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Abstract

The goal of the thesis is to identify factors that drive the price of Bitcoin
and the hashrate of the Bitcoin network, which represents the total computing
power dedicated to Bitcoin mining, and to explore the relationship between
these two variables. In the Bitcoin system, four variables were assumed to
be endogenous, thus for each of them, an equation was constructed. This
was the case of the Bitcoin price, the hashrate of the Bitcoin network, the total
transaction fees paid, and the search volume for the term “bitcoin”. The system
of four equations was then simultaneously estimated, utilizing the method of
Two-stage least squares.

Results revealed several statistically significant explanatory variables of the
price and the hashrate, including the money supply of the United States dollar
or the number of unique active addresses on the Bitcoin network. The hashrate
was shown to drive the price positively, however, the estimated effect of the
price on the hashrate was statistically insignificant. It was argued that it might
have been caused by exogenous shocks affecting multiple variables, that could
not be accounted for in the data. In addition, the factors affecting the hashrate
were assessed from the environmental point of view, as the high environmental

impact is one of the main points in the criticism of Bitcoin.
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Abstrakt

Cilem této prace je identifikovat faktory ovliviujici cenu Bitcoinu a hashrate
Bitcoinové sité, ktery reprezentuje celkovou vypocetni silu vyuzitou na tézbu
Bitcoinu, a prozkoumat vztah téchto dvou proménnych. Cty¥i proménné byly
povazovany za endogenni, proto pro kazdou z nich byla sestavena jedna rovnice.
Slo o cenu Bitcoinu, celkovy hashrate Bitcoinové sité, celkovy objem transakénich
poplatkii a objem vyhledavani terminu “bitcoin”. Systém rovnic byl poté jed-
notné odhadnut pomoci Dvoustupnové metody nejmensich ¢tvercii.

Vysledky odhalily nékolik statisticky signifikantnich proménnych vysvetlu-

jicich cenu a hashrate, véetné penézni zasoby Amerického dolaru nebo poctu



unikatnich aktivnich adres v Bitcoinové siti. Ukéazalo se, ze hashrate pozitivné
ovliviiuje cenu, nicméné odhadnuty efekt ceny na hashrate byl statisticky ne-
signifikantni. To mohlo byt zplisobeno exogennimi Soky pusobicimi na vicero
proménnych, které nemohly byt zohlednény v datech. V zavéru byly posouzeny
faktory ovlivnujici hashrate z environmentalniho hlediska, protoze negativni

dopad na zivotni prostiedi je jednim z hlavnich bodu v kritice Bitcoinu.

Klicova slova Bitcoin, tézba Bitcoinu, cena Bitcoinu,

hashrate, kryptoaktiva

Nazev prace Zkouméni vztahu mezi cenou Bitcoinu a

hashratem sité
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Chapter 1
Introduction

Bitcoin is a decentralized payment network that emerged in 2009. It allows
users to send and receive transactions with a high level of security. The unit
of currency used in the network, also called Bitcoin, has substantially risen in
price since the inception of the network, as the popularity of Bitcoin experi-
enced several booms. However, the price of Bitcoin remains extremely volatile
compared to traditional assets.

The process of creation of new Bitcoin units, called mining, is done by com-
puter hardware. The hardware has to solve complex mathematical problems
in order to mine Bitcoin, and in return, the person running the hardware has
a chance to receive a reward of a predetermined number of Bitcoins. The more
computing power a person dedicates to mining, the higher chance of receiving
the reward they have. Therefore, the growth of the Bitcoin price led to the
development of a very competitive mining industry.

One attempt of the mining hardware to resolve the mentioned mathematical
problem is called a hash. Based on this, the worldwide combined computing
power dedicated to Bitcoin mining is called hashrate (i.e. how many hashes are
being performed per unit of time in total). As the total hashrate grew, Bitcoin
has been repeatedly criticized for its high electricity consumption (De Vries
(2020); Mora et al. (2018)), however, opposing voices also appeared (Bevand,
2017a).

Various authors also analyzed the factors that drive the Bitcoin price.
Among others, the hashrate was assumed to be an important technological
factor, that might have an effect on the price, however only a weak relation-
ship was found (Kristoufek (2015; 2020)). On the other hand, the opposite

relationship was proved, the price affecting hashrate (Fantazzini & Kolodin
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(2020); Kristoufek (2020)). Both directions of a causal effect are thus plau-
sible, hashrate weakly affecting the price and the price strongly affecting the
hashrate. In fact, the latter can be expected as the revenue of miners depends
strongly on the price of Bitcoin. The other factors that were shown to be
important drivers of price are e.g. the number of active users of the Bitcoin
network, the public interest in Bitcoin (represented by the search volume from
an online search engine), or the price level of Bitcoin. The ability of Bitcoin to
serve as a safe haven was also examined, however, there is no clear consensus
in the academic literature.

The objective of this thesis is to identify the main drivers of the Bitcoin
price and of the total network hashrate and to find, whether there is a clear
relationship between these two variables. Since the hashrate is an important
technological factor of the Bitcoin system and results regarding it vary, findings
of the proposed analysis might be useful in analyzing the Bitcoin price move-
ments, as well as they might enrich the debate regarding the effect of mining
Bitcoin on the environment.

Four equations were created, explaining four variables that were assumed
to be endogenous in the system (including the price and the hashrate). Due
to endogeneity, the Two-stage least squares estimator was used to regress the
model. To address the question of whether Bitcoin can serve as a hedge against
inflation, the US dollar money supply, a variable that was not analyzed in the
context of Bitcoin before, was included as one of the explanatory elements
of the changes in the price. Results revealed several factors being significant
drivers of the price and hashrate and the hashrate was found to affect the price
positively, according to expectation. However, the price was statistically in-
significant while explaining the hashrate changes. This was presumably caused
by exogenous shocks affecting some variables, that can not be accounted for in
the data. Despite that, the analysis yields useful results in form of identified
factors affecting the Bitcoin price and the network hashrate and subsequent
discussion of the revealed relationships from the environmental point of view.

The remainder of the thesis is structured as follows. Chapter 2 provides
a detailed literature review of papers concerned with a question of the envi-
ronmental impact of Bitcoin mining and with factors that drive the price of
Bitcoin and the hashrate of the network. Chapter 3 provides a motivation for
the empirical part of the thesis, proposes a model that shall be used for the
analysis, discusses the methodology to be employed, and describes the pro-

cess of collecting data. Chapter 4 describes various statistical tests that were
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used so the analysis could be considered reliable and presents the results of the
analysis. Chapter 5 provides a discussion of the results and their implications,
interprets results through the lens of the environmental impact, and describes
the limitations of the thesis, as well as topics for eventual further research.

Chapter 6 summarizes the findings of the thesis.



Chapter 2
Literature review

Bitcoin, created by Nakamoto (2008), is a decentralized network that allows
users to conduct transactions safely over the internet without the need of a third
party as a provider of trust. The process that allows the Bitcoin network to run
is called mining, as it issues new Bitcoins and releases them into circulation.
This chapter provides a brief summary of the mining of Bitcoin, its history,
mechanisms, and problems it faces, and further continues with a review of
articles concerned with estimating of environmental impacts of bitcoin, whereas
these are estimates on electricity demand or tons of CO4 produced. It concludes
with a summary of papers analyzing factors that drive the price of bitcoin and
the total hashrate of the network.

2.1 Summary of the mining process and its evo-

lution

Bitcoin is a type of digital asset. It can be held or traded over the internet,
purely in a digital form. Transactions can be sent and received thanks to the
decentralized network of nodes. The decentralization originates from the fact
that there is no central authority allowing or denying rights, any user with
proper hardware can become a node in a network or participate in Bitcoin
mining. Transactions are being saved in the form of blocks into the blockchain,
an online ledger, that is shared by all nodes. The mining is done by miners!,
who run computers solving mathematical problems as fast as possible, with

the hope of being the first to find a solution to a problem, that is specified by

'Somewhat confusingly, people owning or operating mining hardware are called miners,
but the specialized hardware units used for mining are called miners as well.
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the Bitcoin network. Only after this solution is found, a new block containing
incoming transactions can be written into the blockchain and a miner who found
it (and thus closed the block) is rewarded with a certain amount of Bitcoin.
The system is set such that, on average, a new block is added every ten minutes.
This is ensured by a variable called Difficulty, which affects the likelihood of a
miner to find a solution to the aforementioned problem. The Difficulty changes
dynamically every 14 days according to the total computational power that
miners expend, in order to keep the average of ten minutes per block(Nakamoto,
2008).

The result of mining, similarly as in the mining of gold, is obtaining new
units of the mined asset, therefore new Bitcoins. However, unlike in the mining
of gold, Bitcoin mining plays an important role in protecting the Bitcoin system,
as an attacker would need to have at least the same computing power as all min-
ers combined to do changes from which he could profit (so called 51% attack).
Currently, due to the enormous combined computing power of the Bitcoin net-
work, it is highly unlikely that an individual or a single organization would be
capable of such an attack. However, Bastiaan (2015) argues that mining pools
(e.g. F2Pool, AntPool, ViaBTC etc.) that group miners together might have
a significant amount of the hashing power, and if organized, they could pose a
threat.

Miners are rewarded for their effort by newly created Bitcoins and transac-
tion fees. From each sent transaction, a small fee is taken and paid to a miner
who found the correct answer to the system algorithm task and thus closed the
block. The amount of newly created Bitcoin was initially set to 50 Bitcoins
per block, but the reward halves approximately every four years (every 210,000
blocks mined). Thus, after the first halving in 2012, miners received 25 Bit-
coins per mined block instead of 50 and after 2016, the reward further halved
to 12.5 Bitcoins. The last halving happened in May 2020 and now, miners
receive 6.25 Bitcoin per block. This also means that there is a limited amount
of Bitcoin to be mined (21 million in total), as the reward will converge to 0
(as explained e.g. by Antonopoulos (2014)).

The Bitcoin network came into existence on January 3, 2009, as the first
block (also called the Genesis block) was mined by Satoshi Nakamoto. At first,
standard CPUs (Central Processing Units) from common computers were used
for Bitcoin mining, but they were soon replaced by GPUs (Graphical Processing
Unit), as in 2010 a programming language OpenCL was released and allowed

for the hardware to be altered to better suit the miners’ needs (Narayanan
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et al., 2016). In 2011, another technological progress of Bitcoin mining was
made, as FPGAs (Field Programmable Gate Arrays) started to be employed,
because they provided better computing power. The largest step forward in the
mining industry was the introduction of the first ASICs (Application-Specific
Integrated Circuits) developed specifically for the needs of the mining of Bit-
coin, at the end of 2013. It meant a large boost in the computing power, as well
as in the efficiency of the electricity used for computing (Courtois et al., 2014).
The computing power of the Bitcoin network is called hashrate, i.e. how many
hashes? per second is performed by all the mining machines combined. The
computing power of a single mining unit is expressed by how many hashes per
second it could perform when running on 100% of its capacity and its efficiency
can be measured in J/Gh (joules per gigahash, how many joules of energy a
machine needs to perform 1 billion of hashes).

As the popularity of Bitcoin grew, also its price was rising and in turn,
the profitability of mining was increasing. This attracted a large number of
investors, seeking profits from the selling of the mined Bitcoin. This and the
evolution of the mining hardware led to the professionalization of the mining
industry. Miners transformed from the Bitcoin enthusiasts mining on their
home computers to large mining farms, running numerous mining units in an
industrial-like manner and seeking locations with the cheapest electricity (the
professionalization of the mining industry describes e.g. Blandin et al. (2020)).

This increase in the scale of mining inevitably led to an increase in the
electricity consumed by the mining hardware, which became one of the main
points in the criticism of Bitcoin. The problem of the electricity consumption
of Bitcoin mining is extremely complex, from the normative perspective (is
it justifiable to use so much energy to run the Bitcoin network?) as well as
from the descriptive perspective (how much electricity is consumed by Bitcoin
mining?). It is hard to quantify the amount of electricity consumed and its
environmental effect because many variables are unknown. Important factors,
such as which hardware is used exactly, location and energy sources of miners,
or the exact mix of expenditures (electricity costs, capital expenditures, and
other overhead costs) can be only speculated.

The next section provides an outline of works that tried to estimate these
and similar factors. This topic is closely connected to the hashrate of the

Bitcoin network and is important for a broad understanding of the Bitcoin

20ne hash can be seen as one attempt to submit an answer to a question posed by the
Bitcoin network.
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topic. Although it is not connected to the price of Bitcoin directly, it is a

necessity to keep it in mind when discussing the drivers of hashrate.

2.2 Research on the electricity consumption of
Bitcoin mining

Bitcoin mining was in the academic literature explored only to a limited degree,
with not many papers concerned with it. Most of the early research was ana-
lyzing technical aspects of Bitcoin and security questions of the network, later
the focus shifted mainly towards financial aspects of Bitcoin, such as drivers
of its price or its ability to serve as a currency, e.g. Androulaki et al. (2013);
Kristoufek (2013; 2015). Questions about the electricity consumption of miners
and its effect on the environment started to appear more significantly only after
5 years of the network working, as the amount of electricity consumed grew.
Papers tackling the issue of the electricity demand could be divided into
three groups, the first being estimates of the electricity consumption at one
particular point in time, the second group containing papers that estimate
the electricity consumption and also consider the emissions that production of
electricity used for Bitcoin mining causes, and the third group represents the
estimates of the electricity consumption that are continuous through time (the
third group being considerably smaller than the previous two). The next three

subsections provide an overview of papers in the specified order.

2.2.1 Estimates of the electricity demand

One of the first, if not the first, papers trying to estimate the electricity con-
sumption of cryptomining was published by Malone & O’Dwyer (2014). In
their study authors concluded that Bitcoin mining demanded power from the
range between 0.01 GW and 10 GW at the time of writing the paper and fur-
ther presented their best plausible estimate of 3 GW, which was at that time a
power consumption comparable to Ireland. For the power estimation, authors
divided the total network hashrate by the power efficiency (in MH/J) of the
best available mining hardware and by the power efficiency of the hardware
that was still marginally profitable to use for the mining in order to compute
the upper and lower bounds respectively (Malone & O’Dwyer, 2014). Due to

the data unavailability, authors neglected additional electricity expenses, such
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as power required for cooling the mining hardware, and also took an assump-
tion on the electricity price. Despite that, they marked a path in the previously
unmapped territory for further research.

Different approach than Malone & O’Dwyer chose De Vries (2018). In this
paper, De Vries decided to avoid uncertainty arising from the use of the data on
the efficiency of mining hardware. This uncertainty might be present in a form
of an unknown mix of various mining units, which together compose the total
hashrate of the Bitcoin network. It is not possible to track devices on which the
Bitcoin is being mined and a researcher trying to find the Bitcoin electricity
consumption may either estimate bounds, between which the true consumption
might lie, create a few scenarios that would represent various compositions of
mining hardware, or can simply make an educated guess on the mix of the
hardware used. Instead of this, De Vries estimated energy consumption of Bit-
coin mining using the data on Bitcoin price and rewards received by miners,
thus obtaining miners’ total revenue in US Dollars. Then, he took 60% of this
revenue, assuming that miners’ expenditures are composed of electricity costs
(including electricity for mining hardware, as well as cooling and other expen-
ditures) of 60%. Finally, total electricity expenditures were divided by 0.05,
assuming the price of electricity for all miners being 5 USD cents per kWh. Ad-
ditionally, the author estimated the lower bound of the electricity consumption
by dividing the total hashrate by the efficiency of the best mining hardware
produced at the time (Antimenr S9 produced by Bitmain). This is though un-
likely to be the true electricity consumption, due to a low supply of and a high
demand for the hardware, shipping times, and other reasons. These estimates
resulted in the lower bound of electricity consumption of 2.55 GW and possible
consumption of 7.67 GW (De Vries, 2018).

In response to De Vries’ estimates, Bevand (2017b) presented an article, in
which he summarized flaws of the above-described approach. Later, Bevand
(2017a) published his own estimate of the mining electricity consumption, com-
ing with the values of 325 MW for the lower bound, 774 MW for the upper
bound, and 470 to 540 MW for the best guess as of 26 February 2017. He made
two updates on these estimates: 640 MW for the lower bound, 1.248 GW for
the upper bound and 816 to 944 MW for the best guess as of 28 July 2017 and
1.62 GW for the lower bound, 3.136 GW for the upper bound, and 2.1 GW
for the best guess as of 11 January 2018. It can be noted that the estimate of
De Vries is approximately 1.5 times higher than the Bevand’s estimate from the

corresponding time. His approach used data on the total hashrate of the net-
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work and hashing efficiencies of ASICs, similar as Malone & O’Dwyer (2014),
with additional information on the availability of hardware units to purchase
and amounts of units sold, that were available thanks to the communication
with one of the ASIC manufacturers (Bevand, 2017a).

Another estimate of power consumption of Bitcoin mining comes from
Vranken (2017). In this paper, the overview of the Bitcoin mining system
was presented and then the power consumption was estimated to lay between
100 MW and 500 MW (as of January 2017). This is a similar (although
slightly smaller) estimate as the one made by Bevand (2017a), which came
out two months later. Vranken uses the same method of estimation as Mal-
one & O’Dwyer (2014), total hashrate divided by the efficiency of used miners,
with updated data on the hardware in use. The main contribution of this
paper is that it considers the economic aspect of running mining hardware
from the point of view of a hardware manufacturer. Based on McCook (2014),
Vranken makes a reasonable assumption that 80% of the mining hardware is
run by manufacturers themselves, therefore reducing capital expenditures sig-
nificantly, allowing them to mine for up to 30% cheaper than retail miners
(Vranken, 2017).

Zade et al. (2019) made predictions on the future development of the power
consumption of Bitcoin and Ethereum mining up until the year 2025, based
on six scenarios. These scenarios presented different ways, in which the dif-
ficulty and efficiency of mining could develop. The authors used data on the
mining efficiencies of various mining units from a dataset constructed one year
earlier (Zade & Myklebost, 2018) and data on mining difficulties adjustments
to create two scenarios for efficiency and three scenarios for difficulty, there-
fore, when combined, resulting in six scenarios for Bitcoin and six scenarios for
Ethereum in total. Results showed that improvements in hardware efficiency
are likely to have only a limited impact on the power demand of the network,
as the rate at which the hardware is improving tends to slow down. Future
difficulty (and therefore the total hashrate, as the difficulty is adjusted accord-
ing to hashrate) might on the other hand be the main driver of the demand
for electricity. Whether it will be stagnating, growing linearly, or growing ex-
ponentially, it will probably strongly influence the power consumption (Zade
et al., 2019). Authors also provided their estimates on the lower bound of

electricity consumed by the mining of Bitcoin® so far: 168, 202, 364, 843 and

3Estimated lower bound of the power demand of the Ethereum network was provided as
well: 3, 19, 367 and 991 MW in 2015, 2016, 2017, and 2018 respectively.
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3852 MW in 2014, 2015, 2016, 2017, and 2018 respectively. Estimates are in
similar ranges as those done by Bevand (2017a) or Krause & Tolaymat (2018),
which is reasonable, as the same bottom-up method (Malone & O’Dwyer, 2014)
was used. As for an estimate closer to reality, the authors concluded that if the
mining process in October 2018 was done on the three most efficient available
ASICs, the power demand of the Bitcoin* network would be approximately at
5 GW (Zade et al., 2019).

De Vries (2020) presented an article, in which he broke the lifetime of
the Bitcoin network into three categories according to periods when the to-
tal hashrate was growing, stagnating, or falling. De Vries argues that when
the hashrate is falling, the network tends to converge to its optimum, as the
inefficient miners exit the market and only the miners with the best prices and
the most efficient hardware remain with non-negative profits, thus leading to
the network’s minimal power consumption. Further, De Vries shows that the
hashrate declining period occurred only once and only briefly (November 2018
to December 2018, i.e. one out of total 33 months), and on the other hand
the hashrate growth is dominant. The growing hashrate could mean that even
sub-optimal miners remain relevant, as the profitability of mining cannot be
rapidly exploited by buying and running the most efficient mining hardware
due to low production volumes. Combining this observation with previous
sales analysis (Stoll et al., 2019), new IPO® filings from 2019 and indepen-
dent market share estimates, De Vries (2020) states that previous estimates
might have overestimated the efficiency of hardware used and thus underesti-
mate the power consumed by mining. Additionally, the Bitcoin network was
estimated to consume 87.1 TWh annually as of September 30, 2019 (corre-
sponding to 9.9 GW), which is higher than estimates of CBECI (78.3 TWh),
as well as Digiconomist’s BECI (73.1 TWh) at that time (BECI and CBECI

are described in section 2.2.3).

2.2.2 Estimates of the emission production caused by Bit-
coin mining

In 2018, McCook published an updated version of his previous research (Mc-

Cook, 2014) on the environmental costs and sustainability of Bitcoin mining.

4The power demand of the Ethereum network in October 2018 would be approximately
at 0.9 GW if mined on the three best available GPUs.
°TPO stands for Initial Public Offering.
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In the paper, the author extensively discusses the financial aspects of mining,
estimates the energy demand of the Bitcoin network and its environmental
impacts. Additionally, the author estimates the same metrics for the gold min-
ing industry and compares it to Bitcoin mining. The Bitcoin network was
estimated to consume 105 TWh annually (which, for comparison with the pre-
vious research, corresponds with consumption of nearly 12 GW® at any given
time) and to be responsible for about 0.12% of global greenhouse gas emissions
(37 Gt COy + 16.5 Gt COqe) (McCook, 2018). The method used is the same
one as in Malone & O’Dwyer (2014); Bevand (2017a); Vranken (2017) while
assuming that all the mining is done by the best hardware available (Bitmain
Antminer S9i or its equivalent). As for the comparison with gold mining, the
mining of Bitcoin appeared to be less harmful to the environment than the
mining of gold according to almost all considered indicators (all but the pro-
duction of carcinogenics). The author also considered the argument that the
energy consumption of the Bitcoin network is comparable to the consumption
of gold mining (although lower), whereas the market capitalization of Bitcoin
is just a fraction of the market capitalization of gold. He argued, that the long-
term emission-per-unit trend of gold increases, while for Bitcoin it decreases,
and proposed that increasing demand for cheap electricity by Bitcoin miners
will in the future lead to faster development of green energy sources (McCook,
2018).

Mora et al. published an article that attracted the attention of other re-
searchers, as well as regular media. In the title, the authors boldly state:
“Bitcoin emissions alone could push global warming above 2°C” (Mora et al.,
2018). The paper attempts to calculate the carbon footprint of Bitcoin in 2017
and to show what would happen if it would continue in a similar manner. Re-
sults reveal that Bitcoin alone could be responsible for 69 MtCOse as of 2017
and if the same trend would continue unchanged, global warming might reach
the limit of 2°C in 11 to 22 years (depending on how fast will be the blockchain
technology adopted). The estimate on the energy consumption alone was not
presented. Mora et al. could be criticized (e.g. in Dittmar & Praktiknjo
(2019)) for several mistakes, such as extrapolating to the future based on the

data from 2017, in which Bitcoin experienced sky-rocketing in price, which has

6Estimates of McCook include not only operational expenditures (i.e. energy required for
running mining hardware and for cooling) but also capital expenditures, such as the energy
required for construction of ASICs, their packaging and shipping. Therefore it is reasonable
that the estimated use of energy is substantially higher than in the previously discussed
papers (e.g. Bevand (2017a) or Vranken (2017)).
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not been repeated in the next three years, or building the CO4 estimate on the
number of completed transactions (Mora et al., 2018), although the number
of transactions per second does not have a direct influence on the number of
miners running and therefore on the electricity consumption.

Another estimate of the energy consumption of Bitcoin network and emis-
sions thus produced comes from Krause & Tolaymat (2018). The main purpose
of the paper was to compare emissions produced by creating 1 US dollar worth
of cryptocurrencies and 1 US dollar worth of precious metals. As for cryp-
tocurrencies, Bitcoin, Ethereum, Litecoin, and Monero were selected, as all of
them are based on a proof-of-work algorithm, so their mining requires a non-
negligible amount of energy. As for metals, aluminium, copper, gold, platinum,
and rare earth oxides were used for the comparison. The results showed that
in general, excluding aluminium, mining of cryptocurrencies consumed more
energy than the mining of minerals” to create 1 US$ of worth. Throughout the
measured period (1 January 2016 to 30 June 2018), all four cryptocurrencies
together were estimated to be cause for producing 3 to 15 million tonnes of COq
emissions, out of which Bitcoin alone seemed to be responsible for 3 to 13 mil-
lion tonnes of CO,®. Although it might be questionable, whether it is logical
to compare dollar-value production of cryptocurrencies with precious metals?,
authors provided their estimates on the energy consumption of Bitcoin (as well
as other cryptocurrencies). Bitcoin mining was estimated to consume 283 MW
in 2016, 948 MW in 2017, and 3441 MW in the first half of 2018. The method of
estimation is similar to the method used by Bevand (2017a), for each year, au-
thors divided total network hashrate by assumed efficiency of miners, whereas
cooling costs, as well as any other costs, were neglected. It might be argued
(as did Koomey (2019)) that the cryptocurrency industry is such a dynamic
environment, that averaging over a full year is a period too long for capturing
all the potential changes, and for example, a month-based approach might be
better suited.

One of the most evidence-based estimates of Bitcoin electricity consump-
tion and emission production comes from Stoll et al. (2019). The authors took
an advantage of the IPO files provided by the three major producers of mining

hardware (Bitmain, Ebang, and Canaan). Information on the total market

“For the creation of 1 US$, Bitcoin, Ethereum, Litecoin, and Monero consumed on average
17, 7, 7 and 14 MJ respectively, while aluminium, copper, gold, platinum, and rare earth
oxides consumed 122, 4, 5, 7 and 9 MJ respectively.

8Which is significantly lower estimate than 69 MtCOqe by Mora et al. (2018).

9As discussed for example by Carter (2018).
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shares of producers was available, as well as somewhat accurate data on units
sold. Therefore, the total efficiency of hardware in use could be estimated with
a high level of precision. Based on the communication with large and medium-
scale miners, Stoll et al. estimated a portion of the total electricity consumed,
that has to be spent on cooling and other operational expenses (other than
mining itself), depending on the size of the mining facility. Worldwide distri-
bution among the categories of miners (small, medium, and large) was then
assumed based on the publicly available data on miners’ distribution in the
Slushpool mining pool. This allowed the authors to average this additional
electricity demand over the entire world, resulting in assumed 5% extra elec-
tricity needed, and to include it into the estimation as well. From July 2016
to January 2019, the lower and upper limits of electricity consumption were
estimated as all miners using the most efficient hardware at the time for the
lower limit and all miners earning zero marginal profit from mining as the up-

10 were then computed, using data on miming

per limit. Three best-guesses
efficiency and the percentage of electricity required for cooling and overhead
expenses, resulting in estimated consumption of 345 MW at the end of 2016,
1637 MW at the end of 2017, and 5232 MW in November 2018 (Stoll et al.,
2019). The authors also computed the carbon emissions resulting from Bitcoin
electricity demand. They used three methods of estimation of the miners’ lo-
cation, two of them yielding reasonable results, in combination with average
and marginal emission factors of power generation in the countries of interest.
Two methods of estimating miners’ location resulted in the range of Bitcoin
emission production of 22.0 to 22.9 MtCO, (Stoll et al., 2019). Additionally,
in 2020, the same group of authors published a paper aiming at quantifying
the electricity consumption of all major cryptocurrencies, not only of Bitcoin
(Gallersdorfer et al., 2020). 20 mineable cryptocurrencies with the highest
market capitalization!! were chosen, representing together more than 98% of
the total market capitalization of all cryptocurrencies. Results indicated that
at the end of March 2020, Bitcoin mining was responsible for approximately
4291 MW and also that Bitcoin is responsible nearly for 2/3 of total electricity
consumption, whereas other major cryptocurrencies are responsible for the re-
maining 1/3. The authors chose a simple method of dividing total hashrate by
efficiency of the best hardware available, therefore the estimate is considerably

lower than in papers that used a more sophisticated method (especially if the

10Tt could be noted that all three best guesses are close to the lower bound.
1 Acording to https://coinmarketcap.com
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almost always rising total hashrate is considered). But the same method was
used on all 20 cryptocurrencies alike, thus even if the total consumption might
be higher, the ratio of consumption between Bitcoin and the rest might be
correct (Gallersdorfer et al., 2020).

Later in 2019, Kohler & Pizzol released a paper, in which they applied Life
Cycle Assessment methodology on the Bitcoin mining network, thus allowing
them to estimate the electricity consumption and emission production so far
and develop three scenarios for the future. Authors utilized previous studies to
get data on the geographical distribution of miners'?, hardware in use!® and a
percentage of electricity used for cooling!*. The mining electricity consumption
in 2018 has been estimated to be 31.29 TWh (which corresponds with a steady
consumption of 3.57 GW). Additionally, the emission production was estimated
to be 17.29 MtCOgqe in 2018 (Kohler & Pizzol, 2019). The authors also argued
that production and disposal of the mining hardware generate significantly
fewer emissions than previously assumed (McCook, 2018), accounting together
for less than 1% of the total carbon footprint of Bitcoin. The three scenarios
presented situations where a) the geographical location of miners and their
computing power and efficiency will stay the same as now, b) the geographical
location will remain unchanged, but better mining hardware will be installed,
or ¢) the geographical location, as well as the hardware, will change in order to
provide the best competitive conditions to miners. Evaluation of the scenarios
showed that the geographical location of miners is the most crucial factor, as it
has the largest impact on the emission production caused by Bitcoin electricity
demand. Authors also presume that in the long-term, the total hashrate (and
thus the electricity consumption) will probably stagnate, as the main source of

income for miners will shift from the block rewards to the transaction fees.

2.2.3 Continuous estimates of the electricity demand

The simplified approach of De Vries (2018) based on two major assumptions
(the assumption of the electricity price of 0.05 USD/kWh and the assumption
that 60% of miners revenue is spent on electricity costs) allowed the author

to produce the estimates steadily over time, which the author publishes on

12The geographical distribution of mining activities was assumed according to Bendiksen
et al. (2018); Rauchs et al. (2018) and authors’ own research.

13 Acording to Bendiksen et al. (2018), the mix of most up-to-date mining hardware was
used.

14 According to Stoll et al. (2019), the additional electricity demand of 5% was assumed.
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his website Digiconomist!'® since early 2017 under the name Bitcoin Energy
Consumption Index. However, Bevand (2017b) criticized De Vries for arbitrary
changes in methodology, that were not explained.

In July 2019, Cambridge Center for Alternative Finance (CCAF) launched
their Cambridge Bitcoin Electricity Consumption Index (CBECI'®), that aims
to track the electricity consumption of the Bitcoin network in real-time and,
based on this, to provide its annual electricity consumption (Rauchs et al.,
2020b). Authors referenced to approach of Bevand (2017a) and employed a
similar bottom-up method. The index provides three estimates. Firstly, the
best-case scenario, the lowest possible bound of consumption, where it is as-
sumed that mining is done by the most efficient mining hardware available and
that miners will switch to the better hardware as soon as it is released (which
is highly unlikely, if not impossible, due to a non-negligible shipping time or
not-high-enough production volumes). Also, extremely good power usage effi-
ciency (PUE!T) of 1.01 is assumed. Secondly, the worst-case scenario, or the
highest reasonable bound of electricity consumption, assumes that mining is
done by the least efficient hardware that is still profitable. Under this assump-
tion, miners will switch to more efficient hardware only when their current
hardware becomes unprofitable (considering only operational costs, not capital
expenses connected with the purchase of the mining units). Miners are also
assumed to have the PUE of 1.20, which would still be considered efficient by
common data center parameters, but not by mining facilities’ requirements,
where the electricity consumed plays a crucial role. Thirdly, the authors’ best
guess estimate, which assumes that miners are using an equally weighted mix
of all mining units that are profitable at a time. Authors argue that such as-
sumption is acceptable due to the unavailability of reliable comprehensive data
on amounts of mining units sold and show that the estimate resulting from
this assumption is comparable to the one done by Stoll et al. (2019), who used
data from hardware manufacturers PO filings. Also, in the best guess sce-
nario, the PUE of 1.10 is assumed, as it has been confirmed by conversations
with miners and mining experts, although it is more conservative than the best

guess on PUE in the previous studies'®. For all three estimates, the electricity

https://digiconomist.net /bitcoin-energy-consumption

16 Available at https://cbeci.org/.

I"PUE refers to the amount of electricity required by a mining facility, but not directly
used for mining. PUE of 1.01 means that 1% of additional electrical power is required for
cooling, running other hardware components then ASICs etc., on top of 100% electricity
power needed for mining itself.

I8PUE of 1.05 was assumed by Stoll et al. (2019) or Bevand (2018).
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price of 5 USD cents per kWh is assumed!?, as it was supported by previous
studies, as well as authors’ communication with miners. Authors based the
efficiencies and availability dates of mining hardware units on the findings of
previous papers and their own research. CBECI provides the estimate on the
immediate electricity consumption of the Bitcoin network in watts, as well as
the annual consumption in watt-hours, which results from applying the 7-day

moving average on the immediate consumption (Rauchs et al., 2020b).

2.3 Drivers of the price of Bitcoin

For the proposed analysis, it will be crucial to properly identify factors, that
drive the price of Bitcoin. Therefore, this section contains a summary of papers
concerned with identifying such variables and specifying their effects.

Kristoufek (2013) was one of the first who examined the relationship be-
tween Bitcoin price and the frequency of online searches. He used data from
Google Trends and Wikipedia, setting thus a standard frequently used in a sim-
ilar type of analyzes. The vector autoregression (VAR) approach and vector
error correction model (VECM) was used with an addition of differentiating
between positive and negative sentiment in the bitcoin price, expressed by a
variable that indicates whether the price of bitcoin is above or below its trend.
The results revealed a strong, bidirectional relationship, i.e. not only the in-
crease in the price can be explained by the increase in public attention, but also
more public attention is caused by the rising price of Bitcoin. Moreover, when
the sentiment is negative, the bidirectional relationship exists as well, but with
a negative sign.

Garcia et al. (2014) followed with their analysis of Bitcoin’s price bubble
formation process. For this purpose, the vector autoregression (VAR) frame-
work was used and three types of social signals were assessed: a volume of
online searches, a number of new users, and a social media activity. Similarly
to Kristoufek (2013), online searches were represented by data from Google
Trends or by views of the Bitcoin Wikipedia page, new users by a number of
downloads of the Bitcoin software client in a given day, or alternatively by a
number of new addresses and social interactions by a number of Bitcoin-related
tweets per million tweets or by a number of re-shares of Bitcoin-related posts

on a selected Facebook group. Additionally, Bitcoin exchange rates were taken

9Nonetheless, the CBECI website allows users to change the assumed electricity prices,
in order to see how the resulting estimates will change.



2. Literature review 17

from various exchanges and for three currencies: USD, Euro, and CNY. Results
revealed two feedback cycles that might drive the price of Bitcoin. The first
of them starts with an increase in price positively affecting the search volume,
word of mouth (social media activity) increases as the search volume increases,
and price increases as the word of mouth increases. The second cycle starts the
same, search volumes are increased by price growth, then in turn the amount of
new users increases with high search volumes, and price grows with a spreading
user base. Moreover, a negative effect of huge spikes in search volume on the
price was observed. Garcia et al. found that three out of four largest price
drops were preceded by significant increases in searches.

Kristoufek (2015) applied the wavelet coherence analysis on various possi-
ble sources of price movements. This allowed him to examine the correlation
between series across the time span from the end of 2011 to the start of 2014
and for various frequencies, enabling him to distinguish the long-term and
short-term effects and the leading variable. The first group evaluated were the
Economic drivers. The Trade-Exchange ratio was defined as a ratio between
the volume of the exchange transactions and the trade transactions and rep-
resented a measure of transactions used for purchases of products and services
(i.e. the lower the ratio, the more frequent real-world application of Bitcoin).
As expected, the analysis revealed a negative correlation between this ratio and
the price with no evident leader. The price level was constructed according to
standard economic theory as the average price of a trade transaction on a given
day. A negative correlation was revealed with no significant leader in the long-
run. The money supply of Bitcoin seemed to be positively correlated with price,
against the expectation. This could be explained by the extreme predictability
of the Bitcoin algorithm, which allows users to adjust their expectations. The
second group of analyzed factors was the transaction drivers, represented by
the trade volume and the trade transactions. Any stable relationship could
not be seen for the trade volume, and the trade transactions were positively
correlated in the long-term. However, the relationship between variables and
the price grew weaker in time. The third group considered were the techni-
cal drivers. Total network hashrate and the mining difficulty were evaluated,
revealing a positive correlation between both variables and the Bitcoin price
in the long-run. The price seemed to be the leading variable in both cases,
indicating that the increases in price attracted new miners to enter the market
(or motivated increases in hashrate in general). The fourth group represented

the measures of public interest in Bitcoin, expressed by the search volumes for
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the term “Bitcoin” on Google and Wikipedia search engines. The correlation of
searches on both platforms was positively correlated with price in the long-run.
In the short-run though, the relationship was more intricate, as it changed over
time, depending on the price movements. It seemed, that during rapid price in-
creases (forming bubbles), interest led the price, boosting it even higher, while
during extreme price decreases (bubble bursting), interest still led the price,
but this time with the negative correlation, pushing it even lower. Additionally,
during the bubble burst, the interest had a more rapid effect on price compared
to a period of bubble build-up. The fifth group analyzed were factors connected
with a notion of Bitcoin being a safe haven. The Financial Stress Index (FSI)
and the gold price in Swiss francs were chosen, as gold itself is a safe haven
and FSI is an index of general financial uncertainty. The positive correlation
with these factors would indicate Bitcoin itself is a safe haven. Nonetheless,
Kristoufek (2015) found no long-term relationship between the Bitcoin price
and either of the mentioned variables, thus concluding that Bitcoin cannot be
considered a safe haven, based on the analyzed dataset. Finally, in the sixth
group, the influence of China was examined, as a reaction to speculations of
China having a strong influence over the entire Bitcoin market. For this anal-
ysis were used Bitcoin prices in USD and CNY and exchange volumes in USD
and CNY, in CNY alone and in CNY while controlling for the exchange rate
of USD. Results showed no proof of any causal relationship between the CNY
and USD markets.

Based on previous studies, Ciaian et al. (2016) summarized drivers of Bit-
coin’s price into three categories: forces of supply and demand, popularity
among investors and users, and worldwide financial growth. Further, the au-
thors argued that their predecessors neglected two important factors, the first
one being that previously the drivers were analyzed separately and the in-
teraction between them was not accounted for. This might have resulted in
over-stressing the importance of some factors. The second flaw of previous
research, according to Ciaian et al., was the absence of analysis of potential
structural breaks in the price of Bitcoin, which could have led to biased results.
They attempted to preclude these shortcomings in their analysis, which was
based on a model for a gold standard but enriched with the Bitcoin-specific
factors. The daily data from 2009 to 2015 were analyzed with the help of the
Vector Error Correction (VEC) model, the Multivariate Vector Autoregressive
(VAR) model, and the Autoregressive Distributed Lag (ARDL) model. The

first group of factors included in the analysis was total Bitcoins mined, the
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number of unique transactions per day, and the number of unique addresses
per day, the days destroyed?® of any transaction as a proxy for money velocity
and the exchange rate between USD and Euro as a proxy for the global price
level. These factors represented the supply and demand forces on the Bitcoin
market. The second group, related to the popularity of Bitcoin, consisted of
searches for the term “Bitcoin” on Wikipedia (as in Kristoufek (2013; 2015)), a
number of new members, and a number of new posts on the online forum Bit-
cointalk.org?'. The group covering the global macroeconomic situation was
made of oil prices and the Dow Jones Industrial Average index. The results
showed that, regarding factors of the first group, the number of transactions
and the number of addresses had a significant positive impact on the price,
while the total number of Bitcoins in circulation was significantly negative.
The proxy variable for money velocity proved to be insignificant. From the
second group, the only significant factor in the long-run was the new forum
posts with a positive effect, while the new forum members and the Wikipedia
searches appeared to be significant only in the short-run, without a clear direc-
tion. None of the factors from the third group were significant in the long-run,
contrary to results from previous research, implying that global financial de-
velopment has little to no impact on the price of Bitcoin. Ciaian et al. (2016)
explained this by their innovative inclusion of factors from various areas.
Kjeerland et al. (2018) examined various factors with the goal of determin-
ing which of them are the drivers of Bitcoin’s price. For this purpose, the
Autoregressive Distributed Lag (ARDL) and Generalized Autoregressive Con-
ditional Heteroscedasticity (GARCH) models were used. To account for the
huge price changes of late 2017 and early 2018, the authors divided data into
two subsections, the first from 2013 to 2016 and the second from 2017 to 2018.
Also, to avoid potential autocorrelation, the daily data were transformed into
weekly averages. As for the factors examined, in their analysis authors in-
cluded the price of Bitcoin lagged by one week, hashrate, transaction volume,
S&P500 index, Gold and Oil price indices, a measure of the expected market
volatility VIX and the search statistics for the term “Bitcoin” from Google
Trends. S&P500 represented general financial markets trends, the VIX index
was supposed to provide a measure of risks connected with investing for the

next 30 days. Gold and Oil prices were added as important commodities, that

20This variable was computed by multiplying the number of Bitcoins in the transaction
by the number of days since these Bitcoins have moved to a different address (Ciaian et al.,
2016)

2https://bitcointalk.org/
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might affect financial markets overall. Data from Google Trends were added as
a measure of public attention directed to Bitcoin. Transaction volume was used
as a traditional measure of supply and demand and the hashrate was included
as an important technological factor. The most surprising result of the analysis
was that the hashrate is insignificant in explaining price changes, which is a
contradictory finding compared to previous studies. Authors argue that most
likely the price explains the hashrate, not the other way around. On the other
hand, in line with the previous studies was a finding that public attention has
a significant positive relationship with Bitcoin price. S&P500 has also been
found to have a positive impact on Bitcoin’s price, which authors interpreted
as optimism in financial markets is followed by optimism in the Bitcoin mar-
ket. Another factor with a significant positive effect was the price of Bitcoin
lagged by one week. Authors propose that this might be evidence against the
Efficient Market Hypothesis and in turn support for the Momentum theory and
the Greater Fool theory??. VIX index, a measure of fear in financial markets,
was found insignificant in the first period, but in 2017 and 2018, it has been
found to have a significant negative relationship with the price of Bitcoin. This
might suggest that Bitcoin could to a certain degree have safe-haven proper-
ties. Gold and Oil prices have been found insignificant. Results from previous
papers regarding these two commodities are mixed. Results on the transaction
volume were not clear, each model yielding different results. Either the volume
is not significant, or it is significant with a negative sign, as could be expected
according to traditional supply and demand theory (Kjeerland et al., 2018).
In 2019, Kristoufek expanded upon his research of fundamental drivers of
the Bitcoin price and examined it through the lens of classical economic equa-
tions. With the use of the Equation of Exchange?® and the Law of one Price®*,
the author was able to construct a price level index for the Bitcoin market
and consequently to examine its relationship with the nominal exchange rate

(with the USD). The price level index was computed as a monthly average of

22The Efficient Market Hypothesis says that investors behave rationally according to avail-
able fundamental information, Momentum theory is an empirical rule of thumb that says that
rising and falling price rises and falls more than it rationally should have and according to
the Greater Fool theory investors do not behave based on fundamental information at all.

23The equation states that a volume of money in circulation times the money velocity is
identical as an average price of purchased goods and services (price level) times the number
of realized transactions.

24The law says that the identical good has an identical value, independent of the location
and other circumstances, and potential price differences are explained by the exchange rate.
This could be written as a price level in one country is equal to a price level of the second
country multiplied by the exchange rate.
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the total transaction volume divided by the number of transactions, which was
possible due to the unprecedented data availability of the Bitcoin network. As
similar data for the USD are not accessible directly, the Consumer Price Index
(CPI) was taken as the proxy for the price level of the USA. Because the CPI
does not represent values of a price level directly, but refers to a point in the
past and compares present prices with past prices, the relationship could be
examined only proportionally. Kristoufek (2019) found a possible cointegration

relationship between the time series, concluding that:

(...) results suggest that there is a long-term equilibrium relation-
ship between Bitcoin price and its price dynamics implied by the

Equation of Exchange and Law of One Price.

Additionally, it has been found that the market price of Bitcoin copies the
fundamental price implied by the model not perfectly, but very close. The
author also suggests that the Bitcoin price development depends among other
things on the increasing penetration and amount of users.

Wheatley et al. (2019) analyzed the bitcoin price bubbles with the aim of
developing a methodology that would be able to identify an ongoing bubble
and also to detect signals of increased risk of the bubble bursting. For this
purpose, the authors used the generalized form of Metcalfe’s law?® and the
Log-Periodic Power Law Singularity (LPPLS) model. Apart from detecting
four Bitcoin price bubbles in the past and explaining a way how to detect
a risk of a bubble bursting, the authors concluded that the number of active
addresses is an important factor of the total market capitalization of the Bitcoin
network (therefore also of the price itself).

Kristoufek (2020), similarly to Hayes (2017), examined the relationship of
the Bitcoin price and the cost of mining (the cost of producing one Bitcoin).
For that reason, Kristoufek employed VAR and VECM models and used the
data from the start of 2014 up until the second half of 2018, as the introduction
of ASICs in 2014 made prior data on hashrate hardly comparable to newer ones.
For the analysis, the author used a variable representing the cost of mining,
which he constructed from the total hashrate, an index of electricity prices?® and

the best-available miner efficiency. This approach accounts only for operational

25This law says that a value of a network (a telecommunications network in the original
form) is proportional to the squared amount of active users of the network.

26The electricity price was averaged over the prices from countries in which the majority
of mining facilities are assumed to be situated and also which disclose the electricity price
publicly.
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costs of mining and neglects the capital expenditures, as reliable data for all
the fixed costs of mining are close to impossible to collect. Kristoufek (2020)
argues that the capital expenditures can be assumed to be a fixed percentage
markup to the operational costs that will be incorporated in the intercept of
the final log-log model. Results showed that the influence of the mining cost
on the price is weak and present only in the short-run. On the other hand, the
effect of the price on the mining cost was significant even in the long-run, with
a shock in price being followed by an adjustment in mining cost, ranging from
three months to one year.

Paper from Fantazzini & Kolodin (2020) examined the discrepancy between
the results of Kjeerland et al. (2018) and Hayes (2017), who both analyzed the
relationship of the hashrate and price, but came to different results. While
Kjeerland et al. found hashrate to be insignificant while explaining price move-
ments and on the other hand concluded that the price might explain changes
in hashrate, Hayes constructed the cost-of-production model (CPM) and ar-
gued that the “fair value” (production cost) is an important factor of Bitcoin’s
market price. Later, Hayes (2019) showed that the cost-of-production value
of Bitcoin Granger-causes the price. To find what is the relationship between
price and hashrate, Fantazzini & Kolodin (2020) used directly the hashrate,
or alternatively the break-even cost of mining (computed by the CPM) as a
proxy variable for the hashrate, in bivariate and multivariate models, employing
the vector autoregression (VAR) and vector error correction model (VECM)
methodologies. For the multivariate model, the authors used the same set of
variables as Kjeerland et al. (2018), but excluded the oil prices and VIX index
and included the total transaction fees paid in the Bitcoin network (in USD).
The cost of mining required additional information on the efficiency of miners
and the electricity price. The efficiency authors estimated by using data from
websites listing the mining hardware and applying Holt-Winters double expo-
nential smoothing. The electricity cost was either assumed to be constant at
0.13 USD per kWh or was taken as an equilibrium price from Nord Pool, which
is a power exchange operator in Northern and Western Europe. To avoid the
potential effect of Bitcoin reward halving on price, the examined period was
from August 2016 to February 2020, i.e between the two halving events. The
analysis showed that it is probably better to consider the hashrate directly,
rather than its proxy in the form of the cost of production while modeling its
relationship with price. Also, similarly to Kjeerland et al. (2018), Fantazzini &
Kolodin (2020) found that the hashrate seemed to be driven by price, not the
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other way around.
Next, a section where a model to be used is proposed and the construction
of a dataset is described follows. Also, a deeper motivation for the analytical

part of the work and a methodology to be utilized are discussed.



Chapter 3
Methodology and data

This section presents a motivation for the research part of the thesis and spec-
ifies the model that will be estimated. Reasons for including specific variables
are provided and the methodology that will be put to use is discussed. Fur-
thermore, the process of data collection is described, together with a way in

which some of the variables were constructed.

3.1 Motivation

As Kristoufek (2020) found, there is a relationship between the bitcoin price
and the operational cost of mining (which consists of the electricity price, the
mining efficiency, and the hashrate). However, changes in the hashrate were
much larger compared to the changes in the electricity price and the efficiency
in the past several years'. According to Ciaian et al. (2016), the inclusion of
multiple factors from various areas and their simultaneous analysis improved
their results greatly. Therefore, examining the relationship of the price and the
hashrate with the inclusion of the electricity price, the mining efficiency, and
other factors (closely discussed in section 3.4) that proved to be significant in
the previous research as explanatory variables, might provide insightful results.

The importance of understanding the dynamics of the relationship between
the Bitcoin price and the hashrate is at hand. It could help and improve the ef-
ficiency of investors in cryptocurrency markets, as changes in the Bitcoin price

are often closely followed by changes in the pricing of other cryptocurrencies.

'Since the start of 2014 for example, the mining efficiency improved approximately 50
times, the electricity price oscillated in the range of approximately 50% to 150% of the
mean value and the hashrate increased more than 12000 times. Note that these are only
back-of-the-envelope calculations.
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Additionally, governments and decision-makers may benefit from the decipher-
ing of the price-hashrate relationship as well, as a good understanding of the
properties of cryptocurrencies is a necessary condition for their just and fair
regulation.

It should also be kept in mind that the total hashrate is one of the two driv-
ing factors of the total amount of electricity, that is consumed by the Bitcoin
network, the other factor being the mining efficiency. Therefore, if a strong
influence of price, or some other factor, on the hashrate should be revealed, im-
plications to the electricity consumption could be drawn from the price changes
in the future.

In the research field of the Bitcoin price dynamics, the hashrate was assumed
to be an important technological factor that might help to explain the move-
ments of the price. Nonetheless, several authors (such as Fantazzini & Kolodin
(2020); Kjeerland et al. (2018); Kristoufek (2015)) suggested that instead of
the Bitcoin price being affected by the hashrate, the situation could be quite
the opposite, i.e. changes in the price might be causing the network hashrate
to change. This indicates that a system of equations should be constructed,
with the Bitcoin price and the hashrate both being dependent variables and
also included as explanatory variables transversely. As suggested by the pre-
vious research, both the price and the hashrate will probably be endogenous
explanatory variables in such a system, as there is likely a mutual relationship
among them, changes in one might cause a change of the other variable and
vice versa. The system of equations used to model the relationship of the price
and the hashrate and also their relation to other factors shall be discussed in

the next section.

3.2 Model proposal

When the aim is to explain changes in the Bitcoin price and in the network
hashrate, the selection of the explanatory variables is affected firstly by the logic
and rules that drive the Bitcoin network, and secondly by the data availability,
as some of the variables are not accessible, because it would be hard or even
impossible to measure them. In some cases, an explanatory variable can be
assumed to be exogenous, as its values are determined solely by the forces that
come outside of the Bitcoin system. However, there are variables that could be
able to explain some of the variance in the price or the hashrate, and simul-

taneously might be at least partially affected by the forces already contained
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in the system, thus being endogenous. The variables with such characteristics
are most likely the Total transaction fees paid in the network (measured in
BTC), denoted as {transaction_fees;}, and the search volume, representing
the public interest in the topic of Bitcoin, denoted by {search_volume,}.

Therefore, together with the Bitcoin price and the hashrate, these four
variables were assumed to be endogenous in the system, and thus for each of
them, an equation was constructed. The four equations are presented in this
section, together with reasons for including the explanatory variables and the
expected relationships that ought to be revealed. Also, the reasons for assuming
the four mentioned variables to be endogenous are further explored.

The four equations were constructed as follows:

log (price;) = a1 + p1log (hashrate;) + B2 log (addresses;)
+ B3 log (price_levely) + Bylog (USD_M2y)

+ s log (search_volume;) + PBglog (transaction_fees;) + €y
(3.1)

log (hashrate;) = aq + B7log (price;) + PBslog (addresses;)
+ Bo log (efficiency;) + Big log (transaction_fees;) (3.2)
+ Brireward__phase; + €9

log (transaction_fees;) = ag + P2 log (price;) + Pz log (addresses;)

(3.3)
+ 14 log (search_volume;) + €3
log (search__volume;) = ay + Bi5log (price;) + €y (3.4)
where t = 1...7T is a time index, ai, as, a3 and oy are intercepts, 3; for

j € {1...15} are the coefficients of the explanatory variables and {ey;}, {€ex},

{€s:} and {e4} are the error terms.

Price equation The equation 3.1 explores relation of some variables to the Bit-
coin price, represented by {price;}. The relationship with the total net-
work hashrate, depicted by {hashrate,}, is one of the main questions of
this work. The expectation is that the increasing hashrate will positively

affect the price, as increased security of the network might make it more
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attractive for users and investors. Additionally, a positive relationship
was already shown in previous studies. The variable {addresses;} repre-
sents the number of active users of the Bitcoin network, as Wheatley et al.
(2019) showed that the number of active users plays a role in the valuation
of the technology. In line with Metcalfe’s Law, it can be expected that
the price will be positively affected by the growing user base. The price
level of the Bitcoin market is represented by the variable {price_level;},
which was constructed according to Kristoufek (2019) as the volume of
Bitcoin transactions divided by their number. This relationship directly
follows fundamental economic theory, which also says that an increasing
price level of Bitcoin should have a negative effect on the exchange rate
(an increase in the price level will lead to 1 Bitcoin being equivalent to
fewer US dollars). In order to capture the ability of Bitcoin to serve as a
safe haven for investors in times of strong inflation, the M2 money supply
of the USD was added as {USD_ M2;}. In the previous papers, the price
of gold or the S&P 500 index were used, as they represent overall indi-
cators of the global market situation, but the results did not indicate a
clear relationship. The Covid-19 pandemic crisis led to an unprecedented
quantitative easing in the United States, which in turn fueled the specu-
lations about the Bitcoin being a hedge against inflation. The inclusion
of the USD money supply might bring an insight into the situation. It
could be expected that the increasing money supply will lead to growth
in the price of Bitcoin. The public attention towards Bitcoin was cap-
tured by the variable {search_wvolume,}, which represents the Google
search data. The increasing number of people interested in the Bitcoin
technology might signify an increase in demand for Bitcoins, which could
result in price increases, and on the other hand in situations when the
price is decreasing, the increased interest in (potentially negative) news
about Bitcoin might push the price even lower. Therefore, the expecta-
tions are mixed, but in the previous research, the overall positive effect
outweighed the negative one. The variable {transaction_fees;} depicts
the total transaction fees paid by users of the Bitcoin network (those who
send transactions) and received by miners in one day (measured in Bit-
coin). The height of the fee depends on the senders’ willingness to pay for
completing the transaction, as the fee is an incentive for the miner who
finds a block to include a transaction into the block. Therefore, a trans-

action with a fee set high has a higher priority and gets completed earlier
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than transactions with a low fee. It could be expected that high fees
will motivate higher prices because they represent the interest of users to
complete their transactions, i.e. to use the network. And, similarly as
in the case of the active addresses, an increase in the interest for the use
of the network might lead to an appreciation of Bitcoin. However, the
opposite relationship would be also possible, as extremely high fees might
discourage users from sending transactions, thus effectively lowering the

price.

Hashrate equation The equation 3.2 describes the relation of the hashrate to
its explanatory factors. The Bitcoin price is clearly linked to the total
hashrate, as a major part of miners’ revenue is dictated by the algo-
rithm in the form of the block reward (the number of Bitcoins awarded
to a miner who mines a block). The price of Bitcoin, therefore, affects
whether miners will be profitable and able to continue mining, or whether
they will operate in loss and will be forced to end their mining activities.
The expectation is that the increasing price will drive the hashrate higher,
as new miners will be motivated to enter the business. Another variable
that might be able to capture the changes in the hashrate is the number
of active addresses. Similarly, as in the case of the Price equation, it could
be expected that a growing user base might demand higher security of
the network, which in turn is reflected by the growing hashrate. The effi-
ciency of the mining hardware was in the model captured by the variable
{efficiency;}. Tt represents the combined efficiency of the best mining
units available at time ¢ in J/GH (joules per gigahash). The efficiency of
mining is one of the crucial segments of the total hashrate, as more effi-
cient hardware enables miners to output more computing power for the
same amount of electricity. It could be expected the more efficient hard-
ware will be (the less J per GH will be required), the higher the hashrate
will be, as miners will be able to mine with lower electricity expenses.
The variable {transaction_fees;} is a two-sided coin, the first side being
the costs that users incur while sending transactions, as described before.
The other side is the revenue of miners, who receive the fees. The share
of miners’ revenue formed by the transaction fees depends on how many
users are willing to spend their Bitcoins on the fees, the higher the de-
mand for the completed transactions, the higher the transaction fees. It

can be expected that high fees will result in a higher hashrate, as min-
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ers’ incentive to mine will increase. A variable representing the Bitcoin
reward halving events was added as {reward_phase;}. It is equal to a
number of the halving events that occurred prior to a time ¢. There is no
clear consensus in the literature for how to account for the effects of the
Bitcoin halving, even though the empirical evidence suggests that some
relationship with the hashrate exists. Adding such a variable might be a
way of disentangling the relationship. The expectation is that a reward
halving will have a negative influence on the hashrate, as it decreases the

miners’ reward.

As mentioned before, the Bitcoin price and the hashrate are very likely
to be endogenous variables, as an increase in the price is expected to have a
positive impact on the hashrate, and growth of hashrate is expected to increase
a price (although the price to hashrate relationship is likely to be stronger).
However, these are not the only endogenous variables in the system. The
variables {transaction_fees;} and {search_volume,} were expected to be able
to explain some of the variance in the Bitcoin price and hashrate and thus they
were used as explanatory variables in 3.2 and 3.2. However, it is reasonable to
assume that their values might be at least partially driven by the forces already

contained in the system, and thus to be endogenous as well.

Transaction fees equation The transaction fees are driven by the demand for
completing transactions as fast as possible. This need consists of several
factors explored by equation 3.3, the first of them being the price. A
sudden change in Bitcoin price might motivate users to send transactions
more than usual?, increasing thus transaction fees. This, however, does
not indicate whether the relationship will be positive or negative, but
because the price of Bitcoin is overall increasing, a positive influence of
price could be expected. The number of active addresses can influence
the transaction fees in a very simple way. The more active addresses
there is on a given day, the more users are trying to send their transac-
tion. However, the block-space is limited, there is a maximum number
of transactions that can be sent per block. Therefore, the transaction
fees will be naturally higher, as with more transactions in line there is
more competition for space in a block. The effect of {addresses;} is thus

expected to be positive. The search volume could have a similar effect

2Typically, the transaction fees spike when there are extreme growths or falls in the price,
as many users want to buy or sell Bitcoins as fast as possible.
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as the number of active addresses. The more people are interested in
Bitcoin, the more potential users exist, and thus the higher demand for
the transactions completed there might be®. Following this logic, the
influence of the search volume on the transaction fees is expected to be

positive.

Search volume equation The last equation of the proposed system, 3.4, captures
how the search volume is affected by the Bitcoin price, as there is likely no
other variable that could significantly influence levels of the online search
queries. The extreme changes in the price have usually been assumed to
be the reason why people started to be interested in Bitcoin. Similarly
to transaction fees in equation 3.1, the influence of price on the search
volume is ambivalent. Both the spikes and the falls of price are likely to
cause the increased attention of people toward Bitcoin. The expectations
are thus mixed, but, as the price is growing in general, the positive effect

is more likely.

It should be noted that with the exception of the variable signifying the
phase of the reward halving, on all of the variables were used the (natural)
logarithmic transformation. This was done in order to capture the effect of
percentage changes of variables, as in most of the cases, an impact of a single
unit change might not be very meaningful.

The presence of the four endogenous variables in the model means that at
least four additional exogenous variables will likely be needed for the estimation
as instrumental variables. These instruments should not be contained in any
of the equations* and should be able to explain at least some of the variance
of the endogenous variable on the right-hand side of the equation, while not
affecting the explained variable on the left-hand side of the equation. For this
purpose were used the total Bitcoin supply, the price of electricity used for
mining, the Bitcoin price lagged by one time period, and the hashrate lagged
by one period. The Bitcoin supply represents the number of Bitcoins that
were issued (mined) and the electricity price was constructed as the average
industrial electricity price in the USA and Northwestern Europe (a detailed

description of constructing this and other variables is provided in section 3.4.2).

3Note that this relationship is present regardless of whether the context for the online
searches is positive or negative. In the case of positive news, new investors are likely to buy
Bitcoin, in the case of negative news, investors owning Bitcoin might be willing to sell it.

4At least the instrumental variable for an endogenous variable should not be contained in
the equation, in which the endogenous variable is.
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It is difficult to find proper instruments in a system as convoluted as the system
of Bitcoin price and hashrate. Thus, the lagged values of these two variables
were used, as they may carry useful information about the whole system.

An improvement of the analysis could be the use of the true mining effi-
ciency of the hardware used and the true electricity price that miners have to
pay. However, such information is unavailable, hence simplified versions of the
variables were used. Another improvement would perhaps be the inclusion of
the variable representing the sentiment of the public opinion on Bitcoin, telling
e.g. whether the news articles are critical or appreciative towards Bitcoin. Such
a measure could be though quite subjective, therefore constructing a variable
of this kind objectively is beyond the scope of this work.

The next section describes the methodology, that will be utilized to perform
the regression of the model. After that, the construction of the dataset is
described.

3.3 Methodology

The four equations indicated in the previous section could be estimated sepa-
rately by the method of Ordinary least squares (OLS). However, in case that the
assumption of the four variables being endogenous would be at least partially
correct, the resulting estimates of coefficients would probably be biased and
inconsistent (in each equation, in which an endogenous explanatory variable
would be present), as there would be an explanatory variable correlated with
the error term, which would violate the exogeneity assumption of the Gauss-
Markov theorem. According to Wooldridge (2015), this assumption states that
the error term € has a zero expected value given values of any independent

variable z, more formally stated

E(G’.ﬁﬂl,l'g, c ,.ﬁEk) =0.

And as shown by Kristoufek (2020), there is a significant relationship between
the price and the cost of mining (which consists of the hashrate, the electricity
price, and the mining efficiency). Therefore, it can be assumed that a better
method for the estimation method than OLS exists.

Another option would be to use the Two-stage least squares (2SLS), which
is an appropriate solution in the case of multiple instrumental variables. The

2SLS accounts for the endogeneity of variables by regressing the endogenous
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variables on the instrumental variables (all exogenous variables in the system
of equations) in the first stage and using the fitted values from the first stage
instead of the endogenous variable for the OLS estimation in the second stage
(Wooldridge, 2015). As there are fewer endogenous explanatory variables than
exogenous variables in the system, all four equations could be considered iden-
tified.

A potentially better option than the 2SLS estimator could be the 3SLS
(Three-stage least squares) estimator, originally specified by Zellner & Theil
(1962). The 3SLS is a system estimator, while the 2SLS is only a single equa-
tion estimator. It is a combination of the 2SLS estimator and the Seemingly
unrelated regression (SUR) estimator, the first stage being the obtaining of the
residuals of each structural equation through the 2SLS procedure. Thus esti-
mated residuals are used in the second stage for estimating the error variance-
covariance matrix 3. In the third stage, 3 is used in the GLS (Generalized
least squares) regression instead of the true variance-covariance matrix ¥ to
estimate the entire system (Baltagi, 2011). Just as in the case of 2SLS, all
equations could be considered identified.

The advantage of the 3SLS estimator compared to the 2SLS estimator is
that it allows for the correlation of unobserved errors across equations (while
the errors of equations are assumed to be themselves uncorrelated). This might
be useful in the case of the four equations specified above, as it is not impossible
that errors are correlated because e.g. both price and hashrate might react to
exogenous shocks simultaneously. It could be shown on a recent real-world ex-
ample, where the Chinese regulators started banning the cryptominig in China
in the second quarter of 2021 (as reported e.g. by Khatri (2021)). The reaction
of miners followed as the hashrate dropped by almost 50% in approximately
one month. At the same time though, the price dropped by roughly 40%. It
could be speculated that these two events are connected.

The 3SLS estimate was shown to be at least as asymptotically efficient as
the 2SLS estimator, however in case that at least one equation in the system
is specified incorrectly, the 3SLS estimator is inconsistent (Baltagi, 2011). Ad-
ditionally, there exist several special conditions under which the 2SLS and the
3SLS estimators are identical, but very likely this will not be the case of the
two equations specified above. The Hausman test can be used for choosing
either the 2SLS or the 3SLS estimator.

For the analysis, the statistical software R (R Core Team, 2019) and a
package sytemfit (Henningsen & Hamann, 2007) shall be used. The code that
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performs the analysis is attached to the thesis.

3.4 The construction of the dataset

This section describes the collection of data, their sources, and also the way
some of the variables were constructed. The description was split into three
subsections, the first of which being formed by variables easily available thanks
to the blockchain data, the second group containing variables that had to be
constructed from multiple sources, and the third group for variables from var-

ious other sources.

3.4.1 Blockchain variables

As mentioned before, blockchain technology is unique for its unprecedented
data availability, as information on every transaction is being saved into the
blockchain. This allows for the analysis of many variables that would be hard to
measure otherwise. Variables of such type included in the analyzed dataset are
the Bitcoin price, the total network hashrate, the number of active addresses,
the total transaction fees paid to miners (in BTC), the total Bitcoin circulating
supply, and the dates of the block reward halving events. All of these variables,
with the exception of the price and the halving events, were downloaded from
Blockchain.com®, where they are available on daily basis. The data on the
Bitcoin price was downloaded from Coindesk.com®, as Coindesk.com provides
a thorough explanation of the criteria for choosing the exchanges with verifiable
trade data (Acheson et al., 2020), from which the Bitcoin price is taken and
averaged. As the majority of exchanges between Bitcoin and fiat currencies
are conducted in the United States dollars, the exchange rate between the
Bitcoin and the USD was assumed to be the market price of Bitcoin. The total
network hashrate is measured in terahashes per second (an average number of
terahashes per second the network was performing in the last 24 hours) and
is estimated from the number of mined blocks and the difficulty. The number
of active addresses shows the number of unique addresses, that were active on
the blockchain on a given day (i.e. they received or sent Bitcoin). The total
transaction fees, measured in Bitcoin, express the total number of Bitcoins that

were paid to miners as transaction fees in one day. The total circulating supply

Shttps://www.blockchain.com/
Shttps://www.coindesk.com/
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of Bitcoin indicates how many Bitcoins were issued so far. The dates of the
halving events were retrieved from Bitcoinblockhalf.com”. Figures depicting all

hereby mentioned variables are provided in Appendix A.

3.4.2 \Variables constructed from multiple sources

Some of the variables were not so easily accessible and had to be derived in a
more or less complicated way. These are the efficiency of miners, the electricity
price, and the price level of Bitcoin.

As mentioned before, it is not known exactly which hardware units are being
used for mining and the total mining efficiency (combined energy efficiency
of all miners deployed in the network) thus can not be computed with high
confidence. In the research papers (see section 2.2), a theoretical optimum of
the mining efficiency was computed and used (all miners using the best available
hardware at a time), as well as the worst feasible efficiency (all miners mining
at break-even costs). Some of the researchers used the data from IPO filings of
mining hardware producers in order to approximate the number of sold units,
thus estimate the real mining efficiency and Bitcoin electricity consumption
(e.g. Stoll et al. 2019). As the usefulness of the information from IPO files
declines with time (because new and more efficient mining units are being
produced, which were not accounted in the files), this analysis makes use of
a simplified method of choosing the mix of the most efficient available ASICs
at each point in time. The technical specification of ASICs, as well as the
dates of their release to the market, were taken from a list constructed by Zade
& Myklebost (2018) and from Asicminervalue.com®, where all the necessary
information is available. Additionally, data on release dates and efficiencies
were further validated against other websites? listing the mining hardware.
The first publicly sold ASIC was released in May 2013, which sets the starting
point for the analysis. The efficiencies of previously used FPGAs are hard to
verify and also the introduction of ASICs meant a few-orders of magnitude
improvement in the hashing power, as well as in the mining efficiency, which

makes it a natural staring point!°.

Thttps://www.bitcoinblockhalf.com/
Shttps://www.asicminervalue.com/efficiency /sha-256
9https://cryptomining.tools/compare,
https://en.bitcoin.it /wiki/Mining-hardware-comparison,
https://www.bitcoinmining.com/bitcoin-mining-hardware/
0Note that the list of ASICs, that was used for further analysis, as well as the dataset,
are appended to the thesis as a standalone file.
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Three options for the energy efficiency were created: the efficiency of the
best available ASIC, simple arithmetic mean of efficiencies of the three best
available ASICs and of the five best available ASICs in time (see Figure 3.1).

From these three alternatives, the most appropriate one was selected by us-

Figure 3.1: Efficiency of the mining hardware
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ing a comparison with the estimated electricity consumption computed by the
CBECT!'. The CBECI electricity consumption was used as a benchmark be-
cause the methodology used in this estimate is well described and robust (see
2.2.3 for detail), but it uses data that is not publicly available. Additionally,
the estimate is continuous through time, which makes the comparison possible.
As for the comparison itself, three versions of the electricity consumption were
computed based on the three scenarios for the mining efficiency. Then, using
the Root Mean Square Error (RMSE), they were compared to the CBECI elec-
tricity consumption estimate and a series with the smallest RMSE value was
selected. Based on this approach, the arithmetic mean of the five most efficient
ASICs was the most preferable to be used in further analysis.

Similarly to the mining efficiency, the electricity prices that miners have to
pay are not known, as most miners keep it secret. Therefore, it can be only
speculated about based on unverifiable claims, or a proxy such as industrial
electricity price index can be used. In this work, the latter alternative was opted
for, because using unverifiable data might bring a strong element of uncertainty
to the analysis. Fantazzini & Kolodin (2020) used only the equilibrium price

of Nord Pool, a power exchange operator situated in Northwestern Europe.

1See Rauchs et al. (2020b) or https://cbeci.org).
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Kristoufek (2020), on the other hand, used industrial electricity prices in several
countries that were considered the main players in Bitcoin mining at the time of
writing the paper (among others including the Nord Pool prices for Estonia and

Sweden and the USA industrial electricity price index). However, as Bitcoin

Figure 3.2: Mining electricity price
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mining is a very dynamic business, the location of miners might have changed
(implied e.g. by Rauchs et al. (2020a)). Therefore, for the purpose of this
analysis, the System clearing price from the Nord Pool website!? was used, as
it was supported both by Kristoufek and Fantazzini & Kolodin. Additionally,
the USA Average industrial electricity price!® was used, as it was supported by
Kristoufek and Rauchs et al. consider the United States to be one of the major
mining locations. The final electricity price is the average of the electricity
price from these two sources (see Figure 3.2). The electricity price from the
Nord Pool exchange is provided in Euros, thus the Euro-USD exchange rate
was needed to convert both prices to a common unit. The exchange rate was
taken from the website'* of the Federal Reserve System of the USA (FED).
The price level of Bitcoin was constructed in line with the economic the-
ory described by Kristoufek (2019), as a ratio of the total transaction volume
and the number of transactions. Similarly, as in 3.4.1, both of these variables
were easily accessible on Blockchain.com thanks to the properties of the Bit-
coin network. The transaction volume (measured in BTC) expresses how many
Bitcoins are sent through the network in one day. The number of transactions

is accessible on Blockchain.com in two forms: the number of confirmed transac-

2https:/ /www.nordpoolgroup.com/
13Provided by the U.S. Energy Information Administration, https://www.eia.gov/
Yhttps: / /www.federalreserve.gov/
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tions in one day and the number of confirmed transactions in one day excluding
those transactions, that were sent from or to the 100 most popular addresses.
The reason for the exclusion of the 100 most used addresses is to block the
effect of people sending Bitcoins to or withdrawing Bitcoins from the crypto-
exchanges, keeping only the information about real peer-to-peer transactions.

However, similarly, as in Kristoufek (2019), the difference between those two

Figure 3.3: Price level of Bitcoin
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options in the analysis was negligible, therefore they were averaged out. The
final price level was then obtained by dividing the transaction volume by the

number of transactions on any given day (see Figure 3.3).

3.4.3 Search volume and USD money supply

The remaining variables to be described are the USD money supply and the
Google Trends data. The USD money supply is published by the FED weekly as
the trend-adjusted or the not-adjusted M1 and M2. Recently, the composition
of the M1 was changed, which made it not directly comparable to its older
values, thus the not-adjusted M2 was used in the analysis.

The Google Trends' statistics was in the previous studies!® often used as
a sign of public interest in Bitcoin. Therefore, the search data for the term
“bitcoin”!” downloaded from Google Trends were used as one of the variables.
Data have monthly frequency and are normalized, with the point in time when

the attention was highest being equal to 100, and the point with the lowest

5https://trends.google.com/

16See for example Garcia et al. (2014); Kjeerland et al. (2018).

17Google Trends search engine does not differentiate between lowercase and capital letters,
therefore the search statistics for the terms “bitcoin” and “Bitcoin” are the same.
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attention being equal to 1. The Google Trends data, together with the data
on electricity price, are the only two variables in the analyzed dataset that
are reported with monthly frequency, which set the overall frequency for the
analysis. Other variables that are reported more often, were averaged over the
period of one month. Figures depicting the USD money supply and the search

volume are provided in Appendix A.



Chapter 4
Reporting the analysis results

In this chapter, the process of choosing the methodological approach, that will
be used for the analysis, is described, the analysis results are reported and
commented on and various statistical tests, together with their results, are

described.

4.1 Choosing the regression method

In the methodology section (3.3), two viable options were proposed for regress-
ing the dependent variables on the independent ones: the 2SLS or the 3SLS
estimators. For choosing the one that better fits the needs of the analysis,
the Hausman test can be utilized, as specified by Hausman (1978). The H,
of this test states that all exogenous variables are uncorrelated with all distur-
bance terms. Under this hypothesis both the 2SLS and the 3SLS estimators
are consistent but only the 3SLS estimator is asymptotically efficient. Under
the alternative hypothesis the 3SLS estimator is inconsistent while the 2SLS
is consistent (Henningsen & Hamann, 2007). The test was performed with 20
degrees of freedom, the test statistic being equal to 32.81, which corresponds
to a p-value of 0.0354. Therefore, the null hypothesis can be rejected with a
high level of confidence and the analysis can proceed using the 2SLS estimator.

The 3SLS estimator seemed like a promising option as a problem that it is
supposed to solve (correlated error terms across equations) did not appear to
be an unrealistic scenario. However, according to the results described above,
the 2SLS is a preferable option

It should be noted that the same Hausman test can be used for comparing
the 2SLS estimator with the OLS estimator. When the test was performed, the
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results indicated the OLS estimate to be the more efficient option, signifying
thus that the OLS should be used. However, the logic of working of the Bit-
coin system and the previous research clearly points to the endogeneity being
present (at least within the price-hashrate relationship), and, as it turns out,
the Durbin-Wu-Hausman test confirms this (see the next section for details).
The contradicting results of the Hausman tests might be caused by the rela-
tively small number of observations (97), or by the subtle changes of daily data
values that were smoothed by the monthly averaging. In the next section, the

results of various statistical tests of the 2SLS estimator are presented.

4.2 Statistical tests

For the chosen 2SLS estimator, a battery of statistical tests was performed.
To confirm the assumption of the endogeneity being present in the case of
the four variables specified above, the Durbin-Wu-Hausman (DWH) test was
performed, equation by equation. The DWH test consists of two steps. In the
first step, the variable that is suspected to be endogenous is regressed on a set of
exogenous variables, and fitted values of the (presumably) endogenous variable
are used to obtain the residuals. In the second step, the originally proposed
structural equation is estimated, with the tested endogenous variable included
on the right-hand side, together with exogenous variables and residuals from
step one. Then, if the estimator of the residuals! is significantly different from
0, the Hy that a tested variable is exogenous can be rejected (Hausman, 1978).
This procedure was carried out for the four endogenous variables from the
model. The Bitcoin price, the hashrate, the transaction fees, and the search
volume were regressed on exogenous variables from equations 3.1, 3.2, 3.3,
3.4 respectively and on the four instrumental variables (electricity price, total
Bitcoin supply and lagged values of the price and the hashrate). Next, residuals
thus obtained were added? as explanatory variables to the structural equations,
which were then estimated by the OLS one by one. In all cases, the estimators

of the residuals were statistically significant (with p = 0.025 or lower), therefore

'Residuals from the first step that are included in the structural equation can be thought
of as “a part of the tested variable”, that can not be explained by exogenous variables and
thus comes from the system, i.e. is endogenous. If this part is statistically significant in
explaining the variance of a left-hand side variable, the variable in question can be assumed
endogenous.

2Residuals of an endogenous variable were added to a structural equation, only if the
endogenous variable was present in the structural equation.
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it was concluded that the assumption of the four variables being endogenous
holds.

Next, it was tested for the stationarity of residuals, as non-stationary resid-
uals (or residuals containing a unit root) in the context of a time series might,
according to Wooldridge (2015), lead to a problem of spurious regression. Three
tests were employed for this, the first of them being the Augmented Dickey-
Fuller (ADF) test. The ADF tests the null hypothesis that a unit root of a time
series is present (Fuller, 1996). Next, the Phillips-Perron (PP) test was em-
ployed, testing the same null hypothesis (Phillips & Perron, 1988). But, unlike
the ADF test, the PP test is robust to the unspecified autocorrelation and het-
eroscedasticity in the errors. Finally, the Kwiatkowski-Phillips-Schmidt-Shin
(KPSS) test with a null hypothesis of tested time series being stationary was
used (Kwiatkowski et al., 1992).

Table 4.1: Tests for stationarity

Equation ADF PP KPSS

Price 0.01 0.01 0.1
Hashrate 0.01 0.01 0.1
Fees 0.0599 0.01 0.1

Search 0.01 0.0123 0.1

0.01 for p < 0.01; 0.1 for p > 0.1

The results of the ADF, PP, and KPSS tests are summarized in table 4.1
(the p-values are shown). Note that the PP test and the KPSS test have both
options to test for a series with no drift and no deterministic trend, series with
a drift and without a trend, or a series with both a drift and a trend. In Both
the PP and the KPSS test, the test result for the second option is displayed,
however, the other two options did not differ significantly. In almost all cases
the null hypothesis of the unit root was rejected with a high level of confidence,
in the case of the ADF test of the Transaction fees equation, the confidence is
still high (p = 0.0599). The null hypothesis of stationarity in the KPSS test
could not be rejected on any major level of significance. Therefore, it could
be assumed that the residuals are stationary and the analysis may proceed as
intended.

The following step was to check for the fundamental assumption of the time-
series analysis, 7.e. for the normality, heteroskedasticity, and for the remaining
serial correlation (autocorrelation) of error terms (residuals). The normality
was tested with the Doornik-Hansen test (Doornik & Hansen, 2008), which
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has a null hypothesis of normal distribution. The test has an option to test for
univariate or for multivariate normality. The multivariate normality was tested,
resulting in x? (8) = 38.744, which corresponds to p < 0.001. Therefore, the
multivariate normality was rejected with a high level of significance. In the case
of univariate normality, the null hypothesis of normality could not be rejected
in the case of the price and the hashrate equation, however, it was rejected
for the remaining two equations. Thus, overall, residuals of the model cannot
be considered to have a normal distribution. However, as there are close to
100 observations (97 in total), the residuals still can be assumed to be at least
asymptotically normal, which is sufficient.

In order to test the homoskedasticity of residuals, the Breusch-Pagan Test
was used (Breusch & Pagan, 1979). The null hypothesis of this test says that

there is no heteroskedasticity present. According to the results summarized in

Table 4.2: The Breusch-Pagan test

Equation X2 DF  p-value

Price 9.91 6 0.126
Hashrate 24.63 6 < 0.001
Fees 21.064 3 < 0.001
Search 2.922 1 0.087

the table 4.2, the homoskedasticity was rejected in all but the first equation.
For the purpose of detecting autocorrelation of residuals, the Durbin-Watson
test was used (Durbin & Watson, 1971) with the null hypothesis that the au-
tocorrelation of disturbances is 0. The test returns a test statistic between
0 and 4, values close to 0 signify positive autocorrelation, values close to 4

negative autocorrelation and values close to 2 no autocorrelation®. The test in-

Table 4.3: The Durbin-Watson test

Equation DW value p-value

Price 1.201 < 0.001
Hashrate 0.806 < 0.001
Fees 0.481 < 0.001
Search 0.432 < 0.001

dicates that residuals of all four equations are autocorrelated with a high level

3A rule of thumb says that values between 1.5 and 2.5 mean autocorrelation weak enough
that it may not need to be adjusted for.
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of probability (the autocorrelation of residuals in the case of the price equation
is weaker than in other equations). It should be noted that in the case of the
Durbin-Watson test, as well as the Breusch-Pagan test, the model was tested
equation-by-equation.

The results of the last two tests suggest that the model might be miss-
specified in some way, as only the first equation passed both of them (to a
certain degree, to say the least). To account for this potential issue at least
partially, the heteroskedasticity and autocorrelation consistent (HAC) stan-
dard errors shall be used in the estimation instead of the unadjusted standard
errors. Since the residuals were assumed to be asymptotically normally dis-
tributed, this solution is feasible. A superior solution would be an inclusion
of explanatory variables that might capture the dynamics in the model better
than currently used variables. However, as discussed in section 3.2, this is not
an option due to unavailable data. The next section briefly summarizes the

findings of the model.

4.3 Results

In the table 4.4, the results of the 2SLS estimation are reported, together with
the HAC standard errors and respective t-statistics and p-values.

The results regarding the price-hashrate relationship are surprising. The
effect of the hashrate on the price is positive and significant (p = 0.02), which
was expected, however, the effect of price, which was assumed to be an im-
portant driver of the hashrate, is statistically insignificant (p = 0.331). The
theory?, as well as previous research, says that the price of Bitcoin is a moti-
vation for miners to mine and thus it should be significant in explaining the
hashrate changes. Despite that, the research conducted hereby could not reject
the hypothesis that the effect is equal to zero.

The effect of the addresses on the price is negative and significant (p =
0.015), which is a contradicting result compared to expectations. The effect
of the price level, however, being also negative and significant (p < 0.001),
was expected. Growth of the search volume has a positive significant (p <

0.001) effect on price. The expectation was not clear, as both directions in

4In a hypothetical situation when the Bitcoin price would drop to zero, miners would
receive effectively no reward for their activity and would be thus forced to exit the mining
industry. The total hashrate would thus also converge to zero, as all the mining would be
funded by miners and would yield absolutely no profit.



4. Reporting the analysis results 44

the relationship are logical, however, the positive one was confirmed also by
previous research. The effect of the increasing money supply of the USA is
significantly positive (p < 0.001), which is reasonable, as it leads to more
dollars that can be spent on Bitcoin. The effect of an increase in transaction
fees is negative and significant (p = 0.007), which is interesting information, as
the expectations were mixed, both effects being possible.

The effect of the price on the hashrate is statistically insignificant, as already
discussed. The effect of an increase of the number of active addresses on the
hashrate is positive, which was expected, and also quite strong (s = 2.6, p <
0.001). The improving efficiency of mining increases hashrate, which is logical®
(p < 0.001). The effect of the mining phase did not reach any major level
of significance (p = 0.314 and p = 0.305), therefore it can not be considered
different from 0. However, a negative effect would be logical, as it means
lower rewards for miners. Note that the effect of phase one is hidden in the
intercept. The effect of transaction fees on the hashrate is significantly negative
(p < 0.001), which is surprising, as an increased reward for miners should lead
to an increase in hashrate.

The expectations regarding the effect of price changes on the transaction
fees were not clear, as both variants would be reasonable. The model indicates
a negative significant relationship (p < 0.001), which could be explained as a
fear of loss is stronger than a fear of lost opportunity (see the next chapter for
a detailed discussion). The number of active addresses affects the transaction
fees positively (p = 0.006), which is logical, as increased demand for complet-
ing transactions unavoidably leads to high transaction fees. The effect of high
search queries on transaction fees is also significantly positive (p < 0.001),
which could be expected as well, because more people interested in the tech-
nology probably leads to more people sending transactions.

In the last equation, the effect of price increases on the search volume was
estimated to be positive and significant (p < 0.001). The expectations were
not clear, as both directions of the relationship would be sensible, however, the
positive effect was indeed more probable.

All the explained (right-hand side) variables are log-transformed, therefore
interpreting the estimated equation intercepts is not very informative. In the
next section, the model results are analyzed and their implications are devel-

oped.

®Note that the efficiency is measured in J/GH, therefore decreasing the absolute value of
the variable means improvement in efficiency.
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Table 4.4: The 2SLS analysis results

B; SE  t-statistic  p-value
Price equation
Intercept —8.93 3.017 —2.959 0.003
log(hashrate) 0.09 0.039 2.338 0.02
log(addresses) —0.38 0.153 —2.453  0.015
log(price level average) —0.68 0.079 —8.59  <0.001
log(search__volume) 0.97 0.019 50.421 <0.001
log(USD__M2) 1.91 0.227 8.427 <0.001
log(transaction fees) —0.08 0.03 —2.687  0.007
Hashrate equation
Intercept —18.87 2.316 —8.149 <0.001
log(BTC_ price) 0.14 0.149 0.972  0.331
log(addresses) 2.60 0.179 14.563 <0.001
log(efficiency) —1.38 0.189 —7.328 <0.001
reward_phase2 —0.21 0.212 —1.009 0.314
reward phase3 —0.29 0.284 —1.027 0.305
log(transaction_ fees) —0.71 0.062  —11.341 <0.001
Fees equation
Intercept —8.05 4.543 —1.772 0.077
log(BTC _price) —0.94 0.269 —3.485 <0.001
log(addresses) 1.25 0.447 2.806  0.006
log(search__volume) 1.43 0.28 5.102 <0.001
Searches equation
Intercept —2.04 0.358 —5.693 <0.001
log(BTC_ price) 0.55 0.049 11.083 <0.001
R2 Adj. R?
Price eq.: 0.987 0.986
Hashrate eq.: 0.989 0.988
Fees eq.: 0.583 0.569
Search eq.: 0.857 0.855

Num. obs. (total)

97




Chapter 5
Discussion

This chapter contains a discussion of the estimated model, an analysis of re-
vealed relationships between variables. Additionally, the further development
of the hashrate and the electricity consumption is suggested, tying the model
results together with the discussion of environmental impacts of Bitcoin mining
from the second chapter (section 2.2). Lastly, the limitations of the model are
described and potential improvements, as well as possible avenues for further

research, are proposed.

5.1 Implications of the model

The estimated effect of the hashrate on the Bitcoin price is in line with previous
research, however, an overall stronger relationship than revealed (BI = 0.09)
was expected. As mentioned in 3.3, a drop of hashrate from the first half of 2021
of nearly 50% was followed by a price dropping approximately by 40%. Accord-
ing to the estimate, a 50% decrease of hashrate results in a price decrease of only
6%. Therefore, it can be concluded that in this particular example, the price
decrease was probably a consequence of several phenomena, the hashrate drop
being only one of them. The same conclusion holds in general, the hashrate is
likely to be only one of several factors that cause the dynamic changes of the
Bitcoin price.

The other side of this coin is the effect of the price changes on the hashrate.
However, no comments can be made on this relationship based solely on the
results of the proposed research due to a low significance level. It can be noted
that the introduction of the heteroskedasticity and autocorrelation consistent

standard errors rendered the estimate insignificant (p = 0.331), while when
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computing the t-statistic and subsequent p-value from unaltered standard er-
rors, the estimator B; seemed to be significant (in such case 3\7 = 0.14 with
p = 0.035). This might indicate that the heteroskedasticity and autocorrelation
truly are present in the data and that they need to be accounted for. Based
on the insignificant estimator, it can be argued that the assumed endogeneity
of price and hashrate is not very strong or the price is on the edge of being
endogenous (it can be noted that the Durbin-Wu-Hausman test rejected the ex-
ogeneity of price in hashrate equation, however out of all endogenous variables
with the lowest probability). The relationship from at least one side might be
weak or non-existent. This could cause the estimate to be insignificant. An-
other possible interpretation could be as follows. The Bitcoin system is unique
in its interconnectedness. An exogenous shock on one variable (example could
be the already discussed ban on Bitcoin mining in China from 2021) should,
according to pure logic, have no effect on another variable (the ban should not
affect the price, as for an end-user, nothing has changed, the security of the
network remained extremely high and the time to process a transaction in-
creased only slightly and only for a short period of time). However, as it turns
out, it is probably the fear of investors that decreases the price. This results
in a seeming correlation of variables, which however is not a result of a causal
relationship, but is caused by external events that cannot be (or only with a
high level of imprecision) captured by the data, leading thus to unexpected re-
sult such as the one described above. When the previous research findings and
workings of the Bitcoin network are taken into consideration, the expectation
of price being a strong motivation for hashrate remains unchanged.

One of the unexpected conclusions is that the number of active addresses on
the network decreases the price, which is in contradiction with the findings of
Wheatley et al. (2019). It would mean that active use of the network for sending
transactions, not just holding Bitcoins on addresses passively for speculative
purposes, lowers the price of a single Bitcoin. It is hard to explain why such a
thing should be a case since a higher price of one Bitcoin should theoretically
pose no limitations on its use. One possible reason might be that those users,
who value Bitcoin less than is its current market price feel no restrictions on
selling it or using it as a currency (e.g. paying with it for goods and services),
and those who value Bitcoin more than is its current market price hold on
in, expecting the price to increase in the future, thus not participating in the
set of active addresses. The difference between the estimate of this study and

Wheatley et al. (2019) might be caused either by newer data, that were used
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for the analysis (as in 2021 the Bitcoin price experienced the largest increase
since the renowned peak at the end of 2017) or by the inclusion of a different
set of variables. Alternatively, it could be caused by an inaccurate model
specification, as the relationships in the bitcoin network are tangled and the
causal relation of some variables might have not been identified correctly.

The search volume was shown to have a positive effect on the price, which
corresponds with the previous research results. Both directions in this rela-
tionship would be reasonable, however, the positive effect seems to be stronger.
It can be interpreted as people are more prone to buy Bitcoin after searching
for information about it than to sell it after searching it. Increased attention
towards the technology is likely to attract new investors, who then increase the
price by increasing demand for Bitcoins.

A noteworthy finding is a positive (and rather strong: By = 1.91) effect of
the US money supply on the Bitcoin price. This time series has not been used
in the previous research! as an explanatory variable of the price, and, as it turns
out, it is highly significant. This could be interpreted as the Bitcoin truly serves
as a hedge against inflation. The notion of Bitcoin as a form of “digital gold”
was strengthened during the Covid-19 pandemic, since high price increases were
often thought to be connected to extraordinary quantitative easing in the USA,
and the results of the analysis seem to agree.

The effect of transaction fees on the price is negative, which might be ex-
plained by users’ unwillingness to pay extraordinarily high fees. High trans-
action fees seem to discourage investors from buying Bitcoin, lowering thus
demand and also the price. An opposite relationship would be also reasonable,
high fees might drive price high, and they might be interpreted as users are
eager to use the network despite the high fees. However, the unwillingness to
pay for transactions seems to dominate.

The effect of active addresses on the hashrate is positive and quite strong
(@ = 2.6). The strength of this relationship was unexpected, as the hashrate
was not assumed to be connected to the addresses very tightly. Miners were
expected to mine regardless of whether in some time ¢ the number of active users
is the same, smaller, or larger than in ¢ — 1 (or generally ¢t — k). Nonetheless,
it turns out that it is an important factor. One possible explanation might be

that the expected positive effect of price on hashrate is hidden in the effect of

'Tt has not been used at least in terms of the papers that were assessed for the purpose
of this work. A study exploring this relationship was not found, however, it does not mean
it has never been conducted.
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addresses. Further implications of this relationship are explored in the next
section.

Another estimate, that goes against the expectations, is the effect of the
transaction fees on the hashrate. It would be reasonable to expect a positive
relationship since the fees are clearly a motivation for miners to spend money
on electricity (although it is a small part of the motivation, compared to the
mined Bitcoins). However, the estimate is negative. A feasible reason for
this effect to be negative is that the transaction fees are measured in Bitcoin,
while the miners are expected to be motivated primarily by revenues in USD
(they need to pay for electricity and other expenses regularly, for which they
need common currencies). This situation results in that in times of strong
price increases, the transaction fees might decrease in Bitcoin-terms, however,
increase when expressed in USD, and thus also the revenue of miners decreases
when measured in Bitcoin and increases when measured in USD. When the
price is falling, the situation might be reversed, fees are lower in USD-terms,
but higher in Bitcoin-terms, same as the revenue of miners, thus resulting in
a lower hashrate. However, it should also be noted that if such interpretation
is not true, it might be the case that an unobserved effect plays a role, some
causality that was not identified by the model might have disrupted the results.

The effect of the Bitcoin price on the total transaction fees was estimated to
be negative. The expectations were uncertain, the estimate thus brings a useful
insight. The negative relationship implies that transaction fees grow when the
price drops. This might be explained as in case of a sudden price drop, users
are afraid of loss in form of their Bitcoins losing value even more and thus send
their coins on exchanges to exchange them as fast as possible, despite high
transaction fees. If the situation would be reversed and the estimate would be
positive, the explanation might be that people are afraid of lost opportunity
and buy Bitcoin as fast as possible, disregarding the high transaction fees.
Empirically, both notions, fear of loss as well as fear of lost opportunity can be
observed. Despite that, since the estimate is negative, the fear of loss seems to
be stronger.

Similarly, there was no clear expectation regarding the effect of the price
changes on the search volume, as the search volume can be expected to increase
when the price suddenly moves both up and down. The estimate indicates a
positive relationship, which can be explained as people being interested more
in positive news (price increases) than the negative ones (price drops).

The effects that were not commented on in this chapter were expected and
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the results only confirmed the previous research (this is the case of the price
level in the first equation, the mining efficiency in the second equation and the
number of active addresses, and the search volume in the third equation). The
interpretation of such effects is already proposed in section 3.2. The estimated
effect of a halving of the block reward (represented by the variable reward
phase) on hashrate was shown to be insignificant, therefore no conclusions can
be made on this relationship. The next section further discusses the effect of

explanatory variables on hashrate through the lens of its environmental impact.

5.2 Environmental outlook of the Bitcoin network

in future

The results of the analysis described above revealed the effects of various ex-
planatory variables on hashrate. These effects can be put into perspective of
the electricity consumption of Bitcoin, as the hashrate is one of the main fac-
tors that drive the total amount of electricity that is consumed by the Bitcoin
network. The total electricity demand of the network is equal to the total
hashrate divided? by the overall efficiency of all mining units.

The mining efficiency was also shown to have a negative effect on hashrate
(i.e. improvements in efficiency lead to higher hashrate). Therefore, it can be
assumed that these two consequences of the mining efficiency will at least par-
tially nullify themselves, improvements in efficiency will lead to less consumed
energy, but simultaneously it will lead to more hashrate being deployed, there-
fore increasing the energy demand. Also, it was shown that the rate at which
the efficiency is improving has slowed down dramatically in the last few years.
For these reasons, the hashrate can be expected to remain the most important
and dynamic factor of the total electricity demand.

The intuition says that the Bitcoin price should be the main driver for
hashrate in the long-run, as it determines how much total revenue will be
distributed among miners. However, as the estimated effect of the price is
statistically insignificant, it can not be relied upon.

The two remaining significant estimates presented by this thesis are the ef-
fects of active addresses and of transaction fees. However, both should be taken
with caution, as they both go slightly against the expectations, as explained

previously. Based on these two factors, the future development of hashrate can

20r multiplied, depending on how the efficiency is measured.
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be estimated®. The number of active addresses can be extrapolated into the
future more easily since there is a natural limitation posed to this number by
the Bitcoin algorithm, therefore the outlook for the hashrate in the future will
be based on this variable.

The maximum theoretical number of transactions in one day is approxi-
mately 600000, as due to the limited block space of 1 MB and the time be-
tween two blocks of 10 minutes there can be at most 7 transactions per second
(Croman et al., 2016). From the start of 2017 until the half of 2021, there
were, on average, less than 550000 active addresses per day, while at the high-
est point, the number reached almost 1 million. The theoretical maximum of
active addresses per day is 1200000 (maximum number of transactions multi-
plied by two, as each transaction needs a sender and a receiver). However this
is in fact extremely unlikely, as many transactions are made by people who
send their funds to exchange platforms, therefore not using a unique address
on the receiver’s side (even if many people decide to exchange cryptocurrencies,
the receiving address will be the one of the exchange platform, therefore not
unique). Additionally, if Bitcoin should be used as a currency more widely,
merchants receiving payments for goods and services on their addresses would
also reduce the number of unique active addresses used every day (however,
this is in contradiction with the notion of Bitcoin being digital gold, which
is used for storing value, not for day to day purchases). Therefore, it could
be assumed, that in the case of extreme Bitcoin popularity in the future the
average number of unique active addresses per day could double. This would
result, according to the estimators, in hashrate increasing approximately 20
times (taking into account the effect of addresses on transaction fees and the
consequent effect of transaction fees on hashrate). This is a lot, however, it
is far from the catastrophic scenario indicated by Mora et al. (2018). And it
should be kept in mind that those calculations are for the case of a theoretical
maximum of the number of active unique addresses (which is in reality highly
unlikely).

In such a case, the electricity demand of the Bitcoin network would increase.
However, this does not have to directly imply that a carbon footprint of Bitcoin
would be bigger, as a second and just as important part of the environmental
question is the source of the energy that is used for mining. As it was noted

by many researchers, the mining can be expected to shift from areas with a

3Keep in mind that such estimation is just an educated guess and should be treated as
such.
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large portion of electricity coming from fossil fuels to areas with a high share
of renewable sources, since in the long-run, miners have to optimize for the
cheapest electricity possible (which is expected to come from renewable energy).
However, a detailed discussion of this topic is beyond the scope of this work.
In cases of Bitcoin popularity stagnating or declining, the hashrate could
be expected to follow and either stagnate in a range of contemporary values or
fall. No signs of this though cannot be seen consistently, thus the popularity
of Bitcoin is expected to rise in the future. A discussion of the limitations of

the analysis and of the areas worth attention of researches follows.

5.3 Limitations and further research

In this section, firstly the limitations of this work are described, and secondly,
options for further research are proposed.

In the analysis, four variables were considered endogenous (the price of
Bitcoin, the hashrate, the total transaction fees, and the search volume) and
other variables were considered exogenous. In reality, however, the distinction
is not entirely clear. Some variables are given by the Bitcoin algorithm or
independent institutions, so there is no doubt about their exogeneity (e.g. the
reward phase is dictated by the algorithm, and the M2 money supply is given by
the FED). But some other variables, especially the number of active addresses
or the price level, might in fact be at least partially driven by price (or some
other variable) and be thus endogenous. In such a case, the resulting estimators
might be biased. The relationships in the Bitcoin system are extremely tangled
as causalities and correlations are crossing each other, and variables might
be affecting each other in unexpected ways. Identifying all the relationships
correctly is thus difficult.

Another inaccuracy might be caused by the way, in which the variables
representing the efficiency of mining and the electricity price incurred by miners
are constructed. Both of these variables are simplifications of reality, as the
true data are close to impossible to collect. The true efficiency of the mining
hardware is likely to be worse than assumed, since the efficiencies of 5 best
available units were taken, and the true prices of electricity are likely to be
lower than assumed, as it is believed that the large-scale mining companies
are optimizing the electricity price as much as possible, e.g. by situating the

mining facilities in locations with extremely cheap electricity (cheaper than the
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industrial average). This imprecision might have also caused a slight bias in
the analysis.

The variable representing the number of unique active addresses might be
questionable. In the analysis, it was used as a proxy for the number of users
of the network. As was already mentioned, there is a limitation for the num-
ber of transactions per second, that can be completed in the network, due to
the limited block space. To mitigate this problem, the community of Bitcoin
developers works on the second layer network for Bitcoin transactions, the so-
called “Lightning network”. The advantage of it is that transactions completed
in the Lighting network are much faster than transactions from the first layer
(blockchain) and are not limited in numbers. However the network is less secure
(Lee & Kim, 2020), so the Lighting network is expected to be used for small
transactions (e.g. for payments for goods) and the blockchain directly will be
used for large transactions. The transactions from the Lightning network were
not included in the analysis, as it is still considered to be in the early stage
of adoption by Bitcoin users, however, it can be expected that it will form a
non-negligible portion of active users in the future. Thus, a better proxy vari-
able for active users should be considered in further research. Additionally, the
price level, which is computed as the volume of Bitcoin transactions divided by
their number, will be also affected, as transactions from the Lightning network
will contribute to these measures as well.

Apart from quantifying transactions on the Lightning network, further re-
search could concentrate on estimating the efficiency of the used mining hard-
ware and the price of electricity used for mining with the highest precision pos-
sible. It would make the analysis of the drivers of the price and the hashrate
more accurate, as these two variables were the strongest assumptions. It would
also be helpful for the discussion of the environmental impacts of Bitcoin min-
ing. For the sake of this topic, also estimating the locations and thus also
energy sources of miners would also be immensely beneficial, as existing esti-
mates are themselves based on strong assumptions, and also are likely to get
outdated.

Also, performing a similar study like the one proposed using data with a
higher frequency (e.g. weekly or even daily) might reveal the relationships more
clearly, since it could better reflect the subtle changes in data. The problem of
questionable endogeneity might thus be resolved at least to a certain degree.
The main bottleneck for the data frequency was the monthly reports of the
Google Trends search volume and the electricity prices from the USA. Perhaps
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a different set of variables with similar relations to the Bitcoin system might

be feasible to use.



Chapter 6
Conclusion

The main motivation of the thesis was to identify the factors, that drive the
price of Bitcoin and the total hashrate of the Bitcoin network and to explore
the mutual relationship of these two variables. For this purpose, a system of
equations was built, with the aim of including explanatory variables that would
be able to capture the dynamics of the examined relationship. Since there were
strong reasons to assume that endogeneity might be present in the case of some
explanatory variables, the Two-stage least squares, and the Three-stage least
squares estimators were proposed as a solution, and based on an appropriate
statistical test, the method of Two-stage least squares was chosen as a more
reliable option.

In particular, four equations were created, one explaining the price of Bit-
coin, one for the total network hashrate, one for the transaction fees paid in the
Bitcoin system, and one for the search volume for term “bitcoin” (representing
the public interest in Bitcoin), as each of those four variables was assumed to
be endogenous, which was later confirmed by a statistical test.

Data on some of the variables were not directly accessible and were thus
constructed for the purpose of the thesis. This was the case of the efficiency
of the mining hardware, the electricity price incurred by miners, and the price
level of Bitcoin. Time series with a total of 97 observations were used, with a
monthly frequency.

To a large degree, the results of the analysis confirmed expectations based
on the previous research results, however, deviations were also found. A unique
set of variables was constructed to be analyzed simultaneously, which helped
to uncover some relations. The hashrate was found to drive the Bitcoin price

positively, however, the effect of the price on the hashrate was statistically
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insignificant, therefore no conclusion on this relationship could be drawn based
on the analysis. It was argued that such an inconclusive result might have
been caused by the price being on the edge of endogeneity and also possibly by
unobserved exogenous shocks to the whole Bitcoin system. The money supply
of the United States dollar, a variable previously not evaluated in a similar
type of analysis, was found to positively affect the Bitcoin price. The number
of unique active addresses on the Bitcoin network was found to negatively affect
the price, which is a result contradicting the previous research, and a negative
effect of transaction fees on the hashrate was revealed. Both these results were
not expected, however, in the context of the Bitcoin system they are reasonable
and can be well explained.

In addition, the environmental effects of Bitcoin mining were briefly dis-
cussed, considering the results of the proposed analysis. It was concluded that
opinions envisioning Bitcoin as an instrument of a huge environmental catas-
trophe might be exaggerated.

To conclude, the analysis found some of the drivers of the Bitcoin price and
the hashrate, however, no definitive conclusions could be made on the price-
hashrate relationship. Two other endogenous factors were identified and the
USD money supply was shown to be a significant driver of the price, which
might be useful in the future for explaining the price changes. However, it is
up to further research to uncover with higher precision, whether the price is

truly endogenous or not, and what is its exact relation to hashrate.
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Figures

Figure A.1: Price of Bitcoin
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Figure A.2: Hashrate of the Bitcoin network
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Figure A.3: Number of unique active addresses per 24 hours
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Normalized search volume
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Figure A.5: Transaction fees paid in the Bitcoin network
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Figure A.7: US dollar M2 money stock
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