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Author: Štěpán Procházka

Institute: Institute of Formal and Applied Linguistics

Supervisor: RNDr. Milan Straka, Ph.D., Institute of Formal and Applied Lin-
guistics
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Introduction
The need to preserve and exchange information is central to human society. Over
the course of more than four millenia, it has been the handwritting, that played
significant role in satisfying such need. From as early as 2600 BCE, when ink
was used for writing on papyrus in Ancient Egypt, handwritten text has been
a mean to reliable and lasting preservation of information as well as a mean to
information exchange, where spoken word was not an option. With the evolution
of writing media from the wooden slips, over to the papyrus, the parchment
and eventually the paper, together with raising availability of such media and the
spread of literacy, the majority of Common Era knowledge and history is captured
in manuscripts (i.e., handwritten documents). With the advent of typewriter and
digital technologies and their advancements, handwriting is slowly being replaced
by typing. Despite such progress, the handwriting maintains its use even in
present days, frequently having greater expressive power and often being more
accessible to writers.

The digital era not only introduced new means to preserve information in the
form of digital documents, it also provided an extensive palette of techniques for
further document and natural language processing. Full-text search, topic recog-
nition, semantic parsing or automatic summarization are some but definitely not
all examples of such techniques. To be able to apply those advanced tools to
handwritten or printed documents, computer scientists formed a field of optical
character recognition (OCR) seeking for solutions providing conversion mecha-
nisms from physical documents to their digital counterparts. Due to the social
demand — being useful in commercial sector — the task of printed text recog-
nition has been extensively studied and to some degree solved, benefiting from
printed document regularities, e.g., fixed glyph shapes and clear composition.
Contrary to it, the task of handwritten text recognition (HTR) is being, with
small exceptions, rather neglected. Such deficiency can be accounted to substan-
tial complexity of the task, stemming from extensive diversity of handwriting
styles and handwriting itself, insufficient quality and quantity of available hand-
written documents and considerable cost of annotation of textual contents of the
said documents.

As a consequence, our goal is to explore the task of handwritten text recogni-
tion and propose a well-performing solution emphasizing modularity, adaptability
and ease of application to match the diversity of the task. We want such solu-
tion to be based on machine learning models, particularly deep recurrent neural
networks. In order to mitigate the lack of annotated data, we want to assess
the suitability of data synthesis for the purpose of supervised learning. Apart
from that, we expect to need to explore the task of language modelling and to
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experiment with self training techniques, both for the purpose of performance
gains. The aim is to design, implement and evaluate synthetic data generator,
HTR system and methods to adapt it to new, previously unseen data. Based on
the cultural context and cultural identity of the author, the implementation and
evaluation focuses on Czech cursive handwriting. However, as mentioned earlier,
care is taken to design the system preferably with no particular handwriting style
or text language in mind, allowing for modifications to meet various needs.

The layout of this thesis is as follows. Chapter 1 gives a detailed overview
of the task of optical character recognition, notably its subtasks – text detection
(section 1.1) and text extraction (section 1.2). In chapter 2 we discuss dataset
synthesis, including an introduction to cursive handwriting (section 2.1.2) and
digital typesetting (section 2.1.3), followed by the description of our own data
generator (section 2.2). In chapter 3 we propose our handwritten text recognition
solution with the description of our model (section 3.1) and measurements of its
performance on the synthetic data (section 3.2). Finally in chapter 4 we explore
the capabilities of self training to improve the performance of the model on the
real handwritten texts (section 4.2) by the means of fine-tuning (section 4.3.1)
and by the means of self-training (section 4.3.2), carrying out a multitude of
experiments.
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1. Optical Character Recognition
This chapter covers the theory of optical character recognition, a field of computer
vision studying conversion of physical documents to their digital counterparts.
The field concerns a multitude of subtasks, e.g., acquisition, preprocessing and
cleanup of digital imagery of physical documents, layout parsing, text detection
and text extraction. The extent of particular OCR solution depends on task at
hand and may omit or emphasize solving particular subtasks.

In context of this writing, we seek for the solution processing digital greyscale
images of scanned pages of documents. The pages are expected to contain a single
block of text paragraphs (arbitrarilly aligned and wrapped) occupying the ma-
jority of page area both vertically and horizontally. The solution should extract
textual contents of said block of text, preserving line wrapping. As a result, we
focus on laying basis to methods of text line detection (section 1.1), single-line
text extraction (section 1.2) and language modelling (section 1.3).

1.1 Text Detection

One of the preparatory subtasks of OCR systems is text detection, most com-
monly single text line detection. The need for such component comes from diverse
composition of majority of physical documents, with text organically scattered
in various positions, often separated using additional graphical elements or in-
terleaved with figures. Various methods can be employed, notably deep learning
image detection models seeking rectangular [Zhou et al., 2017] or quadrilateral,
perspectively distorted [Liao et al., 2018], regions of text. In simplified cases with
no perspective distortion or with regular text alignment (i.e., rectangular block
of multiline text), signal processing algorithms such as peak detection may be
sufficient.

1.2 Text Extraction

Text extraction as a subtask of OCR can be seen as a task of temporal classifica-
tion, i.e., a type of sequence to sequence transformation, mapping sequence with,
possiby hidden, internal partitioning to sequence of categories of the said parts.
In OCR, this translates to mapping sequence of pixel slices, i.e., digital image of
concatenation of glyphs, to string of characters.

Extraction of text, particularly handwritten, poses several distinguished chal-
lenges. There is no exact relationship between input image dimensions (i.e., the
length of the lettering) and the size of output string (i.e., the number of contained
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characters). Moreover, when trying to isolate single glyphs, there is a significant
degree of fuzziness in detecting glyph boundaries, caused by slanting and use of
ligatures (i.e., strokes connecting consecutive glyphs). Finally, in case of hand-
writing, the glyphs, even for one particular character, are diverse, and change due
to the context in which they are being written, as well as simply beacuse they
are being produced by hand.

Historically, text extraction was approached using pattern matching tech-
niques, relying on severe restrictions, e.g., small set of fonts with suitable prop-
erties, which unfortunately greatly narrowed down the applicability of such solu-
tion. Later, hidden Markov models optionally with multilayer perceptrons were
adjusted to solve, among others, text extraction. While they were able to im-
prove upon the performance of previous methods, they were principially unable
to exploit some inherent properties of data. Nowadays, deep convolutional and
recurrent neural networks coupled with connectionist temporal classification suc-
cessfully overcome the aforementioned difficulties, lifting numerous constraints of
previous approaches. Memon et al. [2020] outline the evolution of OCR solutions
in greater detail.

1.2.1 Deep Neural Networks

Deep neural networks can be thought of as multilayered structures with layers
being parametrized transformations of tensors, often referred to as featuremaps.
Different type of layers serve different purposes, e.g., feature extraction, non-
linear activation, normalization and reshaping. By composition of multiple layers,
neural networks implement composed non-linear parametric functions. Training
procedure, i.e., search for optimal parameters exploiting differntiability of neural
networks, is employed in order to obtain desired mapping from neural network
inputs to its outputs. Provided that the estimation of parameters is stochastic
process, neural network outputs often carry probabilistic interpretation of at-
tributes of input data. For introduction to the deep learning refer to Goodfellow
et al. [2016].

Like many other computer vision data, digital imagery of written text exhibits
high degree of spatial locality of related visual concepts, e.g., strokes of individ-
ual glyphs being concentrated in small regions. Moreover, the glyphs form an
ordered sequence, following the writing direction. Those inherent properties can
be modelled and exploited using deep neural networks composed of convolutional
and recurrent layers.

Convolutional layers globally extract local context, using fixed size sliding
window (kernel), performing discrete convolution at evenly spaced positions in
the input featuremap of the layer. To perform featuremap downsampling, i.e.,
reduction of its spatial dimensions, larger stride, i.e., the distance between sample
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positions, is being used.
Recurrent layers extract sequential context, iteratively applying stateful trans-

formation along the temporal direction of input featuremap, outputting trans-
formed sequence and accumulated internal state. Each timestep, the current
state is combined with slice of featuremap producing emitted features and new
state to be used in next iteration.

1.2.2 Connectionist Temporal Classification

While usage of deep convolutional and recurrent neural networks significantly
improves the capability to extract abstract features of written text imagery, it is
unable to solve the task of temporal classification on its own. For that, additional
measures needs to be taken, carefully designed in a way, which does not hinder
the ability to train networks, i.e., preserving their differentiability.

The early attempts to train neural networks to extract written text relied on
knowledge of text alignment, i.e., knowledge of boundaries of individual glyphs,
allowing to train the network to predict a character for each timestep, based on its
position within the said boundaries. While training of such networks is straight-
forward, it is generally hard, if not impossible, to reliably collect the alignment
for training data. Moreover, postprocessing of predictions to obtain labellings is
non-trivial as the network models only local, sub character classifications.

Identifying those issues, Graves [2012] came up with Connectionist Temporal
Classification (CTC) framework, dropping the need for aligned training data and
complex postprocessing steps. This is achieved by convenient reinterpretation of
model predictions, modelling the whole label sequences instead of local classifi-
cations of timesteps, allowing the model to make label predictions only where
necessary and learning the alignment implicitly.

The key concept of CTC is the interpretation of the model outputs. The last
layer of the model is expected to be a softmax layer, with the number of channels
equal to the number of distinct labels (i.e., characters) plus one, special, blank
label. The activations of the layer estimate the probabilities of observing corre-
sponding labels at corresponding timesteps given the input, including the extra
label, signalling the probability of no proper label being observed. Together, the
outputs model the joint conditional probability of all labels at all timesteps, al-
lowing to compute conditional probability of any particular label sequence. Each
label sequence, often called extended labelling, whose length depends on input
dimensions, translates to, potentially shorter, actual labelling, such that multiple
extended labellings may correspond to the same labelling. The conditional prob-
ability of a labelling can then be found by summation of conditional probabilities
of all corresponding extended labellings.
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Formalization

More formally, the goal is to predict labelling l given the input x, using model
Mθ. It is assumed that l = (l1, l2, . . . , lk) ∈ Lk is a finite string of k characters
from the fixed character set L and that L′ = L ∪ {♭} is the extended character
set with an extra blank label ♭. Furthermore, we also assume that x ∈ [0, 1]h×w is
a grayscale bitmap image of a single line of text with height h and width w, and
that Mθ : [0, 1]h×w ↦→ RT ×|L′| is a neural network (i.e., differentiable parametric
function) with parameters θ and stride s, T = ⌈w/s⌉ being the number of output
timesteps.

Given the input x and model outputs y = Mθ(x), yt
l′ is interpreted as the

probability of observing label l′ ∈ L′ at time t, given the input sequence x and
parameters θ. Together, y estimate the distribution over extended labellings
l′ ∈ L′T

p(l′|x, θ) =
T∏︂

t=1
yt

l′
t
, (1.1)

implicitly assuming conditional independence of labels at each timestep given x

and θ.
Let B : L′T ↦→ L≤T be surjective (i.e., many-to-one) mapping from extended

labellings to actual labellings, by first collapsing repeated labels, followed by
deletion of blank labels. Figure 1.1 shows all seven extended labellings of labelling
foo in scenario with L = {f, o} and T = 5. The conditional probability of
collapsed labelling l ∈ L≤T is a sum of the corresponding extended labellings,

p(l|x, θ) =
∑︂

l′∈B−1(l)
p(l′|x, θ) . (1.2)

It is mapping B, that allows to drop the requirement for known alignment of
data, more specifically it is the invention of the blank label, which serves as both
proper label delimiter and null label for timesteps with no particular proper label,
e.g., indistinct glyph boundaries or void space in the input data.

Forward-Backward Algorithm

For the purpose of training, relying on pairs (x, l) of image and its collapsed
labelling, we need to be able to effectively compute probability p(l|x, θ) of said
labelling as defined by equation 1.2. Given that there may be exponentially many
extended labellings B−1(l) corresponding to target labelling l, such task may seem
intractable. Luckily, the task can be solved by a modification of the Viterbi algo-
rithm [Forney, 1973] in polynomial time, by the means of dynamic programming.
Moreover, as will be shown later, it can be used to define a differentiable loss
function, allowing to propagate gradient to network in each timestep.
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Figure 1.1: CTC Outputs. Each node represents the probability yt
l′ of cor-

responding label being predicted at corresponding timestep, the paths show all
extended labellings of the most probable labelling foo (pfoo = 0.37232) with one
path highlighted, representing extended labelling foo♭o (pfoo♭o = 0.02304).

The main idea is to iterate model outputs y over timesteps, and accumulate
probabilities α of prefixes of target labelling l as sums of probabilities of cor-
responding partial extended labellings, instead of computing conditional proba-
bilities of each whole extended labelling separately. For the needs of training,
we will follow a similar procedure, iterating over timesteps in reverse direction,
accumulating probabilities β of suffixes of target labelling l.

Let l′ = (♭, l1, ♭, l2, . . . , ♭, lk, ♭) be a modified labelling l interleaved with and
delimited by blank labels. Moreover, let us define a trellis, an oriented graph G
with nodes v arranged in T columns and R = |l′| rows, vt

r being a node at row r

and column t, and edges e connecting nodes as follows:

∀r ∈ [1, R],∀t ∈ [1, T − 1] :
(vt

r, vt+1
r ) ∈ e (1.3)

(vt
r, vt+1

r+1) ∈ e r < R (1.4)
(vt

r, vt+1
r+2) ∈ e l′

r ̸= l′
r+2 ̸= ♭ (1.5)

Each path in graph G starting in arbitrary node v1
? in the first column and

ending in an arbitrary node vT
? in the last column corresponds to an extended

labelling. Moreover, each extended labelling of target labelling l corresponds to a
path in G starting in v1

1 or v1
2 and ending in vT

R−1 or vT
R. This is achieved by edges

falling into three categories, representing transitions in extended labelling, i.e.,
label repetition (1.3), blank to non-blank or non-blank to blank label transition
(1.4) and differing non-blank label transition (1.5). See figure 1.2 for example of
trellis structure with l = foo and T = 5.

Let us move to the definition of accumulated probabilities α. Let αt
r be the

probability of all prefixes of extended labellings of length t, ending in either blank
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or non-blank label based on parity of r, corresponding to a prefix of the modified
labelling l′ and transitively to a prefix of labelling l. Consequently, the conditional
probability of the whole labelling l is

p(l|x, θ) = αT
R−1 + αT

R , (1.6)

i.e., the sum of probabilities of all complete extended labellings.
The probabilities α can be computed by initialization

α1
1 = y1

♭ (1.7)
α1

2 = y1
l1 (1.8)

α1
r = 0 ∀r > 2 (1.9)

and recursion

αt
r = yt

l′r

⎧⎪⎨⎪⎩
∑︁r

i=r−1 αt−1
i (l′

r = ♭) ∨
(︂
l′
r−2 = l′

r

)︂
∑︁r

i=r−2 αt−1
i otherwise.

(1.10)

The backward probabilities β are defined similarly, with βt
r being the prob-

ability of all suffixes of extended labellings of length T − t, corresponding to a
suffix of modified labelling l′ and transitively to a suffix of the labelling l. The
probabilities can be computed by initialization

βT
R = βT

R−1 = 1 (1.11)
βT

r = 0 ∀r < R− 1 (1.12)

and recursion

βt
r =

⎧⎪⎨⎪⎩
∑︁r+1

i=r βt+1
i yt+1

l′i
(l′

r = ♭) ∨
(︂
l′
r+2 = l′

r

)︂
∑︁r+2

i=r βt+1
i yt+1

l′i
otherwise.

(1.13)

See figure 1.2 for example of computation of α and β.
It should be noted that such definition of α and β is not coincidental, and has

several beneficial properties. First and foremost, for arbitrary timestep t and row
r, the product αt

rβ
t
r corresponds to the probability of all extended labellings of l

going through the node vt
r. Consequently, for arbitrary timestep t, the aggregation

of those per-node probabilities equals to the probability of observing the labelling
l.

R∑︂
r=1

αt
rβ

t
r = p(l|x, θ) (1.14)
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Figure 1.2: CTC Forward-Backward Computation. Each node represents
pair of variables α and β at corresponding timestep and position in modified
label sequence, each path using one transition per timestep corresponds to some
extended labelling. Paths formed of highlighted edges correspond to all extended
labellings of labelling l = foo
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Objective Function

The goal is to learn θ using training data T = {(x, l)1, (x, l)2, . . . , (x, l)n}, i.e.,
dataset of pairs – image and its true labelling. To do so, we derive an objective
function L and find its derivatives with respect to model outputs y, which allows
us to propagate gradient to model parameters θ and use common gradient descent
training procedures. As usual, the objective function L is based on the principle
of maximum likelihood, i.e., minimization of negative log probability of correctly
labelling the training set T :

L = − ln
⎛⎝ ∏︂

(x,l)∈T

p(l|x, θ)
⎞⎠ = −

∑︂
(x,l)∈T

ln p(l|x, θ) . (1.15)

Then, the derivative of L with respect to particular yt
l′ , assuming only one

training example (x, l) for simplification, takes the following form:

∂L
∂yt

l′
= −∂ ln p(l|x, θ)

∂yt
l′

= − 1
p(l|x, θ)

∂p(l|x, θ)
∂yt

l′
. (1.16)

Now we can make use of probabilities α and β computed using the Forward-
Backward algorithm (section 1.2.2). Let us first compute the partial derivations
of αt

r and βt
r with respect to yt

l′ , observing definitions (1.7 to 1.10) and (1.11 to
1.13), respectively. The l′ is the modified labelling as defined in section 1.2.2.

∂αt
r

∂yt
l′

=

⎧⎪⎨⎪⎩
αt

r

yt
l′

l′ ∈ l′

0 otherwise
(1.17)

∂βt
r

∂yt
l′

= 0 (1.18)

Combining these results, the derivation of the product αt
rβ

t
r is

∂αt
rβ

t
r

∂yt
l′

=

⎧⎪⎨⎪⎩
αt

rβt
r

yt
l′

l′ ∈ l′

0 otherwise.
(1.19)

Finally, with known derivative of αt
rβ

t
r, together with the equation 1.14, we

can expand the partial derivative of objective function L (1.16) to

∂L
∂yt

l′
= − 1

p(l|x, θ)yt
l′

∑︂
{r|l′=l′

r}
αt

rβ
t
r . (1.20)

Decoding

So far we have explored the algorithms for training of neural networks with CTC,
relying on efficient computation of conditional probabilities of the target, known
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labellings. Contrary to that, the task of prediction naturally lacks such infor-
mation, and there does not exist any tractable approach to fully compute condi-
tional probabilities of all (exponentially many) possible labellings. Consequently,
we need to devise approaches estimating best labellings, often called decoding
algorithms.

Greedy Decoding

The simplest method to decode CTC outputs is the greedy decoding, and it is
based on the assumption that the best output labelling is the one corresponding
to the most probable extended labelling. The best extended labelling, i.e., the
sequence of the most probable labels at every timestep, is simply contracted using
mapping B (see section 1.2.2):

l = B
(︄

concat
t∈{1,2,...,T }

(︃
arg max

l′∈L′
yt

l′

)︃)︄
. (1.21)

Such decoding algorithm is fast and easy to use as it has no parameters. On the
other hand, it does not guarantee choosing the actual best labelling, and lacks the
means to integrate additional knowledge to the decoding process. See figure 1.1
for an example of the most probable extended labelling ♭♭o♭o not corresponding
to the most probable labelling foo.

Beam Search Decoding

Mitigating the shortcomings of greedy decoding, the beam search decoding gives
a better approximation of the most probable labelling, by considering multitude
of extended labellings. As the name suggests, the decoding algorithm searches
the space of feasible labellings using a beam search algorithm.

In the context of CTC decoding, beam search with beam width w is carried
out using dynamic programming approach, effectively generalizing ideas behind
forward pass of the Forward-Backward algorithm (section 1.2.2). The algorithm
iterates over the timesteps of CTC outputs, keeping track of up to w most prob-
able labelling prefixes, based on probabilities of their corresponding partial ex-
tended labellings. At timestep t, partial extended labellings corresponding to
candidate labelling prefixes are expanded, updating estimated probabilities of
already tracked labelling prefixes, or creating previously unseen ones. At the
end of the timestep, candidate labelling prefixes are pruned, leaving only w most
probable ones, to be extended in the next timestep.

For that, the algorithm keeps track of b (blank) and n (non-blank) probability
estimates, with the following interpretation. Given the model outputs y, labelling
l and probabilities α as defined in section 1.2.2, a blank probability estimate bt

l
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approximates the sum of probabilities of partial extended labellings of length t

ending with the blank label ♭ and corresponding to the labelling l:

bt
l ≈ αt

2|l|+1 =
∑︂

{l′|l′∈L′t,B(l′)=l,l′t=♭}

(︄
t∏︂

t′=1
yt′

l′
t′

)︄
. (1.22)

Similarly, a non-blank probability estimate nt
l approximates the sum of probabil-

ities of partial extended labellings of length t ending with non-blank label and
coresponding to the labelling l:

nt
l ≈ αt

2|l| =
∑︂

{l′|l′∈L′t,B(l′)=l,l′t ̸=♭}

(︄
t∏︂

t′=1
yt′

l′
t′

)︄
. (1.23)

As a result, it holds that the sum of corresponding estimates at time t for the
labelling l approximates probability of the said labelling, restricted to the first t

timesteps of the model outputs y:

bt
l + nt

l ≈ p(l|y1:t) . (1.24)

The algorithm computes b and n, by initialization

n = 0 (1.25)
b = 0 (1.26)

b0
∅ = 1 (1.27)

and recursion

bt
l = yt

♭(bt−1
l + nt−1

l ) (1.28)

nt
lm = yt

m

(︂
bt−1

l + nt−1
lm

)︂
+

⎧⎪⎨⎪⎩0 l ends with m

yt
mnt−1

l otherwise,
(1.29)

with lm being the concatenation of the labelling l with the label m.
Computing full b and n would lead to them containing the actual probabilities

of labellings. However, this is intractable in practice, due to their exponential
size. Consequently, the beam search of beam width w is used, keeping only w

best labellings and their corresponding probability estimates at the end of each
timestep. The dropped values are considered being zero when being part of
further computations. See algorithm 1 for programmatic description.

When processing sequences with inherent structure, e.g., semantics and syntax
of natural languages, it may be beneficial to make it part of the decision process
of the decoder. Formally, we want to select labelling l maximizing a conditional
probability p(l|x, G), G modelling the structure, i.e., grammatics, of labellings.
Such task can be approximated by ensembling multiple models, each modelling
different aspects of input sequences:

arg max
l∈L≤T

p(l|x, G) = arg max
l∈L≤T

(p(l|x, G))2 ≈ arg max
l∈L≤T

(p(l|x) · p(l|G)) , (1.30)
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Algorithm 1 Beam Search Decoding [with External Scorer]
Inputs

y ← model outputs, i.e., label probabilities
Outputs

list of pairs – labelling and its estimated probability
Parameters

w ← beam width
S ← external scoring function or L≤T ↦→ 1
γ ← external score weight or 1

1: function Decode(y)
2: b0

∅ ← 1 ▷ initial blank probability estimate
3: Beam← {∅} ▷ beam initialization
4: for t← 1, T do
5: for l ∈ Beam do
6: bt

l
+← yt

♭(bt−1
l + nt−1

l ) ▷ extend with the blank
7: for m ∈ L do
8: s← S(lm)
9: if l ends with m then

10: nt
l

+← yt
mnt−1

l ▷ repeat a non-blank
11: nt

lm
+← yt

mbt−1
l sγ ▷ extend with a non-blank after the blank

12: else
13: nt

lm
+← yt

m(bt−1
l + nt−1

l )sγ ▷ extend with a non-blank
14: end if
15: if lm /∈ Beam then
16: bt

lm
+← yt

♭(bt−1
lm + nt−1

lm ) ▷ carry a blank estimate
17: nt

lm
+← yt

mnt−1
lm ▷ carry a non-blank estimate

18: end if
19: end for
20: end for
21: Beam← (arg sortl∈L≤t (bt

l + nt
l))1:w ▷ select the w best labellings

22: end for
23: end function
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where p(l|x) is a CTC trained neural network and p(l|G) an external scorer, e.g.,
a language model (see the following section 1.3).

Assuming that p(lm|G) = p(m|l; G)p(l|G), we seek a mapping S : L×L<T ↦→
R+

0 from labellings, i.e., sequences of labels, to scores, i.e., non-negative real num-
bers, approximating the conditional probability distribution p(m|l; G). The beam
search decoding, provided its iterative nature, can be adjusted to rely on such
external scorer, including the extension score whenever a labelling gets prolonged
(see instruction 8 of the algorithm 1).

1.3 Language Modelling

When extracting written text, it is often beneficial to model not only its visual
properties, but also its linguistic properties. Language models, i.e., probability
distributions p(u) of a token sequence u = (u1, u2, . . . , un) being an utterance in
modelled language, are of particular use. Such models are thoroughly studied by
the field of natural language processing.

Historically, rule based models based on expert knowledge were used, but they
were hard to maintain and improve, lacking the ability to fit the organicity of
natural languages. Later, the so called n-gram language models were proposed,
proving to be simple yet satisfactorilly performant. Nowadays, deep learning
based solutions are being invented [Raffel et al., 2019], outperforming the former
approaches at the cost of higher data demand and computational complexity. We
will further focus on n-gram models, for their relevance to this writing.

1.3.1 N-gram Language Models

Many types of language models are derived from probabilistic chain rule

p(u) = p(u1)p(u2|u1) . . . p(un|un−1, un−2, . . . , u1) . (1.31)

However, such derivation, requiring to model sample space of exponential size,
still does not allow for tractable definition of applicable language model. Con-
sequently, n-gram models further assume that token ui depends on a history of
bounded size n (often called order), i.e., they assume every utterance u to have
Markov property of order n:

p(u) =
n∏︂

i=1
p(ui|ui−1, ui−2, . . . , ui−n) . (1.32)

In order to approximate such conditional probability distribution, the principle
of maximum likelihood estimate is applied on training data. This is performed by
counting frequencies of n-grams and (n− 1)-grams, and computing their ratios:

p(ui|ui−1, ui−2, . . . , ui−n) = #(ui−n, ui−n+1, . . . , ui)
#(ui−n, ui−n+1, . . . , ui−1)

. (1.33)
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While theoretically sound, such definition of n-gram models is hardly appli-
cable, as it assigns zero probability to any utterance u containing n-gram not
present in the training data, an event common with usage of, e.g., proper nouns
or amounts. A solution to this issue is the use of smoothing, i.e., a method to
redistribute probability mass so that no event has zero probability. As with any
general concept, there exist a multitude of smoothing approaches, with Kneser-
Ney smoothing [Ney et al., 1994] widely accepted as a de-facto standard one.

1.3.2 CTC Decoding with External Scorer

In the context of written text extraction using CTC neural networks, language
models can be used as external scorers in the beam search decoding algorithm
as described in section 1.2.2, with beneficial impact. The n-gram models are
particularly efficient as external scorers, providing the extension score is computed
solely from the trailing n-gram.

Care needs to be taken to compensate for length of the labellings, as the prob-
ability of labelling l comprised of w words and c characters decays exponentially
in w for word-level language models, and in c for char-level language models.
Such skewed scores may result in steering the beam search to prefer labellings
shorter than the actual one. This issue is usually adressed by introducing length
dependent term, optionally weighted, with resulting score being

s(l) = p(l) · |l|β . (1.34)

with |l| being either the count of words w or characters c based on model granu-
larity.
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2. Data Synthesis
This chapter covers the task of data synthesis for the purpose of supervised learn-
ing of HTR models, based on deep neural networks. In the sections to come we
explore existing solutions (section 2.1.1), cursive handwriting (section 2.1.2) and
digital typesetting (section 2.1.3), allowing us to propose our own approach to
artificial lettering synthesis (section 2.2).

The motivation for data synthetization is twofold. Firstly, supervised learning
demands substantial amount of annotated data in the form of pairs – an image
and its text contents. Artificial data generator may serve as virtually endless
source of such data with speed, reliability and cost incomparable to a human
annotator or writer. However, care needs to be taken to ensure that artificial
data does not lack diversity, inherent to captures of physical documents, their
attrition, contents, composition and style. Secondly, with artificial synthetization,
the generator possesses full control over generated data properties, e.g., textual
contents, visual appearance or composition. Achieving such level of consistency
and adaptability to task at hand solely with manpower may be tedious or even
impossible, especially for dead languages, intricate compositions or uncommon
alphabets.

In spite of the aforementioned benefits, usage of synthetic data is not that
common, mainly due to the complexity of a design and an implementation of
a faithful data generator. Such task effectively equals to an implementation of
realistic document contents and a composition generator, together with an imple-
mentation of or a programmatic integration with a typesetting system, providing,
among others, non-standard features for non-trivial visual and structural distor-
tion of generated data.

2.1 Preliminaries

Let us define several terms common to the following sections. For our purposes, a
text is a readable form of piece of information communicated in natural language.
It is an ordered sequence of atomic units – characters – drawn from a finite set
of symbols specific to the language. Such character set can be subdivided into
categories, e.g., letters, digits, punctuation marks, etc. The text has its visual rep-
resentation, i.e., plannar composition of glyphs, which are visual representations
of individual characters. Such visual representation can be physically realized as,
e.g., ink on paper (hand-drawn, printed) or displayed digital image.
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2.1.1 Related Work

The idea of written text synthetization is not entirely novel and existing systems
have already employed some data synthetization techniques into their workflow.

The well known open source OCR engine Tesseract [Smith, 2007] offers let-
tering synthesis as part of the model training process. It does so by employing a
dictionary with unigram and bigram frequencies, together with a large repository
of more than 4500 fonts, in order to synthetize lines of random texts typed in ran-
dom fonts. To mimic deterioration of real data, the generator optionally applies
augmentations to the rendered image, e.g., blurring, adding white noise, rotating
or inverting, or changing exposure. In general, the synthetizer is designed to
generate typed-like letterings.

2.1.2 Cursive Handwriting

A multitude of handwriting styles has been invented over the course of millenia,
improving writing speed and legibility going hand in hand with evolution of writ-
ing instruments. With the improvements to quill and later transition to pen
between the 16th and 19th centuries, enabling longer, curved and uninterrupted
strokes, looped cursive handwriting was invented. This style distinguishes itself
from the others having all glyphs of each word actually or at least seemingly
written in one stroke. For the sake of better writing speed, glyphs are formed of
loops, conveniently minimizing undesirable concentration of ink. Figure 2.1 (ex-
cerpt from Blahouš [1902]) shows Czech Cursive Alphabet as taught at schools
at the beginning of the 20th century. For non-Czech writers, examining the use
of accented characters may be of particular interest.

It should be noted that cursive handwriting does not establish one particular
set of glyph shapes, but forms rather a family of derived styles sharing aforemen-
tioned properties. Moreover, by the nature of handwriting, each person evolves
its own particular writing style or set of styles, resembling ideal shapes only to
some degree. On top of that, each written glyph is unique as it is impossible to
maintain consistent glyph shapes at all times.

2.1.3 Digital Typesetting

Typesetting is the process of machine conversion of text to its visual representa-
tion. In digital typesetting, such conversion processes strings of characters accom-
panied with style and composition information, outputting visual representation
in either vector or bitmap form.

The concept central to typesetting is the use of fonts. Digital font is a file
containing descriptions of glyphs together with metrics, i.e., geometrical proper-
ties relevant to glyph positioning. Based on the type of a font file, each glyph is
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Figure 2.1: Czech Cursive Alphabet by Blahouš [1902].

defined as a dot matrix or a set of Bezier curves (see figure 2.2 and highlighted
nodes of the glyph outline). Apart from a shape, a font defines rules for posi-
tioning of each character given the surrounding glyphs and desired composition
in the form of metrics.

The process of typesetting of each glyph is as follows (see figure 2.2). We
maintain a cursor (initially origin), a point in space, relative to which the next
glyph will be placed. Bearing defines the offset from the cursor to the top-left
corner of the glyph bounding box and allows for proper glyph placement. After
the glyph is placed, the cursor is moved by advance, ready for a placement of the
next glyph. Some fonts also define kerning, i.e., a correction to advance based
on the pair of the current and the succeeding glyph. For the purposes of proper
line positioning and spacing relative to baseline, ascent, descent and x-height are
defined, denoting the highest point, the lowest point and the lower-case height,
respectively.

2.2 Our Synthetizer

In this section we describe our approach to handwritten text synthetization. Our
goal is to mimic high quality captures of well preserved manuscripts with regular
text flow (i.e., text paragraphs with fixed line width), e.g., handwritten chronicles
captured with a flatbed scanner. We do not aim to simulate wear and tear present
in some physical documents, as well as artifacts of some capturing processes, such
as perspective distortion or uneven lighting. We expect the outputs to be rendered
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Figure 2.2: Glyph Metrics

lines of text accompanied by metadata, notably textual contents.
We propose a solution based on typesetting of decorative and handwriting-like

digital fonts, with subsequent transformations of individual glyphs to simulate
unique handwriting styles and their internal inconsistencies. We identify and
model four properties of individual handwriting styles, namely weight accounting
to the stroke width, slant controlling the angle of the principal axis of glyphs
to the baseline, scale and finally baseline consistency, which translates to the
deviation from an ideal straight horizontal baseline. Each of these properties is
represented as a range of admissible values to be drawn from when typesetting
each glyph, resulting in its randomized appearance, contrary to the usage of a
single value per property, common in typesetting of printed text.

We see several benefits of such setup. Firstly, the generator relies mainly
on readily available data, namely decorative digital fonts [Google, 2021] and op-
tionally language corpora [Křen et al., 2016], both easily obtainable from public
domain or for research purposes. Secondly, the configuration of the generator
is simplistic, comprising only from a few parameters with straightforward inter-
pretation. Finally, while being out of scope of this writing, we see potential in
possibility to design a digital font based on a task at hand, i.e., idealized form of
its inherent handwriting style, mitigating the need to gather and annotate real
data.

2.2.1 Generator Pipeline

The architecture of our solution takes form of a pipeline, i.e., directed acyclic
graph of transformations, yielding images with metadata. We choose such ap-
proach, for it ensures modularity and maintains the separation of concerns of the
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individual components. We present a detailed description of each component in
the rest of this section.

Contents Generator

Essential component of the pipeline is the textual contents generator. In our case,
we rely on natural language corpus, containing newspaper articles and excerpts
from prose, from which we randomly draw paragraphs of text. However, any
source of text can be used, e.g., a generator based on n-gram distributions, or
even a random string generator.

Style Generator

Complementary to the contents generator a style generator is employed. A ran-
dom font is drawn from the collection of available fonts, and it is transformed into
handwriting font via a wrapper, which simulates particular handwriting style.
The wrapper controls the extent of per-glyph transformations, providing ran-
domly generated ranges for allowed scale, slant, weight and rotation.

When later querrying the handwriting font for a particular glyph, the base
glyph is fetched from the underlying font and both its shape and metrics are
distorted. First, the glyph weight is adjusted (proportionally to the weight factor
drawn uniformly from the corresponding range), simulating thinner or thicker
strokes. Then, the weighted glyph is slanted, rotated and scaled in this order,
using affine transformations (drawing the slant angle, rotation and scale uniformly
from the corresponding ranges). Scaling does not necessarily preserve aspect ratio
of glyphs, allowing to simulate dense or conversely sparse handwriting styles. The
glyph metrics are transformed appropriately.

Apart from well known affine transformations, we define custom transfor-
mations, namely weight adjustment and slanting. Weight adjustment stands for
blending, i.e., per-pixel convex combination, of the glyph render with its eroded or
dilated counterpart (see figure 2.3). Slanting by angle α is performed as a sequence
of affine transformations, namely shearing in y-axis ((x, y) ↦→ (x, tan(α)x + y)),
followed by uniform scaling to preserve the original line length and a rotation by
the angle α (see figure 2.4).

Typesetter

Having defined both the contents generator and the style generator, their outputs
are combined as an input to a typesetting component. The typesetting component
types a given paragraph of text using the provided handwriting font, following
the principles introduced in section 2.1.3. The result of such transformation is
a set of lines, forming the whole paragraph. The lines are wrapped on spaces,
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(a) w = −1.0 (b) w = −0.5 (c) w = 0.0 (d) w = 0.5 (e) w = 1.0

Figure 2.3: Weight transformations using weight factor w. The original
font render (w = 0, fig. 2.3c) is either eroded (w = −1.0, fig. 2.3a) or dilated
(w = 1.0, fig. 2.3e), forming the extremes. For other values w ∈ (−1, 1), the
original is blended with its eroded (e.g., w = −0.5, fig. 2.3b) or dilated (e.g.,
w = 0.5, fig. 2.3d) counterpart.

(a) Slant lettering (b) shear(0, tan(α)) (c) scale
(︂

1
1+tan(α)2

)︂
(d) rotate(α)

Figure 2.4: Decomposition of slanting transformation

maximizing the length of each line, which is being bounded by a desired pixel
width. Such set of lines may already be sufficient output of the pipeline, however,
we propose one more step enhancing the fidelity of generated samples.

Compositor

Final component improves each rendered line by adding visual context, i.e., par-
tial protrusions of the glyphs of the preceeding and the succeeding line. Such
transformation is motivated by phenomena common in manuscripts, where de-
scenders and ascenders of consecutive lines bleed into each other in vertical axis.
The component consumes up to three consecutive lines (the amount drawn ran-
domly) and collates them vertically, based on their metrics (i.e., ascender, descen-
der and x-height), creating randomized line spacing. Such composition is then
randomly cropped, containing one whole line and parts of context lines if present
(see figure 2.5).

2.2.2 Implementation

Not only we designed the hadwritten text letterings synthetization pipeline, we
also provide its implementation as a part of this work [Procházka, 2021]. For
that, we have chosen Python 3 programming language, which is commonly used
in deep learning research, together with well known open source software libraries,
namely FreeType [Rougier, 2018] for font processing, NumPy [Harris et al., 2020]
and Pillow [Clark, 2021] for bitmap image processing.
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Figure 2.5: Composed lines. Three lines of text are collated together, with
their ascenders and descenders potentially overlapping; the composition is then
cropped to contain a single line and surrounding context.

Lettering Handling

Central to the synthetizer pipeline is the lettering data structure, containing a
bitmap image of the lettering, its metrics, textual contents and metadata, e.g.,
positions of individual glyphs within the image. Having access to all the prop-
erties of the lettering at once, such data structure provides a convenient way to
implement the affine transformations logic and the letterings concatenation.

When applying affine transformations, we make use of their matrix notation
in homogeneous coordinate system. This simplifies both image transformation as
well as adjustments to the accompanied metrics, using a single predefined Pillow
function and a NumPy matrix multiplication, respectively. Apart from the ease
of use, it alows for efficient composition of consecutive transformations, eliminat-
ing the need for the intermediate image transformations, greatly improving the
time performance. Similarly, concatenation of multiple letterings, often single
glyphs, benefits from composing multiple images to single one at once, rather
than iteratively extending intermediate results.

Font Rendering

In order to create a lettering, we need to be able to obtain renders of glyphs
as bitmap images. To do so, a wrapper around FreeType primitives is created,
outputting the lettering data structure when querried for glyph of a particular
size. The need for a wrapper comes mainly from the need to convert between
units common to typography, i.e., points and points-per-inch, to units suitable
for processing of bitmap images, i.e., pixels. Another benefit is the ability to use
caching of previously rendered glyphs to speed up the querries.

Apart from these convenience features, the wrapper allows to level out cer-
tain inconsistencies between font definitions, and provide a unified interface. The
main cause of inconsistencies we observe is handling of accented letters and the
varying degree of their support in commonly available fonts. In fonts, where ac-
cented letters are not fully supported, some font metrics, e.g., height, ascender or
advance, are ill-defined, potentially resulting in typesetting errors. The wrapper
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allows to transparently handle the correction of the said metrics and fallback to
base glyph, if the accented glyph is not available.

Lastly, the font wrapper turns out to be suitable abstraction for definition of
handwriting inspired distortions of individual glyphs (see section 2.2.1), allowing
to transparently handle randomized transformations of glyphs of the base font.
In order to avoid aliasing when transforming images in rather low resolution, the
transformations are performed on supersampled glyphs, which are downsampled
using bilinear interpolation, after all transformations have been performed.

Pipeline

The implementation of the synthetizer pipeline follows its aforementioned design
(section 2.2.1). As we are using the synthetizer to provide data to supervised
training of deep neural network, benefitting from the diversity of the dataset,
and exploiting the ability of the synthetizer to generate large quantity of unique
samples without repetition. To do so, care needs to be taken to avoid large
memory consumption, and to achieve sufficient speed of sample synthetization, in
order not to stall the training process. As a result, we implement the individual
components as lazy iterators, generating next sample, e.g., paragraph of text,
font to be used or rendered lettering, only when querried by its consumer –
succeeding pipeline component, being a lazy iterator itself. Together with speed
optimizations mentioned earlier, without parallelizing our code, we manage to
generate 10000 letterings of size 768× 48 px and average length of 73 characters
in 173 s, i.e., 17.3 ms per sample on average.

2.2.3 Examples

Figure 2.6 shows artificially generated letterings.
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(a) neobvykle napjatou a oči jasné a unavené. "Nelı́bilo se jı́ to," řekl

(b) každém přı́padě mu to dalo jistě spoustu práce,

(c) zmateným pohledem z auta na pneumatiku a z

(d) a Hammerheadovi a Beluga, který dovážel tabák, a

(e) Zřejmě k tomu měla důvod. Čekal jsem, ale

(f) mestem, kde se tmavá pole republiky valı́ pod prı́krovem

(g) byl jeho nejbližšı́ prı́tel, a tak dnes odpoledne

(h) že jsme se životu na Východe nejak nemohli prizpusobit.

(i) dali podplatit od obchodnı́ků, ale objednávali

(j) nevadı́ - zı́tra poběhneme rychleji,

(k) dobu po svatbě - ale i tehdy milovala mě vı́c, rozumı́te?

Figure 2.6: Examples of synthetized letterings
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3. Our Solution
In this chapter, we propose our own handwritten text extractor, i.e., a chain of
components extracting textual contents of an image of a single line of text. To
assess its capabilities, we train the extractor using synthetic data (see section
3.2.3). The processing of the real data will be discussed in the next chapter 4.

3.1 Text Extractor

The chain comprises of deep neural network composed of convolutional, recurrent
and dense layers and a CTC decoder, either greedy or beam-search based. Figure
3.1 shows the schema of the architecture, with each component described in the
following sections.

3.1.1 Visual Features Extractor

As a visual features extractor, we opt for deep neural network with convolutional
and recurrent layers loosely inspired by Shi et al. [2015] architecture. We improve
upon the said architecture by using strided convolutions instead of max-pooling
layers, adding batch normalization and dropout layers to support regularization
and finally by adding residual connection around the last recurrent layer.

Figure 3.1 shows the exact configurations of neural network layers, grouped
into cnn, rnn and classifier submodels. In case of convolutional layers, the ab-
breviations k, s and p are used to describe kernel shape, stride and padding,
respectively. In the rnn submodel, we use bidirectional LSTM [Hochreiter and
Schmidhuber, 1997] with 256 units, concatenating outputs of left-to-right and
right-to-left passes at the corresponding timesteps. Finally, the dense layer in the
classifier is used to perform classification at each timestep to classes L′ = L+{♭},
L being a predefined charset.

Regarding dropout, we use spatial dropout [Tompson et al., 2014] in between
convolutional layers with rate 0.25, dropping whole channels of featuremaps ran-
domly. We interleave recurrent layers with standard dropout, again with rate
0.25.

In total, the network has 5.5 M trainable parameters and it is supposed to
be trained using the CTC loss. The inputs to the network are expected to be
greyscale images [−1, 1]48×w, with fixed height h = 48 and variable width w being
an arbitrary multiple of 2. The outputs of the network are probability distribu-
tions over labels L′ with CTC interpretation (section 1.2.2). Each output timestep
corresponds to 2-pixel columns in input, expecting glyphs in input images to be
at least 2 pixels wide for CTC to work properly.
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conv: k=3x3x64, s=(1,1), p=same

BatchNorm, ReLU, SpatialDropout

conv: k=3x3x64, s=(2,2), p=same

BatchNorm, ReLU, SpatialDropout

conv: k=3x3x128, s=(2,1), p=same

BatchNorm, ReLU, SpatialDropout

conv: k=3x3x128, s=(1,1), p=same

BatchNorm, ReLU, SpatialDropout

conv: k=3x3x256, s=(2,1), p=same
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Figure 3.1: Text Extractor Architecture
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3.1.2 CTC Decoder

In order to decode outputs of the text extractor, either greedy decoder (section
1.2.2) or beam-search decoder (section 1.2.2) can be used. We do not expect bare
beam-search decoder to perform considerably better than a simpler greedy de-
coder, but we propose to integrate beam-search decoder with an external language
model scorer.

While theoretically any well performing language model should improve the
decoding performance, we opt to use n-gram language models, for their suitability
to be integrated with a beam-search decoder. For the purposes of beam-search
decoding, we seek a language model providing credible scores for all, even partial
utterances. As word-level language model is principially unable to model partial
words and as char-level model provides less reliable scores for word sequences
compared to word-level model, we propose to use their combination, in order to
utilize the benefits of both types of the models.

For a sequence of n characters l = (l1, l2, . . . , ln), we suggest multiple ap-
proaches to compute score s(l). It is possible to simply compute a char-level
score sc = pc(l) and a word-level score sw = pw(l) and their, optionally adjusted,
combined score s(l) = swsα

c . However, such approach relies on the value of the
word-level probability pw(l), potentially skewed by unfinished word at the end of
sequence l. Assuming the positions of all K whole word begins b = (b1, b2, . . . , bK)
and ends e = (e1, e2, . . . , eK) (exclusive) in sequence l, we can improve upon for-
mer approach by computing sw = pw(l[1:eK ]). While this alleviates the issue of
non-word suffix negatively influencing the word-level probability, it introduces an
imbalance, stemming from double counting characters within whole words (both
on word-level and char-level) as opposed to characters of non-word suffix (only
char-level). Consequently, we propose to account for it by scoring the whole words
with word-level model only, more formally:

s(l) =
(︄

pc(l)∏︁K
k=1 pc(l[bk:ek]|l[1:bk])

)︄α

pw(l[1:eK ]) . (3.1)

Such approach can be computed iteratively, accumulating the score of se-
quence that gets extended, by keeping track of char-level score of its non-word
suffix, and swapping it for its word-level score, once it becomes a whole word.
This approach can be seen as using char-level language model as a fallback model
to estimate probability of partial words.

With the aforementioned changes, our decoder relies on two n-gram language
models, one modelling character sequences, the other modelling word sequences.
The decoder has in total four parameters for weighting the language model proba-
bilities, namely the weight α of the char-level model, length compensating weights
βc and βw, and finally the weight γ of the importance of the whole language model
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scorer. Formally, the score s of the labelling l with K whole words and the total
of C characters is

s(l) =
(︄

K∏︂
k=0

pc(l[ek:bk+1]|l[1:ek])(bk+1 − ek)βc

)︄α

pw(l[1:eK ])Kβw , (3.2)

setting bK+1 = C and e0 = 1 for convenience.
The extension score of labelling S(lm) = s(lm)

s(l) for the purpose of the beam
search decoder implementation (see instruction 8 of the beam search algorithm
1) can be computed efficiently.

3.2 Implementation

In this section we experimentally assess the capabilities of the proposed approach
using synthetic handwritten letterings. We also cover notable implementation
details and parameters of the experiment.

3.2.1 Dataset

As a dataset, we use artificial letterings generated using the approach discussed
in section 2.2. We source the texts randomly from either the corpus of written
Czech [Křen et al., 2016] or corpus of written English [Graff et al., 2003]. To
render the letterings, we use a manual selection of 32 handwriting-like fonts from
Google Fonts [Google, 2021] listed in section A.1, with the addition of Abeceda
font [Fila, 2004]. For distortions of fonts, we define base ranges for each distortion
axis, from which we randomly draw the subranges for each instance of distorted
font. The subranges cover at most 0.1 of the base range, with base ranges being
(−8, 8) degrees for rotation, (0.5, 1.5) for horizontal scale, (0.75, 1.25) for vertical
scale, (−45, 30) degrees for slant and (−0.5, 0.5) for weight.

3.2.2 Extractor Implementation

The visual features extractor is implemented and trained using TensorFlow 2.
The beam search decoding is implemented [Procházka, 2021] as a Python ex-

tension module in C++ using PyBind [Jakob, 2021] for performance reasons, de-
pending on KenLM [Heafield, 2011] implementation of n-gram language models.
The char-level language models are 6-gram language models pruning singleton
n-grams with the exception of unigrams. The word-level language models are
5-gram language models pruning n-grams occuring less then 8 times with the
exception of unigrams, which are not being pruned.
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Language Decoder Min Median Max
cs greedy 0.83 2.11 14.28

beam 0.23 0.99 8.85
en greedy 1.31 4.48 16.74

beam 0.29 0.74 8.09

Table 3.1: Performance of the model trained on synthetic data.

3.2.3 Supervised Training

The cnn, rnn and classifier components are trained jointly using the CTC loss
(section 1.2.2) and Adam optimizer with recommended defaults [Kingma and Ba,
2014]. The training runs for 256 epochs with 128 gradient steps per epoch, each
gradient step being estimated on a batch of 80 samples, drawn from Czech and
English synthetic dataset. After the training is finished, the snapshot of model
weights from the epoch with the lowest validation loss is selected. The training
is independent on a decoder and its configuration.

To set the parameters α, βc, βw and γ of the beam search decoder, we carry
out a grid search over the space of candidate configurations. The grid search
minimizes the edit distance between predicted and true labellings, using formerly
trained feature extractor applied to synthetic letterings in corresponding lan-
guage, rendered in font unseen during the training phase. For Czech language,
the grid search yields α = 0.8, βc = 0.5, βw = 14.0 and γ = 1.0. For English, the
parameters are α = 1.2, βc = 0.5, βw = 5.0 and γ = 1.0.

The table 3.1 shows micro-averaged character-level edit distance, often called
character error rate (CER), measured on the test set, i.e., letterings synthetized
using a distinct set of fonts disjoint with fonts used in training. For each combina-
tion of source language and decoding method, the best, the worst and the median
error rate among the test fonts is presented. It can be seen that on average, the
model achieves satisfactory performance for both languages, namely with beam
search decoding, keeping the median error rate under 1%.
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4. Real Data Adaptation
Having implemented a handwritten text recognition system trained on artificially
synthetized data (chapter 3), we want to assess its performance on the real hand-
written letterings, and explore the possibilities of further accuracy improvements.
In this chapter, we measure the accuracy of the system on several handwritten
text datasets, and we carry out a multitude of transfer learning and self-training
experiments, aiming to improve upon the base accuracy of the system. As a
result, we propose a self-training strategy offering significant performance gains
with no demand for ground truth annotations.

4.1 Preliminaries

Machine learning models, notably deep neural networks, together with their train-
ing procedures, are valued for their ability to generalize higher level concepts from
training data, allowing to process unseen data with satisfactory performance.
Moreover, those generic features prove to be useful in solving related tasks, when
transfer learning techniques are employed. Those techniques allow to reuse parts
of original pre-trained models and their parameters, reducing the complexity of
training the model to solve the task at hand [Goodfellow et al., 2016].

4.1.1 Fine-tuning

Stemming from the iterative nature of the gradient descent based training proce-
dures, one of the most straight-forward transfer learning techniques is fine-tuning.

In its simplest form, the task to be solved is structurally same as the task
solved by the pre-trained base model, only the distribution of the actual data is
shifted. In such case, it is sufficient to continue the training procedure of the base
model with new data, effectively seeding the training procedure with better than
random model parameters. Such training procedure often demands significantly
lower amount of data as the concepts shared between the original and the actual
task are already known to the model. In case of considerably smaller datasets,
it is often beneficial to lower the learning rate of the stochastic gradient descent
training procedure, or make a part of the original model parameters constant.

4.1.2 Self-training

When lacking sufficient amount of ground truth data for supervised learning,
self-training techniques allow to adapt pre-trained base model to unnanotated
corpora. The base model serves as a generator of noisy labels, which, when
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optionally cleaned-up or pruned, may be used for its fine-tuning or training of
a new model. Self-training techniques are currently subject to ongoing research,
forming specialized branches, e.g., contrastive learning, clustering learning or self-
supervised learning.

In the domain of OCR, an independent concurrent work of Kiss et al. [2021]
explore self-training on both printed and handwritten datasets with focus on data
augmentation.

4.2 Datasets

AHMP

Czech handwritten letterings are sourced from Prague City Archives [AHMP,
2021] collections of manuscripts, which contain vast amount of scanned municipal
and school chronicles, civil registers, etc. As the data lack any kind of annotation,
neither text segmentation nor textual contents, we employ our own simplistic pre-
processing steps and we manually annotate two experimental datasets, with the
focus on chronicles for their suitable layout and substantial amount of contained
text.

The preprocessing concerns mainly text line detection using signal processing
techniques, relying on simple layout of chronicles, being block of wrapped para-
graphs of text. First, the raw image is adaptively thresholded to suppress the
background noise and trimmed to remove excess horizontal margins. Second, the
vertical coordinates of individual lines are searched for by finding peaks in counts
of background to foreground transitions in each row of image pixels (see figure
4.1). Once the vertical line positions are computed, they delimit each line from
top and bottom using the neighboring line positions. It is no coincidence that we
designed our data synthetizer (section 2.2) to produce similar artificial letterings
with parts of adjacent lines.

This way we obtain text lines from two manuscripts, namely the Přibyl [1933]
school chronicles and Bruder et al. [1955] municipal chronicles, which we refer to
as Strasnice and Reporyje datasets, respectively. The Strasnice dataset contains
6531 automatically detected lines, the Reporyje dataset contains 17913 lines. For
both datasets we provide manual annotations of first 1024 valid lines (see figure
4.2 for a sample line). We also define random training and test splits with 640 and
384 samples, respectively. Both datasets are made publicly available as Procházka
and Straka [2021].
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Figure 4.1: Line detection. The original image is thresholded and horizontally
trimmed, then the line positions are searched for using signal peak detection
techniques.

(a) školnı́ rady ze dne 12. řı́jna 1908 čı́sla

(b) "saturačnı́" na pálenı́ vápna firmou Biskup-Kvis a Kotrba po

Figure 4.2: Samples from the Strasnice and Reporyje datasets.

twelve hundred of which to be delivered

Figure 4.3: Sample line from the Washington dataset.
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Washington Database

In order to provide results allowing comparison with previous works, we also
measure the performance of the system using well established Fischer et al. [2012]
English handwritten dataset. The dataset contains 656 text manually segmented
and annotated text lines (see figure 4.3 for a sample line).

Several previous works targeted Washington dataset by the means of su-
pervised fine-tuning of a pre-trained network. Notably, Aradillas et al. [2018,
2020b,a] managed to achieve 5.3% character error rate using greedy decoding.

Few preprocessing steps are applied to the original data in order to ensure
compatibility with our system. The images are uniformly scaled to height of
28 pixels and padded with 8 and 12 pixels from top and bottom, respectively,
to achieve expected fixed height of 48 pixels, with a centered line and vertical
margins.

4.3 Experiments

We carry out an extensive series of experiments in order to observe performance
gains of fine-tuning and self-training under various conditions, e.g., varying size
of training set, portion of model weights to be fine-tuned, training set selection
criteria, etc. Apart from supervised fine tuning, we experiment with self-training,
using the model itself to annotate the data.

4.3.1 Baseline

In order to assess the possible gains of fine-tuning strategies, we first measure
the performance of raw, i.e. synthetically pretrained, model from chapter 3. We
measure micro mean normalized edit distance, i.e. overall percentage of spelling
errors in the resulting labellings, using predefined test splits of the datasets and
available decoders.

Having established the measurement of the raw performance of the system, we
measure the accuracy after supervised fine-tuning on training splits of available
datasets. For that we use learning rate of 0.0001, 2048 gradient steps and batch
size 8. We try both training only the last layer (i.e., the classifier) with the rest of
the weights frozen and training the whole network, with results marked TunedLast

and TunedWhole respectively, organized in table 4.1.
It can be seen that fine-tuning the whole network is consistently better than

fine-tuning only the last layer, with beam search decoding providing better pre-
dictions in all cases compared to greedy decoding. Regarding the Washington
dataset, we outperform previous works of Aradillas et al. [2018, 2020b,a], im-
proving the original 5.3% error rate to 4.0%.
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Dataset Decoder Raw TunedLast TunedWhole Previous
Reporyje greedy 34.66 21.99 3.38

beam 27.16 15.28 2.53
Strasnice greedy 28.34 16.99 3.34

beam 22.92 12.09 3.11
Washington greedy 33.26 18.21 4.01 5 .3

beam 20.53 11.49 3.66

Table 4.1: Supervised fine-tuning.

Comparing the raw performance and best fine-tuned performance, it can be
seen that even with a small dataset and minimalistic fine-tuning procedure, the
performance can be substantially improved. This motivates us to proceed with
studying self-training capabilities.

4.3.2 Self-Training

In this section we explore various self-training strategies. To reduce computa-
tional demands, we restrict the experiments to the Strasnice dataset. Moreover,
we focus on fine-tuning of the whole network as it proves to yield significantly
better results in supervised scenario. The batch size and learning rate is kept the
same, and all presented error rates are again micro averages of edit distance over
the test split.

Baseline

In order to assess the impact and the importance of various parameters of self-
training strategies, we carry out a series of experiments with some degree of
ground truth knowledge.

Notably, we explore the impact of the dataset size and the number of gradient
steps of the fine-tuning, together with the accuracy drop caused by use the of
noisy targets. We establish a baseline using randomly sampled train sets from
ground truth data, referred to as true. Next, we use the base model and beam
search decoder to suggest noisy labels, and we select training subsets minimizing
the label noise. This is done by sorting the samples based on normalized edit
distance to true labels and taking their portion of a given size. We refer to those
data as ned.

Table 4.2 shows resulting performance after fine-tuning the model for a given
amount of gradient steps and a given decoder. In case of true data, the per-
formance improves with larger dataset and longer training as expected, yielding
3.02% character error rate with dataset of size 512 after 2048 gradient steps using
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Dataset Size
Decoder Steps 32 64 128 256 512 Best

true 0.00 0.00 0.00 0.00 0.00
greedy 1024 7.21 6.40 5.37 4.81 4.27 4.27

2048 7.18 6.09 4.88 3.96 3.41 3.41
beam 1024 5.00 4.79 4.06 3.64 3.43 3.43

2048 5.06 4.50 3.62 3.36 3.02 3.02
best 5.00 4.50 3.62 3.36 3.02 3.02

ned 0.00 0.80 2.94 7.10 16.29
greedy 1024 11.87 10.71 10.42 12.41 15.30 10.42

2048 11.22 10.17 9.35 12.23 15.32 9.35
beam 1024 8.38 7.90 8.35 10.99 14.42 7.90

2048 7.95 7.43 7.37 10.65 14.62 7.37
best 7.95 7.43 7.37 10.65 14.42 7.37

Table 4.2: Self-training baseline experiments.

the beam search decoder. In case of ned data, the performance improves with
longer training, but the training does not benefit from the largest dataset, caused
by a trade-off in target labels impurity. The best reached performance is char-
acter error rate of 7.37% achieved with dataset of size 128 and 2.94% label noise
(see table 4.2). Overall, the results on ned data show substantial improvements
of model performance, being 2-3 times lower than the raw 22.92% error rate.

Sorting Criterion

Noting that ned experiments still rely on knowledge of true labels needed to com-
pute the edit distance to noisy labels, we need to devise an unsupervised sorting
criterion, in order to be able to self-train the system. To this end, we measure
correlation of normalized edit distance with various hand-crafted features derived
from model predictions. We focus on CTC decoder and language model scores,
optionally length normalized. Namely, we try score (raw decoder score), cscore
and wscore (score normalized by character length and word length, respectively),
and finally clm score and wlm score, which are language model scores of the
predicted labelling. Figure 4.4 shows correlation matrices of the aforementioned
metrics, with cscore clearly predicting ned the best. It should be noted that as
we are interested solely in ordering the predicted samples, the actual magnitude
of the metric is not important.

Choosing the cscore sorting criterion, we are able to measure self-training
performance of the system. In the following table we show test set character
level error rates, when using predicted labels as fine-tuning targets, relying on
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Figure 4.4: Correlation of normalized edit distance with various features derived
from model predictions.

Dataset Size
Decoder Steps 32 64 128 256 512 Best
cscore 4.11 3.59 6.20 9.70 16.94 3.59
greedy 1024 14.47 12.70 12.98 12.78 15.03 12.70

2048 13.68 11.79 12.27 12.49 15.35 11.79
beam 1024 11.17 9.77 10.56 11.18 13.96 9.77

2048 10.17 9.15 10.15 10.66 14.89 9.15
best 10.17 9.15 10.15 10.66 13.96 9.15

Table 4.3: Self-training based on cscore criterion.

cscore criterion to choose the suitable training samples. Again, the fine-tuning
generally benefits from more gradient steps and trades-off dataset size for label
purity, achieving the lowest error rate 9.15% using 64 samples with the lowest
label noise, i.e., 3.59% (see table 4.3). It should be noted that such improvement
is achieved with no knowledge of ground truth data.

Iteration

In the previous sections, we established the means to fine-tune the base model in
an unsupervised manner, improving upon its original performance. In this section
we explore the capabilities of iterating such approach, using the fine-tuned model
as a better predictor of noisy targets.

First, we run an experiment estimating the limits of the iterated approach.
In each iteration, we fine-tune the model using training sets of various sizes, and
we select the fine-tuned model with the lowest error rate on the test set. This
model serves as a predictor of the noisy targets for the next iteration. Note that
the network fine-tuning in each iteration starts with the original raw weights. We
experiment with decoders used in the process, selecting either the best one each
iteration, restricting the whole iteration to single decoder or alternating between
beam search decoder and greedy decoder in each iteration. In table 4.4 and
figure 4.5 we can see the progression of performance of each strategy throughout 8
iterations. Surprisingly, the best results are not achieved by the strategy selecting
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Figure 4.5: Comparison of self-training strategies.

Iteration
Decoder Steps 0 1 2 3 4 5 6 7 Best

best 1024 9.92 7.32 6.98 6.35 6.27 6.31 6.33 6.39 6.27
2048 9.15 6.77 5.69 5.27 5.50 5.24 5.20 5.53 5.20

greedy 1024 19.97 16.36 15.34 14.67 13.97 13.73 13.57 13.47 13.47
2048 19.22 15.91 14.38 14.07 13.99 13.80 13.38 13.13 13.13

beam 1024 9.60 7.21 6.53 6.52 5.94 6.21 6.25 6.24 5.94
2048 9.22 6.78 6.20 6.14 6.40 6.12 6.39 6.22 6.12

alter 1024 12.80 7.51 6.90 5.39 6.17 5.10 5.90 5.04 5.04
2048 11.89 7.20 6.24 4.97 5.54 4.86 5.67 4.81 4.81
best 9.15 6.77 5.69 4.97 5.50 4.86 5.20 4.81 4.81

Table 4.4: Self-training strategies comparison.

more performant decoder in each iteration, but with strategy that alternates the
decoders, achieving 4.81% error rate. We assume the alternating strategy to
exhibit some degree of regularization, preventing to converge prematurely to a
sub-optimal solution.

We proceed with experiments not relying on the knowledge of performance of
the candidate models. We do so by running 8 self-training iterations with a fixed
dataset size. The results are presented in table 4.5 and figure 4.6. Consistent
with the previous experiments, the alternating strategy outperforms the usage of
a single decoder, resulting in 5.62% character error rate. Figure 4.6 visualizes the
progress of self-training, showing the overall superiority of alternated strategy,
together with the benefits of using medium sized datasets.
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Figure 4.6: Comparison of cscore strategies.
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Mode Iteration
Steps Size 0 1 2 3 4 5 6 7 Best
greedy
1024 256 21.40 19.92 19.50 18.17 17.32 16.92 16.28 15.46 15.46

384 21.52 19.35 18.37 17.45 16.45 15.95 15.46 14.82 14.82
512 23.27 21.00 19.66 18.67 18.19 17.12 16.90 16.09 16.09
640 22.62 20.40 18.83 18.29 17.21 16.43 16.20 15.63 15.63

2048 256 20.91 20.31 20.23 19.66 19.42 19.17 19.12 18.82 18.82
384 21.91 21.09 20.26 20.20 19.47 19.42 18.74 18.50 18.50
512 22.75 21.48 20.81 20.65 19.78 19.36 19.59 19.17 19.17
640 22.51 20.89 20.19 19.35 19.39 19.00 19.14 18.80 18.80
best 20.91 19.35 18.37 17.45 16.45 15.95 15.46 14.82 14.82

beam
1024 256 11.20 8.41 8.24 7.78 7.51 7.64 7.61 7.54 7.51

384 12.74 9.60 8.32 7.78 7.54 7.61 7.38 7.35 7.35
512 14.62 10.94 9.51 8.72 8.09 7.95 7.68 7.64 7.64
640 15.54 12.75 11.26 10.74 10.19 10.35 9.53 9.66 9.53

2048 256 10.52 8.60 8.10 8.15 8.14 7.75 7.72 7.61 7.61
384 12.84 10.13 9.15 9.12 8.65 8.55 8.43 8.59 8.43
512 14.88 12.21 10.62 9.96 10.09 10.07 9.45 9.32 9.32
640 17.71 15.14 15.17 13.41 13.83 13.10 12.49 13.66 12.49
best 10.52 8.41 8.10 7.78 7.51 7.61 7.38 7.35 7.35

alter
1024 256 13.16 8.81 8.29 6.50 7.26 6.00 7.34 6.03 6.00

384 13.60 9.71 8.24 6.23 7.10 5.85 6.94 5.64 5.64
512 15.49 10.02 8.24 6.74 7.07 5.73 6.79 5.73 5.73
640 16.51 11.79 9.89 8.14 7.98 6.41 6.98 5.62 5.62

2048 256 12.52 9.34 8.63 7.21 7.48 6.30 7.38 6.54 6.30
384 13.68 10.09 9.02 7.39 7.34 6.36 6.98 6.31 6.31
512 15.14 11.22 9.11 7.50 7.69 7.03 7.43 6.60 6.60
640 17.53 13.60 11.90 9.81 9.94 8.53 8.56 7.64 7.64
best 12.52 8.81 8.24 6.23 7.07 5.73 6.79 5.62 5.62

10.52 8.41 8.10 6.23 7.07 5.73 6.79 5.62 5.62

Table 4.5: Self-training iteration.
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Model
Dataset Decoder Reporyje Strasnice Washington Raw Tuned
Reporyje greedy 7.94 11.45 43.24 34.66 3.38

beam 5.29 7.86 38.93 27.16 2.53
Strasnice greedy 11.80 5.70 34.42 28.34 3.34

beam 8.31 4.84 30.73 22.92 3.11
Washington greedy 49.59 43.42 6.13 33.26 4.01

beam 46.06 33.45 5.49 20.53 3.66

Table 4.6: Self-training comparison. Columns contain error rates of models
self-trained on datasets corresponding to column names, with the exception of
Raw and Tuned columns provided for faster comparison with the base model and
supervised fine-tuning, respectively. Bold values highlight cases with matching
self-training and testing data.

4.4 Results

Based on the experiments seeking appropriate self-training strategies, we process
all three available datasets. With no need for ground truth annotation, we use
whole datasets (test sets without labels included). We run 16 iterations with
alternating decoders, selecting half of available samples (sorted by cscore) as the
training dataset in each iteration.

Table 4.6 provides comparison between micro average of edit distance be-
tween raw model trained solely on synthetized letterings, model fine-tuned using
ground truth annotations and iteratively self-trained models. We succeeded in
adapting the model to all datasets by the means of self-training, reaching error
rates competitive with the supervised fine-tuning scenario.

We also measure knowledge transfer of self-training across datasets, showing
positive results for Reporyje and Strasnice datasets, most likely due to both shar-
ing the same language and, to some degree, handwriting style. On the contrary,
Washington dataset and its corresponding model does not transfer knowledge to
other datasets.

When observing the resulting predictions in detail, substantial amount of
remaining errors forms three distinct categories, all stemming from properties of
n-gram based language modelling. Firstly, the digits, mainly dates and counts,
are often mispredicted. Secondly, partial words at the beginning and end of text
lines caused by word splitting are mangled or sometimes even missing. Lastly, the
model does not predict well the abbreviations and unique proper nouns unknown
to the language model. Future work may improve the language model based
beam search decoding to handle digits as a single category, modelling rather the
presence of any digit in general than an exact numeric value. Apart from that,
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it may be beneficial to explore the means to use context of neighbouring lines in
the decoding process.
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Conclusion
In this work we focused on the task of handwritten text recognition, with the
emphasis on decreasing the required number of ground truth annotations.

To fulfil our goal, we proposed and implemented an artificial letterings syn-
thetizer, taking advantage of publicly available decorative fonts resembling hand-
writing, coupled with suitable set of randomized visual distortions on a glyph
level. This enabled us to generate large amount of data with known textual
contents, close to real handwritings in terms of complexity and appearance.

Securing access to large amount of data suitable for supervised learning, we
designed and trained a deep convolutional and recurrent neural network, making
use of connectionist temporal classification framework and language model based
decoding techniques.

With model pre-trained on artificial data we observed a degree of knowledge
transfer to the domain of real handwritten letterings. We carried out a multi-
tude of experiments adapting the base model to handwriting style of particular
manuscripts by the means of fine-tuning and self-training, allowing us to formu-
late an unsupervised self-training strategy yielding satisfactory low error rates.

Partly as a mean to verify our findings and partly as their direct result, we
managed to produce a novel dataset of Czech handwritten letterings, which we
make publicly available.

Stemming from the modular nature of the design of our solution, we see nu-
merous opportunities for further improvements in future work. Regarding text
detection, it may be beneficial to make use of the synthetic data generator, pro-
viding detailed positional information about artificial letterings up to the glyph
level. In the domain of CTC decoding, we see potential in exploring a context-
aware beam search algorithm, making use of predictions of surrounding lines.
Regarding the iterated self-training, dynamics of noisy labels evolution may be
studied in greater detail to improve training dataset selection.

Overall, the techniques proposed and studied in this work may be suitable
to process large collections of manuscripts, accumulating the knowledge of vari-
ous handwriting styles with minimal need for human intervention and providing
means to bootstrap the annotation process. Such application may greatly improve
the accessibility of those collections in machine-readable form.
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A. Appendix

A.1 Handwritten-like Fonts

List of Google fonts used by artificial letterings synthetizer. The paths are relative
to common prefix https://github.com/google/fonts/raw/main/.

• ofl/aguafinascript/AguafinaScript-Regular.ttf

• ofl/alexbrush/AlexBrush-Regular.ttf

• ofl/allura/Allura-Regular.ttf

• ofl/arizonia/Arizonia-Regular.ttf

• ofl/bilbo/Bilbo-Regular.ttf

• apache/calligraffitti/Calligraffitti-Regular.ttf

• ofl/cedarvillecursive/Cedarville-Cursive.ttf

• ofl/clickerscript/ClickerScript-Regular.ttf

• ofl/cookie/Cookie-Regular.ttf

• ofl/damion/Damion-Regular.ttf

• ofl/dawningofanewday/DawningofaNewDay.ttf

• ofl/euphoriascript/EuphoriaScript-Regular.ttf

• ofl/greatvibes/GreatVibes-Regular.ttf

• ofl/herrvonmuellerhoff/HerrVonMuellerhoff-Regular.ttf

• apache/homemadeapple/HomemadeApple-Regular.ttf

• ofl/italianno/Italianno-Regular.ttf

• ofl/kristi/Kristi-Regular.ttf

• ofl/labelleaurore/LaBelleAurore.ttf

• ofl/leaguescript/LeagueScript-Regular.ttf

• ofl/leckerlione/LeckerliOne-Regular.ttf

• ofl/marckscript/MarckScript-Regular.ttf

51



• ofl/meddon/Meddon.ttf

• ofl/monsieurladoulaise/MonsieurLaDoulaise-Regular.ttf

• apache/montez/Montez-Regular.ttf

• ofl/mrdafoe/MrDafoe-Regular.ttf

• ofl/mrdehaviland/MrDeHaviland-Regular.ttf

• ofl/mrssaintdelafield/MrsSaintDelafield-Regular.ttf

• ofl/niconne/Niconne-Regular.ttf

• ofl/norican/Norican-Regular.ttf

• ofl/pacifico/Pacifico-Regular.ttf

• ofl/parisienne/Parisienne-Regular.ttf

• ofl/petitformalscript/PetitFormalScript-Regular.ttf

• ofl/pinyonscript/PinyonScript-Regular.ttf

• ofl/qwigley/Qwigley-Regular.ttf

• ofl/reeniebeanie/ReenieBeanie.ttf

• apache/rochester/Rochester-Regular.ttf

• ofl/rougescript/RougeScript-Regular.ttf

• ofl/sacramento/Sacramento-Regular.ttf

• apache/satisfy/Satisfy-Regular.ttf

• ofl/tangerine/Tangerine-Regular.ttf

• ofl/vibur/Vibur-Regular.ttf

• apache/yellowtail/Yellowtail-Regular.ttf

• ofl/yesteryear/Yesteryear-Regular.ttf

• ofl/zeyada/Zeyada.ttf
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