
Charles University Prague,
Faculty of Mathematics and Physics

MASTER THESIS

Ondrej Danko

Elliptic Indexing of Multidimensional Databases

Department of Software Engineering

Advisor: Doc. RNDr. Tomáš Skopal, Ph.D.
Course of study: Software Systems

2008

At this point, I would like to thank my advisor for his valuable advice and
all others who have helped me to reach the goal.

Thanks to my solid academic training, today I can write
hundreds of words on virtually any topic without possessing a
shred of information, which is how I got a good job in
journalism.

—Dave Barry

I hereby proclaim that I worked out this thesis on my own, using only the
resources stated. I agree that the thesis may be publicly available.

In Prague on March 20, 2008 Ondrej Danko

Contents

Abstract . 5

1 Introduction 6
1.1 Aim of the thesis . 7
1.2 Outline of the work progress and paper organization 8

2 Multidimensional indexing 9
2.1 Relational indexes . 9
2.2 R-Tree bases . 10

2.2.1 R*-tree . 13
2.2.2 R+-tree . 13
2.2.3 SS-tree . 14
2.2.4 SR-tree . 15

3 eR-tree 16
3.1 Motivation . 16
3.2 eR-tree Regions . 16

3.2.1 Variant #1 . 17
3.2.2 Variant #2 . 18
3.2.3 Variant #3 . 19

3.3 Insertion . 19
3.4 Inner Node Splitting . 20
3.5 Leaf Node Splitting . 20

4 Ellipsoid Theory 22
4.1 Ellipsoid Definition . 22

4.1.1 Expressing a Quadratic Form in n Variables Using Ma-
trix Notation . 22

4.1.2 Ellipsoid . 23
4.2 Minimum Volume Covering Ellipsoid 23

4.2.1 Iterative construction of MVCE 24
4.2.2 Optimization construction of MVCE 25

2

CONTENTS 3

4.3 Extracting ellipsoid properties 27
4.4 Other operations . 28

4.4.1 Point and ellipsoid distance 28
4.4.2 Hyperplane and ellipsoid distance 28
4.4.3 Testing for box and ellipsoid intersection 30
4.4.4 Bounding ellipsoids by ellipsoid 30

5 Implementation 31
5.1 Amphora Three Object Model 31

5.1.1 ATOM Design . 32
5.1.2 R-tree implementation 34
5.1.3 Modification . 35

5.2 Ellipsoid class . 37
5.2.1 Constructing the MVCE 38
5.2.2 Testing for box and ellipsoid intersection 38
5.2.3 Bounding Ellipsoid by a Box 40

6 Experimental Results 42
6.1 Notes on a measurements . 42

6.1.1 Measurement settings 42
6.1.2 Measured Parameters 42
6.1.3 Opposing R-tree . 43

6.2 Data Sets . 43
6.2.1 Synthetic Clustered data 44
6.2.2 Real IMDB data . 44
6.2.3 Real Trajectory data 45

6.3 Indexing . 46
6.3.1 Index size and utilization 46
6.3.2 Impact of a stopping criterion on indexing speed 48
6.3.3 Node Fanout . 50
6.3.4 Impact of a data set size on indexing speed 51
6.3.5 Impact of a dimension on indexing speed 52
6.3.6 Other interesting facts 52

6.4 Querying . 54
6.4.1 Query set . 54
6.4.2 Impact of a data set size on a querying speed 54
6.4.3 Impact of a dimension on a querying speed 58
6.4.4 Impact of a selectivity on a querying speed 60

7 Conclusion 62

CONTENTS 4

Appendices 68

A Visualization 69
A.1 SCU4x4 data set . 69
A.2 IMDB data set . 72
A.3 Trajectory data set . 74

B Organization of attached compact disk 76
B.1 Source Code . 76
B.2 Data Sets . 76
B.3 Query Sets . 76
B.4 Experimental Results . 76

Abstract

Title : Elliptic indexing of multidimensional databases
Author : Ondrej Danko
Department : Department of Software Engineering
Supervisor : Doc. RNDr. Tomáš Skopal, Ph.D.
Supervisor’s e-mail address : Tomas.Skopal@mff.cuni.cz
Keywords : multidimensional data, indexing,

R-tree, minimum volume covering ellipsoid

Abstract: In this work variation of R-tree, which hierarchically partition
indexed space using minimum volume covering ellipsoids (MVCE) instead of
usually used minimum bounding rectangles, is presented.

Main aspects, which determine R-tree index structure performance, are stud-
ied from the available resources at the beginning. Base on this studies “eR-
tree” (ellipsoid R-tree) is designed. Afterward algorithms of MVCE con-
struction are carefully analyzed, as the choice of the algorithm is crucial for
the efficiency of indexing and retrieval. At the end of the work, eR-tree
implementation over ATOM framework is presented along with experiments
done on synthetic and real data sets.

Název práce : Eliptické indexováńı v́ıcerozměrných dat
Autor : Ondrej Danko
Katedra : Katedra softwarového inženýrstv́ı
Vedoućı diplomové práce : Doc. RNDr. Tomáš Skopal, Ph.D.
e-mail vedoućıho : Tomas.Skopal@mff.cuni.cz
Kĺıčová slova : viacerozmerné data, indexácia,

R-strom, minimálny ohraničujúćı ellipsoid

Abstrakt: V tejto práci je diskutovaná variácia R-stromu, ktorá k hier-
archickému deleniu indexovaného priestoru využ́ıva namiesto bežne použ́ı-
vaných minimálne ohraničujúcich obd́lžnikov minimálne ohraničujúce ellip-
soidy (MVCE).

V úvode práce sú zosumarizované hlavné faktory ovplyvňujúce výkon R-
stromových štruktúr z dostupných štúdíı, čo vedie k niekǒlkým variantám
“eR-stromu” (ellipsoid R-tree). Následne sú rozobrané známe algoritmy
konštrukcie ellipsoidov. Výber vhodnej metódy konštrukcie MVCE je jedným
z ǩlúčových faktorov ovplyvňujúcich efektivitu indexácie a následného vyȟla-
dávania. V závere práce je prezentovaná experimentálna implementácia eR-
stromu nad frameworkom ATOM. Výhodnost použitia MVCE v R-strome je
prezentovaná experimentami jak nad syntetickými datami, tak nad reálnymi.

Chapter 1

Introduction

In recent years demands for efficient searching in large multimedia data sets
have begun emerging much more often than anytime before. Mostly the
newest application in the areas like medicine, geography or CAD were lack-
ing because of the absence of techniques which would enable them to search
efficiently in protein databases, geographical maps or CAD datasets.
Each of the applications employing multimedia database usually manipulate
different data “types” (proteins, geographical locations, pictures) which al-
ways requires a custom solution for storing and quering of data. To eliminate
the need for a proprietary solution, a simple, yet powerful idea is applied:
feature transformation. The idea is that the input data is transformed into
feature vectors – multidimensional points of vector space. Afterward a mu-
tual technique is used to store and search feature vectors of either medicine,
geography or CAD data.

Figure 1.1: THe feature transformation.

To illustrate the use of feature transformation we can think of a task to index

6

CHAPTER 1. INTRODUCTION 7

collection of images. The very feature transformation can be defined as e.g.
16-color histogram of an image, which will define coordinates of the picture in
16 dimensional space. These feature vectors are afterward indexed. Now to
search for images similar in color to a model image, we just query the index
for the closest feature vectors to the feature vector of that model image. If
we would like to search images for similar patterns, the only change required
would be in the definition of the feature transformation.

Most common query types in multidimensional databases are range queries
and nearest-neighbor (also known as similarity) queries.
Range query simply defines a portion of the vector space. Running it
against the index it will return all feature vectors lying inside that portion.
Nearest-neighbor query accepts as an input a feature vector and option-
ally some metrics (e.g. euclidean, maximum or weighted). The result set
returned will contain feature vectors, which lie closest to the input feature
vector with respect to the given metrics.

Since early 80’s there has been devoted a lot of energy to the development of
an efficient method of multi dimensional data indexing. As the first success-
ful approach can be considered Guttman’s R-tree [Gut84] index structure.
Later on, many different techniques were proposed and a lot of variations of
the original R-tree were supplied for evaluation. Nowadays, largely the R*
modification of the R-tree is used in leading database management systems
to index multidimensional data.

1.1 Aim of the thesis

The aim of this work is to investigate the applicability of ellipsoids (4.1.2) to
R-tree (2.2) index structure.

R-tree index structure and relevant algorithms should be accommodated to
the use of ellipsoid regions instead of usual minimum bounding rectangles.
Resulting structure should be a subject of extensive tests on synthetic and
real data sets, proving pros and cons of ellipsoid regions in R-tree.

CHAPTER 1. INTRODUCTION 8

1.2 Outline of the work progress and paper

organization

First, an extensive survey of the existing multi dimensional indexing tech-
niques was done. The emphasis was put on many available R-tree variants.
The outcome of the survey can by found in Chapter 2.

Afterward the time was devoted to the “ellipsoid” theory with focus on the
algorithms of ellipsoid construction. Here was spent the biggest portion of
the time devoted to the whole work, as it is crucial to choose an appropriate
algorithm. An inappropriate algorithm could lead to a significant indexing
speed degradation or poor retrieval results due to non-optimal ellipsoids (non-
optimal in terms of the shape). To save the time, all the investigation work
was carried out in matlab. As soon as the choice of the algorithm was clear,
it was re-implemented to c++. The results of this phase can be found in
Chapter 4.

In the next phase, using the knowledge from the introductory survey and
having the idea of the “efficiency” of the ellipsoid construction eR-tree (–
ellipsoid R-tree) was designed. The individual steps leading to the final
design with some explanatory comments should be found in Chapter 3.

The implementation of eR-tree came out of the existing R-tree implementa-
tion over ATOM framework. The details of implementation are discussed in
Chapter 5.

To evaluate the new eR-tree, extensive tests were carried out on synthetic
and real data sets. The results and the explanations of measurements are
presented in a separate Chapter 6.

Last but not least in Appendix A can be found a “visual” presentation of
the eR-tree. We had frequently make use of visual examination. Appendix
B can be of a great use when browsing through the attached compact disc.

Chapter 2

Multidimensional indexing

In this chapter, we will explain how can be standard relational indexing tech-
niques used for index multidimensional data and what are their drawbacks.
We will introduce a well-known term curse of dimensionality. Afterward we
will list most important multidimensional index structures. Later our focus
will be devoted to the R-tree index structure and its variants.

2.1 Relational indexes

In relational databases we can store multidimensional data1 in a single table
where each record will correspond to one point. The table would be com-
prised of an identifier column and one column per dimension to represent the
position. Indexing such a table with single key B-tree would require creating
an index for each column. This technique is acceptable when the dimension
is low e.g. 1, 2 or 3. In higher dimensions, we will experience the conse-
quences of a curse of dimensionality. The course of dimensionality could
roughly be expressed as that the amount of data required to keep the same
level of data density is with increasing dimension increasing exponentially.
To consider, the reverse holds also: the data density decreases exponentially
with the increasing dimensionality. For example if we imagine uniformly dis-
tributed 10 points in a line segment of the length 1, the density of points is
0.1. If we want to keep this density in two dimensional space with domains
〈0, 1), we will need 100 points, and if we move to cube, 1000 points would be

1We interpret multidimensional data as points of a n-dimensional vector space. See the
feature transformation in Chapter 1. In the ongoing text we will use terms data, points
and point-data interchangeably, meaning the same.

9

CHAPTER 2. MULTIDIMENSIONAL INDEXING 10

required. Now, the question is, how it effects the retrieve performance of the
B-tree. Assuming that we have 100 uniformly distributed two dimensional
points of the form [x, y] x, y ∈ {0.0, 0.1, 0.2, . . . , 0.9} and we issue the fol-
lowing query against the index: SELECT * FROM db WHERE x > 0.45 AND

x < 0.55 AND y > 0.45 AND y < 0.55. The SELECT statement should re-
turn one point back, lying at the position [0.5, 0.5]. However, seeking into
a single key B-tree index holding x coordinates will return 10 points with
coordinates [0.5, y] y ∈ {0.0, 0.1, . . . , 0.9}. The analogous holds for index
containing y coordinates. This implies we need to touch 20 points to process
the query, which is 20% of all the data. When we move to a three-dimensional
space and we will keep the data density, we would need to index 1000 points.
Again, seeking into the index holding x coordinates will return 100 points
of form [0.5, y, z] x, y ∈ {0.0, 0.1, . . . , 0.9}. Together we need to touch 300
points which corresponds to 30% of all points. When moving to even higher
dimension, the use of indexes would become an obstacle and full scan would
be by much faster. See illustration in Figure 2.1.

Figure 2.1: Touched points.

It is not true that the curse of dimensionality applies only to the case of
multidimensional data indexing with relational techniques, in fact, spatial
indexes are affected to. To cope with this problem spatial indexes are usually
developed in favor of either low dimensions or high dimensions. As a low
dimensional techniques we classify the original R-tree, R+-tree, R∗-tree. For
high dimensional data are the most suited TV -tree, X-tree, Pyramid tree,
UB-tree or SS-tree.

2.2 R-Tree bases

In this section we describe the original Guttman’s R-tree [Gut84]. It is a
height-balanced tree similar to the B-tree. The basic idea behind is to hier-
archically partition the search space into nested regions. Space partitioning

CHAPTER 2. MULTIDIMENSIONAL INDEXING 11

is neither complete nor disjoint. Nested hierarchies are formed as paths from
the root node to the leaf nodes, where the root node region encloses the
regions of its child nodes. See Figure 2.2. Searching in the R-tree index
structure means traversing those paths of the tree that intersect with the
search region.

Figure 2.2: The R-tree structure. On the left there are 2 dimensional data
bounded into nested regions, on the right there is presented the index struc-
ture.

The R-tree consists of two types of nodes: leaf nodes and inner nodes. The
data is stored in the leaf nodes. A leaf node is comprised of simple data
pointers which usually points to an external storage where data is actualy
stored2.
Inner nodes consist of a set of tuples3 of the form (I, child pointer) where a
child pointer is a pointer to another inner node or leaf node. In case child
pointer points to another inner node, I represents the minimum bounding
rectangle4 of all items of the child node pointed by the child pointer. In case
that the child pointer points to the leaf node, I represents MBR of all data
stored in that leaf node.
The algorithm of insertion is following:

2We should notice, that original Guttman’s work admits data of an arbitrary shape
(not only points), therefore his leaf node contains except the data pointer also a minimum
bounding rectangle of the data pointed by data pointer.

3We refer to a tuple of an inner node as to an item to be consistent with the framework
terminology used to build an experimental implementation.

4We will use a minimum bounding rectangle, MBR, a minimum bounding box inter-
changebly.

CHAPTER 2. MULTIDIMENSIONAL INDEXING 12

Algorithm 1 R-tree insert

Require: P - point to be inserted
1: LeafNode = Search(P) {Descend tree starting from the root node to

the leaf node – leaf node which will accommodate new entry P . During
the descend enlarge the regions of the relevant inner nodes if necessary.
Return found LeafNode.}

2: if LeafNode is not full then
3: insert P into LeafNode
4: else
5: SplitLeafNode(LeafNode) {Create additional leaf node LLeafNode

and split entries of LeafNode between original LeafNode and LLeafN-
ode.}

6: insert P into either LeafNode or LLeafNode
7: PropagateSplitUpward() {Propagate leaf node split upward. Propa-

gation can lead to inner node splits which are handled by SplitInnerN-
ode(InnerNode) subroutine.}

8: if root node split occurred then
9: grow tree higher

10: end if
11: end if
12: return

In the step 1 we proceed in the way that the added new point will cause the
least enlargement of MBRs. The choice of the leaf node, which will accom-
modate the new entry, and the splitting algorithm of overfulled leaf nodes
are the crucial algorithms of the R-tree with a direct impact on the search
performance. The performance of the R-tree with overlaying MBRs dra-
matically deteriorates though searching the tree with query window, which
intersect overlaying regions, will result in multiple descends of the tree. See
Figure 2.2, here we can notice that the rectangle A intersects with B1. If we
issue range query (see query window in the figure) A, B and B1 need to be
evaluated.
Guttman provides three types of splitting algorithms:

• Exhaustive split

• Quadratic-cost split

• Linear-cost split

Exhaustive splitting means to generate all the possible splits and choose the
one that generates the minimum area. For node fanout, which mostly ranges

CHAPTER 2. MULTIDIMENSIONAL INDEXING 13

from 50-200 is this approach too expensive, though it would run in time
O(2fanout−1).
Quadratic-cost split in the first step chooses two points, which together form
the MBR of the greatest area. These two points will be then placed to the
different nodes(old one and new one). Afterward the algorithm proceeds with
each other point and will assign it to the node by which the least enlargement
will be caused. The algorithm is quadratic in number of points being split.
The linear-cost algorithm simply chooses two most distant points as a seeds
and then assigns the rest of the points in the same way as the Quadratic-cost
algorithm does.

For a comprehensive survey of R-tree indexing techniques [BBK01] is advised.

2.2.1 R*-tree

The extensive study of Guttman’s R-tree on different data distributions led
to the proposal of some optimizations as

• minimization of leaf level node region overlaps

• minimization of leaf level regions’ surface

• minimization ofthe volume of inner nodes

• maximization of the storage utilization

R*-tree introduces forced reinsert since R-tree structures are highly suscepti-
ble to the order in which the element are inserted. When a leaf node becomes
overfulled, some portion of points, which are the most distant from the cen-
tre of the node MBR, are deleted from index and afterward reinserted. This
improvement brought the storage utilization up to 71% -76% . An R*-tree
also prefers squared MBRs to rectangulars.

2.2.2 R+-tree

The key idea behind R+-tree is overlap free splitting in tree directory. Gen-
erally, there is no guarantee5 that such a splitting exists.

In case there exists no overlap free splitting, the R+-tree introduces forced
splits. Consider figure 2.2. To remove an overlap between the region A and

5When we are building index dynamically, it means, we don’t know all points ahead.

CHAPTER 2. MULTIDIMENSIONAL INDEXING 14

the region B we necessarily need to split B1 region. Of course, in some
situations forced splits need to be propagated until we reach leaf nodes,
whereas the number of forced splits can exponentially increase till we reach
them. Also as a side effect of forced splits R+-tree cannot guarantee 50%
space utilization like the regular R-tree.

Authors of the R+-tree claim that their modification requires in average up
to 50% less page access compared to the R-tree. For further details consider
[SRF87].

2.2.3 SS-tree

An SS-tree was introduced to support similarity searches in higher dimensions
(thus Similarity Search-tree). The SS-tree uses spheres instead of MBRs as
page regions, see 2.3. When comparing properties of the MBRs to spheres it

Figure 2.3: The SS-tree.

should be said that:

• Bounding spheres tend to produce regions bigger in volume than the
MBRs.

• Bounding spheres tend to produce regions of smaller diameter than the
MBRs.

Using spheres, the first property decreases the performance of range queries
while the second is in favor of the nearest neighbor queries.

Another advantage of spheres is that they require less space to be stored than
the MBRs. For an MBR we need to store two n-dimensional vectors, for a
sphere it is enough to store one n-dimensional center and one-dimensional

CHAPTER 2. MULTIDIMENSIONAL INDEXING 15

diameter. This allows higher fanout of nodes, thus it eventually decreases
the tree height.

Because of the performance reasons the spheres of SS-tree are not minimum
volume spheres, but centroids. Thus the center of the sphere is computed
as an average in each dimension of the points being bounded. The diameter
is then calculated sin the way that it covers all the points. The SS-tree
uses forced reinserts when the overflow condition is encountered. 30% of the
points with the highest distance from the center of the sphere are reinserted
(same as with the R*-tree). While the storage utilization of the R*-tree is
just 70-75% , the SS-tree reaches in average 85%.

Splitting is based on variance. First, the dimension with the highest variance
is chosen. Then the split plane orthogonal to that dimension is found so that
the sum of variance in the new node and the old node is minimized.

Authors of the SS-tree claim that the insertion uses significantly less CPU
time compared with the R*-tree (5-10x less). It is mainly because of the
simplistic insertion algorithm and linear split algorithm compared with the
quadratic split algorithm of the R*-tree.

The SS-tree outperforms the R*-tree approximately by the factor of two.
More detailed performance comparison with the R*-tree can be found in
[WJ96].

2.2.4 SR-tree

SR-tree is merely a combination of the SS-tree and the R*-tree. Authors pro-
vided in their work ([KS97]) an extensive comparison of MBRs and spheres
properties. They define the region in SR-tree as an intersection of a MBR
and a sphere. They believe, the region would be small in volume because of
the MBRs and also small in diameter because of the spheres. This exten-
sion should bring a reasonable query performance for both range and nearest
neighbor queries.

The insert and the split algorithm are taken from the SS-tree and are con-
trolled solely by the spheres. The SR-tree slightly outperforms both the
SS-tree and the R*-tree.

As the most significant inefficiency of this approach authors discuss storage
requirements of the SR-tree region, which are one-and-a-half larger than of
R*-tree and three times larger than of SS-tree.

Chapter 3

eR-tree

In this chapter, we will describe eR-tree. eR-tree is the name of our modifi-
cation of Guttman’s R-tree which name stands from ellipsoid R-tree.

3.1 Motivation

It was written in the section dealing with R-trees (2.2), the performance of
the structure is mostly determined by the amount of the region overlaps and
dead space coverage. We believe that ellipsoids help us to cope mainly with
the second of the problems. Intuitively, an ellipsoid as a quadratic curve,
will cover more tightly the data. To grasp our “motivation” consider Figure
3.1. Ten randomly generated points are covered with the ellipsoid and the
MBR. The volume of the ellipsoid is 0.074937 and the volume of the MBR
is 0.181156 which means that the ellipsoid is ≈ 2.4 times smaller in volume
than the MBR.

3.2 eR-tree Regions

Here we describe three variants of the eR-tree regions, chronologically from
the most straightforward variant to the Variant #3, which we have decided
to implement and thoroughly test. We explain what the demerits of each of
the variants are and how the consequent variant copes with these demerits.

16

CHAPTER 3. ER-TREE 17

0
0.1

0.2
0.3

0.4 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Figure 3.1: Covering points with an MBR and an ellipsoid.

Figure 3.2: The eR-tree composed of ellipsoids.

3.2.1 Variant #1

The first idea of how to define eR-tree is apparently by the use of ellipsoids
in leaf and also by inner nodes as it is shown in Figure 3.2. However, this
approach turned out to be inappropriate because of the two reasons:

1. Inadequate complexity of Ellipsoid–Box intersection test. See sec-
tion 4.4.3 and 5.2.2.

2. Inadequate complexity of ellipsoid “update”. See step 7 in the algo-
rithm 1.

The first problem arises when evaluating range queries. Providing that the
tree is overlap free and the query returns some hits, we would need to test
for Ellipsoid–Box intersection in average

node fanout

2
tree height

times, where the node fanout usually ranges from 50 to 200. This inefficiency
would definitely overcome any positive contributions ellipsoid can bring to

CHAPTER 3. ER-TREE 18

the eR-tree structure.
The second problem would arise during the construction time. While this is
not crucial because we can afford some inefficiency during the construction
in favor of search performance, the first problem is simply “no go” and using
ellipsoids in inner nodes is no-through way.

3.2.2 Variant #2

To address the issues mentioned above and because most of the filtration in
the R-tree is done in nodes just above the leaf nodes1 we decided to investigate
the variant with ellipsoids only in the pre-leaf nodes. All other nodes will
use MBRs as regions. Consider figure 3.3.

Figure 3.3: The eR-tree composed of ellipsoids and MBRs.

Even though ellipsoids in average cover the points more tightly, there are
some situations when MBRs are superior to them. Basically in the following
situations:

1. when splitting – ellipsoids tend to produce more overlaps then MBRs

2. when data are clustered in “rectangular” clusters – ellipsoids would
cover more of the dead space

Observing Figure 3.4, we can notice the effects stated above – unnecessary
death space coverage on the left and after splitting overlap between the el-
lipsoids on the right.

1We refer to them as Pre-Leaf Nodes

CHAPTER 3. ER-TREE 19

Figure 3.4: Death space coverage and overlapping split with ellipsoids.

3.2.3 Variant #3

To deal with the inefficiencies of the Variant #2 we decided to investigate
the variant where the regions of pre-leaf nodes are defined as an intersection
of ellipsoid and MBR (revisit Figure 3.4). All other inner nodes will use
just MBRs. Adding extra MBR to the pre-leaf nodes will not dramatically
decrease the node fanout. Experiments will confirm our presumptions.

3.3 Insertion

The algorithm 1 of the new entry insertion into the R-tree uses the procedure
Search(P) to locate a leaf node which will hold the new entry. The pseudo
code of our Search(P) procedure is provided in Algorithm 2.

CHAPTER 3. ER-TREE 20

Algorithm 2 Search(P)

Require: P – point to be inserted
1: CurrentNode = RootNode
2: while CurrentNode is not leaf node do
3: if CurrentNode is pre-leaf node then
4: CurrentNode = getSubBranchEll(P) {return the child of the cur-

rent node, which region is closest to the P . The distance between
the ellipsoid and P is considered. See 4.4.1}

5: else
6: CurrentNode = getSubBranchBox(P) {returns the child of current

node, which MBR region being enlarged by P produces smallest en-
largement. If the enlargement should cause an overlap with other
regions of the CurrentNode and there exists the region of the Cur-
rentNode which wont produce an overlap after being enlarged by P ,
then the sub-branch of this non-overlap-producing region would be
chosen. I.e. we prefer rather to cover more of the dead space, than
to produce the overlaps.}

7: end if
8: end while
9: return CurrentNode

3.4 Inner Node Splitting

Inner node splitting is taken from the ATOM[Gro03] R-tree implementation.
The idea is to split an overfulled inner node into preferably same size halves,
while minimizing the overlap and the dead space coverage. The overlap
minimization is superior to dead space covering minimization.

3.5 Leaf Node Splitting

Leaf node splitting strategy significantly determines the performance of R-
tree structure. Our splitting algorithm which tries to minimize variance is
presented in 3. In the first phase, we choose the dimension in which data are
most spread. Then we sort data according to this dimension and find the
split position.

CHAPTER 3. ER-TREE 21

Algorithm 3 MinVar Split

Require: {p1, . . . , pk} set of entries to be split
1: maxV ar = 0.0
2: for i = 0 to dimension do
3: var = computeV arianceInDimension(i, {p1, . . . , pk})
4: if var > maxV ar then
5: maxV ar = var
6: splitDimension = i
7: end if
8: end for
9: {p′

1, . . . , p
′

k} = sortByDimension(splitDimension, {p1, . . . , pk})
{so that {p′

1 ≤ p
′
2 ≤ . . . ≤ p

′

k} holds in splitDimension}
10: diff = p

′

k[splitDimenstion]− p′
1[splitDimenstion]

11: for i = 2 to k − 1 do
12: if p

′
1[splitDimension] + diff/2 < p

′
i[splitDimension] then

13: splitOrder = i
14: break
15: end if
16: end for
17: return {p′

1, . . . , p
′

splitOrder}, {p
′

splitOrder+1, . . . , p
′

k}

Chapter 4

Ellipsoid Theory

4.1 Ellipsoid Definition

4.1.1 Expressing a Quadratic Form in n Variables Us-
ing Matrix Notation

Quadratic Form is polynomial of degree two in n variables.

F (x1, x2, x3) = ax2
1 + bx2

2 + cx2
3 + dx1x2 + ex1x3 + fx2x3

is an example of quadratic form in 3 variables. The example could be written
in form

Q(x) =
3∑
i=1

qiix
2
i +

3∑
i=1

3∑
j=i+1

qijxixj xi ∈ R3

where qij are the coefficients from the quadratic form. For arbitrary n we
can define matrix D = (dij) in the following terms

dii = qii i = 1, . . . , n

dij + dji = qji i, j = 1 . . . n, j > i

22

CHAPTER 4. ELLIPSOID THEORY 23

for some arbitrarily choosen dij. Representing variables x1 . . . xn as vector
~x ∈ Rn we can write

xTDx = x1(d11x1 + . . .+ d1nxn) + . . .+ xn(dn1x1 + . . .+ dnnxn)

=
n∑
i=1

diix
2
i +

n∑
i=1

n∑
j=i+1

(dij + dji)xixj

=
n∑
i=1

qiix
2
i +

n∑
i=1

n∑
j=i+1

qijxixj

= Q(x)

If we put dij = dji = (1/2)qi for i, j = 1, . . . , n, j > i than D is known as
symmetric coefficient matrix defining the quadratic form Q(x). For further
details and examples see eg. [Mur01].

4.1.2 Ellipsoid

n-dimensional Ellipsoid is a higher dimensional analogue of an ellipse.

Definition 4.1.1. Ellipsoid ε(c,Q) in Rn with the center in c ∈ Rn and the
shape matrix Q ∈ Rnxn is set of points

ε(c,Q) = {x ∈ Rn| (x− c)TQ(x− c) ≤ 1}
where the shape matrix is a symmetric positive semidefinite coefficient matrix
representing some quadratic form.

The volume of an ellipsoid ε(c,Q) is given by a formula

Theorem 4.1.2. V ol(ε) = πn/2

Γ(n/2+1)
1√
detQ

where Γ() is a gamma function.

Further details and references on the proof of the theorem can be found in
[SM04].

4.2 Minimum Volume Covering Ellipsoid

Definition 4.2.1. For a given set S = {x1, . . . , xk} of n-dimensional points
we define Minimum Volume Covering Ellipsoid as any ellipsoid ε(c,Q) for
which holds

∀x ∈ S : (x− c)TQ(x− c) ≤ 1 containment

ε1(c1, Q1),∀x ∈ S : (x− c1)TQ1(x− c1) ≤ 1⇒
V ol(ε1) ≥ V ol(ε) min. volume

CHAPTER 4. ELLIPSOID THEORY 24

For a clarity we will stick to use an abbreviation MVCE.

Basically we know about three distinct approaches how to construct the
MVCE. First one published in early 80’s is based on eigenvalue decomposi-
tion and can by found in [Bar82]. Almost ten years later Welzl published
[Wel91] an algorithm based on randomized iterative construction. Finally,
Kchachiyan formulates the problem of computing MVCE as an optimization
problem and using interior-point method was for the first time addressed in
[KT93].

4.2.1 Iterative construction of MVCE

For a given set S = {x1, . . . , xn}, xi ∈ Rn of points we will outline how
to construct the MVCE. We will denote mvce(S) as the MVCE of set S.
First, we introduce intuitive lemma without proof. The proof can by found
in [Wel91].

Lemma 4.2.2. mvce(S) is determined by (n+ 3)n/2 points from S.

We should emphasize that those (n + 3)n/2 points does not have to lie on
the boundary of the ellipsoid. This would be true, if we were constructing
e.g. minimum volume ball.

Algorithm 4 Construct mvce(S,R)

Require: S - set of points, R = ∅ - auxiliary set
1: if S = ∅ or |R| = (n+ 3)n/2 then
2: mvce(R) := prim(R)
3: else
4: choose random p ∈ S;
5: D := construct mvce(S − {p), R);
6: if p /∈ mvce(R) then
7: mvce(R) := construct mvce(S − p,R

⋃
{p});

8: end if
9: end if

10: return mvce(R);

In the algorithm 4 we are recursively locating R ⊆ S of size (n + 3)n/2,
which will define mvce(S). Basically, we start with R = ∅ which defines the
”empty” ellipsoid and we are testing if all the points of the set S are included
in this ellipsoid. If some point is not, it is clear, that this point should by in
R and therefore we add it and recursively continue testing.

CHAPTER 4. ELLIPSOID THEORY 25

[Wel91] provided some heuristics how to choose a random point in the line
4 of this algorithm. Using those heuristics overall computing time in the ex-
perimental results were improved by factor of 50 for 10 dimensional ellipsoids
of 5000 points.

Expected complexity of algorithm 4 is linear in number of the points, exactly
O(δδ!m) where δ = (n+ 3)n/2 and m = |S|.

The only disadvantage of this algorithm is requirement of prim(R) in the
line 2 which computes mvce(R) given determining (n + 3)n/2 points. We
were unable to identify suitable algorithm which would compute mvce(R) for
points in different dimensions (required dimensions were 2, . . . , 15). [Wel91]
is not specific on any of these primitives, the experiment provided in [Wel91]
were done in dimension n = 10. In addition, fast primitives for n = 2 can be
found in [GS97].

4.2.2 Optimization construction of MVCE

First note on solving construction of the MVCE as an optimization problem
using interior-point method were researched in [KT93]. The complexity of
that proposal was afterwards improved in [TY07, SM04, KY05]. The later
brigs also as a byproduct Core Sets1. In this paper we will stick to the MVCE
construction described in [Mos05].

We want to minimize the volume (see 4.1.2) of the resulting ellipsoid, while
the ellipsoid contains all points from S. Hence, the formulation of MVCE is
following

minimize det(Q−1) (4.1)

subject to (xi − c)TQ(xi − c) ≤ 1 i = 1, . . . , |S|
Q � 0

This problem is not a convex optimization problem and by substitution of
A = Q1/2, b = Q1/2c can be written as

minimize log(det(A−1)) (4.2)

subject to ‖Axi − b‖ ≤ 1 i = 1, . . . , |S|
A � 0

1Core set is a small subset of the input points whose covering is ”almost” same as the
covering of the entire input, hence it can be used to optimize on large set of points.

CHAPTER 4. ELLIPSOID THEORY 26

what is a convex optimization problem which is unfortunately still difficult
to solve. Luckily, the dual problem seems to be much easier. Consult ex-
ceptional [Boy04], especially chapter dedicated to duality. We will need to
define lifting of the original problem. This mean, we will move all points

S = {xi, . . . , xk} xi ∈ Rn to Rn+1. We can set (xli)
T

= [xTi , 1] i = 1, . . . , k
and define Sl = {±xl1, . . . ,±xlk}. The mvce(Sl) will be symmetric about
the origin of Rn+1 and the mvce(S) will by obtained as an intersection of
the mvce(Sl) with hyperplane H = {(x, 1) ∈ Rn+1|x ∈ Rn}. The lifted
optimization becomes

minimize log(det(M−1)) (4.3)

subject to (xli)
TMxli ≤ 1 i = 1, . . . , |S|

M � 0

where M is the decision variable. Now we can formulate and optimize a La-
grangian dual problem to the lifted problem. The optimization will be carried
out by Conditional Gradient Ascent method. The Gradient Ascent/Descent
method can be simplified as

Algorithm 5 Ascent Gradient Method

1: while stopping criterion not satisfied do
2: Compute Ascent Direction {which way to approximate solution}
3: Line Search {compute the length of step}
4: Update {update the approximation}
5: end while
6: return mvce(R);

Asymptotic complexity of this algorithm is linear in number of points being
covered by ellipsoid. For further details, consult [Mos05] and [KY05]. In
former we can find exact formulas how to compute Ascent Direct, Step Size
or extract the original solution from the solution of the dual problem. In
later is derived asymptotic complexity. Generally useful reading could be
[Boy04], especially chapter 9.

As a stopping criterion is used an average distance of all points which lies
outside the approximated ellipsoid to its boundary. While we need for the
purposes of this work to be all points strictly included in the resulting el-
lipsoid, we are performing a post processing on the ellipsoid obtained from
the approximation. In this post processing we locate the point which lies
furthest from the boundary of the ellipsoid and than we scale the ellipsoid
so this point(and all other) lies inside.

CHAPTER 4. ELLIPSOID THEORY 27

We conducted some small performance experiments to evaluate an adequacy
of this constructing technique of the MVCE for our purposes. In 4.1 we can
observe what is the impact of the size of S and dimension (2, 5, 10, 15, 20)
on the time needed to construct the MVCE. The stopping criterion of the
algorithm was set to 0.01. Experiments were done in a matlab and were
carried out on 2.2GHz AMD Turion processor. Exact construction times
are included in figure 4.1 to provide better image of effectiveness. Other

SetSize 2 5 10 15 20

10 0.003 0.002 0.000 0.002 0.000
20 0.009 0.008 0.002 0.002 0.002
40 0.008 0.006 0.008 0.005 0.002
60 0.016 0.013 0.017 0.003 0.008
80 0.019 0.020 0.017 0.013 0.011
100 0.022 0.025 0.028 0.023 0.019
140 0.036 0.051 0.052 0.055 0.033
160 0.047 0.054 0.094 0.072 0.053
200 0.069 0.081 0.155 0.117 0.094
220 0.089 0.103 0.184 0.148 0.114
250 0.119 0.105 0.156 0.131 0.125
280 0.334 0.345 0.388 0.325 0.250
300 0.366 0.411 0.437 0.383 0.267
350 0.522 0.555 0.642 0.559 0.411
400 0.701 0.769 0.800 0.705 0.578
450 0.892 0.919 1.059 0.970 0.781
500 1.133 1.167 1.295 1.252 1.012

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Number of points

T
im

e(
se

c)

2
5
10
15
20

Figure 4.1: The MVCE construction time as parameter of |S| and the dim.

experiments were focused on the stopping criterion. In 4.3 we can notice
that the efficiency of the algorithm mainly depends on this parameter. In 4.2
we can observe the number of iterations required till the stopping criterion
is reached. These experiments were conducted with n = 3. This algorithm
fulfills the requirements for our purposes with stopping criterion at most
equal to 0.01.

4.3 Extracting ellipsoid properties

Eigenvectors of the shape matrix Q defines the direction of ellipsoid axes.
The length of axes is given by

length(λ) =
1√
(λ)

See picture 4.4.

CHAPTER 4. ELLIPSOID THEORY 28

0 100 200 300 400 500
0

100

200

300

400

500

600

700

800

Number of points

N
um

be
r

of
 it

er
at

io
ns 0.1

0.01
0.001

SetSize 0.1 0.01 0.001

10 2.6 66.2 710.0
20 4.4 74.6 713.8
40 6.2 72.2 705.8
60 6.6 75.6 782.8
80 5.8 74.4 713.8
100 7.0 76.6 704.4
140 6.6 76.6 683.8
160 7.0 77.8 722.6
200 7.4 76.4 710.0
220 7.2 80.2 740.2
250 7.4 80.0 707.2
280 7.4 79.2 719.8
300 7.6 80.6 785.4
350 7.4 79.8 748.2
400 7.2 81.6 733.6
450 7.6 82.2 750.4
500 7.0 78.4 739.8

Figure 4.2: Number of iterations required to construc the MVCE.

4.4 Other operations

4.4.1 Point and ellipsoid distance

The distance of the point p ∈ Rn and the ellipsoid ε(c,Q) is defined as

dist(p, ε) = (p− c)TQ(p− c)

4.4.2 Hyperplane and ellipsoid distance

Given a hyperplane H = {x ∈ Rn| 〈l, x〉 = σ} where l, σ ∈ Rn are fixed, the
distance between H and ε(c,Q) is given by

dist(H, ε) =
|σ − 〈l, q〉| − 〈c,Q−1c〉T

〈c, c〉1/2

where 〈·〉 denotes standard dot product. If dist(H, ε) is negative, ellipsoid
and hyperplane intersect.

CHAPTER 4. ELLIPSOID THEORY 29

0 100 200 300 400 500
0

2

4

6

8

10

T
im

e(
se

c)

Number of points

0.1
0.01
0.001

(a)

SetSize 0.1 0.01 0.001

10 0.084 0.003 0.053
20 0.003 0.003 0.060
40 0.003 0.012 0.069
60 0.009 0.013 0.128
80 0.003 0.019 0.156
100 0.006 0.022 0.163
140 0.000 0.041 0.362
160 0.009 0.047 0.716
200 0.013 0.072 0.588
220 0.016 0.075 0.744
250 0.009 0.081 0.850
280 0.031 0.316 2.853
300 0.034 0.372 3.363
350 0.056 0.494 4.650
400 0.062 0.634 6.613
450 0.078 0.850 8.169
500 0.103 1.044 10.013

(b)

Figure 4.3: The MVCE construction time as parameter of |S| and tolerance.

0.4 0.6 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 4.4: 3D ellipsoid with highlighted axes.

CHAPTER 4. ELLIPSOID THEORY 30

4.4.3 Testing for box and ellipsoid intersection

The problem of deciding whether box B(ql, qh) ql, qh ∈ Rn and ellipsoid
ε(c,Q) intersect can be formalized as a convex optimization problem of a
form

minimize (x− c)TQ(x− c) (4.4)

subject to ql ≤ xi ≤ qhi i = 1, . . . , n

where objective variable is x. If x ≤ 1 than the box and the ellipsoid inter-
sects, otherwise their intersection is empty. Some heuristics can be applied
here so under some circumstance optimization is not necessary. For example
we can test weather ellipsoid intersect any plane defined by the faces of the
the box using 4.4.2. If none intersects, neither ellipsoid intersects with the
box.

4.4.4 Bounding ellipsoids by ellipsoid

For completeness we provide reference to [Yil06] where is discussed an algo-
rithm for computing minimum volume bounding ellipsoid of ellipsoids. The
running time is asymptotically linear in number of ellipsoids being bounded.

Chapter 5

Implementation

In the beginning of this chapter, we will introduce a concept of the frame-
work used to implement tree-like index structures. Later on, we will briefly
discuss existing R-tree implementation based on this framework, which we
had modified to comply with our eR-tree proposal. Finally, in the rest of the
chapter we will focus on the details of ellipsoid class implementation.

At this point, we would like to emphasize that we are aware of some im-
plementation inefficiencies, which we do not bother to eliminate because the
aim of this work is not to implement highly optimized solution, but rather
thoroughly investigate properties of an ellipsoid in the R-tree index struc-
ture.
Anyway, along the text we will point out where further code optimization, we
believe, can be applied. Also we will try to “forecast” to what extend imple-
mentation inefficiencies can effect the experimental results given in Chapter
6.

5.1 Amphora Three Object Model

ATOM (Amphora Three Object Model) is a C++ object framework for
developing and testing tree-like index structures. It was developed at VŠB
- Technical University of Ostrava to support activities of Amphora Research
Group.

The main characteristics of ATOM can be summarized as

• heavy use of C++ templates

31

CHAPTER 5. IMPLEMENTATION 32

TItem:class
TLeafItem:class
TNode:class
TLeafNode:class

cPersistentTree

TItem:class

cObjTreeNode
cObjTreeItem

cPool

TNode:class
TLeafNode:class

cTreeCache

cTreeHeader

TLeafItem:class

cQueryResult

cQueryStatistics

Figure 5.1: ATOM class diagram.

• optimization of access to secondary storage – caching

• RAM-memory access optimization – pooling

• heavy optimizations on code-level

5.1.1 ATOM Design

The basics of ATOM design are depicted in the Class diagram presented
in Figure 5.1. In following, we will provide short description of the main
building blocks.

cTreeHeader class is a “configuration” class which specifies rudimentary
parameters of the tree structure like is

• mNodeItemCapacity is the number of items inner nodes can hold.
In R-tree implementation, item represents MBR or other types of
regions.

• mLeafNodeItemCapacity is the number of items leaf nodes can hold.
While inner nodes hold, apart from items, only references to child
nodes, leaf nodes can hold actual data. Generally, the size of inner

CHAPTER 5. IMPLEMENTATION 33

nodes and leaf nodes is the same and is aligned to external storage
block size. And because the size of pointer to child node and the
size of actual data can vary, we need to be able to have different
capacities of the inner and the leaf nodes.

• mNodeFanoutCapacity is the number of pointers to child nodes
inner node can hold. In R-tree index structures this is typically
equal to mNodeItemCapacity. The same parameter also exists for
the leaf nodes.

• mNodeRealSize holds the real size of the inner node (not aligned
to an external storage block size). The same parameter else exists
for the leaf nodes.

cTreeHeader holds also some counters like is

• mHeight – height of the tree

• mInnerNodeCount – number of the inner nodes

• mLeafNodeCount – number of the leaf nodes

• mInnerItemCount – total number of the items in all inner nodes

• mLeafItemCount – total number of the items in all leaf nodes

cTreeHeader apart from configuration parameters and different coun-
ters holds also references to other tree-specific classes like is a cache or
pool. Classes of ATOM usually access other classes just through the
references in cTreeHeader.
The concrete tree structures should create a specification of cTree-
Header class where additional parameters like dimension or cardinality
can be provided.

cPersistentTree class is a core abstract implementation of the tree struc-
ture. It provides a fundamental methods to Create() new index struc-
ture or to Open() existing. It manages memory allocation and ini-
tialization of the cache and the pool. It is parametrized by TNode,
TLeafNode, TItem and TLeafItem.

ObjTreeItem class is an abstract implementation of the “TItem” interface.
Objects of this class represents regions.

cObjTreeNode class is an abstract implementation of “TNode” interface
and is parametrized by the TItem. Objects of this class are nodes of
the tree. mLeaf flag is used to distinguish the inner nodes from the leaf
nodes (inner and leaf nodes are also differentiated by a indexId, more

CHAPTER 5. IMPLEMENTATION 34

on this later in this chapter). Most important method, apart from the
obvious like is a method to add item etc., is methods to Split() node
when the node is overfull.

cPool class together with the cTreePool class provides pools to avoid exten-
sive memory allocations on heap during indexing or searching. cPool
holds object of a generic types like are integers, arrays of integers, etc.
cTreePool holds tree specific object like Nodes, Items and arrays of
these.

cTreeCache class provides caching of nodes. This class has separate meth-
ods for reading or writing of the inner nodes and for reading and writ-
ing of the leaf nodes. This way inner and leaf nodes can be cached
separately (usually more space is dedicated to cache the inner nodes).
For caching are used two-dimensional arrays with chained hashing. The
size of the cache is given when the index structure is created or opened.
cTreeCache has also methods that provides statistics on hits into the
cache and number of real writes or reads.

cQueryResult class is a container for a search results.

cQueryStatistics class holds various counters that can by useful when eval-
uating the performance of an index structure.

More details can be found in [Gro03]. The document is written in Czech
language.

5.1.2 R-tree implementation

In this section, we will give a short description of the R-tree implementation
from which we derived our solution. We will highlight the most important
methods and concepts so the reader can easily browse through the code.
Please regard Figure 5.2.

cCommonRTree.* classes contain code, which is common for all R-tree vari-
ants.

cCommonRTree class contains method for the tree initialization, closing
and debugging but mainly:

• Insert(TLeafItem &item) insertion algorithm (See Algorithm 1) im-
plementation

CHAPTER 5. IMPLEMENTATION 35

Items

NodesPersisten Tree

cRTree

TItem:class
TLeafItem:class
TNode:class
TLeafNode:class

cCommonRTree
cRTreeHeader

atom::cTreeHeader

cCommonRTreeItem

cRTreeItemcRTreeLeafItem

atom::cObjTreeItem

TItem:class
TLeafItem:class
TNode:class
TLeafNode:class

atom::cPersistentTree

TItem:class

atom::cObjTreeNode

TItem:class

cCommonRTreeNode

cRTreeLeafNode

TItem:class

cRTreeNode

Figure 5.2: Class diagram of ATOM R-tree implementation.

• RangeQuery(cTuple &ql, cTuple &qh) range query implementation

cRTreeNode class

• Split(cRTreeNode &newNode) this method is called, when over-
fulled inner node need to be split (I.e subroutine SplitInnerN-
ode(InnerNode) in insertion Algorithm 1).

• FindMbr(cTuple &tuple, int &itemOrder) this method is called in
the insertion Algorithm 1 in the step 1 to find suitable branch of
the tree for insertion of the new entry(tuple).

• FindNextRelevantMbr(int currentOrder, cTuple &ql, cTuple &qh) is
a method used in the search algorithm to choose which branches
of the tree intersect with query region and therefore need to be
searched.

cRTreeLeafNode contains merely method to Split(cRTreeLeafNode &newN-
ode) over-fulled leaf node (represent SplitLeafNode(LeafNode) routine
in the insertion Algorithm 1).

cRTreeItem is a simple MBR specified by two tuples (n-dimensional points).

5.1.3 Modification

Event thought ATOM tries to be as versatile as possible, we won’t avoid
some modifications of this framework, which are necessary for eR-tree imple-

CHAPTER 5. IMPLEMENTATION 36

mentation. In particular, we need to distinguish in addition to the obvious
leaf and inner nodes also the pre-leaf nodes.
Pre-leaf nodes are nodes of the tree on level 0 which are nodes just above the
leaf nodes. See Figure 2.2, pre-leaf nodes are nodes on level labeled as (L0).

The reason to distinguish pre-leaf nodes is that these nodes will hold items
that specifies region as an intersection of an ellipsoid and a MBR (Revisit the
eR-tree proposal, varian #3). Taking in account that the MBR item require
less space to be stored than ellipsoid and because all nodes of tree ought to
be of the same size it is necessary to adjust the fanout of pre-leaf nodes.

To distinguish pre-leaf nodes we used same attributes that are used to dis-
tinguish inner and leaf nodes apart and that is:

• node index

• flag

Because ATOM keeps inner and leaf nodes in different caches, it is desirable
to know before reading the node (having just the node index) what type of
the node it is. Therefore, the index of the leaf node has the most significant
bit turned on. The same approach is applied to the pre-leaf nodes. If the
second most significant bit of index is set, then we know, we are dealing with
the pre-leaf node.

The type of existing node is set with a method SetIsPreLeafNode(bool tf).

cTreeHeader class is extended with attributes specifying parameter of the
pre-leaf nodes and counter connected with them:

mPreLeafNodeRealSize is the real size in bytes of the pre-leaf node (not
aligned).

mPreLeafNodeCount is the number of the pre-leaf nodes in the tree.

mPreLeafNodeItemSize is the size of one item, which the pre-leaf node
hold.

mPreLeafNodeFanoutCapacity is the number of pointers to the child node
(in this case the leaf nodes) pre-leaf node can hold at most.

mPreLeafNodeItemCapacity is the number of items pre-leaf node can hold
at most. It is equal to mPreLeafNodeFanoutCapacity in case of the eR-
tree.

We also modified all concerned methods like is e.g. ComputeNodeCapacity()
to reflect the changes.

CHAPTER 5. IMPLEMENTATION 37

5.2 Ellipsoid class

Ellipsoid primitives are implemented in the cEllipsoid class.

We decided to use newmat101 matrix library because it

• Supports all the required operations - Matrix Inverse, Cholesky, SVD,
Eigenvalue decomposition.

• Is designated for larger matrices (when we want to bound e.g. three
hundred 5-dimensional points we need matrix of dimension 300x6).

• Provides overloaded basic matrix operations.

• Is Straightforward in design.

• Provides lazy evaluation.

This library is rather rich in functionality, than thoroughly optimized. If
further optimization of eR-tree implementation would be required, this could
be the starting point. During ellipsoid manipulation, we mostly deal with
symmetric matrices that can be also markedly optimized.

cEllipsoid class provides following methods:

boundTuples(cTuple *tuples[], int tupleCount) constructs the MVCE which
bounds given tuples, see 5.2.1 for an implementation details.

isTupleContained(cTuple &tuple) returns true, if tuple is contained in this
ellipsoid.

tupleDistance(cTuple &tuple) returns the distance of tuple from this ellip-
soid. See definition 4.4.1.

testBoxIntersection(cTuple &ql, cTuple &qh) returns true, if the box de-
fined by ql and qh (lower and higher corners) intersects with this ellip-
soid. See 5.2.2 for implementation details.

getAbsoluteVolume() returns the absolute volume of this ellipsoid. See
Theorem 4.1.2.

boundByBox(cTuple &ql, cTuple &qh) bounds this ellipsoid with a box.
Upper and lower box corner are returned in method arguments. See
5.2.3 for implementation details.

1The package can be obtained at http://www.robertnz.net/nm10.htm.

http://www.robertnz.net/nm10.htm

CHAPTER 5. IMPLEMENTATION 38

5.2.1 Constructing the MVCE

Algorithm described in 4.2.2 is used to construct the MVCE.

//cEllipsoid.h

#define APPROXIMATION_DEFECT 0.1

void boundTuples(cTuple *tuples[], int tupleCount);

Approximation Defect macro is used to define the tolerance (stopping
criterion) of the approximation. When constructing the MVCE we must
threat some cases of an input in special way. The MVCE construction al-
gorithm will produce either degenerated ellipsoid or will crash because of
matrix singularity in two following situations:

• When we try to bound “insufficient” number of points. As an exam-
ple can serve bounding of 1 point in 3-dimensional space. Resulting
ellipsoid should be a “point” ellipsoid, what will (taking in account
floating-point arithmetic) result in NaN run-time errors.

• When we try to bound points which lies (or nearly lies) on line segment
or plane etc. In such situation, we can expect same behavior as in
previous.

First problem is resolved by bounding less points then is the dimension by a
sphere with appropriate radius(sphere is also ellipsoid, so we represent it in
the same fashion with shape matrix and center).
To avoid second problem, we are adding extra points to the input of approx-
imation, so the points don’t lie on the line, plane etc.

Ellipsoid shape and ellipsoid center are stored in ColumnVector ellipsoidCen-
ter and SymmetricMatrix ellipsoidShape .

5.2.2 Testing for box and ellipsoid intersection

The implementation of box and ellipsoid intersection is based on 4.4.3.

We decided to use loqo2 solver to solve the optimization problem. The rea-
sons of this choice are mostly the simplicity and effectiveness of the package.

To properly initialize loqo solver we need to provide following methods:

2Available on http://www.princeton.edu/~rvdb/loqo/install.html

http://www.princeton.edu/~rvdb/loqo/install.html

CHAPTER 5. IMPLEMENTATION 39

• double objval(double *x) – returns the value of the objective function
in x

• void objgrad(double *c, double *x) – returns through c the gradient of
the objective function at x

• void hessian(double *Q, double *x, double *y) – returns through Q the
hessian of the objective function

• int stop rule(void *vlp) – this method decides whether to carry on with
optimization or to stop. The stopping rules are following:

– opt value ≤ 1. If this stopping criterion is reached, ellipsoid and
box intersects.

– abs(opt value−opt value previous iteration) ≤ 1.0e−5. We stop
if we are ”close enough” to optimal solution.

– iteration limit reached. Max number of iterations is set to 60. If
this limit is reached we proclaim that box and ellipsoid intersects
(to avoid false dismissal).

Loqo solver is initialized as static variable. The class cEllipsoid provide
method testBoxIntersection(cTuple &ql, cTuple &qh) which initialize the
problem and then solve it. Other options set to speed up the optimization
are:

• convex=1 – assert the problem is convex thus disabling special treat-
ment required by non-convex problems

• quadratic=1 – assert the problem is quadratic

• lincons=1 – assert the problem has only linear constraints

As a starting point of optimization is given the center of the box.

For further details please consult [Van06].

We have performed a performance tests to compare the efficiency of the
ellipsoid–box vs the box–box intersection testing which are presented in Fig-
ure 5.3. The performance test were carried out on 2,2 GHz AMD Turion, the
problem was implemented in C++. Test consisted of 50 iterations. In each
iteration, we randomly generated one ellipsoid/box and tested it for intersec-
tion with 5000 other randomly generated boxes. In Figure 5.3 are presented
measured times recalculated for one ellipsoid/box–box intersection test. We
can observe, that the Ellipsoid–Box intersection test is much more expensive
in terms of CPU time than Box–Box intersection test.

CHAPTER 5. IMPLEMENTATION 40

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2
x 10

−3

Dimension

tim
e(

s)

Box
Ellipsoid

(a)

Dimension Box Ellipsoid
2 3.12e-7 4.03e-5
3 3.74e-7 4.34e-5
4 5.00e-7 4.45e-5
6 8.12e-7 4.58e-5
8 6.86e-7 4.93e-5
10 8.12e-7 6.02e-5
12 1.12e-6 6.76e-5
14 1.19e-6 1.06e-4
16 1.20e-6 2.30e-4
18 1.37e-6 5.22e-4
20 1.94e-6 1.01e-3

(b)

Figure 5.3: Comparison of the Ellipsoid–Box and the Box–Box intersection
test.

5.2.3 Bounding Ellipsoid by a Box

The algorithm to bound ellipsoid by a box can be considered as näıve, but
for our purposes seems to be sufficient. In future, here can by applied further
optimization.

The algorithm to compute bounding box of ellipsoid is as follows:

Algorithm 6 Bound an ellipsoid by a box.

Require: ε(c, ellipsoidShape)
1: [V D] = eig(ellipsoidShape) {eigenvalue decomposition}
2: vertexes = computeEllipsoidVertexes(V,D) {compute all vertexes of el-

lipsoid}
3: ql = min(vertexes)
4: qh = max(vertexes)
5: isEllipsoidBounded = test(ql,qh) {test, whether ellipsoid is bounded}
6: while !isEllipsoidBounded do
7: ql = ql - approximationDefect
8: qh = qh + approximationDefect
9: isEllipsoidBounded = test(ql,qh)

10: end while
11: return

To test, whether ellipsoid is bounded by box, distance of all the box faces

CHAPTER 5. IMPLEMENTATION 41

from ellipsoid are computed (see 4.4.2).

Chapter 6

Experimental Results

In this section, we give our experimental results. First, we provide a char-
acteristics of data sets used to benchmark the eR-tree. Then we describe
the indexing performance together with parameters measured. Finally, we
describe the querying performance. As a result, we aim to classify which
data is suitable for the eR-tree.

6.1 Notes on a measurements

6.1.1 Measurement settings

All experiments were performed on the 2.2 GHz AMD Turion processor, 1GB
RAM, with 5400-rpm hard drive. C++ source code was compiled with VC
8.0 in the windows XP environment (fs=NTFS).

6.1.2 Measured Parameters

I/O The I/O cost is the most meaningful indicator of the index structure
performance. Because in practice greater deal of the cache is dedicated
to the inner nodes compared to the leaf nodes (often all inner nodes
are hold in a RAM), we will separately measure the I/O operations for
the inner nodes and the leaf nodes, so it can be estimated what can be
the expected I/O savings when placing inner nodes into the RAM.
ATOM provides one 2-dimensional[h,w] cache table for the inner nodes
and one (of the same structure) for the leaf nodes (position of the node

42

CHAPTER 6. EXPERIMENTAL RESULTS 43

in table is node index%h, then LRU stategy is used to place colliding
nodes in w positions). We will separately measure real I/O (actual
access to secondary storage) and I/O answered by the cache. In graphs,
we will stick to present sum of real I/O and cache hits so the results
are not confinguration dependent (how much memory is allocated to
cache). If the reader is interested in the number of real I/O and number
of cache hits, we advice him to examine log files. See B for organization
of attached compact disk with log files. During the tests, the cache of
default size 20x2 will be used, if not otherwise stated.

Execution Time We will present execution time in test results, however
we believe this is the least significant attribute describing structure
performance. As “Execution Time” will be presented process user time.

6.1.3 Opposing R-tree

For a comparison, results for eR-tree are presented along with results for
R-tree. Opposing R-tree is original Guttman’s version [Gut84] with small
modifications. These modifications try to avoid regions overlaps at the cost of
higher dead space coverage. It is discussed in [BKSS90] that regions overlaps
have worse impact on the search performance than the dead space coverage;
therefore, these modifications should slightly improve the performance of the
original R-tree.

6.2 Data Sets

Here we describe data sets used to benchmark the eR-tree. Notice, that
we did not tested eR-tree on non-clustered data with Gaussian (or uniform)
distribution as is usual, because it is clear that the eR-tree will be outper-
formed by any variation of the R-tree which uses MBRs (MBRs tend to
produce much less overlaps than ellipsoids and with non-clustered Gaussian
data overlapings becomes barely the only determinating factor of the perfor-
mance). However, without giving any further details, the eR-tree on non-
clustered Gaussian data required in average 15% more I/O than the R-tree
in our perfunctory tests.

CHAPTER 6. EXPERIMENTAL RESULTS 44

0 2 4 6 8 10

x 10
5

0

2

4

6

8

10
x 10

5

(a) 1x105 point data set.

0 2 4 6 8 10

x 10
5

0

2

4

6

8

10
x 10

5

(b) 1x106 point data set.

2.55 2.6 2.65 2.7 2.75

x 10
5

3

3.05

3.1

3.15

3.2

x 10
5

(c) Zoomed clusters.

Figure 6.1: 2-dimensional synthetic clustered data.

6.2.1 Synthetic Clustered data

To approximate real data, we have generated clustered data with uniform dis-
tribution inside the clusters. Data sets with sizes 1x104, 4x104, 8x104, 1x105,
5x105, 1x106, 2x106 were generated1. The domain size is 1x106. One clus-
ter contains 1000 points and is generated with rand((0, 1 >)*10000 spread.
Two-dimensional data are presented in Figure 6.1. Individual records were
randomized prior storing (so they are not indexed “cluster by cluster” but
randomly).

6.2.2 Real IMDB data

To evaluate the eR-tree on real data we reached for the well-known movie
database IMDB2. Because the database is distributed as separate text files
(actors.txt, titles.txt, ...), first we converted data into SQL database using
imdbpy3 project. As a byproduct of the conversion all required text elements
were assigned with a numerical value (primary keys of relevant tables) which
are indexed (eR-tree implementation can index only numerical data, not
lexical). Afterward we generated desired data set with select statement:

SELECT Title.id, Cast.person_id, Info.genre, Title.production_year,
Title.kind_id, FROM Title

INNER JOIN cast_info Cast ON
Cast.movie_id = Title.id AND
C.role_id = 8 //only directors

1In further text we will refer to this data sets as SCU1x4, SCU4x4, etc.
2Available at http://www.imdb.com/
3http://imdbpy.sourceforge.net/

http://www.imdb.com/
http://imdbpy.sourceforge.net/

CHAPTER 6. EXPERIMENTAL RESULTS 45

Attribute MIN MAX

Title.id 1 1137185
Cast.person id 31 1824450

Info.genre 2 29
Title.production year 1519 2013

Title.kind id 1 7

Figure 6.2: Cardinality of individual attributes of the IMDB data set.

INNER JOIN movie_info Info ON
Info.movie_id = Title.id AND
Info.info_type_id = 3 //genre id

The semantics of the attributes in select statement is summarized below:

Title.id is an id of the movie. Each movie can appear in result set only
once.

Cast.person id is an id of the movie director. If the movie has been di-
rected by multiple directors, the first one is chosen.

Info.genre is an id of the movie genre. If the movie was tagged with multiple
genres (war, drama, ...) the first genre was chosen.

Title.production year is a production year of the movie.

Title.kind id is an id of the movie “kind” (evening movie, short movie,
serie, ...)

Each record of the result set represents point in 5 dimensional space. Entire
result set consist of 392689 records. Cardinality of individual attributes can
be found in Table 6.2.

6.2.3 Real Trajectory data

Trajectory data set consists of 276 trajectories of 50 trucks delivering goods
in Athens city district for 33 days4. Each record consist of x pos, y pos, date
(unix time), truck id., X and Y coordinates are in GGRS87 reference system.
Trajectory data set consist of 112203 individual records. Distribution of the
positional coordinates can be found in Figure 6.3. Data is ordered by the time
as they were captured, as they would be inserted into database in real-life.

4Available at http://www.rtreeportal.org/datasets/trajectories/trucks.zip

http://www.rtreeportal.org/datasets/trajectories/trucks.zip

CHAPTER 6. EXPERIMENTAL RESULTS 46

4.5 4.6 4.7 4.8 4.9 5 5.1

x 10
5

4.18

4.19

4.2

4.21

4.22

4.23

4.24
x 10

6

Figure 6.3: X,Y attributes of the trajectory data set.

6.3 Indexing

6.3.1 Index size and utilization

Here we compare the eR-tree with the R-tree in terms of the index size. All
data sets were tested with dimension equal to 5 (except trajectory data set,
which is comprised of only 4 dimensional entries). Both structures have node
size set to 4096 KB (page aligned).
In Table 6.1 are provided measured values. On the left from the double
vertical line are the results for the eR-tree; on the right are the results for
the R-tree. Together with index sizes are provided counts of the inner nodes
(#IN) and the leaf nodes (#LN). We can notice that on SCU data sets
eR-tree reached better results than the R-tree in terms of the index size.
The opposite holds for IMDB and TRAJ data sets. The question is, what
is the reason of this behaviour? First, we will answer, weather the eR-tree
performance deteriorates on real data sets or contrary the R-tree performance
improves on real dataset.

To answer this question we will study space utilization of both trees. Space
utilization represent in per cents how “good” is space being occupied by index
utilized. If space utilization of the eR-tree with real data set will decrease,
we will know, that eR-tree’s performance is degrading on real datasets. Re-

CHAPTER 6. EXPERIMENTAL RESULTS 47

Data Set eR size #IN #LN R size #IN #LN

SCU1x4 352 7 80 488 14 107
SCU4x4 1544 30 355 2244 147 413
SCU8x4 3260 76 738 4992 407 840
SCU1x5 3620 60 844 5232 265 2042
SCU5x5 22072 650 4867 29532 2064 5318
SCU1x6 43136 1194 9589 55080 3160 10609
SCU2x6 92369 3307 19791 110060 6439 21075
IMDB 18188 387 3959 15156 204 3584
TRAJ 4868 99 1117 3668 20 896

Table 6.1: Comparison of eR-tree and R-tree index sizes, in KB.

versely, if the R-tree utilization will increase with real data sets, we will know
that R-tree’s performance is improving.

We distinguish following types of space utilization:

Leaf nodes utilization(LeafU) express how many items of all leaf nodes
items are actually occupied. Recall, that leaf nodes are comprised of
items (same as inner nodes) and that the maximum number of items
node can hold is called fanout. For example, having index that holds
400 entries and is comprised of 4 leaf nodes, where fanout of one leaf
nodes is 150 we will get 400/(4∗150)∗100 = 67% leaf nodes utilization.
In brief, leaf node utilization represents how much are leaf nodes full.

Pre-leaf nodes utilization(PLeafU) represents utilization of the pre-leaf
nodes. Because inner nodes and pre-leaf nodes have different fanout,
we have to count them separately. This applies only to the eR-tree.

Inner nodes utilization(InnerU) is the same as leaf node utilization but
for inner nodes. When computing utilization of eR-tree first we com-
pute utilization of inner nodes and pre-leaf nodes. The resulting uti-
lization is the average of those two utilizations.

Avarage utilization(AvgU) is average utilization of leaf nodes and inner
nodes.

In Table 6.2 are presented the results. On the left from the doubled vertical
line are results for the eR-tree, on the right for the R-tree. We can observe,
that R-tree’s performance is increasing on real data sets – ≈62% compared
with ≈49% space utilization on SCU data sets. However, also eR-tree’s

CHAPTER 6. EXPERIMENTAL RESULTS 48

Data Set AvgU InnerU LeafU PLeafU AvgU InnerU LeafU

SCU1x4 73 41.5 73.5 70 51.9 9.2 55
SCU4x4 66 59.6 66.3 64 48.4 4.1 57
SCU8x4 63.6 53.6 63.8 51.7 45 3.3 56
SCU1x5 69.7 74.4 69.7 75.2 50.2 5.3 56.5
SCU5x5 59.2 20.5 60.4 67.1 46.3 3.8 55.3
SCU1x6 60.7 30 61.3 49.7 48.3 4.7 55.4
SCU2x6 58.6 25.8 59.4 34.9 48.5 4.6 55.8
IMDB 57.8 33.1 58.3 37.7 63.1 20.0 64.5
TRAJ 49.2 45.7 49.2 43.8 61.1 40.5 61.4

φ 62 43 62 55 51 11 57

Table 6.2: Node utilization of the eR-tree and the R-tree.

performance is degrading with real data sets – ≈53% compared with ≈64%
space utilization on SCU data sets. In the talbe we can also notice very poor
space utilization of the inner nodes of the R-tree.

6.3.2 Impact of a stopping criterion on indexing speed

Here we will discuss impact of a stopping criterion (more meaningful term
would be tolerance) of the algorithm used to construct MVCE. Stopping cri-
terion express how “good” the approximation of MVCE is, possible values
are from interval (0,1). The scalar represent how big discrepancy between
the approximation and “absolute” MVCE is bearable for us (stopping cri-
terion equal to 0.001 will produce small discrepancies, on the other hand,
stopping criterion equal to 0.9 will produce noticeable discrepancies). With
stopping criterion, two important parameters in context of the eR-tree are
determinated:

1. The indexing speed. Approximation that is more precise requires more
iterations of the MVCE construction algorithm. We would like to index
as fast as possible, so we would like the stopping criterion to approach
to 1.

2. The dead space coverage. Approximation that is more precise will
produce ellipsoids smaller in volume. Therefore, we would like to have
stopping criterion approaching 0.

CHAPTER 6. EXPERIMENTAL RESULTS 49

00.10.20.30.40.5
0

5

10

15

20

25

30

35

40

tolerance

tim
e
(s

)

dim=3
dim=5
dim=8

Dimension
3 5 8

T
ol

er
an

ce

0.5 2.04 1.71 1.90
0.3 1.67 1.51 2.76
0.1 2.25 2.21 6.18
0.05 4.3 4.34 9.75
0.03 6.09 8.75 12.96
0.01 20.9 35.15 72.56

R-tree 1.68 2.62 4.625

Figure 6.4: Stopping criterion (tolerance) as a parameter of indexing speed.
Measured values are in seconds.

In Figure 6.4 we present the results of experiment, where we indexed SCU1x4
data set in different dimensions with different stopping criterions. In the
graph, we can see the speed of indexing as a parameter of stopping criterion.
In the table on the right are actual data used to generate the graph. In
the bottommost line of the table is presented the time of the R-tree for
comparison. In the table we can notice some inconsistencies (like indexing
3-dimensional data is faster with tolerance=0.3 compared to tolerance=0.5).
Closer examination of the log file revealed, that this “inconsistency” is caused
by a cache. This table gives us overview of the impact of stopping criterion
on indexing speed – first parameter determinated by stopping criterion.

How is the second parameter affected by the stopping criterion? The answer
can be found in Table 6.3. It is out of the scope of this work to compute
exact intersecting volume of MBR and ellipsoid, therefore we will present
volume of the pre-leaf nodes separately for ellipsoids and MBRs. In Table
6.3 we can see measured volume (E) for ellipsoids and (MBR) for MBRs. In
the bottommost line are equivalent volume measurements for the R-tree.

We can observe that increasing accuracy of the approximation does not lead
to significant reduction in volume, in contrast to indexing speed, where we
could observe that higher accuracy require much more execution time. From
this observation we can conclude, that the most suitable value for stopping
criterion could be ≈ 0.1, which will be used in the rest of experiments, if not
otherwise stated.

CHAPTER 6. EXPERIMENTAL RESULTS 50

Dimension
3(E) 3(MBR) 5(E) 5(MBR) 8(E) 8(MBR)

T
ol

er
an

ce

0.5 5.45e12 2.26e12 6.46e21 2.80e26 8.56e48 2.77e45
0.3 5.01e12 2.28e12 5.21e21 2.81e26 3.94e48 1.56e46
0.1 4.11e12 2.31e12 8.77e20 1.26e25 1.08e49 5.79e45
0.05 3.38e12 2.31e12 2.67e21 2.61e26 3.99e48 1.14e46
0.03 3.08e12 2.36e12 5.08e20 1.27e25 1.29e48 1.35e46
0.01 2.82e12 2.35e12 1.69e21 2.88e26 1.57e48 1.06e45

R-tree 1.69e17 2.03e28 1.60e44

Table 6.3: Volume of the pre-leaf nodes.

Dimension
3 4 5 8 10 12

F
an

ou
t Inner node 146 113 93 60 48 40

InneLeaf 39 26 19 9 6 4
Leaf node 255 204 170 113 92 78

Table 6.4: THe node fanout.

6.3.3 Node Fanout

In Table 6.4 we can study the fanout of the inner, pre-leaf and leaf nodes of
the eR-tree. Node size was set to 4096KB. The R-tree’s inner node fanout is
same as fanout of inner nodes of eR-tree (both holds only MBR), the same
holds also for leaf nodes. A poor fanout of the pre-leaf nodes is caused by
huge space requirements of ellipsoids. To store ellipsoid we need to store
dimension× dimension symmetric shape matrix and dimension× 1 center
of the ellipsoid. Taking in account, that the elements of the shape matrix are
of double type (8 bytes) we will end up with (((dimension+1)∗dimension∗
8/2) + (dimension ∗ 8) + (2 ∗ dimension ∗ 4)) bytes required to store one
pre-leaf node item. First addend is for shape matrix, second for ellipsoid
center, third for MBR. Using float type instead of double should double the
pre-leaf nodes fanout.

The node fanout directly affects the performance of the tree, as smaller
fanouts lead to higher trees and obviously more I/O. In Table 6.5 are shown
heights of indices from section 6.3.1. Columns with (*) denotes the theoret-
ical height with 100% node utilization.

CHAPTER 6. EXPERIMENTAL RESULTS 51

Height
eR-tree R-tree eR-tree(*) R-tree(*)

D
at

a
se

t
SCU1x4 2 2 2 1
SCU4x4 2 3 2 2
SCU8x4 2 4 2 2
SCU1x5 2 3 2 2
SCU5x5 4 8 3 2
SCU1x6 4 7 3 2
SCU2x6 5 8 3 2
IMDB 3 3 3 2
TRAJ 2 2 2 2

Table 6.5: Tree height.

6.3.4 Impact of a data set size on indexing speed

In this section, we present the average cost of inserting a new entry into eR-
tree index holding various amount of data. In Figure 6.5 are shown results
measured on the SCU1x5 data set. In subfigure (a) is plotted average CPU
time required for insertion of one new entry. Results for I/O are given in
subfigure (b). Read and writes are measured separately. We can observe,
that eR-tree requires ≈ 30% less CPU compared with R-tree when indexing
SCU1x5.

1 2 3 4 5 6 7 8 9 10

x 10
4

3

3.5

4

4.5

5

5.5
x 10

−4

Set size

T
im

e
(s

)

eR−tree
R−tree

(a) CPU time

1 2 3 4 5 6 7 8 9 10

x 10
4

1

1.5

2

2.5

3

3.5

4

Set size

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

eR−tree write
eR−tree read
R−tree write
R−tree read

(b) Number of disk accesses

Figure 6.5: Insertion cost on SCU1x5 data set with dimension equal to 5.

In Figure 6.6 is presented an average cost of insertion of a new entry of
IMDB data set. I/O costs are approximately the same for the eR-tree and

CHAPTER 6. EXPERIMENTAL RESULTS 52

the R-tree. Noticeable is a fact, that the absolute CPU time is ≈ 50% higher
when indexing IMDB data set compared with SCU1x5 (both for eR-tree and
R-tree; insert of one new entry of the SCU1x5 data set takes ≈ 4x10−4 and
insert of one new entry of the IMDB data set takes ≈ 8x10−4). I/O keeps
about the same level when comparing IMDB and SCU1x5 data sets.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

3

4

5

6

7

8

9

10

11

12
x 10

−4

Set size

T
im

e
(s

)

eR−tree
R−tree

(a) CPU time

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

1

1.5

2

2.5

3

3.5

4

Set size

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

eR−tree write
eR−tree read
R−tree write
R−tree read

(b) Number of disk accesses

Figure 6.6: Insertion cost on IMDB data set with dimension equal to 5.

6.3.5 Impact of a dimension on indexing speed

Measurements of the insertion cost of a new entry as a parameter of the
dimension could by found in Figure 6.7 and 6.8. In the first figure, results of
SCU1x5 data set are presented. Measured dimensions were 2,4,6,8,10,12,14.
In subfigure (a) average CPU time required to insert one new entry is de-
picted. In subfigure (b) average reads and writes are show. CPU usage is
approximately equivalent for eR-tree and R-tree. In terms of I/O, eR-tree
slightly overcomes R-tree.

In the second Figure 6.8 results for IMDB data set are presented. Dimensions
1, 2, 3, 4 were tested. We can observe that in 1 dimensional case R-tree is
significantly faster than eR-tree.

6.3.6 Other interesting facts

For the sake of completeness, in Table 6.6 are provided counts of ellipsoid
constructions when indexing different data sets. In parenthesis is specified
dimensionality of indexed set. We can observe, that dimensionality has high

CHAPTER 6. EXPERIMENTAL RESULTS 53

0 2 4 6 8 10 12 14
2

3

4

5

6

7

8

9

10

11

x 10
−4

Dimension

T
im

e
(s

)

eR−tree
R−tree

(a) CPU time

0 2 4 6 8 10 12 14
0

1

2

3

4

5

6

7

8

9

Dimension
N

u
m

b
e

r
o

f
d

is
k

a
cc

e
ss

e
s

eR−tree write
eR−tree read
R−tree write
R−tree read

(b) Number of disk accesses

Figure 6.7: Insertion cost on SCU1x5 data set with varying dimension.

0 1 2 3 4 5

1

2

3

4

5

6

7

8

9

10

11

x 10
−4

Dimension

T
im

e
(s

)

eR−tree
R−tree

(a) CPU time

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

Dimension

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

eR−tree write
eR−tree read
R−tree write
R−tree read

(b) Number of disk accesses

Figure 6.8: Insertion cost on IMDB data set with dimension 1, 2, 3, 4.

CHAPTER 6. EXPERIMENTAL RESULTS 54

Data Set(dimension)

SCU1x4(5) SCU4x4(5) SCU8x4(5) SCU1x5(5) SCU5x5(5)
272 1328 2874 3041 19867

SCU1x6(5) SCU2x6(5) IMDB(5) TRAJ(5)
36682 78503 33710 16607

SCU1x5(2) SCU1x5(6) SCU1x5(10) SCU1x5(12) SCU1x5(14)
1023 5153 15638 27986 36748

Table 6.6: Number of ellipsoid constructions when indexing.

impact on the number of ellipsoid constructions. E.g. approximately same
number of ellipsoid constructions is required when indexing 1x106(5 dim)
and 1x105(14 dim) data sets.

6.4 Querying

6.4.1 Query set

To analyze a query performance different query sets were generated in ad-
vance. One query set consist of 1000 individual queries. Results for one
query set are presented as the average of all individual queries included in
the set. Each query set is characterized by a selectivity. The selectivity of the
query denotes the number of hits it returns. All individual queries included
in query set have equal selectivity. It is important to have selectivity fixed,
when e.g. studying I/O costs of the index with varying size, as the I/O costs
are closely related to the number of hits returned by the query.

We will explore the eR-tree properties with query sets with selectivity equal
to 3, if not otherwise stated.

6.4.2 Impact of a data set size on a querying speed

In this section, we will study the impact of the data set size on querying speed.
Data sets SCU1x4 to SCU2x6 were indexed and then queried. Results are
presented in Figure 6.9. In the subfigure (a) and (c) is presented execution
time – average CPU time required to evaluate one query of the query set of
selectivity 3 and 50. The eR-tree appears to be outperformed by the R-tree.
R-tree in average requires only 75% of the time required by eR-tree. In the

CHAPTER 6. EXPERIMENTAL RESULTS 55

left subfigure (b) and (d) are drawn I/O costs. On the left y-axis is shown
total number of the I/O required to fulfill the query. On the right y-axis is
shown the number of leaf nodes searched during the query evaluation. Here
we can notice in contrary to CPU costs that the eR-tree outperforms R-tree.
The eR-tree requires in average only 72% of R-tree I/O operations.

Now comes into question: Why is eR-tree slower in terms of CPU time, but
faster in terms of the I/O? We believe that the answer is that the eR-tree
is slower in terms of CPU time because the cost of the test for ellipsoid and
query window intersection is much more expensive, than the cost of the test
for MBR and query window intersection. This inefficiency was expected and
is the reason why ellipsoids are only in the pre-leaf nodes, not in all inner
nodes. In addition, we have to admit that the poor I/O results of the R-tree
are partially results of the worse space utilization compared with the eR-tree
(revisit section 6.3.1, R-tree requires more nodes to accommodate the same
data). To prove our believe, we have disabled the ellipsoid intersection test
(only MBR of the pre-leaf nodes are tested for intersection with query win-
dow) and rerun the experiment again. The CPU time dropped significantly,
as can be observed in subfigure 6.9 (a).

Why eR-tree requires significantly less I/O operations? Differences in space
utilization can be eliminated because the differences are negligible and cannot
lead to so significant difference in querying I/O costs. Other explanation can
be that many regions are not searched (saved I/O) because of ellipsoids. I.e.
query window intersect with MBR in the pre-leaf node, but not with ellipsoid.
In Table 6.7 are provided average counts of pre-leaf nodes encountered during
query evaluation, where MBR do intersect query window, but ellipsoid don’t
(revisit motivation in Figure 3.1). The counts are also insignificant compared
to total I/O (12.6 � 375) and cannot be the reason of the differences in
querying I/O costs. We believe that the true explanation is in algorithm of
leaf node splitting.

Query Set
SCU1x4 SCU4x4 SCU8x4 SCU1x5 SCU5x5 SCU1x6 SCU2x6

0.03 0.06 0.1 0.02 3.2 5.5 12.6

Table 6.7: Number of pre-leaf nodes not searched due to ellipsoids for SCU
data set.

Figure 6.10 depicts query costs for IMDB data set. Subset with 4x104, 8x104,
12x104, 16x104, 20x104, 24x104, 28x104, 32x104, 36x104, 40x104 entries were
indexed. Average CPU time required to evaluate one query of the query set

CHAPTER 6. EXPERIMENTAL RESULTS 56

0 0.5 1 1.5 2

x 10
6

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Set Size

T
im

e
(s

)

eR−tree
R−tree
eR−tree w/o ellipsoid intersection test

(a) CPU time, Selectivity=3

0 0.5 1 1.5 2

x 10
6

0

100

200

300

400

500

600

700

800

Set Size

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

Query Set Selectivity 3

0 0.5 1 1.5 2

x 10
6

0

100

200

300

400

500

600

700

800

N
u

m
b

e
r

o
f

le
a

f
re

g
io

n
s

se
a

rc
h

e
d

eR−tree total I/O
R−tree total I/O
eR−tree leaf searched
R−tree leaf searched

(b) Number of disk accesses, Selectiv-
ity=3

0 0.5 1 1.5 2

x 10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Set Size

T
im

e
(s

)

eR−tree
R−tree

(c) CPU time, Selectivity=50

0 0.5 1 1.5 2

x 10
6

0

400

800

1200

1600

2000

2400

2800

3200

Set Size

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

0 0.5 1 1.5 2

x 10
6

0

400

800

1200

1600

2000

2400

2800

3200

N
u

m
b

e
r

o
f

re
g

io
n

s
se

a
rc

h
e

d

eR−tree total I/O
R−tree total I/O
eR−tree region searched
R−tree region searched

(d) Number of disk accesses, Selectiv-
ity=50

Figure 6.9: Querying cost as a parameter of set size. Results for SCU data
set with dimension equal to 5.

CHAPTER 6. EXPERIMENTAL RESULTS 57

of selectivity 3 and 50 is shown in the subfigure (a) and (c). The eR-tree
is again outperformed by the R-tree (R-tree requires in average only 65%
of the eR-tree time). However in the subfigure (d) we can see, that eR-tree
outperforms R-tree in terms of I/O. E.g. on the whole IMDB data set eR-
tree requires only 1049 I/O operations compared to R-tree’s 1410 operation
to evaluate the same query. As the data set size increases, the discrepancy
between eR-tree and R-tree I/O grows.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Set Size

T
im

e
(s

)

eR−tree
R−tree

(a) CPU time, Selectivity=3

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

60

120

180

240

300

360

420

480

Set Size

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

60

120

180

240

300

360

420

480

N
u

m
b

e
r

o
f

re
g

io
n

s
se

a
rc

h
e

d

eR−tree total I/O
R−tree total I/O
eR−tree region searched
R−tree region searched

(b) Number of disk accesses, Selectiv-
ity=3

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Set Size

T
im

e
(s

)

eR−tree
R−tree

(c) CPU time, Selectivity=50

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

500

1000

1500

Set Size

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
5

0

500

1000

1500

N
u

m
b

e
r

o
f

re
g

io
n

s
se

a
rc

h
e

d

eR−tree total I/O
R−tree total I/O
eR−tree region searched
R−tree region searched

(d) Number of disk accesses, Selectiv-
ity=50

Figure 6.10: Querying cost as a parameter of set size. Results for IMDB data
set with dimension equal to 5.

For the sake of completeness in Figure 6.11 are shown querying costs for the
trajectory data set.

CHAPTER 6. EXPERIMENTAL RESULTS 58

2 4 6 8 10 12

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Set Size

T
im

e
(s

)

eR−tree
R−tree

(a) CPU time, Selectivity=3

2 4 6 8 10 12

x 10
4

0

20

40

60

80

100

120

140

160

Set Size

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

2 4 6 8 10 12

x 10
4

0

20

40

60

80

100

120

140

160

N
u

m
b

e
r

o
f

re
g

io
n

s
se

a
rc

h
e

d

eR−tree total I/O
R−tree total I/O
eR−tree regions searched
R−tree regions searched

(b) Number of disk accesses, Selectiv-
ity=3

2 4 6 8 10 12

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Set Size

T
im

e
(s

)

eR−tree
R−tree

(c) Number of disk accesses, Selectiv-
ity=3

2 4 6 8 10 12

x 10
4

0

50

100

150

200

250

300

350

400

Set Size

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

2 4 6 8 10 12

x 10
4

0

50

100

150

200

250

300

350

400

N
u

m
b

e
r

o
f

re
g

io
n

s
se

a
rc

h
e

d

eR−tree total I/O
R−tree total I/O
eR−tree regions searched
R−tree regions searched

(d) CPU time, Selectivity=50

Figure 6.11: Querying cost as a parameter of set size. Results for the trajec-
tory data set with dimension equal to 4.

6.4.3 Impact of a dimension on a querying speed

How does dimension affect the query performance? To answer this question
SCU1x5 data set in dimension 2, 4, 6, 8, 10, 12, 14 was indexed and than
queried. The results presented in Figure 6.12 clearly shows that in higher
dimensions eR-tree cannot by compared with R-tree as it require more time
and more I/O operations. In the left subfigure (a) and (c) we can see that
CPU time grows exponentially. The explanation is simple. As the dimen-
sion increases, the test of ellipsoid and query window intersection becomes
more and more expensive. Recall, that this test is solved as an optimization
problem and in higher dimension there are “more” directions in which this
optimization can “go”. In the right subfigure (b) and (d) we can notice, that

CHAPTER 6. EXPERIMENTAL RESULTS 59

the eR-tree requires also more I/O. This is also the result of mentioned inter-
section test. The optimization can execute at most 60 iterations. If it does
not manage to solve the problem in those 60 iterations, the optimization is
stopped with return value true(i.e. ellipsoid do intersect query window). It
is cheaper to search a region, than leave optimization to go through e.g. 500
iterations. Just for comparison, full scan with dimension equal to 14 would
require 1470 I/O operations compared with 120 I/O required by eR-tree –
i.e. it is still worth to use index.

2 4 6 8 10 12 14
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

Dimension

T
im

e
(s

)

eR−tree
R−tree

(a) CPU time, Selectivity=3

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

Dimension

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

N
u

m
b

e
r

o
f

re
g

io
n

s
se

a
rc

h
e

d

eR−tree total I/O
R−tree total I/O
eR−tree regions searched
R−tree regions searched

(b) Number of disk accesses, Selectiv-
ity=3

2 4 6 8 10 12 14
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

Dimension

T
im

e
(s

)

eR−tree
R−tree

(c) CPU time, Selectivity=50

2 4 6 8 10 12 14
0

30

60

90

120

140

Dimension

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

2 4 6 8 10 12 14
0

30

60

90

120

140

N
u

m
b

e
r

o
f

le
a

f
re

g
io

n
s

se
a

rc
h

e
d

eR−tree total I/O
R−tree total I/O
eR−tree leaf searched
R−tree leaf searched

(d) Number of disk accesses, Selectiv-
ity=50

Figure 6.12: Querying cost as a parameter of dimension. SCU1x5 data set
with dim=2, 4, 6, 8, 10, 12, 14.

In Figure 6.13 are shown measured values for IMDB data set with dimension
1, 2, 3, 4, 5. We can conclude, that eR-tree is more suitable for data with
low dimensionality.

CHAPTER 6. EXPERIMENTAL RESULTS 60

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Dimension

T
im

e
(s

)

eR−tree
R−tree

(a) CPU time, Selectivity=3

1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

Dimension

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

1 1.5 2 2.5 3 3.5 4 4.5 5
0

50

100

150

200

250

300

350

N
u

m
b

e
r

o
f

le
a

f
re

g
io

n
s

se
a

rc
h

e
d

eR−tree total I/O
R−tree total I/O
eR−tree leaf searched
R−tree leaf searched

(b) Number of disk accesses, Selectiv-
ity=3

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Dimension

T
im

e
(s

)

eR−tree
R−tree

(c) CPU time, Selectivity=50

1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

Dimension

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

1 1.5 2 2.5 3 3.5 4 4.5 5
0

500

1000

1500

N
u

m
b

e
r

o
f

le
a

f
re

g
io

n
s

se
a

rc
h

e
d

eR−tree total I/O
R−tree total I/O
eR−tree leaf searched
R−tree leaf searched

(d) Number of disk accesses, Selectiv-
ity=50

Figure 6.13: Querying cost as a parameter of dimension. IMDB data set
with dim=1,2,3,4,5.

6.4.4 Impact of a selectivity on a querying speed

How does selectivity affect query performance? In previous experiments, we
could see differences between query set of selectivity 3 and selectivity 50. To
thoroughly investigate impact of selectivity on query performance, SCU1x6
data set was queried with query sets of selectivity 0, 1, 3, 5, 10, 30, 50, 100.
The results are presented in Figure 6.14. It can be seen, that eR-tree is
taking advantage of higher selectivity. The same can be observed in Figure
6.15 where IMDB data set is subject of evaluation.

CHAPTER 6. EXPERIMENTAL RESULTS 61

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Selectivity

T
im

e
(s

)

eR−tree
R−tree

(a) CPU time

0 20 40 60 80 100
0

200

400

600

800

1000

1200

Selectivity
N

u
m

b
e

r
o

f
d

is
k

a
cc

e
ss

e
s

0 20 40 60 80 100
0

100

200

300

400

500

600

N
u

m
b

e
r

o
f

le
a

f
re

g
io

n
s

se
a

rc
h

e
d

eR−tree total I/O
R−tree total I/O
eR−tree leaf searched
R−tree leaf searched

(b) Number of disk accesses

Figure 6.14: Querying cost as a parameter of a selectivity. SCU1x6 data set
used.

0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Selectivity

T
im

e
(s

)

eR−tree
R−tree

(a) CPU time

0 20 40 60 80 100
0

500

1000

1500

Selectivity

N
u

m
b

e
r

o
f

d
is

k
a

cc
e

ss
e

s

0 20 40 60 80 100
0

500

1000

1500

N
u

m
b

e
r

o
f

le
a

f
re

g
io

n
s

se
a

rc
h

e
d

eR−tree total I/O
R−tree total I/O
eR−tree leaf searched
R−tree leaf searched

(b) Number of disk accesses

Figure 6.15: Querying cost as a parameter of a selectivity. IMDB data set
used.

Chapter 7

Conclusion

The goal of this thesis was to investigate the applicability of ellipsoids to the
R-tree index structure.
In section 4.2.2 and 6.3 we have proven with our experimental results that
a minimum volume covering ellipsoid construction is efficient enough to be
incorporated into R-tree index structure and therefore the idea of R-tree
with ellipsoidal regions is well worth of considering. Taking into account
attributes of the ellipsoids and having results of a deep survey of various
R-tree variants (Chapter 2), we have proposed our eR-tree (ellipsoid R-tree)
in Chapter 3, which was later the subject of thorough experiments. The aim
of all experiments was to confirm the benefits of ellipsoids in R-tree, reveal
their possible demerits and eventually to point out the direction of further
investigation.
We have found out, that eR-tree significantly outperforms R-tree in terms of
I/O on sparse clustered data, where ellipsoidal regions are superior to min-
imum bounding rectangles, because they tend to cover less dead space and
produce less overlaps. On data of high density, this advantage of ellipsoids
is being suppressed.
The most significant demerit of ellipsoids is a very expensive test of intersec-
tion with query window (section 5.2.2). The complexity of this test mostly
overcomes savings of the I/O operations. The second problem of ellipsoids is
their vast storage requirements (section 6.3.3), which degrade fanout of the
nodes leading into higher trees and bigger indices.
Considering demerits of ellipsoids, we still believe R-tree with ellipsoidal re-
gions is worth of further investigation. Attention should be paid to optimiza-
tion of ellipsoid and query window intersection test and splitting algorithms.
All further investigations should be in favor of a sparse data, where ellipsoids
overcome minimum bounding rectangles.

62

List of Algorithms

1 R-tree insert . 12
2 Search(P) . 20
3 MinVar Split . 21
4 Construct mvce(S,R) . 24
5 Ascent Gradient Method . 26
6 Bound an ellipsoid by a box. 40

63

List of Tables

6.1 Comparison of eR-tree and R-tree index sizes, in KB. 47
6.2 Node utilization of the eR-tree and the R-tree. 48
6.3 Volume of the pre-leaf nodes. 50
6.4 THe node fanout. 50
6.5 Tree height. 51
6.6 Number of ellipsoid constructions when indexing. 54
6.7 Number of pre-leaf nodes not searched due to ellipsoids for

SCU data set. 55

64

List of Figures

1.1 THe feature transformation. 6

2.1 Touched points. 10
2.2 The R-tree structure. 11
2.3 The SS-tree. 14

3.1 Covering points with an MBR and an ellipsoid. 17
3.2 The eR-tree composed of ellipsoids. 17
3.3 The eR-tree composed of ellipsoids and MBRs. 18
3.4 Death space coverage and overlapping split with ellipsoids. . . 19

4.1 The MVCE construction time as parameter of |S| and the dim. 27
4.2 Number of iterations required to construc the MVCE. 28
4.3 The MVCE construction time as parameter of |S| and tolerance. 29
4.4 3D ellipsoid with highlighted axes. 29

5.1 ATOM class diagram. 32
5.2 Class diagram of ATOM R-tree implementation. 35
5.3 Comparison of the Ellipsoid–Box and the Box–Box intersec-

tion test. 40

6.1 2-dimensional synthetic clustered data. 44
6.2 Cardinality of individual attributes of the IMDB data set. . . 45
6.3 X,Y attributes of the trajectory data set. 46
6.4 Stopping criterion (tolerance) as a parameter of indexing speed. 49
6.5 Insertion cost on SCU1x5 data set with dimension equal to 5. 51
6.6 Insertion cost on IMDB data set with dimension equal to 5. . 52
6.7 Insertion cost on SCU1x5 data set with varying dimension. . . 53
6.8 Insertion cost on IMDB data set with dimension 1, 2, 3, 4. . . 53
6.9 Querying cost as a parameter of set size. Results for SCU data

set with dimension equal to 5. 56

65

LIST OF FIGURES 66

6.10 Querying cost as a parameter of set size. Results for IMDB
data set with dimension equal to 5. 57

6.11 Querying cost as a parameter of set size. Results for the tra-
jectory data set with dimension equal to 4. 58

6.12 Querying cost as a parameter of dimension. SCU1x5 data set
with dim=2, 4, 6, 8, 10, 12, 14. 59

6.13 Querying cost as a parameter of dimension. IMDB data set
with dim=1,2,3,4,5. 60

6.14 Querying cost as a parameter of a selectivity. SCU1x6 data
set used. 61

6.15 Querying cost as a parameter of a selectivity. IMDB data set
used. 61

A.1 Plot of SCU4x4 data set holding 40000 entries. 69
A.2 MBRs of R-tree’s pre-leaf nodes holding SCU4x4 data set. . . 70
A.3 Ellipsoids of eR-tree’s pre-leaf nodes holding SCU4x4 data set. 70
A.4 Zoomed area of Figure A.3. 71
A.5 MBRs of eR-tree’s pre-leaf nodes holding SCU4x4 data set. . . 71
A.6 Plot of first 20000 entries of IMDB data set. 72
A.7 MBRs of R-tree’s pre-leaf nodes holding first 20000 entries of

IMDB data set. 72
A.8 Ellipsoids of eR-tree’s pre-leaf nodes holding first 20000 entries

of IMDB data set. 73
A.9 MBRs of eR-tree’s pre-leaf nodes holding first 20000 entries of

IMDB data set. 73
A.10 Plot of first 20000 entries of Trajectory data set. 74
A.11 MBRs of R-tree’s pre-leaf nodes holding first 20000 entries of

Trajectory data set. 74
A.12 Ellipsoids of eR-tree’s pre-leaf nodes holding first 20000 entries

of Trajectory data set. 75
A.13 MBRs of eR-tree’s pre-leaf nodes holding first 20000 entries of

Trajectory data set. 75

Bibliography

[Bar82] E. Barnes. An algorithm for separating patterns by ellipsoids.
Image Processing and Pattern Recognition, 26(6):759, 1982.

[BBK01] Christian Böhm, Stefan Berchtold, and Daniel Keim. Searching
in high-dimensional spaces: Index structures for improving the
performance of multimedia databases. ACM Computing Surveys,
33(3):321–373, September 2001.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bern-
hard Seeger. The r*-tree: An efficient and robust access method
for points and rectangles. In Hector Garcia-Molina and H. V.
Jagadish, editors, Proceedings of the 1990 ACM SIGMOD Inter-
national Conference on Management of Data, Atlantic City, NJ,
May 23-25, 1990, pages 322–331. ACM Press, 1990.

[Boy04] Stephen P. Boyd. Convex Optimization. Cambridge University
Press, 2004. http://www.stanford.edu/~boyd/cvxbook/.

[Gro03] Amphora Research Group. Amphora Tree Object Model (ATOM)
Book, 2003.

[GS97] Bernd Gärtner and Sven Schönherr. Smallest enclosing ellipses -
fast and exact. Report B 97-03, 1997.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spa-
tial searching. In Beatrice Yormark, editor, SIGMOD’84, Pro-
ceedings of Annual Meeting, Boston, Massachusetts, June 18-21,
1984, pages 47–57. ACM Press, 1984.

[KS97] Norio Katayama and Shin’ichi Satoh. The sr-tree: An index struc-
ture for high-dimensional nearest neighbor queries. In Joan Peck-
ham, editor, SIGMOD 1997, Proceedings ACM SIGMOD Inter-
national Conference on Management of Data, May 13-15, 1997,
Tucson, Arizona, USA, pages 369–380. ACM Press, 1997.

67

BIBLIOGRAPHY 68

[KT93] Leonid G. Khachiyan and Michael J. Todd. On the complex-
ity of approximating the maximal inscribed ellipsoid for a poly-
tope. Mathematical Programming: Series A and B, 61:137 – 159,
September 1993.

[KY05] Piyush Kumar and E. Alper Yildirim. Approximate minimum vol-
ume enclosing ellipsoids using core sets. Journal of Optimization
Theory and Applications, 1:1–21, July 2005.

[Mos05] Nima Moshtagh. Minimum volume enclosing ellipsoid. Convex
Optimization, 2005.

[Mur01] Katta G. Murty. Computational and Algorithmic Linear Algebra
and n-Dimensional Geometry, chapter Quadratic Forms, Positive,
Negative (Semi) Definiteness. Online WebBook, 2001.

[SM04] Peng Sun and Robert M. Freund. Computation of minimum vol-
ume covering ellipsoids. Discrete Applied Mathematics, 52:690706,
September October 2004.

[SRF87] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. The
r+-tree: A dynamic index for multi-dimensional objects. In
VLDB, pages 507–518, 1987.

[TY07] Michael J. Todd and E. Alper Yildirim. On khachiyan’s algorithm
for the computation of minimum-volume enclosing ellipsoids. Dis-
crete Applied Mathematics, 155:1731–1744, August 2007.

[Van06] Robert J. Vanderbei. Loqo users manual version 4.05. Technical
Report ORFE-99, Operations Research and Financial Engineer-
ing, Princeton University, 2006.

[Wel91] Emo Welzl. Smallest enclosing disks(balls and ellipsoids). Lecture
Notes in Computer Science, pages 359 – 370, 1991.

[WJ96] David A. White and Ramesh Jain. Similarity indexing with the ss-
tree. In ICDE ’96: Proceedings of the Twelfth International Con-
ference on Data Engineering, pages 516–523, Washington, DC,
USA, 1996. IEEE Computer Society.

[Yil06] E. Alper Yildirim. On the minimum volume covering ellipsoid of
ellipsoids. SIAM J. on Optimization, 17(3):621–641, 2006.

Appendix A

Visualization

How much overlaps does the eR-tree produce? How much dead space it cov-
ers? How does partitioning of the indexed space really look like? How it
differs from the R-tree? All this questions are answered in the most straight-
forward way – by an image. Selected data sets (or its portions) are plotted,
each in separate section, along with their eR-tree and R-tree indices.

A.1 SCU4x4 data set

0
1

2
3

4
5

6
7

8
9

10

x 10
5

0

2

4

6

8

10

x 10
5

0

1

2

3

4

5

6

7

8

9

10

x 10
5

Figure A.1: Plot of SCU4x4 data set holding 40000 entries.

69

APPENDIX A. VISUALIZATION 70

Figure A.2: MBRs of R-tree’s pre-leaf nodes holding SCU4x4 data set.

Figure A.3: Ellipsoids of eR-tree’s pre-leaf nodes holding SCU4x4 data set.

APPENDIX A. VISUALIZATION 71

Figure A.4: Zoomed area of Figure A.3.

Figure A.5: MBRs of eR-tree’s pre-leaf nodes holding SCU4x4 data set.

APPENDIX A. VISUALIZATION 72

A.2 IMDB data set

0

2

4

6

8

10

12

x 10
5

0

0.5

1

1.5

2

x 10
6

0

5

10

15

20

25

30

Figure A.6: Plot of first 20000 entries of IMDB data set.

Figure A.7: MBRs of R-tree’s pre-leaf nodes holding first 20000 entries of
IMDB data set.

APPENDIX A. VISUALIZATION 73

Figure A.8: Ellipsoids of eR-tree’s pre-leaf nodes holding first 20000 entries
of IMDB data set.

Figure A.9: MBRs of eR-tree’s pre-leaf nodes holding first 20000 entries of
IMDB data set.

APPENDIX A. VISUALIZATION 74

A.3 Trajectory data set

4.7

4.75

4.8

4.85

4.9

4.95

5

x 10
5

4.19
4.195

4.2
4.205

4.21
4.215

4.22
4.225

4.23
4.235

x 10
6

2.85

2.9

2.95

3

3.05

3.1

3.15

3.2

x 10
7

Figure A.10: Plot of first 20000 entries of Trajectory data set.

Figure A.11: MBRs of R-tree’s pre-leaf nodes holding first 20000 entries of
Trajectory data set.

APPENDIX A. VISUALIZATION 75

Figure A.12: Ellipsoids of eR-tree’s pre-leaf nodes holding first 20000 entries
of Trajectory data set.

Figure A.13: MBRs of eR-tree’s pre-leaf nodes holding first 20000 entries of
Trajectory data set.

Appendix B

Organization of attached
compact disk

B.1 Source Code

Source code is provided as Visual C++ 2005 project. eR-tree source code
can be found in /Source/eRtree directory. R-tree source code can be found
in /Source/Rtree directory.

B.2 Data Sets

Data sets are provided in /DataSets directory in “avs” file format.

B.3 Query Sets

All query sets can by found in /QuerySets directory. Query set name is of form
qSet[DATASETNAME][DATASETSIZE][SELECTIVITY] where DATASET-
NAME specifies for which data set was query set generated. DATASETSIZE
denote size of data set size (if only portion of data set was indexed, i.e. when
impact of data set size on querying speed was examined). SELECTIVITY
denotes selectivity of the query set.

B.4 Experimental Results

Log files of all experiments are included and contain some additional infor-
mation, which might be of interest. Log files for eR-tree are called eR.log.
Log files for R-tree are called R.log. In the first line of log file is written either

76

APPENDIX B. ORGANIZATION OF ATTACHED COMPACT DISK 77

name of data set being indexed, or name of query set that was issued against
the index.

Indexing log file

Index of each 100th element is logged into indexing log file. In case of eR-tree
indexing log file, ellipsoid constructions (e.g. Approximating 278(279) tuples
by khachiyanMVCE) are logged together with leaf node splitting events (Split
dimension 0 with splitOrder 270 choosen). At the end of the log file is written
time required to index data set, followed by volume of regions of pre-leaf
nodes, tree statistics and cache statistics. Statistics are self-explanatory.

Querying log file

First line of querying log file is followed by tree statistics. Next lines are of
form x (.*), where x is the number of hits returned by one query of query
set. .* specifies lower corner of query window. In the end of the log files
are written summary (for whole query set) cache and query statistics, which
should be also self-explanatory. Querying log file names can be suffixed by
e.g. S050, meaning that the query set of selectivity equal to 50 was used. If
the log name is not suffixed with selectivity specification, implicit selectivity
of 3 is assumed.

Organization

/ExperimentalResults/StoppingCriterion directory contains results of ex-
periments presented in section 6.3.2. Stopping criterion is a suffix of a
log file, e.g. 0 05 denote stopping criterion of value 0.05.

/ExperimentalResults/Fanout directory contains results of experiments pre-
sented in section 6.3.3.

/ExperimentalResults/SetSizeVsIndexingSpeed directory contains results
of experiments presented in section 6.3.4. Subdirectory names denote
set size.

/ExperimentalResults/DimensionVsIndexingSpeed directory contains re-
sults of experiments presented in section 6.3.5. Subdirectory names
denote dimension.

/ExperimentalResults/SetSizeVsQueryingSpeed directory contains results
of experiments presented in section 6.4.2. Subdirectory names denote
set size.

APPENDIX B. ORGANIZATION OF ATTACHED COMPACT DISK 78

/ExperimentalResults/DimensionVsQueryingSpeed directory contains re-
sults of experiments presented in section 6.4.3. Subdirectory names
denote dimension.

/ExperimentalResults/Selectivity directory contains results of experiments
presented in section 6.4.4. Subdirectory names denote selectivity of
query set.

	Abstract
	Introduction
	Aim of the thesis
	Outline of the work progress and paper organization

	Multidimensional indexing
	Relational indexes
	R-Tree bases
	R*-tree
	R+-tree
	SS-tree
	SR-tree

	eR-tree
	Motivation
	eR-tree Regions
	Variant #1
	Variant #2
	Variant #3

	Insertion
	Inner Node Splitting
	Leaf Node Splitting

	Ellipsoid Theory
	Ellipsoid Definition
	Expressing a Quadratic Form in n Variables Using Matrix Notation
	Ellipsoid

	Minimum Volume Covering Ellipsoid
	Iterative construction of MVCE
	Optimization construction of MVCE

	Extracting ellipsoid properties
	Other operations
	Point and ellipsoid distance
	Hyperplane and ellipsoid distance
	Testing for box and ellipsoid intersection
	Bounding ellipsoids by ellipsoid

	Implementation
	Amphora Three Object Model
	ATOM Design
	R-tree implementation
	Modification

	Ellipsoid class
	Constructing the MVCE
	Testing for box and ellipsoid intersection
	Bounding Ellipsoid by a Box

	Experimental Results
	Notes on a measurements
	Measurement settings
	Measured Parameters
	Opposing R-tree

	Data Sets
	Synthetic Clustered data
	Real IMDB data
	Real Trajectory data

	Indexing
	Index size and utilization
	Impact of a stopping criterion on indexing speed
	Node Fanout
	Impact of a data set size on indexing speed
	Impact of a dimension on indexing speed
	Other interesting facts

	Querying
	Query set
	Impact of a data set size on a querying speed
	Impact of a dimension on a querying speed
	Impact of a selectivity on a querying speed

	Conclusion
	Appendices
	Visualization
	SCU4x4 data set
	IMDB data set
	Trajectory data set

	Organization of attached compact disk
	Source Code
	Data Sets
	Query Sets
	Experimental Results

