
MASTER THESIS

Bc. Luis Sanchez

Generating High-Precision Navigation
Mesh

Department of Software and Computer Science Education

Supervisor of the master thesis: Mgr. Jakub Gemrot, Ph.D.
Study programme: Computer Science

Study branch: Computer Graphics and Game
Development

Prague 2021

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources. It has not been used to
obtain another or the same degree.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of this
work as a school work pursuant to Section 60 subsection 1 of the Copyright Act.

In date .
Author’s signature

i

I would like to thank my supervisor Mgr. Jakub Gemrot, Ph.D., for introducing
me to the topic of navmesh generation, providing advice and feedback. I also
thank to my colleague Juraj Blaho for his consultations and advice.

ii

Title: Generating High-Precision Navigation Mesh

Author: Bc. Luis Sanchez

Department: Department of Software and Computer Science Education

Supervisor: Mgr. Jakub Gemrot, Ph.D., Department of Software and Computer
Science Education

Abstract: Navigation meshes are a widely used method for representing the world
geometry in a format that can be used by pathfinding algorithms.

Frequently used navigation mesh generation algorithms first discretize the input
geometry into a grid of voxels and then reconstruct the mesh out of them. This
benefits the simplicity and performance of the algorithm, but comes with draw-
backs. If the voxels are too large, the navigation mesh is not precise enough and
may even have some pathways missing. If the voxels are too small, creation of
the mesh takes too long.

In this thesis we propose and implement an algorithm that creates a navigation
mesh directly from the input geometry without using an intermediate voxel rep-
resentation. This allows us to preserve original detail where required and results
in a more precise navigation mesh.

Keywords: navigation mesh, stitching, simplification

iii

Contents

Introduction 3
Background . 3
Goals . 5
Thesis outline . 6

1 Related works 7
1.1 Voxel-based algorithms . 7

1.1.1 Recast . 7
1.1.2 Drawbacks of voxelization 7

1.2 Algorithms that use the geometry directly 8
1.2.1 Tozour’s Near-Optimal Navigation Mesh algorithm 8

2 Our navmesh generation algorithm 10
2.0.1 Working with raw geometry 10

2.1 High-level algorithm description 10
2.1.1 Steps . 10
2.1.2 Algorithm settings . 16

2.2 Fundamentals . 17
2.2.1 The halfedge data structure 17
2.2.2 Some definitions . 17

2.3 Import and slope filtering . 18
2.4 Cutting . 20

2.4.1 Method . 20
2.4.2 Implementation . 22
2.4.3 Result . 25

2.5 Gap closing . 27
2.5.1 Progressive Gap Closing by Borodin et al. [2002] 27
2.5.2 Our changes . 28
2.5.3 Preventing fails during contraction operations 29
2.5.4 Implementation . 34
2.5.5 Result . 40

2.6 Unnecessary vertex removal . 41
2.6.1 Decimation . 41
2.6.2 Result . 43

2.7 Adding ramps . 44
2.7.1 Preparation . 45
2.7.2 Adding ramp quads . 46
2.7.3 Cutting and gap closing 50
2.7.4 Results . 51

2.8 Ramp flattening and simplification 52
2.8.1 Ramp flattening . 52
2.8.2 Simplification . 53

2.9 Wall clearance . 53
2.9.1 Implementation . 53
2.9.2 Results . 56

1

3 Evaluation of results 57
3.1 Results of our algorithm . 57
3.2 Comparison with existing works 59

3.2.1 Detail dependent mesh . 59
3.3 Problematic cases . 65

4 Future work 67
4.0.1 Ramp improvements . 67
4.0.2 Simplification improvements 68
4.0.3 Experiment with clustering 68

Conclusion 69

Bibliography 70

List of Figures 72

A Attachments 74
A.1 Implementation demo . 74

A.1.1 System requirements . 74
A.1.2 User manual . 75
A.1.3 Source code . 75

2

Introduction
In this chapter we explain what navigation meshes are and how they are used
in pathfinding. Then we set up goals and desired properties of a navmesh gener-
ated by our algorithm. Finally, we provide an outline of the text in this thesis.

Background
In many applications from robotics to simulation, animation and computer games
it is necessary to calculate a traversable path between two points in a scene. Such
calculations often have to be done quickly, in order to provide a real-time response
to the user.

Doing pathfinding directly on the world geometry is usually too unwieldy.
The level of detail may be too fine and there could be defects, that while not
being problematic in other computations like physics or visibility checks, would
be hard to account for in pathfinding.

Examples of such defects can be small holes or intersections between individ-
ual parts of the world geometry. Even though a two edges of a mesh may be
topologically disconnected, the path over them may still be valid.

Furthermore, there may be other requirements on the properties of a path
that might be hard to guarantee. Common case is the need for a path have
a sufficient size for an agent to move through.

To reduce the complexity and increase performance, the pathfinding is usually
done on some form of a simplified world representation. Navigation meshes,
as first proposed by Snook [2000], are one of them.

Navigation meshes
Navigation mesh (or navmesh), originally described by Snook [2000], is a con-
nected mesh of convex faces. Together, they represent an area in which objects
of the world can move. The entire mesh is contiguous, unless two parts of the
world are disconnected. The mesh cannot be self-intersecting.

Usage With these properties, every walkable point on the surface of a scene
can be mapped to a point inside a face of the navmesh. Then the pathfinding
problem in the 3D space is reduced to finding a path along the surface of the
mesh. Pathing within a single face is trivial – every two points can be reached
by a straight line. When pathing between two different faces, first a path across
the face edges has to be found. This can be done by graph traversal algorithms
like A* by Hart et al. [1968] and then the path can be refined for example by
a funnel algorithm described by Hershberger and Snoeyink [1994]. Alternatively,
there are other algorithms that produce paths with desired properties.

Format In the most simple case navmeshes are made out of triangles. Because
they have fixed number of sides, they can be easily stored in memory and work-
ing with triangular meshes is often simpler. However, it may be beneficial to
use bigger convex polygons instead. This would reduce the number of elements

3

Figure 1: Navigation mesh. Stairs are represented by a ramp.

in the mesh and make areas with trivial pathfinding bigger. Of course, this would
require a more sophisticated data representation and would add some additional
algorithm complexity.

Wall clearance Optionally, the navigation mesh can exclude areas too close
to a wall, where an agent would not be able to move because of its size. This allows
to quickly produce paths where there is no risk of the agent bumping into a wall,
or getting stuck when trying to walk through a tight corridor. However, to do
this, the size of the agent has to be known at the time of navmesh generation.
Additionally, two agents of different sizes could each need their own mesh, or
would have to use the mesh of the bigger one.

Even when the size of the agent is not accounted for, there are ways to compute
a path with arbitrary clearance from walls. One such is described in Shortest
Paths with Arbitrary Clearance from Navigation Meshes by Kallmann [2010].

Navmesh generation Several good works about generating navigation meshes
have already been written, some of them will be introduced in Related works
chapter. Generally, they can be divided into two groups: The ones that create the
navmesh from input geometry directly, and the ones that first convert the input
into some kind of an intermediate representation, from which the navmesh is then
built out of. For example, the intermediate representation can have the form
of voxels. This approach is used by Mononen in Recast library (Mononen [2009]).

Using an intermediate voxel representation reduces the complexity of the scene
and can hide some defects. Specifically, multiple intersecting faces in the input
geometry can all end up being represented as a single voxel in the intermediate
representation. However, in the same way, an important detail may be lost.
For example, a narrow pathway that is not aligned to the voxel grid may become
so narrow that it will not allow passage in the mesh. This can be fixed by reducing
the voxel size, but making the voxels too small makes the generation take a long
time.

4

Figure 2: Detail missed by voxelization.

Goals
While there is a readily available open-source library for generating navmeshes
(Recast, details in Related works chapter), the algorithm it uses works on a voxel
grid and it suffers from the issues mentioned in the previous section. In this
thesis, we propose and implement a different algorithm, one that generates the
navigation mesh from the input data directly. This will allow to keep high de-
tail until the later stages of the algorithm, where the unnecessary parts can be
simplified.

Requirements We start by listing the requirements we put on our algorithm.

Input The most generic representation of any polygonal scene is a triangle
soup – an array of triangles with no requirements regarding their position or
topology. By taking simple list of ungrouped triangles as input we will place the
least restrictions on input data.

Output In one of the previous sections we described two options for the
structure of the navmesh – polygons or triangles. Our algorithm will return the re-
sults as a triangular mesh, because it is more general. If a polygonal navmesh is
required instead, it can be created by running Hertel-Mehlhorn algorithm Hertel
and Mehlhorn [1983] on the triangular one.

Detail preservation Throughout the algorithm, we will try to preserve the
original detail, simplifying only once the topology of a surrounding area is known
or when the data is too fine for numerical stability.

Simplification Having too many faces in mesh could quickly degrade per-
formance of pathfinding. In order to keep the triangle count low, we will need to
run some sort of simplification algorithm. However, the while doing so, we have
to take care not to remove any detail significant for the navmesh.

5

Features In the following paragraphs we describe the features included in the
navmesh.

Vertical clearance Some of the navmeshes do not prevent an agent from
moving in places with insufficient vertical space. This can result in invalid paths
and the agent getting stuck. In order to prevent that, we will allow only faces
with enough vertical clearance to stay in the final navmesh.

Ramps To allow an agent to travel between two plateaus of different heights,
they have to be connected. Such connection can be made by inserting an extra
geometry, that will form a ramp between two existing faces. The ramp has to be
properly topologically connected to the rest of mesh.

Error tolerance Some of the input geometry may have gaps, self intersec-
tions and T-junctions. These all have to be fixed in order to keep maximum
connectivity between faces.

Wall clearance To prevent the agent from moving in too tight paths, we
will exclude areas too close to a walls or overhang from the navmesh. While
this can be also accomplished algorithmically during pathfinding by an algorithm
from Kallmann [2010], having the actor radius already baked-in into the mesh is
more performant.

Thesis Outline
In the first chapter we will describe two existing navmesh generation algorithms
and show cases in which they fail.

The second chapter introduces our navmesh generation algorithm. First we
begin by presenting a high level overview and break down the algorithm into
steps. Then we describe the individual steps in more detail, with each of them
having its own section.

In the third chapter, we will show the results of our work and compare
the navmeshes generated by our algorithm against a one that uses voxelization.

Finally, in the fourth chapter we mention suggestions that can be done to im-
prove the results of our algorithm.

6

1. Related works
In this chapter we describe some existing navmesh generation algorithms and
discuss problems they are unable to solve.

1.1 Voxel-based algorithms
Some algorithms make use of voxelization step during the navmesh generation
process. Instead of working on the geometry, such algorithms create the mesh
from a voxel grid. The voxel grid has uniform detail and hides defects or im-
precisions of the original input geometry. However, any detail that cannot be
represented on the voxel grid will be lost.

1.1.1 Recast
Example of a voxelization based algorithm is a one used by a state of the art
open-source navmesh generation library, Recast Mononen [2009]. The original
implementation was done by Mikko Mononen, and the inner workings are de-
scribed in a presentation on his blogpost Mononen [2010]. In the following text
we present a brief overview.

Polygon voxelization Polygons of the input geometry are clipped into cell
boundaries. Then they are rasterized by taking a min and max values in each
cell column. Finally, they are merged into RLE encoded voxels.

Building navigable space Filtering removes voxels with overhead obsta-
cles or steep slopes. Compensates for conservative rasterization by doing erosion
of ledge cells.

Watershed partitioning Watershed partitioning splits the navigable space
into regions. Optionally, the regions are eroded by the agent’s radius

Region tracing and simplification Contours of the regions are found and
traced, then simplified. At this stage, the navmesh is a set of simple polygons,
with shared vertex positions.

Triangulation and connecting Simple polygons from the previous step
are broken down into triangles. Finally, they are connected into the mesh.

1.1.2 Drawbacks of voxelization
Voxelization sets a limit on detail Voxelizing the input into cells will

remove any detail that is smaller than the size of a cell. Even features larger
than the grid size may be distorted if they lay across cell boundaries. Additional
processing in voxel space, like the 1 cell erosion done by Recast will further worsen
the impact.

7

Figure 1.1: Detail lost by voxelization

In figure 1.1, the door frame is 30% wider than the agent and covers the length
of approximately 9 voxel cells. But due to the loss of detail caused by voxeliza-
tion, the navmesh inside the room is not yet connected. Such disconnect will
prevent pathfinding algorithm from finding a path into the room. To guarantee
connectivity we would need to further reduce the cell size.

1.2 Algorithms that use the geometry directly
In this section we describe an existing algorithm that works directly on the input
geometry.

1.2.1 Tozour’s Near-Optimal Navigation Mesh algorithm
Tozour in an article inside AI Game Programming Wisdom describes an algo-
rithm for building a near-optimal navigation mesh. It builds on the concept
of navmeshes introduced by Snook [2000], but instead of building a triangular
mesh, he creates a polygonal one that is sufficiently close to optimal in number
of faces.

Slope filter The first step of Tozour’s algorithm is to filter away any polygons
that are not walkable. This is trivially done by comparing the normal vector
of every face against the up vector of the scene. Any polygons with values over
a specified threshold will be rejected.

Merging into convex polygons

Neighbour merging Neighbouring triangles are merged into bigger convex
polygons using Hertel-Mehlhorn algorithm Hertel and Mehlhorn [1983], which
guarantees that it has at most 4 times the number of polygons of the optimal
one.

8

3-2 merging Some polygon merges done in the previous step can be further
improved by breaking down three neighbouring polygons and merging them into
two.

Culling Faces with surface area under a limit are removed. No preserving
of topology is mentioned, so handling of small faces that connect important
navmesh areas is a bit unclear.

Handling superimposed geometry This step is meant to cut away parts
of navmesh that are being blocked by superimposed geometry like static objects.
Possibly it could be used to also cut away parts of the mesh that are being blocked
by other navmesh faces, but Tozour [2002] does not mention such use.

The cutting is being done on per-face basis, where each face is recursively
subdivided until limit size is reached. If any of the new faces created by subdivi-
sion are fully blocked by the other geometry, they are cut from the navmesh and
the subdivision is stopped.

Finally, the remaining faces left after subdivision are merged using the same
approach as described in Neighbour merging.

Issues with Tozour’s algorithm The algorithm does not handle self inter-
sections in the input data. When two walkable surfaces meet vertically, only
one of them or its part should remain valid. (The other one is under it). This
frequently occurs when terrain surfaces are not exactly aligned or are being in-
tersected by ramps.

In theory, this could be handled in the same way as superimposed geome-
try, but then the original polygon merging would be wasted and the amount
of subdivision could be enormous.

Additionally, the algorithm does not connect parts of navmesh that are not
touching. Tozour [2002] proposes to solve this by creating ”links” between two
disconnected navmesh edges, but does not elaborate on the implementation fur-
ther.

9

2. Our navmesh generation
algorithm
In this chapter we present our approach to generating a navigation meshes that
preserves detail of the original geometry. We will first provide a high-level
overview of the algorithm and then we will describe its parts in more detail
in their own sections.

2.0.1 Working with raw geometry
We do not want to limit the user too much by restricting the accepted input.
Even if the objects of a scene are fully made of valid meshes, their combination
in the scene might not. The objects might be intersecting with each other, seg-
ments of terrain may be overlapping or have gaps between themselves. In order
to be able to accept such scenes as input of our algorithm, we cannot make too
many assumptions about their structure. Therefore in the beginning, we will
work only with the individual triangles, and only in the later steps we will merge
them into a mesh.

While working with the raw geometry data has benefits, it also comes with its
own challenges: Not being able to run some kind of a pre-processing voxelizing
step that would clean-up the source data means that we need to handle any
defects inside the algorithm itself. Some of these may be present in the input,
but others may also be created by our transformations. Any computations done
on floating point data types will eventually suffer a loss of precision and require
the use of offsets and tolerances. Even then the loss of precision can then manifest
in unexpected results at any time. We need to make an extra effort to handle
degenerate cases at all stages of the algorithm.

2.1 High-level algorithm description
Our goal is to create navmesh out of unstructured triangle data (triangle soup).
To achieve this, we will do a series of steps, each of which will transform the
geometry, getting it closer to the result we desire. During the process, we will
use the term navmesh candidate to refer to the mesh that is being made into the
final navigation mesh.

2.1.1 Steps
Our algorithm can be broken down into the following steps:

Slope filter In the same way as Tozour [2002] does in his navmesh generation
algorithm, we start by filtering away unwalkable triangles. We compare the nor-
mal vector of each face to the world up direction, and if they differ by sufficiently
high angle, the triangle is deemed to be too steep to be walked on and is not kept
in the mesh.

10

In our implementation, both the scene up direction and the maximum walk-
able angle can be customized by a user. Further details in Algorithm settings.

A

B

Figure 2.1: Mesh after slope filter

Cutting It can be seen that the results of the previous step contain parts
that definitely should not be in a navmesh. The triangles of the floor continue
unhindered through the stairs (A in the figure 2.1.) and there are places with
insufficient vertical clearance (B in the figure 2.1.)

Both of these cases will by handled in the Cutting stage. We will extend
every triangle from the original input into a 3D wedge, and use it to cut into
the navmesh candidate. The length of such wedge is based on the height of the agent.
Areas within the wedges will be discarded. Details are described in the Cutting
section.

During this stage we also collect useful information about the individual edges
that will be used later to help us create ramps.

11

A

B

Figure 2.2: Mesh after cutting. A – ground triangles stop at the outline of the
wall. B – area was cut because of insufficient space

Gap closing The blue lines in figure 2.2 represent edges that are shared between
two triangles, while the red ones are boundaries of just one triangle. It is evident
that there are many edges still unshared, even though they belong to two visibly
neighbouring triangles. Until now, we worked on every triangle of the navmesh
candidate separately and were not at all concerned about the topology. However,
future steps will require a properly connected mesh, which we will now create in
the gap closing stage.

The purpose of this stage is not just to merge the obviously neighbouring
triangles that shared exact vertex positions, but to fix a wider range of errors
that come from both the original input or could have been caused by the cutting.
Specific examples can include T-junctions, gaps between edges, small intersections
of neighbouring faces or extremely thin triangles.

The implementation is based on Progressive Gap Closing for Mesh Repair-
ing by Borodin et al. [2002], which works by applying a series of vertex-vertex
or vertex-edge contractions to close holes and fix small self-intersections in the
navmesh. The original algorithm can sometimes produce non-manifold vertices
and edges that would not be acceptable in a navmesh. To keep our mesh topology
valid, we limit the algorithm to do only contractions that do not invalidate it.

12

Figure 2.3: Mesh after gap closing. All internal edges of the floor and stair
platforms are being shared between all triangles

Unnecessary detail removal We run a light decimation step, that removes
unnecessary features from the mesh. This step only affects internal vertices
of (almost) flat planes and consecutive vertices of boundaries. The goal is to re-
duce the complexity of our next operations without sacrificing important detail
in the mesh.

Adding ramps During cutting, we stored a type information on each boundary
edge that allows us to determine if an edge was created by cutting or if it is a one
of the original boundaries. Now, that all the internal edges are fully connected,
we proceed by creating ramps from all the non-blocked edges.

We attempt to connect every non blocked edge by a quad to an existing part
of the navmesh below. We will keep only the parts of ramps that were able
connect. The newly made ramps will become a regular part of the navmesh and
will undergo the same cutting and gap closing procedures as the rest of the mesh
did.

13

Figure 2.4: Edge type after removing unnecessary detail step. Yellow edges are
not blocked and can have ramps.

Figure 2.5: Navmesh after adding ramps.

Removing small patches Now that all of the previously disjoint parts of
a mesh are connected into big chunks, we remove any remaining small areas. We
calculate a combined surface area of every connected face group (patch) and if
they are under a threshold, we remove them from the navmesh. This step is
intended to delete small areas in unreachable places, such might be an area on
top of a lamppost.

Flattening and simplification We run another decimation step. First pass
attempts to flatten consecutive ramps into one shared ramp quad. A second

14

pass does a general mesh simplification while still preserving outer boundaries.
To achieve this we will use a quadric error metric to prioritize decimations with
the least detail lost, while locking important features to prevent them from being
deleted.

Figure 2.6: Navmesh after flattening and simplification.

Wall clearance This step cuts away areas of the navmesh that are too close
to a wall for an agent to move in. It is done by inflating every existing boundary
edge of the navmesh into a 3D shape and intersecting it with the remainder of
the mesh in a similar way as we previously did during Cutting. In the end we
also connect all newly cut triangles together again using Gap closing and remove
newly created small patches in the same way as in Removing small patches.

Final simplification In the end we run a final pass of simplifying the mesh
again using the error quadrics.

15

2.1.2 Algorithm settings
This section describes settings that are provided to the user to control the be-
haviour of our algorithm.

Agent specific settings These settings control the dimensions and properties
of an agent that we create the navmesh for. We represent an agent as a cylinder
with the following parameters:

Agent height Height of the agent in meters.

Agent radius Radius of the agent in meters.

Maximum walkable slope Maximum steepness of a surface that can be
walked on.

Maximum step height Maximum height of a stair step that can be climbed
by the agent.

Navmesh settings These are the settings related to the scene and the algo-
rithm itself.

Up vector The vertical direction in the world coordinates.

Stair slope Default angle of ramp placement for stairs.

Gap closing distance Maximum distance of contractions during gap clos-
ing.

Wall thickness Additional thickness added to triangles that make up walls.

16

2.2 Fundamentals
We want to store a mesh in a form that allows us to easily traverse the topology
and do changes to the mesh data. A suitable solution is a halfedge data structure
implemented in the OpenMesh library by Kobbelt et al. [2002].

2.2.1 The halfedge data structure
The halfedge data structure is an representation of mesh data that splits ev-
ery edge into a pair of directional halfedges and stores connectivity information
in them.

1. Vertex → one outgoing halfedge

2. Face → one halfedge

3. Halfedge → target vertex

4. Halfedge → its face

5. Halfedge → next halfedge

6. Halfedge → opposite halfedge
(implicit)

7. Halfedge → previous halfedge
(optional)

Figure 2.7: Halfedge data structure. Description from Kobbelt et al. [2002]

The benefit of using this representation is that it allows constant time access
to a one-ring neighbourhood of a vertex.

Limitations Some topologies cannot be represented via the halfedge data struc-
ture. Any edge must not belong to more than two faces, otherwise it becomes
a complex edge. Every neighbourhood of a vertex must be topologically equivalent
to a disc, otherwise it becomes a complex vertex Kobbelt et al. [2002].

Even though OpenMesh can handle some complex vertices, it cannot handle
complex edges at all. A final navmesh will not contain either of these, but as we
need to use the data structure also for the intermediate steps we must uphold
these requirements during the whole algorithm.

2.2.2 Some definitions
In this section we define some terms that we will use to refer to features of a mesh
represented by the halfedge data structure.

17

Halfedge

• boundary halfedge: A halfedge that does not have an adjacent face.

• opposite halfedge: A second halfedge of a halfedge pair that makes up a
single edge.

• next halfedge: The next halfedge in a halfedge chain. Every halfedge points
to its successor. Halfedges within a single face form a closed loop. Boundary
halfedges form a loop around the whole boundary of the mesh.

• opposite vertex A vertex on the other side of the face attached to this
halfedge.

Vertex

• boundary vertex : A vertex that belongs to a boundary edge.

• isolated vertex : A vertex that does not belong to any edge.

2.3 Import and slope filtering
Now we will look at the individual parts of the algorithm in more detail. This
section describes the steps we take while preparing the initial navmesh candidate.

Filtering of valid triangles

Numerical validity For any triangle in the input we first test that it is
numerically valid. We define a valid triangle as a one that is both made of vertices
with finite coordinates and has a valid normal vector. If a triangle is not valid,
it is simply ignored in the input data. The normal vector is not being read from
the input, but is calculated anew from the positions of the vertices. We will store
it along with the triangle to avoid having to calculate it again.

Loading into OpenMesh We want to use a halfedge data structure pro-
vided by OpenMesh to be able to work with the mesh. However, we placed no
limitations on the input data - it may contain both complex edges and complex
vertices, which the halfedge data structure is not able to represent. To get around
this issue, we have to add every triangle’s vertices independently even if they are
located at the same coordinates.

This will make all the triangles disconnected from each other and not have
topological conflicts. By doing that, we will also lose the ability to traverse the
topology of the mesh. We will eventually fix this issue during Gap closing.

18

Slope filter As a starting point for our navmesh we want to keep only the trian-
gles that an agent could walk on. We compare the angle between a normal vector
of each triangle ni⃗ and the up direction of the scene u⃗. A triangle is discarded if
the angular difference of the two vectors is bigger then a threshold specified by
maximum walkable slope from Algorithm settings. Such comparison can be done
efficiently by setting a threshold of

t = cos(max walkable angle)
and rejecting any triangles where

ni⃗ · u⃗ < t

The same walkability filter of initial triangles is done by Tozour [2002] in his
Building Near-optimal Navmesh algorithm.

Figure 2.8: Triangles filtered by their slope.

19

2.4 Cutting
The navmesh candidate from previous step includes areas which are not accessi-
ble to an agent. There might be points where the navmesh continues unhindered
through a wall or places where an agent could not possibly walk because of in-
sufficient vertical space.

A

B

Figure 2.9: Defects in navmesh before cutting. A – navmesh continues through
a wall. B – not enough headroom for an agent

The purpose of this step is to handle both such defects by cutting the prob-
lematic parts away from navmesh. We will first show how to handle the areas
with lack of vertical space, then we will extend the approach to handle wall
intersections as well.

2.4.1 Method
For a point to be vertically blocked there needs to be an obstacle above within
a short enough distance that an agent would not fit in between. For a single point
such case could be detected by a raycasting from the point upwards. However,
for the whole triangle a single raycast would not be enough, and doing a sufficient
number of them to cover the whole area is impractical.

Instead, we can take advantage of the fact that all of these raycasts would
have the same direction and length. If we extruded all the obstacles by the agent’s
height in the downwards direction, we could simplify the tests in the following
way:

Every vertically blocked point would lie within the extruded volume. Simi-
larly, every vertically blocked triangles would be intersecting the extruded volume
as well. If we are able to compute the triangle’s intersection against the volume
exactly, we can determine which parts of the triangle we should keep. See the fig-
ure 2.10 for a 2D illustration.

20

Figure 2.10: Raycasts vs extruding geometry downwards (2D).

In our case, all the obstacles are being represented by a set of triangles. Ex-
truding a triangle by a non-zero vector that is not aligned to its plane will always
produce a wedge (figure 2.11). The only way that the normal of a triangle would
be aligned with our extrusion vector could be if the triangle itself is orthogonal
to the up direction of the scene. We will consider such triangles to be walls and
we will handle them later in the Walls paragraph.

Figure 2.11: Extruding a triangle into a wedge

It is worth noting that the whole concept of extruding geometry is just a men-
tal model used to help us understand the cutting operation. Extruding a triangle
does not involve an actual change to the geometry. All wedges are implicit and
can be fully represented by the original triangle’s vertices and the extrusion vec-
tor, which is the same for all of them.

Walls

At the beginning of the Cutting section we postponed the problem of a navmesh
intersecting walls until after we set up the method of handling vertical clearance.
At the same time, we avoided extrusion of walls into wedges because of aligned
normals.

The solution to both these problems is instead of treating wall triangles as
a thin object, we should make them thick by extruding them also along the di-
rection of their normal. Intersection of such shapes could then cut a sufficiently
wide gap in the navmesh that a navmesh triangle could be split apart and not be
reconnected later.

21

Alternatively, if our intersection algorithm can safely handle wedges of zero
volume, we can delay the extrusion along normal until after we intersect the navmesh
triangle and the wedge. The result of this intersection would then be a line seg-
ment, which we can then convert into a rectangle. This is the approach that we
took in our implementation.

x

y

z

x

y

z

Figure 2.12: Extruding wall intersection in the plane

2.4.2 Implementation
In this part we go into more detail about the actual implementation of cutting.
First we describe the initialization step that happens once for the whole mesh,
then we describe the cutting operation that happens on each triangle individually.

Initialization

BVH construction To avoid having to intersect every navmesh triangle
against every wedge it is beneficial to use some kind of a bounding volume hier-
archy and reduce the set of possibly intersecting wedges.

We will use an R-Tree, which is a data-structure for spatial searching proposed
by Guttman [1984]. There exists an open-source implementation maintained
by Barkan et al. [2020]. In this tree we will store a hierarchy of bounding boxes.
The bounding box of every triangle will be computed from a component-wise
minimum and maximum of its vertex positions.

BVH query To get a set of potentially intersecting wedges we will perform a
RTree search query in a cuboid located within and above every navmesh triangle.
Additionally, we further increase the search area by a wall extrusion distance
in order to include nearby walls. Such walls would create intersections when later
extruded as described in Walls paragraph.

22

Per triangle operations Now we describe the cutting operation done on each
navmesh triangle.

Establishing 2D space Any triangle lies within a single plane and in that
plane can be defined using 2D coordinates. We can find a suitable basis vectors
of this plane’s coordinate system from the triangle’s normal ni⃗ and its longest
side vector si⃗:

x⃗ = si⃗

∥si⃗∥

y⃗ = ni⃗ × x⃗

∥ni⃗ × x⃗∥
This will produce two basis vectors x⃗, y⃗ that define a coordinate system

of the plane.
We will establish such coordinate system for all the triangles, and the re-

maining cutting operation will happen in 2D. After finishing with all cutting
operations, we will convert from the plane coordinate system back into the 3D
coordinates of the scene.

Intersecting wedges We described how to get a list of wedges that possibly
intersect our triangle in BVH query paragraph. We then find an intersection
of each wedge against the triangle’s plane. The result will either be a convex
polygon or a singularity in the form of a point or a line. We will ignore such
singularities because they do not represent a meaningful detail. Also, we will
offset every wedge downwards by some small ϵ, so that a navmesh triangle is not
intersecting its own wedge.

Figure 2.13: Wedge - plane intersection produces a polygon (blue)

We calculate the wedge-plane intersection by breaking down the wedge into
triangles and doing 8 triangle-plane intersections instead. Then we transform
their result into the plane coordinate system, remove duplicate points and com-
pute a convex hull to find the final polygon. Möller [1997] describes a fast triangle-
triangle intersection tests that can be generalized to compute a triangle-plane
intersection.

Intersections of wall triangle wedges are being handled as we described in fig-
ure 2.12.

23

Polygonal operations As we described, a wedge-plane intersection results
in a convex polygon within the 2D plane. We will grow this polygon in size by
a small constant to prevent floating point issues and small gaps from creating
long thin slices during subtraction.

The polygon represents an area within the plane that is being blocked by
a triangle above. By subtracting the polygon from the original triangle we are
able to compute an area that is still walkable. We will do such subtraction for
each wedge, until we are left with the final walkable polygon or until the walkable
area gets small enough that we can discard it.

In our implementation we are using the Boost Geometry library by Boost
[2021] to do the polygon set operations.

Triangulation After completing the subtraction for all the intersecting
wedges, we are left with a polygon that represents the remainder of the walk-
able area within the original navmesh triangle. We will triangulate the polygon
using ear clipping algorithm, implemented by Earcut.hpp open-source library
by Mapbox [2021].

The resulting triangulation will then be transformed back into 3D and replace
the original navmesh triangle. When inserting the triangles into the navmesh we
will be adding new vertices and will not connect to the surrounding topology yet.
The disconnect will be fixed later in the Gap closing section. However, we can
already keep the connections between the new triangles of triangulation to avoid
extra work in future.

We preserve the previously computed normal of the old navmesh triangle
in the new ones. Since they are within the same plane, their normal is exactly
the same and calculating it again would be less precise because of their now
smaller size.

Figure 2.14: Navmesh triangle (green) after subtracting the wedges and doing
triangulation.

Edge classification During cutting we can obtain some additional infor-
mation about the newly created edges, that will be useful to us in the future
steps. Based on how an edge was created, we can assign it to one of the three
following types:

Edge types:

• Open edge
This edge is a part of the original navmesh triangle’s boundary and is not
being vertically obstructed.

24

• Blocked edge
This is a newly created edge inside the original triangle and its outer side
is vertically obstructed.

• Inner wall edge This edge is a special case of the blocked edge. It is
an inner edge of a triangle with its outer part being vertically obstructed,
but it is specifically being obstructed by wall and is located on its inner
side.

Figure 2.15: Classification of edges from figure 2.14. Red edges are Blocked,
yellow edges are Open

Open edges are trivial to detect – we compare their position to all of the
boundaries. To detect the Inner wall we have to store the shape of every inner
wall outline. (We can find which of the walls is the inner one by looking at the
normal vector of the wall triangle.) If the edge is aligned to any inner wall outline,
we mark it as Inner wall. Otherwise we assume that its type is Blocked.

This edge type property will be stored in the mesh and we will need to preserve
it during gap closing.

2.4.3 Result
Cutting removed any vertically areas from the mesh, but also introduced many
new triangles. The state after cutting can be seen in the figure 2.16.

25

A

B

Figure 2.16: Mesh after cutting. Ground triangles stop at the outline of the wall
(A). Area was cut because of insufficient space (B).

26

2.5 Gap closing
Until now we have kept the individual triangles disconnected from each other,
because we couldn’t guarantee that their topology would be a valid mesh. How-
ever, cutting and filtering should have removed all of the bigger intersections, and
what remains are mostly holes, badly aligned faces and small overlaps.

In this gap closing step, we will try to connect the navmesh triangles into one
or multiple meshes. Our implementation is based on Progressive Gap Closing
algorithm by Borodin et al. [2002]. We customize some steps in order to be
able to work directly on our half edge data structure. All the changes and their
implementation will be described in this section.

2.5.1 Progressive Gap Closing by Borodin et al. [2002]
This part describes relevant parts of the Progressive Gap Closing paper that are
being used in our algorithm. Our changes will be described later in the Our
changes section.

The authors use two contraction operations that they use to fix the mesh:

Vertex contraction This is a generalization of an edge contraction, that is reg-
ularly used during mesh decimation. By allowing contractions of vertices that are
not necessarily sharing an edge, it is able to close together even fully disconnected
regions.

before after

Figure 2.17: Vertex contraction

Vertex-Edge contraction Using vertex contractions alone could produce dis-
tortions in case of long narrow gaps. In such situations, it is better to connect
the vertex to an edge. Vertex-edge contraction between vertex v and an edge e
is defined in the following steps:

1. Project the vertex v onto an edge e

2. Split the edge e into two edges, creating a new triangle in the process

3. Perform a vertex-vertex contraction as defined in the previous paragraph

27

Figure 2.18: Vertex-edge contraction

Fixing the mesh The progressive gap closing algorithm does a pre-processing
step, where they identify closest possible contraction pairs. Vertex-edge contrac-
tions are preferred, unless the vertex would be created too close to an existing
one. The possible contractions are put into a priority queue sorted by distance
between the contracted features.

In every iteration of the algorithm, they perform the contraction with minimal
distance. For every affected feature they update the its planned contraction and
its priority in the queue.

2.5.2 Our changes
Now we will describe the changes that we did to be able to use the Progressive
Gap Closing algorithm in our work.

Limit The original algorithm is intended to provide a sequence of contractions
in a 3D model and letting a user determine when to stop. In our case, we do
not require such interactivity. Instead, we would like to fix all holes in the mesh
while keeping relevant detail intact. We will keep doing any available contraction
operations within a specific distance threshold. This threshold has to be chosen
low enough so that any navmesh triangles along walls that were cut will not be
merged together again.

Keeping mesh topology manifold The mesh representation used by Borodin
et al. in the original algorithm is flexible enough to allow all kinds of meshes
and the contraction operator might introduce non-manifold vertices and edges.
Borodin et al. [2002] suggest to fix this by applying a Cutting and stitching
algorithm by Gueziec et al. [2001].

In our case, the geometry after cutting should already closely resemble the
topology of a mesh, and by choosing the contractions carefully, we can keep it
valid. In our approach, which we will describe in the next section, we will focus
on preventing any invalid contractions from happening.

28

2.5.3 Preventing fails during contraction operations
In order to be able to store the navmesh candidate in a halfedge data structure
and to keep it a valid navmesh, we need to avoid introducing some topologies
into the mesh.

Defective topologies

Authors of OpenMesh, Kobbelt et al. [2002], describes two topology cases that
cannot be represented in its halfedge data structure:

Complex edge Any edge must not belong to more than two faces, otherwise
it becomes a complex edge As every edge is made of two halfedges, it also implies
an additional limitation: A halfedge cannot belong to more than one face.

A

B

A

B

A

B

A

B

Valid topologies Complex edges

A

B

Figure 2.19: Examples of complex edges. Adding the red triangle on the right
side would create a complex edge between vertices A and B. However, the red
checkerboard triangle on the bottom left can be added, because its normal is
pointing away from the viewer. Topologically this is equivalent to the first ar-
rangement on the left.

29

Complex vertex Every neighbourhood of a vertex must be topologically equiv-
alent to a disc, otherwise it becomes a complex vertex.

A
A

B
C

A

B
C

A

B
C

Valid topologies Complex vertices

Figure 2.20: Examples of complex vertices. The addition of the red triangle
would create a complex vertex. The arrangement on the bottom left is still a
valid topology for halfedge DS (even though non-manifold). Only when we try
to complete the disc by adding another triangle (red) we get a complex vertex.

30

Safe vertex contractions

Now we describe how to detect situations where doing a vertex-vertex contraction
would create any of the previously mentioned defective topologies.

Temporary halfedge To help us in the future definition, we will first introduce
a new concept. Lets define a temporary halfedge as a halfedge that belongs to
a face that will disappear during a contraction of vertices Va and Vb. See figure
2.21.

A

B

Figure 2.21: Temporary halfedges. Vertex contraction of vertices A and B will
remove the faces highlighted in green. Their inner edges (green) will become
boundaries, thus we call them temporary halfedges

Avoiding complex edges A vertex contraction of vertices Va and Vb will not
create a complex edge if all of the following is true:

• All neighbour vertices Vn of vertex Va that are connected via outgoing non-
boundary and non-temporary halfedge (Va → Vn) are either not also neigh-
bours of Vb, or the halfedge from Vb to the neighbour (Vb → Vn) is a boundary
or temporary halfedge.

• All neighbour vertices Vn of vertex Va that are connected via incoming
non-boundary and non-temporary halfedge (Vn → Va) are either not also
neighbours of Vb, or the halfedge from the neighbour Vn to vertex Vb (Vn →
Vb) is a boundary or temporary halfedge.

• The vertex contraction is not folding a quad over its diagonal.

These rules guarantee that any edges in the shared neighbourhood that would
be duplicated after merging vertices Va and Vb can be merged together, without
any of their faces trying to share a halfedge.

31

Triangle fan Now we introduce another concept that will help us in the next
part. Lets define a fan around a vertex as list of consecutively connected triangles
in a counter-clockwise direction around a vertex. The fan begins with an incoming
boundary halfedge and ends with the last incoming non-boundary halfedge inside
the last triangle. We place no requirements on the outward facing edge of the fan
– it can be connected to other triangles in the mesh.

V

A

B

CD

E

F
Figure 2.22: Fan around a vertex. The vertex V has two fans: First fan (orange)
spans vertices A, B, C, D. The second fan (green) spans vertices E and F .

Avoiding complex vertices A vertex contraction of vertices Va and Vb will
not create a complex vertex if all the following is true:

• If any of the vertices Va or Vb is not a boundary vertex, the other vertex
must be isolated.

• If any of the shared neighbours Vsn of vertices Va or Vb has a fan that spans
from Va to Vb, it must be the only vertex fan around Vsn. Note: To be
precise, to create a complex vertex, it is enough that both of the vertices
are contained in a single fan. But such case would get caught as a complex
edge anyway, so we will not bother trying to detect it here.

• Lets now treat all the temporary halfedges as if they were boundaries. Ad-
ditionally, lets construct a directed graph from all the fans around Va and Vb

in the following way: For each fan lets take the starting vertex Vf and end
vertex Vt and add an edge Vf → Vt into the graph. If such graph contains
a cycle, the cycle must span all the nodes in this graph.

32

These rules guarantee that the neighbourhood of Va and Vb can be merged
in a way that will either keep the result a non-manifold vertex, or will make it
a non-boundary vertex surrounded by a topological disc.

By following these rules we can avoid creating complex vertices and edges
during vertex-contraction and make it safe. Now we will make also the vertex-
edge contractions safe by defining their rules.

Safe vertex-edge contractions

A vertex-edge contraction between vertex V and a boundary edge E between Ve1
and Ve2 is safe if the following are true:

• The vertex V and edge E are not a part of an existing face

• The vertex V is not connected to the opposite vertex of E

• If a halfedge Ve1 → V exists, it must be a boundary halfedge. (To merge
without creating a complex edge.) Additionally, if there is a fan around Ve1
that begins with Ve2 and ends with V , it must be the only fan around Ve1.
(To merge without creating a complex vertex.)

• If a halfedge V → Ve2 exists, it must be a boundary halfedge. (To merge
without creating a complex edge.) Additionally, if there is a fan around Ve2
that begins with V and ends with Ve1, it must be the only fan around Ve2

These rules guarantee that the vertex V can safely split an edge E and any
of their shared neighbours can merge.

33

2.5.4 Implementation
This section will describe the implementation of gap closing in more detail. Before
we describe the actual process, we first introduce some operations that we will
use.

Removing small triangles

Some extremely thin triangles might be missed during cutting or some might even
be created by the algorithm. This can happen when geometry degenerates too
far or a set operation is not accurate enough. Such triangles can prevent us from
completely closing all the holes in a mesh (figure 2.23).

Figure 2.23: Thin triangle prevents gap closing.

As a pre-processing step we remove all triangles that have any of their altitudes
below a limit. In order not to lose an edge type that might be stored in one of
the triangle’s edges, we have to propagate it onto the next boundary.

We will take advantage of the fact that even before running gap closing, we
already have some limited connectivity in the mesh. During triangulation that we
did at the end of Cutting, we connected triangles that were created from the same
polygon. Now when we want to delete a small triangle, we can pass its edge type
onto a neighbour. In case that the small triangle is isolated we can safely delete
it – there is no meaningful edge to keep the edge type in.

If we did not preserve the edge type, we would not be able to determine safe
placement for ramps and would end up with a lot of attempted ramps being cut
away later.

Vertex contraction implementation

This section describes how the vertex contraction operation is implemented on
the halfedge data structure of OpenMesh. Before doing any contraction, we first
check that it will not produce any unwanted topologies as described in Preventing
fails during contraction operations.

A contraction of vertices Va and Vb will reconnect all the neighbours of Va

into Vb in a way that merges their topologies into one.

34

A simple vertex contraction is shown in figure 2.17, however the usual case
is much more complicated. Each of the vertices might be surrounded by number
of fans (figure 2.22), some of which might share vertices with fans of the other
vertex.

Thankfully, we already verified that the contraction will be possible, using
the approach described in Safe vertex contractions. We can begin by marking all
the surrounding edges of Va and Vb as modified. After the contraction is done,
we will update the assigned contractions for all marked edges.

Now we will proceed with the actual vertex merge step:

Vertex merge

1. If the vertices Va and Vb are connected via an edge, there exists either one
or two faces that would become degenerate by the contraction. Such faces
are safe to remove. However, if any of such faces have boundary edges, we
must preserve their type.

A

B

Figure 2.24: Contraction of A → B will degenerate the red triangles. The edge
type of the dashed yellow edge needs to be copied into the yellow one.

2. If the vertex Vb is now isolated, we can simply move all incoming halfedges
of Va over to Vb.

3. If the vertex Va is not isolated, we have to transfer all the fans of Va into
Vb and merge any halfedge loops that would remain. More details below.

Transferring fans We transfer every fan around vertex Va to vertex Vb. To
do that, we have to:

• Change destination vertex of every incoming halfedge of the fan from Va to
Vb.

• Reconnect the incoming boundary halfedge of Va immediately before the
fan to the halfedge after the fan. (bottom left in figure 2.25)

35

• Insert the boundary halfedges around the fan into the boundary loop of Vb.
(Bottom right in figure 2.25.)

B
A

A1

A4

A2

A3

B1

B2B3

B4

B5

B6

A

A1

A4

A2

A3
B

B1

B2B3

B4

B5

B6

A4
A1

Before

After

Figure 2.25: Transferring fans.

Ordering and merging fans During the transfer of fans we only preserved
the boundary loop around Vb and did not check if any of the vertices are shared.
There might have been a case where two or more consecutive fans could be merged
into one. Such fans might not even be placed in the right order yet, so we need
to order them first and then we can merge.

A

1

2

3

3
4

5

5

6

7

A

1

2

3

3

4

5 5

6

7

Figure 2.26: We change the order of the fans in the boundary loop such that fans
that share a vertex are after each other.

Notice that in figure 2.26 there is still one more problem remaining: The ver-
tices 3 and 5 have two edges that connect them to the centre vertex A. Essentially
there is a halfedge loop of 3 → A → 3 that would be a complex edge. We need
to find all such cases and collapse the loop by making both the faces share one
edge and removing the other. We also need to properly connect the incoming
and outgoing halfedges of A.

36

A

B

CD

E

A

V

A

B

CD

E

V

Figure 2.27: Collapsing a halfedge loop between A → V → A.

Positioning We have successfully merged the surrounding triangles of two
vertices topologically, but we have left the vertex in its original position. Borodin
et al. [2002] suggest to use some λ constant to blend the two positions of the
vertices together. One obvious candidate could be λ = 1

2 to essentially use an
arithmetic average. However for our case this turned out problematic and we had
to found a better solution.

When we add ramps during later part of the algorithm, a vertex that has been
contracted multiple times could have moved far enough from its original position
that a ramp originating from the edge of a stair would start to clip its geometry.
This could prove disastrous during cutting where this would disconnect the ramp.
Figure 2.28 illustrates such case. Additionally, blending two positions together
during every contraction would also introduce increasing inaccuracies because
of floating point precision.

Figure 2.28: Creeping stairs issue

In order to prevent this, we always pick one of the two original positions based
on a heuristic. For both positions we calculate the combined surface area of all
triangles in the neighbourhood of the vertex, and pick the position with larger
surface area. This heuristic will favour vertex positions that do not needlessly
reduce the area of navmesh.

37

Vertex-edge contraction implementation

In this section we describe the implementation of vertex-edge contraction on the
halfedge data structure of OpenMesh. Before we do the contraction, we make
sure that it will result in a valid topology using the process described in Safe
vertex-edge contractions.

A vertex-edge contraction will connect a vertex V to an edge E by splitting
the edge into two edges E1 and E2 that will share a common vertex V . A simple
vertex-edge contraction is shown in figure 2.18, but in the usual case, the topol-
ogy around vertex is more complicated. The vertex V might be surrounded by
a number of triangle fans, any of which might share vertices with the edge E.

In the Vertex contraction implementation section we described how to ap-
proach merging of two vertices, and the same contraction will be the basis of
contracting a vertex with an edge. We can split the vertex-edge contraction in
following parts:

• Splitting an edge E by an temporary vertex Vt. Vt will be a new isolated
vertex that we create just for this step. The split is a relatively simple
operation that creates one additional face and two new edges. Because the
vertex is isolated, we don’t need to merge any neighbourhoods, just connect
the edges. (Figure 2.29)

• Merging a vertex Vt into V , the same way as we described in Vertex merge
paragraph in the previous section. We can treat the vertex Vt like a ver-
tex with one fan made of two triangles (surrounded by the two boundary
edges E1, E2.) In the end of the merge, the vertex Vt will be removed and
the contraction will be complete.

E E1

E2

Vt

Vt

E2

E1

+ Vt

Figure 2.29: Edge split by isolated vertex converts vertex-edge contraction to
vertex-vertex contraction.

Splitting an edge by an empty vertex is already implemented in the OpenMesh
API. However, there are two additional things that we need to take care of. As
before, we must pass the edge type property from the edge E onto the new edge.
Additionally we must also mark them both as modified, so any contractions of E
will now pick the more appropriate of E1 or E2.

38

Algorithm

In the previous parts we described the necessary theory and building blocks that
we will now use to describe the algorithm.

The algorithm can be broken down in the initialization step and a series of gap
closing iterations. The initialization cleans up the mesh and sets up the data
structures. Every iteration applies a sequence of contractions on the mesh.

During iteration we may encounter contractions that would result in invalid
topology, as described in Safe vertex contractions. We will place such contractions
in a ban list and will avoid them for the rest of this iteration.

It is possible that a sequence of contractions does a change to the topology
in a way that will allow one of the previously banned contractions to continue.
Before we start the next iteration we will unban all previously banned contractions
to allow them to potentially happen. We will keep iterating until there are no
more contractions being done.

Finally, we also have to update the stored normal vector of faces that were
changed.

Initialization

1. Remove small triangles from the mesh, as described in Removing small
triangles section.

2. Construct an R-Tree (Guttman [1984]) that stores boundary edges of the
mesh. We will later update this R-Tree dynamically with new and modified
edges.

Iteration For the iteration step we will require a priority queue with support
for deletion. In this queue we will store the shortest possible contraction for each
vertex in the form of a vertex-edge pair. All the contractions globally will be
ordered by their distance.

1. For every boundary vertex in the mesh we find its closest edge and insert
the contraction into the priority queue.

2. While there are valid contractions in the queue we:

(a) Attempt to do the shortest contraction, checking that it is valid using
the approach we described previously. Invalid contractions will get
added to the ban list and we will find a replacement contraction for
the mentioned vertex. The newly found contraction gets added back
into the queue.

(b) If the contraction succeeds we will have some edges marked as mod-
ified. These might be both edges the position of which has changed,
or edges that are no longer a boundary. For all such marked edges we
need to invalidate all their corresponding contractions and find a re-
placement contraction for their vertices.

39

2.5.5 Result
In the end of this step we will have a mesh where all the internal gaps have been
connected and small defects fixed.

Figure 2.30: Mesh after gap closing

40

2.6 Unnecessary vertex removal
After gap closing we may a large amount of geometry that increases the mesh
complexity without adding any detail. Examples could be internal vertices of
flat faces or consecutive vertices on the boundaries. In this step, we will try
to remove all such unnecessary features without sacrificing accuracy in the next
parts of the algorithm

2.6.1 Decimation
The process of removing features from a mesh is called decimation. OpenMesh
library provides a mesh decimation framework that works by applying a series of
edge collapses to the mesh based on a priority metric. The choice of a priority
metric has a great influence on the outcome of the decimation. Apart from setting
the order in which edges are collapsed, it also allows us to prevent some edges from
being collapsed at all. By customizing the metric, we can focus the decimation
only on the redundant parts of the geometry.

In the context of OpenMesh, we have the option of customizing the decimator
and its metric by a set of Decimating Modules. Every decimating module has
the option to prevent an edge collapse from happening and can potentially do
some extra work before the collapse has happened. One of the decimating modules
can be set to control the overall order of collapses by assigning each of them
a priority value.

In the rest of the section we will describe a set of modules that we used
to achieve the desired decimation behaviour for this step.

Modules

Normal deviation module This is a module implemented by OpenMesh. Its
purpose is to track a change in a size of a cone of normal vectors of surrounding
faces. An edge collapse can only happen if it does not increase the size of the
cone over a set threshold.

By providing a low threshold of 1◦, we allow only collapses within a relatively
flat neighbourhood. We also use the magnitude of change of the cone size as
a decimation priority, but the effect is likely negligible.

Normal flip module This is another module implemented by OpenMesh, that
prevents faces from ever being flipped by an edge collapse. However, in our testing
this has not always proved sufficient and we had to extend this by adding a custom
module. Our custom module guarantees that all face normals in the mesh will
always point upwards.

Boundary preserving module This module prevents edge collapses from
changing the boundary of the mesh. Its operation is based on the following
rules:

• Collapses from a boundary vertex inwards (into non-boundary one) are
prohibited. Collapsing inner vertices outwards is allowed.

41

• Collapses from a boundary vertex to another boundary vertex are only
allowed if they share a boundary edge. This prevents a collapse of two
different boundary lines.

• Collapses along a boundary edge can happen only if the vertices are collinear
and only in a way that will not move the edge. (See figure 2.31)

Figure 2.31: Contractions allowed by the boundary preserving module are shown
in green.

Edge type preserving module This module blocks contractions of collinear
boundary points on a line with two different edge types. Additionally, it preserves
the edge type of boundaries during inwards contractions, similarly to how was
done during gap closing. (Figure 2.32)

42

A

B

Figure 2.32: Collapse of A → B will remove the red triangles. The edge type
preserving module will copy the edge type of the dashed yellow edge inwards, so
it is not lost.

2.6.2 Result
The combination of the previously mentioned decimation modules results in re-
moval of some of the unnecessary vertices. Our goal in this step is to stay con-
servative with our removal. We still need the features of the geometry to stay
precise.

Figure 2.33: Mesh before and after removing unnecessary vertices.

43

2.7 Adding ramps
Throughout this section we describe the process of connecting different parts
of the navmesh via ramps.

In the Cutting section, we were able to distinguish several types of edges, that
are described in Edge classification paragraph. The most important ones to us
are the open edges, these are the ones that are not being blocked by any geometry,
be it walls or obstacles above.

From these open edges, we will place ramp quad that will then connect
to the rest of the navmesh below. We will keep only the parts of the ramp quad
that are supported by existing navmesh. If there are any holes under the ramp,
then a matching part of the ramp will be missing.

After we are done, the ramps will become a regular triangles of the navmesh
and will undergo the same cutting step against input geometry as the other parts
of navmesh did before.

Ramp angle Ideal ramp placement is not an easy task. If we try to place
a ramp too close, we will end up with unnecessary sharp turns in the geometry.
If we try to put the ramps too far, we might not be able to connect to the navmesh
below. Even the shape of the bottom part of a navmesh will influence the ideal
placement of a ramp. Figures 2.34 and 2.35 illustrate two problematic cases with
different ramp placement.

Side view

Figure 2.34: Ramps with shallow angle (red dashed) might miss navmesh below.

44

TopView

Figure 2.35: Ideal ramp placement would require considering the rest of the
topology. The shorter ramp would have a longer shared edge, but it would not
connect to the farther part of navmesh

To err on the side of caution, we decided to place the ramps endpoints as close
as possible (but respecting the max steepness limit) in order to never miss the
navmesh on even short stairs. We will try to fix the sharp turns later during Ramp
flattening and simplification. This ramp placement produced the best results for
us, but we recognize that a better solution might exist.

2.7.1 Preparation
Before we begin placing ramps, we will do some pre-processing on the mesh. We
introduce two additional properties that we will store in the faces of the mesh:

• Plateau id This property is used to identify triangles that belong to the same
flat area on top of a stair. Multiple ramp start points (open edges) might
belong to the same plateau. We will later use this property to avoid cutting
parts of navmesh by their own ramps

• Ramp id This property identifies triangles of the same ramp.

And one property that we will store on the open boundary edges:

• Aligned normal Vector orthogonal to the edge, that is also aligned to the ad-
jacent face. We calculate it as a cross product of the edge direction and
the normal of the inner triangle. (Figure 2.36)

45

Figure 2.36: Aligned normal (blue)

Initializing plateau id We iterate over every open boundary halfedge, and
check its inner face. If the face has no plateau id yet, we assign it a new one, and
also assign the same plateau id recursively to all its neighbouring with similar
normal vector.

Preparing edges We filter away any open edges that are too short for a ramp,
or where we were not able to compute a valid aligned normal. This can sometimes
happen for very small faces which will be removed during the next simplification
step.

2.7.2 Adding ramp quads
Once we have all the properties ready, we can continue by adding the actual ramp.
The ramp starts as a quad which we will later shape based on its intersection
with the rest of the navmesh.

Common aligned normal We would like ramps coming from consecutive
edges to share their side edges so we can close any holes. To guarantee that,
both the start and end points of neighbouring ramps must be the same.

Let us introduce a concept of a common aligned normal that we define for
a vertex between two open edges. The common aligned normal is set to the
average direction of the aligned normals of the two neighbouring edges, scaled by
a factor used to compensate for a change in the angle over the vertex.

Let n1 and n2 be aligned normals of two consecutive halfedges and α an angle
between them. We define their common aligned normal nc as follows:

nc = n1 + n2

∥n1 + n2∥
· 1

cos α
2

46

Figure 2.37: Common aligned normal (red). Future ramps are dotted.

Scaling of the common aligned normal is important to guarantee that the four
points of a ramp will remain a valid quad with the same ramp angle at all points
along the edge.

However, if we do not limit the scaling, the ramp endpoints could be placed
too far during sharp turns. (Figure 2.38)

Figure 2.38: Common aligned normal (red) without limit.

We will set a limit on the maximum distance the common aligned normal can
stretch from the ramp. In cases where it is either too far away for convex turns,
or past midpoint for concave turns we will use the regular aligned normal and
keep the ramps edge disjoint.

Ramp start points We will place the ramp start points in the vertices of
the edge, offset slightly in the direction of the common aligned normal. This offset
will reduce the chance of us accidental clipping part of the ramp by the underlying
geometry during cutting.

After we are done placing the ramp quad and successfully intersect it with
other navmesh geometry, we will set the positions of the original vertices of
the ramp edge to the offset ramp start points.

Ramp end points Our plan is to create as steep ramps as possible and use
the maximum possible height. We are not worried about a ramps clipping existing
navmesh, because we will be cutting them later.

We have two variables exposed in the Algorithm settings, one controls the max-
imum slope of a ramp, the other controls the maximum height of a single step.
From these two, we can find the ramp distance d in the horizontal direction.
Figure 2.39 illustrates their relationship.

47

d = max step height
tan(max stair slope)

max step height

ramp distance
max stair slope

Figure 2.39: Ramp parameters.

Let h be the max step height from Algorithm settings, up⃗ the world up vector
and d the ramp distance calculated in the previous step. For a ramp start vertex at
position rs with common aligned normal ns⃗ we calculate the position of the ramp
end point re in the following way:

re = rs + d · ns⃗ − h · up⃗

Intersecting the ramp quad By defining two start and two end positions
of the ramp, we have created a quad that lies within a single plane. In the Cutting
section we described how we cut away parts of the navmesh by intersecting wedges
created by the world geometry.

Now we will use the same approach, this time cutting away parts of the ramp
quad by wedges created from the navmesh geometry. The goal is to shorten
the ramp so it does not go through the bottom part of the navmesh.

Figure 2.40: Ramp quad cutting by navmesh

However, before we triangulate the result of the cutting step, we will do some
additional processing that will throw away parts of the ramp that are not being
connected the rest of the navmesh.

Finding supported sections If we take a better look at the shape of a ramp
polygon after cutting, we can notice that it has a characteristic shape. Every flat
section of a navmesh that we cut by has left a sort of an island surrounded by
almost vertical edges.

48

Figure 2.41: Cuts from navmesh have created plateaus (red) surrounded by close-
to-vertical edges.

By finding such plateaus, we can identify the bottom parts of a ramp quad
that are being supported by navmesh from below.

Finding supported ramp sections:

1. Begin at the bottom left vertex

2. Continue edge by edge in counter-clockwise direction, looking for the start
of a supported section. An edge is a part of a supported ramp section if
the following is true:

• Is not almost vertical. (The exact threshold depends on max. allowed
slope)

• Is going in opposite direction of the ramp edge. We need to check this
because there might be some imprecisions and we are trying to keep
the resulting polygon simple.

• Is not close to the bottom ramp quad edge.

3. Connect edges of a supported ramp section together into groups.

Note, some of the edges in a ramp polygon might be too small to reliably
detect their orientation. Such edges can be skipped to keep the grouped sections
connected.

Creating supported ramps Once we have identified the bottom boundaries
of supported ramp sections, we can break down the original ramp quad into
individual supported ramps.

For each supported ramp section we will project the left and rightmost points
of the boundary to the ramp edge, to find two additional points for its polygon.
We will use these new polygons instead of the original cutting result for the trian-
gulation. In order not to create too thin ramps we can ignore any ramp sections
that are too short.

Additionally, to help us better connect neighbouring ramps in the future, we
can slightly nudge the projected points of the first and last supported group
towards the start vertices of the ramp quad (Figure 2.42).

49

Figure 2.42: Turning supported ramp sections (red) into ramp polygons (blue).

Finally, when we triangulate this polygons into triangles and add them back
to the mesh, we will also update their ramp id property to the ID of this ramp.

2.7.3 Cutting and gap closing
We have cut the ramp to proper size, but the bottom part of the navmesh is still
going past the ramp boundary and would not always connect after gap closing.

The solution to this problem is the same as before – cutting. We could cut
the triangles of navmesh by extruding the ramp triangles downward into wedges.
However, there is a more efficient approach. Shape of every ramp is already
similar to a wedge. And we are also interested only in clipping relatively small
parts of the navmesh, there is no need to deal with vertical clearance.

Cutting by ramp wedges We will cut every triangle of the old navmesh by
a horizontal ramp wedge for each ramp (Figure 2.43 shows how to create such
wedges.). At the same time, we avoid cutting any triangles that represent ramps.
They can be identified by the ramp id property.

Additionally, we avoid cutting triangles of a plateau (based on plateau id) by
any ramps that originated from one their edges. Since these plateaus are flat,
none of the triangles will be under any of these ramps. This is an additional
precaution to avoid accidentally disconnecting our ramps.

Figure 2.43: Cutting navmesh by a horizontal ramp wedge (pink).

Cutting against original geometry Until now, we have completely ignored
the input geometry when placing ramps. It is possible that there could be an ob-
stacle above a ramp that would not provide a sufficient vertical clearance to allow

50

passage. To fix such cases, we will run another cutting step. This time only
cutting triangles of the ramps by wedges of extruded triangles of the original
geometry. This is the same step as the rest of the navmesh underwent in Cut-
ting section. However, for any triangles we cut, we must preserve the ramp id
property. We will later use it during ramp flattening.

Finally, we will run again the Gap closing procedure on the whole mesh to con-
nect all the cut parts back together.

2.7.4 Results
This section showcases some parts of the navmesh after adding ramps. Red edges
are boundaries and blue edges are properly connected inner edges.

Figure 2.44: Mesh before and after adding ramps. Neighbouring ramps connect
properly.

Figure 2.45: Only the supported part of a ramp is kept.

51

2.8 Ramp flattening and simplification
By adding ramps, we have connected previously disconnect parts of the navmesh.
But the topology is yet far from ideal. Specifically, staircases would be made
of multiple ramps and flat parts, which are unnecessary details for path planning.
In ideal case, the whole staircase would be covered by a single ramp.

In this section we will try to flatten the staircases and simplify them together
into a single ramp.

2.8.1 Ramp flattening
We will attempt to flatten ramps by doing a series of edge contractions within the
faces of ramp geometry. To implement this, we will reuse the OpenMesh decima-
tor that we described in Decimation section previously. We will use a decimation
module that prevents flipping of normals (Normal flip module) and a ramp flat-
tening module that we define below:

Ramp flattening module The module is implemented using the following
rules:

• Allow only contraction of edges of ramp faces. (Inner or outer)

• Prevent contractions between boundary vertices that are not contracting
a boundary edge. This prevents contractions from connecting two different
boundaries together.

• Allow only contractions going upwards. This forces the same direction
of contractions for all edges of a ramp and makes it more likely that it will
be simplified into a single quad.

Additionally, we use an error quadrics module to set the ordering of contrac-
tions. We limit the max error to the maximum step height. This module will be
better described in the following Simplification section.

Figure 2.46: Flattening ramps

52

2.8.2 Simplification
After flattening, the ramps have a much better shape, but their topology is still
too cluttered. In a previous section called Unnecessary vertex removal, we sim-
plified internal geometry to remove such details. But the settings we used during
that step were too conservative. Now that we have a final shape of the navmesh
almost done, we don’t need to preserve all the internal detail.

We will run a simplifying pass on the geometry, again using the Decimation
algorithm. This time, we don’t need to limit the simplification only to the ramps.
We will use decimation modules to preserve boundaries (Boundary preserving
module) and orientation of faces (Normal flip module).

To prioritize the best contractions, we will make use of error quadrics by Gar-
land and Heckbert [1997]. This prioritization method is implemented by Open-
Mesh in the quadric module. It works by storing an accumulated error value from
previous contractions in a form of quadric surface defined in each vertex. The
benefit of using quadrics is that combining their error value can be easily done
by summing the matrices that define the quadric.

Figure 2.47: Simplification of ramps

2.9 Wall clearance
The navmesh after applying the previous simplification step of the algorithm can
already be used for pathfinding. While finding a simple path for a point-agent
can be done by A* algorithm Hart et al. [1968], we can also find a path for an
agent of arbitrary size using an algorithm devised by Kallmann [2010].

However, when pathfinding for agents of different sizes is not necessary, it
is beneficial to have boundaries of the navmesh itself already respect the size
of an agent. This can be done by cutting away parts of the navmesh that are
close to obstacles in order to create clearance.

2.9.1 Implementation
The boundaries of our navmesh closely follow the walls or ledges of the world
geometry. Assuming that the agent can be represented by a cylinder with a fixed
height and radius, we can use a 2D capsule to represent areas which are too close
to a wall for our agent to walk in.

53

r

r

agent

Figure 2.48: Capsule used to represent areas too close to a wall.

In 3D, the situation is slightly more complicated. Because there is no guaran-
tee that the navmesh can map to a 2D surface, we cannot use just a 2D capsule
to work in the navmesh space.

We will instead convert these capsules into polyhedrons, and use a similar
approach as we did in Cutting to remove blocked areas.

Shape of the extruded polyhedron The shape of the polyhedron is based
on the position of the edge and actor radius. However, we cannot use just the
direction vector of the edge as one dimension of the capsule – the slope of the edge
would skew the radius, and if we looked at the capsule from top-down view, it
would not match the desired 2D shape. Figure 2.49 illustrates such problem.

r

r

r

r

Figure 2.49: Side view of a ”capsule” shape in 3D.

54

To avoid this, we will use just the horizontal component as the direction
for one side. Additionally, we will extrude this shape vertically by the maximum
step height from the Algorithm settings. The resulting polyhedron of a blocked
area is shown in the figure 2.50. To simplify cutting, we will use the convex hull
of this polyhedron to make the intersections easier.

r

r
edge

r

r
edge

Figure 2.50: Side view of blocked area around edge (left), and the polyhedron
used for cutting (right).

Figure 2.51: Polyhedrons representing the wall clearance shown in the navmesh.

Cutting Once we have created the polyhedron, we will proceed by cutting
the navmesh triangles like in Cutting section. The major difference is that instead
of intersecting planes against a wedge shape, we now have to intersect against
the shape of the polyhedron.

Polyhedron-plane intersection To reuse as much as possible from previ-
ous work and to take advantage of the fact that our polyhedron is convex (figure
2.50), we will break down the intersection into two steps:

1. Calculate intersections of all triangles that make the sides of our polyhedron
against the plane. We will store the results as a collection of points.

55

2. Calculate a convex hull of these points in the plane. The result is a polygon
that represents an intersection of the polyhedron and the plane.

With the intersection polygons calculated, we will proceed by subtracting
them from the navmesh triangles. Once we are done, we triangulate the remain-
der. These steps are the same as in the Cutting part of our algorithm.

Finalization In the end, we run our Gap closing algorithm again to con-
nect the remaining navmesh together. The cutting may have detached parts
of the mesh away, some of which are now too small to be useful for pathfinding.

We can calculate the combined area of the navigable surface of each part by
summing the surface areas of their triangles together. Then we remove any such
parts, where the combined area is below a threshold.

2.9.2 Results

Figure 2.52: Navmesh with wall clearance 1

Figure 2.53: Navmesh with wall clearance 2

56

3. Evaluation of results
In this chapter we will evaluate the results of our algorithm and compare it
to an algorithm that uses voxelization during its work.

3.1 Results of our algorithm
Our goal was to create an algorithm that is able to preserve precision and de-
tail of the input geometry. This is necessary in order to guarantee that parts
of the geometry that are connected via thin pathways will also remain connected
in the navmesh. Failure to do so would make any pathfinding algorithm unable
to find some paths.

The algorithm that we introduced in this thesis does not do a voxelization
step to simplify its input, but instead works on the raw geometry directly. This
allows it to keep the required precision and avoid discarding important features
of the mesh.

Specifically, navmeshes generated by our algorithm reliably include paths
through thin doorways, low ceilings and other areas where the room for movement
is limited, but are not blocked yet.

Figure 3.1: Navmesh generated by our algorithm. The input geometry includes
doorways of different sizes. For reference, the agent size is being represented
by the cylinder in the back.

While our main goal was to preserve important detail, we also try to simplify
the navmesh geometry in cases where the detail is not required.

57

Figure 3.2: Navmesh generated by our algorithm. The floor topology was sim-
plified and the stairs have been merged into a single ramp.

While not as as fast as some algorithms that use voxelization, our algorithm
is still able to create a navmesh for a large detailed area in seconds.

Figure 3.3: Navmesh generated by our algorithm. The level includes multiple
internal areas and a large outdoor area.

58

3.2 Comparison with existing works
In this section, we will compare the results of our algorithm with Recast (Mononen
[2009]), which is a state of the art algorithm for navmesh generation that uses
voxelization.

Both algorithms will use the same settings for the agent parameters:

• Agent height: 1.8 m

• Agent radius: 0.3 m

• Max slope: 45◦

• Max step height = 0.4 m

Not all of the other navmesh generation settings can be unified, as both al-
gorithms use different techniques to generate the navmesh. To provide a fair
comparison, we will therefore do two comparisons of Recast. One will be done
with the default settings, the other will be done with the cell-size or other relevant
setting tweaked to a level where its results can be compared to ours.

We will measure the time it takes to generate a navmesh as an average of
5 runs and the number of triangles in the mesh.

3.2.1 Detail dependent mesh
This is custom mesh designed to stress parts of the navmesh generation algorithm
that require detail. The mesh will be available as competition.obj along the demo
application of our algorithm as an attachment of this thesis.

In the following text, we will look into individual tested cases in more detail.

Case 1: Rooms and doorways

This testcase has two rooms and several doorways that constrict a path through
them. The default settings of Recast are not sufficient to preserve the required
detail in the navmesh. To keep all the doorways traversable we had to reduce the
cell size and it had a drastic effect on the run time of the algorithm.

Algorithm Time spent Triangles
Recast (default) 130 ms 240, but insufficient detail

Recast (cellSize = 0.04) 15 328 ms 702
Our algorithm 2 999 ms 1 395

Although our algorithm was faster than Recast in producing the detailed
mesh, our mesh also had almost twice as many triangles. This suggests that we
should reduce the restrictions we place on our decimation algorithm when we
simplify the mesh.

59

Recast (default)

Recast (cellSize=0.04)

Our algorithm

Figure 3.4: Comparison of navmeshes around rooms & doorways.

60

Case 2: Spiral maze

This case presents a simple circular maze, that simulates a situation where a path
might run through a thin alleyway.

Algorithm Time spent Triangles
Recast (default) 130 ms 240, but insufficient detail

Recast (cellSize = 0.05) 8 047 ms 595†

Our algorithm 2 999 ms 1 395

† Still too conservative, navmesh was cut short.

61

Recast (default)

Recast (cellSize=0.04)

Our algorithm

Figure 3.5: Comparison of navmeshes within a spiral. Notice that none of the
Recast navmeshes fully reach into the centre.

62

Case 3: Overhangs

This testcase presents a ramp that creates an overhang above a path. A de-
tailed navmesh should not overcompensate for the overhang and restrict the agent
in movement any more than necessary. For voxelization algorithms, this presents
an extra challenge. To have the same level of detail as our algorithm, they must
reduce both the cell size and the cell height.

Algorithm Time spent Triangles
Recast (default) 130 ms 240, but insufficient detail
Recast (custom∗) 44 487 ms 795†

Our algorithm 2 999 ms 1 395

∗ cellSize = 0.03, cellHeight = 0.01.
† Still too conservative, navmesh was cut short.

To preserve a comparable detail in the Recast navmesh, we had to push the cell
size and cell height setting extremely low. Even then, Recast’s algorithm was still
too conservative and its navmesh was a few centimetres away from the real bound-
ary. Further reduction of the cell dimensions was not possible as the algorithm
ran out of available memory.

63

Recast (default)

Recast (cellSize=0.03, cellHeight=0.01)

Our algorithm

Figure 3.6: Comparison of navmeshes around overhangs. The cylinder represents
the size of the agent and is positioned in such a way that it would fit under the
ramp if walking straight ahead.

64

Summary

While it is possible to create a detailed navmesh using algorithms based on vox-
elization, in many cases we have to tweak parameters to different values based
on the specific scene. Additionally, reducing voxel cell dimensions has a detri-
mental effect on performance and can sometimes result in the algorithm running
out of resources.

Our algorithm works on the input geometry directly and is able to produce
detailed navmeshes without running into such issues.

3.3 Problematic cases
One disadvantage of working directly with geometry directly is that our algorithm
is more sensitive to its input. A bad result during cutting and gap closing can
cause a disconnect in navmesh, which might be further enlarged after applying
the wall avoidance step.

One known source of defects during cutting in our implementation are bugs
in the polygon set operations in Boost library.

Boost geometry bugs A polygon difference calculation between two valid
polygons using the Boost geometry library might return an empty result even
in cases where the result should be some non-empty polygon. This error is related
to the positions of the points of the two polygons and not to the loss of numerical
accuracy. Thus it can’t be avoided by filtering away polygons with small size.

The impact of these bugs for our Cutting implementation is that some tri-
angles might be lost entirely. We try to avoid this by rejecting set operations
with obviously wrong results. However, cuts skipped in such way might leave out
geometry that will later complicate gap closing.

Figure 3.7: Triangle of a navmesh is missing because of failed set operation during
cutting.

65

The authors of Boost geometry library are aware of the issues and some
of the similar ones have already been fixed. But the process is still ongoing.

Other problematic cases Our algorithm is not always able to resolve clusters
of many small intersecting triangles. Some of the small triangles might be missed
during cutting and will prevent stitching of the local geometry together.

Figure 3.8: Cluster of small intersecting triangles that survived cutting.

66

4. Future work
In this chapter we describe our suggestions about how to further improve our
navmesh generation algorithm and its implementation.

4.0.1 Ramp improvements
Better ramp placement In our Adding ramps section we chose to place ramps
as steep as possible in order not to miss any stairs below. However, a gap created
by thick walls during cutting might cause such ramps to miss the navmesh below.

A better placement of ramps would find a good ramp angle while taking the
bottom navmesh geometry into account.

As we have shown in figure 2.35, finding the best angle for a ramp is a hard
problem. But finding a ramp that is guaranteed to connect to at least some part
of the navmesh would likely be a good enough solution.

Extra ramps for sharp corners to avoid miter effect In our Adding ramps
section we avoided holes in the navmesh by making ramps of consecutive edges
share their edges when possible. We achieved this by defining a common aligned
normal vector in every ramp start point.

In the corners between individual ramps, this has caused the bottom vertex
of the ramp to extend forward. The sharper the angle, the longer the extension
would have to be.

Figure 4.1: Extending ramp endpoints. The distance of the bottom ramp edge is
based on the sharpness of the turn.

In order not to extend the ramp into infinity, we have put a limit on the maxi-
mum distance. For turns that would cross this limit, we would not use the shared
normal and keep the ramp edges split. This could result in a hole in the mesh.

Solution A better solution to this problem would be to insert one extra
ramp at the position of the vertex. The new ramp would have a shape of a triangle
that would serve as a bridge between the two ramps of the edges.

67

Figure 4.2: Adding a new triangular ramp to avoid extending shared edge into
infinity.

This solution would allow us to keep the ramps connected even in very sharp
turns.

4.0.2 Simplification improvements
To avoid losing important detail, we have been fairly restrictive in the way that
we applied mesh decimation to our navmesh. Comparison with other navmesh
generation algorithms has shown that our navmeshes have more triangles than
others. Higher number of faces in the navmesh has a negative impact on pathfind-
ing performance.

To further reduce geometric complexity of our navmesh, we need to lessen
the restrictions we use during the last decimation step.

Collapse of boundaries inwards Our decimation process keeps mesh bound-
aries mostly intact and removes only collinear points. Keeping boundaries fully
precise even after running wall clearance is likely unnecessary. As long as we don’t
move any part of the navmesh into a place that is not traversable or disconnect
two paths, a less detailed navmesh might be sufficient.

One way how to reduce the complexity of boundaries is to use a line simplifica-
tion algorithm by Douglas and Peucker [1973]. Hershberger and Snoeyink [2000]
further improve the Douglas-Peucker algorithm by using path hulls to speed up
the process.

However, any boundary simplification should not change the navmesh in a way
that it would allow paths through blocked areas. To guarantee that, we should
only simplify the boundaries inwards and never increase the covered area.

4.0.3 Experiment with clustering
Our algorithm can sometimes produce invalid results for groups of small inter-
secting geometry. One way to prevent that could be by using a vertex clustering
algorithm similar to a one by Rossignac and Borrel [1993].

We would divide all the vertices of a scene into a uniform grid, and for each
grid we would keep just one representative vertex. This clustering would simplify
small features while keeping enough accuracy in the larger ones.

68

Conclusion
In this thesis we described and implemented a new navigation mesh generation
algorithm. Compared to other algorithms that use voxelization, our algorithm
is better suited for preserving important features of the geometry in navmesh.
The algorithm consists of four main parts which we will now summarize.

In the cutting stage of the algorithm, we removed parts of the navmesh where
there was insufficient vertical clearance. We did it by extending the world geom-
etry downwards and removing any intersections with navmesh using polygon set
operations.

Then we applied a gap closing algorithm to connect triangles of the mesh
together and close any holes. For this step, we defined a set of rules to keep
the topology of our mesh valid. We also implemented two contraction operations
that were used to join the mesh.

We connected different parts of the navmesh together using ramps. The shape
of our ramps closely matches the shape of the geometry below and no unsupported
ramps were created. Consecutive ramps share their boundaries to keep the mesh
connected.

Finally, to compensate for an agent’s radius, we cut away areas of the navmesh
to add clearance from walls.

To conclude, we compared the results of our algorithm to Recast, an open-
source navmesh generation library. We have shown specific examples in which our
algorithm produced better results. We have also identified areas for improvement,
which we described in the Future work chapter.

69

Bibliography
Yariv Barkan, Antonin Guttman, Michael Stonebraker, Melinda Green, Paul

Brook, Greg Douglas, and Gero Mueller. N-dimensional rtree implementation
in c++, 2020. URL https://github.com/nushoin/RTree.

Boost. Boost C++ Libraries. https://www.boost.org/, 2021. Accessed 2021-
07-05.

Pavel Borodin, Marcin Novotni, and Reinhard Klein. Progressive gap closing for
mesh repairing. 08 2002. doi: 10.1007/978-1-4471-0103-1 13.

David H Douglas and Thomas K Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its caricature. Car-
tographica: The International Journal for Geographic Information and Geovi-
sualization, 10(2):112–122, 1973. doi: 10.3138/FM57-6770-U75U-7727. URL
https://doi.org/10.3138/FM57-6770-U75U-7727.

Michael Garland and Paul S. Heckbert. Surface simplification using quadric
error metrics. In Proceedings of the 24th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’97, page 209–216, USA,
1997. ACM Press/Addison-Wesley Publishing Co. ISBN 0897918967. doi:
10.1145/258734.258849. URL https://doi.org/10.1145/258734.258849.

A. Gueziec, G. Taubin, F. Lazarus, and B. Hom. Cutting and stitching: convert-
ing sets of polygons to manifold surfaces. IEEE Transactions on Visualization
and Computer Graphics, 7(2):136–151, 2001. doi: 10.1109/2945.928166.

Antonin Guttman. R-trees a dynamic index structure for spatial searching. In
Proceedings of the 1984 ACM SIGMOD international conference on Manage-
ment of data, SIGMOD ’84, page 48, 1984. doi: 10.1145/602259.602266. URL
http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf.

Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968. doi: 10.1109/TSSC.1968.300136.

John Hershberger and Jack Snoeyink. Computing minimum length paths of a
given homotopy class. Computational Geometry, 4(2):63–97, 1994. ISSN 0925-
7721. doi: https://doi.org/10.1016/0925-7721(94)90010-8. URL https://www.
sciencedirect.com/science/article/pii/0925772194900108.

John Hershberger and Jack Snoeyink. Speeding up the douglas-peucker line-
simplification algorithm. 5th Intl Symp on Spatial Data Handling, 11 2000.

S. Hertel and K. Mehlhorn. Fast triangulation of simple polygons., volume 158
LNCS of Lecture Notes in Computer Science. Springer Verlag, Universität des
Saarlandes, 1983. ISBN 9783540126898.

70

https://github.com/nushoin/RTree
https://www.boost.org/
https://doi.org/10.3138/FM57-6770-U75U-7727
https://doi.org/10.1145/258734.258849
http://www-db.deis.unibo.it/courses/SI-LS/papers/Gut84.pdf
https://www.sciencedirect.com/science/article/pii/0925772194900108
https://www.sciencedirect.com/science/article/pii/0925772194900108

Marcelo Kallmann. Shortest paths with arbitrary clearance from navigation
meshes. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Sympo-
sium on Computer Animation, SCA ’10, page 159–168, Goslar, DEU, 2010.
Eurographics Association.

Leif Kobbelt, Stefan Bischoff, Mario Botsch, and Stefan Steinberg. Openmesh:
A generic and efficient polygon mesh data structure, 2002. URL http://www.
graphics.rwth-aachen.de/media/papers/openmesh1.pdf.

Mapbox. Fast, header-only polygon triangulation, 2021. URL https://github.
com/mapbox/earcut.hpp. Accessed 2021-07-05.

Mikko Mononen. Recast & detour. https://github.com/recastnavigation/
recastnavigation, 2009. Accessed 2021-07-01.

Mikko Mononen. Automatic navmesh generation via watershed partition-
ing. https://digestingduck.blogspot.com/2010/02/slides-from-past.
html, 2010. Accessed 2021-07-07.

Tomas Möller. A fast triangle-triangle intersection test. Journal of Graphics
Tools, 2(2):25–30, 1997. doi: 10.1080/10867651.1997.10487472. URL https:
//doi.org/10.1080/10867651.1997.10487472.

Jarek Rossignac and Paul Borrel. Multi-resolution 3d approximation for rendering
complex scenes. pages 455–465, 01 1993. doi: 10.1007/978-3-642-78114-8 29.

Greg Snook. Simplified 3D movement and pathfinding using navigation meshes.
In Mark DeLoura, editor, Game Programming Gems, pages 288–304. Charles
River Media, 2000. ISBN 1584500492.

Paul Tozour. Building a near-optimal navigation mesh. In Steve Rabin, editor,
AI Game Programming Wisdom, pages 171–185. Charles River Media, 2002.

71

http://www.graphics.rwth-aachen.de/media/papers/openmesh1.pdf
http://www.graphics.rwth-aachen.de/media/papers/openmesh1.pdf
https://github.com/mapbox/earcut.hpp
https://github.com/mapbox/earcut.hpp
https://github.com/recastnavigation/recastnavigation
https://github.com/recastnavigation/recastnavigation
https://digestingduck.blogspot.com/2010/02/slides-from-past.html
https://digestingduck.blogspot.com/2010/02/slides-from-past.html
https://doi.org/10.1080/10867651.1997.10487472
https://doi.org/10.1080/10867651.1997.10487472

List of Figures
1 Navigation mesh . 4
2 Detail missed by voxelization. 5

1.1 Detail lost by voxelization . 8

2.1 Mesh after slope filter . 11
2.2 Mesh after cutting . 12
2.3 Mesh after gap closing . 13
2.4 Edge type after removing unnecessary detail step 14
2.5 Navmesh after adding ramps. 14
2.6 Navmesh after flattening and simplification. 15
2.7 Halfedge data structure . 17
2.8 Triangles filtered by their slope. 19
2.9 Defects in navmesh before cutting 20
2.10 Raycasts vs extruding geometry downwards (2D). 21
2.11 Extruding a triangle into a wedge 21
2.12 Extruding wall intersection in the plane 22
2.13 Wedge - plane intersection . 23
2.14 Triangle after cutting . 24
2.15 Edge classification . 25
2.16 Mesh after cutting . 26
2.17 Vertex contraction . 27
2.18 Vertex-edge contraction . 28
2.19 Examples of complex edges . 29
2.20 Examples of complex vertices . 30
2.21 Temporary halfedges . 31
2.22 Fan around a vertex . 32
2.23 Thin triangle prevents gap closing. 34
2.24 Removing side triangles during vertex contraction 35
2.25 Transferring fans. 36
2.26 Ordering fans . 36
2.27 Halfedge loop . 37
2.28 Creeping stairs issue . 37
2.29 Conversion to vertex-vertex contraction 38
2.30 Mesh after gap closing . 40
2.31 Boundary preserving module . 42
2.32 Preserving edge type during edge collapse 43
2.33 Mesh before and after removing unnecessary vertices 43
2.34 Finding ramp angle . 44
2.35 Finding ramp angle 2 . 45
2.36 Aligned normal . 46
2.37 Common aligned normal . 47
2.38 Common aligned normal limit . 47
2.39 Ramp parameters . 48
2.40 Ramp quad cutting by navmesh 48
2.41 Ramp quad intersection split . 49

72

2.42 Turning supported ramp sections into polygons. 50
2.43 Cutting navmesh by ramps . 50
2.44 Mesh before and after adding ramps 51
2.45 Ramp support result . 51
2.46 Flattening ramps . 52
2.47 Simplification of ramps . 53
2.48 Areas too close to a wall (2D) . 54
2.49 Side view of a ”capsule” shape in 3D. 54
2.50 Side view of blocked area around edge 55
2.51 Clearance polyhedrons . 55
2.52 Navmesh with wall clearance 1 . 56
2.53 Navmesh with wall clearance 2 . 56

3.1 Navmesh through doorways . 57
3.2 Navmesh simplified on stairs . 58
3.3 Navmesh of large area . 58
3.4 Comparison: Rooms and doorways 60
3.5 Comparison: Spiral . 62
3.6 Comparison: Overhangs . 64
3.7 Missing triangle . 65
3.8 Small triangles . 66

4.1 Extending ramp endpoints . 67
4.2 Ramp splitting . 68

A.1 Implementation of our algorithm in the attached demo. 74

73

A. Attachments

A.1 Implementation demo
We have implemented our navmesh generation algorithm inside a demo appli-
cation that can be used to visualize its results. It is available as an executable
file for Windows 10 located at demo application\libnavmesh renderer.exe
in the digital attachments.

Figure A.1: Implementation of our algorithm in the attached demo.

A.1.1 System requirements
We recommend these minimum system requirements to run the demo application:

1. Operating system: Windows 10, 64 bit

2. CPU: x64, multi-core, 2 GHz or higher.

3. GPU: Must support OpenGL 4.3.

4. Additional requirements: Microsoft Visual C++ Redistributable 20191

1https://aka.ms/vs/16/release/vc_redist.x64.exe

74

https://aka.ms/vs/16/release/vc_redist.x64.exe

A.1.2 User manual
The demo application allows to generate and preview navmeshes for geometry
stored in an .OBJ file. We provide a few example files inside
the demo application/meshes folder.

Usage

1. Start the application.

2. Drag and drop a mesh in .OBJ onto the window of the application

3. Wait until the navmesh is generated.

4. The Debug Window allows you to switch between the view of the input
geometry, navmesh or both.

5. The navmesh can be exported as an .OBJ by pressing the ”Save mesh as...”
button in the Debug Window.

Controls

• Use WASD keys to control camera movement. Holding shift increases the
speed of the movement.

• Click and hold the right mouse button to rotate the camera.

• Press G to generate navmesh again.

• Press L to turn the camera towards the geometry.

A.1.3 Source code
Source code of the demo application is located in the source code directory

The demo application can be built from scratch using CMake2 to generate a
Visual Studio solution.

Prerequisites

• Microsoft Visual Studio 2017. Newer versions might work, but will require
using newer version of Cinder library. Available at https://visualstudio.
microsoft.com/.

• CMake 3.15 or newer. Available at https://cmake.org/

• Git. Available at https://git-scm.com/

• Boost libraries version 1.75 or newer. Available at https://www.boost.
org/

• OpenMesh libraries version 8.0 or newer. Available at https://openmesh.
org/

2https://cmake.org/

75

https://visualstudio.microsoft.com/
https://visualstudio.microsoft.com/
https://cmake.org/
https://git-scm.com/
https://www.boost.org/
https://www.boost.org/
https://openmesh.org/
https://openmesh.org/
https://cmake.org/

• Cinder library source code,
revision ae926dfd7e8368a655a95251f99bfd9d048523f7.
Available at https://github.com/cinder/Cinder

Steps

1. Use git to clone the Cinder library source code into the /lib/Cinder direc-
tory. We recommend using this specific revision:
ae926dfd7e8368a655a95251f99bfd9d048523f7.

2. Set your environment variables:

(a) BOOST ROOT to point to the root directory of the Boost library.
(b) OPENMESH ROOT to point to the root directory of the OpenMesh library.

3. Use CMake to generate Visual Studio solution files for the project.

4. Build the Visual Studio solution

Third party libraries

Apart from the libraries we mentioned in the build prerequisites section, we
use some additional open-source libraries whose source code we include directly
among the source files. We provide a list of these libraries below. Their license
terms are included next to their files.

1. Earcut 3

2. OpenGL Mathematics (GLM) 4

3. GoogleTest 5

4. RTree 6

3https://github.com/mapbox/earcut.hpp
4https://github.com/g-truc/glm
5https://github.com/google/googletest
6https://github.com/nushoin/RTree

76

https://github.com/cinder/Cinder
https://github.com/mapbox/earcut.hpp
https://github.com/g-truc/glm
https://github.com/google/googletest
https://github.com/nushoin/RTree

	Introduction
	Background
	Goals
	Thesis outline

	Related works
	Voxel-based algorithms
	Recast
	Drawbacks of voxelization

	Algorithms that use the geometry directly
	Tozour's Near-Optimal Navigation Mesh algorithm

	Our navmesh generation algorithm
	Working with raw geometry
	High-level algorithm description
	Steps
	Algorithm settings

	Fundamentals
	The halfedge data structure
	Some definitions

	Import and slope filtering
	Cutting
	Method
	Implementation
	Result

	Gap closing
	Progressive Gap Closing by Borodin02
	Our changes
	Preventing fails during contraction operations
	Implementation
	Result

	Unnecessary vertex removal
	Decimation
	Result

	Adding ramps
	Preparation
	Adding ramp quads
	Cutting and gap closing
	Results

	Ramp flattening and simplification
	Ramp flattening
	Simplification

	Wall clearance
	Implementation
	Results

	Evaluation of results
	Results of our algorithm
	Comparison with existing works
	Detail dependent mesh

	Problematic cases

	Future work
	Ramp improvements
	Simplification improvements
	Experiment with clustering

	Conclusion
	Bibliography
	List of Figures
	Attachments
	Implementation demo
	System requirements
	User manual
	Source code

