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Abstract: Within this work we are interested in the frame approach to analysis of
the field equations in the context of theories of gravity, in particular, the Einstein
General Relativity and Quadratic theory of gravity. As the starting point we
summarise the least action principle formulation of the General Relativity and
introduce the Quadratic gravity as an extension of the classic Einstein–Hilbert
action adding quadratic curvature terms. The Quadratic gravity field equations
are rewritten into the form separating the Ricci tensor contribution. As a next
step we review the Newman–Penrose formalism on a purely geometrical level and
discuss employing the field equations constraints. While in the case of General
Relativity it is quite trivial, in the Quadratic gravity it becomes much more
involved, however, the General Relativity procedure can be followed even here.
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cases of the spherically symmetric spacetimes and so-called pp-waves both in the
GR as well as Quadratic gravity.
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Introduction
Heavenly bodies and their movement perplexed human beings at least from the
ancient times. Remains of the most ancient civilisations suggest efforts to under-
stand the night sky and the laws that govern it.

By no means the first very successful attempt to describe the inner workings
of our solar system was performed by Ptolemy in the 2nd century AD. By a very
careful observation he concluded that all planets follow a circular trajectory with
a centre also following a circular trajectory around the Earth. The only object
that moved simply in a circular motion was the Sun. Interestingly enough, the
only thing that matters for an accurate prediction is the ratio of two diameters
assigned to each heavenly body. Absolute values for the diameters are irrelevant
as long as the ratio is preserved. If only Ptolemy scaled all the circles with Earth
at its centre to match the Sun orbit, the secondary circular orbits with actual
planets on them would then orbit around the Sun and even in the correct order.
So close was Ptolemy to the discovery of the heliocentric model.

We had to wait quite some time for the heliocentric model since the time of
Ptolemy. About 14 hundred years later when the Copernican Revolution took
its place. However, for the Catholic Church the model of the universe with the
Earth at its centre was very attractive. Because then, with Rome as the centre of
the Earth you could say, that the Church was at the centre of everything. Entire
universe made only for us with the heavenly sphere slowly rotating around the
Earth by the very hand of god. So, a very good reason was needed to persuade
the world to adopt the heliocentric model. And that was provided at the court
of Rudolf II. Using observations, with accuracy never seen before, made by Dan-
ish astronomer Tycho Brahe, brilliant mathematician Johannes Kepler deduced
that planets in the solar system actually followed elliptical trajectories with the
Sun at one of the focal points. His new model kinematic provided much more
accurate predictions and, in fact more elegant description, thus finally winning
the argument in favour of the heliocentric system.

Dynamics governed by the gravitational force was deduced from the Kepler
laws of motion by an English mathematician, Sir Isaac Newton a bit later. How-
ever, even this was not a final piece in the puzzle of unravelling the laws of nature.
Our next step in understanding gravity will require a major shift in the perspec-
tive which took another three centuries. So, from a point of view that tries to
reflect our reality and how it works, now we know that even Newton was wrong.
But from an instrumentalist point of view, that focuses on usefulness of a given
theory as an instrument to be used, it is one of the most successful theories in
the history. It is so simple and elegant that even today, with the knowledge of
Einstein’s General Relativity, we use Newtonian mechanics in vast majority of
cases.

So why was there a need to look for another theory of gravity in the first
place? The hints were truly minuscule and easy to miss. But they were there
and as measurements improved, they could not be ignored. One of the first
hints was the observation of the perihelion precession of Mercury. Precession is a
normal phenomenon even in the Newtonian mechanics. And sure enough, most
of it was explained by accounting for the gravitational influence of other planets
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and shape of the Sun. But even then, there were still 43 angular seconds per
century left, that could not be explained. Other problems were paradoxes caused
by an assumption of instantaneous propagation of information and the notion of
absolute space and time. This led Albert Einstein to formulate his Special theory
of relativity in 1905, see [1], and ten years later the General theory of relativity,
see [2].

The basic idea standing at the ground of this fantastic journey is following.
As wave like properties of light become apparent and indisputable, the notion
that wave needs a medium to travel through was strong. And thus, Aether was
invented. Since Earth would travel through this Aether, we would see variations
in the light speed as a result of this movement. But using interferometric mea-
surements none were detected. In a desperate attempt to save the idea of Aether,
Hendrik Lorentz came with his famous transformation (Lorentz transformation),
that would make Aether basically undetectable. Therefore, it became a redun-
dant term. However, the transformation was correct. Only thing it needed was
a genius, bold enough, to take it literally and assume the deformation of space
and time itself. All, so that speed of light stays constant regardless of reference
frame.

What is so special about constant speed of light? Well easy answer is that
it is what we observe. Einstein assumed it from experimental observation. But
interestingly enough you do not need to. Transformation from one reference
frame to another that is consistent with the principle of inertia, the isotropy of
space, the absence of preferred inertial frames, and a group structure will yield
Lorentz transformations with c as a velocity scale [3]. So only with these very
basic assumptions on the nature of reality around us, we receive equations with
constant propagation of information. Value of this constant is determined within
the framework of electromagnetism. By creating wave equation from the Maxwell
equations, one also receives constant speed of light in vacuum determined by its
permittivity and permeability. And this speed corresponds to c mentioned earlier.
The speed of causality. But let us continue as Einstein did and constant speed of
light will be just one of the assumptions, we build the theory on.

Why not stop at the level of special relativity? It is revolutionary enough
right? Well Einstein made another genius observation. Objects in free fall appear
to be in inertial frame of reference. So why not another bold assumption and let
us take it literally again. In that case, from the point of view of an unfortunate
falling observer, all of us are the ones accelerating “upwards”. Does not make
sense, right? In a three-dimensional Euclidean space, without Earth inflating like
a balloon, it certainly does not. But let us roll with it anyway.

General Relativity is built on three principles.

• Principle of equivalence says that we cannot differentiate between gravita-
tional and inertial mass. Now, this is tested with incredible precision.

• Principle of general covariance says that physical laws cannot depended on
any reference frame. So, all of them can be written in the tensor from to
ensure their invariance.

• Principal of minimal connection says that all physical laws should depend
as little as possible on the metric tensor. It is basically the Occam’s razor
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for selecting from multiple ways of rewriting a physical law in the tensor
form.

And if Special relativity seemed revolutionary, we would need to completely trans-
form the way we look on the universe to understand General Relativity. Firstly,
we combine space and time into a single four-dimensional deformable Lorentz
manifold called spacetime. Its geometrical properties, most importantly its cur-
vature, are encoded in a metric tensor gµν . The most important point being,
it can be deformed. Moreover, the stage of the universe is now influenced by
any matter or energy in it. In other words, objects do not act on each other
directly. There is no gravitational force. Instead, they deform spacetime and this
deformation in turn influences how object move and behave.

This new point of view is fascinating, but how to describe it? Imagine a pair
of massless test particles floating in a space. Other than our two friends, it is
an empty space. Each of them has their own so called world line. Each of them
is in an inertial frame of reference and in that case, the world line is called a
geodesic. In that case geodesics are straight lines, right? Well not necessarily if
the spacetime is not flat. All geodesics can even converge to a single (singular)
point when talking about an empty universe with a single Schwarzschild black
hole. So, returning to our two particles, by measuring the relative acceleration
between them as they travel through spacetime, we can tell how it is deformed.
Really, this example corresponds to the geodesic deviation where the Riemann
curvature tensor comes directly into the game.

In classical mechanics we need the second derivative of the gravitational field
to describe its non-homogeneity. So, in analogy, in General Relativity we need
the second derivatives of the metric tensor to describe how the spacetime is de-
formed. These are contained in the Riemann tensor Rαβγδ, that exactly contains
the information about the spacetime curvature. Sources of gravitational field are
contained in the energy and momentum tensor Tµν . To describe how matter and
energy affects the curvature of spacetime we need to find the field equations.
Moreover, the energy should be conserved which puts another restriction on the
geometric part of the equations. We try all the different combinations of the
metric tensor and its first and second derivatives on one side of the equations and
the energy momentum tensor on the other side. Since it is a rank 2 tensor, the
other side of the equations needs to be as well. Rewriting derivatives in terms of
contractions of the Riemann tensor and evaluating constants we would get the
famous Einstein field equations 1

Rµν − 1
2Rgµν + Λgµν = 8πTµν , (1)

where Rµν = Rα
µαν is the Ricci tensor, R = Rα

α represents the Ricci scalar, and
Λ is a cosmological constant. By solving these equations, we want to find the
metric tensor gµν . In fact, it is a very difficult task since we deal with the system
of ten non-linear PDEs. Its exact solutions are known only in some specific (likely
symmetric) situations [4, 5]. In more realistic situations the perturbative methods
or numerical simulations have to be employed. However, in their core the exact
solutions have the prominent position.

1Here we use geometrical units c = 1 = G.
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We will investigate this mathematical description and another way of deriving
the field equations in more detail in the next chapter. However, before continuing
we should verify, if this new point of view does bring something else than con-
siderably more complicated equations than the classical Newtonian mechanics.
Short answer is: Yes, it does! First, it does explain the remaining 43 angular
seconds per century of the Mercury perihelion shift. Simultaneously and surpris-
ingly, every new (and old) observation so far, i.e., for more than a hundred years,
is in compliance with this theory as well. For illustration let us mention a few
more experiments:

• It was General Relativity that correctly predicted how much the light rays
bend when passing around the Sun. The measurement was made by Sir
Arthur Eddington in 1919 [6].

• Expansion of the universe first observed by Edwin Hubble in 1929 can also
be explained by the General Relativity cosmological models [7]. This was
the crucial experiment for establishing GR as a correct theory.

• General Relativity also predicted a phase shift in photons when moving
through gravitational field. This was experimentally verified in 1954 by
Daniel Popper in observation of a star called 40 Eridani B [8].

• Another verification of General Relativity was provided by the observation
of cosmic microwave background by Arno Penzias and Robert Wilson in
1965 [9].

• Gravitational waves were detected by the LIGO observatory in 2015 when
the signal of two black holes merging was observed. This was one of the last
directly untested predictions stemming from General Relativity. Verified
hundred years since its publishing [10].

• Year 2019 marks capturing of the first photo of a black hole in history. It was
a shadow of supermassive black hole located at the centre of galaxy M87.
Observed image also corresponds with how it should look like according to
General Relativity. It is also a first visual evidence of the existence of black
holes [11].

However, except of all the above highly successful experiments there are more
theoretical issues which suggest the General Relativity cannot be the final the-
ory of gravity. In the first chapter we review the theory formulated in a more
mathematical terms and briefly summarise various possibilities how to extend
the Einstein gravitational law. In chapter two of this thesis we will look into the
Newman–Penrose formalism and why it is a useful tool for better understanding
and description of spacetime geometries. The third chapter focuses on application
of the theory from chapter two in theories of gravity, namely General Relativity
and Quadratic gravity. Specifically, its field equations and the Bach tensor contri-
bution will be discussed. Subsequently, we will focus on the Robinson–Trautman
and Kundt spacetimes in particular their definition, basic properties, and impor-
tance as the starting point for discussion of various explicit models in theories of
gravity. In the last chapter we will use all the knowledge reviewed and acquired
so far in practical applications, i.e., analysis of the particular theories constraints
on the spacetime geometry.
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1. Variation principles in theory
of gravity
The aim of this chapter is to shortly introduce Einstein’s General Relativity 1

and how can it be even more elegantly written in the form of a variation princi-
ple. Then we will examine possible ways how this theory could be modified and
later focus on a specific and very natural class of modifications called Quadratic
theories.

1.1 Einstein’s General Relativity
As we have already summarised in the introduction, General Relativity is one
of the most successful theories in physics. It resists more that hundred years of
persistent attempts at proving it could be wrong. And on a more subjective note,
we would describe it as a beautifully elegant theory and would not be by far the
only one to do so.

More than theory it could be regarded as a heuristic principle that all theories
should satisfy. In fact, the name is unfortunate in connection to what general
public thinks this theory is about. Despite the popular use of this theory as an
argument for how everything is “relative” and depends on a point of view, its
inner genius actually lies in invariance. It is the natural assumption that physical
laws should not depend on an observer that stands at the core of this theory. In
this sense, the form of physical laws is “absolute”.

As mentioned earlier, Einstein approached this famously by looking at the
spacetime as a single four-dimensional fabric that can be deformed by a matter
and energy inside. In this sense gravity, as the source of relative accelerations,
is just an effect of deformed four-dimensional spacetime as seen from our three-
dimensional existence. In previous chapter we have seen the crown jewel of the
whole theory, the Einstein field equations (1).

Moreover, there exists another elegant way how to write these equations (grav-
itational law) and that is using the variation principle. In general, that means
defining a certain action S and then saying that the physical system will evolve
in such a way that minimises the action. In other words, the variation of action
is zero for the system evolution, namely

δS = 0. (1.1)

For General Relativity, this mystical functional S is called the Einstein–Hilbert
action and it has the following form

S =
∫︂

d4x
[︃1
k(R − 2Λ) + LM

]︃√
−g, (1.2)

where 1
k = 1

16π
is a constant, g is a metric determinant, i.e., g = detgµν , R is

the scalar curvature, and Λ stands for the cosmological constant. Everything
in square brackets is called Lagrangian density and LM specifically is a general

1A common abbreviation “GR” will be used in this thesis.
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Lagrangian density representing matter. So, for vacuum solutions this term would
be zero. Inserting this action into the condition (1.1) we would obtain classical
field equations (1).

1.2 Modifications of General Relativity
Even though General Relativity is extremely successful and elegant, it is natural
to explore its limits. Therefore, why would we need to modify such a beautiful
and successful theory? One strong motivation stem from non-renormalizability
of this theory that prevents its quantization using classic approach of the QFT
perfectly working in the case of remaining fundamental interactions. And this
is just one problem of many, where other important questions are related to the
cosmological issues connected with presence of dark matter and energy in the
observable universe. Simply put, we are aware that we do not possess the whole
truth and modification of General Relativity is one way to look for other solutions.

So, what can be modified then? If we look at the Einstein–Hilbert action
(1.2), we can see that we integrate in 4 dimensions. So, we could simply modify
number of dimensions. For example, for 3 dimensions we would obtain so called
Topological gravity, in which geometry is fully determined by the field equations
due to the same number of independent components of the Riemann and Ricci
tensor, respectively. Vacuum solutions in such theory are maximally symmetric
and non-trivial geometries can be obtained by topological identification. This
serves as an interesting toy-model for many more realistic scenarios. Or on the
other hand we could increase the number of dimensions beyond 4 together with
the assumption that we observe only a four-dimensional submanifold. Moreover,
setting number of dimensions above 4 together with assumption of the 2nd order
field equations would give us class of modifications called Lovelock theories [12].
But there is something special about four dimensions. If we assume that field
equations are of the 2nd order and conserved (satisfying Bianchi identities), then
the Einstein field equations are unique in four dimensions. But the Einstein–
Hilbert action is not. We can add all the Lovelock terms to it that will not affect
the resulting field equations. The first of them is the famous Gauss–Bonnet term,
namely

RµναβRµναβ − 4RµνRµν + R2, (1.3)
leading to the class of so-called Gauss–Bonnet theories for D ≥ 5.

Assuming that we focus on vacuum solutions, so LM = 0, the only remaining
part that can be modified is the geometric part of the Einstein–Hilbert action.

To summarise, starting with the Einstein–Hilbert action it is very straightfor-
ward, without any additional constraints on the order of resulting field equations
and with respect to particular situation, to modify

• Number of dimensions D.

• Restriction on geometry, i.e., changing the R − 2Λ term.

• Matter content of the spacetime LM .

Within this thesis we will be interested in the geometric part of the action, allow-
ing for the additional quadratic terms constructed from the curvature tensors.
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1.3 Quadratic gravity
Among the theories with modified Einstein–Hilbert action there is a specific class
that permits quadratic curvature terms in S. They are called Quadratic theories.
In general vacuum case we can write them as

S =
∫︂

f(R, RµνRµν , RµναβRµναβ)
√

−gdDx. (1.4)

For simplification we shall use the following notation,

Ψ = RµνRµν and Ω = RµναβRµναβ. (1.5)

By applying the condition (1.1) we obtain

fRRµν − 1
2fgµν + (gµν2 − ∇µ∇ν)fR + 2fΨRµαRα

ν + 2fΩRαβγµRαβγ
ν

+ 2(fΨRµν) + gµν∇α∇β(fΨRαβ) − 2∇α∇β(fΨδβ
µRα

ν + 2fΩRα β
µν ) = 0, (1.6)

where fR denotes derivative of f with respect to R and similarly for f with
another subscript. The result (1.6) can be further simplified using the Bianchi
identities and Leibniz rule. The detail calculation can be found, e.g., in [13].

Pure Quadratic theories, that we shall restrict ourselves to admit only the
linear dependence of f on the curvature scalars R, R2, Ψ, and Ω. In this thesis
we will also limit ourselves to 4 dimensions. This means that for general form
of f we can choose only 2 out of 3 curvature squares, because we know that
the Gauss–Bonnet term (1.3) does not contribute to the integral. We shall also
express separately “free” gravitational field hidden in the trace-less part of the
Riemann tensor defining the Weyl tensor Cµναβ in general dimension

Cµναβ = Rµναβ

− 1
D − 2 (gµαRνβ + gνβRµα − gµβRνα − gναRµβ)

+ 1
(D − 1)(D − 2)R (gµαgνβ − gµβgνα) , (1.7)

where D is a number of dimensions, so for our case we set D = 4.
Our general function f then takes the form of

f = 1
k(R − 2Λ) − aC2

µναβ + bR2, (1.8)

where k, a and b are (arbitrary) constants of the theory. The field equations (1.6)
then become

1
k(Rµν − 1

2Rgµν +Λgµν)−4aBµν +2b(Rµν − 1
4Rgµν +gµν2−∇µ∇ν)R = 0, (1.9)

where Bµν is the Bach tensor defined as

Bµν = (∇α∇β − 1
2Rαβ)Cµανβ. (1.10)
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The Bach tensor is symmetric, trace-less, covariantly constant, and conformaly
re-scaled, i.e.,

Bµν = Bνµ, Bµνgµν = 0, Bµα;βgαβ = 0,

g̃µν = Ω2gµν =⇒ B̃µν = Ω−2Bµν .
(1.11)

The resulting field equations (1.9) are obviously of the 4th order which opens a
completely new land to explore in comparison with General Relativity. Obviously,
the trace of the equation (1.9) yields condition for the Ricci scalar, namely

R = 6bk2R + 4Λ. (1.12)

As a final part of this chapter, we will rewrite the field equations (1.9) in a bit
different form. Reserving explanation for this step at the end of the computation
since the reasoning behind it will be much more apparent. Inserting definition of
the Bach tensor (1.10) and moving all terms with the Ricci tensor to the beginning
of the equation we obtain(︃1

k + 2bR
)︃

Rµν + 2aRαβCµανβ − 1
k(1

2Rgµν − Λgµν) − 4a∇α∇βCµανβ

−2b(1
4Rgµν − gµν2 + ∇µ∇ν)R = 0,

(1.13)

In the second step we denote everything other than the first two terms (explicitly
containing the Ricci tensor components) as a separate 2nd rank tensor Zµν , i.e.,(︃1

k + 2bR
)︃

Rµν + 2aRαβCµανβ + Zµν = 0, (1.14)

where Zµν represents

Zµν = −1
k(1

2Rgµν −Λgµν)−4a∇α∇βCµανβ −2b(1
4Rgµν −gµν2+∇µ∇ν)R. (1.15)

The form (1.14) separating explicit contribution of the Ricci tensor is impor-
tant for two reasons. The first one is purely for clarity in following component
calculation. However, the second one is more important for the discussion of
constraints on the resulting spacetime geometry and will be apparent after the
second chapter on the Newman–Penrose formalism. In such a frame approach
to classical General Relativity the Ricci tensor components are algebraically con-
strained in the crucial geometric identities by the Einstein field equations. We
would like to explore an analogous approach also in the case of Quadratic gravity.
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2. Newman–Penrose formalism
This chapter is an overview of a general tetrad formalism with main focus on one
specific case called Newman–Penrose formalism1. The content primary source is
the first chapter of [14]. Of course, the topic is in detailed covered in many great
sources (other than the one already mentioned), for example the original article
[15] or a classic textbook [16]. But for this thesis to be easily understandable only
with a basic knowledge of introductory course to General Relativity, we would
like to present all the definitions that will be used and derive all results we need
“from scratch”.

2.1 General tetrad formalism
Let us start with a motivation. Assuming you are a confused observer trying to
make a sense of the world around you. You have an abstract theory of General
Relativity, but that will not help you too much to understand your specific case. A
standard procedure is to use the coordinate representation of General Relativity.
You pick a clever set of coordinates respecting the symmetry of the problem, find
the components of a metric tensor and derive all necessary quantities together
with restrictions implied by the field equations. However, you know that the
physical reality can be hidden in the coordinate choice and it is still challenging
to obtain invariant results.

A different approach can be to erect a set of four basis vectors around you,
so called “tetrad”, and project all tensors on them. Every fundamental object in
General Relativity (like Riemann tensor, Ricci tensor etc.) is now described as a
set of scalars. So, in a coordinate invariant form. Of course, it still depends on
the initial choice of our tetrad, that can be (as with choice in coordinate system)
chosen more or less suitably for a given problem. Generally speaking, respecting
a symmetry of the system produces simpler results.

So, let us define a set of four contravariant vectors e(a)

e(a)
µ, where a = 1, 2, 3, 4. (2.1)

The index without parentheses symbolises components of a given vector and the
index in parentheses labels the four tetrad vectors.

Next, let us define an “inverse matrix” (or better its components) to (2.1) as

e(a)
µ, where a = 1, 2, 3, 4, (2.2)

satisfying the following relations

e(a)
µe(b)

µ = δ
(b)
(a), e(a)

µe(a)
ν = δµ

ν . (2.3)

We would also like to lower and rise indices. For the component index it is simply
performed by a metric tensor gµν as

e(a)µ = gµνe(a)
ν , (2.4)

1We will often use a common abbreviation “NP formalism”.
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which is also a definition of a covariant vector e(a)µ. And for the vector labelling
index we can define a symmetric matrix η(a)(b) and its inverse η(a)(b) by the fol-
lowing relations

η(a)(b)e
(a)

µ = e(b)µ, η(a)(b)e(a)µ = e(b)
µ, (2.5)

and then, of course,

η(a)(b)η(b)(c) = δ
(a)
(c) . (2.6)

Using these definitions we can also write gµν and η(a)(b) in terms of our basis
vectors as

e(a)µe(a)
ν = gµν , e(a)

µe(b)µ = η(a)(b), (2.7)

where the second relation can be used as a definition of η(a)(b) and relations (2.5)
and (2.6) simply follow as its consequence. That way it can be seen more clearly
why it makes sense to raise and lower labelling indices, but we did it in way where
the analogy with component indices is more apparent.

We can now define a “tetrad component” of any vector field V µ as a projection
of such a field on our tetrad,

V(a) = e(a)µV µ, V (b) = η(a)(b)V(a). (2.8)

The extension of this definition for a general tensor T µ...ν
α...β is straightforward,

namely
T(a)...(b)

(c)...(d) = e(a)µ . . . e(b)νe(c)α . . . e(d)βT µ...ν
α...β. (2.9)

2.1.1 Intrinsic derivative
Let us take a more geometrical point of view and consider basis vectors e(a) as
directional derivatives

e(a) = e(a)
µ∂µ. (2.10)

So, a derivative with respect to the labelling index is then naturally defined as

Φ,(a) = e(a)
µΦ,µ, (2.11)

(2.12)

and

V(a),(b) = e(b)
ν(e(a)

µVµ),ν = e(b)
ν(e(a)

µVµ);ν

= e(b)
ν [e(a)

µ
;νVµ + e(a)

µVµ;ν ]
= e(a)

µVµ;νe(b)
ν + e(a)µ;νe(b)

νe(c)
µV (c), (2.13)

where ; denotes covariant derivative. Since covariant derivative acting on a scalar
is equivalent to regular partial derivative the second step in (2.13) is justified.

Let us now define a key object called “Ricci rotation-coefficients” as

γ(c)(a)(b) = e(c)
µe(a)µ;νe(b)

ν . (2.14)
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Using this definition, the equation (2.13) takes the form

V(a),(b) = e(a)
µVµ;νe(b)

ν + γ(c)(a)(b)V
(c). (2.15)

If we choose the tetrad so that η(a)(b) is a constant matrix (which is a nontrivial
assumption, thus the following property is valid only for this special case) we
immediately see that γ(a)(b)(c) is anti-symmetric in the first two indices because

0 = (η(a)(b)),µ = (e(a)
νe(b)ν);µ =⇒ γ(c)(a)(b) = −γ(a)(c)(b). (2.16)

With the definition of “Intrinsic derivative” as

V(a)|(b) = e(a)
µVµ;νe(b)

ν , (2.17)

we can rewrite (2.13) using (2.14) and (2.17) as

V(a)|(b) = V(a),(b) − γ(c)
(a)(b)V(c). (2.18)

So, the intrinsic derivative is an analogy of the covariant derivative in the la-
belling indices. This is especially useful for rewriting expressions with covariant
derivatives like Bianchi identities in the tetrad components.

2.1.2 Riemann tensor
First, let us find projections of the Riemann tensor on a generic tetrad in terms of
the Ricci rotation coefficients. We shall start with the definition of the Riemann
tensor as a commutator of two covariant derivatives,

e(a)α;µ;ν − e(a)α;ν;µ = Rβαµνe(a)
β. (2.19)

The definition (2.14) and the basic properties (2.7) can be used to express covari-
ant derivative e(a)µ;ν using the Ricci rotation-coefficients as

e(a)µ;ν = e(c)
µγ(c)(a)(b)e

(b)
ν . (2.20)

Using (2.19) and (2.20) we can write the projection of the Riemann tensor as

R(a)(b)(c)(d) =Rβαµνe(a)
βe(b)

αe(c)
µe(d)

ν

=
[︂
(e(a)α;µ);ν − (e(a)α;ν);µ

]︂
e(b)

αe(c)
µe(d)

ν

=
[︂
(e(f)

αγ(f)(a)(g)e
(g)

µ);ν − (e(f)
αγ(f)(a)(g)e

(g)
ν);µ

]︂
e(b)

αe(c)
µe(d)

ν

=γ
(f)

(b) (d)γ(f)(a)(c) + γ(b)(a)(c),(d) + γ
(g)

(c) (d)γ(b)(a)(g)

− γ
(f)

(b) (c)γ(f)(a)(d) − γ(b)(a)(d),(c) − γ
(g)

(d) (c)γ(b)(a)(g). (2.21)

Finally, we get

R(a)(b)(c)(d) = − γ(a)(b)(c),(d) + γ(a)(b)(d),(c)

+ γ(b)(a)(f)
[︂
γ

(f)
(c) (d) − γ

(f)
(d) (c)

]︂
+ γ(f)(a)(c)γ

(f)
(b) (d) − γ(f)(a)(d)γ

(f)
(b) (c). (2.22)
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Finally, we can easily generalise the definition (2.18) for multiple indices.
Particularly, in the case of intrinsic derivative of the Riemann tensor we obtain

R(a)(b)(c)(d)|(f) =R(a)(b)(c)(d),(f)

− η(n)(m)
[︂
γ(n)(a)(f)R(m)(b)(c)(d) + γ(n)(b)(f)R(a)(m)(c)(d)

+γ(n)(c)(f)R(a)(b)(m)(d) + γ(n)(d)(f)R(a)(b)(c)(m)
]︂

. (2.23)

We can slightly modify this result by adding a cyclic exchange of the indices to
obtain an expression, that can be used to directly calculate the Bianchi identities
in any frame formalism, namely

R(a)(b)[(c)(d)|(f)] =1
6

∑︂
[(c)(d)(f)]

{︂
R(a)(b)(c)(d),(f)

− η(n)(m)
[︂
γ(n)(a)(f)R(m)(b)(c)(d) + γ(n)(b)(f)R(a)(m)(c)(d)

+γ(n)(c)(f)R(a)(b)(m)(d) + γ(n)(d)(f)R(a)(b)(c)(m)
]︂}︂

. (2.24)

2.2 Defining the Newman–Penrose quantities
In previous section we stated that since we have a “weapon of choice” when it
comes to the tetrad vectors it can be advantageous to choose them with respect
to a certain symmetry. And since Roger Penrose saw the light-cone structure as
the fundamental part of space-time structure, it is not surprising that the tetrad
in the Newman–Penrose formalism consists of null vectors. They are traditionally
denoted as

l, n, m, m̄,

where l, n are real null vectors and m, m̄ are artificially constructed complex
null vectors. And as the notation suggests m̄ is a complex conjugate of m. The
null character of the vectors can be written as

l · l = n · n̄ = m · m = m̄ · m̄ = 0. (2.25)

Furthermore, as a part of the definition we impose on the tetrad the following
orthogonality and normalization conditions,

l · m = l · m̄ = n · m = n · m̄ = 0, (2.26)
l · n = 1, (2.27)

m · m̄ = −1. (2.28)

Finally, freedom in a choice of such null frame is simply given by the Lorentz
transformations,

• boost in the plane of null vectors l and n with a real parameter A:

lµ ↦→ A2 lµ, nµ ↦→ A−2 nµ, mµ ↦→ mµ, (2.29)

• rotation in the transverse space of vectors m and m̄ encoded in a real
parameter χ:

lµ ↦→ lµ, nµ ↦→ nµ, mµ ↦→ e2 i χmµ, (2.30)
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• null rotation with l fixed given by a complex parameter c:

lµ ↦→ lµ, mµ ↦→ mµ + c̄ lµ, nµ ↦→ nµ + c mµ + c̄ m̄µ + |c|2 lµ, (2.31)

• null rotation with n fixed given by a complex parameter d:

nµ ↦→ nµ, mµ ↦→ mµ +d nµ, lµ ↦→ lµ + d̄ mµ +d m̄µ + |d|2 nµ. (2.32)

To express results obtained for a generic tetrad and summarised in the previous
section we set

e(1) = l, e(2) = n, e(3) = m, e(4) = m̄. (2.33)

So, using (2.25)–(2.28) we can write η(a)(b) explicitly as

η =

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0

⎞⎟⎟⎟⎠ . (2.34)

Using (2.5) we can now easily find the covariant basis. In correspondence with
the geometrical point of view on vectors as directional derivatives, let us define
the following

l ≡ D = lµ∇µ, n ≡ ∆ = nµ∇µ,

m ≡ δ = mµ∇µ, m̄ ≡ δ̄ = m̄µ∇µ. (2.35)

It is also customary as a part of this formalism to define special symbols for the
Ricci rotation coefficients introduced in (2.14) and we shall call these quantities
the spin coefficients,

κ =γ(3)(1)(1) = mµlµ;νlν = mµDlµ,

σ =γ(3)(1)(3) = mµlµ;νmν = mµδlµ,

λ =γ(2)(4)(4) = nµm̄µ;νm̄ν = nµδ̄m̄µ,

ν =γ(2)(4)(2) = nµm̄µ;νnν = nµ∆m̄µ,

ρ =γ(3)(1)(4) = mµlµ;νm̄ν = mµδ̄lµ,

µ =γ(2)(4)(3) = nµm̄µ;νmν = nµδm̄µ,

τ =γ(3)(1)(2) = mµlµ;νnν = mµ∆lµ,

π =γ(2)(4)(1) = nµm̄µ;νlν = nµDm̄µ,

ϵ =1
2
(︂
γ(2)(1)(1) + γ(3)(4)(1)

)︂
= 1

2 (nµlµ;νlν + mµm̄µ;νlν) = 1
2 (nµDlµ + mµDm̄) ,

γ =1
2
(︂
γ(2)(1)(2) + γ(3)(4)(2)

)︂
= 1

2 (nµlµ;νnν + mµm̄µ;νnν) = 1
2 (nµ∆lµ + mµ∆m̄) ,

α =1
2
(︂
γ(2)(1)(4) + γ(3)(4)(4)

)︂
= 1

2 (nµlµ;νm̄ν + mµm̄µ;νm̄ν) = 1
2
(︂
nµδ̄lµ + mµδ̄m̄

)︂
,

β =1
2
(︂
γ(2)(1)(3) + γ(3)(4)(3)

)︂
= 1

2 (nµlµ;νmν + mµm̄µ;νmν) = 1
2 (nµδlµ + mµδm̄) .

(2.36)
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2.2.1 Representing the Weyl and Ricci tensors in the NP
formalism

As we have already mentioned in the first chapter, the Weyl tensor is a trace-free
part of the Riemann tensor defined by (1.7), with D = 4 in our case, and its
frame components can thus be written as the following expression

R(a)(b)(c)(d) =C(a)(b)(c)(d)

− 1
2
(︂
η(a)(c)R(b)(d) − η(b)(c)R(a)(d) − η(a)(d)R(b)(c) + η(b)(d)R(a)(c)

)︂
+ 1

6
(︂
η(a)(c)η(b)(d) − η(a)(d)η(b)(c)

)︂
R. (2.37)

The above projection of the Weyl tensor on a null tetrad l, n, m, m̄ and em-
ploying its symmetries we can represent all its independent components by five
complex scalars, namely

Ψ0 = − C(1)(3)(1)(3) = −Cµναβlµmνlαmβ,

Ψ1 = − C(1)(2)(1)(3) = −Cµναβlµnνlαmβ,

Ψ2 = − C(1)(3)(4)(2) = −Cµναβlµmνm̄αnβ,

Ψ3 = − C(1)(2)(4)(2) = −Cµναβlµnνm̄αnβ,

Ψ4 = − C(2)(4)(2)(4) = −Cµναβnµm̄νnαm̄β. (2.38)
It is also useful to mention that aside from these components of the Weyl ten-
sor (and their complex conjugate which basically means exchange of m and m̄
vectors, i.e., 3 ↔ 4) other non-zero components are

C(1)(3)(3)(4) =Ψ1,

C(2)(4)(4)(3) =Ψ3,

C(1)(2)(1)(2) =C(3)(4)(3)(4) = −
(︂
Ψ2 + Ψ̄2

)︂
,

C(1)(2)(3)(4) =
(︂
Ψ2 − Ψ̄2

)︂
. (2.39)

It is also standard to denote frame projections of the Ricci tensor as

Φ00 = −1
2R(1)(1) = −1

2Rµνlµlν ,

Φ01 = −1
2R(1)(3) = −1

2Rµνlµmν ,

Φ10 = −1
2R(1)(4) = −1

2Rµνlµm̄ν ,

Φ11 = −1
4
(︂
R(1)(2) + R(3)(4)

)︂
= −1

4 (Rµνlµnν + Rµνmµm̄ν) ,

Φ02 = −1
2R(3)(3) = −1

2Rµνmµmν ,

Φ20 = −1
2R(4)(4) = −1

2Rµνm̄µm̄ν ,

Φ12 = −1
2R(2)(3) = −1

2Rµνnµmν ,

Φ21 = −1
2R(2)(4) = −1

2Rµνnµm̄ν ,

Φ22 = −1
2R(2)(2) = −1

2Rµνnµnν . (2.40)
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Finally, the Ricci scalar, as a trace of the Ricci tensor, takes the form

R = 2
(︂
R(1)(2) − R(3)(4)

)︂
. (2.41)

2.2.2 Geometric constrains on the frame components
So far, we have introduced tetrad formalism and projections of all essential objects
on the tetrad. But we still need to cover a vital part of the NP formalism.
Namely, constrains stemming from objects defined so far and their properties.
In particular, commutation relations of the basis vectors and in consequence of
four directional derivatives they represent, the Ricci identities and the Bianchi
identities. All these constrains are purely geometrical. The Ricci identities are
simply equations defining the Riemann tensor (2.19) and the Bianchi identities
come from the covariant derivative of the Riemann tensor. They must be satisfied
regardless of other constrains for any theory to be consistent.

Commutation relations

The Lie bracket is in general an essential object, when talking about geometry
and structure in any given theory.

Starting with the Lie bracket of two covariant vectors defined in (2.33) we get

[e(a), e(b)]f =[e(a)
µ∇µ, e(b)

ν∇ν ]f
=e(a)

µ∇µ(e(b)
ν∇νf) − e(b)

ν∇ν(e(a)
µ∇µf)

=(e(a)
νe(b)µ;ν − e(b)

νe(a)µ;ν)∇µf

=(e(a)
νe(f)

µγ(f)(b)(g)e
(g)

ν − e(b)
νe(f)

µγ(f)(a)(g)e
(g)

ν)∇µf

=(γ(a)(f)(b) − γ(b)(f)(a))e(f)µ∇µf

=(γ(a)(f)(b) − γ(b)(f)(a))e(f)f. (2.42)

As mentioned before, they define directional derivatives (2.35) and we used this
fact in the first step. In the second step we rewrite the Lie bracket according
to its definition and in the third step we have rewritten covariant derivatives in
terms of the Ricci rotation coefficients according to (2.20). After a few simple
manipulations we can express the Lie bracket of two vectors as

[e(a), e(b)] = (γ(a)(f)(b) − γ(b)(f)(a))e(f). (2.43)

As an illustration we will calculate such Lie bracket for one pair of the vectors,
namely e(1) and e(2),

[e(1), e(2)] =D∆ − ∆D
=(γ(1)(f)(2) − γ(2)(f)(1))e(f)

= − γ(2)(1)(1)e
(1) + γ(1)(2)(2)e

(2) + (γ(1)(3)(2) − γ(2)(3)(1))e(3)

+ (γ(1)(4)(2) − γ(2)(4)(1))e(4)

= − (ϵ + ϵ̄)∆ − (γ + γ̄)D − (−τ − π̄)δ̄ − (−τ̄ − π)δ. (2.44)
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Repeating this process for all possible combinations of the basis vectors we
will obtain full set of commutation relations

∆D − D∆ = (γ + γ̄) D + (ϵ + ϵ̄) ∆ − (τ̄ + π) δ − (τ + π̄) δ̄, (2.45)
δD − Dδ = (ᾱ + β − π̄) D + κ∆ − (ρ̄ + ϵ − ϵ̄) δ − σδ̄, (2.46)
δ∆ − ∆δ = −ν̄D + (τ − ᾱ − β) ∆ + (µ − γ + γ̄) δ + λ̄δ̄, (2.47)

δ̄δ − δδ̄ = (µ̄ − µ) D + (ρ̄ − ρ) ∆ +
(︂
α − β̄

)︂
δ + (β − ᾱ) δ̄, (2.48)

and thus, the first set of conditions for the geometry and spin coefficients is
known.

Ricci identities

Famous Ricci identities, that provide another set of constrains can be obtained by
writing various nonzero components of the Riemann tensor in the form of (2.22)
and by use of notation for the Ricci spin coefficients (2.36) and the projections
of the Weyl and Ricci tensors (2.38), (2.40) and the Ricci scalar (2.41).

As an illustration let us also explicitly derive one of the Ricci identities stem-
ming from the R(1)(3)(1)(3) component of the projected Riemann tensor. We have
two equations to be employed. Starting with (2.22) we will explicitly express this
component in terms of the Ricci rotation coefficients and rewrite these as the spin
coefficients, i.e.,

R(1)(3)(1)(3) = − γ(1)(3)(1),(3) + γ(1)(3)(3),(1)

+ γ(3)(1)(f)γ(1)(g)(3)η
(g)(f) − γ(3)(1)(f)γ(3)(g)(1)η

(g)(f)

+ γ(f)(1)(1)γ(3)(g)(3)η
(g)(f) − γ(f)(1)(3)γ(3)(g)(1)η

(g)(f)

=δκ − Dσ

+ γ(3)(1)(1)γ(1)(2)(3) − γ(3)(1)(4)γ(1)(3)(3) − γ(3)(1)(3)γ(1)(4)(3)

− γ(3)(1)(2)γ(3)(1)(1) − γ(3)(1)(1)γ(3)(2)(1) + γ(3)(1)(3)γ(3)(4)(1)

+ γ(2)(1)(1)γ(3)(1)(3) − γ(3)(1)(1)γ(3)(4)(3)

− γ(2)(1)(3)γ(3)(1)(1) + γ(3)(1)(3)γ(3)(4)(1)

=δκ − Dσ

+ κ(−ᾱ − β − τ − π̄ + ᾱ − β − ᾱ − β)
+ σ(ρ + ρ̄ + ϵ − ϵ̄ + ϵ + ϵ̄ + ϵ − ϵ̄)

=δκ − Dσ + κ(π̄ − τ − 3β − ᾱ) + σ(3ϵ − ϵ̄ + ρ + ρ̄). (2.49)

Furthermore, the second equation we need to use is the projected definition
of the Weyl tensor (2.37). Again, for the R(1)(3)(1)(3) component we obtain

R(1)(3)(1)(3) =C(1)(3)(1)(3)

− 1
2
(︂
✘✘✘✘η(1)(1) R(3)(3) − ✘✘✘✘η(3)(1) R(1)(3) − ✘✘✘✘η(1)(3) R(3)(1) + ✘✘✘✘η(3)(3) R(1)(1)

)︂
+ 1

6
(︂
✘✘✘✘η(1)(1)✘✘✘✘η(3)(3) − ✘✘✘✘η(1)(3)✘✘✘✘η(3)(1)

)︂
R

= − Ψ0. (2.50)
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Combining our findings in equations (2.49) and (2.50) we can write the first
Ricci identity as

Dσ − δκ = σ(3ϵ − ϵ̄ + ρ + ρ̄) + κ(π̄ − τ − 3β − ᾱ) + Ψ0. (2.51)

Following this procedure for all possible combinations of indices we obtain the
full set of Ricci identities, namely

Dσ − δκ =σ (3ϵ − ϵ̄ + ρ + ρ̄) + κ (π̄ − τ − 3β − ᾱ) + Ψ0, (2.52)
Dρ − δ̄κ =

(︂
ρ2 + σσ̄

)︂
+ ρ (ϵ + ϵ̄) − κ̄τ − κ

(︂
3α + β̄ − π

)︂
+ Φ00, (2.53)

Dτ − ∆κ =ρ (τ + π̄) + σ (τ̄ + π) + τ (ϵ − ϵ̄) − κ (3γ + γ̄)
+ Ψ1 + Φ01, (2.54)

Dα − δ̄ϵ =α (ρ + ϵ̄ − 2ϵ) + βσ̄ − β̄ϵ − κλ − κ̄γ + π(ϵ + ρ) + Φ10, (2.55)
Dβ − δϵ =σ(α + π) + β (ρ̄ − ϵ̄) − κ(µ + γ) − ϵ (ᾱ − π̄) + Ψ1, (2.56)

Dγ − ∆ϵ =α (τ + π̄) + β (τ̄ + π) − γ (ϵ + ϵ̄) − ϵ (γ + γ̄) + τπ

− νκ + Ψ2 + Φ11 − 1
24R, (2.57)

Dλ − δ̄π = (ρλ + σ̄µ) + π(π + α − β) − νκ̄ − λ (3ϵ − ϵ̄) + Φ20, (2.58)

Dµ − δπ = (ρ̄µ + σλ) + π (π̄ − ᾱ + β) − µ (ϵ + ϵ̄) − νκ + Ψ2 + 1
12R, (2.59)

Dν − ∆π =µ (π + τ̄) + λ (π̄ + τ) + π (γ − γ̄) − ν (3ϵ + ϵ̄)
+ Ψ3 + Φ21, (2.60)

∆λ − δ̄ν = − λ (µ + µ̄ + 3γ − γ̄) + ν
(︂
3α + β̄ + π − τ̄

)︂
− Ψ4, (2.61)

δρ − δ̄σ =ρ (ᾱ + β) − σ
(︂
3α − β̄

)︂
+ τ (ρ − ρ̄) + κ (µ − µ̄)

− Ψ1 + Φ01, (2.62)
δα − δ̄β =(µρ − λσ) + αᾱ + ββ̄ − 2αβ + γ (ρ − ρ̄) + ϵ (µ − µ̄)

− Ψ2 + Φ11 + 1
24R, (2.63)

δλ − δ̄µ =ν (ρ − ρ̄) + π (µ − µ̄) + µ
(︂
α + β̄

)︂
+ λ (ᾱ − 3β)

− Ψ3 + Φ21, (2.64)
δν − ∆µ =

(︂
µ2 + λλ̄

)︂
+ µ (γ + γ̄) − ν̄π + ν (τ − 3β − ᾱ) + Φ22, (2.65)

δγ − ∆β =γ (τ − ᾱ − β) + µτ − σν − ϵν̄ − β (γ − γ̄ − µ) + αλ̄ + Φ12, (2.66)
δτ − ∆σ =

(︂
µσ + λ̄ρ

)︂
+ τ (τ + β − ᾱ) − σ (3γ − γ̄) − κν̄ + Φ02, (2.67)

∆ρ − δ̄τ = − (ρµ̄ + σλ) + τ
(︂
β̄ − α − τ̄

)︂
+ ρ (γ + γ̄) + νκ − Ψ2 − 1

12R, (2.68)

∆α − δ̄γ =ν(ρ + ϵ) − λ(τ + β) + α (γ̄ − µ̄) + γ
(︂
β̄ − τ̄

)︂
− Ψ3. (2.69)

Bianchi identities

The last purely geometrical constrains are hidden in the first and second Bianchi
identities. The first Bianchi identities come from the cyclic exchange of indices
in the covariant derivative of the Riemann tensor, namely

Rµν[αβ;γ] = 1
3(Rµναβ;γ + Rµνβγ;α + Rµνγαβ) = 0. (2.70)
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Projecting these relations, we can make use of the equation (2.24) to express them
in the NP formalism. The second Bianchi identities are obtained by contracting
the first set of identities, i.e.,

gµαgνβ(Rµναβ;γ + Rµνβγ;α + Rµνγα;β)
= gνβ(Rνβ;γ + gµαRµνβγ;α − Rνγ;β)
= R;γ − gµαRµγ;α − gνβRνγ;β

= R;γ − 2Rµ
γ;µ = 0. (2.71)

Projecting the second Bianchi identities on the null tetrad yields

e(a)
γR;γ − 2e(a)

γgµνRνγ;µ

= R|(a) − 2e(a)
γe(b)

µe(b)νRνγ;µ

= R|(a) − 2η(b)(c)R(c)(a)|(b) = 0. (2.72)

The full set of independent equations consists of 8 complex equations from
the first set of Bianchi identities,

R(1)(3)[(1)(3)|(4)] = 0, R(1)(3)[(2)(1)|(4)] = 0, R(1)(3)[(1)(3)|(2)] = 0,
R(1)(3)[(4)(3)|(2)] = 0, R(4)(2)[(1)(3)|(4)] = 0, R(4)(2)[(2)(1)|(4)] = 0,
R(4)(2)[(1)(3)|(2)] = 0, R(4)(2)[(4)(3)|(2)] = 0,

(2.73)

and two real and one complex equation from the second set of Bianchi identities,

R(1)(1)|(2) + R(3)(4)|(1) − R(1)(3)|(4) − R(1)(4)|(3) = 0,
R(2)(2)|(1) + R(3)(4)|(2) − R(2)(3)|(4) − R(2)(4)|(3) = 0,
R(3)(3)|(4) + R(1)(2)|(3) − R(3)(1)|(2) − R(3)(2)|(1) = 0,

(2.74)

giving us the total of 20 independent Bianchi identities.
For illustration let us explicitly express the first equation in (2.73), namely

R(1)(3)(1)(3)|(4) + R(1)(3)(3)(4)|(1) + R(1)(3)(4)(1)|(3) = 0. (2.75)

Rewriting all three projections of the Riemann tensor (firstly without the deriva-
tive) using (2.37) we obtain

R(1)(3)(1)(3) =C(1)(3)(1)(3)

− 1
2
(︂
✘✘✘✘η(1)(1) R(3)(3) − ✘✘✘✘η(3)(1) R(1)(3) − ✘✘✘✘η(1)(3) R(3)(1) + ✘✘✘✘η(3)(3) R(1)(1)

)︂
+ 1

6
(︂
✘✘✘✘η(1)(1)✘✘✘✘η(3)(3) − ✘✘✘✘η(1)(3)✘✘✘✘η(3)(1)

)︂
R

=C(1)(3)(1)(3), (2.76)

R(1)(3)(3)(4) =C(1)(3)(3)(4)

− 1
2
(︂
✘✘✘✘η(1)(3) R(3)(4) − ✘✘✘✘η(3)(3) R(1)(4) − ✘✘✘✘η(1)(4) R(3)(3) + η(3)(4)R(1)(3)

)︂
+ 1

6
(︂
✘✘✘✘η(1)(3) η(3)(4) − ✘✘✘✘η(1)(4)✘✘✘✘η(3)(3)

)︂
R

=C(1)(3)(3)(4) + 1
2R(1)(3), (2.77)
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R(1)(3)(4)(1) =✘✘✘✘✘✘C(1)(3)(4)(1)

− 1
2
(︂
✘✘✘✘η(1)(4) R(3)(1) − η(3)(4)R(1)(1) − ✘✘✘✘η(1)(1) R(3)(4) + ✘✘✘✘η(3)(1) R(1)(4)

)︂
+ 1

6
(︂
✘✘✘✘η(1)(4)✘✘✘✘η(3)(1) − ✘✘✘✘η(1)(1) η(3)(4)

)︂
R

= − 1
2R(1)(1). (2.78)

Therefore, the equation (2.75) takes the form

C(1)(3)(1)(3)|(4) + C(1)(3)(3)(4)|(1) + 1
2R(1)(3)|(1) − 1

2R(1)(1)|(3) = 0. (2.79)

We have already explicitly written how the intrinsic derivative acts on the Rie-
mann tensor (2.23). For projections of the Weyl tensor it will be exactly the
same, i.e.,

C(1)(3)(1)(3)|(4) =C(1)(3)(1)(3),(4)

− η(n)(m)
[︂
γ(n)(1)(4)C(m)(3)(1)(3) + γ(n)(3)(4)C(1)(m)(1)(3)

+γ(n)(1)(4)C(1)(3)(m)(3) + γ(n)(3)(4)C(1)(3)(1)(m)
]︂

= − δ̄Ψ0 − γ(2)(1)(4)C(1)(3)(1)(3) + γ(3)(1)(4)C(4)(3)(1)(3)

− γ(1)(3)(4)C(1)(2)(1)(3) + γ(4)(3)(4)C(1)(3)(1)(3)

− γ(2)(1)(4)C(1)(3)(1)(3) + γ(3)(1)(4)C(1)(3)(4)(3)

− γ(1)(3)(4)C(1)(3)(1)(2) + γ(4)(3)(4)C(1)(3)(1)(3)

= − δ̄Ψ0 + 4αΨ0 − 4ρΨ1, (2.80)

C(1)(3)(3)(4)|(1) =C(1)(3)(3)(4),(1)

− η(n)(m)
[︂
γ(n)(1)(1)C(m)(3)(3)(4) + γ(n)(3)(1)C(1)(m)(3)(4)

+γ(n)(3)(1)C(1)(3)(m)(4) + γ(n)(4)(1)C(1)(3)(3)(m)
]︂

=DΨ1 − γ(2)(1)(1)C(1)(3)(3)(4) + γ(3)(1)(1)C(4)(3)(3)(4)

− γ(1)(3)(1)C(1)(2)(3)(4) + γ(4)(3)(1)C(1)(3)(3)(4)

− γ(1)(3)(1)C(1)(3)(2)(4) + γ(4)(3)(1)C(1)(3)(3)(4)

− γ(2)(4)(1)C(1)(3)(3)(1) + γ(3)(4)(1)C(1)(3)(3)(4)

=DΨ1 − 2ϵΨ1 + 3κΨ2 − πΨ0. (2.81)

Intrinsic derivative acting on the Ricci tensor is even more simple, namely

R(a)(b)|(c) = R(a)(b),(c) − η(n)(m)
[︂
γ(n)(a)(c)R(m)(b) + γ(n)(b)(c)R(a)(m)

]︂
. (2.82)

So, expressing the remaining two parts of the equation (2.79) we thus obtain

R(1)(3)|(1) =R(1)(3),(1) − η(n)(m)
[︂
γ(n)(1)(1)R(m)(3) + γ(n)(3)(1)R(1)(m)

]︂
= − 2DΦ01 − γ(2)(1)(1)R(1)(3) + γ(3)(1)(1)R(4)(3) + γ(4)(1)(1)R(3)(3)

− γ(1)(3)(1)R(1)(2) − γ(2)(3)(1)R(1)(1) + γ(4)(3)(1)R(1)(3)

= − 2DΦ01 + 4ϵΦ01 − 4κΦ11 − 2κ̄Φ02 + 2π̄Φ00, (2.83)
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and

R(1)(1)|(3) =R(1)(1),(3) − η(n)(m)
[︂
γ(n)(1)(3)R(m)(1) + γ(n)(1)(3)R(1)(m)

]︂
= − 2δΦ00 − γ(2)(1)(3)R(1)(1) + γ(3)(1)(3)R(4)(1) + γ(4)(1)(3)R(3)(1)

− γ(2)(1)(3)R(1)(1) + γ(3)(1)(3)R(1)(4) + γ(4)(1)(3)R(1)(3)

= − 2δΦ00 + 4(ᾱ + β)Φ00 − 4σΦ10 − 4ρ̄Φ01. (2.84)

Finally, combining everything together the equation (2.79) now takes the form,

0 = − δ̄Ψ0 + DΨ1 + (4α − π)Ψ0 − 2(2ρ + ϵ)Ψ1 + 3κΨ2

− DΦ01 + δΦ00 + 2(ϵ + ρ̄)Φ01 + 2σΦ10 − 2κΦ11 − κ̄Φ02 + π̄Φ00

+ (π̄ − 2ᾱ − 2β)Φ00. (2.85)

Following this procedure, it is straightforward to write the full set of the first
Bianchi identities,

0 = − δ̄Ψ0 + DΨ1 + (4α − π)Ψ0 − 2(2ρ + ϵ)Ψ1 + 3κΨ2

− DΦ01 + δΦ00 + 2 (ϵ + ρ̄) Φ01 + 2σΦ10 − 2κΦ11 − κ̄Φ02

+ (π̄ − 2ᾱ − 2β) Φ00, (2.86)
0 = + δ̄Ψ1 − DΨ2 − λΨ0 + 2(π − α)Ψ1 + 3ρΨ2 − 2κΨ3

+ δ̄Φ01 − ∆Φ00 − 2 (α + τ̄) Φ01 + 2ρΦ11 + σ̄Φ02

− (µ̄ − 2γ − 2γ̄) Φ00 − 2τΦ10 − 1
12DR, (2.87)

0 = − δ̄Ψ2 + DΨ3 + 2λΨ1 − 3πΨ2 + 2(ϵ − ρ)Ψ3 + κΨ4

− DΦ21 + δΦ20 + 2 (ρ̄ − ϵ) Φ21 − 2µΦ10 + 2πΦ11 − κ̄Φ22

− (2ᾱ − 2β − π̄) Φ20 − 1
12 δ̄R, (2.88)

0 = + δ̄Ψ3 − DΨ4 − 3λΨ2 + 2(2π + α)Ψ3 − (4ϵ − ρ)Ψ4

− ∆Φ20 + δ̄Φ21 + 2 (α − τ̄) Φ21 + 2νΦ10 + σ̄Φ22 − 2λΦ11

− (µ̄ + 2γ − 2γ̄) Φ20, (2.89)
0 = − ∆Ψ0 + δΨ1 + (4γ − µ)Ψ0 − 2(2τ + β)Ψ1 + 3σΨ2

− DΦ02 + δΦ01 + 2 (π̄ − β) Φ01 − 2κΦ12 − λ̄Φ00 + 2σΦ11

+ (ρ̄ + 2ϵ − 2ϵ̄) Φ02, (2.90)
0 = − ∆Ψ1 + δΨ2 + νΨ0 + 2(γ − µ)Ψ1 − 3τΨ2 + 2σΨ3

+ ∆Φ01 − δ̄Φ02 + 2 (µ̄ − γ) Φ01 − 2ρΦ12 − ν̄Φ00 + 2τΦ11

+
(︂
τ̄ − 2β̄ + 2α

)︂
Φ02 + 1

12δR, (2.91)

0 = − ∆Ψ2 + δΨ3 + 2νΨ1 − 3µΨ2 + 2(β − τ)Ψ3 + σΨ4

− DΦ22 + δΦ21 + 2 (π̄ + β) Φ21 − 2µΦ11 − λ̄Φ20 + 2πΦ12

+ (ρ̄ − 2ϵ − 2ϵ̄) Φ22 − 1
12∆R, (2.92)

0 = − ∆Ψ3 + δΨ4 + 3νΨ2 − 2(γ + 2µ)Ψ3 − (τ − 4β)Ψ4

+ ∆Φ21 − δ̄Φ22 + 2 (µ̄ + γ) Φ21 − 2νΦ11 − ν̄Φ20 + 2λΦ12

+
(︂
τ̄ − 2α − 2β̄

)︂
Φ22. (2.93)
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Furthermore, the second Bianchi identities in the NP formalism take the form

δ̄Φ01 + δΦ10 − D
(︃

Φ11 + R

8

)︃
− ∆Φ00

= κ̄Φ12 + κΦ21 + (2α + 2τ̄ − π) Φ01 + (2ᾱ + 2τ − π̄) Φ10

− 2 (ρ + ρ̄) Φ11 − σ̄Φ02 − σΦ20 + [µ + µ̄ − 2 (γ + γ̄)] Φ00, (2.94)

δ̄Φ12 + δΦ21 − ∆
(︃

Φ11 + R

8

)︃
− DΦ22

= −νΦ01 − ν̄Φ10 +
(︂
τ̄ − 2β̄ − 2π

)︂
Φ12 + (τ − 2β − 2π̄) Φ21

+ 2 (µ + µ̄) Φ11 − (ρ + ρ̄ − 2ϵ − 2ϵ̄) Φ22 + λΦ02 + λ̄Φ20, (2.95)

δ
(︃

Φ11 − R

8

)︃
− DΦ12 − ∆Φ01 + δ̄Φ02

= κΦ22 − ν̄Φ00 +
(︂
τ̄ − π + 2α − 2β̄

)︂
Φ02 − σΦ21 + λ̄Φ10

+ 2 (τ − π̄) Φ11 − (2ρ + ρ̄ − 2ϵ̄) Φ12 + (2µ̄ + µ − 2γ) Φ01. (2.96)

2.2.3 Interpretation of the NP quantities
This section briefly summarises the geometric interpretation of specific spin co-
efficients related to the geodesic motion. In the second part we outline a possible
way how to investigate the Weyl and Ricci tensor components influence on the
relative motion of free test particles. Other than the main source for the whole
chapter [14] another source for this specific section is [17].

Optical scalars

When it comes to the discussion on physical meaning of the spin coefficients, it
is useful to start by rewriting the covariant derivative acting on l in terms of the
Ricci rotation coefficients in correspondence with (2.20), i.e.,

lµ;ν = e(a)
µγ(a)1(b)e

(b)
ν . (2.97)

In explicit form we obtain the following decomposition

lµ;ν = (ϵ + ϵ̄) lµnν + (γ + γ̄) lµlν − (ᾱ + β) lµm̄ν −
(︂
α + β̄

)︂
lµmν

− κm̄µnν − κ̄mµnν + σm̄µm̄ν + σ̄mµmν

− τm̄µlν − τ̄mµlν + ρm̄µmν + ρ̄mµm̄ν . (2.98)

Projecting this result on the same null vector l will result in

lµ;νlν = (ϵ + ϵ̄) lµ − κm̄µ − κ̄mµ. (2.99)

If the left-hand side of the above equation is proportional to l itself (up to an
arbitrary scalar function),vector l would, by definition, generate congruence of
null geodesics. We can see that this is true if, and only if, κ = 0.

Stronger condition would be to set left hand side of (2.99) to zero and in that
case, we would say that the geodesics are in addition affinely parametrized. To
the condition above, we would also need to add ϵ = 0.
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Figure 2.1: Expansion, shear and twist in the transverse projection.

Analogous results can be obtained for the second null vector n and its covari-
ant derivative components.

Let us now continue with the affinely parametrized congruence of null geodesics.
In other words, we assume that κ = 0 and ϵ = 0 and from the equation (2.98) we
thus immediately obtain

lµ;ν = (γ + γ̄) lµlν − (ᾱ + β) lµm̄ν −
(︂
α + β̄

)︂
lµmν − τm̄µlν

+ σm̄µm̄ν + σ̄mµmν + ρm̄µmν + ρ̄mµm̄ν − τ̄mµlν .
(2.100)

By simple manipulations with (2.100) we can derive the following relations

1
2 lµ

;µ = −1
2 (ρ + ρ̄) = θ, (2.101)

1
2 l[µ;ν]l

µ;ν = −1
4 (ρ − ρ̄)2 = ω2, (2.102)

1
2 l(µ,ν)l

µ;ν = θ2 + |σ|2, (2.103)

defining three optical scalars, namely expansion θ, twist ω, and shear σ. The logic
behind these names used by R. Sachs will become clear momentarily. Obviously,
an alternative definition of expansion and twist is simply

θ = − Re ρ and ω = Im ρ. (2.104)

For a physical interpretation of the optical scalars we can imagine a bundle of
light rays travelling through the space in a circular formation. Behaviour of such a
congruence, i.e., if the light rays expand into a circle with large diameter, rotate
around the centre of this circle or if they are deformed into an ellipse, can be
directly seen from the change of l in the orthogonal transverse direction m as it
propagates, i.e.,

lµ;νmj = −γ1(b)3e
(b) = (ᾱ + β) lµ − ρ̄mµ − σm̄µ. (2.105)

For visualisation of such transverse deformations of the null geodesic congru-
ence see figures 2.1 and 2.2.

Weyl and Ricci components

To investigate geometrical influence and physical meaning of the Weyl and Ricci
tensor components (2.38) and (2.40) it is natural to employ the equation of
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Figure 2.2: Expansion, shear and twist in space picture.

geodesic deviation. Its coordinate form can be written as

D2Zµ

dτ 2 = Rµ
αβνuαuβZν , (2.106)

where
D2Zµ

dτ 2 =
(︂
Zµ

;γuγ
)︂

;δ
uδ = Zµ

;γδu
γuδ, (2.107)

and Zµ represents components of the separation vector in the congruence and uα

are components of the fiducial time-like observer 4-velocity. To get a coordinate
independent information it is natural to project this equation onto an orthonormal
frame e(a) with the time-like vector identification e(0) = u, i.e., e(a) ·e(b) = η(a)(b).
Obviously, the e(0) projection is trivial, namely

d2Z(0)

dτ 2 = −uµ
D2Zµ

dτ 2 = −RµαβνuµuαuβZν = 0, (2.108)

and we have to discuss only the remaining three components,

Z̈(i) = R
(i)

(0)(0)(j)Z
(j), (2.109)

where i, j = 1, 2, 3. Moreover, the Riemann tensor can be decomposed as

R(i)(0)(0)(j) = C(i)(0)(0)(j) + 1
2
(︂
R(i)(j) − δijR(0)(0)

)︂
− 1

6Rδij. (2.110)

Finally, we can relate the orthonormal interpretation frame with the null frame
introduced within the NP formalism,

e(0) = 1√
2

(l + n), e(1) = 1√
2

(l − n),

e(2) = 1√
2

(m + m̄), e(3) = 1
i
√

2
(m − m̄), (2.111)

and rewrite the crucial expression (2.110) encoding the test particles relative ac-
celeration in terms of the Weyl tensor (2.38) and Ricci tensor (2.40) null frame
components. Based on such an analysis, we should be in principle able to connect
these frame components with particular relative motion in the geodesic congru-
ence. Moreover, in a given theory of gravity we can also employ the field equation
to separate the matter influence and free gravitation field. Detailed discussion of
the GR case can be found in [18, 19].
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3. Newman–Penrose formalism
in theories of gravity
This chapter explores application of the NP formalism geometric constraints in
particular theories of gravity. In the first part we will look at the NP formalism
in classical General Relativity with a simple example of Schwarzschild solution.
Subsequently, a section applying the NP quantities in the context of Quadratic
gravity will follow. As we know the field equations take a more complicated form
in such a case. Especially complicated new object entering the game is the Bach
tensor. As a main goal here we explicitly compute all independent components of
the frame projections and formulate the procedure how to combine the geometric
and Quadratic gravity field equations constraints.

3.1 General Relativity
In the case of Einstein’s theory, the field equations (1) can be written in the form,

Rµν = Λgµν + 8π(Tµν − 1
2Tgµν), (3.1)

which explicitly relates the Ricci tensor with a matter content of the spacetime.
It is thus obvious that the frame projections of the field equations represent just
algebraic constrains between the Ricci and energy-momentum tensor components.
Therefore, in the case of General Relativity employing the field equations into the
frame formalism is very straightforward. For the vacuum spacetimes with Λ = 0
the simple condition of vanishing Ricci tensor has to enter the geometric identities
of the previous chapter.

We believe that the best approach for understanding how the NP formalism
can be used in the General Relativity is to go through an explicit example. This
section summarises example from [20].

Example: Vacuum spherical spacetime

We start with general line element with two unspecified functions u(r, t) and
v(r, t), namely

ds2 = e2vdt2 − e2udr2 − r2
(︂
dθ2 + sin θ2θdϕ2

)︂
. (3.2)

The matrix form of this metric is

gµν =

⎛⎜⎜⎜⎝
e2v 0 0 0
0 −e2u 0 0
0 0 −r2 0
0 0 0 −r2 sin θ2

⎞⎟⎟⎟⎠ . (3.3)

When it comes to the null tetrad we have a freedom of its choice. This choice
will greatly influence all the following calculations and simplicity of the problem
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formulation. The only conditions that need to be satisfied are (2.28). For this
particular metric its natural to choose the following tetrad

lµ =

⎛⎜⎜⎜⎜⎝
1√
2e−v

1√
2e−u

0
0

⎞⎟⎟⎟⎟⎠ , nµ =

⎛⎜⎜⎜⎜⎝
1√
2e−v

− 1√
2e−u

0
0

⎞⎟⎟⎟⎟⎠ , mµ =

⎛⎜⎜⎜⎜⎝
0
0
1√
2r
i√

2r sin θ

⎞⎟⎟⎟⎟⎠ , m̄µ =

⎛⎜⎜⎜⎜⎝
0
0
1√
2r

−i√
2r sin θ

⎞⎟⎟⎟⎟⎠ .

(3.4)
Now, we can compute the spin coefficients (2.36). The only nonzero coeffi-

cients are

ϵ = 1
2
√

2
(e−uv,r + e−vu,t), (3.5)

γ = 1
2
√

2
(e−uv,r − e−vu,t), (3.6)

α = − cot θ

2
√

2r
, (3.7)

β = − α = cot θ

2
√

2r
, (3.8)

ρ = − e−u

√
2r

, (3.9)

µ =ρ = − e−u

√
2r

. (3.10)

(3.11)

Before we substitute these expressions into the Ricci identities (2.52)–(2.69)
it is useful to realise that ϵ, γ, ρ, and µ are functions of r and t only. That means
that derivatives δ and δ̄ acting on these spin coefficients yield zero since they
are defined by mµ and m̄µ. So according to the definition (2.35) only θ and ϕ
components of the covariant derivative are present in the δ and δ̄. To summarise,

0 = δϵ = δ̄ϵ = δγ = δ̄γ = δρ = δ̄ρ = δµ = δ̄µ. (3.12)

Keeping only the non-trivial terms in the Ricci identities (2.52)–(2.69) we
obtain

0 =Ψ0 = Ψ1 = Ψ3 = Ψ4, (3.13)
0 =Φ10 = Φ01 = Φ20 = Φ02 = Φ12 = Φ21, (3.14)

Dρ =ρ2 + 2ϵρ + Φ00, (3.15)
∆ρ = − ρ2 − 2γρ − Φ22, (3.16)

Dγ − ∆ϵ = − 4ϵγ + Ψ2 − R

24 + Φ11, (3.17)

δα + δ̄α =4α2 + ρ2 − Ψ2 + R

24 + Φ11, (3.18)

0 = − 4ϵρ + Ψ2 + 2 R

24 − Φ00, (3.19)

0 = − 4γρ + Ψ2 + 2 R

24 − Φ22. (3.20)
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As we can see a lot of projected components of the Ricci tensor are zero au-
tomatically. This follows from the metric ansatz and the geometric constrains
without employing any particular theory field equations. In the vacuum General
Relativity with the vanishing cosmological constant all components of the Ricci
tensor, and the Ricci scalar, have to be zero due to the Einstein field equations.
Therefore, in addition we must set the remaining non-vanishing Ricci tensor com-
ponents Φ as well as the scalar curvature R to zero to fulfil the field equations.
The remaining nontrivial constrains take the form

Dρ =ρ2 + 2ϵρ, (3.21)
∆ρ = − ρ2 − 2γρ, (3.22)

Dγ − ∆ϵ = − 4ϵγ + Ψ2, (3.23)
δα + δ̄α =4α2 + ρ2 − Ψ2, (3.24)

0 = − 4ϵρ + Ψ2, (3.25)
0 = − 4γρ + Ψ2. (3.26)

Now we need to solve these field equations. Let us start with algebraic equations
(3.25) and (3.26) that give us obviously equality of the scalars γ and ϵ, i.e.,

γ = ϵ. (3.27)

Combining the equations (3.21) and (3.22) and substituting the equality above
yields,

0 = (D + ∆)ρ =
√

2e−vρ,t = −
√

2e−v−u

√
2r

u,t,

which implies

u,t = 0. (3.28)

Furthermore, equipped with the constraint (3.28) the equation (3.21) will give
us another useful relation, namely

Dρ = ρ2 + 2ϵρ,

=⇒ e−u

√
2

ρ,r = e−2u

2r2 − 2e−2uv,r

4r
,

=⇒ e−2u

2r2 + e−2u

2r
u,r = e−2u

2r2 − e−2u

2r
v,r,

resulting in

(u + v),r = 0. (3.29)
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Substitution for Ψ2 from (3.25) into the equation (3.24) yields

δα + δ̄α = 4α2 + ρ2 − 4ϵρ,

=⇒
√

2
r

α,θ = 4 cos θ2

8r2 sin θ2 + e−2u

2r2 + e−2u

r
v,r,

=⇒ 1
2r2 sin θ2 = cos θ2

2r2 sin θ2 + e−2u

2r2 − e−2u

r
u,r,

=⇒ 1
2r2 = e−2u

2r2 (1 − 2ru,r),

=⇒ e2u = 1 − 2ru,r,

=⇒ u,r

1 − e2u
= 1

2r
,

=⇒ e2u

1 − e2u
= rd,

where d is an integration constant. Thus, we obtain the metric coefficient e2u in
the form

e2u = 1
1 + 1

rd

(3.30)

Finally, previous result in combination with the equation (3.29) provides

v,r = −1 − e2u

2r
= 1

2r(1 + rd) ,

So, the second metric coefficient e2v takes the form

e2v = rc

1 + rd
f(t)2 = 1

d
c

+ 1
rc

f(t)2, (3.31)

where c is another integration constant. After coordinate transformation re-
scaling the coordinate t, namely

dt′ = f(t)dt, (3.32)

and choosing the previously introduced constants to be c = d = − 1
2M

we arrive
at the classic Schwarzschild metric,

ds2 =
(︃

1 − 2M

r

)︃
dt2 −

(︃
1 − 2M

r

)︃−1
dr2 − r2

(︂
dθ2 + sin2 θdθ2

)︂
. (3.33)

We hope that now it is much more apparent how can one use the NP formal-
ism in practical calculations within General Relativity. However, before we can
employ similar formalism and procedure in Quadratic Gravity, we will need to
introduce a few more specific objects in the NP formalism, and discuss constraints
following the field equations.

3.2 Quadratic gravity
In this section we will explicitly express the field equations of Quadratic gravity
(1.9) using the NP scalars and present possible way how to employ corresponding
restrictions withing geometric constraints of the second chapter.
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We are motivated by the classical General Relativity approach eliminating the
Ricci tensor components. The crucial observation is that the Quadratic Gravity
field equation does not contain derivatives of the Ricci tensor. It should be
possible to follow the same strategy.

In the first chapter we have rewritten the field equations of Quadratic gravity
into the form (1.14) by introducing a new tensor Zµν . Our motivation was to
explicitly separate the Ricci tensor contribution. Projecting this set of equations
onto the NP null frame yields

0 = − 4a(Φ20Ψ0 + Φ02Ψ̄0 − 2Φ10Ψ1 − 2Φ01Ψ̄1 + Φ00Ψ2 + Φ00Ψ̄2)

+ 2Φ00

k + 4bRΦ00 − Z(1)(1), (3.34)

0 = − 4a(Φ21Ψ1 + Φ12Ψ̄1 − 2Φ11(Ψ2 + Ψ̄2) + Φ01Ψ3 + Φ10Ψ̄3)

+ 1
k(2Φ11 − R

4 ) + 2bR(2Φ11 − R

4 ) − Z(1)(2), (3.35)

0 = − 4a(Φ21Ψ0 − 2Φ11Ψ1 + Φ02Ψ̄1 + Φ01Ψ2 − 2Φ01Ψ̄2 + Φ00Ψ̄3)

+ 2Φ01

k + 4bRΦ01 − Z(1)(3), (3.36)

0 = − 4a
(︂
Φ22(Ψ2 + Ψ̄2) − 2Φ12Ψ3 − 2Φ21Ψ̄3 + Φ02Ψ4 + Φ20Ψ̄4

)︂
+ 2Φ22

k + 4bRΦ22 − Z(2)(2), (3.37)

0 = − 4a(Φ22Ψ1 − 2Φ12Ψ2 + Φ12Ψ̄2 + Φ02Ψ3 − 2Φ11Ψ̄3 + Φ10Ψ̄4)

+ 2Φ12

k + 4bRΦ12 − Z(2)(3), (3.38)

0 = − 4a(Φ22Ψ0 − 2Φ12Ψ1 + Φ02Ψ2 + Φ02Ψ̄2 − 2Φ01Ψ̄3 + Φ00Ψ̄4)

+ 2Φ02

k + 4bRΦ02 − Z(3)(3), (3.39)

0 = − 4a(Φ21Ψ1 + Φ12Ψ̄1 − 2Φ11Ψ2 − 2Φ11Ψ̄2 + Φ01Ψ3 + Φ10Ψ̄3)

+ 1
k(2Φ11 + R

4 ) + 2bR(2Φ11 + R

4 ) − Z(3)(4) (3.40)

where components of the Weyl and Ricci tensors are defined by (2.38) and (2.40)
respectively, and e.g., Z(1)(1) = Zµνlµlν and Z(2)(3) = Zµνnµmν etc. In fact, this is
the crucial set of equations where all the Ricci tensor components are explicitly
listed and one can in principle solve the algebraic system of equations to obtain
these components. Then, they can be substituted into the geometric identities of
the previous chapter.

To be fully explicit, in the next step we express all relevant projections of the
Zµν tensor, i.e.,

Z(1)(1) = − 4aBZ
(1)(1) + 2b

(︂
(ϵ + ϵ̄)DR − DDR − κ̄δR − κδ̄R

)︂
, (3.41)

Z(1)(2) = − 1
k(R

2 − Λ) − 4aBZ
(1)(2) + 2b

(︂
−1

4R2 − (γ + γ̄ − µ − µ̄)DR

− ρ∆R − ρ̄∆R + ∆DR + αδR − β̄δR + τ̄ δR − δδ̄R

+ ᾱδ̄R − βδ̄R + τ δ̄R − δ̄δR
)︂
, (3.42)
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Z(1)(3) = − 4aBZ
(1)(3) + 2b(π̄DR − DδR − κ∆R + ϵδR − ϵ̄δR), (3.43)

Z(2)(2) = − 4aBZ
(2)(2) + 2b

(︂
(γ + γ̄)∆R + ∆∆R − νδR − ν̄δ̄R

)︂
, (3.44)

Z(2)(3) = − 4aBZ
(2)(3) + 2b(ν̄DR − τ∆R − ∆δR + γδR − γ̄δR), (3.45)

Z(3)(3) = − 4aBZ
(3)(3) + 2b(R̄DR − σ∆R − ᾱδR + βδR − δδR), (3.46)

Z(3)(4) =1
k(R

2 − Λ) − 4aBZ
(3)(4) + 2b

(︂1
4R2 + (γ + γ̄ − µ̄)DR

− D∆R − ϵ∆R − ϵ̄∆R + ρ∆R − ∆DR − αδR + β̄δR

+ πδR − τ̄ δR + π̄δ̄R − τ δ̄R + δ̄δR
)︂
. (3.47)

where BZ
(a)(b) = BZ

µνe µ
(a)e

ν
(b) with BZ

µν representing “Ricci-independent” part of the
Bach tensor corresponding to the second covariant derivative of the Weyl tensor,
namely

BZ
µν = ∇α∇βCµανβ. (3.48)

This is thus the last piece which has to be expressed using the spin coefficients.
Here we make a small natural sidestep. Instead of calculating only the pro-

jection of BZ
µν part, we express full Bach tensor and identify this splitting. The

same procedure as within all previous projections is now applied to the definition
of Bach tensor (1.10), namely

B(a)(b) = C(a)(p)(b)(r),(q),(s)η
(p)(q)η(r)(s) − 1

2R(c)(d)C(a)(c)(b)(d)

−
(︂
γ

(m)(c)
(a) C(m)(c)(b)(d)

)︂,(d)
−
(︂
γ

(m)(c)
(c) C(a)(m)(b)(d)

)︂,(d)

−
(︂
γ

(m)(c)
(d) C(a)(c)(b)(m)

)︂,(d)
−
(︂
γ

(m)(c)
(b) C(a)(c)(m)(d)

)︂,(d)

− γ
(m)(d)
(a) C

,(c)
(m)(c)(b)(d) − γ

(m)(d)
(b) C

,(c)
(a)(c)(m)(d)

− γ
(d)(m)
(m) C

,(c)
(a)(c)(b)(d)

+
(︂
γ

(n)(d)
(a) γ

(m)(c)
(n) + γ

(m)(d)
(a) γ

(c)(n)
(n) + γ

(m)(n)
(a) γ

(d)(c)
(n) + γ

(m)(c)
(a) γ

(d)(n)
(n)

)︂
C(m)(c)(b)(d)

+
(︂
γ

(m)(d)
(b) γ

(c)(m)
(m) + γ

(n)(d)
(b) γ

(m)(c)
(n) + γ

(m)(n)
(b) γ

(d)(c)
(n) + γ

(m)(c)
(b) γ

(d)(n)
(n)

)︂
C(a)(c)(m)(d)

+
(︂
γ

(m)(c)
(a) γ

(n)(d)
(b) + γ

(n)(c)
(a) γ

(m)(d)
(b)

)︂
C(n)(c)(m)(d)

+
(︂
γ

(d)(n)
(n) γ

(c)(m)
(m) + γ

(m)(n)
(n) γ

(d)(c)
(m)

)︂
C(a)(c)(b)(d) (3.49)

The evaluation of particular components then gives following relations,
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B(1)(1) = − Φ20Ψ0 − Φ02Ψ̄0 + 2Φ10Ψ1 + 2Φ01Ψ̄1 − Φ00Ψ2 − Φ00Ψ̄2 + BZ
(1)(1)

= − Φ20Ψ0 + 2Φ10Ψ1 − Φ00Ψ2

− δ̄δ̄Ψ0 + Dδ̄Ψ1 + δ̄DΨ1 − DDΨ2

− λDΨ0 − σ̄∆Ψ0 − (−7α − β̄ + 2π)δ̄Ψ0

− (5α + β̄ − 3π)DΨ1 + κ̄∆Ψ1 + σ̄δΨ1 − (3ϵ + ϵ̄ + 7ρ)δ̄Ψ1

− (−ϵ − ϵ̄ − 6ρ)DΨ2 − κ̄δΨ2 + 5κδ̄Ψ2

− 4κDΨ3

− Ψ0(12α2 + 4αβ̄ − ϵλ − ϵ̄λ + κ̄ν − 7απ − β̄π + π2 − 3λρ − 4γσ̄

+ µσ̄ + Dλ − 4δ̄α + δ̄π)
+ 2Ψ1(4αϵ + β̄ϵ + αϵ̄ − γκ̄ − 2κλ + κ̄µ − 2ϵπ − ϵ̄π + 9αρ + 2β̄ρ

− 5πρ − βσ̄ − 2σ̄τ − Dα + Dπ − δ̄ϵ − 2δ̄ρ)
− 3Ψ2(3ακ + β̄κ − 3κπ + ϵρ + ϵ̄ρ + 3ρ2 − σσ̄ − κ̄τ − Dρ − δ̄κ)
− 2Ψ3(ϵκ − ϵ̄κ − 5κρ + κ̄σ + Dκ)
− 2Ψ4κ

2

+ c.c., (3.50)

B(1)(2) = − Φ21Ψ1 − Φ12Ψ̄1 + 2Φ11(Ψ2 + Ψ̄2) − Φ01Ψ3 − Φ10Ψ̄3 + BZ
(1)(2)

= − Φ21Ψ1 + 2Φ11Ψ2 − Φ01Ψ3

− δ̄∆Ψ1 + D∆Ψ2 + δ̄δΨ2 − DδΨ3

+ λ∆Ψ0 + νδ̄Ψ0

− 2νDΨ1 − (−α + β̄ + 2π)∆Ψ1 − λδΨ1 − (−2γ + 2µ − µ̄)δ̄Ψ1

− (−3µ + µ̄)DΨ2 − (−ϵ − ϵ̄ + 2ρ)∆Ψ2 − (α − β̄ − 2π)δΨ2

− (π̄ + 3τ)δ̄Ψ2

− (2β − π̄ − 2τ)DΨ3 + κ∆Ψ3 − (ϵ + ϵ̄ − 2ρ)δΨ3 + 2σδ̄Ψ3

− σDΨ4 − κδΨ4

− Ψ0(4γλ − λµ + λµ̄ + αν − β̄ν − 2νπ − δ̄ν)
− Ψ1(2αγ − 2β̄γ − 2βλ − 2αµ + 2β̄µ + 2αµ̄ + 2ϵν + 2ϵ̄ν

− 4γπ + 4µπ − 2µ̄π − 2λπ̄ − 4νρ − 4λτ + 2Dν − 2δ̄γ + 2δ̄µ)
+ 3Ψ2(ϵµ + ϵ̄µ − κν − ππ̄ − 2µρ + µ̄ρ − λσ + ατ − β̄τ − 2πτ

+ Dµ − δ̄τ)
− 2Ψ3(βϵ + βϵ̄ − γκ − 2κµ + κµ̄ − ϵπ̄ − 2βρ + π̄ρ + ασ − β̄σ

− 2πσ − ϵτ − ϵ̄τ + 2ρτ + Dβ − Dτ − δ̄σ)
− Ψ4(4βκ − κπ̄ + ϵσ + ϵ̄σ − 2ρσ − κτ + Dσ)
+ c.c., (3.51)
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B(1)(3) = − Φ21Ψ0 + 2Φ11Ψ1 − Φ01Ψ2 − Φ02Ψ̄1 + 2Φ01Ψ̄2 − Φ00Ψ̄3 + BZ
(1)(3)

= − Φ21Ψ0 + 2Φ11Ψ1 − Φ01Ψ2

− δ̄∆Ψ0 + D∆Ψ1 + δ̄δΨ1 − DδΨ2

− νDΨ0 − (−3α + β̄ + π)∆Ψ0 − (−4γ + µ − µ̄)δ̄Ψ0

− (2γ − 2µ + µ̄)DΨ1 − (ϵ − ϵ̄ + 3ρ)∆Ψ1 − (3α − β̄ − π)δΨ1

− (2β + π̄ + 4τ)δ̄Ψ1

− (−π̄ − 3τ)DΨ2 + 2κ∆Ψ2 − (−ϵ + ϵ̄ − 3ρ)δΨ2 + 3σδ̄Ψ2

− 2σDΨ3 − 2κδΨ3

− Ψ0(12αγ − 4β̄γ − 3αµ + β̄µ + 4αµ̄ − ϵν + ϵ̄ν − 4γπ

+ µπ − µ̄π − λπ̄ − 3νρ + Dν − 4δ̄γ + δ̄µ)
+ 2Ψ1(3αβ − ββ̄ + γϵ − γϵ̄ − ϵµ + ϵ̄µ + ϵµ̄ − 2κν − βπ + απ̄ − ππ̄

+ 3γρ − 3µρ + 2µ̄ρ + 6ατ − 2β̄τ − 2πτ − Dγ + Dµ − δ̄β − 2δ̄τ)
+ 3Ψ2(2κµ − κµ̄ − π̄ρ − 3ασ + β̄σ + πσ − ϵτ + ϵ̄τ − 3ρτ + Dτ + δ̄σ)
− 2Ψ3(2βκ − κπ̄ − ϵσ + ϵ̄σ − 3ρσ − 2κτ + Dσ)
− 2Ψ4κσ

− Φ02Ψ̄1 + 2Φ01Ψ̄2 − Φ00Ψ̄3

− δδΨ̄1 + δDΨ̄2 + DδΨ̄2 − DDΨ̄3

+ 2λ̄δΨ̄0

− 3λ̄DΨ̄1 − σ∆Ψ̄1 + (3ᾱ + β − 4π̄)δΨ̄1

+ (−ᾱ − β + 5π̄)DΨ̄2 + κ∆Ψ̄2 + (−ϵ + ϵ̄ − 5ρ̄)δΨ̄2 + σδ̄Ψ̄2

+ (ϵ − 3ϵ̄ + 4ρ̄)DΨ̄3 + 3κ̄δΨ̄3 − κδ̄Ψ̄3

− 2κ̄DΨ̄4

+ Ψ̄0(−5ᾱλ̄ − βλ̄ + 3λ̄π̄ + ν̄σ + δλ̄)
− 2Ψ̄1(ᾱ2 + ᾱβ − ϵλ̄ + κν̄ − 3ᾱπ̄ − βπ̄ + 2π̄2 − 4λ̄ρ̄ − γ̄σ + µ̄σ

+ Dλ̄ − δᾱ + δπ̄)
− 3Ψ̄2(2κ̄λ̄ − κµ̄ + ϵπ̄ − ϵ̄π̄ − ᾱρ̄ − βρ̄ + 4π̄ρ̄ + στ̄ − Dπ̄ + δρ̄)
+ 2Ψ̄3(ϵϵ̄ − ϵ̄2 − β̄κ − βκ̄ + 4κ̄π̄ − ϵρ̄ + 3ϵ̄ρ̄ − 2ρ̄2 + σσ̄ + κτ̄ − Dϵ̄

+ Dρ̄ + δκ̄)
+ Ψ̄4(ϵκ̄ − 5ϵ̄κ̄ + 3κ̄ρ̄ − κσ̄ − Dκ̄), (3.52)
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B(2)(3) = − Φ22Ψ1 + 2Φ12Ψ2 − Φ02Ψ3 − Φ12Ψ̄2 + 2Φ11Ψ̄3 − Φ10Ψ̄4 + BZ
(2)(3)

= − Φ22Ψ1 + 2Φ12Ψ2 − Φ02Ψ3

− ∆∆Ψ1 + ∆δΨ2 + δ∆Ψ2 − δδΨ3

+ 2ν∆Ψ0

− (−3γ + γ̄ + 4µ)∆Ψ1 − 3νδΨ1 + ν̄δ̄Ψ1

− ν̄DΨ2 − (−ᾱ − β + 5τ)∆Ψ2 − (γ − γ̄ − 5µ)δΨ2 − λ̄δ̄Ψ2

+ λ̄DΨ3 + 3σ∆Ψ3 − (ᾱ + 3β − 4τ)δΨ3

− 2σδΨ4

− Ψ0(5γν − γ̄ν − 3µν + λν̄ − ∆ν)
− 2Ψ1(γ2 − γγ̄ − λλ̄ − 3γµ + γ̄µ + 2µ2 + ᾱν + αν̄ − ν̄π − 4ντ

− ∆γ + ∆µ + δν)
− Ψ2(−3ᾱµ − 3βµ + 3λ̄π − 3ν̄ρ + 6νσ − 3γτ + 3γ̄τ + 12µτ

+ 3∆τ − 3δµ)
− 2Ψ3(ᾱβ + β2 − ϵλ̄ + κν̄ + λ̄ρ − γ̄σ − 4µσ − ᾱτ − 3βτ + 2τ 2

− ∆σ + δβ − δτ)
− Ψ4

(︂
−κλ̄ + σ(ᾱ + 5β − 3τ) + δσ

)︂
− Φ12Ψ̄2 + 2Φ11Ψ̄3 − Φ10Ψ̄4

+ ∆DΨ̄3 − ∆δΨ̄2 − δ̄DΨ̄4 + δ̄δΨ̄3

+ 2λ̄∆Ψ̄1 + 2ν̄δΨ̄1

− 2ν̄DΨ̄2 + (−3π̄ − τ)∆Ψ̄2 + (γ − γ̄ − 3µ̄)δΨ̄2 − 3λ̄δ̄Ψ̄2

+ (−γ + γ̄ + 3µ̄)DΨ̄3 + (2ϵ̄ + ρ − 2ρ̄)∆Ψ̄3 + (−α + 3β̄ − τ̄)δΨ̄3

+ (2ᾱ + 4π̄ + τ)δ̄Ψ̄3

+ (α − 3β̄ + τ̄)DΨ̄4 + κ̄∆Ψ̄4 + (−4ϵ̄ − ρ + ρ̄)δ̄Ψ̄4

− 2Ψ̄0λ̄ν̄

+ 2Ψ̄1(−γλ̄ + γ̄λ̄ + 3λ̄µ̄ − 2ᾱν̄ + 2ν̄π̄ + ν̄τ + ∆λ̄)
+ Ψ̄2(3αλ̄ − 9β̄λ̄ + 3γπ̄ − 3γ̄π̄ − 9µ̄π̄ − 3ν̄ρ + 6ν̄ρ̄

− 3µ̄τ + 3λ̄τ̄ − 3∆π̄ − 3δ̄λ̄)
− 2Ψ̄3(αᾱ − 3ᾱβ̄ + γϵ̄ − γ̄ϵ̄ − 3ϵ̄µ̄ + 2κ̄ν̄ + 2απ̄ − 6β̄π̄ − γ̄ρ − 2µ̄ρ

− γρ̄ + γ̄ρ̄ + 3µ̄ρ̄ − β̄τ + ᾱτ̄ + 2π̄τ̄ + τ τ̄ − ∆ϵ̄ + ∆ρ̄ − δ̄ᾱ − 2δ̄π̄)
+ Ψ̄4(4αϵ̄ − 12β̄ϵ̄ − γκ̄ + γ̄κ̄ + 3κ̄µ̄ − 4β̄ρ − αρ̄ + 3β̄ρ̄ + σ̄τ + 4ϵ̄τ̄

+ ρτ̄ − ρ̄τ̄ + ∆κ̄ − 4δ̄ϵ̄ + δ̄ρ̄), (3.53)
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B(3)(3) = − Φ22Ψ0 + 2Φ12Ψ1 − Φ02Ψ2 − Φ02Ψ̄2 + 2Φ01Ψ̄3 − Φ00Ψ̄4 + BZ
(3)(3)

= − Φ22Ψ0 + 2Φ12Ψ1 − Φ02Ψ2

− ∆∆Ψ0 + ∆δΨ1 + δ∆Ψ1 − δδΨ2

− (−7γ + γ̄ + 2µ)∆Ψ0 − νδΨ0 + ν̄δ̄Ψ0

− ν̄DΨ1 − (−ᾱ + 3β + 7τ)∆Ψ1 − (5γ − γ̄ − 3µ)δΨ1 − λ̄δ̄Ψ1

+ λ̄DΨ2 + 5σ∆Ψ2 − (ᾱ − β − 6τ)δΨ2

− 4σδΨ3

− Ψ0(12γ2 − 4γγ̄ − λλ̄ − 7γµ + γ̄µ + µ2 + ᾱν − βν + 4αν̄ − ν̄π

− 3ντ − 4∆γ + ∆µ + δν)
+ 2Ψ1(−ᾱγ + 4βγ − βγ̄ + αλ̄ + ᾱµ − 2βµ + ϵν̄ − λ̄π + 2ν̄ρ

− 2νσ + 9γτ − 2γ̄τ − 5µτ − ∆β − 2∆τ − δγ + δµ)
− 3Ψ2(κν̄ + λ̄ρ + 3γσ − γ̄σ − 3µσ − ᾱτ + βτ + 3τ 2 − ∆σ − δτ)
− 2Ψ3

(︂
−κλ̄ + σ(ᾱ + β − 5τ) + δσ

)︂
− 2Ψ4σ

2

− Φ02Ψ̄2 + 2Φ01Ψ̄3 − Φ00Ψ̄4

− DDΨ̄4 + DδΨ̄3 + δDΨ̄3 − δδΨ̄2

+ 4λ̄δΨ̄1

− 5λ̄DΨ̄2 − σ∆Ψ̄2 + (−ᾱ + β − 6π̄)δΨ̄2

+ (3ᾱ − β + 7π̄)DΨ̄3 + κ∆Ψ̄3 + (−ϵ + 5ϵ̄ − 3ρ̄)δΨ̄3 + σδ̄Ψ̄3

+ (ϵ − 7ϵ̄ + 2ρ̄)DΨ̄4 + κ̄δΨ̄4 − κδ̄Ψ̄4

− 2Ψ̄0λ̄
2

+ 2Ψ̄1(−ᾱλ̄ − βλ̄ + 5λ̄π̄ + ν̄σ + δλ̄)
+ 3Ψ̄2(ϵλ̄ − 3ϵ̄λ̄ − κν̄ − ᾱπ̄ + βπ̄ − 3π̄2 + 3λ̄ρ̄ − µ̄σ − Dλ̄ − δπ̄)
− 2Ψ̄3(ᾱϵ − 4ᾱϵ̄ + βϵ̄ − γ̄κ + 2κ̄λ̄ − 2κµ̄ + 2ϵπ̄ − 9ϵ̄π̄ + 2ᾱρ̄ − βρ̄

+ 5π̄ρ̄ − β̄σ + στ̄ − Dᾱ − 2Dπ̄ − δϵ̄ + δρ̄)
+ Ψ̄4(4ϵϵ̄ − 12ϵ̄2 − 4β̄κ + ᾱκ̄ − βκ̄ + 3κ̄π̄ − ϵρ̄ + 7ϵ̄ρ̄ − ρ̄2 + σσ̄

+ κτ̄ − 4Dϵ̄ + Dρ̄ + δκ̄), (3.54)
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B(2)(2) = − Φ22(Ψ2 + Ψ̄2) + 2Φ12Ψ3 + 2Φ21Ψ̄3 − Φ02Ψ4 − Φ20Ψ̄4 + BZ
(2)(2)

= − Φ22Ψ2 + 2Φ12Ψ3 − Φ02Ψ4

− ∆∆Ψ2 + ∆δΨ3 + δ∆Ψ3 − δδΨ4

+ 4ν∆Ψ1

− (γ + γ̄ + 6µ)∆Ψ2 − 5νδΨ2 + ν̄δ̄Ψ2

− ν̄DΨ3 − (−ᾱ − 5β + 3τ)∆Ψ3 − (−3γ − γ̄ − 7µ)δΨ3 − λ̄δ̄Ψ3

+ λ̄DΨ4 + σ∆Ψ4 − (ᾱ + 7β − 2τ)δΨ4

− 2Ψ0ν
2

− 2Ψ1(γν − γ̄ν − 5µν + λν̄ − ∆ν)
− 3Ψ2(−λλ̄ + γµ + γ̄µ + 3µ2 + ᾱν + 3βν − ν̄π − 3ντ + ∆µ + δν)
+ 2Ψ3(ᾱγ + 4βγ + βγ̄ − αλ̄ + 2ᾱµ + 9βµ − ϵν̄ − 2λ̄π + ν̄ρ

− 2νσ − 2γτ − γ̄τ − 5µτ + ∆β − ∆τ + δγ + 2δµ)
− Ψ4(4ᾱβ + 12β2 − 4ϵλ̄ + κν̄ + λ̄ρ − γσ − γ̄σ − 3µσ − ᾱτ − 7βτ

+ τ 2 − ∆σ + 4δβ − δτ)
+ c.c., (3.55)

where c.c. denotes complex conjugation. It is quite natural that some terms have
this part and some do not. For example

B̄(1)(2) = B(1)(2), (3.56)

since l and n are real null vectors. On the other hand

B̄(1)(3) = B(1)(4), (3.57)

since m is a complex vector. Therefore B(1)(4) is not written explicitly since it
is contained in the B(1)(3) component. And similarly with other components.
Bach tensor is also trace-less, which projected to the null tetrad translates to the
condition

B(1)(2) = B(3)(4). (3.58)

Therefore B(3)(4) is not expressed explicitly either.
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4. Examples within the
Robinson–Trautman and Kundt
classes
In this last chapter we would like to illustrate the presented general frame ap-
proach to the Quadratic gravity applied to the analysis of specific geometrically
defined situations. Our main aim here is to derive the corresponding constraints
on the spacetime geometry and identify the most elementary pieces entering such
conditions.

4.1 Robinson–Trautman and Kundt geometries
The Robinson–Trautman and Kundt families [4, 5] are invariantly defined in terms
of the optical scalars describing null affinely parameterised geodesic congruence,
see section 2.2.3. They can thus serve as a suitable toy models for a comparison
of specific spacetimes restricted by different theories of gravity. In particular,
both classes represent manifolds admitting a congruence with vanishing twist
and shear. However, the Robinson–Trautman class has a non-trivial expansion
while within the Kundt class all optical scalars are zero, i.e.,

• Robinson–Trautman class ⇔ ω = σ = 0 and Θ ̸= 0
(see e.g., [21, 22, 4, 5, 23]),

• Kundt class ⇔ ω = σ = Θ = 0
(see e.g., [24, 25, 4, 5, 26]).

These properties of optical scalars are closely related to the existence of naturally
adapted coordinates and line element. In particular, the restrictions implied by
the vanishing twist of l, ω = 0, can be expressed in the form l[µ;ν] = 0 which due to
the Frobenius theorem (see e.g., [4]) guarantees existence of the null foliation with
l being its normal (tangent). Introducing a suitable set of coordinates (u, r, xi)
we can write the line element in the form

ds2 = −gij(u, r, x) dxidxj + 2gui(u, r, x) dxidu + 2dudr + guu(u, r, x) du2 , (4.1)

where the coordinate u labels null hypersurface identified by u = const, the
coordinate r represents an affine parameter along the non-twisting null congru-
ence, i.e., for generator of the non-twisting null congruence we can write l = ∂r,
and finally, xi stands for a pair of spatial coordinates covering the transverse
two-dimensional Riemannian space with the metric gij(u, r, x). Moreover, the
shear-free condition σ = 0 restricts the r-dependence of this metric into the form

gij = V 2(u, r, x) gij(u, x) , where V = exp
(︂ ∫︂

Θ(u, r, x) dr
)︂

, (4.2)

see e.g., [23]. Finally, in the Kundt case with Θ = 0 we effectively have V = 1
and the spatial metric is thus r-independent, i.e., gij = gij(u, x).
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4.2 Spherically symmetric spacetimes
In the class of expanding Robinson–Trautman geometries the spherically sym-
metric line element can be identified as

ds2 = H(r)du2 + 2dudr − V (r)2
(︂
dθ2 + sin θ2θdϕ2

)︂
, (4.3)

see e.g., [5]. The matrix form of this line element simply becomes

gµν =

⎛⎜⎜⎜⎝
H 1 0 0
1 0 0 0
0 0 −V 2 0
0 0 0 −V 2 sin θ2

⎞⎟⎟⎟⎠ , (4.4)

and the natural null frame takes the form

lµ =

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ , nν =

⎛⎜⎜⎜⎝
1

−H
2

0
0

⎞⎟⎟⎟⎠ , mν =

⎛⎜⎜⎜⎜⎝
0
0
1√
2V )

i csc θ√
2V

⎞⎟⎟⎟⎟⎠ , m̄ν =

⎛⎜⎜⎜⎜⎝
0
0
1√
2V

−i csc θ√
2V

⎞⎟⎟⎟⎟⎠ . (4.5)

In this case, the only nonzero spin coefficients are

ρ = − V ′

V
, (4.6)

α = − cot θ

2
√

2V
, (4.7)

β = − α = cot θ

2
√

2V
, (4.8)

µ = − HV ′

2V
= H

2 ρ, (4.9)

γ =H ′

4 , (4.10)

and the Ricci identities (2.52)–(2.69) now take the form

0 = Ψ0 = Ψ1 = Ψ3 = Ψ4, (4.11)
0 = Φ01 = Φ10 = Φ02 = Φ20 = Φ12 = Φ21, (4.12)
Dρ = ρ2 + Φ00, (4.13)
∆µ = −µ2 − 2γµ − Φ22, (4.14)

Dγ = Ψ2 − R

24 + Φ11, (4.15)

Dµ = µρ + Ψ2 + R

12 , (4.16)

(δ + δ̄)α = µρ + 4α2 − Ψ2 + Φ11 + R

24 . (4.17)

Obviously, the geometries (4.3) are of algebraic Weyl type D and the frame (4.5)
corresponds to the principal null directions. As the next step we explicitly evalu-
ate expressions (4.11)–(4.17). Before computing the first one let us look at action
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of derivative D on the scalar ρ,

Dρ =ρ′ = −V ′′

V
+
(︄

V ′

V

)︄2

= −V ′′

V
+ ρ2. (4.18)

Substituting this result into the equation (4.13) we get

Φ00 = −V ′′

V
. (4.19)

Evaluating the ∆µ term for its use in the second equation yields

∆µ = − H

2 µ′ = −H

2

⎛⎝−2H ′

4
V ′

V
− HV ′′

2V
+ H

2

(︄
V ′

V

)︄2
⎞⎠

= − 2H

2 ργ −
(︃

H

2

)︃2
Φ00 −

(︃
H

2 ρ
)︃2

= − 2µγ −
(︃

H

2

)︃2
Φ00 − µ2, (4.20)

where the equation (4.19) was employed in the third step. Subsequently, evalu-
ating the equation (4.14) using this result we obtain a condition

Φ22 = 1
4H2Φ00. (4.21)

Furthermore, evaluating the equation (4.15) gives us

γ′ = H ′′

4 = Ψ2 − R

24 + Φ11,

and thus
H ′′ = 4Ψ2 − R

6 + 4Φ11. (4.22)

Similarly to the ∆µ term, we can calculate the Dµ term, i.e.,

Dµ =µ′ = 2γρ + H

2 Φ00 + H

2 ρ2. (4.23)

Now evaluating the equation (4.16) yields

2γρ + H

2 Φ00 + H

2 ρ2 = H

2 ρ2 + Ψ2 + R

12 ,

that is

H ′V ′ = −2V Ψ2 − V R

6 + HV Φ00. (4.24)

For computation of the last Ricci equation we need the following derivative

(δ + δ̄)α =
√

2
V

α,θ =
√

2
V

1
2
√

2V sin θ2
= 1

2V 2 sin θ2 . (4.25)
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Finally, the equation (4.17) can be expressed as

1
2V 2 sin θ2 = H

2

(︄
V ′

V

)︄2

+ cos θ2

2V 2 sin θ2 − Ψ2 + Φ11 + R

24 ,

(4.26)

which can be further simplified to the form

1
2V 2 = 1

2V 2 H(V ′)2 − Ψ2 + Φ11 + R

24 . (4.27)

To summarise, the compete set the Ricci identities becomes

V ′′ = −V Φ00, (4.28)
H2Φ00 = 4Φ22, (4.29)

H(V ′)2 = 1 + 2V 2Ψ2 − 2V 2Φ11 − V 2 R

12 , (4.30)

H ′V ′ = −2V Ψ2 − V R

6 + HV Φ00, (4.31)

H ′′ = 4Ψ2 − R

6 + 4Φ11. (4.32)

where the scalar curvature R is given by R = (−2+2H(V ′)2 +V 2H ′′ +4V (H ′V ′ +
HV ′′))/V 2. The Bianchi identities (2.93) and (2.96) form the following set of
constraints

1
24DR + DΦ11 − DΨ2 = −Φ00µ + 2Φ11ρ − 3Ψ2ρ, (4.33)
1
12∆R + DΦ22 + ∆Ψ2 = −2Φ11µ − 3Ψ2µ + Φ22ρ, (4.34)
1
12DR + ∆Φ00 + DΨ2 = 4Φ00γ − Φ00µ + 2Φ11ρ + 3Ψ2ρ, (4.35)
1
24∆R + ∆Φ11 − ∆Ψ2 = −2Φ11µ − 3Ψ2µ + Φ22ρ. (4.36)

GR constraints and the Schwarzschild solution
In General Relativity the Ricci tensor and the scalar curvature are zero in the
vacuum spacetime with a vanishing cosmological constant. It directly stems from
the Einstein field equations. Therefore, we can set to zero the remaining non-
trivial projections, i.e.,

0 = Φ00 = Φ11 = Φ22 = R. (4.37)

The NP constraints now take a very simple form, namely

V ′′ = 0, (4.38)
H(V ′)2 = 1 + 2V 2Ψ2, (4.39)
H ′V ′ = −2V Ψ2, (4.40)
H ′′ = 4Ψ2. (4.41)
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Obviously, the solution to the equation (4.38) is simply V = ar + b where a
and b are integration constants. Since we want to obtain a classic form of the
Schwarzschild metric at the end it is clear that the constants need to be a = 1
and b = 0 which leaves us with

V = r. (4.42)
This constant fixing is allowed due to geometrical meaning of the r coordinate
being an affine parameter with freedom in its rescaling. Substituting for the V
function into the remaining equations yields

H =1 + 2r2Ψ2, (4.43)
H ′ = − 2rΨ2, (4.44)
H ′′ =4Ψ2. (4.45)

Last two expressions (4.44) and (4.45) combined together give us equation for the
metric function H, namely H ′ = − r

2H ′′, which can be integrated as

H ′ = c

r2 . (4.46)

Inserting this result into the first expression (4.43) provides the explicit form of
the metric function H(r), namely

H = 1 − rH ′ = 1 − r
c

r2 . (4.47)

Finally, denoting the integration constant as c ≡ 2M we arrive at the Schwarzschild
metric in the classical form,

ds2 =
(︃

1 − 2M

r

)︃
du2 + 2dudr − r2

(︂
dθ2 + sin θ2θdϕ2

)︂
. (4.48)

Constraints of the Quadratic Gravity
In the case of Quadratic gravity with an artificial assumption of the vanishing
scalar curvature, corresponding to the previously studied cases [13, 27, 28, 29, 30],
the projected field equations (3.40) with R = 0 imply the following constraints

0 = Φ00 − cΦ00Ψ2 − 9cΨ2ρ
2 + 6cρDΨ2 + 3cΨ2Dρ − cDDΨ2, (4.49)

0 = Φ11 + 2cΦ11Ψ2 − 3cΨ2µρ + 2cµDΨ2 + 3cΨ2Dµ − 2cρ∆Ψ2 + D∆Ψ2, (4.50)
0 = Φ22 − cΦ22Ψ2 − 6cΨ2γµ − 9cΨ2µ

2 − 2cγ∆Ψ2 − 6cµ∆Ψ2

− 3cΨ2∆µ − c∆∆Ψ2, (4.51)

where c = 4ak. The Ricci tensor components can be easily expressed, i.e.,

Φ00 = c

1 − cΨ2
(9Ψ2ρ

2 − 6ρDΨ2 − 3Ψ2Dρ + DDΨ2), (4.52)

Φ11 = c

1 + 2cΨ2
(3Ψ2µρ − 2µDΨ2 − 3Ψ2Dµ + 2ρ∆Ψ2 − D∆Ψ2), (4.53)

Φ22 = c

1 − cΨ2
(6Ψ2γµ + 9Ψ2µ

2 + 2γ∆Ψ2 + 6µ∆Ψ2 + 3Ψ2∆µ + ∆∆Ψ2). (4.54)

Subsequently, combined with the above geometric identities, this should lead to
the constrains explicitly derived in [13] which are quite complicated, and we thus
focus on a more elegant approach in the next section.
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4.3 Spherically symmetric spacetimes in the conformal-
to-Kundt form

This section represents a preliminary sketch of the discussion related to the spher-
ically symmetric solution, however, in a more unusual form. Employing a suitable
coordinate transformation, see [31], the Robinson–Trautman metric (4.3) can be
rewritten in the conformal-to-Kundt form

ds2 = Ω(r)2
(︂
H(r)du2 + 2dudr − dθ2 − sin θ2θdϕ2

)︂
, (4.55)

where the expanding character of the spacetime is encoded in the r-dependence
of the conformal factor Ω. To be precise the r coordinate and metric function
H(r) are different from those in metric (4.3) Its matrix form becomes

gµν =

⎛⎜⎜⎜⎝
HΩ2 Ω2 0 0
Ω2 0 0 0
0 0 −Ω2 0
0 0 0 −Ω2 sin θ2

⎞⎟⎟⎟⎠ . (4.56)

The null tetrad can be obtained as a trivial modification of the one used in the
previous case, namely

lµ =

⎛⎜⎜⎜⎝
0
1
Ω
0
0

⎞⎟⎟⎟⎠ , nν =

⎛⎜⎜⎜⎝
1
Ω

− H
2Ω
0
0

⎞⎟⎟⎟⎠ , mν =

⎛⎜⎜⎜⎜⎝
0
0
1√
2Ω)

i csc θ√
2Ω

⎞⎟⎟⎟⎟⎠ , m̄ν =

⎛⎜⎜⎜⎜⎝
0
0
1√
2Ω

−i csc θ√
2Ω

⎞⎟⎟⎟⎟⎠ . (4.57)

The only nonzero spin coefficients are

ϵ = Ω′

2Ω2 , (4.58)

ρ = − Ω′

Ω2 , (4.59)

α = − cot θ

2
√

2Ω
, (4.60)

β = − α = cot θ

2
√

2Ω
, (4.61)

µ = − HΩ′

2Ω2 = H

2 ρ, (4.62)

γ =ΩH ′ + Ω′H

4Ω2 , (4.63)
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and the NP form of the Ricci identities (2.52)–(2.69) now becomes

0 = Ψ0 = Ψ1 = Ψ3 = Ψ4, (4.64)
0 = Φ01 = Φ10 = Φ02 = Φ20 = Φ12 = Φ21, (4.65)
Dρ = ρ(2ϵ + ρ) + Φ00, (4.66)
∆µ = −µ2 − 2γµ − Φ22, (4.67)

Dγ − ∆ϵ = −4γϵ + Ψ2 − R

24 + Φ11, (4.68)

Dµ = µρ − 2ϵµ + Ψ2 + R

12 , (4.69)

(δ + δ̄)α = µρ + 4α2 − Ψ2 + Φ11 + R

24 . (4.70)

As in the previous case, before evaluating the first equation let us look at the
derivative D acting on ρ,

Dρ = 1
Ωρ′ = −Ω′′

Ω3 + 2(Ω′)2

Ω4 . (4.71)

Using this result in the equation (4.66) gives us

ΩΩ′′ − 2(Ω′)2 = −Ω4Φ00. (4.72)

Evaluating the ∆µ term for its use in the second equation yields

∆µ = − H

2Ωµ′ = − H

2Ω

(︄
H ′

2 ρ + H

2 Φ00Ω
)︄

= − HH ′

4Ω ρ −
(︃

H

2

)︃2
Φ00, (4.73)

where the equation (4.72) was used in the third step. Subsequently, using this
result calculation of the equation (4.67) leads to

H2Φ00 = 4Φ22. (4.74)

Furthermore, evaluating the equation (4.68) gives us

(ΩH)′′ = Ω3HΦ00 + 4Ψ2Ω3 − RΩ3

6 + 4Φ11Ω3. (4.75)

In analogy with the ∆µ term we can calculate the Dµ derivative, i.e.

Dµ = 1
Ωµ′ = 1

Ω

(︄
H ′

2 ρ − H

2
Ω′′

Ω2 + H
(Ω′)2

Ω3

)︄

= − H ′Ω′

2Ω3 − HΩ′′

2Ω3 + H(Ω′)2

Ω4 . (4.76)

With the above expression in hand we evaluate the equation (4.69),

(HΩ′)′ = −2Ω3Ψ2 − Ω3 R

6 . (4.77)
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For the last Ricci identity, we need to evaluate the following relation

(δ + δ̄)α =
√

2
Ω α,θ =

√
2

Ω
1

2
√

2Ω sin θ2
= 1

2Ω2 sin θ2 , (4.78)

which combined with the equation (4.70) gives

H(Ω′)2 = Ω2 + 2Ω4Ψ2 − 2Ω4Φ11 − Ω4 R

12 . (4.79)

The Ricci scalar is R = (Ω(H ′′ − 2) + 6(H ′Ω′ + HΩ′′))/Ω3. We thus have the
complete set of nontrivial Ricci identities. What remains is to express the Bianchi
identities (2.93)–(2.96). This gives the following constraints,

1
24DR + DΦ11 − DΨ2 = −Φ00µ + 2Φ11ρ − 3Ψ2ρ, (4.80)
1
12∆R + DΦ22 + ∆Ψ2 = −2Φ11µ − 3Ψ2µ + Φ22ρ − 4Φ22ϵ, (4.81)
1
12DR + ∆Φ00 + DΨ2 = 4Φ00γ − Φ00µ + 2Φ11ρ + 3Ψ2ρ, (4.82)
1
24∆R + ∆Φ11 − ∆Ψ2 = −2Φ11µ + 3Ψ2µ + Φ22ρ. (4.83)

These geometric conditions have to be further combined with those implied by
the particular theory field equations.

Constraints of the Quadratic Gravity
Finally, for the subclass of geometries with vanishing Ricci scalar discussed using
the conformal-to Kundt metric form in [27, 28, 29, 30] the Quadratic gravity field
equation gives

0 = −Φ00 + cΦ00Ψ2 + c(6Ψ2ϵρ + 9Ψ2ρ
2 − 2ϵDΨ2 − 6ρDΨ2 − 3Ψ2Dρ

+ DDΨ2), (4.84)
0 = −Φ11 − 2cΦ11Ψ2 + c(−6Ψ2ϵµ + 3Ψ2µρ − 2µDΨ2 − 3Ψ2Dµ − D∆Ψ2

− 2ϵ∆Ψ2 + 2ρ∆Ψ2), (4.85)
0 = −Φ22 + cΦ22Ψ2 + c(6Ψ2γµ + 9Ψ2µ

2 + 2γ∆Ψ2 + 6µ∆Ψ2 + 3Ψ2∆µ

+ ∆∆Ψ2), (4.86)

where c = 4ak. This set of equations can be solved with respect to the Ricci tensor
components which can be subsequently combined with the geometric identities.
In particular

Φ00 = c

1 − cΨ2
(6Ψ2ρ

2 − 5ρDΨ2 − 3Ψ2Dρ + DDΨ2), (4.87)

Φ11 = c

1 + 2cΨ2
(6Ψ2µρ − 2µDΨ2 − 3Ψ2Dµ − D∆Ψ2 + 3ρ∆Ψ2), (4.88)

Φ22 = c

1 − cΨ2
(6Ψ2γµ + 9Ψ2µ

2 + 2γ∆Ψ2 + 6µ∆Ψ2 + 3Ψ2∆µ + ∆∆Ψ2), (4.89)
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where we used the simple observation that −2ϵ = ρ to simplify the expressions.
Inserting (4.87) into the only Ricci identity containing Φ00, namely (4.66), yields

Dρ = c

1 − cΨ2
(6Ψ2ρ

2 − 5ρDΨ2 − 3Ψ2Dρ + DDΨ2),

Dρ = c(6Ψ2ρ
2 − 5ρDΨ2 − 2Ψ2Dρ + DDΨ2),

ΩΩ′′ − 2(Ω′)2 = −1
3akH ′′′′. (4.90)

Combining Ricci identities (4.69) and (4.70) with R = 0 provides an equation for
Φ11 without Ψ2

Dµ + (δ + δ̄)α − 4α2 − 3µρ = Φ11, (4.91)
and substituting Φ11 for (4.88) gives

Dµ + (δ + δ̄)α − 4α2 − 3µρ = c

1 + 2cΨ2
(6Ψ2µρ − 2µDΨ2 − 3Ψ2Dµ

− D∆Ψ2 + 3ρ∆Ψ2)

3H(Ω′)2 + ΩΩ′H ′ − Ω2 = −1
3ak(H ′′′H − 1

2(H ′′)2 + 2). (4.92)

Equations (4.90) and (4.92) for H → −H (because of slightly different metric
form) restore the explicit constraints of [27] solved in the form of power series.

4.4 pp-wave geometries
The well-known pp-wave spacetimes are defined as manifolds admitting covari-
antly constant null vector field. Due to the definition of optical scalars they thus
belong to the class of Kundt geometries. The simplest member of this family can
be written as

ds2 = H(u, x, y)du2 + 2dudr − dx2 − dy2. (4.93)
where we deal with the flat transverse space and the non-trivial curvature localised
on the support in the u coordinate of the unknown metric function H(u, x, y). It
is useful to write down the matrix form of this metric,

gµν =

⎛⎜⎜⎜⎝
H 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎟⎠ . (4.94)

The choice of the suitable null tetrad is almost obvious and such a frame takes
the form

lµ =

⎛⎜⎜⎜⎝
0
1
0
0

⎞⎟⎟⎟⎠ , nν =

⎛⎜⎜⎜⎝
1

−H
2

0
0

⎞⎟⎟⎟⎠ , mν =

⎛⎜⎜⎜⎜⎝
0
0
1√
2

i√
2

⎞⎟⎟⎟⎟⎠ , m̄ν =

⎛⎜⎜⎜⎜⎝
0
0
1√
2

−i√
2

⎞⎟⎟⎟⎟⎠ . (4.95)

where l is degenerated principal null direction and the geometry is of Weyl type N.
The simplicity of this geometry is illustrated by only one nonzero spin coefficient,

ν = 1
2
√

2
(H,x − iH,y). (4.96)
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Therefore, the NP constraints (2.52)–(2.69), i.e., the Ricci identities, take a very
simple form

0 =Ψ0 = Ψ1 = Ψ2 = Ψ3, (4.97)
0 =Φ00 = Φ10 = Φ01 = Φ11 = Φ20 = Φ02 = Φ12 = Φ21 = R, (4.98)

δν =Φ22, (4.99)
δ̄ν =Ψ4, (4.100)

which explicitly proves that the ansatz metric (4.93) is of the Weyl and Ricci type
N, respectively. The first equation that we shall focus on is (4.99). After simple
manipulations we arrive at the explicit expression for the Ricci tensor component,

δν = 1√
2

(ν,x + iν,y) = Φ22,

that is
Φ22 = 1

4(H,xx + H,yy). (4.101)

Shifting our attention to the second non-trivial equation (4.100) we obtain the
Weyl tensor component Ψ4 as

δ̄ν = 1√
2

(ν,x − iν,y) = Ψ4,

which becomes

Ψ4 = 1
4(H,xx − 2iH,xy − H,yy). (4.102)

Subsequently, the Bianchi identities (2.93) and (2.96) are reduced to the following
equation

δΨ4 = δ̄Φ22, (4.103)

which on the coordinate level, using (4.101) and (4.102), yields

δ(H,xx − 2iH,xy − H,yy) = δ̄(H,xx + H,yy),

and it can be easily verified that this condition is identically satisfied,

H,xxx − 2iH,xxy − H,xyy + iH,xxy + 2H,xyy

− iH,yyy − H,xxx − H,xyy + iH,xxy + iH,yyy = 0. (4.104)

pp-waves in General Relativity
In vacuum General Relativity the only non-trivial constrain implied by the Ein-
stein equations is

Φ22 = 0, (4.105)

which on the coordinates level, and employing (4.101), takes the form of flat
Laplace equation for the metric function H, namely

H,xx + H,yy = 0. (4.106)
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Its explicit solutions for various settings can be found e.g., in [5]. Here, as an
explicit example, we mention the axially symmetric case. In such a situation
(4.106) becomes

H,ζζ + 1
ζ

H,ζ = 0, (4.107)

with ζ being a radial distance, i.e., ζ2 = x2 +y2. The solution can be then written
as

H(u, x, y) = −2p(u) ln ζ, (4.108)
where p(u) is a general profile function.

pp-waves in Quadratic Gravity
In the Quadratic gravity we get a more involved condition on the Ricci tensor
component implied by the field equations. In particular, for the metric (4.93) we
obtain that the cosmological constant has to be vanishing, Λ = 0, and the Ricci
tensor has to satisfy

Φ22 = 2ak(δδΨ4 + δ̄δ̄Ψ̄4). (4.109)

To analyse this equation let us calculate the δδΨ4 term, i.e.,

δδΨ4 =1
4δδ(H,xx − 2iH,xy − H,yy),

= 1
4
√

2
δ(H,xxx − 2iH,xxy − H,xyy + iH,xxy + 2H,xyy − iH,yyy)

=1
8(H,xxxx − 2iH,xxxy − H,xxyy + iH,xxxy + 2Hxxyy − iH,xyyy

+ iH,xxxy + 2H,xxyy − iH,xyyy − H,xxyy + 2iHxyyy + H,yyyy), (4.110)

and similarly, the δ̄δ̄Ψ̄4 term gives us

δ̄δ̄Ψ̄4 =1
4 δ̄δ̄(H,xx + 2iH,xy − H,yy)

= 1
4
√

2
δ̄(H,xxx + 2iH,xxy − H,xyy − iH,xxy + 2H,xyy + iH,yyy),

=1
8(H,xxxx + 2iH,xxxy − H,xxyy − iH,xxxy + 2Hxxyy + iH,xyyy

− iH,xxxy + 2H,xxyy + iH,xyyy − H,xxyy − 2iHxyyy + H,yyyy). (4.111)

Combining the constants into one c ≡ 2ak and using the above relations we obtain

Φ22 = c(δδΨ4 + δ̄δ̄Ψ̄4) = c

4(H,xxxx + 2Hxxyy + H,yyyy). (4.112)

Substituting this result into the equation (4.101) yields

H,xx + H,yy + c(H,xxxx + 2Hxxyy + H,yyyy) = 0, (4.113)

which can be rewritten as(︂
H + c(H,xx + H,yy)

)︂
,xx

+
(︂
H + c(H,xx + H,yy)

)︂
,yy

. (4.114)
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Figure 4.1: Plot of the metric function H (blue) for the case of pp-waves in
Quadratic Gravity with the following values of parameters c = 1, d = 1, e =
1, p = −1/2. The GR solution ln (ζ) is also indicated (orange).

Furthermore, this can be re-expressed in a different form, namely

G,xx + G,yy = 0, (4.115)

where we have defined the function G as

G ≡ H + c(H,xx + H,yy). (4.116)

In this form we can immediately see, that all solutions to General Relativity are
automatically solutions to the Quadratic gravity as well. This is well-known fact
which in our case can be observed from

H,xx + H,yy = 0 =⇒ G = H. (4.117)

The Quadratic gravity solution H can be found as a solution to the Helmholtz-like
equation G = f where the function f must be solution to the Laplace’s equation,
see e.g., [32]. In the axially symmetric case we thus get

H(u, x, y) = −2p(u)
[︄
dJ0

(︄
ζ√
c

)︄
+ eY0

(︄
ζ√
c

)︄
+ ln ζ

]︄
, (4.118)

where d, e are general constants and Jα, Yα are Bessel functions of the first and
second kind respectively. It is natural, but not necessary, to choose common
profile p(u) for all parts of H. The plot of metric function H for a specific value
of parameters c = 1, d = 1, e = 1, p = −1/2 is in the figure 4.1.
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Conclusion
Within the thesis we have been mainly interested in the frame approach to the
analysis of the field equations in the context of theories of gravity. In particular,
we have tried to extend the famous Newman–Penrose formalism for the case of
so-called Quadratic theory of gravity.

The thesis consists of introduction, four chapters, conclusion, one appendix,
and list of references. In the introduction we have very briefly summarised history
of the gravity descriptions ending with the Albert Einstein General Relativity
and a list of some successful experimental tests of this theory formed during last
century.

In the first chapter we have described an elegant mathematical formulation of
the General Relativity in terms of the least action principle which very naturally
allows for various theory modifications. The basic ways in which the Einstein
theory can be modified are outlined as well. We have introduced a concept of
the Quadratic gravity extending the classic Einstein–Hilbert action by adding
quadratic curvature terms and representing thus the higher order correction of
any final purely geometrical theory. Moreover, we have rewritten the Quadratic
gravity field equations in such a way that the contribution of the Ricci tensor
coordinate components is separated. This is crucial for the upcoming discussion.

In the chapter two we have reviewed the most important parts of a gen-
eral frame formalism and used these results to present detailed summary of the
Newman–Penrose formalism where the null frame comes into the game. All these
concepts are based on purely geometrical identities without any assumptions given
by particular field equations. In the last part of this chapter we have also men-
tioned ways how to interpret specific spin coefficients and tensor components.

The third chapter employs the field equations. While in the case of General
Relativity it is quite trivial, in the Quadratic gravity it becomes much more in-
volved. Here we use the fact that even in the Quadratic gravity the field equations
dependence on the Ricci tensor is only linear and there are no Ricci tensor deriva-
tives. This enables to follow the General Relativity procedure and eliminate the
Ricci tensor contribution from the geometrical identities of the second chapter.

As an illustration, in the last chapter we formulate the constraints on the
gravitational field for important situations corresponding to the spherically sym-
metric spacetimes and so-called pp-waves both in the General Relativity as well
as Quadratic gravity.

Finally, in the appendix we briefly review the spinor formalism to be able to
compare some of our calculations with already published results.

Within the topic of the thesis there still remain many open questions which
should be addressed in the further work. Definitely the discussion of particular
examples should be more detailed and we hope to obtain new non-trivial results
using the frame formulation of constraints. In particular, situations with the
algebraically special Weyl and Ricci tensors and geometrically privileged null
geodesic congruences are very promising to be studied.
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A. Spinor formalism and the
Bach tensor components
In this appendix we want to compare our results obtained in the third chapter
of this thesis with those published in [33] using so called Geroch–Held–Penrose
(GHP) formalism. For this purpose, let us first briefly introduce the spinor cal-
culus. Then we will list all the independent components of the Bach tensor in the
GHP formalism presented in [33], and employed in the context of the conformal
Weyl gravity, together with relation to our expressions.

Spinor formalism
To represent tensors in the spinor form, we need to make two modifications.
Firstly, the abstract indices will now appear in pairs of a primed and unprimed
index. The second modification is that we need an operation of complex conju-
gation acting on a general spinor defined as

κAB′ = κA′B. (A.1)

The metric tensor in the spinor calculus can be expressed as

gab = ϵABϵA′B′ , (A.2)

with the following condition

ϵAB = −ϵBA, ϵA′B′ = −ϵB′A′ , (A.3)

where ϵAB is the complex conjugate of ϵA′B′ . In the spinor calculus, the quantity
(A.3) will play a similar role as the metric tensor. It is defined by the following
relations

ϵABκA = κB, (A.4)
ϵABκB = κA, (A.5)
ϵABϵCB = ϵC

A, (A.6)
ϵAB = −ϵBA. (A.7)

Now in analogy with the tetrad defined in the second chapter we shall define
normalised dyad in the spinor calculus, namely

ϵA
A = (oA, ιA), (A.8)

satisfying the following relations

ϵABoAoB = oAoA = 0, (A.9)
ϵABιAιB = ιAιA = 0, (A.10)
ϵABoAιB = oAιA = 1. (A.11)
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So now we can write the null tetrad in the spinor form using the normalised dyad

l = oAoA′
, n = ιAιA′

, m = oAιA′
, m̄ = ιAoA′

, (A.12)
and using (A.12) we can rewrite derivatives (2.35) in the spinor formalism as

D = oAoA′∇AA′ , D′ = ιAιA′∇AA′ , δ = oAιA′∇AA′ , δ′ = ιAoA′∇AA′ . (A.13)
Moreover, in analogy with the spin coefficients (2.36) we define the corresponding
quantities also in the spinor formalism as

κ = oADoA, γ′ = −ιADoA, τ ′ = −ιADιA,
ρ = oAδ′oA, β′ = −ιAδ′oA, σ′ = −ιAδ′ιA,
σ = oAδoA, β = ιAδoA, ρ′ = −ιAδιA,
τ = oAD′oA, γ = ιAD′oA, κ′ = −ιAD′ιA.

(A.14)

Here, we used the standard notation for the spinor formalism. Unprimed coeffi-
cients correspond to their counterparts in the NP formalism and primed coeffi-
cients can be written in the NP formalism notation by the following substitutions

σ′ = −λ, κ′ = −ν, ρ′ = −µ, τ ′ = −π, γ′ = −ϵ, β′ = −α. (A.15)
These can be easily derived from (A.14) by using the definitions (A.12) and (A.13).

In the GHP formalism the most general change of spin-frame which leaves
two null directions invariant looks like

oA → λoA, ιA → λ−1ιA, (A.16)
where λ is a general complex scalar field. For prime indices we would write
complex conjugate λ̄ in the relations above instead.

For a general scalar this transformation takes the form
η → λpλ̄qη, (A.17)

introducing the weights p, q and η is thus called weighted scalar of type (p, q).
Let us introduce the following operators motivated by the GHP formalism

that allow for a more compact notation within this formalism,
þ = D + pγ′ + qγ̄′ (1, 1), (A.18)
þ′ = D′ − pγ − qγ̄ (−1, −1), (A.19)
k = δ − pβ + qβ̄′ (1, −1), (A.20)
k′ = δ′ + pβ′ − qβ̄ (−1, 1), (A.21)

where the brackets denote the weight of these operators.
Finally, we will also need to know the weights of the following scalars

Ψr (4 − 2r, 0),
Φrt (2 − 2r, 2 − 2t),
Λ (1, 1),
κ (3, 1),
ρ (1, 1),
σ (3, −1),
τ (1, −1),
β (1, −1),
γ (−1, −1). (A.22)
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As an example, let us rewrite the following term from the GHP formalism to
the NP formalism,

(k′ − 2τ ′)Ψ1 =δ′Ψ1 + 2β′Ψ1 − 2τ ′Ψ1. (A.23)
According to (A.22) the Ψ1 has the weight (2, 0). Substitution of this pair of
integers for p and q into the definition of k′ operator (A.21) provides the result
above. All three terms that we obtained have the weight of (1, 1). Using this
knowledge, the action of another operators on these terms is straightforward.

Bach tensor in the GHP formalism
In the paper [33] studying the frame approach to the conformal Weyl gravity the
Bach tensor components, as its key ingredient, were presented using the compact
GHP notation. They were presented in the form

1
2B00 =(þ − 3ρ) [(k′ − 2τ ′) Ψ1 − (þ − 3ρ)Ψ2 + σ′Ψ0 − 2κΨ3]

+ (k′ − τ ′) [(þ − 4ρ)Ψ1 − (k′ − τ ′) Ψ0 + 3κΨ2]
+ 2κ [(k′ − 3τ ′) Ψ2 − (þ − 2ρ)Ψ3 + 2σ′Ψ1 − κΨ4]
+ κ̄ [(þ′ − 2ρ′) Ψ1 − (k − 3τ)Ψ2 + κ′Ψ0 − 2σΨ3]
+ σ̄ [(k − 4τ)Ψ1 − (þ′ − ρ′) Ψ0 + 3σΨ2] − Φ20Ψ0 + 2Φ10Ψ1 − Φ00Ψ2,

(A.24)

1
2B02 =(k − 3τ) [(þ′ − 2ρ′) Ψ1 − (k − 3τ)Ψ2 + κ′Ψ0 − 2σΨ3]

+ (þ′ − ρ′) [(k − 4τ)Ψ1 − (þ′ − ρ′) Ψ0 + 3σΨ2]
+ 2σ [(þ′ − 3ρ′) Ψ2 − (k − 2τ)Ψ3 + 2κ′Ψ1 − σΨ4]
+ σ̄′ [(k′ − 2τ ′) Ψ1 − (þ − 3ρ)Ψ2 + σ′Ψ0 − 2κΨ3]
+ κ̄′ [(þ − 4ρ)Ψ1 − (k′ − τ ′) Ψ0 + 3κΨ2] − Φ22Ψ0 + 2Φ12Ψ1 − Φ02Ψ2,

(A.25)

1
2B20 = (k′ − 3τ ′) [(þ − 2ρ)Ψ3 − (k′ − 3τ ′) Ψ2 + κΨ4 − 2σ′Ψ1]

+ (þ − ρ) [(k′ − 4τ ′) Ψ3 − (þ − ρ)Ψ4 + 3σ′Ψ2]
+ 2σ′ [(þ − 3ρ)Ψ2 − (k′ − 2τ ′) Ψ1 + 2κΨ3 − σ′Ψ0]
+ σ̄ [(k − 2τ)Ψ3 − (þ′ − 3ρ′) Ψ2 + σΨ4 − 2κ′Ψ1]
+ κ̄ [(þ′ − 4ρ′) Ψ3 − (k − τ)Ψ4 + 3κ′Ψ2] − Φ00Ψ4 + 2Φ10Ψ3 − Φ20Ψ2,

(A.26)

1
2B22 = (þ′ − 3ρ′) [(k − 2τ)Ψ3 − (þ′ − 3ρ′) Ψ2 + σΨ4 − 2κ′Ψ1]

+ (k − τ) [(þ′ − 4ρ′) Ψ3 − (k − τ)Ψ4 + 3κ′Ψ2]
+ 2κ′ [(k − 3τ)Ψ2 − (þ′ − 2ρ′) Ψ1 + 2σΨ3 − κ′Ψ0]
+ κ̄′ [(þ − 2ρ)Ψ3 − (k′ − 3τ ′) Ψ2 + κΨ4 − 2σ′Ψ1]
+ σ̄′ [(k′ − 4τ ′) Ψ3 − (þ − ρ)Ψ4 + 3σ′Ψ2] − Φ02Ψ4 + 2Φ12Ψ3 − Φ22Ψ2,

(A.27)
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1
2B01 =(þ − 3ρ) [(þ′ − 2ρ′) Ψ1 − (k − 3τ)Ψ2 + κ′Ψ0 − 2σΨ3]

+ (k′ − τ ′) [(k − 4τ)Ψ1 − (þ′ − ρ′) Ψ0 + 3σΨ2]
+ 2κ [(þ′ − 3ρ′) Ψ2 − (k − 2τ)Ψ3 + 2κ′Ψ1 − σΨ4]
+ τ̄ ′ [(k′ − 2τ ′) Ψ1 − (þ − 3ρ)Ψ2 + σ′Ψ0 − 2κΨ3]
+ ρ̄′ [(þ − 4ρ)Ψ1 − (k′ − τ ′) Ψ0 + 3κΨ2] − Φ21Ψ0 + 2Φ11Ψ1 − Φ01Ψ2,

(A.28)

1
2B21 = (þ′ − 3ρ′) [(þ − 2ρ)Ψ3 − (k′ − 3τ ′) Ψ2 + κΨ4 − 2σ′Ψ1]

+ (k − τ) [(k′ − 4τ ′) Ψ3 − (þ − ρ)Ψ4 + 3σ′Ψ2]
+ 2κ′ [(þ − 3ρ)Ψ2 − (k′ − 2τ ′) Ψ1 + 2κΨ3 − σ′Ψ0]
+ τ̄ [(k − 2τ)Ψ3 − (þ′ − 3ρ′) Ψ2 + σΨ4 − 2κ′Ψ1]
+ ρ̄ [(þ′ − 4ρ′) Ψ3 − (k − τ)Ψ4 + 3κ′Ψ2] − Φ01Ψ4 + 2Φ11Ψ3 − Φ21Ψ2,

(A.29)

1
2B10 =(þ − 2ρ) [(k′ − 3τ ′) Ψ2 − (þ − 2ρ)Ψ3 + 2σ′Ψ1 − κΨ4]

+ (k′ − 2τ ′) [(þ − 3ρ)Ψ2 − (k′ − 2τ ′) Ψ1 − σ′Ψ0 + 2κΨ3]
+ κ [(k′ − 4τ ′) Ψ3 − (þ − ρ)Ψ4 + 3σ′Ψ2]
+ κ̄ [(þ′ − 3ρ′) Ψ2 − (k − 2τ)Ψ3 + 2κ′Ψ1 − σΨ4]
+ σ̄ [(k − 3τ)Ψ2 − (þ′ − 2ρ′) Ψ1 − κ′Ψ0 + 2σΨ3] − Φ20Ψ1 + 2Φ10Ψ2 − Φ00Ψ3,

(A.30)

1
2B12 = (þ′ − 2ρ′) [(k − 3τ)Ψ2 − (þ′ − 2ρ′) Ψ1 + 2σΨ3 − κ′Ψ0]

+ (k − 2τ) [(þ′ − 3ρ′) Ψ2 − (k − 2τ)Ψ3 − σΨ4 + 2κ′Ψ1]
+ κ′ [(k − 4τ)Ψ1 − (þ′ − ρ′) Ψ0 + 3σΨ2]
+ κ̄′ [(þ − 3ρ)Ψ2 − (k′ − 2τ ′) Ψ1 + 2κΨ3 − σ′Ψ0]
+ σ̄′ [(k′ − 3τ ′) Ψ2 − (þ − 2ρ)Ψ3 + 2σ′Ψ1 − κΨ4] − Φ02Ψ3 + 2Φ12Ψ2 − Φ22Ψ1,

(A.31)

1
2B11 =(þ − 2ρ) [(þ′ − 3ρ′) Ψ2 − (k − 2τ)Ψ3 + 2κ′Ψ1 − σΨ4]

+ (k′ − 2τ ′) [(k − 3τ)Ψ2 − (þ′ − 2ρ′) Ψ1 − κ′Ψ0 + 2σΨ3]
+ κ [(þ′ − 4ρ′) Ψ3 − (k − τ)Ψ4 + 3κ′Ψ2]
+ σ′ [(k − 4τ)Ψ1 − (þ′ − ρ′) Ψ0 + 3σΨ2]
+ ρ̄′ [(þ − 3ρ)Ψ2 − (k′ − 2τ ′) Ψ1 + 2κΨ3 − σ′Ψ0] − Φ21Ψ1 + 2Φ11Ψ2 − Φ01Ψ3,

(A.32)
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To compare these results with those derived in our third chapter we have to
employ relations (A.18)–(A.23). Moreover, the [33] scalars must be combined as

BNP
(1)(1) =1

2
(︂
B00 + B̄00

)︂
, (A.33)

BNP
(1)(2) =1

2
(︂
B11 + B̄11

)︂
, (A.34)

BNP
(1)(3) =1

2
(︂
B01 + B̄10

)︂
, (A.35)

BNP
(2)(2) =1

2
(︂
B22 + B̄22

)︂
, (A.36)

BNP
(2)(3) =1

2
(︂
B12 + B̄21

)︂
, (A.37)

BNP
(3)(3) =1

2
(︂
B02 + B̄20

)︂
, (A.38)

where NP denotes scalars of the third chapter.
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