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patience and for getting me back on track, whenever I delved into irrelevant
details.
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this work we present an analysis of image registration techniques and similarity
metrics inspired by the focus operators used in autofocus and shape-from-focus.
Their performance has been evaluated using a series of experiments that tested
their various properties on a novel data set obtained in cooperation with the re-
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Introduction
Nuclear power plants go through regular temporary shutdowns, during which,
among other things, a visual inspection of fuel takes place. This is necessary to
meet the design criteria of the fuel, which ensures their safe operation. Failure
to detect a serious defect can lead to an unplanned shutdown of the reactor and
could cause great financial damage as well as the release of radioactivity. During
the inspection, mainly nuclear fuel assemblies are examined in order to assess
their condition. In a light-water reactor, the fuel assembly (FA) is a cluster
of long cylindrical fuel rods held together in a specific shape by spacer grids.
They are scanned underwater using a camera remotely controlled by an operator.
Previously, due to the complexity of the tests, these videos were mostly hand-
checked by experts in a short time window. This is obviously very inefficient and
error-prone.

The first step towards automation of the process has been done by Knotek[1]
in 2020, who developed a procedure for the stitching of video frames into a one-
image-overview (OIO) of a fuel assembly. This speeded up and streamlined the
work of the inspectors. This approach, however, is lacking in image registration.
In this work, we will focus on the possibility of automating the accurate compar-
ison of these images in time, a task that would have previously been extremely
time consuming to do by hand.

The implementation of the registration of images of nuclear fuel assemblies
would make it possible to quickly and automatically compare OIOs obtained at
different times with an accuracy down to the level of a few pixels. That would
make it possible to examine which parts of the FA or positions in the reactor
are more prone to defects and to track their evolution over time. In addition,
the ability to register two images of the same FA from the same video would
allow them to be more accurately stitched together and unlock the possibility to
measure other useful properties.

Our goal is to solve the OIO registration and as the first steps (solved in this
thesis) we identify:

1. Analyze the properties of images of nuclear fuel assemblies and how that
can affect their registration.

2. Design and validate a framework for the evaluation of the quality of their
registration.
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1. Problem Analysis

1.1 Fuel Assembly
In a light-water reactor, the nuclear fuel assembly (FA) is a bundle of a few
hundred fuel rods held together in a predetermined shape by multiple spacer
grids. A fuel rod is a long thin tube containing the actual nuclear fuel. A spacer
grid is a divider that holds the fuel rods at a specific distance from each other
and prevents them from moving and bending. The FA is approximately 4 metres
tall with the spacer grids placed dozens of centimeters apart. The rods are about
1 centimeter in diameter and the grids are less than 5 centimeters tall. The FA
can be made of different metals and alloys but it generally is visually similar to
stainless steel when new, but when used in a reactor it is subject to oxidation
and surface defects, becoming darker, less reflective and getting covered with a
matte map. In addition, during their performance in the reactor, debris may get
stuck on the spacer grids and the rods may start to bend.

The FA is recorded underwater using a camera controlled by an operator,
while moving along it with a point light. The acquired images are then blended
into one large image using the method developed by Knotek[1], which is discussed
in more detail in Section 1.4. This includes some pre-processing steps that make
sure the image is verticalized, that is, that the rods are mostly perpendicular to
the ground. This OIO is very useful for nuclear experts, who can quickly analyze
it and obtain various useful information about the state of the FA.

We carried out our experiments in cooperation with the Research Centre ŘEŽ
(CVR). The power plant environment was emulated as closely as possible with
some notable differences. We used a shortened VVER-1000 FA mock-up that is
only 125 centimeters tall and has the fuel rods arranged in a hexagonal shape.
For some experiments we used a tube light instead of a point light to increase the
general brightness and detail of the images. The camera moved independently
along a preset path.

In the final image of one side of the assembly, viewed perpendicularly from
the front, there are 7 to 11 visible vertical rods and several horizontal grids. A
second row of rods is visible in between the rods in the front row. It is generally
darker but can still create reflections. The spacer grid is mostly flat with some
markings and inscriptions and slopes towards the back at the top and bottom
edges forming teeth-like shapes in between the rods. The usual image size is
around 1400 pixels in height and 600 pixels in width. An example image can be
seen in Figure 1.1.

1.2 Image Registration
Image registration is a problem of aligning two or more images of the same ob-
ject or scene. The images are usually taken at a different time, from a different
angle, or by a different sensor, which causes them to differ. The usual approach
is to choose a common coordinate space for both images and to search for a
transformation in that space that aligns their points as closely as possible. Com-
monly considered transformations include rotation and shift, the so-called rigid
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(a) Tube lighting (b) Point lighting

Figure 1.1: Images of FAs with lighting conditions

transformation, but also affine, projective or even more complex transformations.
The classic dilemma with choosing the proper transformation comes from bal-
ancing between minimizing the number of unknown parameters while preserving
accuracy and staying as close to reality as possible.

Registration methods depend on the nature of the considered images but
are usually classified as either area-based or feature-based[2]. One of the area-
based methods often used in medical applications is based on selecting an ad-hoc
similarity metric and using an optimization algorithm to estimate the optimal
transformation by minimizing that metric[3]. Multiple great overviews and sur-
veys have been published describing the contemporary methods and approaches
in greater detail[2, 4, 5].

Due to the sensitivity of the data, not many articles have been published on
applied nuclear fuel image processing, albeit with a few exceptions[6, 7]. More-
over, to our knowledge, there is no published research in the field of registration
of images of nuclear fuel.
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1.3 Fuel Assembly Registration
In our case, the registration task has it’s specific constraints and difficulties. The
goal is to register two images of FA, which can be the final OIO, parts of it, or
just two raw frames from a video obtained as described in section 1.1.

Such images don’t differ in rotation significantly - for OIOs, the difference
isn’t greater than a few degrees and in the video frames, the camera is some-
times tilted and may rotate slightly during the recording but, according to the
data we gathered, the difference doesn’t exceed ±7.8° from the ideal position.
Additionally, the scale of the most images is very similar because the screening
configuration does not change very much. The difference is mostly less than one
percent.

The main disparity is caused by shift, with the vertical component being more
significant than the horizontal one. The variance can amount to a few tens of
pixels in both directions.

Images taken with modern cameras are affected by radial distortion. That
means that the sides of the video frames are deformed and don’t align perfectly
with the previous and subsequent frames making the sides of the final OIOs
blurrier than the center.

More variations that need to be taken into account but not eliminated during
registration are different lighting conditions, rod bending and often different sur-
face defects, which can develop over time. The latter can be especially significant
when registering an image of a new shiny FA and of an older more oxidized one.

Images of nuclear FAs have some unique properties that a registration algo-
rithm can take advantage of. The spacer grids form a large flat area with very
uniform intensity. It’s bottom and especially top segment is well defined by a
noticeable change in brightness. Their teeth along the upper and lower edges
are visually separated from the fuel rods underneath, but the transition is quite
blurry. The fuel rods also have a similar brightness over their whole surface, but
this is significantly thrown off by surface defects and, in addition, due to their
round shape, their brightness decreases towards the edges where it fades to dark.
The second row of rods is much darker but produces a thin and bright reflection
stretching vertically along their entire length. Excessive local oxidation, a type
of surface defect, and debris trapped at the edges of the spacer grids also form
areas of uniform intensity and very prominent edges.

Typically, the horizontal cross-section of intensities is almost constant in the
grid areas, while at the rod areas it resembles a periodic function with wider
round peaks corresponding to the rods and is some cases with tall narrow peaks
in between where a reflection of the second row of rods is. The vertical cross-
section is then mostly constant with high-intensity plateaus in the area of the
grids.

These properties depend significantly on the type of lighting that was used
in their acquisition. Images with tube lighting are less contrasting, more de-
tailed, and the reflections are less pronounced. On the contrary, images with
point lighting have a higher contrast and more intensive reflections. This is well
demonstrated in Figure 1.1 on the example of the spacer grid teeth, which are
clearly visible under tube lighting, but which are almost imperceptible under a
point light.
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1.4 Current method
The method developed by Knotek[1] uses a form of registration to properly align
frames before blending them into a single OIO. This is done in two steps. First,
the rotation is determined by finding lines in the central diamond cutout of each
frame using the Canny edge detector and a subsequent Hough transform. A me-
dian of the line angles is used. Second, after the images are correctly verticalized,
their horizontal shift is selected as the maximum of convolution of the overlapping
bands. The vertical shift is constant and is calculated from a manually inserted
vertical camera speed parameter.

This approach works well for creating OIOs that are visually examined, but
has a limited accuracy, results in blurry edges and cannot be directly used to
register two different OIOs. In addition, it’s quite slow and relies on some as-
sumptions that might not always be valid. Most notably, the same angle and
vertical shift is used for all frames. Instead, we are looking for a more general
solution with up to sub-pixel accuracy that could be applied to more use cases
and that can handle more complex transformations.

1.5 Registration as an Optimization Problem
Because there aren’t any obvious distinctive features that would be stable in time
and invariant to the aforementioned transformations and that could be used in
feature-based methods, we instead opted for using area-based methods. These
generally work with a similarity (or a dissimilarity) metric that is maximized (or
minimized). This is a multidimensional optimization problem, where the variables
are the parameters of the expected transformation.

Selecting a similarity metric is not trivial as its properties dictate the opti-
mization algorithms that can be used. We want to be able to find the maximum of
the metric efficiently and therefore its values must increase monotonically towards
its maximum, which in turn should be as close as possible to the real optimum.
A more thorough analysis is presented in the next chapter.
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2. Similarity metrics
We are looking for a function that evaluates the transformation parameters and
quantifies the similarity of the registered images. By doing that, it implicitly de-
fines the optimum transformation, which, if the function has suitable properties,
can be found iteratively and effectively[8]. Moreover, because there is no ground
truth in a real world application, if there is a similarity metric that can faithfully
measure the quality of registration, then any registration algorithm that does not
minimize that metric will always produce worse results.

Such a function can be designed in a number of ways, but we decided to
investigate functions that can produce a global estimate of image quality, in our
case of a blend of two transformed images. Given a 2-D gray-scale blended image,
they should return a single real value assessing the accuracy of the fit of the two
blended images. An extra benefit of such functions is that they can be used
to evaluate the original images directly and to quantify the relative decrease in
quality compared to the blended image.

To our knowledge, no one has yet attempted to apply such functions to the
evaluation of the quality of blended images of nuclear fuel or similar objects.
Because of that, we chose to look to other fields for inspiration. Intuitively, a
sub-optimal registration fit will introduce blur and reduce the sharpness of the
result. This is somewhat similar to finding the right focus distance in a digital
camera or a microscope where an incorrect focus distance results in a blurry
image. In addition, for both problems, solutions that are close to the optimum
produce a lower amount of blur compared to solutions that are further away.

The so-called focus measures or operators have been studied thoroughly for
use in shape-from-focus and autofocus problems. We can therefore build on the
rich research in the aforementioned fields and try to apply these metrics to our
use case.

2.1 Criteria
For each metric we study the following criteria:

Accuracy measures the true error, i.e. how far the maximum of the metric is
from the real optimum. In practice it is very difficult to measure as it requires a
ground truth or a gold standard as a baseline.

Precision shows the granularity at which the metric is able to operate, both
in terms of the range of values around the maximum but also the step size. In
the context of shift, this would be quantified in pixels or their fractions and for
rotation it would be degrees or minutes.

Robustness is a property of metrics that behave similarly for similar inputs.
In other words, if we alter the input images slightly, the optimum should still be
roughly the same.
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Reliability means that a metric should behave predictably for all reasonable
inputs. There shouldn’t be a credible input for which the metric completely fails.

Algorithm complexity and derived computation time should be reasonably
low so that it can be used in real time or on a large number of samples.

2.2 Selection of metrics
Well over a few dozen focus measures or operators have been mentioned in the
scientific literature. To select a smaller number of relevant ones, we performed
several preliminary experiments and excluded metrics that worked poorly or that
were very computationally expensive. Some functions formed natural groups that
exhibited very similar behavior. In such cases, we picked the most general and/or
the most promising representative from each.

There are several more sophisticated measures based on the way humans per-
ceive blur[9, 10, 11] or methods based on deep convolutional neural networks[12]
but we decided against using them because they combine other simpler measures,
use non-generalizable heuristics or are uninterpretable. We prefer the ones that
use the specific properties of the images that we study.

In the following list we use the 6 categories proposed by Petruz et al.[13]. The
gray level intensity value of a pixel with coordinates [i, j] is denoted as I(i, j).
The width and height of the image are marked as W × H.

2.2.1 Gradient-based
Metrics in this group use the first derivative of the image to measure the amount
and sharpness of edges. The assumption is that blurrier images have less promi-
nent and a lower number of intensity peaks.

1. Absolute gradient[14]

ϕ =
∑︂

i

∑︂
j

max(|Ix(i, j)|, |Iy(i, j)|) (2.1)

where Ix and Iy are the first horizontal and vertical derivatives of the image
respectively.
In the literature, a threshold is sometimes used to only select some values
that are higher. We decided to omit it, because its correct selection is non-
trivial and poorly generalizable. In addition, the original implementation
by Jarvis[14] took into account only horizontal derivatives but we took
inspiration from the later work of Santos et al.[15] to select the maximum
of derivatives from both directions.

2. Tenengrad[16, 17]

9



ϕ =
∑︂

i

∑︂
j

(I ∗ Sx)2(i, j) + (I ∗ Sy)2(i, j), (2.2)

Sx =

⎡⎢⎣+1 0 −1
+2 0 −2
+1 0 −1

⎤⎥⎦ , Sy =

⎡⎢⎣+1 +2 +1
0 0 0

−1 −2 −1

⎤⎥⎦
where ∗ denotes a 2-D convolution with the Sobel operators.
As in the previous case, a threshold was originally used, but for the same
reasons we did not use it here either.

2.2.2 Laplacian-based
Similarly to the previous group, metrics in this one measure the amount of edges
in an image. Laplacian, the second derivative operator, works as a high spatial
frequency pass filter.

3. Variance of Laplacian[18]

ϕ = 1
W × H

∑︂
i

∑︂
j

(L(i, j) − L)2, (2.3)

L = I ∗

⎡⎢⎣0 1 0
1 −4 1
0 1 0

⎤⎥⎦
where L is the Laplacian of the image obtained by convolution with the
Laplacian mask and L is it’s mean value.

4. Modified Laplacian[19]

ϕ =
∑︂

i

∑︂
j

Lm(i, j), (2.4)

Lm =
⃓⃓⃓⃓
I ∗

[︂
−1 2 −1

]︂ ⃓⃓⃓⃓
+

⃓⃓⃓⃓
I ∗

[︂
−1 2 −1

]︂T
⃓⃓⃓⃓

where ∗ denotes a 2-D convolution. An alternative definition of the Lapla-
cian Lm is used to ensure that the horizontal and vertical gradients don’t
cancel each other out if they have opposite signs.
The first implementation

2.2.3 Statistics-based
Global image statistics such as contrast or the image histogram can also be used
as texture descriptors to measure the sharpness of the image.
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5. Normalized gray-level variance[15]

ϕ = 1
H × W × I

∑︂
i

∑︂
j

(I(i, j) − I)2 (2.5)

where I is the mean gray level intensity. The normalization in addition to
the original gray-level variance[20] is done to compensate for the difference
in average intensity among different images.

6. Mason and Green’s histogram method[21, 20]

ϕ =
∑︂
k>T

Hk(k − T ) (2.6)

where Hk denotes the number of pixels with intensity k in the image his-
togram and T is a threshold calculated as

δ(i, j) = 2
(︂
I(i, j − 1) − I(i, j + 1)

)︂2
+ 2

(︂
I(i − 1, j) − I(i + 1, j)

)︂2

+
(︂
I(i − 1, j − 1) − I(i + 1, j + 1)

)︂2
+

(︂
I(i − 1, j + 1) − I(i + 1, j − 1)

)︂2
,

T =
∑︁

i

∑︁
j δ(i, j)I(i, j)∑︁
i

∑︁
j δ(i, j)

2.2.4 Wavelet-based
Coefficients of the discrete wavelet transform describe the frequency and spatial
content of an image. Their statistical properties in the high frequency subbands
can be leveraged to measure sharpness. It should be noted that metrics in this
group are significantly more computationally intensive.

7. Variance of wavelet coefficients[22]

ϕ = 1
W × H

[︃ ∑︂
i

∑︂
j

(WLH1(i, j) − WLH1)2

+
∑︂

i

∑︂
j

(WHL1(i, j) − WHL1)2

+
∑︂

i

∑︂
j

(WHH1(i, j) − WHH1)2
]︃

(2.7)

where WLH1, WHL1 and WHH1 denote the three detail level-1 sub-bands
in the wavelet transform images and WLH1, WHL1 and WHH1 denote their
respective mean values. Following Yang and Nelson[22], we use single level
discrete wavelet transform with Daubechies 6 filters.
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2.2.5 DCT-based
The discrete cosine transformation gives a representation of an image in the spa-
tial frequency domain. It’s coefficients strongly correspond to the image contents.
The sum of the AC (non-constant) components of the DCT is equal to the vari-
ance of the image intensity[23]. An advantage of this approach is that DCT is
very often used in image and video compression and specialized hardware and
algorithms can be utilized for it’s computation.

8. DCT reduced energy ratio[24]

ϕ =
∑︂ F (0, 1)2 + F (1, 0)2 + F (2, 0)2 + F (1, 1)2 + F (0, 2)2

F (0, 0)2 (2.8)

where F (u, v) is the discrete cosine transform coefficient of an 8 × 8 sub-
block of the image calculated as

F (i, j) = 1
4CiCj

7∑︂
x=0

7∑︂
y=0

I(x, y) cos
⎛⎝(2x + 1)iπ

16

⎞⎠ cos
⎛⎝(2y + 1)jπ

16

⎞⎠,

Ci =
⎧⎨⎩

1√
2 , if i = 0

1, otherwise
, Cj =

⎧⎨⎩
1√
2 , if j = 0

1, otherwise

This is a faster and improved version of the original DCT energy ratio[25]
which uses all of the 63 AC coefficients.

2.2.6 Miscellaneous
Finally, some metrics do not fit into any of the previous categories and are there-
fore merged into this last group.

9. Brenner’s method[26, 20]

ϕ =
∑︂

i

∑︂
j

max(|I(i, j) − I(i + 2, j))|, |I(i, j) − I(i, j + 2)|)2 (2.9)

Just like in the case of Absolute gradient, the original definition by Bren-
ner[26] took into account only horizontal differences two pixels away but as
Santos et al.[15] later noted, it improves the results significantly if the max-
imum from both the vertical and horizontal directions is used.

10. Vollath’s autocorrelation[27]

ϕ =
∑︂

i

∑︂
j

I(i, j)I(i + 1, j) −
∑︂

i

∑︂
j

I(i, j)I(i + 2, j) (2.10)
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2.3 Implementation
In preliminary experiments, we found that some implementation details can have
a significant effect on the metric performance. To our knowledge, this isn’t com-
monly discussed in literature but we consider it important.

All our code was written in Python. Most implementations are based on
numpy[28] and opencv[29]. The discrete wavelet transform implementation comes
from the pywavelets[30] library. The discrete cosine transform implementation
and some utility methods are from scipy[31].

We found that for some metrics, the handling of image borders has a mean-
ingful influence. The image borders can be perceived as edges and create artificial
gradients. To avoid this problem, in the case of the Lapacian-based and DCT-
based metrics as well as the Brenner’s method, we simply discarded the pixels
on the edges that might not contain valid data. This has proven to be the most
stable solution.

In addition, some metrics, as defined by their authors, transform the two-
dimensional array of image intensities into another two-dimensional array of val-
ues. But then it may not be clear how to aggregate them. We decided to simply
sum the values, which is slightly faster than computing their average with similar
results.

As we are interested in precision on the level of fractions of pixels and rotated
images usually don’t align to the pixel grid, it is necessary to consider some form
of interpolation. We therefore tried different interpolation methods on different
scenarios. The considered methods were linear, cubic and the Lanczos interpola-
tion on a 8x8 pixel neighbourhood as they are commonly available and relatively
fast.

Finally, it should be mentioned that the speed of computation is highly de-
pendent on the specific software implementation, the hardware it is executed on
and the image data itself. Even though there are considerable differences be-
tween them, all calculations run in less than 100 milliseconds on our test data
and common hardware. We believe that virtually all of the tested metrics can be
re-implemented to execute faster, so further analysis of their computation time
seems unnecessary.
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3. Experiments

3.1 Data set
Because real data from nuclear power plants are subject to strict safety rules and
cannot be published, we had to create a new artificial data set. All our mea-
surements were performed in the CVR laboratory using a similar setup described
by Knotek[1], using a water tank and a custom-made camera-stand. We tried to
mimic the real data as much as possible, but the clarity of the images is likely a
bit higher, especially when using tube lighting.

We prepared six different configurations of the FA mock-up, which simulate its
gradual aging. In the first configuration, the FA consists of new shiny rods that
are perfectly straight. In the subsequent configurations, the rods are replaced
with older, matte rods with increasing number of artificially simulated defects.
These are gradually larger oxides imitated by a white marker and minor rod
bending imitated by the insertion of small metal objects between adjacent rods.
In all cases, there are two visible spacer grids placed half a meter apart.

For each configuration we captured two underwater videos using a Olympus
IM005 camera, one with tube and one with point lighting. In each video, the
camera captures the FA first as it moves from top to bottom and then from
bottom to top. The procedure for creating OIOs can work with either direction
and this allows us to select the one with better result. This way we ended up
with twelve videos covering the whole FA twice from which we constructed twelve
OIOs, pairs of which are of the same FA in different lighting conditions. The
resulting data set can be seen in Figure 3.1.

The amount of samples is relatively small because they are very time consum-
ing to produce and we had access to only a limited number of different components
that make up the nuclear fuel assembly. Even so, we believe the new data set is
sufficient for our purposes.

3.2 Setup
The purpose of our experiments was to evaluate the metric criteria outlined in
section 2.1 in order to compare them. But that turned out not to be straightfor-
ward. Just like in real data, it is not possible to obtain ground truth, nor is it
possible to do manually with our artificial data, because by blending consecutive
frames, the edges are blurred and it is not possible to visually determine where
the edge starts and where it ends. This is also true for other parts of the image
and can be observed after zooming in in Figure 3.2.

To work around this, we utilized auto-registration, which means that the
image is registered with itself. In this way, the ground truth is obvious and we
can observe the metric behavior by adding artificial transformations with full
control of its parameters. The considered transformations were the following as
these are the most prominent in real data.
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Figure 3.1: The final data set

Shift in both vertical and horizontal directions. We experimented with a small
range of [−2, 2] pixels with interpolated values for each 1

10 of a pixel in between,
a medium range of [−10, 10] pixels with extra interpolated values in the middle
between each two pixels and a large [−100, 100] range with no interpolation.

Rotation around the center of the image. As this is a very invasive transfor-
mation, the valid extent of the image is reduced by tens or hundreds of pixels, we
only considered a smaller and a larger range of [−1, 1] and [−7, 7] degrees with
steps of size 0.01 and 0.1 respectively.

For each of the transformations above, we first observed the behavior of the
metric when changing a single parameter. It can also be worthwhile to study them
jointly, which is quite straightforward for horizontal and vertical shift, but also
for rotation and horizontal shift as it is done in the current method by Knotek[1]
as described in section 1.2.

Because auto-registration itself is not very representative of reality, in further
experiments we added different variants of noise that are present in the real
data. The most obvious choice was additive Gaussian noise with varying levels
of intensity as it is common in modern cameras. Another type of noise that we
experimented with adding that commonly occurs in real data is the presence of
another transformation, rotation, or radial distortion that is not currently being
solved, to the effect of which the metrics are to be invariant. Last but not least,
it is desirable that the metrics work both on the whole image and its parts, and
therefore we also applied the experiments to a top, bottom and a middle cutout
of the data set images.
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Figure 3.2: A close up of the blurry edge

The actual experiments were carried out by applying the artificial transfor-
mation to the image, blending it with the original unchanged image, optionally
adding some noise and calculating the metric value. Some transformations reduce
the extent of the image that contains valid data, so both blended images must
be cropped first.

This way we ended up with a baseline and three additional noise configura-
tions. In each configuration we tested vertical and horizontal shift and rotation
on several different value ranges. Each experiment was run for all three different
interpolation methods. The testing sample was 48 images from the average of
which we obtained the final values.
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4. Results
For each of the experiments, we have measured the criteria that were outlined in
Section 2.1.

Accuracy was measured as the distance of the metric global maximum to the
ground truth, which in the case of auto-registration is zero. More specifically,
we’re taking the average distance measured over all samples. It follows that the
value, denoted in the table as “acc”, can only be positive and that it is desirable
that it is as low as possible and ideally zero.

Precision is given by the size of the range of values around the metric global
maximum where it is strictly monotonically decreasing. The minimum of both
directions, towards −∞ and towards ∞, is used and then averaged over all sam-
ples. Unlike accuracy, for precision, denoted in the table as “prec”, a value as
high as possible is desired, ideally spanning the whole range of values. The value
can again be only positive.

Robustness is reflected by how much the metrics performance deteriorates
with the introduction of noise. It is not quantified in the tables by a specific
number, but rather expressed by the change in accuracy and precision between
sections 4.1 Baseline and 4.2 Noise.

Reliability is shown by on how many of the data set samples the metric behaves
expectantly. Again, it is not quantified in the following tables, but it directly
affects accuracy and precision.

Because any interpolation method wasn’t decisively better in all scenarios,
we’ve ran each experiment separately with each method to find the right combi-
nation of metric and interpolation method for each use case.

The complete results are part of Appendix A. Here we only present the overall
results that are relevant to the following discussion.

4.1 Baseline
To get an idea of how the metrics behave in an ideal setting, we tested their
performance on transformations without further difficulties. While this is very
far from the real application, it gives us a baseline to compare the subsequent
experiments to.
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Vertical shift
[-2,2] [-10,10] [-100,100]

acc prec acc prec acc prec
Linear

1 0.0 2.0 0.0 5.14 1.79 63.12
2 0.0 1.77 0.0 7.91 0.0 89.6
3 0.0 1.79 0.0 2.67 0.0 45.1
4 0.0 1.5 0.0 1.5 0.0 2.06
5 0.04 1.33 0.06 7.82 4.02 71.48
6 0.75 0.09 3.25 0.44 46.46 14.06
7 0.0 1.65 0.0 2.58 0.0 41.31
8 0.17 1.02 0.33 7.4 10.56 56.15
9 0.0 1.79 0.0 8.06 0.0 91.46
10 0.0 1.73 0.02 4.56 23.83 7.65

Cubic
1 0.2 0.2 0.01 7.95 1.79 63.12
2 0.21 1.22 0.02 9.6 0.0 89.6
3 0.0 1.83 0.0 4.1 0.0 45.1
4 0.1 0.1 0.0 1.54 0.0 2.06
5 0.32 0.95 0.21 9.67 4.02 71.48
6 0.75 0.08 3.25 0.44 46.46 14.06
7 0.0 1.56 0.0 4.36 0.0 41.31
8 0.43 1.19 0.68 9.24 10.56 56.15
9 0.2 1.01 0.03 9.66 0.0 91.46
10 0.29 0.53 0.17 5.19 23.83 7.65

Lancosz
1 0.21 0.21 0.05 7.82 1.79 63.12
2 0.01 1.99 0.0 9.98 0.0 89.6
3 0.0 1.78 0.0 4.24 0.0 45.1
4 0.16 0.16 0.0 1.5 0.0 2.06
5 0.13 1.83 0.09 9.89 4.02 71.48
6 0.75 0.06 3.21 0.51 46.46 14.06
7 0.37 1.03 0.59 4.32 0.0 41.31
8 0.25 1.75 0.39 9.58 10.56 56.15
9 0.03 1.97 0.0 10.0 0.0 91.46
10 0.29 1.22 0.05 5.94 23.83 7.65

Table 4.1: Baseline vertical shift results
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Horizontal shift
[-2,2] [-10,10] [-100,100]

acc prec acc prec acc prec
Linear

1 0.0 2.0 0.0 4.01 0.0 4.71
2 0.0 2.0 0.0 4.31 0.0 5.48
3 0.0 1.98 0.0 2.75 0.0 3.0
4 0.0 1.98 0.0 2.65 0.0 2.96
5 0.0 1.87 0.0 9.43 0.0 19.1
6 1.52 0.08 5.11 0.69 48.5 4.71
7 0.0 1.86 0.0 2.32 0.0 2.02
8 0.29 0.94 0.04 6.26 12.94 17.81
9 0.0 2.0 0.0 4.27 0.0 5.33
10 0.0 1.91 0.0 7.17 0.0 26.75

Cubic
1 0.18 0.25 0.05 4.25 0.0 4.71
2 0.1 1.17 0.0 4.74 0.0 5.48
3 0.0 2.0 0.0 2.78 0.0 3.0
4 0.11 0.11 0.0 2.72 0.0 2.96
5 0.24 0.55 0.11 9.84 0.0 19.1
6 1.52 0.03 5.28 1.41 48.5 4.71
7 0.01 1.93 0.0 2.17 0.0 2.02
8 0.49 1.26 0.35 8.9 12.94 17.81
9 0.1 0.97 0.0 4.74 0.0 5.33
10 0.18 1.27 0.01 9.89 0.0 26.75

Lancosz
1 0.1 0.79 0.0 4.47 0.0 4.71
2 0.0 2.0 0.0 4.96 0.0 5.48
3 0.0 1.94 0.0 2.78 0.0 3.0
4 0.12 0.12 0.0 2.75 0.0 2.96
5 0.01 1.99 0.01 9.99 0.0 19.1
6 1.51 0.06 5.25 0.92 48.5 4.71
7 0.17 1.83 0.8 1.91 0.0 2.02
8 0.33 1.67 0.14 9.21 12.94 17.81
9 0.0 2.0 0.0 4.95 0.0 5.33
10 0.0 2.0 0.0 10.0 0.0 26.75

Table 4.2: Baseline horizontal shift results
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Rotation
[-1,1] [-7,7]

acc prec acc prec
Linear

1 0.0 0.92 0.0 3.74
2 0.01 0.91 0.0 3.17
3 0.01 0.49 0.01 0.86
4 0.0 0.68 0.0 0.9
5 0.0 0.43 0.0 5.16
6 0.18 0.01 0.61 0.17
7 0.1 0.05 0.05 0.29
8 0.39 0.07 0.43 0.3
9 0.01 0.91 0.0 3.19
10 0.01 0.6 0.39 3.13

Cubic
1 0.05 0.3 0.05 2.37
2 0.04 0.37 0.01 2.7
3 0.04 0.47 0.02 0.68
4 0.02 0.24 0.01 0.7
5 0.06 0.1 0.03 4.05
6 0.18 0.01 0.65 0.18
7 0.13 0.09 0.09 0.22
8 0.41 0.05 0.45 0.31
9 0.04 0.49 0.01 2.85
10 0.11 0.1 0.3 0.83

Lancosz
1 0.03 0.42 0.02 2.79
2 0.01 0.93 0.0 3.2
3 0.05 0.34 0.04 0.58
4 0.03 0.26 0.02 0.66
5 0.01 0.48 0.0 5.2
6 0.18 0.01 0.65 0.19
7 0.2 0.08 0.26 0.17
8 0.4 0.06 0.45 0.3
9 0.01 0.93 0.0 3.2
10 0.08 0.41 0.36 1.87

Table 4.3: Baseline rotation results

4.2 Noise
In order to bring the experiments closer to reality, we have supplemented the base-
line auto-registration with various other difficulties. Although they are largely
artificial, their influence corresponds to reality.
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4.2.1 Additive white Gaussian noise
In the case of white noise, the performance of metrics depends very much on its
intensity. Therefore, the most telling thing is to choose an amount that is similar
to the one that normally occurs in images taken with modern cameras. In the
following experiments, we fixed the noise parameters to the mean of 0 and the
standard deviation to 15. The noise was sampled independently for both the
original and the transformed image and, after it was added, the intensity values
were clamped to the original [0, 255] range.

Vertical shift with white noise
[-2,2] [-10,10] [-100,100]

acc prec acc prec acc prec
Linear

1 0.44 0.14 0.64 0.82 2.38 2.19
2 0.24 0.16 0.17 2.44 0.21 6.54
3 0.71 0.13 3.27 0.69 16.5 1.44
4 0.73 0.13 2.91 0.66 9.56 1.4
5 0.38 0.14 0.52 1.86 4.25 20.75
6 1.59 0.09 4.95 0.68 53.06 1.73
7 0.66 0.13 3.17 0.69 9.12 1.27
8 0.55 0.13 0.99 0.77 11.19 3.6
9 0.23 0.15 0.27 1.78 0.4 5.46
10 0.16 0.15 0.27 1.49 23.15 2.81

Cubic
1 0.52 0.14 0.62 0.8 2.38 2.19
2 0.32 0.14 0.36 2.79 0.21 6.54
3 0.68 0.13 3.2 0.71 16.5 1.44
4 0.7 0.13 2.97 0.65 9.56 1.4
5 0.4 0.13 0.55 1.98 4.25 20.75
6 1.44 0.05 4.91 0.73 53.06 1.73
7 0.71 0.14 3.19 0.7 9.12 1.27
8 0.59 0.13 0.97 0.77 11.19 3.6
9 0.3 0.12 0.34 2.22 0.4 5.46
10 0.27 0.12 0.4 2.3 23.15 2.81

Lancosz
1 0.54 0.14 0.66 0.79 2.38 2.19
2 0.3 0.14 0.29 3.44 0.21 6.54
3 0.68 0.13 3.2 0.69 16.5 1.44
4 0.71 0.13 2.97 0.65 9.56 1.4
5 0.38 0.13 0.52 2.56 4.25 20.75
6 1.2 0.07 5.1 0.7 53.06 1.73
7 0.76 0.15 3.3 0.7 9.12 1.27
8 0.58 0.13 0.97 0.8 11.19 3.6
9 0.29 0.13 0.32 2.3 0.4 5.46
10 0.29 0.13 0.34 2.41 23.15 2.81

Table 4.4: White noise vertical shift results
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Horizontal shift with white noise
[-2,2] [-10,10] [-100,100]

acc prec acc prec acc prec
Linear

1 0.07 0.45 0.03 3.34 0.02 4.15
2 0.0 1.06 0.0 4.23 0.0 4.83
3 0.19 0.16 0.58 1.42 7.5 2.38
4 0.14 0.22 0.41 1.8 7.38 2.56
5 0.03 0.72 0.0 9.41 0.0 18.6
6 1.95 0.03 4.01 1.41 35.08 5.67
7 0.12 0.31 0.49 1.69 7.75 1.96
8 0.32 0.2 0.08 4.95 12.94 15.83
9 0.0 0.94 0.01 4.11 0.0 4.73
10 0.34 0.13 0.34 1.1 1.67 3.46

Cubic
1 0.19 0.17 0.08 3.56 0.02 4.15
2 0.1 0.26 0.01 4.48 0.0 4.83
3 0.32 0.12 0.59 1.69 7.5 2.38
4 0.28 0.14 0.52 2.09 7.38 2.56
5 0.2 0.14 0.09 9.66 0.0 18.6
6 1.93 0.01 3.85 2.19 35.08 5.67
7 0.16 0.17 0.58 1.8 7.75 1.96
8 0.41 0.14 0.34 7.72 12.94 15.83
9 0.13 0.21 0.02 4.27 0.0 4.73
10 0.38 0.13 0.48 1.34 1.67 3.46

Lancosz
1 0.16 0.22 0.07 3.49 0.02 4.15
2 0.06 1.2 0.01 4.61 0.0 4.83
3 0.24 0.12 0.66 1.62 7.5 2.38
4 0.24 0.14 0.49 1.91 7.38 2.56
5 0.1 0.5 0.02 9.98 0.0 18.6
6 1.88 0.01 3.97 2.19 35.08 5.67
7 0.23 0.17 0.57 1.7 7.75 1.96
8 0.41 0.13 0.24 8.42 12.94 15.83
9 0.08 0.92 0.02 4.33 0.0 4.73
10 0.36 0.12 0.41 1.48 1.67 3.46

Table 4.5: White noise horizontal shift results
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Rotation with white noise
[-1,1] [-7,7]

acc prec acc prec
Linear

1 0.01 0.03 0.01 2.76
2 0.01 0.14 0.0 2.35
3 0.1 0.01 0.99 0.25
4 0.04 0.01 0.02 1.86
5 0.01 0.05 0.0 4.23
6 0.24 0.01 0.29 0.16
7 0.1 0.02 0.7 0.25
8 0.4 0.01 0.43 0.27
9 0.01 0.13 0.01 2.42
10 0.03 0.02 0.35 0.52

Cubic
1 0.04 0.02 0.04 2.57
2 0.04 0.01 0.01 2.05
3 0.11 0.01 0.8 0.25
4 0.06 0.01 0.05 1.92
5 0.05 0.01 0.04 3.94
6 0.26 0.01 0.38 0.19
7 0.12 0.01 0.43 0.21
8 0.41 0.01 0.46 0.3
9 0.04 0.01 0.01 2.09
10 0.11 0.01 0.28 0.36

Lancosz
1 0.03 0.01 0.03 2.58
2 0.02 0.05 0.0 2.38
3 0.1 0.01 0.63 0.26
4 0.07 0.02 0.05 1.8
5 0.02 0.01 0.01 4.22
6 0.27 0.01 0.31 0.18
7 0.15 0.01 0.58 0.16
8 0.41 0.01 0.44 0.2
9 0.02 0.04 0.01 2.4
10 0.08 0.02 0.39 0.46

Table 4.6: White noise rotation results

4.2.2 Radial distortion
Radial distortion can be parameterized in various ways, but we decided to use
the common Brown’s distortion model[32]. It works with an infinite number of
coefficients and also takes into account tangential distortion, but for our purposes
it was sufficient to use only the first coefficient of radial distortion k1, which was
set to 0.25. For our hypothetical camera, we set the optical center to the center
of the image and the focal length to twice the size of the image.
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Vertical shift with distortion
[-2,2] [-10,10] [-100,100]

acc prec acc prec acc prec
Linear

1 0.0 1.84 0.0 5.8 1.75 63.92
2 0.0 1.74 0.0 8.21 0.0 89.19
3 0.0 1.97 0.0 3.89 0.0 53.04
4 0.0 1.73 0.0 1.96 0.0 3.81
5 0.06 1.27 0.12 7.78 4.02 71.0
6 1.71 0.06 4.36 1.97 51.1 18.17
7 0.04 1.46 0.42 3.11 4.38 20.96
8 0.19 0.9 0.38 6.01 10.71 55.19
9 0.0 1.68 0.0 8.33 0.0 90.98
10 0.02 1.53 0.02 5.35 24.52 7.88

Cubic
1 0.12 1.65 0.01 8.93 1.75 63.92
2 0.22 1.13 0.03 9.7 0.0 89.19
3 0.0 1.93 0.0 6.33 0.0 53.04
4 0.0 1.76 0.0 2.79 0.0 3.81
5 0.33 0.96 0.31 9.69 4.02 71.0
6 1.71 0.02 4.32 2.94 51.1 18.17
7 0.6 1.04 0.8 4.43 4.38 20.96
8 0.46 1.26 0.76 9.09 10.71 55.19
9 0.22 1.41 0.05 9.78 0.0 90.98
10 0.27 0.89 0.07 5.84 24.52 7.88

Lancosz
1 0.02 1.98 0.0 9.55 1.75 63.92
2 0.02 1.98 0.0 9.97 0.0 89.19
3 0.03 1.94 0.0 6.27 0.0 53.04
4 0.0 1.78 0.0 2.65 0.0 3.81
5 0.12 1.88 0.15 9.85 4.02 71.0
6 1.71 0.02 4.33 2.6 51.1 18.17
7 0.64 1.1 1.0 4.46 4.38 20.96
8 0.29 1.71 0.51 9.41 10.71 55.19
9 0.02 1.98 0.0 9.97 0.0 90.98
10 0.08 1.9 0.02 6.31 24.52 7.88

Table 4.7: Distortion vertical shift results
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Horizontal shift with distortion
[-2,2] [-10,10] [-100,100]

acc prec acc prec acc prec
Linear

1 0.0 1.91 0.0 4.29 0.0 4.88
2 0.0 2.0 0.0 4.52 0.0 5.54
3 0.0 1.98 0.0 2.83 0.0 3.19
4 0.0 2.0 0.0 2.83 0.0 3.08
5 0.0 1.84 0.0 9.86 0.0 19.67
6 1.66 0.19 5.48 1.2 47.65 5.06
7 0.04 1.51 0.23 2.21 14.08 2.27
8 0.23 1.04 0.0 7.15 16.04 20.48
9 0.0 2.0 0.0 4.48 0.0 5.5
10 0.0 1.86 0.0 7.83 0.0 27.54

Cubic
1 0.16 1.04 0.01 4.47 0.0 4.88
2 0.12 0.68 0.0 4.94 0.0 5.54
3 0.0 2.0 0.0 2.98 0.0 3.19
4 0.0 2.0 0.0 2.89 0.0 3.08
5 0.26 0.58 0.11 9.89 0.0 19.67
6 1.64 0.14 5.8 2.02 47.65 5.06
7 0.17 1.83 0.42 2.17 14.08 2.27
8 0.45 1.31 0.38 8.83 16.04 20.48
9 0.12 0.74 0.0 4.93 0.0 5.5
10 0.2 1.26 0.01 9.91 0.0 27.54

Lancosz
1 0.01 1.99 0.0 4.7 0.0 4.88
2 0.0 2.0 0.0 5.24 0.0 5.54
3 0.01 1.99 0.0 2.98 0.0 3.19
4 0.0 2.0 0.0 2.86 0.0 3.08
5 0.03 1.97 0.0 10.0 0.0 19.67
6 1.67 0.25 5.49 2.31 47.65 5.06
7 0.18 1.82 0.42 2.09 14.08 2.27
8 0.3 1.7 0.05 9.34 16.04 20.48
9 0.0 2.0 0.0 5.21 0.0 5.5
10 0.01 1.99 0.0 10.0 0.0 27.54

Table 4.8: Distortion horizontal shift results
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Rotation with distortion
[-1,1] [-7,7]

acc prec acc prec
Linear

1 0.0 0.99 0.0 4.0
2 0.0 0.94 0.0 3.33
3 0.0 0.28 0.0 0.75
4 0.0 0.75 0.0 1.02
5 0.0 0.54 0.0 5.37
6 0.35 0.03 1.09 0.29
7 0.13 0.12 1.36 0.21
8 0.28 0.13 0.29 0.36
9 0.0 0.94 0.0 3.42
10 0.04 0.45 0.24 2.95

Cubic
1 0.04 0.28 0.01 3.49
2 0.04 0.25 0.01 2.87
3 0.01 0.39 0.0 0.72
4 0.01 0.65 0.0 0.95
5 0.06 0.08 0.03 4.74
6 0.35 0.03 1.11 0.29
7 0.14 0.11 1.28 0.28
8 0.31 0.07 0.31 0.36
9 0.04 0.25 0.01 2.88
10 0.1 0.1 0.3 2.16

Lancosz
1 0.0 0.95 0.0 3.84
2 0.01 0.94 0.0 3.12
3 0.01 0.37 0.0 0.72
4 0.0 0.62 0.0 1.02
5 0.0 0.64 0.0 5.35
6 0.35 0.03 1.11 0.27
7 0.15 0.11 1.29 0.3
8 0.29 0.11 0.29 0.39
9 0.01 0.94 0.0 3.14
10 0.06 0.46 0.24 2.97

Table 4.9: Distortion rotation results

4.2.3 Rotation
During the image acquisition process, the camera can be and often is tilted and so
the FA in the resulting frames is skewed. To simulate this we have added artificial
rotation to both blended images. Its amount does not have much influence, so
we chose an angle of 1 degree for the following experiments.
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Vertical shift with rotation
[-2,2] [-10,10] [-100,100]

acc prec acc prec acc prec
Linear

1 0.0 1.77 0.0 6.06 3.44 64.65
2 0.0 1.77 0.0 8.1 0.0 84.98
3 0.0 1.98 0.0 4.11 0.0 65.48
4 0.0 1.87 0.0 2.69 0.0 3.81
5 0.08 1.28 0.15 7.39 4.62 67.42
6 1.62 0.09 4.57 2.21 51.08 23.27
7 0.0 1.49 0.31 3.4 1.06 37.81
8 0.21 0.86 0.54 6.81 10.71 53.21
9 0.0 1.67 0.0 8.29 0.0 87.5
10 0.04 1.51 0.0 5.0 27.02 7.1

Cubic
1 0.08 1.92 0.0 8.75 3.44 64.65
2 0.22 1.19 0.03 9.74 0.0 84.98
3 0.0 1.96 0.0 6.66 0.0 65.48
4 0.0 1.83 0.0 2.66 0.0 3.81
5 0.31 0.93 0.31 9.69 4.62 67.42
6 1.51 0.14 3.86 4.94 51.08 23.27
7 0.07 1.55 0.3 5.09 1.06 37.81
8 0.43 1.21 0.86 9.14 10.71 53.21
9 0.21 1.32 0.04 9.75 0.0 87.5
10 0.25 0.85 0.05 5.48 27.02 7.1

Lancosz
1 0.01 1.99 0.0 8.88 3.44 64.65
2 0.02 1.98 0.0 9.98 0.0 84.98
3 0.0 1.96 0.0 5.71 0.0 65.48
4 0.0 1.61 0.0 1.88 0.0 3.81
5 0.11 1.89 0.17 9.83 4.62 67.42
6 1.51 0.27 3.86 5.03 51.08 23.27
7 0.09 1.5 0.5 4.72 1.06 37.81
8 0.28 1.72 0.56 9.44 10.71 53.21
9 0.02 1.98 0.0 9.98 0.0 87.5
10 0.08 1.92 0.01 6.08 27.02 7.1

Table 4.10: Rotation vertical shift results

27



Horizontal shift with rotation
[-2,2] [-10,10] [-100,100]

acc prec acc prec acc prec
Linear

1 0.0 1.95 0.0 4.43 0.0 5.02
2 0.0 2.0 0.0 4.73 0.0 5.81
3 0.0 2.0 0.0 3.09 0.0 3.23
4 0.0 2.0 0.0 3.12 0.0 3.17
5 0.02 1.61 0.0 9.83 0.0 20.38
6 1.19 0.36 5.32 1.41 45.98 5.69
7 0.0 1.81 0.08 2.46 7.29 2.19
8 0.08 1.01 0.0 7.72 4.77 22.79
9 0.0 2.0 0.0 4.71 0.0 5.71
10 0.0 1.7 0.0 8.1 0.0 26.83

Cubic
1 0.14 1.55 0.0 4.22 0.0 5.02
2 0.12 1.05 0.0 4.61 0.0 5.81
3 0.0 2.0 0.0 2.8 0.0 3.23
4 0.0 2.0 0.0 2.76 0.0 3.17
5 0.25 0.76 0.03 9.91 0.0 20.38
6 1.05 0.74 5.45 2.22 45.98 5.69
7 0.06 1.93 0.41 2.28 7.29 2.19
8 0.38 1.26 0.31 8.3 4.77 22.79
9 0.11 1.09 0.0 4.58 0.0 5.71
10 0.18 1.2 0.0 9.79 0.0 26.83

Lancosz
1 0.0 2.0 0.0 4.49 0.0 5.02
2 0.0 2.0 0.0 5.05 0.0 5.81
3 0.0 2.0 0.0 2.82 0.0 3.23
4 0.0 2.0 0.0 2.74 0.0 3.17
5 0.03 1.97 0.0 10.0 0.0 20.38
6 0.99 0.97 5.51 2.25 45.98 5.69
7 0.05 1.93 0.42 2.09 7.29 2.19
8 0.2 1.8 0.05 9.06 4.77 22.79
9 0.0 2.0 0.0 5.03 0.0 5.71
10 0.01 1.99 0.0 10.0 0.0 26.83

Table 4.11: Rotation horizontal shift results
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5. Discussion

5.1 Vertical shift
Vertical shift detection is useful not only for registering different OIOs, but also
for determining the speed at which the camera moves when capturing the FA.
This can lead to sharper and higher quality OIOs, and moreover, one does not
need to enter it as a parameter manually.

In general, registration on the y-axis appears to be more complicated probably
because there are relatively few horizontal edges in the images of nuclear fuel that
the algorithm could rely on. This is especially the case when the image does not
contain a part of a spacer grid or when the subject FA consists of new shiny
rods with no oxidization. On the other hand, vertical shift registration should
be possible on a relatively large range, precisely because the image edges do not
align anywhere else better than at the optimal setting.

Our experiments in section 4.2.1 showed that of all the difficulties, white noise
has the greatest negative effect on the detection of vertical shift. Our hypothesis
is that due to the white noise, false local edges appear in the image, which
confuses most of the tested metrics. The other two artificial transformations,
radial distortion and rotation, didn’t have quite as significant influence, but even
so, the performance of most metrics deteriorated noticeably by their cause.

Most metrics performed very well on the small strongly interpolated [−2, 2]
range in the baseline test but failed with the introduction of noise. Overall
however, the Gradient-based and the Laplacian-based metrics, as well as
the Brenner’s method turned out to be the most appropriate. There isn’t an
obvious best interpolation method but the Lancosz interpolation is recommended
with distortion or rotation.

On the medium [−10, 10] range, we can see a significant drop in precision for
the Laplacian-based and the Wavelet-based metrics. Here the best pick is
Tenengrad with white noise, but also the Normalized gray-level variance,
the DCT reduced energy and the Brenner’s method are all valid choices
with the right interpolation method, which usually is the Lancosz method.

Here the best are the Gradient-based metrics and the Brenner’s method
and especially Tenengrad when noise is present.

In the case of the largest [−100, 100] range, we see that in the Miscella-
neous metrics the Vollath’s autocorrelation reaches the limit of its precision,
while the Brenner’s method looks like the best choice. Even in this case, the
Gradient-based metrics behave nicely and in addition also the Normalized
gray-level variance with white noise.

5.2 Horizontal shift
Solving registration in the horizontal direction is useful because it can compensate
for camera shake and possible inaccuracies caused by its tilt, which need to be
corrected by rotating the affected frames. Of course, it is also necessary to register
the stitched OIOs and can improve their quality.
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Finding the optimal horizontal shift is apparently a bit easier, probably be-
cause the images of nuclear fuel contain a large number of vertical edges, regard-
less of which part of the image it is. The range of values on which registration
can be performed is limited by the fact that the centers of the individual rods
are approximately 50 pixels apart on the x-axis and from a certain point the
algorithm is derailed and tries to align mismatched rods.

As in the case of the vertical shift, white noise had the most negative effect
here, albeit to a smaller extent. Intuitively, the larger number of vertical edges is
less likely to be eclipsed by the white noise. Radial distortion and rotation had
almost no effect on the metrics performance.

Most metrics again performed well in the small [−2, 2] range with the Gra-
dient-based, Laplacian-based and Miscellaneous metrics all being a sensible
choice. Unlike most the other metrics, the Tenengrad remained notably robust
even with white noise. The selection of an interpolation method depends on the
used metric and on whether accuracy or precision is more important.

Again, as in the previous case, here we see a significantly limited precision of
the Laplacian-based and the Wavelet-based metrics in the medium [−10, 10]
range. The Normalized gray-level variance, the DCT reduced energy
ratio and the Vollath’s autocorrelation all seem to be the most appropriate,
the first two of which are fairly invariant even to white noise. At this range, the
Lancosz interpolation is almost always the best choice, especially for the DCT
reduced energy ratio.

In the large [−100, 100] range we can see that the precision of most metrics
is very limited. This isn’t the case for the Vollath’s autocorrelation. In case
noise is present, the Normalized gray-level variance or the DCT reduced
energy ratio is a better choice.

5.3 Rotation
Rotation correction is very often necessary because the camera is usually slightly
tilted, not more than a few degrees, when recording, and the resulting OIO re-
quires that the rods be perpendicular to the ground before they can be stitched
together. On the other hand, when registering the finished OIOs, rotation can
usually be omitted.

Rotation registration is somewhat different from the previous translations.
First of all, it does not work in whole units of pixels, which inevitably leads to
interpolations, and in addition it is a transformation that reduces the extent of
valid pixels in the image, so cropping is almost always necessary. Although it may
not always be true, Knotek[1] worked on the assumption that the rotation of the
camera remains the same during the video acquisition, so it should be sufficient
to rotate all images by the same angle. That implies that the optimal solution
can be searched for using multiple frames.

In line with the previous sections, the biggest problem for rotation was white
noise. This is especially the case for the smaller range of values, where interpola-
tion took place in small steps. For rotation, only radial distortion could be used
as another artificial transformation, which again did not pose a big problem.
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For the smaller [−1, 1] range, the Gradient-based methods and the Bren-
ner’s method proved to be the best. In the case of a significant amount of
white noise, the Tenengrad is particularly suitable. The cubic interpolation is
generally the worst choice here.

By far not all metrics can handle the larger [−7, 7] range, but either the
Normalized gray-level variance, the Gradient-based or the Miscellaneous
metrics can be used with the first one being the most robust to white noise. The
selection of an interpolation method for this range depends on the metric and
scenario.

5.4 Findings
First of all, we must mention that, despite the promising results in our preliminary
experiments, Mason and Green’s histogram method proved to be completely
unsuitable for this use case. We believe that this is not an error in implementation,
but rather the instability and lack of reliability of the threshold selection and
possibly the histogram method as a whole. In the same vein, the DCT-based
methods have proven to be fairly unreliable, especially with regard to accuracy.
Further analysis is necessary to explain these phenomenons.

Another interesting finding that emerged from our experiments is that most
metrics are extremely prone to white noise. As mentioned earlier, we think this
is due to the false edges created by the noise, which overwhelms the original
structure of the image. Interestingly, the effect is even more pronounced with
interpolation. It is probably worth mentioning that adding white noise to an
already stitched OIO does not correspond to reality, because it is the blending of
frames that averages their values and removes most of the noise. However, the
original raw frames usually contain some noise, so it is desirable to know how it
affects the metrics.

Of the metrics tested, two proved to be suitable in situations with an increased
amount of noise. The Normalized gray-level variance is likely robust and
reliable because of its inherent normalization and in the case of Tenengrad it is
the Sobel filters that are less susceptible to noise than, for example, Laplacian.

The Gradient-based metrics and especially Tenengrad seem to be a good
overall compromise for all use cases and is recommended when a single metric
needs to be chosen. Its accuracy and precision is one of the best while also being
very robust and reliable.

The Laplacian-based metrics have a small precision which is caused by the
Mexican hat shape that its values form around the optimum. They do have
a very sharp and pronounced peak which makes them useful at small ranges.
The Variance of wavelet coefficients manifests the same behavior but gen-
erally performs worse while also being significantly slower so it cannot be rec-
ommended with this implementation. As mentioned in Section 2.2.4, we’ve
used the Daubechies 6 wavelets following the recommendation by Yang and Nel-
son[22]. Further experiments with other wavelets are needed in order to reject
the Wavelet-based metrics as a whole.
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The Normalized gray-level variance has a very smooth function surface
spanning large ranges of values very suitable for gradient optimization algorithms.
It does somewhat lack in terms of accuracy.

Both Miscellaneous metrics are very susceptible to white noise but have
shown to be exceptionally viable for vertical and horizontal shift in case of the
Brenner’s method and the Vollath’s autocorrelation respectively. This
would also suggest that including both the horizontal and vertical direction in
the computation of the Brenner’s method as suggested by Santos et al.[15] is
a very sensible choice.

The interpolation method results aren’t very conclusive. The linear interpo-
lation is often the best and generally the most accurate at the smallest, most
interpolated range. The cubic interpolation is rarely the best option and so can-
not really be recommended. The Lancosz interpolation is generally better at the
larger ranges with perhaps a slightly worse accuracy.

In the presence of a white noise, linear interpolation usually maintains the
best accuracy and the Lancosz interpolation has a slightly better precision. The
same is generally true for radial distortion and rotation.

Overall, however, the choice of an interpolation method depends most on the
metric used. For example, the DCT reduced energy ratio works significantly
better with one of the more sophisticated methods.

It should also be noted that the speed of computation of each metric is not
the same. In our experiments the cubic and Lancosz interpolations were about
20% and 90% slower than the linear interpolation respectively. Nevertheless, we
believe that this slowdown may be worth it in some cases.

5.5 Summary
The results of our experiments lead us to believe there isn’t a single overall best
metric or interpolation method which could be used exclusively. Instead, their
combination can be used playing into their respective strengths. The registration
can then be solved hierarchically, starting with a large range of values and finding
the approximate location of the optimum for all parameters of the transformation
and then gradually refining them in a smaller neighborhood, while utilizing the
metric and interpolation method most suitable at that point.

In the first rough estimation, metrics with large precision are necessary. For
this purpose, the Normalized gray-level variance is the most versatile but
the Brenner’s method can also be used for vertical shift or rotation, the Vol-
lath’s autocorrelation for horizontal shift or the Gradient-based metrics for
rotation. The Lancosz interpolation generally has the better precision and is the
most suitable here.

In the refinement step, a well pronounced peak is desirable. That is a known
feature of the Laplacian-based but also of the Gradient-based metrics which
makes them very suitable. The fine-tuning can be done for each parameter in-
dividually and in multiple iterations if high accuracy is required. The linear
interpolation has the best accuracy and should be used at this stage.

We have put together a proof-of-concept implementation to verify the ap-
proach outlined above. In the first version, the value of the metric for both shifts
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and rotation is directly maximized using the bounded Powell method[8]. This
approach was only viable for the Tenengrad and the Normalized gray-level
variance. In the second version, we’ve employed a hierarchical scheme. First,
rotation is solved using the Normalized gray-level variance, then the approxi-
mate horizontal shift using the Vollath’s autocorrelation and the approximate
vertical shift using the Brenner’s method, all using the Lancosz interpolation,
and finally the horizontal shift and then the vertical shift is refined using the
Absolute gradient with linear interpolation. This is done separately for each
parameter using the bounded Brent method[33].

Some example results can be seen in Figure 5.1. As we can see, both versions
are generally sharper. In the case of the first version, however, the rotation is
clearly not entirely correct. In the second version, this problem no longer occurs.

(a) Current
Method

(b) Tenengrad (c) Normalized
gray-level variance

(d) Hierarchical

Figure 5.1: A comparison of the current method and the new proof-of-concept
methods. The blended frames are from the same video, 50 frames apart.

33



Conclusion
In this thesis, we performed an analysis of the method of obtaining and the
resulting properties of nuclear fuel images. We have summarized what image
registration is, current approaches to solving it and how it is possible to apply
them to the problem of registration of images of nuclear fuel assembly.

Then, we took inspiration from the field of autofocus and shape-from-focus
and made an overview of similarity metrics that can be used to guide an op-
timization algorithm for registration. We outlined criteria that are important
for their practical use, grouped them based on their main principle and, based
on preliminary experiments, chose the most promising representatives from each
group. We also briefly mentioned several implementation details that aren’t usu-
ally discussed in literature.

Next, we designed and ran experiments to test how the individual selected
metrics meet the specified criteria. This also included the creation of a new data
set in cooperation with the Research Centre ŘEŽ (CVR). Apart from artificial
experiments in ideal conditions, we tried to approach reality by adding various
forms of noise and transformations present in real data.

Finally, we discussed our results and made recommendations on when it is
appropriate to use which metrics. We showcased how our findings can be used to
improve the current method and outlined the possibilities for future work.
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List of Abbreviations
CVR Research Centre ŘEŽ (The research organisation Centrum výzkumu Řež

(CVŘ) was founded on 9th October 2002 as 100% daughter company of
ÚJV Řež, a. s. (NRI – Nuclear Research Institute). The main aim of the
research organisation is research, development and innovations in the field
of power generation (especially nuclear).)

FA fuel assembly (A bundle of a few hundred fuel rods held together in a prede-
termined hexagonal shape by spacer grids.)

OIO one-image-overview (An image of one whole side of a nuclear fuel assembly
stitched together from consecutive video frames.)
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A. Attachments
In the attached file, there are two folders:

• data - containing the data set and other images used for experiments

– preliminary.png - the OIO used in the preliminary experiments
– <1-6>-point.png and <1-6>-tube.png - the data set of 16 OIOs
– frame-<1-5>.png - the raw frames taken from the video that was used

to obtain the 3-tube.png image that were used for visualisation and
comparison with the current method

• notebooks - Jupyter notebooks with the metric implementations, replicable
experiments and visualisations

– preliminary-experiments.ipynb - for the selection of metrics
– final-experiments.ipynb - as outlined in Chapter 3
– visualisation.ipynb - interesting and useful graphs and plots
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