART Scene File Ref-

erence Manual [Wil+nda]
3
.

2.1 Ray Tracing with Embree
Embree follows a device concept, allowing for using the Embree API by differ-

ent components of the image synthesis application without interfering with each

other. An RTCDevice is created with the function rtcNewDevice and released

via the function rtcReleaseDevice. Embree uses such device types to create

further components, such as virtual scenes, which serve as the container for var-

ious scene geometry.

Scene Devices

A scene in Embree, represented by the data type RTCScene, is created via the

function rtcNewScene, to which the RTCDevice is passed to as an argument.

It is released via the function rtcReleaseScene. Different geometries can be

3
At the time of writing this thesis, both the ART Handbook and the ART Scene File Reference

Manual are still work in progress, and therefore incomplete. However, these documents are about

to be completed in the near future.
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attached to the scene device by the function rtcAttachGeometry, which will

furthermore assign a unique ID to the geometry, and detached from the scene

device by the function rtcDetachGeometry. Once an RTCGeometry is attached

to the RTCScene, it can be released via the call of the function rtcReleaseGe-
ometry.

After the attachment of the complete scene geometry, the scene is commit-

ted by calling the function rtcCommitScene to trigger the creation of Embree’s

internal acceleration structures. After the invocation of this function, the indi-

vidual geometries cannot be edited or manipulated.

Geometries

Geometries in Embree are represented by a RTCGeometry data type. These types

can be created with the function rtcNewGeometry which takes the RTCDevice
and an enum specifying the geometry type (e.g., triangle, quad, user-defined

geometry) as input parameters. In the case of the geometry is a triangle, quad-

rangle, or a type of curve, corresponding geometry buffers can be created and

linked to the RTCGeometry by invoking the function rtcSetNewGeometry-
Buffer. These buffers will store information such as vertices, indices, and

surface normals of the geometry.

To initialize a user-defined geometry, one has to provide a function for calcu-

lating the bounding box for the geometry, a function for intersection testing, and

another function for occlusion testings. These functions are passed to Embree

as callback functions. Furthermore, the number of geometric primitives, which

together compose the geometry, has to be set, and a so-called user data pointer
associated with the geometry has to be initialized. A user data pointer points

to the representation of the geometry by the rendering application in memory.

The user data pointer can also be associated with geometry types other than

user-defined geometry. In the interior of the callback function for calculating

the intersection with the user-defined geometry, the original representation of

the geometry can be easily retrieved via this pointer.

User data pointers are initialized with the function rtcSetGeometryUser-
Data. The passing of the various callback functions to Embree is done via invo-

cation of the functions rtcSetGeometryBoundsFunction, rtcSetGeometry-
IntersectFunction, and rtcSetGeometryOccludedFunction.

Ray Casting

Once the RTCDevice and the RTCScene are set up, the scene geometry is attached

to the RTCScene and the internal acceleration data structures have been built,

nothing stands in the way of performing the actual ray tracing with Embree.
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Listing 2.1 The RTCRayHit struct. The segment of code displayed here is part of the
original Embree source code.

/* Combined ray/hit structure for a single ray */
struct RTCRayHit
{

struct RTCRay ray;
struct RTCHit hit;

};

Listing 2.2 The RTCRay struct. The segment of code displayed here is part of the
original Embree source code.

/* Ray structure for a single ray */
struct RTC_ALIGN (16) RTCRay
{

float org_x ; // x coordinate of ray origin
float org_y ; // y coordinate of ray origin
float org_z ; // z coordinate of ray origin
float tnear ; // start of ray segment

float dir_x ; // x coordinate of ray direction
float dir_y ; // y coordinate of ray direction
float dir_z ; // z coordinate of ray direction
float time; // time of this ray for motion blur

float tfar; // end of ray segment (set to hit
distance )

unsigned int mask; // ray mask
unsigned int id; // ray ID
unsigned int flags ; // ray flags

};
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Listing 2.3 The RTCHit struct.The segment of code displayed here is part of the orig-
inal Embree source code.

/* Hit structure for a single ray */
struct RTC_ALIGN (16) RTCHit
{

float Ng_x; // x coordinate of geometry normal
float Ng_y; // y coordinate of geometry normal
float Ng_z; // z coordinate of geometry normal

float u; // barycentric u coordinate of hit
float v; // barycentric v coordinate of hit

unsigned int primID ; // primitive ID
unsigned int geomID ; // geometry ID
unsigned int instID [ RTC_MAX_INSTANCE_LEVEL_COUNT ]; //

instance ID
};

To cast rays into a virtual scene with Embree, a per ray query intersection

context, RTCIntersectContext, has to be set up via the function rtcInitIn-
tersectContext. This structure is used for the configuration of intersection

flags, among other things. Subsequently, a RTCRayHit struct is declared. This

struct is composed of an RTCRay struct, abstracting the ray that Embree uses

to perform the intersection testing, and an RTCHit struct, in which information

concerning the intersection point is stored. This information contains the sur-

face normal, the barycentric UV coordinates of the point, and the geometry ID

associated with the intersected geometry are stored. The RTCRay struct stores

the ray orientation and direction, so-called tnear and tfar values, indicating

the boundaries of a range of possible hit distances and other information.

The RTCRayHit, RTCRay and RTCRay are shown in Listings 2.1, 2.2, and 2.3.

When the target ray tracing application is generating a ray, the values of the

RTCRay struct are updated with the ray orientation and direction. The tnear
value is to a very small value (usually close to zero) and the tfar value is set to

a large value. The geometry ID of the RTCHit struct is initialized with the macro

RTC_INVALID_GEOMETRY_ID.

After the RTCIntersectContext and the RTCRayHit structs have been suc-

cessfully initialized and updated, the ray-primitive intersection testing is per-

formed via invocation of the function rtcIntersect1 to which the RTCScene,

a reference to both the RTCIntersectContext and the RTCRayHit are passed

as arguments. In case of a found intersection, this function will update the tfar
value of the RTCRay with the closest hit distance and the geometry ID of the
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RTCHit with the geometry ID associated to the intersected geometry.

In the case of performing intersection testing between a user-defined geom-

etry and a ray, these values must be updated manually inside the intersection

function that was passed to Embree as a callback function.

When the intersecting testing procedure has finished, the geometry ID of the

RTCHit will give insight on whether an intersection was found or not. If the value

of this variable remains RTC_INVALID_GEOMETRY_ID, one can conclude that no

intersection was found. Otherwise, an intersection was found, and the RTCRay
and RTCHit components of the RTCRayHit will provide the hit distance, the co-

ordinates of the surface normal at the intersection point, and the UV coordinates

of the intersection point.

2.2 A brief introduction to ART
As indicated in the introductory chapter, ART considers its target audience com-

puter graphics researchers interested in predictive rendering. Predictive render-

ing is a branch of the computer graphics field that is dedicated to the accurate

prediction of object appearances under different viewing conditions (compare

[Wil+09].) While the purpose of "conventional rendering" (to which we count the

ray tracing techniques encountered in Chapter 1) lies in the creation of "believ-

able" imagery to create a certain impression to an observer, predictive rendering

is concerned with the synthesis of radiometrically correct images.

Its unique predictive rendering features mentioned in the introductory chap-

ter make ART stand apart from other rendering systems. The latest version of

ART at the time of writing this thesis is 2.0.3.

2.2.1 Overview of ART
ART is composed of several UNIX-like-command line applications (hence the

name Advanced Rendering Toolkit). These applications are written in C and

Objective-C.

Scenes about to be rendered by ART are described in proprietary scene files.

These files, with the file extension .arm, contain valid Objective-C code that is

compiled by ART at the beginning of a rendering job.

In the following, we provide an overview of the individual applications con-

tained in the toolkit:

artist
This is the actual command-line application renderer, taking an ARM scene
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file as input and storing the raw information gathered by path tracing pro-

cess in an intermediate file described in a proprietary file format.

tonemap
This tool can be used for tone-mapping the (possibly spectral) informa-

tion stored in the file being created by artist in order to obtain viewable

results.

bugblatter
This application creates difference images of two provided, same-sized im-

ages. These difference images can be useful when debugging computer

graphics applications or comparing different rendering techniques.

polvis
Since ART supports rendering polarization effects by storing the amount of

polarized light per pixel in each pixel of a spectral image, these polarization

effects can be visualized by using this tool.

For our integration of Embree, the only relevant application is artist. To

successfully render an image with artist in the ARM scene file, one has to

provide at least a virtual camera, the scene geometry, and so-called action se-
quence. An action sequence is a user-defined procedure that can be thought of

as a pipeline. Other applications of the toolkit, like tonemap or polvis, can be

invoked in these action sequences, too.

To execute the individual steps defined by an action sequence, which are re-

ferred to as actions, ART makes use of a single stack data structure. During the

execution of one such action, one or multiple data objects are taken off the stack,

manipulated according to the action in question, and placed back on the stack.

One example of such an action would be creating axis-aligned bounding boxes

for each object present in the scene. Here, the scene graph object is popped from

the stack, bounding boxes are calculated for each geometry, then these boxes are

inserted into the scene graph. Further bounding boxes enclosing these for the

geometries are calculated and inserted into the scene graph. Finally, the manip-

ulated scene graph is pushed back to the stack.

Another noteworthy detail to mention is the ability of ART to utilize multiple

available processor cores to perform a rendering job. By default, ART determines

the number of available cores before the path tracing. However, a desired amount

of cores to perform the rendering job can be provided by invoking

$ artist foo.arm -j<n>

To achieve lock-free parallelism between the individual threads, the scene

graph is copied, and one such copy is assigned to each thread.
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2.2.2 Scene graph infrastructure
Some popular rendering systems (among them Mitsuba 2 and PBRT) describe

a virtual scene in the following way: A scene, abstracted by a Scene class ob-

ject, obtains a collection of geometric shapes. These shapes are represented by a

Shape base class, from which various geometry types are derived.

This Shape base class offers functions for calculating bounding boxes for the

described geometry and performing intersection tests between them and a ray.

This is an ideal design for Embree since these shapes can be initialized as user-

defined geometries. Once Embree finds an intersection with a bounding box of

a particular shape, its representation in memory can be retrieved via the user

data pointer and an instance function of the Shape class for ray-intersection

testing can be called. The values of the RTCRayHit struct can be updated in the

intersection callback function with the values.

The internal acyclic scene graph of ART diverges significantly from this de-

sign. Here, we provide an overview of different nodes in the scene graph and

their functionality. The scene graph, which was assembled by ART to render the

image displayed in Figure 1.10a, is shown in Figure 2.1. Table 2.1 displays its

nodes and a brief description of their functionality and relation to other nodes.

However, for reasons of brevity, we will only list nodes for which the comprehen-

sion of their functionality is important to follow the implementation described

in the next chapter. On particularity of the scene graph is that it can be utilized

by every application mentioned in the previous section.

Throughout this thesis, we will refer to the subgraph rooted at the Bounding
Box node, which is a direct child of the BSP Tree node and resembling the scene

geometry as Original scene graph. The BSP Tree node is associated with another

data structure, namely the KD tree, built over the scene geometry described by

the original scene graph.

Furthermore, in the scene graph shown in Figure 2.1, from one particular

node of type Combined Attributes, arrows with dashed lines are pointing to other

nodes associated, e.g., with the BRDF of the shape represented by the child node,

or nodes associated with transformation information. All of the Combined At-

tributes nodes have these references. For reasons of clarity, these references are

shown for only one Combined Attributes node in the figure.

33



Figure 2.1 Scene graph used to render Figure 1.10a. In this graph, bounding boxes
have already been inserted, and a KD tree was built over the scene. This KD tree is
associated with the BSP Tree node in the graph.
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Scene graph node Function

Shape nodes are nodes that are associated with a geo-

metric shape, such as a sphere or a triangle. Nodes of

this type are always leaf nodes. In Figure 2.1, two such

nodes are present: One representing a sphere, which is

instantiated twice, and a so-called infinite sphere, used as

a skydome model.

Combined Attributes nodes are superordinate to Shape

nodes. They contain references to, e.g., the BRDF associ-

ated with the underlying shape and to a Transformation
node describing the transformation of the shape. In Fig-

ure 2.1, one single Shape node is the child of two different

Combined Attributes nodes. This means two instances

of shape are created with different attributes.

Bounding Box nodes represent bounding boxes, enclosing

the components associated with the node’s children.

CSG nodes are nodes that are associated with the Boolean

set operations union (OR), difference (SUB), and inter-

section (AND). They have two direct child nodes. The

subgraphs rooted at those child nodes represent geome-

tries on which the set operation associated with the CSG

node is applied.

The BSP Tree node is associated with the KD tree that is

built over the scene. The subgraph rooted at this node

corresponds to the entire scene geometry, over which

the KD tree is built.

Table 2.1 Nodes in the scene graph displayed in Figure 2.1 and their functionality.

2.2.3 Intersection calculation in ART
A crucial part of rendering a scene in ART is the calculation of intersections be-

tween a cast ray and scene geometry and their subsequent evaluation. These

intersections are calculated by traversing ART’s internal KD tree. Functionality

for this traversal is abstracted in an Objective-C class called ArnRayCaster. In-

stance variables of this class store, among other information, the ray that is cast

into the scene, a reference to an intersected shape, and a so-called traversal state,

which is a C struct containing references to, e.g., the surface and volume material

of the intersected shape and its transformation information.

The intersections calculated by the KD tree traversal are stored in intersec-
tion lists. An intersection list, abstracted within ART with the C struct ArIn-
tersectionList. This structure is essentially a linked list, storing the individ-
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(a) Image rendered by traversing the

KD Tree.

(b) Image renderd by traversing the

original scene graph.

Figure 2.2 Comparison of rendered images by traversing ART’s internal KD tree and
traversing the original scene graph.

ual intersections. Such an individual intersection is represented in ART by the

ArcIntersection class, whose instance variables are a double storing the dis-

tance from the ray origin to the intersection point and references, e.g., to the

intersected shape.

There exists an alternative to the KD tree traversal in ART for calculating in-

tersections: Namely through the traversal of the original scene graph. When con-

sidering Figure 2.1, the original scene graph is rooted at the Bounding Box node

that is a child of the BSP Tree node. The classes corresponding to the Bounding

Boxes node, the CSG node, the Combined Attributes node, and the Shape node

provide a function called getIntersectionList. When this function is called

from the topmost Bounding Box node in Figure 2.1, the function recursively calls

the getIntersectionList functions of its children until the Shape nodes are

reached, where the actual intersections are calculated. The getIntersection-
List function of the CSG node first calls the getIntersectionList function

of its left and right child, and then evaluates the found intersections according

to the set operation this node represents.

Although the calculation of the intersections between a ray and the scene

geometry is significantly faster with this alternative procedure, since no actual

acceleration data structure is traversed, traversing the original scene graph leads

to visible artifacts in the resulting image. Figure 2.2 shows a comparison between

an image rendered by traversing ART’s internal KD tree (Figure 2.2a), and the

original scene graph (Figure 2.2b). The image rendered by the original scene

graph traversal exhibits noticeable noise, and a black triangle is visible on the
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vertical stabilizer of the biplane in the image.
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Chapter 3

Integration of Embree into ART

The following section outlines our approach to the integration of Embree

into ART. The language in which the individual procedures are formulated is

Objective-C since the higher-level functionality of ART has been written in this

language. The Embree library itself is written in C and intended for the integra-

tion into image synthesis environments written in C/C++, which is the industry

standard. However, due to Objective-C being a strict superset of C, these two

languages can be intermixed seamlessly. Therefore, no issues concerning the

cross-linking of C and Objective-C were discovered during the development.

3.1 Design choices
One important design choice was to abstract functionality regarding Embree in

a single class, which we gave the name ArnEmbree, conform to the naming con-

vention of Objective-C classes in ART. Classes of type "Arn<name>" belong to

the category of so-called "Scene graph classes", to which, according to our own

opinion, the ArnEmbree class belongs the closest to.

The main tasks of this class are the creation and deletion of an RTCDevice
and an RTCScene, the adding of different scene geometry to the RTCScene, and

performing the intersection calculations with Embree. This class will act as a

singleton object. To quote from the ART handbook: "Apart from this struct,

[the art_gv global variable]
4

there are no genuine global variables in ART, only

global constants" [Wil+ndb, Chapter 4.1.2]. The singleton object obviously con-

tradicts this statement. The main reason for this design is to keep the functional-

ity regarding Embree separate from the functionality of what we will from now

on referring to as Native ART, the original Advanced Rendering Toolkit without

4
The art_gv is a struct containing information that is globally accessible to the different class

objects in ART. For more information on this, we refer to the ART Handbook.
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Listing 3.1 Retrieval the ArnEmbree singleton object.

ArnEmbree * embree = [ ArnEmbree embreeManager ];

Listing 3.2 Verifying if Embree support was enables by the user.

if( [ ArnEmbree embreeEnabled ] )
{

// ...
}

Embree integration.

At an early stage of the development of our approach, it was not obvious

whether Embree could be integrated into ART at all. If our work on the integra-

tion were unsuccessful, this separation would ease restoring ART to its original

form. In spite of this separation, an inclusion of the ArnEmbree singleton class

to the art_gv variable is a solvable problem.

Another design decision was to enable support from Embree only when the

user provided the parameter flag -e or –embree when invoking artist, like this:

$ artist foo_scene.arm -e

Initially, the provision of a parameter flag was intended for easily switching

Embree support on and off to draw comparisons between the performances of

ART with and without the help of Embree. However, we kept this functionality

because there is one case (revolving around the rendering of CSG composed of

triangle meshes) where ray tracing with Embree is inefficient. We will turn to

this circumstance in more depth when discussing the results in Chapter 4.

Once the command line arguments of artist are evaluated, the ArnEmbree
singleton class object, which we gave the name "embreeManager", is initialized

and set up, if the parameter flag was set. Otherwise, embreeManager is set to

NULL. From this point on, the ArnEmbree singleton can be retireved from any-

where in the code and at any point of the action sequence by the instruction,

shown in Listing 3.1.

Furthermore, if the singleton was initialized and set up, another global

Boolean variable, indicating whether Embree is enabled or not, is set to true.

The value of this Boolean can be retrieved by calling the class method called

embreeEnabled. An example of this is given in Listing 3.2.
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3.2 The ArnEmbree class and extension of the
ArnRayCaster class

The ArnEmbree class is constructed the following way: Instance variables are

provided to store a single RTCDevice and a single RTCScene for Embree. Al-

though the instantiation of multiple scenes on a single device is possible with

Embree, we consider only single scenes containing all scene geometry since ART

does not support the instantiation of multiple scenes.

Furthermore, class methods are defined for the initialization of different ge-

ometry types for Embree, their attachment to the RTCScene, and finally for com-

mitting the RTCScene, which will trigger the build of Embree’s internal spatial

acceleration data structures. Due to these data structures, the creation of ART’s

internal KD tree is not necessary and can be discarded.

In order to perform the actual ray-primitive intersection testing with Em-

bree, an instance method was added to the ArnRayCaster class, which we gave

the name getIntersectionListWithEmbree. If Embree support is enabled, in-

stead of traversing ART’s KD tree, this method is called. In this function, a given

ray is converted to an RTCRay and Embree’s internal function for intersection

testing, rtcIntersect1, is invoked. Since ART only supports the cast of single

rays, as opposed to ray packets, functionality for casting ray packets with Em-

bree is not considered. After the intersection testing is performed, the tfar value

is updated with the hit distance (which will remain being set to INFINITY if no

intersection was found). The UV coordinates, the surface normal at the hit point,

and the shape associated with the hit geometry are stored in an intersection list.

From this point, the ray tracing process continues as usual until the next ray is

cast into the scene.

3.3 Initializing shapes for Embree
ART supports a variety of different geometrical shapes. An overview of these

shapes can be found in the ART Scene File Reference Manual. The supported

shapes are divided by ART into two categories: Analytic shapes and Simple in-
dexed shapes. Analytic shapes are represented by ART as outlined in Section

1.2.1. Simple indexed shapes, on the other hand, are described by an array of

vertices and indices associated with the shape in question (similar to the triangle

primitives in OpenGL). In ART, two shapes, namely triangles and quadrangles,

are considered simple indexed shapes. Figure 3.1 shows example shapes belong-

ing to the two categories. This section describes the initialization of these shape

types for Embree.
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(a) An example of a simple

indexed shape: a triangle.

(b) An example of an alytical

shape: a torus aligned on Y-

axis.

Figure 3.1 Shape types in ART.

Although it would be convenient to initialize all shapes in ART as user de-

fined geometries for Embree, we make the distinction between user-defined ge-
ometry and non-user-defined geometry.

Into the first category will fall the analytically described shapes. Triangles

and quadrangles will be regarded as non user defined geometry and represented

by Embree’s own primitive types RTC_GEOMETRY_TYPE_TRIANGLE and RTC_-
GEOMETRY_TYPE_QUAD. This division makes sense since the rendering of these

primitive types with Embree is more efficient than the rendering user defined

geometries. Furthermore, all the information needed to set up these primitive

types is the vertices and indices associated with the shape. They can be easily

transferred from ART to Embree.

The initialization of geometries for Embree takes place during the assembly

of the scene graph from the information that has been parsed from the ARM

scene file. To be precise, a particular shape is initialized for Embree when the

Combined Attributes nodes and Shape nodes associated with it are created and

inserted into the scene graph. After this insertion, an instance method of the

ArnEmbree class, initEmbreeGeometry, is called. The shape object itself, to-

gether with the Combined Attributes object, and the transformation matrix,

are passed as function arguments.

The initEmbreeGeometry function does the following:

• Initialization of an RTCGeometry

To initialize a geometry for Embree, an RTCGeometry needs to be cre-

ated. After initializing a geometry for Embree, it is committed via the

function rtcCommitGeometry, attached to the RTCScene by invocation
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Figure 3.2 Flowchart describing the workflow of the initEmbreeGeometry function.
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of the function rtcAttachGeometry, and released by calling the func-

tion rtcReleaseGeometry. When a particular geometry is successfully

attached to the RTCScene, a unique identifier is assigned to it. This iden-

tifier, an unsigned integer value, is referred to as the geometry ID. The

geometry ID is stored in an instance variable of the Shape or Simple
Indexed Shape class. It allows for the retrieval of the RTCGeometry from

Embree for alteration. However, the retrieving of RTCGeometry variables

is only possible before committing the RTCScene.

• Initialization of GeometryData struct and setting up the user data
pointer for Embree

Once a shape is successfully attached to the RTCScene, a C struct associ-

ated with the shape is dynamically allocated and initialized. Subsequently,

a user data pointer pointing to this struct is set up for Embree via the

function rtcSetGeometryUserData. This struct, which we call Geome-
tryData, stores information that is needed for calculating the intersections

between a ray and a user-defined geometry in ART. It is shown in Listing

3.3.

GeometryData structs store the geometry ID associated with the shape and

issued by Embree, ART’s representation of the shape in memory, a struct called

ArTraversalState, storing information such as the surface material of the

shape, a Combined Attributes object, and a Boolean variable indicating if the

shape is user-defined or not.

As mentioned before, user data pointers are intended to retrieve shapes in a

specified callback function for ray tracing user-defined geometry with Embree.

We, on the other hand, associate every shape present in a scene with such a Ge-
ometryData struct, even for non-user-defined geometries, solely to differentiate

between these two types of shapes.

Subsequently, this struct is stored in a linked list, whose head is an instance

variable of the ArnEmbree class. GeometryData structs can be extracted from

this list by linear search.

3.3.1 Initialization of non-user-defined geometry
Simple index geometries and triangle meshes are initialized the following way:

Inside the initEmbreeGeometry function, another class method with the name

initEmbreeSimpleIndexedGeometry is called, with the shape object, the ver-

tex set containing the vertices that describe the shape, and the transformation
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Listing 3.3 C struct associated with each initialized geometry.

// each geometry in the scene is associated with
// this stuct , it is needed for embree to
// perform user defined geometry intersection
// calculations
typedef struct GeometryData
{

unsigned int _embreeGeomID ; // geometry id of the shape
ArNode * _shape ; // ART ’s shape representation in memory
ArTraversalState _traversalState ; // C struct storing , e.

g., surface material

ArNode < ArpRayCasting > * combinedAttributes ; // node used
for ray casting

BOOL _isUserGeometry ; // determines if geometry is User -
defined or Non -user - defined

}
GeometryData ;

matrix being passed as arguments.

In the interior of this function, the following steps are executed:

• Initialization of the RTCGeometry

Depending on whether the shape passed to it is a triangle or quadrangle,

the new variable is initialized either with the geometry type RTC_GEOME-
TRY_TYPE_TRIANGLE or RTC_GEOMETRY_TYPE_QUAD.

• Creation of geometry buffers

After this initialization is the creation and assignment of two so-called ge-

ometry buffers, one for storing the vertices and one for storing its indices

that are both associated with the shape. Listing 3.4 shows how the function

rtcSetNewGeometryBuffer is used to achieve that for a triangle shape.

As input parameters, this function takes the RTCGeometry to which the

geometry buffer will be linked, the buffer type, a buffer slot number, the

specified format for the buffer (RTC_FORMAT_FLOAT3 and RTC_FORMAT_-
UINT3 in Listing 3.4), a byte stride argument and the number of items that

are about to be stored in the buffer.

The setup for the geometry buffers for quadrangles is almost identical.
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Listing 3.4 Setting up geometry buffers for the vertices and indices of a triangle shape.

RTCGeometry newGeometry = NULL;
float * vertices ;
unsigned * indices ;

// if the shape is a triangle ,
// create a new geometry buffer with type
// RTC_GEOMETRY_TYPE_TRIANGLE
if([ shape isKindOfClass : [ ArnTriangle class ]])
{

newGeometry = rtcNewGeometry (device ,
RTC_GEOMETRY_TYPE_TRIANGLE );

vertices = (float *) rtcSetNewGeometryBuffer (
newGeometry ,
RTC_BUFFER_TYPE_VERTEX ,
0,
RTC_FORMAT_FLOAT3 ,
3* sizeof (float),
3
);

indices = ( unsigned *) rtcSetNewGeometryBuffer (
newGeometry ,
RTC_BUFFER_TYPE_INDEX ,
0,
RTC_FORMAT_UINT3 ,
3* sizeof ( unsigned ),
1
);

}
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The only exception is that the RTCGeometry is initialized with the geome-

try type RTC_GEOMETRY_TYPE_QUAD and that the byte stride of the vertex

buffer is four instead of three.

Once the geometry buffers are initialized, the vertices stored in the vertex

set and indices associated with the shape are transferred to the vertex and

index geometry buffers.

• Transformation of the vertices according to the transformation ma-
trix

In case the transformation matrix that was passed to the function is not

NULL, the vertices, one by one, are transformed according to it before being

transferred to the vertex buffer. Embree allows instancing of geometry,

meaning that geometry in Embree can be translated, scaled, and rotated by

referring to an instance stored in memory and applying this transformation

to it. However, we decided to perform the transformation calculation for

each vertex before transferring to the vertex geometry buffer because this

is more intuitive and easier to perform.

The initialization of a triangle mesh, being parsed from a PLY file with the

help of the "RPly" library [KS16], follows the same outline described for triangles

and quadrangles, although triangle meshes do not fall into the category of simple

indexed shapes. The only difference is that the size of Embree’s geometry buffers

is set according to the number of total triangles in the mesh. ART originally

creates internal KD trees for triangle meshes. Their creation can be omitted when

initializing a triangle mesh for Embree. For large triangle meshes, this omission

will drastically reduce the time needed to prepare the ray tracing procedure.

After the setup of the geometry buffers, the newly created RTCGeometry is

returned from this function and assigned to the RTCGeometry, created in the

initEmbreeGeometry function, followed by the allocation of a GeometryData
struct and the setup of its variables. The isUserGeometry boolean variable is

set to false.

3.3.2 Initialization of user-defined geometry
Under this category fall any shape of ART other than triangles, quadrangles,

and triangle meshes. One particular geometry that is supported by ART is a

cube, which one can create by the CUBE macro in the ARM scene file. Although

this cube geometry can be described by six quadrangles or twelve triangles, for

simplicity, we treat such a cube as a user-defined geometry as well.
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For initializing this kind of geometry type for Embree, we do the following:

• Initialization of the RTCGeometry

For user-defined geometries, the corresponding RTCGeometry will be ini-

tialized with Embree’s primitive type RTC_GEOMETRY_TYPE_USER.

• Provision of a callback function for calculating the bounding box
of the shape

We created a function called embree_bbox, which Embree will call before

building its internal BVHs over the scene. In the function, we calculate

the bounding box of the user-defined geometry and pass it to Embree.

This callback function is passed to Embree via invocation of the function

rtcSetGeometryBoundsFunction.

• Provision of a callback function for performing the intersection
testing between a user-defined geometry and an RTCRay

For this purpose we created a function called embree_intersect. We will

describe this function in more detail in Section 3.4. This callback function

is passed to Embree via the function rtcSetGeometryIntersectFunc-
tion.

• Provision of a callback function for performing the occlusion test-
ing for a user-defined geometry

For ray tracing purposes, only one function for intersection calculation and

occlusion testing would be necessary since both operations are performed

by ray casting. However, Embree strictly expects two separate functions,

each with predetermined arguments. To compensate for this, we use a

strategy which was inspired by the source code of Mitsuba 2: We refractor

the ray tracing functionality into a fourth function called embree_inter-
sect_geometry, which is called from both the embree_intersect and

embree_occluded function.

Once an intersection with a bounding box enclosing a user-defined geometry

is found during ray tracing, Embree will call the embree_intersect function,

which performs the intersection testing between the ray and the shape that is

associated with that bounding box.
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3.4 Ray tracing with Embree in ART
Once the geometries contained in a virtual scene are initialized for Embree and

Embree’s internal BVH has been created, the scene can be ray cast with the

help of Embree. If Embree support is enabled by provision of the -e flag, an

instance function of the ArnRayCaster class with the name getIntersection-
ListWithEmbree is called, which takes an empty ArIntersectionList struct

as an argument.

In the body of this function, an RTCIntersectContext is set up and a

RTCRayHit struct is declared and updated according to the state of the ArnRay-
Caster object: the information with which the RTCRayHit stuct is being updated

contains the orientation and direction of the ray that is stored as an instance

variable of the ArnRayCaster object, and the ID associated to the ray. The tfar
value of is initialized with Objective-C’s INFINITY macro and the geomID field

of the RTCHit struct is initialized with the macro RTC_INVALID_GEOMETRY_ID.

Embree utilizes single-precision floating-point numbers for its internal calcu-

lations, whereas ART uses double-precision floating-point numbers. To compen-

sate for visual artifacts in the final image, we do not initialize the tnear value of

the RTCRay with zero. Instead, we give it a little offset to prevent calculating an

intersection between a secondary ray and the same shape that was already hit.

We found the value 1 · 10−3
to be reliable. A comparison of an image rendered

with and without this offset is given by Figure 3.4.

After the update of the RTCRayHit struct, the actual ray tracing is performed

by the invocation of the rtcIntersect1 function. Depending on whether a

bounding box of a user-defined geometry or non-user-defined geometry in Em-

bree’s internal BVH was intersected by the RTCRay, either our custom callback

function embree_intersect_geometry is called by Embree, or Embree per-

forms the intersection testing with its built-in functionality.

Once the overall rendering job successfully completed, a "clean-up" is per-

formed. The GeometryData structs associated with the scene are released, fol-

lowed by the release of the RTCScene via the function rtcReleaseScene and the

release of the RTCDevice via rtcReleaseDevice. As a final step, the ArnEmbree
object embreeManager itself is released.

3.4.1 Intersecting user-defined geometry
In case a bounding box of a user-defined geometry is intersected with an RTCRay,

the callback function embree_intersect_geometry is invoked by Embree. In

this function, the Geometry Data struct associated with the geometry in ques-

tion is retrieved via the geometry user data pointer.
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Figure 3.3 Flowchart the workflow of ray tracing with Embree in ART. The nodes with
the three dots depict the internal procedures of ART.
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(a) Result of rendering a simple scene

when the tnear value of the RTCRay
is set to zero.

(b) Result of rendering a simple scene

when the tnear of the RTCRay is given

an offset of 1 · 10−3
.

Figure 3.4 Artifact caused by the conversion of the hit distance of the ray from
a double-precision floating-point number to a single-precision floating-point number.
Due to an imprecise calculation of the intersection point, a secondary ray might inter-
sect the same shape again.

Subsequently, an empty ArIntersectionList struct is declared and the in-

tersection between ART’s representation of the ray and the shape is calculated

via calling the getIntersectionList function of the Combined Attributes
object, which takes a reference to the empty ArIntersectionList, as well a

reference to the ArnRayCaster object as input. This function will calculate the

intersection points on the shape and update the ArIntersectionList struct ac-

cordingly. The reason why the getIntersectionList instance method of the

Combined Attributes object is called, rather than the getIntersectionList
instance method of the shape object, is that by doing so, the transformation in-

formation of the shape will be taken into account.

If no intersection was found, we return immediately from the embree_in-
tersect_geometry function. Otherwise, we will update the tfar value of the

RTCRay with the hit distance and the geometry ID of the RTCHit struct with the

geometry ID associated with the intersected shape. The resulting ArIntersec-
tionList is then stored in a linked list.

After the invocation of the rtcIntersect1 function in the body of the get-
IntersectionListWithEmbree function, the geometry ID of the RTCHit is

evaluated. If the value of this variable remains RTC_INVALID_GEOMETRY_ID, we

conclude that no intersection was found and we return an empty ArIntersec-
tionList. Otherwise, we retrieve the RTCGeometry that has been intersected
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Figure 3.5 Workflow of the custom embree_intersect_geometry callback func-
tion.
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with the geometry ID.

This RTCGeometry is used for the retrieval of the associated GeometryData
struct via the user data pointer. Based on the Boolean variable _isUserGeom-
etry, we check whether the intersected shape is a user-defined geometry or a

simple indexed geometry.

For the latter, we initialize the empty ArIntersectionList, that was passed

to the getIntersectionListWithEmbree function "from scratch" with the up-

dated tfar value of the RTCRay, the shape object of the GeometryData struct,

and the ArnRayCaster object itself. This newly initialized ArIntersection-
List is then returned from the getIntersectionListWithEmbree.

In case the intersected geometry is a user-defined geometry, the linked list, in

which the calculated ArIntersectionLists where placed during the intersec-

tion testing, must contain at least one ArIntersectionList struct. We locate

the ArIntersectionList, whose head has the minimal hit distance, by linear

search. When this ArIntersectionList is located, we extract it from the linked

list and release all other ArIntersectionLists stored in it. The extracted list

is then assigned to the initially empty ArIntersectionList that was passed

to the getIntersectionListWithEmbree function, and ART proceeds as usual

until the next ray is cast.

3.4.2 Resolving of encountered issues
The following subsection outlines two major issues encountered with the ap-

proach described in the last sections. We furthermore describe how these issues

can be resolved.

Multi-threaded intersection testing for user-defined geometry

As briefly mentioned in Chapter 2.2, ART supports ray tracing with multiple

threads. Before the ray tracing procedure is initiated by ART, copies of the Arn-
RayCaster object are created for each thread. A copy of the scene graph and the

KD tree is assigned to each copy of the ArnRayCaster object to ensure lock-free

parallelism.

However, the implementation of the embree_intersect_geometry callback

function for intersecting user-defined geometry is not thread safe. This is due to

the ArnRayCaster object that needs to be passed as an argument to the get-
IntersectionList function of the Combined Attributes object inside the

embree_intersect_geometry function.

For a simple retrieval of the ArnRayCaster inside our custom intersection

callback function, a static reference to it was originally initialized. This works

fine when performing rendering jobs with only a single thread. If multiple
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threads are involved in the intersection computations, the procedure outlined

in Subsection 3.4.1 is prone to errors since multiple ArnRayCaster objects are

traversing and altering a single copy of the scene graph.

To archive lock-free parallelism, we need to retrieve the "right" ArnRay-
Caster copy associated with the current thread in the interior of the intersection

callback function. However, we cannot utilize the user data pointer for this since

the user data pointer is associated with the scene geometry, which can be inter-

sected by multiple rays belonging to different ArnRayCaster objects on different

threads at the same time.

For the placement of an ArnRayCaster into and for the retrieval of an Arn-
RayCaster from the ray caster array, we use an identifier of the thread associated

with it. We obtain the thread ID via invocation of the gettid function, provided

with the unistd header file, for accessing the POSIX operating system API. The

reason we chose the function gettid over the function pthread_self, is that

for n cores involved for rendering, gettid, called from n different threads, will

return n strictly consecutive integer values. With the help of these values we

can write a fairly simple "hash" function for placing ArnRayCaster pointers in

the ray caster array and for retrieving them from it in our intersection callback

function: The index of the particular ArnRayCaster pointer will be the thread

ID received by the gettid function taken modulo with the counter variable.

During the beginning of the ray tracing procedure, a reference to the Arn-
RayCaster object associated with the current thread is added to the ray caster

array, if not already been done, retrieved in the intersection callback function in

constant time, and passed to the getIntersectionList function of the Com-
bined Attributes object.

The head of the linked list, in which the collected intersection lists are stored,

is an instance variable of the ArnRayCaster class, which allows for a simple

retrieval of these intersection lists outside the intersect callback function.

Intersecting infinite spheres

A specific type of geometry supported by ART is a sphere with a huge radius.

These infinite spheres are used in a virtual scene for environment lighting. Due

to its radius, the length of the bounding box edges enclosing the infinite sphere

is twice the infinite sphere’s radius. Generally speaking, axis-aligned bounding

boxes can be described by two vertices in Euclidean space, connected via the

bounding box’s body diagonal. In this subsection, we will refer to these vertices

as upper point and lower point.
In ART, all three coordinates of the upper point are set to a huge value, repre-

sented by the double value MATH_HUGE_DOUBLE, and respectively, all three coor-

dinates of the lower point are set to the negative of that value, - MATH_HUGE_-
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Listing 3.5 Casting of a double precision floating point number to a single precision
floating point number by explicit conversion.

struct RTCBounds * bounds_o = args -> bounds_o ;

bounds_o -> lower_x = (float) boundingBox .min.c.x[0];
bounds_o -> lower_y = (float) boundingBox .min.c.x[1];
bounds_o -> lower_z = (float) boundingBox .min.c.x[2];

// ...

DOUBLE.

As mentioned in Subsection 2.1, Embree uses single-precision floating-point

numbers for its internal calculations. ART, on the other hand, uses double-

precision floating-point numbers. Therefore, after calculating the double values

describing the bounding box, we cast them to float values via the explicit con-

version operator in C/C++ before passing them to Embree, as shown in Listing

3.5. When, during ray tracing, the tfar value of the RTCRay is set to the single-

precision representation of infinity by Objective-C, the bounding box is never

intersected. This is due to intersection testing being only performed in the in-

terval [1 · 10−3, ∞] and Objective-C’s representation of infinity is "smaller" than

the value MATH_HUGE_DOUBLE. The bounding box enclosing the infinite sphere

is never intersected by an RTCRay.

Fortunately, ART provides a representation for infinity as a single-precision

number as well, MATH_HUGE_FLOAT. Therefore, we can resolve this issue by

checking in the embree_bbox callback function whether the two vertices of the

calculated bounding box have the coordinates MATH_HUGE_DOUBLE (and resp.

-MATH_HUGE_DOUBLE) and updating them with the value MATH_HUGE_FLOAT
(and resp. -MATH_HUGE_FLOAT). By doing so, Embree can detect intersections

between an RTCRay and the bounding box of the infinite sphere, and the inter-

section with the sphere itself can be calculated.

However, we decided to exclude Embree functionality from intersection test-

ing with this type of shape. The reason for this lies in the further reduction of the

number of unnecessary intersection calculations. If an intersection point on the

infinite sphere is occluded by other scene geometry, we can ignore it. Therefore

we only calculate the intersection between a ray and the infinite sphere if the

ray did not intersect other scene geometry.
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(a) Scene rendered with Native ART. (b) Scene rendered with the approach

outlined in Section 3.4

Figure 3.6 Rendered images of a scene containing a non-user-defined triangle mesh
and quadrangle, and a user-defined user-defined infinite sphere, illuminating the rest
of the sphere.

Consecutive intersection of user-defined and non-user-defined geometry

With the approach described in Section 3.4.1, an issue arises when ray tracing

virtual scenes which contain both user-defined and non-user-defined geometry.

In such scenes, a cast ray could consecutively intersect a non-user-defined ge-

ometry and a user-defined geometry. To give an example, this is the case for the

virtual scene displayed in 3.6. This scene is composed of a quadrangle serving as

the ground plane, the Stanford Bunny triangle mesh, which was provided by the

Stanford 3D Scanning Repository [Ply], and an infinite sphere for environment

lighting.

Given a ray that first intersects the PLY mesh and subsequently the infinite

sphere, we noticed that through the invocation of the rtcIntersect1 function,

Embree internally calculates the intersections between the ray and the triangle

mesh first and then calls the embree_intersect callback function to calculate

the intersection point with the infinite sphere.

The problem, which arises here, is that the values of the RTCRayHit struct,

e.g., the tfar value of the RTCRay, are updated with information corresponding

to the intersection with the triangle mesh first. Afterward, the user-defined in-

finite sphere is intersected, and the intersection calculation is performed by our

custom embree_intersect_geometry function. In this function, we overwrite

the values of the RTCRayHit struct that has been previously calculated while the

triangle mesh was intersected. Therefore, the information regarding the inter-

sections between the RTCRay and the triangle mesh is lost, and only the ArIn-
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tersectionList storing the intersections with the infinite sphere is present in

the linked list. A result of this behavior can be seen in Figure 3.6b.

To resolve this issue, we make use of a slight modification: In the embree_-
intersect_geometry callback function, before performing the actual intersec-

tion calculation between a ray and a user-defined geometry, we check whether

the value of the geometry ID of the RTCHit struct remains being set to RTC_-
INVALID_GEOMETRY_ID. If this is not the case, and if the head of the linked list

storing the collected intersections is not NULL, we conclude that an intersec-

tion with a non-user-defined geometry must have already been calculated. We

assume that is intersection already contains the closest distance to the ray ori-

gin. With the help of the geometry ID, we retrieve the associated GeometryData
struct for the geometry in question from the linked list storing all the Geome-
tryData structs linked to the scene geometry. With the information stored in

this GeometryData struct, we initialize a ArIntersectionList "from scratch"

and add it to the linked list storing the collected intersections.

With this approach, all the scenes on which our implementation was tested

(which will be introduced in Chapter 4) could be rendered without further prob-

lems.

3.5 Rendering CSG with Embree
Unfortunately, Embree does not support rendering of constructive solid geom-

etry direct. However, this does not mean that ray tracing CSG with Embree is

completely impossible. The following section outlines three different approaches

for ray tracing virtual scenes containing constructive solid geometry in ART with

the help of Embree.

Since Embree is an open-source framework, one could consider rigging Em-

bree itself for suitable CSG rendering. Nevertheless, we refrained from such an

undertaking because of two reasons: On one hand, it is possible that the altering

of the Embree framework would exceed the scope of this thesis. On the other

hand, we want our integration to be compatible with the original Embree frame-

work in its current and future versions.

We, therefore, consider Embree as a "black box" for which we provide in-

formation such as a ray origin and direction and receive in turn information

concerning intersections with the scene geometry such as the hit distance and

the surface normal at the hit point.
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3.5.1 Evaluation of collected intersections according to the
scene graph

In the past, an attempt for the implementation of CSG rendering with Embree

was conducted by Markéta Karaffová and described in her master thesis [Kar16].

Her approach consists of the collection of intersections between the scene geom-

etry and a ray that Embree calculates and their subsequent evaluation according

to a provided CSG tree as described in Subsection 1.2.3. With the approach out-

lined in this subsection, we adapt the approach described in [Kar16] for ART. We

were not intimidated by the increased rendering times that result from the imple-

mentation described in [Kar16] since we believed we would be able to improve

it for ART.

For our approach outlined in this subsection, we will only consider CSG that

are composed of user-defined geometry.

The intersections between a ray and user-defined scene geometry can be col-

lected via storing the corresponding ArIntersectionLists in a linked list as

described in subsection 3.4.1. One advantage of maintaining such a "list of inter-

section lists" as opposed to the merging the individual ArIntersectionLists

into a single larger ArIntersectionList, is having the ArIntersectionList
separated according to the shape associated with them. This is convenient since

ART provides functions for evaluating two given ArIntersectionList structs

according to the binary operators OR, AND and SUB as described in Subsection

1.2.3. To avoid confusion, we will refer to the ArIntersectionList struct as

intersection list and to the linked list, which stores individual ArIntersection-
List structs as intersection linked list.

The ray tracing of the geometric primitives proceeds as outlined in Subsec-

tion 3.4.1 Once the intersection calculation with Embree has finished, we retrieve

the associated GeometryData struct of the intersected geometry. We then eval-

uate the collected intersections stored in the intersection linked list according to

the original scene graph.

During the evaluation, the subgraph rooted at the Bounding Box node that

is a direct child of the BSP Tree node (compare Figure 2.1) is traversed until the

leaves representing the shape are reached. Due to the reason that intersections

between the ray and some shapes have already been calculated previously by

Embree, we first check whether an intersection list associated with the shape in

question is already present in the intersection linked list. If this is the case, the

corresponding intersection list is located in the intersection linked list by linear

search, extracted from it, later evaluated according to the CSG tree, which is, in

our case, the original scene graph.

Since ART supports instancing of geometry, meaning that multiple instances

of the shape with different associated Combined Attributes nodes exist in the
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scene, we use the Combined Attributes node as a unique identifier to retrieve

the right intersection list from the intersection linked list. Therefore, we add

a reference to the Combined Attributes object of a shape to the ArInter-
sectionList. This Combined Attributes object is associated with the shape

whose intersections with a ray are stored in the ArIntersectionList struct.

After the evaluation, the intersection list, whose head intersection has the

minimal distance to the ray origin, is extracted from the intersection linked list,

and the ray tracing procedure precedes as usual.

Limitations of this approach

Although it is possible to render CSG with the approach outlined in this subsec-

tion, we are aware that it is still far from being optimal. We have not implemented

this functionality for non-user-defined geometry. When Embree calculates the

intersections between a ray and a non-user-defined geometry, it returns only one

intersection, either the closest or an arbitrary one
5
.

The whole original scene graph is traversed to evaluate the intersections be-

tween a ray and a CSG represented by only a subgraph. Theoretically, only this

subgraph would need traversing. However, even those subgraphs representing

a particular CSG in the scene graph can be large and complex. To give an exam-

ple, Figure 3.7 shows a rendered image of the "Villa Rotonda". The entire villa

comprises only two CSG, which are constructed from a total number of 1,255

primitives.

Even evaluating the found intersections according to the subgraph associated

with only one of the two CSG would be time-consuming. We realized the follow-

ing: Even if we worked on optimizing the procedure outlined in this subsection,

the lead we gained through Embree over Native ART would be compensated for

by the subsequent scene graph traversal. It even could be that the performance of

the overall ray tracing procedure of ART would be decreased for complex scenes,

such as the Villa Rotonda scene in Figure 3.7.

Since the motivation behind the goal of this thesis, namely the integration of

Embree into the CSG rendering framework ART, was the acceleration of ART’s

ray tracing procedure, we decided that further optimizations of this approach

would not be profitable.

5
However, [Kar16] describes a method of how all encountered intersections can be retrieved

from Embree.
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Figure 3.7 Rendered image of the Villa Rotonda model.

3.5.2 Initializing the complete CSG as user-defined geome-
try

The increased render times that resulted from the previous approach served as a

motivation for developing different procedures for ray tracing CSG with Embree.

We want to avoid a subsequent scene graph traversal and at the same time still

treat Embree as a black box.

The idea of the approach described in this subsection lies in the initialization

of the whole constructive solid geometry as a user-defined geometry instead of

the geometric primitives it is composed of. The bounding box for such a CSG

will be calculated with a function provided by ART and passed to Embree. If

this bounding box would be stored in Embree’s internal BVHs, intersected by

an RTCRay during the ray casting procedure, ART’s internal structures would be

used for the continuative traversal to calculate the intersections with the geomet-

ric primitives. This undertaking seems like a satisfactory compromise between

ART and Embree.

For our new approach, we define the topmost CSG node in the scene graph as

the root node of the subgraph that represents the CSG. The geometric primitives

represented by the leaf nodes of this subgraph are the geometric primitives of

which the CSG is composed. For example, when considering the scene graph,

assembled by ART to render the scene shown in Figure 1.10a, which itself is

shown in Figure 2.1, the topmost CSG node of the CSG is the "OR-node". The

single leaf of the subgraph rooted at that node is the shape node that represents

a sphere object.
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Listing 3.6 Updated GeometryData struct for CSG rendering.

// each geometry in the scene is associated with
// this stuct , it is needed for embree to
// perform user defined geometry intersection
// calculations
typedef struct GeometryData
{

unsigned int _embreeGeomID ; // geometry id of the shape
ArNode * _shape ; // ART ’s shape representation in memory
ArTraversalState _traversalState ; // state of the

RayCaster

ArNode < ArpRayCasting > * _combinedAttributes_or_csg_node ;
// node used for ray casting

BOOL _isUserGeometry ; // determines if geometry is user -
defined or non -user - defined

}
GeometryData ;

When during the initial assembly of ART’s internal scene graph such a top-

most CSG node is encountered, a class method of the ArnEmbree class, initEm-
breeCSGGeometry, is called, which initializes a CSG as a user-defined geometry

for Embree according to procedures explained in Subsection 3.3.2.

GeometryData structs are created for CSG, too. The struct itself was slightly

adapted for CSG rendering. As can be seen in Listing 3.6, we renamed the vari-

able storing a reference to the Combined Attribute node to _combinedAt-
tributes_or_csg_node. Both the Combined Attributes node object and the

topmost CSG node derive from the ArNode base class, and through the imple-

mentation of the ArpRayCasting protocol, they provide functionality for cal-

culating bounding boxes and performing intersection testing. When a CSG is

getting initialized as a user-defined geometry, a reference to the topmost CSG

node is assigned to the _combinedAttributes_or_csg_node variable instead

of a reference to the Combined Attributes object.

A flag gets activated after a successful initialization of a CSG for Embree dur-

ing the scene graph assembly. When the traversal of the scene graph continues

to the leaf nodes representing the geometric primitives of the CSG, they do not

get initialized as user-defined geometry if this flag is activated.

During the intersection calculation by the embree_intersect callback func-

tion, the getIntersectionList function associated with the _combinedAt-
tributes_or_csg_node object is called. Depending on this node being a Com-
bined Attributes node or a topmost CSG node, the rendering procedure di-
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verges: For a Combined Attributes node, the intersections are calculated di-

rectly on the shape, taking transformation information into account. For a top-

most CSG node, the intersections with the underlying primitives are calculated

by traversing the sub scene graph rooted at that node, as outlined in Section 2.2.3,

only with the difference that with this approach, only a subgraph of the original

scene graph is traversed.

During the scene graph assembly for scenes with environment lighting, ART

connects the infinite sphere with the rest of the geometries in the scene with a

union operator. This is undesirable since our implementation would treat the

entire geometries contained in the scene as one CSG. We can compensate for

this by checking if a given topmost CSG node that is about to be initialized for

Embree has an infinite sphere as a direct child. If so, we are not initializing this

topmost CSG node for Embree.

With this approach, scenes containing constructive solid geometries can be

successfully rendered, and the performance of the ray tracing process increased

noticeably compared to the previous approach. Furthermore, the artifacts that

result from rendering a scene ART by traversing of the original scene graph, as

described in Subsection 2.2.3, such as the visible noise, are not present in images

rendered with this approach. We cannot give a definite answer on why these

artifacts are disappearing when rendering scenes with this approach. However,

we believe this resolution must be related to the only partial traversal of the

original scene graph.

Limitations of this approach

An inconvenience of this approach is that the fact that Embree treats the entire

CSG as a single geometry must be taken into account by a user when modeling a

scene for ART. For example, Figure 1.4 shows rendered images of the Cornell Box.

For rendering the scene with Native ART, one could apply a union operator to

the geometry of the box itself and the geometry describing the area light source

(which is depicted as a box itself). Our approach, however, would interpret these

two geometries as a single CSG and traverse the original scene graph to find

intersections between them and a given ray. It would be better to describe the

box of the Cornell Box and the area light as two disjoint geometrical entities.

An issue was encountered when rendering a specific CSG scene: The Villa

Rotonda scene, shown in Figure 3.7. Figure 3.8a shows the final image, rendered

by the described approach. The figure shows the villa with its roof missing (com-

pare Figure 3.7). We have to admit that we were not able to resolve this issue yet.

However, rendering the scene with Native ART by traversal of the original scene

graph results in the same artifact (besides the visible noise). Due to this and the

fact that we did not encounter this issue with other scene files containing CSG
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(a) Villa Rotonda scene rendered with

the implementation outlined in this

subsection.

(b) Villa Rotonda scene rendered with

Native ART by traversing the original

scene graph.

Figure 3.8 Artifact in the Villa Rotonda scene: The villa is missing its roof.

(compare Chapter 4), we assume that this is the issue is due to a bug occurring

during the scene graph assembly for this scene in ART.

Furthermore, the rendering of CSG that is composed of at least one triangle

mesh leads to artifacts. As mentioned, triangle meshes are associated in ART

with individual KD trees that accelerate the intersection calculations solely be-

tween a ray the particular triangle mesh. When we initialize a triangle mesh for

Embree, we omit the construction of individual mesh KD trees because they are

not needed when ray tracing triangle meshes in general. However, when treat-

ing a CSG constructed from triangle meshes as a user-defined geometry and thus

using ART’s internal structures to calculate the intersections with the primitives,

we depend on these individual KD trees for triangle meshes. Resurrecting these

individual KD trees alone is not enough to resolve the artifact since the transmis-

sion from the original scene graph to the individual KD Tree at the Shape node

representing the triangle mesh is not seamless.

3.5.3 Creation of KD trees for CSG
The artifact shown in the rendered image of the Villa Rotonda scene, which is

visible in Figure 3.8a, as well as the artifacts that arise when rendering CSG that

is composed of triangle meshes, as shown in Figure 3.9, motivated us to develop

further our approach outlined in the previous section. The initial idea for resolv-

ing these artifacts was to build ART’s internal KD tree over the entire scene and,

when a bounding box of a CSG is intersected by Embree, to continue the traversal
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(a) Scene rendered with native ART by

traversing the internal KD tree.

(b) Artifact in the scene rendered with

the approach outlined in this section.

Figure 3.9 CSG composed of triangle meshes. The figures show a scene with two
spheres described as triangle meshes. The right sphere is "subtracted" from the left
sphere via the Boolean set operation OR. The scene can be regarded as the counterpart
of the scene shown in Figure 1.10c for triangle mesh primitives.

to the CSG primitives in the subtree of the KD tree describing the spatial area in

which the CSG is located. However, associating a Shape node in the scene graph

to the area subdivided by the split planes of the KD trees, in which the shape is

located, is not obvious since multiple geometries can be located in such an area.

The approach outlined in this subsection, which can be regarded as an ex-

tension for the approach described in the previous subsection, was inspired by

the individual KD trees for the triangle meshes and the work of Petr Zajiček,

documented in his master thesis [Zaj12]. In this thesis, Zajiček describes the

application of KD trees to scenes containing CSG.

For the scenes containing CSG, instead of constructing one KD tree that sub-

divides the bounding box of the entire scene, we construct multiple smaller KD

trees for subdividing the bounding box of the CSG present in the scene. There-

fore, we add a Boolean variable to the GeometryData struct shown in Listing 3.6,

indicating whether the associated geometry is a CSG or not. Before committing

the RTCScene that will trigger the construction of Embree’s internal BVH, we

iterate through the linked list storing all GeometryData structs that are associ-

ated with the scene geometry. With the help of the GeometryData struct, we

check whether the associated geometry is a CSG. If so, we calculate the bound-

ing box that encloses the CSG and construct a KD tree that further subdivides

the bounding volume. To calculate the bounding box and the KD tree, we use

functions provided by ART. Furthermore, we add a reference to the root of the
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constructed KD tree to the GeometryData associated with the CSG.

During ray tracing with Embree, we retrieve the GeometryData correspond-

ing to the intersected shape and verify if that shape is a CSG or not. If not, the

ray tracing procedure continues as outlined in Subsection 3.4.1. Otherwise, we

traverse the associated KD tree beginning at the root node, calculating the inter-

sections with the CSG primitives and storing the resulting intersection list in the

intersection linked list.

By traversing the individual KD trees to calculate intersections with CSG

primitives, the issue regarding the Villa Rotonda scene described in the previous

section is resolved
6
. Furthermore, we are able to render CSG that is composed

of triangle meshes.

Limitations of this approach

A disadvantage of this approach is that it depends on the internal KD trees asso-

ciated with triangle meshes by ART. Their construction was originally omitted

when initializing triangle meshes for Embree. However, by constructing those

mesh KD trees for this approach, the decrease of the time needed to prepare the

scene for ray tracing is compensated.

6
Figure 4.1c shows the scene rendered with the additional KD trees
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Chapter 4

Results and discussion

Our approach of integrating Embree into ART, as outlined in the previous chap-

ter, was tested on a variety of scene files. This chapter provides an overview and

analysis of the performance of our implementation. It is divided into three sec-

tions. Subsection 4.1 discusses the execution time of ART when rendering scenes

containing constructive solid geometries. A comparison is drawn between our

two approaches for realizing CSG operations with Embree, the initialization of

an entire CSG as a user-defined geometry and the traversal through the original

scene graph or a dedicated KD tree. We will exclude the provision of results con-

cerning the rendering of CSG through the collection of intersection points and

their subsequent evaluation, outlined in Subsection 3.5.1. This exclusion is due to

the significantly decreased rendering performance resulting from this approach,

and thus, making it impractical.

Furthermore, we decided to test our implementation on virtual scenes, using

mesh geometry, to analyze and compare the performance of rendering non-user-

defined and user-defined geometries.

Section 4.2 provides the results on various scenes rendered by a hybrid im-

plementation combining the approaches outlined in Subsections 3.5.2 and 3.5.3.

In Section 4.3, we test and evaluate our implementation on scenes exclusively

composed of triangles with varying amount of geometry.

The following experiments were conducted on an Asus N551JX laptop with

a quad-core Intel Core i7–4720HQ processor clocked at 2.6 GHz and 8 GB of

RAM. The images shown in this chapter were rendered in ART with Embree

support at a resolution of 700x700, a path length of 20, and 128 samples per

pixel. The internal calculations regarding the image synthesis of these scenes

were performed via multi-threading with eight threads.
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4.1 Evaluation of our integration for scenes con-
taining CSG

We tested the functionality of our implementation concerning CSG rendering

with Embree on six scenes, which were made publicly available by the develop-

ers of ART
7
. All the scenes mentioned in this section contain an infinite sphere,

serving as a skydome to light the scene.

For this evaluation, our implementation was tested on the following scenes:

• The scene shown in Figure 4.1a consists of a single CSG, a procedurally

modeled shell, and multiple cubes aligned to form a checkerboard pattern.

The CSG, namely the shell, is composed of a total amount of 2,144 sphere

primitives. The shell is modeled by arranging the spheres in spiral form

and decreasing order according to their sizes. The largest sphere at the

beginning of this sequence of spheres is "subtracted" by the SUB operator

from the rest of the spheres. Then, the next largest sphere is "unified" by

the OR operator with its preceding sphere in the sequence. This procedure

is repeated for the remaining spheres in the sequence.

• Figure 4.1b shows the rendered image of a scene composed of a cylinder

serving as the ground on which three so-called grooved spheres are placed.

The grooves on the sphere result from applying a SUB operator to a group of

six tori and the sphere in question. The purpose of this scene is to showcase

ART’s implementation of the Oren–Nayar reflectance model [ON94] with

different roughness grades.

• We have already encountered the Villa Rotonda scene in Subsection 3.5.1.

As mentioned there, the model of the Villa Rotonda is composed of two

CSG with a total number of 1,255 primitives.

• The scene displayed in Figure 4.1d is composed of twelve grooved spheres

that are placed on three deformed cubes with different heights that to-

gether form a staircase. Furthermore, a cylinder serves as the ground. The

initial purpose of this particular scene was the demonstration of the imple-

mentation of the Torrance–Sparrow reflectance model [TS67] with varying

roughness grades.

• Figure 4.1e shows a rendered image of a scene composed of a cylinder act-

ing as the ground, and a biplane, composed of multiple CSG. The total

7
Most of the scenes shown in this chapter can be found in the Gallery folder of the ART

repository, which is submitted together with this thesis as an electronic attachment. Scenes or

3D models that are not taken from this folder will be cited.

66



(a) Shell (b) Oren-Nayar Sphreres (c) Villa Rotonda

(d) Torrance-Sparrow

Spheres

(e) Parked Biplane (f) Locomotive

Figure 4.1 Scenes containing CSG, rendered with our implementation. The image
of the Villa Rotonda shown in Figure 4.1c was rendered by traversing KD trees associ-
ated with the CSG in this scene. Unfortunately, the issue described in Subsection 3.5.2
remains when rendering the scene by traversing the original scene graph.

number of topmost CSG nodes in the scene graph assembled by ART for

this particular scene amounts to 28. The total number of geometric primi-

tives of the 28 CSG is 336.

• Lastly, the rendered scene shown in Figure 4.1f shows a model of an Aus-

trian steam locomotive. The single model is composed of multiple CSG,

a total amount of 354 topmost CSG nodes are present in the scene graph

associated with this scene The amount of geometric primitives present in

the scene is 3,594.

The results we obtained from these tests show that rendering CSG geometry

by traversing the original scene graph is competitive with Native ART. For the

scene shown in Figure 4.1d, the speedup resulting from the support of Embree

is only marginal. However, the increased acceleration shown in the table for the

scene shown in Figure 4.1b is indeed noteworthy. We want to emphasize that the
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Scene
#Topmost

CSG
nodes

Native ART
Org scene

graph
KD tree

Org scene
graph

speedup

KD tree
speedup

Figure 4.1a 1 2,611.75 sec 2,437.81 sec 4,151.01 sec 6.66 % -58.94 %
Figure 4.1b 3 791.71 sec 522.97 sec 528.77 sec 33.94 % 33.21 %
Figure 4.1c 2 738.25 sec 629.03 sec 765.44 sec 14.79 % -3.68 %

Figure 4.1d 12 910.56 sec 896.97 sec 902.61 sec 1.49 % 0.87 %
Figure 4.1e 28 522.58 sec 498.25 sec 546.79 sec 4.66 % -4.63 %
Figure 4.1f 354 312.94 sec 272.08 sec 280.83 sec 13.06 % 10.26 %

Table 4.1 Comparison between the performances of Native ART and ART with Em-
bree support. The performance of both methods of traversing the original scene graph
and traversing the dedicated KD tree is compared to the performance of Native ART.

overall acceleration shown in the table is not just thanks to Embree but also the

fast traversal of the subgraphs of ART’s interior scene graph representing the

CSG in the scene.

The results we obtained by traversing KD trees that are associated with CSG

are highly scene-dependent. For the scenes shown in Figures 4.1b, 4.1d, and

4.1f, this approach is comparable to the approach of traversing the original scene

graph. However, for scenes shown in Figures 4.1a, 4.1c, and 4.1e the render-

ing time increased compared to Native ART. The decrease seen in the table for

Figures 4.1c and 4.1e can arguably be regarded as competitive with Native ART.

Nevertheless, the decrease of performance regarding the rendering of the scene

shown in Figure 4.1a is significant. These three scenes have in common that

they contain CSG being constructed from a large number of geometric primi-

tives. Therefore, these CSG are associated with complex KD trees whose traver-

sal impacts the performance. In contrast, the locomotive model shown in Figure

4.1f, which is constructed by a large number of primitives, too, is modeled by the

assembly of multiple CSG instead of one single large one. This explains why we

did not experience a decrease in performance regarding this scene.

We conclude that our approach of traversing KD trees associated with CSG

does work well with CSG composed of a manageable amount of geometric prim-

itives but does not work well with more complex CSG.

Special case: Rendering CSG composed of triangle meshes

For testing our implementation on scenes that contain CSG, which are composed

of triangle meshes, we modeled two scenes. Figure 4.2a shows the rendered im-

age of a scene, composed of a quadrangle and two spheres that are described by

triangle meshes. The right sphere is "subtracted" from the left sphere by apply-
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(a) Scene rendered with native ART by

traversing the internal KD tree.

(b) Artifact in the scene rendered with

the approach outlined in this section.

Figure 4.2 CSG composed of triangle meshes. The figures show a scene with two
spheres described as triangle meshes. The right sphere is "subtracted" from the left
sphere via the Boolean set operation OR. The scene can be regarded as the counterpart
of the scene shown in Figure 1.10c for triangle mesh primitives.

ing the difference set operation. Figure 4.2b shows the rendered image of a scene

that contains again of a quadrangle, and two triangle meshes provided by the

Stanford 3D Scanning Repository [Ply], namely the Stanford Bunny, composed

of 69,451 triangles and the Happy Buddha, composed of 1,087,716 triangles. The

results are shown in Table 4.2. As described in Subsection 3.5.2, ray tracing these

types of CSG is not possible with our approach of traversing the original scene

graph. Therefore, the results shown refer to the approach of traversing individual

KD trees associated with the CSG.

The results in the table indicate a significant decrease in ray tracing perfor-

mance when rendering CSG composed from triangle meshes. This drop-off can

be explained the following way: Embree was originally developed for rendering

scenes containing complex geometry, being described by a high number of prim-

itives. Therefore, it does not perform well with scenes containing a small number

of geometries. In our scenes, only two geometries are present, a plane and the

entire CSG. Furthermore, the combining of Embree’s BVHs and ART’s internal

KD trees for such simple scenes does not accelerate the intersection calculation

process. It, in fact, complicates it.

We do not recommend using our approach to render CSG composed of tri-

angle meshes at the current stage.
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Scene
Native ART
Preparation

Native ART
Ray

Tracing

Embree
Preparation

Embree
Ray Tracing

Ray Tracing
Speedup

Figure 4.2a 0.09 sec 237.25 sec 0.09 sec 284.86 sec -20.07 %
Figure 4.2b 4.58 sec 376.20 sec 61.82 sec 709.77 sec -88.67 %

Table 4.2 Comparison between the performances of Native ART and ART with Em-
bree support. The time needed for preparing the ray tracing process by constructing the
internal acceleration data structures and the time needed for the ray tracing process it-
self.

4.2 Hybrid implementation and evaluation
After examining the results of our tests concerning the rendering of CSG de-

scribed in the previous section, we decided to abandon our approach of calcu-

lating the intersection points by traversing KD trees associated with the CSG in

the scene. For now, we accept the drawback concerning the Villa Rotonda scene

missing its roof, as outlined in Subsection 3.5.2, as a known issue.

However, we cannot completely abandon the approach of building and

traversing individual KD trees for CSG since scenes with CSG that are com-

posed of at least one triangle mesh strictly depend on these. Therefore, in our

final implementation, we use a hybrid technique merging our approaches de-

scribed in Subsection 3.5.2 and Subsection 3.5.3. During the preparation of the

scene for ray tracing in ART, the scene graph is assembled. If, during the assem-

bly, a topmost CSG node is encountered, we check if at least one of the leaves

of its subtree is associated with a triangle mesh. If this is the case, a flag asso-

ciated with the CSG in question is activated. Whenever such a flag is activated

for a CSG, the internal KD tree for the triangle mesh primitive is built, and an

individual KD tree is built for the CSG. When a ray intersects this particular

CSG during the ray tracing procedure, the intersections will be calculated by the

traversal of the associated KD tree.

The intersection calculations between rays and CSG that are not constructed

of at least one triangle mesh are calculated by traversal of the scene subgraph

rooted at the topmost CSG node corresponding to the particular CSG.

This section provides the results of tests conducted with this final implemen-

tation.

In the following, we provide an overview of the scenes used for testing the overall

performance of ART with Embree support:

• The scene shown in Figure 4.3a contains a model of the Macbeth Col-
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Scene #Geometries Native ART Embree Speedup

Figure 4.3a 26 382.70 sec 361.80 sec 5.46 %
Figure 4.3b 20 387.72 sec 227.74 sec 41.26 %
Figure 4.3c 13 397.46 sec 389.72 sec 1.95 %
Figure 4.3d 38 674.91 sec 634.52 sec 5.98 %

Table 4.3 Comparison between Native ART and our hybrid implementation on scenes
that contain various types of geometries. In the table, triangle meshes and CSG are
considered one geometry.

orChecker, a color calibration tool. This model comprises one larger de-

formed cube serving as the frame and 24 cubes depicting the colored sam-

ples. The chart is placed on a cylinder.

• Figure 4.3b shows a typical Cornell Box scene with two additional image

textures applied to the rear of the box and two a quadrangle on the right.

The scene is composed of a total number of 20 non-user-defined geome-

tries.

• The scene shown in Figure 4.3c was created as part of the development of a

model for describing the emission from glowing solid objects, described in

[WW11]. It consists of twelve spheres and a cylinder on which the spheres

are placed.

• Figure 4.3d shows an image of a scene that was originally published in

[WH13]. The scene consists of CSG, user-defined geometries, and a trian-

gle mesh. We will refer to this scene as Exoplanet scene since it was used

to showcase illumination on earth-like exoplanets.

The results shown in Table 4.3 are similar to those presented in Section 4.1.

The result obtained by rendering the scene shown in Figure 4.3b stands out from

the remaining results. The performance speedup is due to this scene being mod-

eled entirely with non-user-defined geometries, which are initialized with Em-

bree’s proprietary primitive types. Rendering non-user-defined geometry with

Embree is more efficient than rendering user-defined geometry.

However, this increase in performance comes with a significant drawback.

The rendered image exhibits visible noise at the edges between the ceiling of the

box and the three walls. This artifact can be seen in Figure 4.4a. Although we

cannot give a definite answer to what caused this artifact, we believe it is due to

one of the two following reasons.

• When ray tracing non-user-defined geometry, double-precision floating-

point numbers are cast into single-precision floating-point numbers, re-

sulting in inaccuracies.
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(a) Macbeth ColorChecker (b) Cornell Box with texture

mapping

(c) Glowing spheres

(d) Exoplanet scene

Figure 4.3 Scenes containing various types of shapes: CSG, user-defined geometry,
and non-user-defined geometry.
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(a) Rendered image of the Cornell Box

scene with the individual quadrangles be-

ing initialized with Embree’s proprietary

primitive types.

(b) Difference image between the image

shown in Figure 4.4a and the correspond-

ing image rendered by Native ART.

(c) Rendered image of the Cornell Box scene

with the individual quadrangles being ini-

tialized as user-defined geometries.

(d) Difference image between the image

shown in Figure 4.4c and the correspond-

ing image rendered by Native ART.

Figure 4.4 Images of the Cornell Box scene rendered with different approaches.
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Scene Native ART Embree Speedup

Figure 4.3b 454.60 sec 292.25 sec 35.71 %

Table 4.4 Comparison of the performance of Native ART and ART with Embree sup-
port with regard to the Cornell Box scene shown in Figure 4.3b. The quadrangles, of
which the scene is composed were initialized as user-defined geometries.

• The quadrangle used for the light source and the ceiling of the Cornell

Box are coplanar. It seems that if an incident angle between the ray that

is intersecting the light source and the light source is lower than a certain

threshold, the contribution of light for that ray is disregarded.

One can work around this issue by initializing the quadrangles, of which the

scene is composed, as user-defined geometries for Embree. A result of this ap-

proach can be seen in Figure 4.4c. We tested the rendering performance of this

approach concerning this specific scene. The obtained result is shown in Table

4.4. The performance of rendering this scene, with its contained shapes initial-

ized as user-defined geometries, is still increased compared to the performance

of Native ART. However, the resulting speedup is lower than the one obtained

when having the shapes initialized as non-user-defined geometry.

4.3 Evaluation of our implementation for scenes
containing triangle meshes

Since the rendering of large triangle meshes is the most crucial use case for Em-

bree, we tested our implementation on various triangle meshes.

Each scene shown in Figure 4.5 is composed of a quadrangle serving as

ground, an infinite sphere acting as a sky dome for illumination and a single

triangle mesh, that are loaded from a PLY file and assigned with a material asso-

ciated with the Torrance–Sparrow reflectance model.

The following models were used for our tests:

• The Utah Teapot (4,032 triangles), provided by Ben Houston [Hound],

shown in Figure 4.5a

• The Stanford Bunny (69,451 triangles), provided by the Stanford PLY

repository, shown in Figure 4.5b

• Michelangelo’s David (366,011 triangles), provided by Jerry Fisher

[Fis15], shown in Figure 4.5c
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(a) Utha Teapot (b) Stanford Bunny (c) Michelangel’s David

(d) Happy Buddha (e) Asian Dragon (f) Lucy

Figure 4.5 Scenes for triangle meshes

• The Happy Buddha (1,087,716 triangles), provided by the Stanford PLY

repository, shown in Figure 4.5d

• The Asian Dragon (7,219,045 triangles), provided by the Stanford PLY

repository, shown in Figure 4.5e

• Lucy (28,055,742 triangles), provided by the Stanford PLY repository,

shown in Figure 4.5f

The results in Table 4.5 show a general increase in the performance of ART

when supported by Embree. Another advantage of our implementation is the

drastic speedup when building the acceleration structure before rendering.

However, we could not render the Asian Dragon and Lucy meshes with Na-

tive ART on our local machine. This is because these meshes are large, and so is

ART’s internal KD tree for grouping the individual triangles into spaces bound

by split planes. For triangle meshes composed of a number of triangles higher

than a certain threshold, the required memory needed for the construction of the

mesh KD tree exceeds the available system memory, which, in our case, results

in a termination of the program by the Linux kernel.
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Scene
Native ART
Preparation

Embree
Preparation

Native ART
Ray Tracing

Embree
Ray Tracing

Ray Tracing
Speedup

Figure 4.5a 0.29 sec 0.04 sec 353.83 sec 304.26 sec 14.01 %
Figure 4.5b 4.28 sec 0.25 sec 379.02 sec 305.00 sec 19.53 %
Figure 4.5c 18.40 sec 1.85 sec 302.52 sec 254.03 sec 16.03 %

Figure 4.5d 57.28 sec 6.48 sec 351.92 sec 276.00 sec 21.57 %
Figure 4.5e (no data) 64.43 sec (no data) 304.29 sec (no data)
Figure 4.5f (no data) 302.19 sec (no data) 327.59 sec (no data)

Table 4.5 Comparison between the performances of Native ART and ART with Em-
bree support regarding the rendering of triangle meshes.

At this point, we would like to emphasize that our implementation allows for

the rendering of much more complicated scenes than Native ART on the same

hardware.
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Conclusion

This thesis has shown how to integrate Intel’s high-performance raycasting li-

brary Embree into the CSG rendering framework ART, whose internal structures

and core mechanics diverge significantly from those of other common image syn-

thesis systems, such as PBRT or Mitsuba 2.

We have described how to initialize different geometry types for Embree,

namely shapes described by vertices and indices (such as triangle meshes) with

Embree’s own primitive types and analytical surfaces as user-defined geometry,

and have outlined how intersections can be calculated with the help of Embree.

Despite Embree not directly supporting CSG rendering, we support this func-

tionality in ART by initializing a given CSG, composed of multiple primitives, as

a single user-defined geometry for Embree. Embree’s internal BVH is traversed

during the ray tracing process until it intersects the bounding box enclosing the

CSG in question. From there, a subgraph of ART’s internal scene graph, which

is associated with the particular CSG, is traversed to calculate the intersections

with the primitives of which the CSG is composed. This procedure proved it-

self as a satisfactory compromise between ART and Embree’s target application:

The main advantage of using the Embree library, namely the acceleration of the

ray tracing process could be preserved for the vast majority of virtual scenes, on

which our approach was tested on.

Another notable accomplishment of our implementation is that the time

needed for constructing ART’s internal acceleration data structures is drasti-

cally decreased for scenes containing large triangle meshes. The reason for

this is the omission of constructing internal KD trees for triangle meshes when

initializing it with Embree’s internal triangle primitives.

However, we have to admit that our approach is not entirely free from flaws.

These are addressed in the next section together with suggested ideas for their

resolution.

Our implementation will soon become publicly available with the release of

the new version of ART.
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Future work
We do not claim that our approach is the ideal integration of Embree into a

CSG rendering framework, nor do we claim that our implementation is the best,

concerning, e.g., performance and building times of interior data structures. In

this section, we provide an overview of known issues, some of them discussed

in previous chapters, and suggest potential methods of resolution:

• Rendering CSG composed of triangle meshes

The most significant drawback of our implementation is the inefficient

rendering of CSG composed of at least one triangle mesh. ART’s interior

structures need to be built and traversed for the intersection calculations

when treating such CSG as a single user-defined geometry. Therefore, all

functionality regarding Embree is omitted. However, we strongly believe

that resolving this issue is possible. One suggestion of us is, when a Shape

node corresponding to a triangle mesh is encountered during the original

scene graph traversal, to cast a secondary "helper RTCRay" and use Embree

to find intersections along the ray segment that is intersecting the triangle

mesh’s bounding box.

• Investigating the original scene graph traversal when rendering
CSG

In Subsection 3.5.2, we mentioned an issue we encountered while render-

ing the Villa Rotonda scene by traversing the original scene subgraphs

rooted at the two topmost CSG nodes of the scene graph. As mentioned

before, we believe that this issue results from traversing the subgraphs

during rendering and may not necessarily be caused by our implementa-

tion. From all the scenes on which we conducted our experiments, only

the Villa Rotonda scene exhibited this artifact. Nevertheless, it can be

possible that this issue arises with other scenes, too. A verification of this

procedure being stable would be desirable.

• Consecutive intersection of user-defined and non-user-defineg ge-
ometry

In Subsection 3.4.2, we described an issue that arises when consecutively

intersecting user-defined and non-user-defined geometry with Embree

and how we resolved it. The modification outlined in this subsection

resolved this issue for the scenes on which our overall implementation
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was tested (compare Chapter 4). However, we do believe this issue will

remain in more complex scenes, where a large number of user-defined and

non-user-defined geometries are intersected in an arbitrary order. The

obvious solution for these scenes would be the initialization of all shapes

supported by the rendering system as user-defined geometries at the cost

of a decrease in performance time.

• "Obvious" optimizations

Our implementation utilizes two linked list data structures, one in which

the GeometryData structs that are associated with individual scene geom-

etry, and one in which the intersections between a ray and the scene geom-

etry are stored. The location for a specific item in the lists is performed via

linear search, which might decrease the performance of rendering scenes

containing a high number of geometries. Furthermore, nodes inserted in

the linked list storing the intersections are dynamically allocated on the

heap during the ray tracing process, which might negatively impact the

performance. A solution consists of the replacement of these linked lists

with more sophisticated data structures and query algorithms. Concern-

ing the collection of intersections, Embree provides a function, rtcSet-
GeometryIntersectFilterFunction, with which a callback function is

dedicated to the filtering of the collected intersections can be passed to

Embree. We did not implement this callback function due to the return of

just a single intersection. We needed all intersections to evaluate them ac-

cording to the scene graph. After we abandoned this approach, we did not

implement this callback filter function because we focused on implement-

ing the two other approaches on rendering CSG, described in Subsections

3.5.2 and 3.5.3.

Personal note to the potential user from the author
The main purpose of the work described in this thesis is (besides the author’s

graduation) our desire to provide functionality that is of actual use for both

computer graphics researchers and computer graphics enthusiasts using ART.

In Chapter 4, we have shown that our integration of Embree into ART is com-

petitive with native ART, and in some cases, can indeed accelerate the rendering

process of virtual scenes.

Despite the overall positive results described in Chapter 4, we cannot com-

pletely rule out that bugs will arise during the rendering of your own custom

scenes. Therefore we kindly ask you to report any encountered issues via an
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email to the ART development team (the contact email address can be found on

their website, which is https://cgg.mff.cuni.cz/ART/about/). Any feedback and

critique are welcomed as well. Thank you very much in advance!

We sincerely hope that our work will be useful to you!
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Appendix A

Electronic attachments

Attached to this thesis in electronic form, one can find the ART repository to-

gether with additional Objective-C source files that implement the functionality

described in this thesis.

The following directory tree shows the files of the attachment that are the

most interesting to novel users:

/
ART (Repository folder)

[...]
Gallery (Folder containing individual .tex files )
Documentation (Folder containing several LaTeX source
document files that compose the documentation)
[...]

The ART Handbook can be compiled by executing the gen_arm_doc.py
python script which can be found in the Documents folder, or alternatively, be

squired together with the ARM Scene File Reference Manual from the official

homepage of ART which is https://cgg.mff.cuni.cz/ART/download/.
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Appendix B

User guide for software
installation

In this appendix, a user guide for both compiling and running ART with Embree

support is provided.

B.1 Installing Embree
The first thing one has to consider is the installation of Embree. Embree can be

obtained via its homepage https://www.embree.org/ , which provides a link to the

dedicated Github repository. It can either be built from source or installed from

pre-compiled binaries. A detailed description of the installation procedure for

Windows (32-bit and 64-bit), Linux (64-bit), and macOS (64-bit) can be found in

the README.md file in the repository or the included user documentation [Int21].

B.2 Compiling ART with Embree support
After a successful installation of Embree, ART is ready to be used. A limitation of

ART is the fact that it does only support macOS and Linux systems. However, by

installing a Linux subsystem, making ART work on Windows 10 is possible. The

next chapter is dedicated to this. The installation procedure of ART with Embree

support is almost identical to the one described in the ART handbook [Wil+ndb].

Since, at the time of writing this thesis, the source code of ART is hosted on a

private GitLab server, a zipped folder of the ART source code is provided as an

attachment to this thesis. It furthermore contains the ART Handbook as a PDF

file. For building ART on Windows 10, jump to the next section. Otherwise,

execute the following steps:
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1. Extract the provided zipped folder of the ART source code to a convenient

location on your system.

2. Open the PDF file containing the ART handbook and follow the instruc-

tions of Chapter 1. Ignore the section 1.2 Getting the Source, since the pro-

vided GitHub URL is obsolete and the source code in question is already

included in the extracted folder.

3. Follow the instructions of Chapter 2 until section 2.2.1 Run CMake. Here

lies the crucial difference: To directly quote from this section:

"The only decisions you have to make at this point is whether

you want to install the finished ART binaries globally for all

users [...] . To make a choice, go to the source directory and

type either

$ cmake .

or

$ cmake . -DCMAKE_INSTALL_PREFIX=~

The decision to build ART with Embree support is left to the user. There-

fore, to build ART with Embree support, one has to additionally set a

Boolean CMake variable ENABLE_EMBREE_SUPPORT, which is set to OFF
by default. This can be done by typing

$ cmake . -DENABLE_EMBREE_SUPPORT=1

or

$ cmake . -DCMAKE_INSTALL_PREFIX=~ -DENABLE_EMBREE_SUPPORT=1

Alternatively, CCMake can be used. CCMake offers a GUI-like interface

in which different CMake variables can be edited. All one has to do is to

install CCMake, e.g., on Ubuntu by the commands

$ sudo apt update
$ sudo apt-get install cmake-curses-gui

and then, while being in the source directory, type

$ ccmake .

When typing this for the first time, a menu-like screen should appear with

the message EMPTY CACHE. Configure the project by pressing c on the ke.

Some helpful feedback messages are printed, exit this screen by typing e.
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Now a table of CMake variables and their values like in Figure B.1 should

appear. One can navigate through the table with the arrow keys. Locate

Figure B.1 Setting the ENABLE_EMBREE_SUPPORT in CCmake.

the variable ENABLE_EMBREE_SUPPORT and press ENTER in order to set this

variable from OFF to ON. Press c once again to re-configure the project and

exit the "feedback screen" with e. Now, in the list of options at the bottom,

an option Press [g] to generate and exit should be visible. Press g
to generate the project and exit CCMake.

4. Continue following the steps in Chapter 2.

5. The functionality and usage of ART is the central topic of Chapter 3. Arm
scene files are rendered by invoking the artist command line tool. For an

overview of the features and command line options, type

$ artist -h

A scene file, say foo.arm, with native ART can be rendered by typing

$ artist foo.arm

If Embree support is desired, artist has to be executed with an additional

-e flag:

$ artist foo.arm -e
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B.3 Installation of ART on Windows 10
As briefly mentioned earlier, ART naturally does not support Windows plat-

forms. However, with the help of a so-called Linux Subsystem for Windows,

running ART on Windows 10 is possible. This section guides the process of set-

ting up such a subsystem and additional tools for displaying rendered images. In

this section, the subsystem of choice is "Ubuntu 20.04 LTS".

1. Begin by opening the Microsoft Store and type "Ubuntu" in the search bar

on the top right. This should result in a display of multiple apps. Select the

"Ubuntu 20.04 LTS" app like shown in Figure B.2 and install it.

Figure B.2 The Ubuntu subsystem we are using in the Microsoft Store.

2. After the installation, click the Launch button in the Microsoft Store. A

terminal will open. Wait a few minutes until the setup is complete, and

provide a user name and password. After that, the subsystem is up and

ready.

3. While being in the home/<username> directory, type

$ explorer.exe .
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to open the Windows file explorer. Extract the zipped folder containing the

ART source code here, or create a suitable location for it in the directory

and extract it there.

4. The Linux subsystem does not natively support graphical user interface ap-

plications, although these are crucial for viewing rendered images. How-

ever, displaying GUI applications, in general, can be done by running an

X server on Windows 10, which communicates to the Linux subsystem.

The following procedure is taken from the guide Running Graphical Pro-
grams on Windows Subsystem on Linux [Fen17]. There is a variety of such

X servers. Like the author of the guide, we decided to use Xming. It can be

downloaded via https://sourceforge.net/projects/xming/. Download the ex-

ecutable and follow the installation wizzard, leave the settings as default.

Start the application. An XLaunch should be visible in the Windows tool-

bar.

Figure B.3 XLaunch running in the background.

In the Ubuntu terminal, type

$ export DISPLAY=:0

This will enable the display of graphical user interfaces from the Linux

subsystem in Windows.

5. Follow the instructions in Section B.1 and B.2 to setup Embree and ART.
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Figure B.4 Rendering with ART on Windows 10.
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