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Abstrakt

Názov práce: Modelování n-árních relací v deskrip£ních

logikách

Autor: Miroslav Bla²ko
Katedra: Katedra softwarového inºenýrstv�i
Vedúci diplomovej práce: RNDr. Filip Zavoral, Ph.D.
E-mail vedúceho: �lip.zavoral@m�.cuni.cz
Abstrakt:

DLR je expresívna deskrip£ná logika, ktorá podporuje n-árne relácie. V sú£astnosti
neexistuje algoritmus, ktorý by dokázal natívne uvaºova´ v DLR. Existujú v²ak dve práce,
ktoré umoº¬ujú uvaºovanie delegova´ do binárnych logík.

V tejto práci de�nujeme novú deskrip£nú logiku NDL. Tá predstavuje podmnoºinu
DLR, pre ktorú veríme, ºe natívne uvaºovanie vieme poskytnú´. Na základe spomínaných
prací vytvoríme transformácie z NDL do binárnych logík, ktoré budeme moc´ pouºi´
v najmodernej²ích odvodzovacích systémoch. Nové transformácie teoreticky i prakticky
analyzujeme. N-árne data pre testovanie vytvoríme z existujúcich OWL ontológií opa£nou
transformáciou.

Táto práca môºe by´ pouºita pre porovnanie natívneho uvaºovania a uvaºovania po-
mocou transformácie do binárnych logík.

K©ú£ové slová: n-árne deskrip£né logiky, rei�kácia



Abstract

Title: Modelling n-ary relations in description logics

Author: Miroslav Bla²ko
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Abstract:

DLR is an expressive description logic with support of n-ary relations. Currently,
there is no known algorithm for native reasoning within DLR. However there are two
approaches that allow to delegate reasoning services of DLR to binary description logics.

In this work we de�ne new description logic NDL, a subset of DLR, for which we
believe that native reasoning can be provided. Based on the existing approaches, we trans-
form NDL to binary description logics for which the current of state-of-art of reasoners
exist. New transformations will be analysed both theoretically and empirically. N-ary
data for benchmark will be created from existing OWL ontologies by transformation of
opposite direction.

This benchmark can be used for comparison of native reasoning and reasoning by

transformation to binary DLs.

Keywords: n-ary description logics, rei�cation



Contents

1 Introduction and Overview 1

1.1 Semantic Web and Annotation Creation . . . . . . . . . . . . 1
1.2 Goal of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Structure of the Text . . . . . . . . . . . . . . . . . . . . . . . 3

2 Foundations 4

2.1 Ontologies and Knowledge Bases . . . . . . . . . . . . . . . . 4
2.2 Description logics . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 The Logic SHOIQ . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 The Logic DLR . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 OWL-DL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Related work 14

3.1 Conceptual Graphs . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Web Ontology Language . . . . . . . . . . . . . . . . . . . . . 15
3.3 Nary Description Logics DLR . . . . . . . . . . . . . . . . . . 17

3.3.1 Reduction to CIQ DL satis�ability . . . . . . . . . . . 19
3.3.2 Reduction to SHIQ DL satis�ability . . . . . . . . . . . 19

4 Nary Description Logics 20

4.1 Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Graphical notation . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Example Knowledge Base . . . . . . . . . . . . . . . . . . . . 21

5 Rei�cation algorithms 24

5.1 Common characteristics . . . . . . . . . . . . . . . . . . . . . 25
5.1.1 Structure of algorithm . . . . . . . . . . . . . . . . . . 25
5.1.2 Rei�cation of schema . . . . . . . . . . . . . . . . . . . 26

4



5.2 Rei�cation using TBox . . . . . . . . . . . . . . . . . . . . . . 28
5.2.1 Representation of individuals and tuples by concepts . 28
5.2.2 Construction of the Universal accessibility role . . . . . 29
5.2.3 Construction of the extended Fischer-Ladner closure . 29
5.2.4 Transformation of the ABox . . . . . . . . . . . . . . . 30
5.2.5 Correctness of algorithm . . . . . . . . . . . . . . . . . 31

5.3 Rei�cation using ABox . . . . . . . . . . . . . . . . . . . . . . 34
5.3.1 Correctness of rei�cation algorithms . . . . . . . . . . . 35
5.3.2 Reduction to SHIF DL . . . . . . . . . . . . . . . . . 39

5.4 Complications and contribution . . . . . . . . . . . . . . . . . 40
5.4.1 Nominals . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4.2 Reduction of cardinality restrictions . . . . . . . . . . . 41
5.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Acquisition of benchmark data 43

6.1 Converting OWL-DL to NDL . . . . . . . . . . . . . . . . . . 43
6.1.1 Automatic transformation . . . . . . . . . . . . . . . . 49
6.1.2 Semi-automatic transformation . . . . . . . . . . . . . 49

7 Comparison of rei�cation algorithms 52

7.1 Theory-based comparison . . . . . . . . . . . . . . . . . . . . 52
7.1.1 Proposed Metrics . . . . . . . . . . . . . . . . . . . . . 52
7.1.2 Formal Notation . . . . . . . . . . . . . . . . . . . . . 53
7.1.3 Complexity evaluation . . . . . . . . . . . . . . . . . . 54
7.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Empirical comparison . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.1 Tested data . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2.2 Target systems . . . . . . . . . . . . . . . . . . . . . . 60
7.2.3 Target reasoning queries . . . . . . . . . . . . . . . . . 61
7.2.4 Testing con�guration . . . . . . . . . . . . . . . . . . . 62
7.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

8 Summary and discussion 65



1 Introduction and Overview

1.1 Semantic Web and Annotation Creation

Semantic Web is an extension of the current World Wide Web, in which
meaning of data is captured in machine-readable form. This formal knowl-
edge is captured by semantic metadata, thus allowing easier exchange, inte-
gration and processing of data. Usually, data description is separated from
original data, making it possible to have di�erent views on data for di�erent
applications.

Semantic annotation authoring is a process of creating metadata upon
existing documents. Since vitality of semantic web is highly dependent on
both quality and mass of metadata, annotation creation became one of the
basic milestones of semantic web realization. Although there are many tech-
niques that allow fully automated annotation creation from data, most ap-
plications need some knowledge which is created manually. For authoring of
su�cient amount of metadata, tools for annotation creation must be easy to
learn, not only for knowledge engineers, but also for domain experts. On-
tology language, i.e. formal speci�cation of annotations, must be simple,
straightforward and expressive enough. Furthermore, to ensure good quality
of metadata, the tools have to support detection and debugging of logical
modelling errors.

One of such annotation tools is a document annotation tool DNAT (Dy-
namic Narrative Authoring Tool) developed within European project CI-
PHER (Communities of Interest Promoting Heritage of European Regions)
[8]. DNAT was designed to support users in creating printable knowledge-
intensive content and the corresponding knowledge-base at the same time.
DNAT enables users to link created annotations to text fragments in the
narrative using semantic annotations created via Conceptual Graphs (CG)
[12]. Then, CG represents easily readable model of the narrative and shows
the dependencies of narrative primitives.

Experiments proved that CGs in DNAT were very well suited for doc-
ument annotation. Authors of DNAT discovered that most of the people
learned to model knowledge in a few hours, since annotating process was very

1



1.1 Semantic Web and Annotation Creation 2

similar to using color markers for highlighting key concepts in documents.
Unfortunately for DNAT to provide ontology services and query support,
also complex inference support over gathered data was required. However,
general CGs are equivalent to FOL (�rst order logic) and therefore deduction
in CGs is not decidable.

During the knowledge extraction process, DNAT automatically builds
a knowledge base in Apollo CH format [22]. The format allows to export
knowledge base to other formalisms, for which suitable reasoning services
might exists. From all supported formalisms, OWL, in particular OWL-DL
was most likely the best candidate to ful�ll requirements of DNAT.

OWL (Web Ontology Language) is an expressive ontology language re-
leased as a W3C (World Wide Web Consortium) recommendation in Febru-
ary 2004. OWL-DL is a subset of OWL that was designed to support highest
possible expressivity while retaining decidability. The name OWL-DL is due
to its correspondence to description logics (DL) [23, 25]. In DLs, each stan-
dard reasoning task can be reduced to satis�ability problem of a DL knowl-
edge base, i.e. checking if there is a model of the knowledge base in which
all axioms evaluate to true.

Further investigation on annotating with OWL-DL revealed a signi�cant
weakness of OWL. Even though OWL-DL is very expressive, it does not
have direct support for n-ary relation constructors. In July 2004, W3C pub-
lished �rst informative document about de�ning n-ary relations [6] in OWL.
Document explains how to model n-ary relations by so-called rei�cation, i.e.
representing n-ary relation by concept. Such a representation is, however,
weak form of rei�cation in which n-ary relation does not have to be inter-
preted as a set of tuples.

As natural choice the DNAT seems to pro�t from an n-ary extension like
the logic formalismDLR [35]. DLR is description logic with support of n-ary
relations. There is no known algorithm for native reasoning within DLR.
However, in the work of Calvanese at al. [38], DLR was used for solving
query containment problem (QCP). Part of the solution of QCP was satis�-
ability problem of DLR which was translated and delegated to satis�ability
problem of CIQ DL knowledge base. Since there was no implementation
of reasoner based on CIQ DL, Calvanese at al. solution did not lead to
practical decidability. To overcome this problem, Horrocks et al. introduced
slightly di�erent mapping of QCP to DLR and translated it to satis�ability
problem of a SHIQ DL knowledge base. In both algorithms rei�cation was
used for transformation of DLR to binary DLs, however, some additional
axioms were added to the knowledge bases to axiomatize all properties of
n-ary relations correctly.
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1.2 Goal of the Thesis

Currently, authors of DNAT restricted their attention to a subset of DLR
that seems suitable for native tableaux reasoning [24]. It allows for all DLR
constructs accept number restrictions that represent a signi�cant source of
non-determinism in tableaux reasoning. On this subset of DLR we de�ned
new description logic NDL. In addition, we extended NDL with new con-
structors to ful�ll semantic annotation needs. New constructors, however,
brings only syntactic sugar to the language.

The main goal of this thesis is to design and implement rei�cation al-
gorithms for the logic NDL based on approaches of Calvanese at al. and
Horrocks at al. Then, the algorithms will be compared both theoretically
and empirically. Empirical testing will be done on the current state-of-art of
reasoners with appropriate n-ary NDL knowledge bases. NDL knowledge
bases will be gathered from existing OWL ontologies.

This benchmark can be used for comparison of native reasoning and rea-
soning by transformation to binary DLs.

1.3 Structure of the Text

The theoretical background and overview of DLR, OWL-DL and its un-
derlying logics is described in Chapter 2. Overview of state-of-art ontology
languages and its issues for semantic annotation in project DNAT is described
in Chapter 3. Syntax and semantics of new n-ary description logics NDL
is introduced in Chapter 4 along with its graphical notation and example.
Rei�cation algorithms for NDL are described in Chapter 5. Transformations
of OWL into NDL is described in Chapter 6. Theoretical analysis of com-
plexity of transformed NDL KBs and its empirical results on the current
state-of-art of reasoners are explained in Chapter 7. Contribution of this
work and open issues are summarized in Chapter 8.



2 Foundations

Technical background around semantic web is new and in some cases mis-
understood. This chapter is dedicated to clarify ambiguous terminology,
describe syntax and semantics of languages that will be used in further text.
In the �rst section of the chapter, di�erence between ontology and knowledge
base is explained. In Section 2.2 a family of logic-based knowledge representa-
tion formalisms, Description Logics is introduced. Next two sections explains
concrete types of Descriptions Logics : �rst, underlying logics of OWL-DL
is in Section 2.3; second, the logics DLR in Section 2.4. Last section of the
chapter describes abstract syntax of OWL and explains its correspondence
to description logics.

2.1 Ontologies and Knowledge Bases

Word "ontology" generates a lot of controversial discussion about AI, because
its meaning is a bit vague and as the term it is used in many di�erent ways.
For the AI community, de�nition proposed in 1992 by Tom Gruber describes
ontology as "a speci�cation of conceptualization". Thus, an ontology is a
description (like a formal speci�cation of a program) of the concepts and
relations that can exist. However, in other resources, to the term it might be
referred as a philosophical discipline, an informal conceptual system, a formal
semantic account, a representation of a conceptual system via a logical theory,
the vocabulary used by a logical theory as well as (meta-level) speci�cation
of a logical theory [9].

Word "knowledge base" is more general term. In context of semantic web,
knowledge base usually refers to an informal term for a collection of infor-
mation that includes an ontology as one component. Besides an ontology, a
knowledge base may contain information speci�ed in a declarative language
such as logic or expert-system rules, but it may also include unstructured or
unformalized information expressed in natural language or procedural code.

Within knowledge engineering community, the term "ontology" has re-
cently gained popularity, most likely because of raising popularity of OWL,

4



2.2 Description logics 5

that de�nes the term in the speci�cation of language. In further text we
will use term "ontology", only in context of OWL, as a set of OWL axioms.
On the other hand, whenever word "knowledge base" is used, it will refer
to collection of axioms in description logics (see Section 2.2). Hence, when
describing OWL, one can refer to its ontology or to knowledge base of its
underlying description logics.

2.2 Description logics

Description logics (DLs) [23], [25] are a family of logic-based knowledge rep-
resentation formalisms. They are usually a (decidable) subset of First Order
Predicate Logic (FOL), and thus have a well-de�ned, formal semantics.

The basic building blocks of DLs are atomic concepts, typically atomic
binary relations, called roles and individuals. Atomic concepts and roles cor-
respond to unary and binary predicates in FOL. Concepts denote set or a
class of objects and are mainly used to de�ne a domain of application. Rela-
tions between objects is described via roles. Complex concepts and relations
can be formed from atomic ones, using DL operators called constructors. In-
dividuals correspond to constants in FOL and they represent objects in the
domain.

DL knowledge base is set of logical sentences, called axioms. It can be
divided into three components: TBox, RBox, and ABox. The TBox contains
statements about concepts (e.g. concept subsumptionMan v Person). The
RBox contains statements about roles (e.g. hasBrother is symmetric role)
and role hierarchies (e.g. role subsumption hasSon v hasChild). The ABox
de�nes role assertions between individuals (e.g. hasChild(Peter, John)) and
concept membership assertions (e.g. John : Man). In some literature, com-
ponent RBox is omitted and statements about roles are included in set of
terminological axioms, i.e. TBox. This kind of partitioning of KB will be
used in the rest of this text.

One of most important categorizing criteria of description logics is its
expressivity, i.e. set of constructors and axiom types that are allowed to
occur in knowledge base. To encode the precise expressivity of the particular
description logic, mnemonic names were assigned. For a list of mnemonics
with DL's they characterize, see Table 2.1.

In the table, for example mnemonics AL stands for the most simple DL
called Attribute Logics. In logic AL, atomic concepts and atomic roles can
be used, and among all concept constructors only following are permitted:
negation of atomic concept (¬A), intersection of two concepts (C uD) and
other two constructors (∃r.>) and (∀r.C). All of the constructors in the
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Mnemonic DL Expressivity

AL Attribute Logic [A, ¬A (atomic), C uD, ∃r.>, ∀r.C]
ALC Attribute Logic + Full Complement [allowing C tD and ∃r.C]
R+ Transitive Roles
S ALCR+
H Role Hierarchy
I Inverse Roles
O Nominals (individuals used in class expressions)
N Unquali�ed Cardinality Restriction [6 nr, > nr, = nr]
Q Quali�ed Cardinality Restriction [(6 nr).C, (> nr).C, (= nr).C]
D Datatypes
F Functional Roles

Table 2.1: Mnemonics for DLs

table will be explained later in the text.
With restriction that AL DL has to be included in every DL, mnemonics

from Table 2.1 can be combined to form more complex DLs. For example de-
scription logics ALIF would denote Attribute Logics extended with inverse
role constructors (I) and axioms that de�ne functional role (F).

Following two sections will introduce two concrete logics from the family
of description logics that are used in the rest of this text. First, the logic
SHOIQ DL that is underlying logic of OWL-DL extended with quali�ed
number restrictions (mnemonic Q). This extension of OWL-DL will be used
in next chapters as most of the reasoners already support it. Second, the
logic DLR that is not a standard DL and therefore mnemonics from the
Table 2.1 cannot be applied to it.

2.3 The Logic SHOIQ

SHOIQ [28] is a standard DL, in the sense that it deals with concepts and
(only) binary relations (called roles). However it is very expressive as it
supports individuals in concept constructors, inverse roles, quali�ed number
restrictions on roles, transitive roles, role inclusion axioms and so on. In
following text syntax and semantics of SHOIQ will be described. Some of
de�nitions were taken from [44].
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2.3.1 Syntax

De�nition 2.3.1 (SHOIQ concepts, relations and individuals). Given a set
of atomic concept names NC, a set of atomic role names NR with transitive
role names NR+ ⊆ NR, and a set of individuals NI, every C ∈ NC is a
concept, every r ∈ NR is a role, and every r ∈ NR+ is a transitive role. If r
is a role, then r− is also a role (and if r ∈ NR+ then r− is also a transitive
role). If s is a (possibly inverse) role, C, D are concepts, o is an individual,
and k is a non-negative integer, then

⊥,>,¬C,C uD,C tD,
∃s.C, ∀s.C,≤ ks.C,≥ ks.C,= ks, {o}

are SHOIQ concepts.

A SHOIQ knowledge base consist of schema and ABox. Schema is a set
of logical implication axioms, which is used to express general facts about
knowledge base. ABox is a set of axioms asserting facts about individuals
and pairs of individuals.

De�nition 2.3.2 (SHOIQ schema). A SHOIQ schema S is a set of ax-
ioms of the form C v D and r v s, where C, D are SHOIQ concepts and
r, s are SHOIQ roles.

De�nition 2.3.3 (SHOIQ ABox ). A SHOIQ ABox A is a set of axioms
of the form w : C and 〈v, w〉 : r, where C is a concept, r is a role, and v, w
are individuals.

De�nition 2.3.4 (SHOIQ knowledge base). A SHOIQ knowledge base K
is a pair 〈S,A〉, where S is a schema and A is an ABox.

2.3.2 Semantics

Semantics of SHOIQ is given by interpretation.

De�nition 2.3.5 (SHOIQ interpretation). Given a SHOIQ knowledge
base K, an interpretation is a pair I = (∆I , ·I) , where ∆I is the domain (a
non-empty set), and ·I is an interpretation function that maps every concept
to a subset of ∆I, every role to a subset of (∆I)2, and every individual to an
element in ∆I such that the following equations are satis�ed.



2.3 The Logic SHOIQ 8

>I = ∆I

⊥I = {}
CI ⊆ >I

(¬C)I = ∆I\CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

({o})I = {oI}
oI ∈ >I

rI = (RI)+ for all r ∈ NR+

(r−)I = {(d, d′) | (d, d′) ∈ rI}
(∃s.C)I = {d | ∃(d, d′) ∈ sI ∧ d′ ∈ CI}
(∀s.C)I = {d | ∀(d, d′) ∈ sI ⇒ d′ ∈ CI}

(≤ ks.C)I = {d | ]{∃d′.(d, d′) ∈ sI ∧ d′ ∈ CI} ≤ k}
(≥ ks.C)I = {d | ]{∃d′.(d, d′) ∈ sI ∧ d′ ∈ CI} ≥ k}
(= ks.C)I = {d | ]{∃d′.(d, d′) ∈ sI ∧ d′ ∈ CI} = k}

where C, D are concepts, r, s are roles, o is individual, and k is a non-
negative integer.

In every DL knowledge base there are at least two concepts : the most
general concept (>) and the most speci�c concept ⊥. For every concept C in
KB it is true that C v > and ⊥ v C.
SHOIQ DL knowledge base contains 3 logical concept constructors:

negation of concept (¬C), intersection of concepts (C u D) and union of
concepts (C t D). From all the constructors, only nominals ({o}) can use
individuals in the concept constructor. Thanks to nominals, concepts of
SHOIQ DL can be forced to contain not empty, but �nite set of individuals
(e.g. KB containing only two axioms: A v {o}, {o} v A, forces concept
A to have exactly one individual o). Note that without nominals, it is not
possible.

To all other concept constructors it is referred to as role restrictions.
An existential restriction ∃s.C describes a concept of individuals that have
at least one relationship along role s to an individual that is a member of
concept C. An universal restriction ∀s.C describes a concept of individuals
that have relationships along role s to only individuals that are members of
concept C. Existential restrictions and universal restrictions are sometimes
also called quali�er restrictions.

With cardinality restrictions it is possible to describe concept of individ-
uals that have at least, at most or exactly a speci�ed number of relationships
with other individuals of given concept. A minimum (maximum, exact)
cardinality restriction ≥ ks.C (≤ ks.C, = ks.C) speci�es that an individual
must participate in at least (at most, exactly) k of s relationships to members
of concept C. If the concept C is the most general concept, i.e. >, cardi-
nality restrictions are called unquali�ed. In all other cases they are quali�ed
cardinality restrictions.
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De�nition 2.3.6 (Satis�ability of knowledge base, schema, ABox, axioms).
Given a SHOIQ knowledge base K = 〈S,A〉, with concepts C, D, roles r, s,
individuals v, w, an interpretation I satis�es axioms according to following
conditions. I satisfy C v D i� CI ⊆ DI ; I satisfy r v s i� rI ⊆ sI ; I
satisfy w : C i� wI ∈ CI ; I satisfy 〈v, w〉 : r i� (vI , wI) ∈ rI.

Additionally, the interpretation I satis�es a schema S i� I satis�es every
axiom in S, satis�es an ABox A i� I satis�es every axiom in A, and satis�es
a KB K i� it satis�es both S and A.

If the interpretation I satis�es a concept, axiom, schema, or ABox X,
then we say that I is a model of X, call X satis�able, and write I |= X.

Note that it is not assumed that individuals with di�erent names are
mapped to di�erent elements in the domain (the so-called unique name as-
sumption).

2.4 The Logic DLR

DLR is one of few description logics with ability to describe relations of any
arity. It was �rst introduced in [45]. Distinguishing feature of DLR from any
other DL formalism is capability of expressing inclusion axioms on complex
relations. In following text syntax and semantics of DLR will be described.
Most of the de�nitions here can be found in [44].

2.4.1 Syntax

De�nition 2.4.1 (DLR concepts, relations and individuals). Given a set of
atomic concept names NC, a set of atomic relation names NR, and a set of
individuals NI, every C ∈ NC is a concept, every R ∈ NR is a relation, with
every R having an associated arity, and every w ∈ NI is an individual. If C,
D are concepts, R, S are relations of arity n, i is an integer 1 ≤ i ≤ n then

>, ¬C, C1 u C2, ≤ k[$i]R, ∀[$i]R are DLR concepts, and

>n, ¬R, R1 uR2, ($i/n : C) are DLR relations with arity n

Relation expressions must be well-typed in the sense that only relations
with the same arity can be conjoined, and in constructs like ≤ k[$i]R and
∀[$i]R the value of i must be less than or equal to the arity of R and the
value of k must be greater than or equal to zero.

A DLR knowledge base consist of schema and ABox. Schema is set
of logical implication axioms, that is used to express general facts about
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knowledge base. ABox is a set of axioms asserting facts about individuals
and tuples of individuals.

De�nition 2.4.2 (DLR schema). A DLR schema S is a set of axioms of
the form C v D and R v S, where C, D are DLR concepts and R, S are
DLR relations of the same arity.

De�nition 2.4.3 (DLR ABox ). A DLR ABox A is a set of axioms of the
form w : C and w : R, where C is a concept, R is a relation of arity n,
w is an individual and w is an n-tuple 〈w1, ..., wn〉 such that w1, ..., wn are
individuals.

De�nition 2.4.4 (DLR knowledge base). A DLR knowledge base K is a
pair 〈S,A〉, where S is a schema and A is an ABox.

2.4.2 Semantics

Semantics of DLR is given by interpretation.

De�nition 2.4.5 (DLR Interpretation). Given a DLR knowledge base K,
an interpretation is a pair I = (∆I , ·I) , where ∆I is the domain (a non-
empty set), and ·I is an interpretation function that maps every concept to a
subset of ∆I, every n-ary relation to a subset of (∆I)n, and every individual
to an element in ∆I such that the following equations are satis�ed.

>I = ∆I

CI ⊆ >I

(¬C)I = ∆I\CI

(C uD)I = CI ∩DI

wI ∈ >I

>In ⊆ (∆I)n

RI ⊆ >In
(¬R)I = >In\RI

(R u S)I = RI ∩ SI

wI ∈ >In

(∀[$i]R)I = {d ∈ ∆I | ∀(d1, ..., dn) ∈ RI ⇒ di = d}
(≤ k[$i]R)I = {d ∈ ∆I | #{(d1, ..., dn) ∈ RI | di = d} ≤ k}
($i/n : C)I = {(d1, ..., dn) ∈ >In | di ∈ CI}

where C, D are concepts, R, S are relations of arity n, w is individual,
w is n-tuple of individuals, and i is an integer 1 ≤ i ≤ n.
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Note that >n does not need to be interpreted as the set of all tuples of
arity n, but only as a subset of them, and that the negation of a relation R
with arity n is relative to >n.

Similarly as in binary DLs, DLR contains the most general concept >.
However DLR also contains >n that represent the most general relation of
arity n. Thus, in every KB, for each relation R of arity n occurring in KB it
is true that R v >n.

From the complex concept constructors, DLR contains a negation of
concept (¬C), an intersection of concepts (C1 uC2), an universal restriction
(∀[$i]R) and a maximal cardinality restriction (≤ k[$i]R).

From the complex relation constructors, DLR contains a negation of
relation (¬R), an intersection of relations (R1 uR2), an projection ($i/n :
C). Projection $i/n : C describes set of all tuples from >n, from which i-th
individual is member of concept C.

De�nition 2.4.6 (Satis�ability of knowledge base, schema, ABox, axioms).
Given a DLR knowledge base K = 〈S,A〉, with concepts C, D, relations R,
S of arity n, individual w and n-tuple of individuals w, an interpretation
I satis�es axioms according to following conditions. I satisfy C v D i�
CI ⊆ DI ; I satisfy R v S i� RI ⊆ SI ; I satisfy w : C i� wI ∈ CI ; I
satisfy w : R i� wI ∈ RI.

Additionally, the interpretation I satis�es a schema S i� I satis�es every
axiom in S, satis�es an ABox A i� I satis�es every axiom in A, and satis�es
a KB K i� it satis�es both S and A.

If the interpretation I satis�es a concept, axiom, schema, or ABox X,
then we say that I is a model of X, call X satis�able, and write I |= X.

Note that it is not assumed that individuals with di�erent names are
mapped to di�erent elements in the domain.

2.5 OWL-DL

Based on family of description logics, ontology language OWL-DL was de-
signed to support highest possible expressivity while retaining decidable.
More precisely, OWL-DL is based on the SHOIQ DL [29] with restricted
form of number restrictions to be unquali�ed (see [24]). It adds a simple form
of Datatypes (often called concrete domains in DLs [30]). Following the usual
DL mnemonics shown in Table 2.1, the resulting logic is called SHOIN (D).

Abstract syntax of OWL-DL [7] is very similar to description logics syn-
taxes. Description logics knowledge base is analogous to ontology in OWL-
DL, DL concepts corresponds to classes, roles corresponds to individual-
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valued properties. Individuals are same in both terminologies, but sometimes
OWL-DL refers to them as instances as well.

In addition, OWL-DL contains data ranges, which are analogous to con-
crete datatypes in description logics. Properties of OWL are of two types.
Datatype property associates an individual with data value. Object prop-
erty, also called abstract property, associates pairs of individuals. Domain of
classes and data ranges is disjoint, also properties and constructors work on
classes and data ranges separately.

Considering data ranges and datatype properties in this thesis would not
lead to any challenging complications, as most of the time, data ranges can be
treated in similar way as classes, and datatype properties as object properties.
However it would lead to more confusing de�nitions of algorithms, theorems
and so on. For this reason, existence of data values, data ranges and datatype
properties in this thesis is omitted and it is referred to OWL-DL as subset
of SHOIN DL.

OWL abstract syntax DL syntax
Class(A) A
Class(owl:Thing) >
Class(owl:Nothing) ⊥
complementOf(C) ¬C
intersectionOf(C1 ... Cn) C1 u ... u Cn

unionOf(C1 ... Cn) C1 t ... t Cn

oneOf(o1 ... on) {o1, ..., on}
restriction(r allValuesFrom(C)) ∀r.C
restriction(r someValuesFrom(C)) ∃r.C
restriction(r value(o)) ∃r.{o}
restriction(r minCardinality(n)) > nr
restriction(r maxCardinality(n)) 6 nr
restriction(r cardinality(n)) > nru 6 nr

Table 2.2: OWL-DL classes in DL abstract syntax

Complex classes, also called class descriptions, are formed in OWL-DL us-
ing class constructors. Simpli�ed overview (without loss of expressivity) of all
class constructors and its corresponding constructs in DL syntax are provided
in Table 2.2; in the table A is a class name (atomic concept), owl : Thing
is superclass of all classes, owl : Nothing is most speci�c class, C (possibly
subscripted) is a class, r is object property or possibly inverse of object prop-
erty, o (possibly subscripted) is an individual, n is non-negative integer. For
more precise description of class constructors see OWL documentation [4, 7].
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OWL abstract syntax DL syntax
Class(A partial C1 ... Cn) A v C1 u ... u Cn

Class(A complete C1 ... Cn) A v C1 u ... u Cn, C1 u ... u Cn v A
EnumeratedClass(A o1 ... on) A v {o1, ..., on}, {o1, ..., on} v A
DisjointClasses(C1 ...Cn) Ci v ¬Cj, 1 ≤ i < j ≤ n
EquivalentClasses(C1 ... Cn) Ci = Ci+1, 1 ≤ i < n
SubClassOf(C1 C2) C1 v C2

ObjectProperty(r super(r1)) r v r1

ObjectProperty(r inverseOf(r1)) r v r1
−

ObjectProperty(r domain(C)) > 1r v C
ObjectProperty(r range(C)) > v ∀r.C
ObjectProperty(r Functional) > v 6 1r
ObjectProperty(r InverseFunctional) > v 6 1r−

ObjectProperty(r Symmetric) r v r−

ObjectProperty(r Transitive) Trans(r)
EquivalentProperties(r1 ... rn) ri v rj, 1 ≤ i; j ≤ n
SubPropertyOf(r1 r2) r1 v r2

Individual(o type(C)) o : C
Individual(o value(r o1)) 〈o, o1〉 : r
SameIndividual(o1 ... on) o1 = ... = on

Di�erentIndividuals(o1 ... on) oi 6= oj, 1 ≤ i < j ≤ n

Table 2.3: OWL-DL axioms and facts in DL abstract syntax

Axioms and facts in OWL-DL are analogous to axioms in description
logics. Simpli�ed overview (without loss of expressivity) of class axioms,
property axioms and facts with correspondence to axioms in DL syntax are
provided in Table 2.3. In this table, the same conventions are used as in
Table 2.2. For more precise description of axioms and facts see OWL docu-
mentation [4, 7].

To preserve decidability of reasoning in OWL-DL, complex object prop-
erties cannot be de�ned as transitive. An object property is complex if either

1. it is speci�ed as being functional or inverse-functional, or

2. there is some cardinality restriction that uses it, or

3. it has an inverse that is complex, or

4. it has a super-property that is complex.



3 Related work

When designing new ontology language, one has to take into account a trade-
o� between expressivity and tractability. Even relatively inexpressive lan-
guage construct can cause serious computational issues in combination with
others. Experiences from project DNAT revealed that support for n-ary re-
lations is very important for annotating narratives. Some of the ontology
languages, however, contains only binary relations and use so-called rei�ca-
tion to replace n-ary ones. This chapter should give a reader overview on
modern ontology languages, its way to solve problems with n-ary relations
and its computational properties.

3.1 Conceptual Graphs

As a part of an European project CIPHER (Communities of Interest Promot-
ing Heritage of European Regions), a document annotation tool DNAT (Dy-
namic Narrative Authoring Tool) was developed. It was designed to support
users in creating printable knowledge-intensive content and the correspond-
ing knowledge-base at the same time. Semantic annotation was visualized
in Conceptual Graphs (CGs) while the knowledge model was a frame-based
model of Apollo CH ontology editor [15] .

Conceptual graphs are human readable notation of First Order Logic
(FOL), based on existential graphs [17] of Charles Sanders Pierce and se-
mantic networks [16] of arti�cial intelligence. First paper on CGs, was pub-
lished in 1976 by John F. Sowa who used them to represent the conceptual
schemas in database systems. Main goal of CGs is to be able to model nat-
ural language as people understand it. In CGs it is very intuitive to model
humans playing roles in events, capture knowledge about processes, methods,
consequences of an action or event, etc. Since there exists a direct mapping
from CGs to natural language, they can serve as an intermediate language
for translating computer-oriented formalisms to and from natural language.

Experiments proved that CGs in DNAT were very well suited for anno-
tating of documents. Authors of DNAT mentioned that most of the people

14
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learned to model knowledge in a few hours, since annotating process was very
similar to using color markers for highlighting key concepts in documents.
However, they realized that for further use of data, some more complex in-
ference of annotated data was needed.

Semantic annotation di�culties

Since general CGs are equivalent to FOL, deduction is not decidable. This
problem was partially solved by introducing simple conceptual graphs (SCGs).
SCG is formally equivalent to the positive conjunctive existential fragment of
FOL [14]. It means that they can express only conjunction of positive knowl-
edge. The deduction problem can be performed by a graph homomorphism
called projection, which is sound and complete. Intuitively, the existence
of projection between two SCGs means that �rst graph is contained in the
knowledge of second one. Main advantage of projection is that it can operate
on pieces of user knowledge and visualize it in natural way as well. Although
modelling knowledge in SCGs is very natural and intuitive, lack of negation
and disjunction makes SCGs unusable for certain tasks. In addition to this
problem, some work was done on adding negation and disjunction in lim-
ited way [18, 19]. Another inference techniques, instead of projection that
compares two graphs by a global matching, used set of rules [20] to obtain
derivation sequence from one graph to another. Similar expressivity problem
of these approaches can be found in [21].

3.2 Web Ontology Language

Web Ontology Language (OWL) [4] is an expressive ontology language re-
leased as a W3C (World Wide Web Consortium) recommendation in Febru-
ary 2004. Multi-layered nature of language architecture provides Universal
Resource Identi�ers (URIs) to identify Web resources unambiguously via
RDF [1] (basic assertional language) or de�nes classes and properties via
RDFS [2] (schema language extension). In addition, OWL provide rich set
of class constructors (e.g. logical combination of other classes, de�ne value
of class) and property constructors (e.g. property domain or range restric-
tion, de�nition of superproperty). Since one of RDF notations is layered on
top of XML [5], OWL comes with o�cial exchange syntax RDF/XML [3].
Ontology terms can be linked across making it possible to cross-reference
and reuse information. Also design based on the Web architecture, open
(non-proprietary) nature of language, brought up OWL in front of all other
ontology languages for Semantic Web.
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Trade-o� between expressivity and tractability, OWL addresses by de�n-
ing three increasingly complex sublanguages: OWL Lite, OWL-DL, OWL
Full. OWL Lite was de�ned with intention to provide minimal useful subset
of language that support class and property classi�cation hierarchies and sim-
ple constraint features. Tools for OWL Lite should be easier to implement,
and thanks to good computational properties, it can be used to query large
ontologies. On the other hand, OWL Lite lacks e.g. union and complement
of concepts and cardinality restriction permits values of just 0 or 1.

Based on description logics (DL), the OWL-DL language was designed to
support highest possible expressivity while retaining decidability. Originally,
description logics (DL) focused on developing languages with polynomial-
time complexity of reasoning problems. This way Knowledge Representation
system based on DL would guarantee timely answers to the rest of the sys-
tem. However, once very expressive DLs with exponential-time reasoning
problems were implemented [26], it was recognized that knowledge bases
of realistic size could be processed in reasonable time. Nowadays, many
DLs have inference complexity ExpTime-hard or even worse. Complexity
of OWL-DL entailment can be determined via correspondence to the satis-
�ability problem of SHOIN(D) description logic [28]. Unfortunately, most
problems in SHOIN(D) including satis�ability of knowledge base, are known
to be non-deterministic exponential time [27].

OWL Full would be useful for users who want maximum expressiveness
and the syntactic freedom of RDF with no computational guarantees. For
example, in OWL Full a class can be treated simultaneously as a collection of
individuals and as an individual in its own right. OWL Full allows an ontol-
ogy to augment the meaning of the pre-de�ned (RDF or OWL) vocabulary.
It is unlikely that any reasoning software will be able to support complete
reasoning for every feature of OWL Full.

Decidability of OWL-Lite and OWL-DL helps ontology engineers to take
advantage of reasoning services while constructing ontologies. For example,
reasoner can check consistency of ontology or class satis�ability (if de�nition
permits the class to have instances), construct class and property subsump-
tion hierarchies, check subsumption, equivalency or disjointness of classes,
list all individuals of a particular class and so on. Whenever an inconsis-
tency occurs, techniques for error explanation or ontology repair [51] can be
used. Some novel methods were implemented in ontology editor SWOOP
[52].
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Semantic annotation di�culties

Best candidate to ful�ll both advanced annotation features and reasoning
services at the same time is OWL-DL. Although OWL-DL is very expres-
sive, there is no support for direct n-ary relation constructors. In July, 2004,
W3C published �rst informative document about de�ning n-ary relations [6]
in OWL. Document separates semantically di�erent types of n-ary relations
and provides appropriate design pattern for transformation using binary rela-
tions. Despite W3C's ambition, modelling n-ary relations met some negative
consequences.

One of disadvantages is that W3C design patterns provide di�erent rep-
resentation choices for semantically same relation. The problem is caused by
the polarity of the binary relation in RDF, i.e. distinction of a subject and
an object of a triple. Since OWL is build on the top of RDF, every binary
relation between two concepts in ontology must be build on subject-object
basis. Despite the fact that even some obvious cases like a person related to
a birthday might seem equally reasonable as a birthday related to a person,
ontology modeller is forced to pick one representation. Considering n-ary re-
lations, being represented by tree of concepts connected by binary relations,
even much more di�erent combinations exist.

Although W3C design patterns can relate n concepts, they don't capture
all basic properties of n-ary relations. For example, let's have ternary relation
birth that relates name of person, place and date of birth. It would be natural
to expect that person with same name, place and date of birth cannot exist.
To capture this constraint in OWL-DL is very counter-intuitive and complex
problem and will be discussed in Chapter 5.

3.3 Nary Description Logics DLR

DLR is expressive logic formalism, whose intent is to extend DLs towards n-
ary relations in natural way. Design of language was in inspired by ontology
languages [34, 35, 36, 37] that had notion of n-ary relation already present.
Distinguishing feature of DLR from any other DL formalism is capability of
expressing inclusion axioms on complex relations. General inclusion axioms
of relations are crucial for inter-schema assertions, as discussed in [34]. Also
high expressivity of DLR is capable of capturing great variety of data models
and knowledge representation formalism which makes it excellent choice for
applications such as data integration.

As presented in [38], DLR can represent:
• the relational model, by considering only atomic relations and atomic
concepts
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• the entity relationship model in a straightforward way [37]
• an object-oriented data model, by restricting the use of existential and
universal quanti�cation in concept expressions, by restricting the atten-
tion to binary relations, and by eliminating negation and disjunction
• a "more traditional" DL, by restricting the attention to binary relations

Logical implication in DLR is decidable and EXPTIME-complete [39].
Practical, correct and complete algorithms exist in implemented systems and
they are used in real applications [40, 41, 42, 43]. Thanks to expressivity and
good computational properties, DLR seems to be interesting alternative for
semantic annotation creation.

In many publications DLR was used for solving query containment prob-
lem (QCP). It is the problem of determining whether for every data (or
knowledge) base, the result of one query is always a subset of the result
of another query. The importance of this problem was addressed by both
Database and Knowledge Representation community. Most of databases use
schema expressed in a very simple data model (e.g. the relational model) and
the query has the form of a conjunction of atomic queries (each involving one
relation). On the contrary, current research on Knowledge Representation,
typically assumes a more powerful schema speci�cation language restricted
to unary and binary predicates and query language where n-ary relations are
either not used (e.g. queries as concepts) [10], or treated separately from the
concepts and the roles of the schema (and therefore are not part of the knowl-
edge base) [11] Calvanese et al. [39] proposed uni�ed solution of query con-
tainment problem for both communities using theoretical framework based
on logic DLR. High expressive power of DLR was used to formulate query
and schema as well. Decision procedure of query containment was proved by
a reduction to unsatis�ability of concept in knowledge base expressed in the
EXPTIME-decidable DL CIQ [46].

Since there was no implementation of reasoner based on DL CIQ, Cal-
vanese et al. solution did not lead to practical decidability. To overcome
this problem, Horrocks et al. introduced slightly di�erent mapping of query
containment problem to DLR extended by ABox [45]. New encoding of
containment problem [47] is much more natural (thanks to correspondence
between variables of query and ABox individuals) and allows this problem to
be reduced to a KB satis�ability problem in SHIQ DL. In both approaches
resulting logics do not support n-ary relations, so they had to be reduced to
binary ones by rei�cation.

As explained in Chapter 2, every reasoning task in DLR can be trans-
formed to satis�ability problem. If we would have algorithm for transforming
DLR satis�ability to equivalent SHOIN DL satis�ability, we could use state-
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of-art reasoners to fully reason in DLR. Such an algorithm can be found as
a part of solution of QCP in both approaches, however logics that DLR are
transformed to are slightly di�erent.

Transformation of DLR satis�ability to satis�ability of new KB can be
divided into 2 steps. First, to ensure soundness of encoding, DLR is trans-
formed by satis�ability-preserving translation function. For both approaches,
this translation function is almost the same for TBox axioms, however dif-
fers in ABox axioms. Second, to ensure completeness of encoding, additional
axioms are added so that new KB cannot become satis�able if original DLR
KB wasn't. In next subsections di�erences among both approaches will be
revealed in more detailed way.

3.3.1 Reduction to CIQ DL satis�ability

Compared to SHOIN DL, CIQ DL lacks nominals, but contains quali�ed
number restrictions and expressive role constructors, such as union, chaining
and re�exive transitive closure of roles. Although CIQ DL contains ABox
axioms, Calvanese at. al. decided to transform all DLR axioms to TBox
axioms of new KB. They have introduced in new knowledge base so called
sk-concepts for each DLR individual and representatives of tuple. Soundness
of encoding for DLR ABox was provided by restrictions on sk-concepts. For
completeness of encoding they needed to enforce that each sk-concept can
be singled out (i.e. if there are two and more instances of sk-concept, they
should represent same individual). It is done by additional axioms, using so
called universal role (transitive closure of union of all roles).

3.3.2 Reduction to SHIQ DL satis�ability

Compared to SHOIN DL, SHIQ DL lacks nominals but contains quali�ed
cardinality restriction. Soundness of encoding is more natural, compared
to Calvanese at al., because DLR ABox axioms are transformed to similar
SHIQ DL ABox axioms. For completeness of encoding, tuple-admissibility
problem needed to be solved. It is done by additional axioms for each tuple
occurring in DLR ABox. For this purpose, quali�ed number restrictions were
used.



4 Nary Description Logics

Based on semantic annotation experiences from project DNAT, in this chap-
ter, it is de�ned new Nary Description Logics NDL. The logic NDL is
based on Description Logics DLR without cardinality restrictions. NDL is
enriched with new concept and relation constructors, which however present
only syntactic sugar to the logic.

4.1 Syntax and Semantics

Syntax and semantics of NDL is based on DLR without cardinality re-
strictions. This section does not de�ne NDL formally, but gives only brief
overview for new constructors added to NDL . For formal de�nitions of
DLR see Section 2.4.1 and Section 2.4.2. In favor of semantic annotations
new concept and relation constructors are added to NDL. For quick preview
of available constructors, see Figure 4.1. New concept constructors in NDL
are disjunction of concepts (C1 t C2) and existential restriction (∃[$i]R).
In addition, NDL has also relation constructor for disjunction of relations
(R1 tR2).

NDL concepts : >, ¬C, C1 u C2, C1 t C2, ∃[$i]R, ∀[$i]R
NDL relations : >n, ¬R, R1 uR2, R1 tR2, ($i/n : C)

Figure 4.1: Syntax of NDL

Semantics of NDL is summarized in Figure 4.2. Note that new construc-
tors in NDL introduced only syntactic sugar to the logic : disjunction of
concepts C1 t C2 can be equivalently represented as ¬(C1 u C2); disjunction
of relations R1 tR2 is equivalent to ¬(R1 uR2).

20
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>I = ∆I

CI ⊆ >I

(¬C)I = ∆I\CI

(C uD)I = CI ∩DI

(C tD)I = CI ∪DI

wI ∈ >I

>In ⊆ (∆I)n

RI ⊆ >In
(¬R)I = >In\RI

(R u S)I = RI ∩ SI

(R t S)I = RI ∪ SI

wI ∈ >In

(∃[$i]R)I = {d ∈ ∆I | ∃(d1, ..., dn) ∈ RI .di = d}
(∀[$i]R)I = {d ∈ ∆I | ∀(d1, ..., dn) ∈ RI ⇒ di = d}

($i/n : C)I = {(d1, ..., dn) ∈ >In | di ∈ CI}

Figure 4.2: Semantics of NDL

4.2 Graphical notation

To improve readability of NDL abstract syntax, we will use graphical nota-
tion, called display form (DF). DF is not meant to replace abstract syntax,
but only show important structure of the Knowledge Base.

DF is oriented graph, that consist of two types of nodes: concept node and
relation node. Each arc connect concept node with relation node. Concept
nodes are drawn as rectangles. Relation nodes are drawn as circles, ovals, or
ellipses. The arcs that link a relation node to a concept node are drawn as
solid lines, preferably straight. To distinguish the arcs of an n-ary relation,
an integer from 1 to n is drawn next to each arc.

Relation node represents NDL relation and is displayed as follows. Inside
of the node is name of the NDL relation. From the node leads n outgoing
arcs, where n is arity of relation. Concept node represent NDL concept. The
concept name is displayed inside of the node and it is optionally followed by
colon character ":" and individual name that has type of this concept. Other
details of DF format should be self-explanatory from example in next section.

4.3 Example Knowledge Base

To clarify work in following chapters, we will use example ofNDL Knowledge
Base. Display form of this example KB is in Figure ??. From the �gure, it can
be read : DeidreCapron is 18 years old Person, that came to BletchleyPark
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in year1944; DeidreCapron works in BletchleyPark for 9 month. Schema
of Deidre Knowledge Base in abstract syntax is in Figure 4.3. ABox axioms
of Deidre KB in abstract syntax is in Figure 4.4.

hasAge v($1/2 : Person) u ($2/2 : NumberOfY ears)

come v($1/3 : Person) u ($2/3 : Place) u ($3/3 : TimeSpec)

work v($1/3 : Person) u ($2/3 : Place) u ($3/3 : NumberOfMonths)

Y ear vTimeSpec
Person v∃[$1]hasAge

Figure 4.3: TBox axioms for Deidre example KB

DeidreCapron : Person

BletchleyPark : Place

year1944 : Y ear

〈DeidreCapron, 18〉 : hasAge

〈DeidreCapron,BletchleyPark, year1944〉 : come

〈DeidreCapron,BletchleyPark, 9〉 : work

Figure 4.4: ABox axioms for Deidre example KB
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Figure 4.5: Display Form of Deidre example KB



5 Rei�cation algorithms

In February 2004 W3C released recommendation for Web Ontology Lan-
guage (OWL). From the three sublanguages de�ned in speci�cation, the
most interest was given to OWL-DL. OWL-DL as described in Chapter 2
has expressivity SHOIN . Although OWL-DL is supported by most of the
state-of-art semantic web tools, there are still some issues in implementation
of reasoners. In particular, some of the reasoners cannot deal with nominals,
some support them only approximately [55].

On the other hand, almost all of the state-of-art description logics rea-
soners can reason with quali�ed cardinality restrictions. Description logics
based on OWL-DL without nominals and with quali�ed cardinality restric-
tion is SHIQ DL. This description logics is part of new ontology language
OWL-1.1, whose speci�cation was released as W3C draft in January 2008.

Primary goal of this chapter is the design of rei�cation algorithms for
NDL according to work of Calvanese at al. [38] and Horrocks at al. [47].
The output binary logics of the algorithms should be supported by state-of-
art description logics reasoners.

Since rei�cation algorithm of Horrocks at al. is based on Calvanese at
al. work, both algorithms share common characteristics that are discussed
in Section 5.1. In the section also basic structure of algorithm and its proof
is explained.

Based on Calvanese at al., new rei�cation algorithm with output expres-
sivity SHIQ is de�ned in Section 5.2. Same algorithm as de�ned in Horrocks
at al. work, but only suited for NDL, is de�ned in Section 5.3. The sec-
tion also presents modi�cation of this algorithm. The new algorithm rei�es
NDL into DL with expressivity SHIF , which is subset of SHIQ without
cardinality restrictions. Complications and contributions of this chapter is
summarized in Section 5.4.

24
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5.1 Common characteristics

Binary description logics, such as SHOIQ provide only unary predicates
and binary relations. On the other hand, DLR-like languages such as NDL
allows for arbitrary n-ary relations. Thus, transformation of NDL into
SHOIQ DL has to represent NDL n-ary relations by means of binary ones.
This is done by process called rei�cation [24].

Main idea behind rei�cation is that each tuple of n-ary language is rep-
resented by one individual of binary language that is linked via dedicated
functional relations to the elements of tuple. In following transformations
roles f1, ..., fn are used for this purpose. Distinguishing feature of Calvanese
and Horrocks works compared to other approaches is realization of all prop-
erties of n-ary relations as understood in mathematical logic. To achieve
this goal, tuple-admissibility problem of represented n-ary relations had to be
�xed.

Tuple-admissibility is property of mathematical relations which ensures
that relation is interpreted as set of tuples. Thus, if representation of relation
by concept is tuple-admissible, there can exist only one instance of each tuple
in the concept. Note that n-ary relations as de�ned by W3C for OWL-DL
[6] are not tuple-admissible.

5.1.1 Structure of algorithm

The rei�cation algorithm consists of two steps. First, a NDL KB is trans-
lated to binary DL by satis�ability-preserving translation σ(.). Second, ad-
ditional axioms are added to binary KB to guarantee that any model of new
KB can be "un-rei�ed" back into a model of the NDL KB. For this pur-
pose function f(.) is de�ned. Putting it all together, if KNDL = 〈S,A〉 is an
NDL KB, new KB will consist of axioms σ(S)∪f(S)∪σ(A)∪f(A). To new
(binary) KB it is referred in this chapter as to rei�ed counterpart of NDL
KB.

In both Calvanese and Horrocks works, rei�cation of schema axioms is
the same. However, the approaches di�er in rei�cation of ABox axioms. In
Calvanese work ABox axioms were encoded by terminological (TBox ) SHIQ
axioms. Therefore further in text we will refer to the rei�cation algorithm as
T-SHIQ . On the other hand, in Horrocks work ABox axioms were encoded
mainly by ABox axioms of rei�ed counterpart. Thus further in text we will
refer to the algorithms based on Horrocks as A-SHIQ and A-SHIF according
to their expressivity. Moreover, translation functions according to Calvanese
are labeled as σ′ and f ′, while for Horrocks approach σ′′ and f ′′ is used. All
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of the translation functions for ABox might be possibly subscripted.

5.1.2 Rei�cation of schema

By translation function σ(.), each atomic NDL relation is represented by a
new atomic concept, each NDL relation inclusion axiom is translated to a
concept inclusion axiom.

De�nition 5.1.1. Let K = 〈S,A〉 be a NDL knowledge base. The rei�cation
translation function σ(.) for TBox is de�ned as follows:

σ(>) = >1

σ(A) = A

σ(¬C) = ¬σ(C)

σ(C1 u C2) = σ(C1) u σ(C2)

σ(C1 t C2) = σ(C1) t σ(C2)

σ(∃[$i]R) = ∃f−i .σ(R)

σ(∀[$i]R) = ∀f−i .σ(R)

σ(>n) = >n

σ(P) = AP

σ(¬R) = >n u ¬σ(R)

σ(R1 uR2) = σ(R1) u σ(R2)

σ(R1 tR2) = σ(R1) t σ(R2)

σ($i/n : C) = >n u ∃fi.σ(C)

(5.1)

σ(S) ={(σ(C1) v σ(C2)) | (C1 v C2) ∈ S}
∪ {(σ(R1) v σ(R2)) | (R1 v R2) ∈ S}

(5.2)

AP, A, >1,..., >nmax are newly introduced atomic concepts, f1,..., fnmax

newly introduced atomic roles and nmax denote maximum arity of relations
appearing in NDL KB. In the following de�nition function f(.) for NDL
schema is de�ned. The function provides additional axioms to rei�ed coun-
terpart that are needed for "un-rei�cation".

De�nition 5.1.2. Let K = 〈S,A〉 be a NDL knowledge base. f(S) is a set
consisting of following axioms (where x ≡ y is an abbreviation of x v y and
y v x):

> v >1 t ... t >nmax (5.3)

> v (≤ 1f1) u ... u (≤ 1fnmax) (5.4)

∀fi.⊥ v ∀fi+1.⊥ for 1 ≤ i < nmax (5.5)

Ti ≡ ∃f1.>1 u ... u ∃fi.>1 u ∀fi+1.⊥ for 2 ≤ i ≤ nmax (5.6)

A v >1 for each atomic concept A (5.7)

AP v >n for each atomic relation P of arity n (5.8)
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Intuitively, 5.3 states, that each individual has to belong to at least one
of Ti for 1 ≤ i ≤ nmax. T1 can be viewed as set of simple individuals, while
elements of Ti for i ≥ 2 can be interpreted as instances of tuples of arity i.
Note that in combination with 5.6, it can be proved that Ti for i ≥ 2 are
mutually disjoint. Roles f1, ..., fn are used to link an instance of tuple to its
elements. Axiom 5.4 states that each fi is functional. Axiom 5.5 ensures,
that each individual that is connected with fi must be connected also with
all fj, for 1 ≤ j < i. Structure of concepts that hold all instances of tuples
of one arity is de�ned by axioms 5.6. By axioms 5.7 and 5.8, it is de�ned
that each unary concept is subset of T1 and each concept representative for
n-ary relation is subset of appropriate Ti.

Example 5.1.1. To illustrate rei�cation of schema axioms consider example
knowledge base about Deidre Capron from Chapter 4. If S is schema of Deidre
Capron KB than σ(S) ∪ f(S) is following set of axioms:

Acome v (>3 u ∃f1.P erson) u
(>3 u ∃f2.P lace) u
(>3 u ∃f3.T imeSpec)

AhasAge v (>2 u ∃f1.P erson) u
(>2 u ∃f2.NoY ears)

Awork v (>3 u ∃f1.P erson) u
(>3 u ∃f2.P lace) u
(>3 u ∃f3.NoMonths)

Y ear v TimeSpec

Person v ∃f−1 .AhasAge

T v T1 u T2 u T3

T v (≤ 1f1) u (≤ 1f2) u (≤ 1f3)

∀f1.⊥ v ∀f2.⊥
∀f2.⊥ v ∀f3.⊥

>2 ≡ ∃f1>1 u ∃f2>1 u ∀f3⊥
>3 ≡ ∃f1>1 u ∃f2>1 u ∃f3>1

Place v>1

TimeSpec v>1

AhasAge v>2

NoY ears v>1

NoMonths v>1

Awork v>3

Person v>1

Y ear v>1

Acome v>3

In the following sections, two di�erent types of rei�cations of NDL into
binary DLs are described. Main di�erence of approaches are the way how
they treat encoding of individuals. The �rst approach based on Calvanese
work encodes NDL individuals assertions into terminology axioms, while the
second one uses mostly ABox assertions instead.
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5.2 Rei�cation using TBox

According to the Calvanese work, this section de�nes rei�ed counterpart
of NDL ABox, where each individual and tuple is represented by special
concept. ABox assertions are then represented as terminological axioms of
rei�ed counterpart. Since each representative concept is interpreted as a set
of individuals, some additional axioms need to be added to the KB to ensure
that each representative concept can be interpreted as a single individual.
Singling out of concepts is done through so called universal accessibility role.
Same technique is also used for representative concepts of tuples in order to
gain tuple-admissible model. The rei�cation algorithm outputs a binary KB
with expressivity SHIQ .

5.2.1 Representation of individuals and tuples by con-

cepts

Rei�cation algorithm according to Calvanese at al. represents each NDL
individual w by new atomic concept Aw and each NDL tuple ~w by new
atomic concept T~w. Individual and tuple assertions of original NDL KB
are represented as inclusion assertions in rei�ed counterpart involving such
new atomic concepts. However the new concepts alone do not su�ce to
represent faithfully the original NDL KB, because each individual w (tuple
~w) of original KB is represented by a set of individuals of Aw (T~w) in rei�ed
counterpart. In order to relate the satis�ability of the NDL KB to the
satis�ability of its rei�ed counterpart, we must be able to �nd a model where
each of representative concepts are interpreted by single individuals for each
model of the rei�ed counterpart. For this purpose, a role U is de�ned and
following concept inclusion axioms are added to rei�ed counterpart for each
representative concept A and some concepts C:

(A u C) v ∀U.(¬A t C)

Let's assume that U is interpreted as a role that relates every two individuals
of rei�ed counterpart to each other. Thus, the above axiom states that if an
individual of A is also a member of C, than every individual of A is also a
member of C. Observe that if we could add in�nite set of axioms of this
form to the rei�ed counterpart for each possible concept of the language,
there would be no way in the logic to distinguish two individuals of each
A one from the another. Hence, we could safely restrict models of rei�ed
counterpart to models that interpret each representative concept A by only
one individual. Moreover, as showed in [46], for this purpose a �nite set
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of concepts C is su�cient. Based on this work it is de�ned extension of
Fischer-Ladner closure CL′(.).

In the following text two main complication of adapting Calvanese work
to SHIQ DL are discussed. The First is the construction of an universal
accessibility role. Second, we have to extend the notion of the Fischer-Ladner
closure CL(.).

5.2.2 Construction of the Universal accessibility role

Universal accessibility role is de�ned as cartesian cross-product of all indi-
viduals in the interpretation domain, i.e. for I := (∆I , ·I), UI = ∆I ×∆I .
Due to connected-model property1 of underlying logics CIQ DL, Calvanase
at. al. [38] could represent U as transitive closure of union of all roles and
their inverses. SHIQ DL has connected-model property, however it lacks
union constructors on roles. Thus, we de�ne pseudo-universal role U that is
superset of universal accessibility role and prove that it is su�cient for our
purpose.

De�nition 5.2.1 (Construction of pseudo-universal role). Let R be set of
atomic roles, than UC(R) is set of axioms that construct pseudo-universal
role U as follows:

UC(R) = {p v U, p− v U | p ∈ R} ∪ {trans(U)} (5.9)

Note that 5.9 de�nes U for which (
⊔
R r)

∗ v U holds.

5.2.3 Construction of the extended Fischer-Ladner clo-

sure

Set of concepts that needs to be used in axioms for singling out representative
concepts is �nite. It will be de�ned by an extension of the Fischer-Ladner
closure. De�nition of original Fischer-Ladner closure modi�ed for SHIQ DL
concept follows.

De�nition 5.2.2. [Fischer-Ladner closure for SHIQ DL concept] Let C0

be SHIQ DL concept, the Fischer-Ladner closure CL(C0) of concept C0, is
de�ned as the smallest set of concepts such that C0 ∈ CL(C0) and such that
(assuming t and ∀ to be expressed by means of u and ∃, and the inverse
operator applied only to atomic roles)[49]:

1if a formula (an axiom) has a model, than it has one that is connected when viewing
it as a graph.
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if C ∈ CL(C0) then ¬C ∈ CL(C0) (if C is not of the form ¬C ′)
if ¬C ∈ CL(C0) then C ∈ CL(C0)
if C u C ′ ∈ CL(C0) then C,C ′ ∈ CL(C0)
if ∃r.C ∈ CL(C0) then C ∈ CL(C0)

Intuitively, CL(C) is analogous to the set of subconcepts in simpler logics:
It comprises the concepts that play direct role in establishing the interpreta-
tion of C. The size of CL(C) is linearly bounded by the size of C [49]. By
the de�nition, if C ′ ∈ CL(C), then CL(C ′) ⊆ CL(C).

Extension of Fischer-Ladner closure towards the whole knowledge base is
created as follows.

De�nition 5.2.3 (Extended Fischer-Ladner closure for schema axioms of
rei�ed counterpart). Let S be a set of terminological axioms of the rei�ed
counterpart and {A1, ..., Am} is a set of all concept representatives used in the
rei�cation algorithm; extended Fischer-Ladner closure CL′(S) of the schema
S is de�ned as smallest set of concepts such that:

C ∈ CL′(S) if C ∈ CL(CS)
∃r.((¬A1 u ... u ¬Am) u C) ∈ CL′(S) if ∃r.C ∈ CL(CS)

∃r.Ai ∈ CL′(S) for each r and i ∈ {1, ...,m}
∃r.⊥ ∈ CL′(S) for each r

where

CS =
l

AvB∈S

(¬A tB)

Note that this is the same de�nition as in [46], however some construct
from CIQ DL were substituted by equivalent construct of SHIQ DL (e.g.
concepts like ∃(f ◦ id(C)).D were substituted by ∃f.(C uD)).

5.2.4 Transformation of the ABox

Rei�ed counterpart according to Calvanese at al. work is constructed as
follows.

Construction 5.2.1. Let K = 〈S,A〉 be a NDL knowledge base, UA is set
of all individuals occurring in A, and WA is set of all tuples occurring in A.
The rei�ed counterpart ℘(K) of K is constructed as follows:

σ′(w : C) := {Aw v σ(C)}
σ′(~w : R) := {T~w v σ(R)}

∪ {T~w ≡ ∃f1.Aw1 u ... u ∃fn.Awn u ∀fn+1.⊥}
∪ {Awi

v ∃f−i .T~wt ≤ 1f−i .T~w}
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Translation function σ′(.) for NDL ABox is then de�ned as follows:

σ′(A) :=
⋃
{σ′(A) | A ∈ A}

In order to gain expected behavior of representative concepts functions
f ′1(A) and f ′2(A) are constructed. The set of axioms f ′1(A) contains only one
assertion that ensures that all representative concepts are satis�able, i.e. con-
tains at least one individual. For this purpose, newly introduced role create
and individual sroot is used:

f ′1(A) := { sroot : ∃create.Aw1 u ... u ∃create.Awm | {w1, ..., wm} = UA ∪WA}

Let CL′(.) be extended �sher-ladner closure as described in De�nition 5.2.3,
and UC(.) set of axioms that construct pseudo-universal role U as described
in De�nition 5.2.1. If RM abbreviate set of atomic roles occurring in set of
axiomsM, and AM abbreviate set of all individual and tuple representatives
used in set of axiomsM than function f ′2(A) is constructed as follows:

S ′ := σ(S) ∪ f(S) ∪ σ′(A)

f ′2(A) := UC(RS′ ∪ {create})
∪ { A u C v ∀U.(¬A t C) | A ∈ AS′ , C ∈ CL′(S ′)}

The set of axioms f ′2(A) ensures that all representative concepts are sin-
gled out. Finally, the rei�ed counterpart ℘(K) is de�ned as follows:

℘(K) := 〈σ(S) ∪ f(S) ∪ σ′(A) ∪ f ′2(A), f ′1(A)〉

5.2.5 Correctness of algorithm

Lemma 1. (Soundness of encoding) Let K = 〈S,A〉 be a NDL knowledge
base and ℘(K) its rei�ed counterpart according to TBox rei�cation algorithm.
If K is satis�able, then ℘(K) is satis�able.

Proof. Let I = (∆I , ·I) be a model of K. From I, an interpretation I ′ :=
(∆I

′
, ·I′

) of ℘(K) can be build as follows:
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1. ∆I
′
= ∆I ∪ {sroot} ∪

⋃
n∈{2,...,nmax}{s~d | ~d ∈ >In};

2. >I′
n = {s(d1,...,dn) | (d1, ..., dn) ∈ T In }, for each n ∈ {2, ..., nmax};

3. fI
′

i = {(s(d1,...,dn), di) | (d1, ..., dn) ∈ >In}, for each n ∈ {2, ..., nmax} and
i ∈ {2, ..., n};

4. AI
′

P = {s(d1,...,dn) | (d1, ..., dn) ∈ PI}, for each atomic relation P;

5. >I′
1 = ∆I ∪ {sroot};

6. AI
′
= AI , for each atomic concept A;

7. AI
′

w = {d}, for the element domain d = wI ;

8. T I
′

~w = {s~d}, for the tuple ~d = ~wI of element domains;

9. createI
′
= {(sroot, s) | s ∈ CR, for some representative concept CR}

It is easy to verify that constructed interpretation I ′ is model of ℘(K).

De�nition 5.2.4. A model I = (∆I , ·I) of ℘(K) is admissible if it is tuple-
admissible and each representative concept is satis�ed by exactly one indi-
vidual. If B1, ..., BK are denoted to all representative concepts of ℘(K), than
admissible model I is also a pseudo-tree admissible model if it has the fol-
lowing form:

• ∃sB1 , ..., sBK
∈ ∆I∀i ∈ {1, ..., K} : BIi = {sBi

}

• ∃sroot : createI = {(sroot, sBi
) | i ∈ {1, ..., K}}

• each maximal component of ∆I \ ({sroot} ∪ {sBi
| i ∈ {1, ..., K}}) is a

tree, when viewed as an undirected graph

Lemma 2. Let ℘(K) be rei�ed counterpart of some NDL knowledge base K
according to TBox rei�cation algorithm. If ℘(K) is satis�able, then it has
pseudo-tree admissible model.

Proof. If ℘(K) is satis�able, than by tree-model property2 of SHIQ , ℘(K)
admits tree-model I = (∆I , ·I) rooted by the only asserted individual of
℘(K). From the tree-structure of the model, it is obvious that there is no
pair of individuals that represent the same rei�ed tuple and therefore I is
tuple-admissible.

2if a formula (an axiom) has a model, than it is satis�able at the root of a model based
on a tree. Note that it is even stronger condition than connected-model property.
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Pseudo-tree admissible model I ′′ = (∆I
′′
, ·I′′

) with ∆I
′′ ⊆ ∆I is obtained

from I in these two steps. First, a model I ′ = (∆I
′′
, ·I′

) is constructed by
modifying tree-structure of I. Second, I ′′ is de�ned by interpreting each
representative concept of I ′ as a singleton.

Let sroot ∈ ∆I be the root of I. We choose one individual sBi
from

each representative concept Bi such that (sroot, sBi
) ∈ createI . Model I ′ is

de�ned as follows:

1. createI
′
= {(sroot, sBi

) ∈ createI | i ∈ {1, ..., K}}

2. fI
′
= (fI\( {(sBi

, s) ∈ fI | s ∈ BIj , i, j ∈ {1, ..., K}}∪
{(s, sBj

) ∈ fI | s ∈ BIi , i, j ∈ {1, ..., K}}))
∪{(sBi

, sBj
) | (sBi

, s) ∈ fI , s ∈ BIj , i, j ∈ {1, ..., K}})
for each atomic role f except create and U

3. UI
′
= UI ∩ (∆I

′ ×∆I
′
)

4. AI
′

= AI ∩ ∆I
′
for each atomic concept A including representative

concepts

5. ∆I
′
= {sroot} ∪ {s ∈ ∆I

′ | (sroot, s) ∈ createI
′ ◦ (

⋃
f (fI

′ ∪ (f−)I
′
))∗}

Construction above chooses one individual sBi
from each representative

concept Bi among all that are connected to sroot through role create (1). Let
Bi andBj be some representative concepts related through role f such thatBi

represents tuple and Bj its component. From axiom (5.4), sBi
can have only

one f-successor sj, which is instance of Bj. Symmetrically, from construction
of σ′ for ABox relation assertions, sBj

can have only one f-predecessor si,
which is instance of Bi. In (2), sBi

and sBj
are disconnected from si and sj

respectively and connected via f . Subtrees rooted at si and sj are then cut
away by (5), which de�nes interpretation domain as maximally connected
component of the Kripke structure that includes sroot. Notice, that number
of incoming and outgoing f -edges of sBi

and sBj
did not change.

Let S ′ be set of axiom as denoted by construction in 5.2.1, and CS′ =d
CvD∈S′ ¬C t D. By (3), U is restricted to represent exactly transitive-

closure of all roles and its inverses and therefore I ′ can be turned in a
straightforward way into a model of the CIQ KB. In a CIQ KB by the
construction in Lemma 5 of [46], it is possible to show that for each concept
C ∈ CL(CS′)) and for each individual s ∈ ∆I

′
, we have s ∈ CI′

if and only
if s ∈ CI′

. Hence, since CS′ ∈ CL(CS′), we get that sroot ∈ I ′.
Model I ′′ is constructed form I ′ by interpreting each representative con-

cept as singleton, thus Bi = {sBi
} for each i ∈ {1, ..., K}.
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Theorem 1. Let K = 〈S,A〉 be a NDL knowledge base and ℘(K) its rei�ed
counterpart according to TBox rei�cation algorithm. Then K is satis�able, if
and only if ℘(K) is satis�able.

Proof. The only if direction is proved by Lemma 1.
For the converse direction from Lemma 2, let I ′ = (∆I

′
, ·I′

) be pseudo-
tree admissible model. An interpretation I := (∆I , ·I) of K can be build from
I ′ as follows:

1. ∆I = >I′
1 ;

2. PI = {(s1, ..., sn) | ∃s′ ∈ AI′
P .((s

′, si) ∈ fI
′

i , for i ∈ {1, ..., n})}, for each
relation representative AP included in >n;

3. AI = AI
′
, for each atomic concept A included in >1;

4. wI = wI
′
, for each individual w from >1

It is easy to verify that constructed interpretation I is model of K.

5.3 Rei�cation using ABox

This section de�nes two di�erent algorithms for rei�cation of NDL ABox
based on Horrocks at. al work. In algorithms, both individuals and tuples
are encoded by individuals. NDL concept assertions are converted to concept
assertions of the rei�ed counterpart. NDL relation assertions of arity n are
rei�ed into n role assertions and one concept assertion.

Both algorithms di�ers in the way of solving the tuple-admissibility prob-
lem. The �rst algorithm is identical to one de�ned by Horrocks in [47], but
suited for NDL KB. To ensure tuple-admissibility of relations, it de�nes one
concept assertion for each tuple. Expressivity of rei�ed counterpart is SHIQ
.

The second algorithm addresses tuple-admissibility problem by creating
a new role and adding one general concept inclusion axiom for each tuple.
Rei�ed counterpart of the algorithm has the expressivity SHIF .

Construction of rei�ed counterpart for the �rst algorithm is done as fol-
lows.

Construction 5.3.1. Let K = 〈S,A〉 be a NDL knowledge base. The rei�ed
counterpart φ(K) of K is constructed as follows:
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σ′′(w : C) ={w : σ(C)}
σ′′(~w : R) ={t~w : σ(R)} ∪ {〈t~w, wi〉 : fi | 1 ≤ i ≤ n}

Translation function σ′′(.) for NDL ABox is then de�ned as follows:

σ′′(A) :=
⋃
{σ′′(A) | A ∈ A}

If UA is set of all individuals occurring in A and WA is set of all tuples
occurring in A, the set of axioms f ′′(A) that ensures tuple-admissibility of
asserted tuples is de�ned as follows:

f ′′(A) ={w : Qw | w ∈ UA}∪
{w1 :≤ f−1 (>n u ∃f2.Qw1 u ... u ∃fn.Qwn) | ~w = 〈w1, ..., wn〉 ∈ WA}

The rei�ed counterpart φ(K) is de�ned as follows:

φ(K) := 〈σ(S) ∪ f(S), σ′′(A) ∪ f ′′(A)〉

5.3.1 Correctness of rei�cation algorithms

Lemma 3. (Soundness of encoding) Let K = 〈S,A〉 be a NDL knowledge
base and φ(K) its rei�ed counterpart according to the ABox rei�cation algo-
rithm. If K is satis�able, then φ(K) is satis�able.

Proof. Let I = (∆I , ·I) be a model of K. From I, an interpretation I ′ :=
(∆I

′
, ·I′

) of ℘(K) can be build as follows:

1. ∆I
′
= ∆I ∪

⋃
n∈{2,...,nmax}{t~d | ~d ∈ >

I
n};

2. >I′
n = {t(d1,...,dn) | (d1, ..., dn) ∈ T In }, for each n ∈ {2, ..., nmax};

3. fI
′

i = {(t(d1,...,dn), di) | (d1, ..., dn) ∈ >In}, for each n ∈ {2, ..., nmax} and
i ∈ {2, ..., n};

4. AI
′

P = {t(d1,...,dn) | (d1, ..., dn) ∈ PI}, for each atomic relation P;
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5. >I′
1 = ∆I ;

6. AI
′
= AI , for each atomic concept A;

7. QI
′

w = {wI }, for each representative concept Qw;

8. wI
′
= d, for the element domain d = wI ;

9. tI
′

~w = {t~d}, for the tuple ~d = ~wI of element domains;

It is easy to verify that the constructed interpretation I ′ is the model of
φ(K).

De�nition 5.3.1. (tuple-admissible model) Let K = 〈S,A〉 be SHIQ knowl-
edge base that is the rei�ed counterpart of some NDL knowledge base. Model
I of K is tuple-admissible if the following condition holds:

(
∧

1≤i≤n

∃d.(〈t, d〉 ∈ fIi ∧ 〈t′, d〉 ∈ fIi ))⇒ t = t′ (5.10)

If there are tuple representatives that violates condition 5.10, we will refer
to them as con�icting tuple representatives.

Lemma 4. (Tuple-admissibility of asserted individuals) Let φ(K) be the rei-
�ed counterpart of some NDL knowledge base K according to the ABox rei�-
cation algorithm. If φ(K) satis�able, than there is no con�ict between any
two tuple representatives of ABox.

Proof. Let I be model of φ(K) and tI~w, t
I
~v two individuals of ABox. If tI~v = tI~w

then from de�nition, there is no con�ict. Assume by contradiction that
tI~v 6= tI~w and for each 1 ≤ i ≤ n, fIi (tI~v ) = fIi (tI~w). Since I |= σ′′(A), then for
each 1 ≤ i ≤ n, vIi = wIi . Hence v

I
i ∈ QIwi

which implies

{tI~v , tI~w} ⊆ (>n u ∃f2.Qw2 u ... u ∃fn.Qwn)I .

Since wI1 appears as the �rst component of two distinct rei�ed tuples that
satisfy >n u ∃f2.Qw2 u ... u ∃fn.Qwn , it yields w

I
1 /∈ (≤ f−1 .(>n u ∃f2.Qw2 u

... u ∃fn.Qwn))I . This is contradiction to the assumption that I |= f ′′(A),
because axiom w1 :≤ f−1 (>n u ∃f2.Qw1 u ... u ∃fn.Qwn) ∈ f ′′(A).

De�nition 5.3.2. (disjoint union model property of SHIQ DL) Let C be
an SHIQ concept and I1 = (∆I1 , ·I1), I2 = (∆I2 , ·I2) be two models of C.
Then the interpretation I1]I2 = (∆I1]∆I2 , ·I1]·I2) which is disjoint union
of I1 and I2 is also a model of C.
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Lemma 5. (Existence of tuple-admissible model) Let φ(K) be rei�ed counter-
part of some NDL knowledge base K according to ABox rei�cation algorithm.
If φ(K) is satis�able, then it has tuple-admissible model.

Proof. Let I be model φ(K) = 〈S,A〉. New tuple-admissible model Î of φ(K)
will be constructed from I by �xing all con�icts of tuple representatives.

For 2 ≤ n ≤ nmax and n-tuple ~d = 〈d1, ..., dn〉 ∈ (>I1 )n, the set of all
rei�cations of tuple ~d can be de�ned as

T~d = {t ∈ ∆I | 〈t, d1〉 ∈ fI1 ∧ ... ∧ 〈t, dn〉 ∈ fIn }.

Each set T~d, that contains more than one element, represents set of con�icting
individuals for the tuple. For any such set, an arbitrary element t~d ∈ T~d is
chosen. Let Conf denotes the set of all con�icting individuals except the
chosen ones.

Before transforming I into an interpretation Î that contains no con�icts,
consider simple case, where there is only single con�icting element in Conf
and no ABox individuals. This con�ict can be resolved as follows.

Let I ′ be an interpretation consisting of two disjoint copies of I. I ′
contains the con�icting element t and a copy t′ of t. Î can be de�ned from
I ′ by the operation on I ′, which change the interpretation of f1 under I ′ as
follows:

fI
′

1 = (fI
′

1 \{〈t, fI
′

1 (t)〉, 〈t′, fI′

1 (t′)〉}) ∪ {〈t, fI′

1 (t′)〉, 〈t′, fI′

1 (t)〉

It will be referred to this operation as exchanging fI
′

1 (t) with fI
′

1 (t′). Note
that this operation preserves the interpretation of all other atomic concepts
and roles and that resulting interpretation contains no more con�icting ele-
ments.

The construction in general case is little bit more complicated, since one
needs to consider ABox axioms and Conf may be of arbitrary cardinality.
However using the Lemma 5 , it is possible to avoid interference of ABox
axioms. Since there are no two ABox individuals that are con�icting with
each other, in each set T~d there is at most one element that appears as the
image of an ABox individual of the interpretation I. Hence, Conf can be
constructed without any elements that appear as images of ABox individuals
of I.

Let I ′ denote the disjoint union of \(2Conf ) copies of I and dZ the copy
of d ∈ ∆I in the Z-th copy of I, where the set Z ⊆ Conf . Î is de�ned
from I ′ as the result of simultaneously exchanging fI

′
1 (dZ) with fI

′
1 (dZ\{d}),

for each d ∈ Conf and each Z ⊆ Conf with d ∈ Z.
From the construction of Î it is easy to show that
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1. Î does not contain any con�icts.

2. If C is a SHIQ-concept, d ∈ CI and Z ⊆ Conf , then dZ ∈ CI .

For detailed proofs of above statements see [47]. From (2) it follows that
Î |= S and it remains to �x interpretation of the ABox. This can be done
by interpreting all individuals in a single copy, e.g., by setting wÎ = wI∅ , for
each ABox individual w.

For every assertion w : C ∈ A from (2) it follows that wI ∈ CI implies
wÎ ∈ C Î . Since there are no ABox individuals in Conf , the interpretation
for fi is not changed for wÎ∅ . Hence, 〈wÎ1 , wÎ2 〉 ∈ f Îi holds for every assertion
〈w1, w2〉 ∈ fi ∈ A. Thus Î |= S and �nally Î |= φ(K).

Lemma 6. (Completeness of encoding) Let K = 〈S,A〉 be a NDL knowl-
edge base and φ(K) its rei�ed counterpart according to the ABox rei�cation
algorithm. If φ(K) is satis�able, then K is satis�able.

Proof. From Lemma 5, let I ′ = (∆I
′
, ·I′

) be tuple-admissible model. An
interpretation I := (∆I , ·I) of K can be build from I ′ as follows:

1. ∆I = >I′
1 ;

2. PI = {(d1, ..., dn) | ∃t ∈ AI′
P .((t, di) ∈ fI

′
i , for i ∈ {1, ..., n})}, for each

relation representative AP included in >n;

3. AI = AI
′
, for each atomic concept A included in >1;

4. wI = wI
′
, for each individual w from >1

It is easy to verify that constructed interpretation I is model of K.

Theorem 2. Let K = 〈S,A〉 be a NDL knowledge base and φ(K) its rei�ed
counterpart according to ABox rei�cation algorithm. Then K is satis�able,
if and only if φ(K) is satis�able.

Proof. The proof is immediate consequence of Lemma 3 and Lemma 6.
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5.3.2 Reduction to SHIF DL

The following modi�cation of the rei�cation algorithm solves tuple-admissibility
problem by creating new role and adding one general concept inclusion ax-
iom for each tuple. The only cardinality restrictions used in new axioms
are functional unquali�ed cardinality restrictions. Therefore, the rei�cation
algorithm outputs binary KB of expressivity SHIF .

Construction 5.3.2. Let K = 〈S,A〉 be a NDL knowledge base, WA is set
of all tuples occurring in A. The functional rei�ed counterpart ϕ(K) of K is
constructed as follows:

f ′′2ϕ(A) ={g~w v f1 | ~w ∈ WA}∪ (5.11)

{> v≤ 1g−~w | ~w ∈ WA}∪ (5.12)

{>n u ∃f2.Qw2 u ... u fn.Qwn v ∃g~w.Qw1 | ~w = 〈w1, ..., wn〉 ∈ WA}
(5.13)

The set of axioms f ′′2ϕ(A) ensures tuple-admissibility of asserted tuples,
g~w is newly introduced role for each tuple ~w. Finally, the functional rei�ed
counterpart ϕ(K) is de�ned as follows:

ϕ(K) := 〈σ(S) ∪ f(S) ∪ σ′′(A) ∪ f ′′2ϕ(A), f ′′1 (A)〉

Lemma 7. (Tuple-admissibility of asserted individuals) Let ϕ(K) be rei�ed
counterpart of some NDL knowledge base K according to ABox rei�cation
algorithm. If ϕ(K) satis�able, then there is no con�ict between any two tuple
representatives of the ABox.

Proof. Let I be model of ϕ(K) and tI~w, t
I
~v two individuals of ABox. Assume

by contradiction that tI~v 6= tI~w and for each 1 ≤ i ≤ n, fIi (tI~v ) = fIi (tI~w). Since
I |= σ′′ϕ(A), then for each 1 ≤ i ≤ n, vIi = wIi . Hence v

I
i ∈ QIwi

which implies

{tI~v , tI~w} ⊆ (>n u ∃f2.Qw2 u ... u ∃fn.Qwn)I .

and thus {tI~v , tI~w} ⊆ ∃g~w.Qw1 (5.13). Let a1 and a2 be elements of Qw1 that
are connected through g~w to tI~v and tI~w respectively. Since f is functional and
gI ⊆ fI , it follows (5.11) that a1 = a2 = vI1 . Hence, g

−
~w connects two distinct

elements to vI1 , which is contradiction to the assumption that I |= f ′′ϕ(A),
because of the axiom (5.12).
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Theorem 3. Let K = 〈S,A〉 be a NDL knowledge base and ϕ(K) its rei�ed
counterpart according to ABox rei�cation algorithm. Then K is satis�able,
if and only if ϕ(K) is satis�able.

Proof. For the only-if direction it can be used construction from Lemma 3.
In addition to the construction, we must de�ne interpretation of newly in-
troduced roles g~w such that gI

′

~w = {(t(d1,...,dn), d1) | (d1, ..., dn) ∈ T In } for each
tuple (d1, ..., dn) = wI of element domains. Then, it is easy to show that this
interpretation is model of ϕ(K).

For the converse direction, we must prove existence of tuple-admissible
model of ϕ(K) and then use construction from Lemma 6 to create model of
K. Existence of tuple-admissible model of ϕ(K) is proved by Lemma 5 if we
use Lemma 7 to address tuple-admissibility of asserted individuals.

5.4 Complications and contribution

As explained at the beginning of this chapter choices for expressivity of rei�ed
counterpart were limited by supported expressivity of state-of-art reasoners.
This section discusses di�erent modi�cations of rei�cation algorithms that
were not su�cient for our purpose and summarizes contribution of the chap-
ter.

5.4.1 Nominals

In the rei�cation algorithm using TBox (Section 5.2), representative concepts
Aw and T~w were used to describe properties of NDL individuals and tuples
respectively. Complex framework was created to single out representative
concepts in order to get tuple-admissible model. Intuitively, it would be
natural to introduce new individuals t~w for each tuple and instead of the
complex framework use axioms:

Aw ≡ {w}, for each individual w occurring in rei�ed counterpart

T~w ≡ {t~w}, for each tuple t~w occurring in rei�ed counterpart

From the above axioms it is obvious that all required properties of represen-
tative concepts are satis�ed, because each of the representative concepts is
interpreted by exactly one individual.

However, proof of the rei�cation algorithm is based on tree-model prop-
erty of underlying binary DL. In [29] it was shown that DL with nominals,
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number restrictions, and inverse roles looses tree-model property3. Note that
in rei�cation of schema we used both number restrictions (5.4) and inverse
roles (5.1). Thus, proof of the rei�cation algorithm using TBox cannot be
used with presence of nominals in rei�ed counterpart.

5.4.2 Reduction of cardinality restrictions

In the rei�cation algorithm using ABox we were able to reduce the expressiv-
ity of rei�ed counterpart from SHIQ to SHIF . The rei�cation algorithm
introduced new role g~w and added one general concept inclusion axiom for
each tuple ~w. Each of new roles was de�ned as restricted subrole of role f1

by axiom g~w v f1.
This technique, however, cannot be used for the rei�cation using TBox.

The problem is that correctness of the extension of Fischer-Ladner closure
(De�nition 5.2.3) is based on CIQ DL. However, CIQ DL does not allow
role inclusion axioms (such as g~w v f1). Note that there are some role in-
clusion axioms but only in the de�nition of universal accessibility role (De�-
nition 5.2.1). Therefore these axioms are not included in set of axioms from
which extended Fischer-Ladner closure is evaluated.

5.4.3 Summary

The rei�cation algorithm according to Calvanese at al. was �rstly published
in [37] as a part of the framework for solving QCP. The output binary log-
ics of the rei�cation algorithm was Converse Propositional Dynamic Log-
ics (CPDLg). Later it was found out direct correspondence between logics
CPDLg and CIQ DL. Calvanese at. al published short paper about QCP in
context of CIQ DL in [38].

The Section 5.2 describes this rei�cation algorithm in context of DL in
greater detail. In particular, the algorithm outputs knowledge base in SHIQ
DL. Due to di�erent expressivity of rei�ed counterparts we were not able
to de�ne so-called universal accessibility role as de�ned in Calvanese work.
However we successfully used pseudo-universal accessibility role (see De�-
nition 5.2.1) that is superset of universal accessibility role. Correctness of
pseudo-universal accessibility role is explained in Lemma 2.

In the Section 5.3 we introduced two di�erent rei�cation algorithms. The
�rst algorithm is only syntactical modi�cation of the one de�ned by Hor-
rocks at al. [47]. The second de�nes the reduction of the algorithm to less

3tree-model property holds only in DLs with nominals that excludes one of number

restrictions or inverse roles [31, 32, 33]
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expressive description logics i.e. SHIF DL. As SHIF DL is also a subset of
underlying logics of OWL-DL, this rei�cation algorithm has better support
in various ontology tools than original one. De�nition of the new algorithm
can be found in Construction 5.3.2 and formal proof is done in Theorem 3.



6 Acquisition of benchmark data

For comparison of rei�cation algorithms discussed in Chapter 5 benchmark
NDL knowledge bases are needed. Manual construction of such ontologies
would be very irritating and time-consuming task. Another way to get around
with it is to construct benchmark ontologies from existing ones. Next section
of this chapter presents automatic transformation algorithm for OWL-DL
ontologies. Last section construct extension to this algorithm towards n-ary
relations by semi-automatic algorithm.

6.1 Converting OWL-DL to NDL

As explained in previous chapters, OWL-DL uses properties to express re-
lationships between classes. Although properties are only binary relations
over classes, W3C proposed solution for de�ning n-ary relations in [6]. In the
document, W3C recognized 3 di�erent types of situations (cases), where n-
ary relation patterns are applicable. For each case, it provides a way to solve
the problem using rei�cation of n-ary relation, thus representing relations by
classes.

Since NDL can express n-ary relations directly via relation constructors,
conversion from OWL-DL ontologies to NDL should also be able to join
multiple OWL-DL properties to form one n-ary NDL relation. Some basic
requirements of OWL-DL conversion are demonstrated in Figure 6.1. Left
side of the diagram shows example of n-ary relation pattern of the W3C doc-
ument for de�ning n-ary relations. In the example, it is expressed that "Steve
has temperature, which is elevated, but falling". Steve is instance (individ-
ual) of class Person, elevated and falling are instances of classes Tempera-
tureValue and TemperatureTrend. The knowledge could have been modelled
by two properties, hasTemperatureLevel and hasTemperatureTrend,
both relating to Person, however W3C recommends to relate Steve to the
complex object instead. The complex object, temperatureObservation1, is
instance of class TemperatureObservation and represents di�erent facts about
Steve's temperature. Reason for this modelling choice lies in the fact that

43



6.1 Converting OWL-DL to NDL 44

in intended interpretation of properties, temperature level and temperature
trend are inextricably intertwined. The class TemperatureObservation serves
as reifying class of ternary relation. Right side of the �gure shows converted
knowledge about Steve in NDL. Names of OWL-DL classes Person, Tem-
peratureValue, TemperatureTrend and individuals Steve, elevated, falling
are converted to same names in NDL. OWL-DL properties hasTempera-

ture, temperatureValue, temperatureTrend are chained together through
individuals of concept TemperatureObservation to form new NDL relation
Temperature of arity 3. First argument of the relation corresponds to
domain of property hasTemperature, second and third arguments cor-
responds to ranges of properties temperatureValue and temperature-

Trend.

Figure 6.1: Example of transformation from OWL-DL reifying class to NDL
relation

Because of restricted power of NDL some semantics behind OWL-DL ax-
ioms can be captured only partially, some cannot be captured at all. In both
OWL-DL and NDL it is not assumed that individuals with di�erent names
are mapped to di�erent elements in domain1. However, contrary to NDL
, OWL-DL is able to express equalities and inequalities among individuals.
In the transformation, we will de�ne new representative concept Bo for each
individual o and state o : Bo. Equalities among individuals will be modelled
in NDL by equivalence of its representative concepts. On the other hand, for
inequalities, disjointness of representatives will be used. Moreover, OWL-DL
allows to refer to individuals in class constructors (enumerated class, prop-
erty value restriction). Classes that refer to individuals will be converted to
concepts that refer to the representatives of individuals.

Another source of problems for the conversion comes from the inability
of NDL to de�ne cardinalities. In the transformation, we will de�ne new
representative concept B6nr for each minimal cardinality restriction 6 nr
occurring in OWL-DL ontology. For each representative concept some addi-
tional axioms will be added to NDL knowledge base to preserve properties

1This is called unique name assumption (UNA)
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of minimal cardinality restrictions as much as possible. Moreover, using
representatives of minimal cardinality restrictions, it will possible to de�ne
cardinalities of type > nr and = nr.

In OWL-DL, property restriction class constructor allows to de�ne a new
class from domain of an object property restricted over its range. Also de�-
nition of a new class from range of an object property is possible by applying
property restriction on inverse of the object property. Although NDL can-
not de�ne inverse of binary relations, it can return and restrict any argument
of relation by projection constructor and restriction constructor respectively.
For this reason, each construct of OWL-DL that uses inverse property, can
be transformed to equivalent construct in NDL . Example of such transfor-
mations are in Figure 6.2. In the �gure an OWL-DL property isChildOf
is de�ned as an inverse property of hasChild. Parent is de�ned as class
that has at least one value in the hasChild property. RichChild is de�ned
as class that has at least one value in property of isChildOf with the type
RichPerson. NDL translate both properties hasChild and isChildOf to
only one relation ParentChildRelation.

hasChild − property

isChildOf ≡ hasChild−

Parent v ∃hasChild.>
RichChild v ∃isChildOf .RichPerson

Parentship − relation

Parent v ∃[$1]Parentship

RichChild v ∃[$2](ParentShip u (1/2) : RichPerson)

Figure 6.2: Equivalence of OWL-DL and NDL constructs

As showed in the example, in the transformation from OWL-DL to NDL
, property and inverse of property has to be de�ned as one NDL relation.
To restrict transformation parameter to only correct de�nitions in this sense,
a well formed transformation parameter will be introduced.

Whole transformation of OWL-DL ontology to NDL knowledge base
will be recursively de�ned by a function τ . Transformation function τ de-
pends on a triple 〈ν, δ, ρ〉 called transformation parameter. In the triple,
ν is function for conversion of OWL-DL atomic entities to NDL . The
function converts each atomic class to NDL concept, atomic property to
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NDL relation and instance to NDL individual. The correspondence of do-
main and range of OWL-DL properties in NDL relations will be expressed
by functions δ and ρ. Both functions take as an argument an OWL-DL
property and return a positive integer. If r (possibly inverse property) is
an OWL-DL property that is mapped to an n-ary relation R, then δ re-
turns index of argument in R that represents the domain of r and ρ returns
index of argument in R that represents the range of r. In the example
from �gure Figure 6.1, δ(hasTemperature) = 1, ρ(temperatureValue) =
2, ρ(temperatureTrend) = 3.

As explained in Chapter 2, OWL-DL without datatypes support can be
transformed to SHOIN DL. Exact transformation of OWL-DL axioms and
facts to SHOIN DL axioms is given in Table 2.3. Thanks to this corre-
spondence, the transformation from OWL-DL ontology to NDL knowledge
base can be described in two steps. First, all OWL-DL axioms and facts
are converted to appropriate SHOIN DL axioms. Second, SHOIN DL
knowledge base is converted to NDL knowledge base.

In the following text, instead of describing transformation from an OWL-
DL ontology to an NDL knowledge base, transformation from a SHOIN
DL knowledge base to NDL knowledge base will be used. Every concept,
role and individual of SHOIN DL knowledge base directly corresponds to
a class, a property and an instance of the OWL-DL ontology respectively.

Transformation from SHOIN DL to NDL will be parametrized by so
called transformation parameter (TP). TP will be used to de�ne a particular
mapping between concepts of both KBs. To ensure that the transformation
produces correct NDL KB, the notation of a well-formed TP needs to be
de�ned.

For simpli�cation of the rules in the transformation, extended transfor-
mation parameter 〈ν, δ, ρ〉 will be used, where each of the functions ν, δ, ρ
are extensions of the above de�ned ones by inverses of atomic roles.

De�nition 6.1.1. [transformation parameter] Given K a SHOIN DL knowl-
edge base, a transformation parameter of K is a triple M = 〈ν, δ, ρ〉, such
that ν is a function that map each atomic concept of K to atomic NDL con-
cept, each atomic role of K to atomic NDL relation and each individual of K
to NDL individual, δ (domain-index function) and ρ (range-index function)
are functions that maps each atomic role of K to a positive integer.

Naturally extended transformation parameter M′ = 〈ν ′, δ′, ρ′〉 of K is
given by

ν ′(p) = ν(p)

ν ′(p−) = ν(p)

δ′(p) = δ(p)

δ′(p−) = ρ(p)

ρ′(p) = ρ(p)

ρ′(p−) = δ(p)
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Additionally we say that a transformation parameter M is well formed
if 1 ≤ δ′(r) ≤ m for each expression (≤ r), (≥ r), or (= r) occurring in K
and 1 ≤ δ′(r), ρ′(r) ≤ m for each expression (∃r.C) or (∀r.C) occurring in
K, where r is an arbitrary role with arity m, C is arbitrary concept and n is
arbitrary non-negative integer.

Note that TP is well-formed if its natural extension satisfy certain con-
ditions on domain-index and range-index function. In the following text we
de�ne the transformation function formally.

De�nition 6.1.2 (transformation function of concept, role, individual, schema,
ABox ). Given K = 〈S,A〉 a SHOIN DL knowledge base with naturally ex-
tended well-formed transformation parameter M = 〈ν, δ, ρ〉, A (atomic), C
concepts and p (atomic), r roles with arity m, a transformation function τM
of concepts, properties and individuals in K is given by

τM(A) = ν(A)

τM(p) = ν(p)

τM(p−) = ν(p)

τM(o) = ν(o)

τM(¬C) = ¬τM(C)

τM(6 nr) = B6nr

τM(> nr) = ¬B6(n−1)r

τM({o1, ..., on}) = Bo1 t ... tBon

τM(∃r.C) = ∃[δr](τM(r) u (ρr/m : τM(C)))

τM(∀r.C) = ∀[δr](τM(r) u (ρr/m : τM(C)))

τM(C1 u ... u Cn) = τM(C1) u ... u τM(Cn)

τM(C1 t ... u Cn) = τM(C1) t ... t τM(Cn)

B6ir, Boi
are newly introduced NDL concepts.

Note that since NDL can express restrictions on any argument of a rela-
tion, τM(p) and τM(p−) may both convert to the same NDL relation ν(p)
while specifying range of a role is left on range-index function δ. In the trans-
formation, domain of role r corresponds to δr-th argument of NDL relation
τM(r), range of role r corresponds to ρr-th argument of NDL relation τM(r).

For use of nominals and for expressing of equalities and inequalities of
individuals in ABox axioms, new concepts Boi

are introduced. Note that
for expressing inequalities of individuals o1 and o2, axiom Bo1 v ¬Bo2 is
su�cient, because neither Bo1 nor Bo2 can become unsatis�able (in transfor-
mation of whole SHOIN DL knowledge base, axioms of type o : Bo will be
added for each individual representative Bo).

Before de�nition of the transformation function over the whole SHOIN
DL knowledge base, some helper functions need to be de�ned. Function one
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ensures desired properties of individual representative concepts in the trans-
formation. On the other hand, function card is used to express additional
properties of cardinality representative concepts.

De�nition 6.1.3 (functions one and card). Let K = 〈S,A〉 be a SHOIN
DL knowledge base with transformation parameterM. The functions one(K,M),
card(K) are given by

one(K,M) ={o : Bo | Bo ∈ X}
card(K,M) ={B60r ≡ ∀[δr](τM(r) u (ρr/m : ⊥)) | r with arity m occurs in K}

∪ {B6ir v B6jr | B6ir, B6jr ∈ Y ∧ i < j ∧ ¬∃j′ :
(i < j′ < j ∧B6j′r ∈ Y)}

where

X ={Bo | Bo is individual representative occurring in τM(S) ∪ τM(A)}
Y ={B6ir | B6ir is cardinality representative occurring in τM(S) ∪ τM(A)}

∪ {B60r | r occurs in K}

Intuitively, from SHOIN DL cardinality restrictions can be deduced
that (≤ 0r) v (≤ 1r) v (≤ 2r) v ..., card(K) de�nes same hierarchy among
cardinality representatives B≤ir of each relation r. In addition it de�nes
lowest elements in these hierarchies (B≤0r), according to the fact that in
SHOIN DL (≤ 0r) ≡ ∀r.⊥.

For automatic transformation from SHOIN DL to NDL , transforma-
tion parameter (TP) of SHOIN DL has to be created automatically. On
the other hand, for semi-automatic transformation, it might be useful for an
user to be able to de�ne some parts of TP and let automatic procedure to
complete the rest. Such an algorithm for de�ning well-formed TP is showed
in Algorithm 1. Input of the algorithm is SHOIN DL knowledge base K
with transformation parameter 〈ν, δ, ρ〉 and some linear order ≤ on all atomic
roles of K. The transformation parameter can be de�ned partially, however
for each role p of SHOIN DL knowledge base, either all or none of ν, δ,
ρ has to be speci�ed. Output of the algorithm is TP that is de�ned on all
atomic concepts, roles and individuals. In the �gure, min(W) is function
that returns minimal element in W according to ≤, pop(Qi) returns and
remove one element from Qi.
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6.1.1 Automatic transformation

In automatic transformation, at �rst Algorithm 1 will be ran on SHOIN
DL knowledge base K with empty transformation parameter and arbitrary
ordering ≤. Product of this algorithm is a well-formed TP that will be natu-
rally extended according to De�nition 6.1.1 and used as an input parameter
for transformation function τ ′M de�ned below.

De�nition 6.1.4 (binary transformation function of schema, ABox, knowl-
edge base). Given K = 〈S,A〉 a SHOIN DL knowledge base with naturally
extended well-formed transformation parameter M = 〈ν, δ, ρ〉, C, C1, C2

concepts and r, r1, r2 roles of arity m, a binary transformation function of
S and A is given by

τ ′M(S) ={τM(C1) v τM(C2) | (C1 v C2) ∈ S}
∪ {τM(r1) v τM(r2) | (r1 v r2) ∈ S ∧ 〈δr1 , ρr1〉 = 〈δr2 , ρr2〉}

τ ′M(A) ={ν(o) : C | (o : C) ∈ A}
∪ {〈ν(o1), ν(o2)〉 : τM(r) | (〈o1, o2〉 : r) ∈ A}
∪ {Bo1 ≡ Bo2 | (o1 = o2) ∈ A}
∪ {Bo1 v ¬Bo2 | (o1 6= o2) ∈ A}

Binary transformation function of K = 〈S,A〉 is given by

τ ′M(K) =〈τ ′M(S) ∪ card(K,M), τ ′M(A) ∪ one(K,M)〉

The transformation straightforwardly convert each SHOIN DL axiom
to NDL axiom. Additional axioms one(K,M) and card(K,M) ensure that
representatives of nominals and cardinality restrictions partially satisfy their
intention.

6.1.2 Semi-automatic transformation

Semi-automatic transformation allows to transform binary SHOIN DL knowl-
edge base to n-ary NDL KB. The input of the transformation is de�nition
of mappings from binary roles to n-ary roles. For this purpose, the notion of
relation mapping is used.

The transformation can be constructed similarly as in the automatic
transformation. Relation mappings de�ne a transformation parameter par-
tially. First, we construct arbitrary ordering ≤ on roles of the SHOIN DL
KB where each role that is already de�ned in the transformation parameter
is before any role that is not de�ned in TP. Second, such an ordering and
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transformation parameter is used as input for Algorithm 1. Third, product
of this algorithm is a well-formed TP that will be naturally extended accord-
ing to De�nition 6.1.1 and used as an input parameter for transformation
function τ ′′M de�ned below.

De�nition 6.1.5 (n-ary transformation function of schema, ABox, knowl-
edge base). Given K = 〈S,A〉 a SHOIN DL knowledge base with naturally
extended well-formed transformation parameter M = 〈ν, δ, ρ〉, C, C1, C2

concepts and r, r1, r2 roles of arities εr, εr1, and εr2 respectively. An n-ary
transformation function of S and A is given by

τ ′′M(S) ={τM(C1) v τM(C2) | (C1 v C2) ∈ S}
∪ {τM(r1) v τM(r2) | (r1 v r2) ∈ S ∧ 〈δr1 , ρr1 , εr1〉 = 〈δr2 , ρr2 , εr2〉}

τ ′′M(A) ={ν(o) : C | (o : C) ∈ A}
∪ {〈ν(o1), ..., ν(on)〉 : τM(r) | 〈o1, ..., on〉 : T (r)}
∪ {Bo1 ≡ Bo2 | (o1 = o2) ∈ A}
∪ {Bo1 v ¬Bo2 | (o1 6= o2) ∈ A}

where T (r) is set of tuples that relate to τM(r).
N-ary transformation function of K = 〈S,A〉 is given by

τ ′′M(K) =〈τ ′′M(S) ∪ card(K,M), τ ′′M(A) ∪ one(K,M)〉

Note that the only relation inclusions for which 〈δr1 , ρr1 , εr1〉 = 〈δr2 , ρr2 , εr2〉
holds are included in new n-ary knowledge base.

Finally, we de�ned notion of relation mapping that speci�es only mean-
ingful mappings from binary roles to n-ary relation.

De�nition 6.1.6. Relation mapping M is a tuple 〈R,W , δ, ρ〉, where R
is NDL relation with arity nmax, W is set of DL roles, δ is domain-index
function and ρ is range-index function, such as

• |W| ≥ nmax − 1

• ∀p ∈ W : 1 ≤ δ(p) 6= ρ(p) ≤ |W|+ 1

• If G = (V,E) is undirected graph, where V = {1, ..., |W| + 1} and
E = {{δ(r), ρ(r)} | r ∈ W}, then G is connected.

In addition, if δ(p) > nmax, then δ(p) is called rei�cation index; if ρ(p) >
nmax, then ρ(p) is called rei�cation index.

Note that such a relation mapping is capable of joining more than one
rei�cation concepts to form a NDL relation.
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Input: SHOIN DL knowledge base K with partially de�ned 〈ν, δ, ρ〉
Output: transformation parameter for K
W ← set of all property names in K
X ← set of all property axioms in K
Q1, Q2 ← ∅ e while W 6= ∅ do

if Q1 = Q2 = ∅ then
reverse = false
p← pop_min(W )
if ν(p) is not de�ned then

ν(p) := p ; δ(p) := 1 ; ρ(p) := 2

if Q1 6= ∅ then
reverse = false
p← pop(Q1)

else
reverse = true
p← pop(Q2)

A← {x | x ∈ X ∧ p occurs in x}
X ← (X − A)
foreach x ∈ A do

q ← atomic property di�erent from p occurring in x
ν(q) := ν(p)
if (p is accordant with q in x) xor reverse then

Q1 ← Q1 ∪ {q}
δ(q) := ρ(p) ; ρ(q) := δ(p)

else
Q2 ← Q2 ∪ {q}
δ(q) := δ(p) ; ρ(q) := ρ(p)

end

W ← (W − {p})
end

return 〈ν, δ, ρ〉
Algorithm 1: Algorithm for de�ning well-formed transformation param-
eter



7 Comparison of rei�cation algorithms

Great advantage of binary description logics such as SHIQ DL is reason-
ing support. Nowadays, the current of state-of-art of DL reasoners provide
variety of reasoning services such as satis�ability of concepts or knowledge
bases, subsumption hierarchies of concepts or roles, realization of individuals
etc. Thanks to rei�cation algorithms introduced in Chapter 5, the same set
of services can be provided for NDL . However, the rei�cation algorithms
generate a lot of very expressive axioms that might cause such services to be
unusable in real applications. For further use of the algorithms, both theo-
retical and empirical analysis of reasoning over rei�ed KBs need to be done.
Asymptotic size and complexity of knowledge bases produced by the algo-
rithms will be discussed in Section 7.1. In section Section 7.2, new framework
for testing reasoner performance on real knowledge bases will be introduced.
Data for testing will be gathered from existing owl ontologies that will be
transformed via algorithms discussed in Chapter 6.

7.1 Theory-based comparison

Chapter 5 introduced 3 di�erent rei�cation algorithms. First algorithm (T-
SHIQ) uses special DL concepts to represent NDL individuals, tuples and
restrictions about them. Second algorithm (A-SHIQ) and third algorithm (A-
SHIF) rei�es NDL KB in more natural way because it uses DL individuals
to represent NDL individuals and tuples.

Rei�cation algorithms are described by two functions σ(.) and f(.) Func-
tion σ(.) ensure correctness of the transformation, while function f(.) adds
additional axioms to the new knowledge base to ensure completeness of the
transformation.

7.1.1 Proposed Metrics

Precise prediction of time that reasoner spends on evaluating some task is
in most cases very hard or even impossible. Performance speed depends on

52
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implementation of the inference algorithms and various optimization tech-
niques. Ontology cannot be split into simple elements which would be evalu-
ated individually, because combinations of constructs is often subject of the
optimizations. However, there are some assumptions that can be made. Per-
formance slows down with growing number of axioms and its length. Also,
some types of axioms are generally considered to cause performance loss more
than the others.

In the theoretical comparison of this chapter, complexity of transforma-
tion will be evaluated in terms of axioms. Axioms of di�erent kinds such
as concept inclusion axioms, role inclusion axioms, concept or role asser-
tions etc. will be distinguished. Also some parts of transformations generate
variable length of axioms or variable number of axioms that depend on for
example number of individuals of original knowledge base. Distinction be-
tween variable and constant dependency needs to be also considered in the
�nal result.

7.1.2 Formal Notation

In following text, we use term complexity of axiom to refer to evaluation
of type together with length of axiom. For each type of axiom there is a
function that represent its complexity. Following di�erent function exists:

• gci (for general concept inclusion axioms)

• subC (for primitive concept de�nitions / concept subsumption axioms)

• subR (for role inclusion axioms / role subsumption axioms)

• assertC (for concept assertion axioms)

• assertR (for role assertion axioms)

• transR (for role transitivity axioms)

Each of the functions accepts one argument that is asymptotic length of
axiom. Thus, for example expression gci(1) describes complexity of general
concept inclusion axiom of constant length and assertC(n) describes com-
plexity of concept assertion axiom of length linearly dependent on argument
n. Available variables that can be used for evaluation are:

• nmax - maximum arity of relations occurring in NDL KB

• #i - number of individuals occurring in NDL KB
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• #t - number of tuples occurring in NDL KB

• #Catomic - number of atomic concepts occurring in NDL KB

• #Ratomic - number of atomic relations occurring in NDL KB

• #Cassertion - number of concept assertions in NDL KB

• #Rassertion - number of relation assertions in NDL KB

Moreover, to denote complexity of axioms which are direct translation of
schema S of some NDL KB, it is used notion G(S).

Complexity evaluation based on above de�ned notation is too complicated
to simply and intuitively di�erentiate transformations based on Calvanese
and Horrocks. Therefore we de�ne less precise metrics, the function l(.). The
function computes length of a concept as a number of all elementary concept
and relation constructors from which the concept is built. Intuitively, l(.) can
be straightforwardly extended to relation, set of concepts, a set of relations,
a set of axioms, or even whole knowledge base.

7.1.3 Complexity evaluation

To compare complexity of all approaches clearly, we have to evaluate com-
plexity by as few di�erent types of axioms as possible. For this reason some
of the complex axiom are split into simplier ones, another ones are joined to-
gether to form one axiom of higher complexity. Following two rules are used
to modify complexity of axioms in further text. The �rst, axiom A v B uC
can be split into axioms A v B and A v C. The second, axioms A v B and
C v D can be joined together to form axiom At (C u¬D) v B u (¬C tD).
Note that the rules does not change intent of original axioms.

Direct translation of schema

Satis�ability-preserving function σ(.) for terminological axioms of original
knowledge base is same in each of the rei�cation algorithms. In the transfor-
mation, every terminological axiom (i.e. concept or relation inclusion axiom)
is translated to concept inclusion of the rei�ed counterpart. Complexity of
translated schema S for some NDL KB is G(S).

Additional axioms for schema

Completeness of the schema is guaranteed in all of the approaches by the
same axioms. Evaluation of their complexity is done as follows. Axiom
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> v >1 t ... t >nmax has complexity subC(nmax). Axiom > v (≤ 1f1) u
... u (≤ 1fnmax) is split into nmax axioms > v (≤ 1fi) for 1 ≤ i ≤ nmax,
each of complexity subC(1). On the other hand, general concept inclusion
axioms ∀fi.⊥ v ∀fi+1.⊥ for 1 ≤ i < nmax are joined together to form axiom
(∃f1.> t ∀f2.⊥) u ... u (∃fnmax−1.> t ∀fnmax .⊥) v >. Length of the axiom
depends linearly on nmax and hence the complexity is gci(nmax). Axioms
Ti ≡ ∃f1.>1 u ... u ∃fi.>1 u ∀fi+1.⊥ for 2 ≤ i ≤ nmax are split into axioms
f1.>1 u ... u ∃fi.>1 u ∀fi+1.⊥ v Ti and Ti v f1.>1 u ... u ∃fi.>1 u ∀fi+1.⊥,
which is further divided into i + 1 axioms Ti v ∃f1.>1, ..., Ti v ∀fi+1.⊥.
Hence, the outcome complexity of the axioms is (gci(nmax) + (

∑
2≤i≤nmax

(i+
1)) × subC(1) = gci(nmax) + (nmax

2 − 3nmax + 2) × subC(1). The outcome
complexity of axioms A v >1 and AP v >n for each atomic concept A
and each atomic relation P is #Catomic × subC(1) and #Ratomic × subC(1)
respectively. Quick preview of above de�ned complexities is in Table 7.1.
Finally, the outcome complexity of all additional axioms for schema is 2 ×
gci(nmax)+subC(nmax)+(#Catomic+#Ratomic+nmax

2−2nmax+2)×subC(1).

f(S) Complexity
> v >1 t ... t >nmax subC(nmax)

> v (≤ 1f1) u ... u (≤ 1fnmax) nmax × subC(1)
∀fi.⊥ v ∀fi+1.⊥ gci(nmax)

Ti ≡ ∃f1.>1 u ... u ∃fi.>1 u ∀fi+1.⊥ (nmax
2 − 3nmax + 2)× subC(1)+

+gci(nmax)
A v >1 #Catomic × subC(1)
AP v >n #Ratomic × subC(1)

Table 7.1: Quick preview of complexity of additional axioms for schema

Direct translation of ABox

Direct translation of NDL concept assertions and relation assertions is the
same for A-SHIQ and A-SHIF. Length of axioms Aw : σ(C) is dependent on
|σ(C)|, which is directly proportional to |C|. Hence, the outcome complexity
of axioms is

∑
w:C∈A assertC(|C|). Similarly, axioms t~w : σ(R) have outcome

complexity
∑

~w:R∈A assertC(|R|). Axioms 〈t~w, wi〉 : fi generate at most nmax

axioms for each tuple occurring in NDL KB, thus their complexity is at most
nmax ×#t× assertR(1).

For the T-SHIQ approach, the complexity of axioms Aw v σ(C) and
T~w v σ(R) is

∑
w:C∈A subC(|C|) and

∑
~w:R∈A subC(|R|) respectively. Ax-

ioms T~w ≡ ∃f1.Aw1 u ... u ∃fn.Awn u ∀fn+1.⊥ are split into general concept
inclusion axioms and primitive concept de�nition axioms of constant length
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The outcome complexity is #t× gci(nmax) + nmax×#t× subC(1). The out-
come complexity of axioms Awi

v ∃f−i .T~wt ≤ 1f−i .T~w is nmax×#t×subC(1).
Quick preview of above de�ned complexities is in Table 7.2. Finally, the out-
come complexity of direct translation of ABox for both A-SHIQ and A-SHIF
algorithms is

∑
w:C∈A assertC(|C|) +

∑
~w:R∈A assertC(|R|) + nmax × #t ×

assertR(1) and for T-SHIQ it is
∑

w:C∈A subC(|C|) +
∑

~w:R∈A subC(|R|) +
#t× (gci(nmax) + nmax × subC(1)).

σ(A) Complexity

A
-S
H
IF
/Q

Aw : σ(C)
∑

w:C∈A assertC(|C|)
t~w : σ(R)

∑
~w:R∈A assertC(|R|)

〈t~w, wi〉 : fi nmax ×#t× assertR(1)

T
-S
H
IQ

Aw v σ(C)
∑

w:C∈A assertC(|C|)
T~w v σ(R)

∑
~w:R∈A assertC(|R|)

T~w ≡ ∃f1.Aw1 u ... u ∃fn.Awn u ∀fn+1.⊥ #t× gci(nmax)+
+nmax ×#t× subC(1)

Awi
v ∃f−i .T~wt ≤ 1f−i .T~w nmax ×#t× subC(1)

Table 7.2: Quick preview of complexity of direct translation of ABox

Additional axioms for ABox

Additional axioms for ABox in A-SHIQ approach consist of two di�erent
types of axioms. The �rst, axioms of type w : Q with outcome complexity
#i× assertC(1). The second, axioms of type w1 :≤ f−1 (>n u ∃f2.Qw1 u ... u
∃fn.Qwn) have outcome complexity #t× assertC(nmax).

In the A-SHIF approach complexity of w : Q is computed same. Com-
plexity of g~w v f1 and > v≤ 1g−~w is #t× subR(1) and #t× subC(1) respec-
tively. Finally, >n u ∃f2.Qw2 u ... u fn.Qwn v ∃g~w.Qw1 generates complexity
#t× gci(nmax).

In the T-SHIQ approach axiom sroot : ∃create.Aw1 u ... u ∃create.Awm is
split into #i + #t concept assertions, each of complexity assertC(1). Each
of the axioms fi v U , f−i v U , create v U create− v U has complexity
subR(1) and trans(U) has complexity transR(1). Finally, axioms of type
(A u C) v ∀U.(¬A t C) for A ∈ AS′ , C ∈ CL′(S ′) are dependent on size of
AS′ and size of extended Fischer-Ladner closure of partially rei�ed schema S ′,
thus CL′(S ′). The size of AS′ is equal to number of representative concepts
therefore it is #i + #t. Outcome complexity of the axioms is (#i + #t) ×
O(nmax × l(K))× gci(nmax × l(K)). Detailed explanation of this complexity
is explained further in text.

Quick preview of above de�ned complexities is in Table 7.3.
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f(A) Complexity

A
-S
H
IQ

w : Q #i× assertC(1)
w1 :≤ f−1 (>n u ∃f2.Qw1 u ... u ∃fn.Qwn) #t× assertC(nmax)

A
-S
H
IF

w : Q #i× assertC(1)
g~w v f1 #t× subR(1)
> v≤ 1g−~w #t× subC(1)

>n u ∃f2.Qw2 u ... u fn.Qwn v ∃g~w.Qw1 #t× gci(nmax)

T
-S
H
IQ

sroot : ∃create.Aw1 u ... u ∃create.Awm #i× assertC(1)
fi v U, f−i v U 2× nmax × subR(1)

create v U, create− v U 2× subR(1)
trans(U) transR(1)

(A u C) v ∀U.(¬A t C) (#i+ #t)×O(nmax × l(K))
×gci(nmax × l(K))

Table 7.3: Quick preview of complexity of additional axioms for ABox

Extended Fischer-Ladner closure

In the following text, the complexity of extended Fischer-Ladner closure of
T-SHIQ rei�ed counterpart based on complexity of original NDL KB is
evaluated.

Let K = 〈S,A〉 be a NDL knowledge base. From K, the complexity
of extended Fischer-Ladner closure CL′(S ′) as de�ned in Construction 5.2.1
can be evaluated as follows.

• l(K) = l(S) + l(A)

• l(σ(S)) = O(l(S)); In f(S) axioms Ti ≡ ∃f1.>1 u ...u∃fi.>1 u∀fi+1.⊥
generate length nmax

2, however, if there are no relations of some ar-
ity j, axiom for Tj does not have to be included in rei�ed counter-
part. Thus, l(f(S)) = O(l(S) + nmax × l(S)); In σ′(A) each of the
tuple assertions is rei�ed to at most nmax terminological axioms, thus
l(σ′(A)) = O(nmax × l(A))

• S ′ is de�ned as σ(S) ∪ f(S) ∪ σ′(A), thus l(S ′) = l(σ(S)) + l(f(S)) +
l(σ′(A)) = O(2 × l(S) + nmax × l(S) + nmax × l(A)). Hence l(S ′) =
O(nmax × l(K)).

• In the de�nition of extended Fischer-Ladner closure (De�nition 5.2.2):
�rst, S ′ is translated to CS′ =

d
AvB∈S′(¬A t B).Hence, l(CS′) =

l(S ′) = O(nmax× l(K)); second, the CL(CS′) is computed. The size of
set CL(CS′) is linearly bounded by size of CS′ [49]. Note that this is
only upper bound of complexity, however, it is easy to show that lower
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bound is the same. Thus CL(CS′) contains O(nmax × l(K)) concepts,
each of the length O(nmax × l(K)); third, CL′(S ′) increases size of the
CL(CS′) and length of each concept from the CL(CS′) only linearly.

Hence, CL′(S ′) produces at most O(nmax × l(K)) concepts, each of the
length at most O(nmax × l(K)).

Axioms of type (AuC) v ∀U.(¬AtC) are in T-SHIQ algorithm generated
for each representative concept A and each C ∈ CL′(S ′). The number of
representative concepts is #i+#t. Each of the axioms is general concept
inclusion axiom of length directly proportional to |C|. Hence, the complexity
of axioms used for singling out representative concept is :

O(nmax × l(K))× (#i+ #t))× gci(nmax × l(K)).

Comparison of A-SHIQ and A-SHIF

Rei�cation algorithms A-SHIQ and A-SHIF di�er only in de�nition of addi-
tional axioms that axiomatize tuple-admissibility of ABox. According to A-
SHIQ rei�cation algorithm, additional axioms for ABox have outcome com-
plexity #i×assertC(1)+#t×assertC(nmax). In the A-SHIF rei�cation, the
outcome complexity of ABox additional axioms is #i × assertC(1) + #t ×
(gci(nmax) + subC(1) + subR(1)).

To simplify the comparison of complexity we will modify both transfor-
mations for the last time. These modi�cations add some complexity to both
of the algorithms. However, the increment of the complexity is the same
for both algorithms and therefore it will not a�ect the �nal comparison of
A-SHIQ and A-SHIF.

The modi�cations are done as follows. We introduce new concepts X~w for
each tuple ~w occurring in original NDL KB and add to both transformations
axioms (>nu∃f2.Qw1u...u∃fn.Qwn) v X~w. Then, in A-SHIQ transformation,
axioms of type w1 :≤ f−1 (>n u ∃f2.Qw1 u ... u ∃fn.Qwn) are substituted by
axioms w1 : X~w and in A-SHIF transformation, axioms of type >nu∃f2.Qw2u
...u fn.Qwn v ∃g~w.Qw1 are substituted by axioms X~w v ∃g~w.Qw1 . Note that
these modi�cation of transformations did not change satis�ability of KBs.

In the modi�ed transformations, axioms (>nu∃f2.Qw1 u ...u∃fn.Qwn) v
X~w have outcome complexity #t × gci(nmax). Axioms w1 : X~w and X~w v
∃g~w.Qw1 have outcome complexity #t×assertC(1) and #t×subC(1). Hence,
the outcome complexity of new A-SHIQ algorithm is #i × assertC(1) +
#t × (gci(nmax) + assertC(1)), while in new A-SHIF algorithm it is #i ×
assertC(1) + #t× (gci(nmax) + subC(1) + subR(1)).

Thus, in addition to A-SHIF, A-SHIQ contains #t × assertC(1) axioms
but lacks #t× (subC(1) + subR(1)) axioms.
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If we omit types of axioms length of rei�ed counterpart is O(l(K)+nmax×
#t), thus at most O(nmax × l(K)).

7.1.4 Summary

In theoretical comparison of complexity we have substituted some axioms for
their equivalents in order to get as simple comparison results as possible.

In addition to A-SHIF, A-SHIQ generates one concept assertion of con-
stant length for each tuple, but lucks one primitive concept de�nition of
constant length and role subsumption axiom for each tuple.

If K is an NDL KB then length of rei�ed counterpart of K grows at least
with square of l(K). Moreover we showed that it is at most O((#i×#t)×
(nmax × l(K))2), thus O(nmax

2 × l(K)3).
Length of rei�ed counterpart of A-SHIQ and A-SHIF is at most O(l(K)+

nmax ×#t), thus O(nmax × l(K)).

7.2 Empirical comparison

7.2.1 Tested data

Testing reasoner performance on rei�ed knowledge bases needs real NDL
KBs to be created. We used real, well known OWL ontologies and trans-
formed them into NDL KBs by algorihms discussed in Chapter 6. For some
of the ontologies two or more object properties could be joined together to
form NDL relation of higher arity than 2. For the others only binary trans-
formation was semantically suitable. Binary transformations were done by
automatic algorithm from Chapter 6. For transformation with relations of
higher arity, mappings of new relations had to be created to supply semi-
automatic algorithm.

Rei�cation algorithms discussed in Chapter 5 di�ers only in transforma-
tion of ABox axioms and therefore for comparison, ontologies with asserted
facts are needed. However, most of the ontologies consist of terminologi-
cal axioms only. To overcome this problem, KAON OWL tools were used
to randomly populate some of the ontologies without individuals. For the
comparison we have used the following knowledge bases:

• Deidre is example knowledge base about Deidre Capron from Chap-
ter 4. It contains two ternary relations come and work.

• Pizza knowledge base was created from an example ontology that
contains all constructs required for the Pizza Tutorial run by Manch-
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ester University [56]. The original ontology contains object properties
hasBase and hasTopping that relate individuals of class Pizza to
classes PizzaBase and PizzaTopping respectively. We have joined
these object properties to form one ternary relation pizzaProperties
and added some tuples of this relation to the KB.

• Generations knowledge base was based on ontology "Generations"
[57] that was designed to help describe family relationships with use
of reasoner. The knowledge base already contained signi�cant amount
of individuals and it is direct product of automatic transformation dis-
cussed in Chapter 6.

7.2.2 Target systems

We have chosen three of the current of the state-of-art of reasoners. In the
following text details about the reasoners are explained.

Racer

RACER stands for Renamed ABox and Concept Expression Reasoner. Rac-
erPro is its commercial name. Beta version of RacerPro 1.9.2, that was
used in this comparison, was released on 24/10/2007. It implements highly
optimized tableau calculus for description logics ALCQHIR+ also known
as SHIQas well as following optimization techniques: dependency-directed
backtracking and DPLL-style semantic branching, transformation of axioms
(GCIs), model caching and model merging. Except for two limitations,
RacerPro supports OWL-DL completely. First, individuals in class expres-
sions (i.e. nominals) are only approximated. Second, although all required
datatypes of OWL-DL are supported, RacerPro cannot process user-de�ned
datatype types given as external XML Schema speci�cation. Since in the
rei�cation algorithms there are neither nominals nor datatypes, RacerPro is
capable of reasoning over rei�ed NDL knowledge bases.

Basic interface for controlling the reasoner is so-called KRSS-based inter-
face. It is based on lisp-like language that they call Mini-Lisp. Main purpose
of this interface was to directly present the declaration and results of queries
in a brief and human-readable form.

Java programmers can bene�t from JRacer, which is the client library to
access the services of a RacerPro server through Java API. However, the API
is very simple and clumsy. Construction of the reasoner request has to be
done without API as it is a string in Mini-Lisp format.
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Second, RacerPro o�ers to communicate with the reasoner server by the
HTTP-based DIG protocol. The DIG protocol is less expressive than the
native one. Currently, RacerPro supports DIG 1.1 completely and DIG 2.0
partially [55].

Pellet

Pellet is an open source, OWL-DL reasoner in Java that is developed, and
commercially supported, by Clark&Parsia, LLC. For the comparison, Pellet
1.5.1 released on 26/10/2007 was used. It is based on tableaux algorithms
for expressive DLs and supports full expressivity of OWL-DL as well as all
the features proposed in OWL 1.1, with exception of n-ary datatypes. It im-
plements TBox partitioning, absorption and lazy unfolding plus dependency
directed backjumping, semantic branching and early blocking strategies.

Pellet provide many interfaces to the reasoner. For Java programmers,
there is direct in-memory implementation of the reasoner interfaces Jena
and Manchester OWL-API library. Also Pellet can act as a server with the
support of DIG 1.1 protocol.

FaCT++

FaCT++ is a new generation of the well-known FaCT OWL-DL reasoner.
It implements a new tableaux decision procedure for SHOIQ [29]. For the
comparison, FaCT 1.1.10 released on 30/10/2007 was used.

FaCT++ provide support for direct in-memory implementation for Manch-
ester OWL-API. It can also be started as DL reasoner with DIG 1.1 protocol
support.

7.2.3 Target reasoning queries

The reasoners in the comparison were queried for three di�erent tasks :

• Consistency checking �nds out if an ontology does not contain any
contradictory axioms, i.e. if the ontology is satis�able.

• Classi�cation computes the subclass relations between every named
(atomic) classes and create the complete class hierarchy. The class
hierarchy allows to answer queries such as getting all or only the direct
subclasses of a class.

• Realization �nds out the most speci�c classes (i.e. direct types) for each
individual from ontology. Realization triggers classi�cation since direct
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types are de�ned with respect to a class hierarchy. With classi�cation
hierarchy, it is possible to get all types for each individual from the
ontology.

7.2.4 Testing con�guration

Benchmark was done on a Linux box featuring an Intel R© Celeron R© CPU at
3,2 GHz and 2 GB main memory. For saving and loading rei�ed counterparts
we have chosen OWL1.1 ontologies that were parsed by OWL1.1 API [54].
Note that OWL-DL ontologies could not be used for this purpose because
OWL-DL does not support quali�ed number restrictions.

To achieve fair conditions for all reasoners we had to choose same interface
for querying them. For this purpose, the DIG interface [53] was chosen. The
interface is intended to provide uniform access to description logics reasoners.
It de�nes a simple protocol (based on HTTP PUT/GET) along with an XML
Schema that describes a concept language and accompanying operations.

Each of the reasoners that were used in benchmark support at least DIG
1.1 protocol. DIG 1.1 is capable to expressing queries in SHOIQ DL with
some additional support for datatypes [50].

The benchmark is iteration of following steps:

1. Start one of the reasoners as a DIG 1.1 server.

2. Load next ontology via OWL1.1 API to the memory.

3. Send the ontology via http protocol to the server.

4. Send one of the possible queries (consistency check, classi�cation, real-
ization) to the server and receive the answer. This time is measured.

5. Cancel running of the reasoner server.

Note that at the beginning of each iteration new reasoner server was
started (1.) and at the end, it was canceled (5.). It was done to prevent
reasoners from caching knowledge bases. Also note that in one iteration we
answered to only one of three possible simple queries.

A time limit of one hour (3600 seconds) was set for one query, meaning
that any process was aborted if its computation time exceeds 3600 seconds.
Each query of one ontology was executed 10 times and the average of the
values was stated to be �nal result.
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7.2.5 Results

Results of the benchmark are summarized in following tables. Each of the
tables describes one query for each rei�ed counterpart of all ontologies and
all reasoners. In addition to consistency check, classi�cation and realization,
the loading times were also evaluated. If reasoner did not �nish some of the
tasks in one hour or run out of memory, it is displayed by ∞ in the tables.

The Table 7.4 shows that ontologies of T-SHIQ approach were loaded
from 30 to 100 times slower than the others. FaCT++ was fastest reasoner
for loading most of the rei�ed ontologies. Pellet �nished in all of the cases as
the last.

ontology\reasoner Racer Pellet FaCT++

T
-S
H
IQ Deidre 3409.51 4712.12 1903.12

Pizza 94078.21 110340.56 69931.10
Generations 23072.83 36053.11 17051.21

A
-S
H
IQ Deidre 85.92 135.06 33.45

Pizza 1011.72 3957.71 566.12
Generations 141.45 255.41 64.5

A
-S
H
IF Deidre 28.28 132.84 33.89

Pizza 1021.54 4025.55 625.78
Generations 158.46 303.93 66.79

Table 7.4: Loading times of rei�ed counterparts in miliseconds

ontology\reasoner Racer Pellet FaCT++

T
-S
H
IQ Deidre 991.87 ∞ ∞

Pizza ∞ ∞ ∞
Generations ∞ ∞ ∞

A
-S
H
IQ Deidre 13.65 117.35 46.86

Pizza 1002.32 8130.96 1539.46
Generations 108.28 339.76 164.04

A
-S
H
IF Deidre 14.24 76.98 47.41

Pizza 997.63 130103.37 1420.31
Generations 20.06 465.46 83.79

Table 7.5: Consistency check times of rei�ed counterparts in miliseconds
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ontology\reasoner Racer Pellet FaCT++

T
-S
H
IQ Deidre ∞ ∞ ∞

Pizza ∞ ∞ ∞
Generations ∞ ∞ ∞

A
-S
H
IQ Deidre 81.98 379.65 70.73

Pizza 1819.23 19786.53 2085.57
Generations 167.73 613.68 176.56

A
-S
H
IF Deidre 79.09 345.52 72.62

Pizza 1888.21 137490.1 1920.31
Generations 109.96 808.82 102.8

Table 7.6: Classi�cation times of rei�ed counterparts in miliseconds

ontology\reasoner Racer Pellet FaCT++

T
-S
H
IQ Deidre ∞ ∞ ∞

Pizza ∞ ∞ ∞
Generations ∞ ∞ ∞

A
-S
H
IQ Deidre 59.6 357.89 50.03

Pizza 1692.15 29843.98 1499.12
Generations 604.9 5258.39 209.63

A
-S
H
IF Deidre 58.79 285.49 57.3

Pizza 1501.2 131500.96 1470.33
Generations 445.94 868.5 91.33

Table 7.7: Consistency check times of rei�ed counterparts in miliseconds

From the other tables it is obvious, that the fastest reasoner for the rei�ed
ontologies is Racer, next FaCT++ and the last is Pellet. Approach T-SHIQ is
unusable for reasoning, since on even small ontology such as Deidre reasoning
task did not �nish in all of the reasoners. From approaches A-SHIF and A-
SHIQ, reasoning tasks in A-SHIF were computed faster in most of the cases.



8 Summary and discussion

What are pros and cons of state-of-art Knowledge Representation Systems
with support for n-ary relations ? What are drawbacks of representing n-ary
relations by binary ones ? How can be reasoning support added to language
with n-ary relations without having to reimplement reasoning algorithms ?
These are the basic questions that have been addressed in this thesis.

In �rst chapter the importance together with general problems of n-ary
relations were outlined. Theoretical background of this thesis is described in
chapter two.

In chapter four, based on existing language DLR , new language NDL
with support for n-ary relations is designed. Semantics and abstract syntax
of the language is very similar to DLR and therefore only di�erences are
explained. New graphical notation is also provided.

Chapter �ve describes three di�erent algorithms that can be used for
NDL to transform into description logics within expressivity SHIQ . These
transformations (also called rei�cation algorithms) preserve satis�ability and
hence satis�ability check of NDL knowledge base can be provided by its
transformed counterpart. First of the algorithms is based on Calvanese work
in which DLR was transformed into logics CIQ DL. Due to di�erent expres-
sivity of the languages CIQ DL and SHIQ DL, some constructs needed to
be translated to new ones. The chapter also contains proof that new con-
structs are correct. Second and third of the algorithms is based on Horrocks
work in which DLR was transformed into SHIQ DL.

Transformations of binary description logics into NDL is discussed in
chapter six. It contains automatic algorithm for translating SHOIQ DL
knowledge base into binary NDL knowledge base. For translating SHOIQ
DL KB into NDL KB with relations of higher arity, semi-automatic algo-
rithm is described.

Thanks to algorithms presented in chapters �ve and six we have frame-
work for translating NDL from and to SHIQ DL. With little work using
this framework NDL can provide same support for reasoning as it is avail-
able for SHIQ DL. However, also complexity of the algorithms is an issue.
There would be no use of reasoning services that are too complex. For this
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reason, chapter seven is dedicated to evaluate complexity of all three rei�-
cation transformations. At �rst complexity comparison of rei�ed knowledge
bases is evaluated by theoretical analysis of axioms that rei�cation algorithms
generate. Then comparison is done on real NDL knowledge bases with use
of the current state-of-art of reasoners for binary description logics.
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