
MASTER THESIS

Antońın Jareš

Simplifying access to linked data using
tabular views

Department of Software Engineering

Supervisor of the master thesis: RNDr. Jakub Kĺımek, Ph.D.
Study programme: Informatics

Study branch: Artifical Intelligence

Prague 2021

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

I would like to thank my supervisor, RNDr. Jakub Kĺımek, Ph.D., for the pro-
vided guidance, constructive feedback and productive discussions. Also for the
patience towards the constant delays and how long this whole process took.

I would also like to thank my family, people who supported me, and people
whom I have neglected, for supporting and dealing with me over the very long
process of working on this thesis.

ii

Title: Simplifying access to linked data using tabular views

Author: Antońın Jareš

Department: Department of Software Engineering

Supervisor: RNDr. Jakub Kĺımek, Ph.D., Department of Software Engineering

Abstract: The goal of this thesis is to design and implement a front-end applica-
tion allowing users to create and manage custom views for arbitrary linked data
endpoints. Such views will be executable against a predefined SPARQL endpoint
and the users will be able to retrieve and download their requested data in the
CSV format. The users will also be able to share these views and store them uti-
lizing Solid Pods. Experienced SPARQL users will be able to manually customize
the query. To achieve these goals, the system uses freely available technologies –
HTML, JavaScript (namely the React framework) and CSS.

Keywords: dataset, linked data, LOD, RDF, CSV

iii

Contents

1 Introduction 4
1.1 What is Linked Data? . 4
1.2 What is a Solid Pod? . 5
1.3 Goals . 6
1.4 Thesis structure . 6

2 Analysis 8
2.1 Target audience . 8
2.2 User roles . 8
2.3 Requirements . 9

2.3.1 Functional requirements 9
2.3.2 Non-functional requirements 12

2.4 Use cases . 13
2.4.1 Administrator . 14
2.4.2 User . 15

2.5 Application inputs . 16
2.5.1 SPARQL endpoint . 16
2.5.2 Data schema . 16

2.6 Existing solutions . 18
2.6.1 Comparison criteria . 18
2.6.2 Solution comparison . 19

3 Design 23
3.1 Type of application . 23

3.1.1 Web application advantages: 23
3.1.2 Desktop application advantages: 24
3.1.3 Conclusion . 24

3.2 Storage options . 24
3.2.1 Local file system . 24
3.2.2 Cloud solutions . 25
3.2.3 Solid Pods . 25
3.2.4 Chosen solution . 26

3.3 Language . 26
3.3.1 Libraries & Frameworks 26

3.4 Application architecture . 27
3.4.1 View layer . 28
3.4.2 Application logic . 28
3.4.3 Persistent data handling, Solid Pods 29
3.4.4 SPARQL Editor . 29
3.4.5 Overview . 29

3.5 Mockups . 30
3.5.1 Title page . 31
3.5.2 User information . 31
3.5.3 Data area . 32
3.5.4 Query editor . 34

1

4 Implementation 35
4.1 Limited mobile experience . 35
4.2 State handling with Ramda . 36
4.3 SPARQL Proxy . 36
4.4 Interesting implementation tasks 37

4.4.1 SPARQL generation . 37
4.4.2 Cartesian product detection 41
4.4.3 Optionality cycles . 43

4.5 Room for improvement . 44
4.5.1 Graph tool . 44
4.5.2 Query improvements . 45

5 Documentation 48
5.1 User documentation . 48

5.1.1 Solid Pod setup . 48
5.1.2 UI Elements . 50
5.1.3 Graph interface . 59
5.1.4 List view . 64
5.1.5 Examples . 70

5.2 Administrator documentation . 92
5.2.1 Prerequisites . 92
5.2.2 Data schema creation . 93
5.2.3 SPARQL proxy . 96
5.2.4 Deployment . 97
5.2.5 Application parameters . 98

5.3 Programmer documentation . 99
5.3.1 Prerequisites . 100
5.3.2 Local development setup 100
5.3.3 Overview . 100
5.3.4 Implementation examples 102
5.3.5 Automatically generated documentation 105

6 Tests 106
6.1 Unit testing . 106

6.1.1 Libraries . 106
6.1.2 Covered code . 107

6.2 Manual test scenarios . 107
6.2.1 Preliminaries . 108
6.2.2 T1 - Visualization and simple configuration 108
6.2.3 T2 - Language selection 109
6.2.4 T3 - Offline capabilities . 111
6.2.5 T4 - Data handling . 112
6.2.6 T5 - SPARQL Capabilities 115
6.2.7 T6 - Graph interactions 116

7 Evaluation 117
7.1 Goal fulfillment . 117
7.2 System usability scale results . 117

2

8 Conclusion 119

Bibliography 120

List of Figures 121

List of Tables 125

A Solid Pod troubleshooting 126
A.1 Logging in with Solid Pod . 126
A.2 Enabling trusted apps . 126
A.3 Creating a save destination . 127

B Resources 129

3

1. Introduction
Today’s day and age provides us with unprecedented access to information. Never
in the history of humanity has such a vast amount of data been at our fingertips,
ready to be inspected and sifted through at a moment’s notice.

When navigating around this data, humans contextualize by nature without
any additional effort exerted and make connections between topics and resources
seamlessly. For example, should you ask a human in Great Britain what they
think about London, all of them would be talking about the country’s capital, not
London, Ontario. While we see this as completely obvious, this is not the same
for computers. Computers require all of the information to be either presented
unambiguously, or additional non-trivial logic has to be implemented for the
computer to be able to distinguish the information and make proper decisions.

There are methods, however, that aim to alleviate this and make the data
more accessible to computers at large, one of them is called Linked Data.

This chapter describes what Linked Data is, the main goal of this thesis, the
motivation behind it and the overall structure of this text.

1.1 What is Linked Data?
Formally, the term Linked Data was introduced by Tim Berners-Lee in 2006, see
Menday and Mihindukulasooriya [2015]. It represents a method of publishing
structured data that are interlinked in a unified manner.

In short, it is a unified way of providing data and its relations, which in turn
create a literal Web of data called Semantic Web, see Berners-Lee et al. [2001],
to make it more easily readable for computers.

Its four main principles are:

• Entities should be identified by distinct URIs.

• HTTP URIs should be used so that these entities are searchable

• When an entity is looked up, useful information should be provided using
the open standards such as RDF, SPARQL.

• When referring to other linked entities on the Web their HTTP URI should
be used.

Following the example of London, with Linked Data, the entity of London
itself would be specified by an IRI that would be directly accessible with addi-
tional information available at the resource’s location. For example Wikidata1

contains entries for both, London, Great Britain2, and London, Ontario3. If a
computer accesses such a resource, it can then look for the country property4 that
is listed as a property on the resource itself, and check whether the London in

1https://www.wikidata.org/wiki/
2https://www.wikidata.org/wiki/Q84
3https://www.wikidata.org/wiki/Q92561
4https://www.wikidata.org/wiki/Property:P17

4

https://www.wikidata.org/wiki/
https://www.wikidata.org/wiki/Q84
https://www.wikidata.org/wiki/Q92561
https://www.wikidata.org/wiki/Property:P17

question is located in Great Britain5 or Canada6. Great Britain and Canada are
again specified by their IRIs with a list of their own properties, providing further
information. This way, the computer can navigate seamlessly through the data
unambiguously and with each step process more and more data.

The format used for Linked Data is called RDF, see Schreiber and Raimond
[2014], which consists of triples of <subject> <predicate> <object>. All of this
information can be imagined as a graph, with subjects and objects represented
by nodes in the graph and edges representing appropriate relationships.

For the example of the two London cities, the graph could look like this:

Figure 1.1: London Linked Data example

To be able to retrieve information from this graph notation, the users have
to have an understanding of a specific language called SPARQL, see Seaborne
and Harris [2013]. Queries written in SPARQL are then executed against the
endpoint containing the data presented in the RDF format and the resulting data
is retrieved. For obvious reasons, adoption of such an approach to the general
public poses challenges and would require users interested in working with linked
data to learn this language and its intricacies. To alleviate this, the users could
be able to view the data as a graph directly and by interacting with the graph,
they could be able to choose what data they would like to see.

The goal of this work is to provide the users with a visualization tool which
would allow them to query basic data without the need to learn SPARQL or
understand RDF themselves.

1.2 What is a Solid Pod?
Throughout the course of this work, an online data storage solution called Solid
Pod7 is mentioned multiple times as it is the option of choice for handling the
application data. In short, a Solid Pod (personal online data store) is a place
for users to store their data that also allows them to authorize with supporting

5https://www.wikidata.org/wiki/Q161885
6https://www.wikidata.org/wiki/Q16
7https://solidproject.org/users/get-a-pod

5

https://www.wikidata.org/wiki/Q161885
https://www.wikidata.org/wiki/Q16
https://solidproject.org/users/get-a-pod

applications. More detailed description can be found further in the text under
subsection 3.2.3.

1.3 Goals
The goal of this thesis is to design and implement a solution that will simplify
users’ interaction with Linked Data, allowing them to create, persist, and share
their custom created views for given data sets. Utilizing such views, users can
then query arbitrary data sets and receive results in the CSV format.

The desired features could be summed up as follows:

• Schema visualization
The application will display specified linked data schemas in a graphical
notation, providing users with an overview of the dataset and UI elements
for further interaction.

• Defining tabular views
Users will be able to intuitively create specific views against data sets that
would yield only desired data.

• View storage
Users will be able to save and import such views utilizing an existing cata-
loguing tool.

1.4 Thesis structure
The rest of the thesis is structured as follows:

Chapter 2 describes the given problematic in more detail. We discuss the
proposed solution’s requirements, different actor roles, the specific use cases of
the proposed solution and provide overview of similar existing solutions.

Chapter 3 focuses on solution design. The technologies chosen to implement
the proposed solution and the reasons behind these choices are described in this
chapter alongside an overview of the architecture of the proposed solution.

Chapter 4 describes additional implementation details that were not or could
not be taken into account during the design phase. These details include library
specific implementations and further description of application layers interacting
with each other. This chapter also contains some interesting problems that needed
to be solved during the implementation phase and concludes with description of
what could be improved.

Chapter 5 contains documentation for users, programmers and administrators.
Users can find examples of usage in this chapter with description of all applica-
tion elements. Administrators and programmers can read through more detailed
description of the implementation and possibilities of application deployment and
its further extension.

In chapter 6 we focus on the solution’s quality assurance. Automatic tests
put in place and manual test scenarios for users are described here.

6

Evaluation of the implemented solution can be found in chapter 7. It contains
the overall goal fulfillment and additional feedback from external users in the form
of System Usability Scale forms, as per Brooke [1996].

This work concludes with chapter 8 which contains author’s look back on
the work and thoughts about the whole process and its results. Following it are
various lists and attachments this text references.

7

2. Analysis
This chapter provides closer look on the chosen problem area. It covers description
of the target audience as well as the possible user roles in the application. The
formal requirements are specified in the part following, ending with an overview of
the current existing solutions and their comparison against the proposed solution
of this work with regards to the requirements specified.

2.1 Target audience
The people this application is targeted at could be separated into three main
groups as follows:

Data schema curators

For some use cases, the data schemas might provide data that would not be
necessary. The curators would aim to manually edit the data schema presented
in the application to create curated subsets of the provided data schemas that can
be further used by other users without polluting their experience with arbitrary
data that would be of no use.

For example a biology data schema could be split up into two parts regarding
botany and zoology to allow users to view data schemas corresponding only to
the botanical or animal kingdom, respectively.

People without RDF knowledge

The common users this application aims at are ”clerks” and people without RDF
knowledge who might use this tool without the need to understand RDF or
SPARQL. These people should be introduced to the application and should be
explained some basic functionalities, which they can also achieve by themselves
following the subsection 5.1.5 and reading through the section 5.1. They should
also have an understanding of what the data schema they will be working with
represents.

Result set consumers

When the resulting queries are catalogued or shared, some people might use the
application only via these means for fetching the result sets. In this case, there
is no need of understanding RDF, nor how the application works, as these users
would only understand what the result set represents and would work with it
accordingly.

2.2 User roles
From the application perspective, there are three possible types of users as follows:

8

Anonymous

A user who is in no way authenticated with the application. By default every
user visiting the application falls under this category. These users shall be able
to utilize the basic features of the application which don’t require authentication.

Authenticated - Solid Pod user

A user who has authenticated with the application via a Solid Pod. Such users
shall have additional features at their disposal, such as data persistence and file
handling in their Solid Pod, and shall be recognized as the same user by the
application across different sessions on different machines.

Administrator

A user managing and/or deploying the application. They shall be able to change
the parameters of the application, allowing them to distribute the application
with different data schemas on its initialization.

2.3 Requirements
This section describes formal granular requirements imposed on the application.

To evaluate the fulfillment of these requirements in the final application, we
can follow Section 6.2 which cover all of the requirements specified.

Because of the nature of the development process for the implementation part
of this work, the list of requirements laid out below had been updated multiple
times over the course of the development phase, such requirements are marked
with .

2.3.1 Functional requirements
This section describes the functional requirements, denoted by F, explaining what
should be directly accessible for the users in the application, and its capabilities.

The requirements specified in this section and their details are a product of
discussions held during the meetings with the supervisor of this work.

F1 - Schema visualization

The application shall provide the user with a overview of the provided data set in
a graphical notation. Such visualization shall preserve all relationships specified
in the data schema and shall provide simple, easy to navigate overview over it.

F2 - Application configuration

• F2.1 - SPARQL Endpoint
The user shall be able to change the SPARQL endpoint against which the
generated queries shall be run.

9

• F2.2 - Data schema
The user shall be able to provide the URL of a data schema to be loaded
in the application

• F2.3 - Human readable labels
When provided by the endpoint, the application should allow the user to
toggle between human readable names, provided by the endpoint, for enti-
ties and their direct IRI description.

• F2.4 - Interface language selection
The user shall be able to select the application language. The publishing
of this work shall come with English and Czech versions of the application
included.

• F2.5 - Property language selection
The user shall be able to select preferred language order for queried linked
data properties supporting language selection. At the time of the publica-
tion of this work, this is rdf:langString1.

• F2.6 - Resource label selection
The user shall be able to select preferred language for human readable
descriptions of properties and entities.

• F2.7 - Limited offline usability
The user shall be able to use most of the features regarding data manipu-
lation and interactions even when offline.

F3 - Generate SPARQL SELECT query

The user shall be able to select properties to be included in the resulting query
by interacting with the graphical interface, which in turn would generate an
appropriate SPARQL SELECT query representing the selection.

• F3.1 - Mark as optional
The user shall be able to mark selected properties as optional.

• F3.2 - Hide value from result set
The user shall be able to select whether the query results should display
selected property values or omit them.

• F3.3 - Query customization
The user shall be able to manually edit the SPARQL query, which should
persist until the user changes their selection through interaction with the
tools.

1https://www.w3.org/TR/rdf-schema/#ch_langstring

10

https://www.w3.org/TR/rdf-schema/#ch_langstring

F4 - User data storage

• F4.1 - Login with a WebID
The user shall be able to login to the application via a Solid Pod of their
choice with their WebID.

• F4.2 - List views
When logged in, the user shall be able to list files saved in their Solid Pod.

• F4.3 - Load view
The user shall be able to load an application view from a public accessible
URL or their Solid Pod when logged in.

• F4.4 - Save view
When logged in, the user shall be able to save their created data views in
their Solid Pod.

• F4.5 - Delete view
When logged in, the user shall be able to delete views from their Solid Pod.

• F4.6 - Permissions
The user shall be able to set private, public read/write permissions on the
project files they save utilizing Solid Pods.

• F4.7 - Share capabilities
The user shall be able to obtain a single URL containing their encoded
selection and endpoint, allowing them to share and repeat the query easily
and storing it.

• F4.8 - Direct result URL
The user shall be able to obtain a single URL allowing for a direct download
of the result set in .csv format.
Having such a URL at their disposal, the user can then catalogue it as a CSV
distribution in a catalogue of their choice, for example by the tool developed
in Kĺımek and Skoda [2018], which is used by https://data.gov.cz/.

• F4.9 - Automatic save retries
The user’s project remote save action shall be automatically retried for a
set amount of times, should it fail.

F5 - Run SPARQL query

• F5.1 - Run query
The user shall be able to execute their generated SPARQL query against
the specified endpoint.

• F5.2 - Result format
The user shall be able to obtain the query results in the CSV format.

11

https://data.gov.cz/

F6 - Application interaction

• F6.1 - Notify about cartesian product
The user shall be notified if their selection does not create a strongly con-
nected graph, which in turn could result in querying for a cartesian product.

• F6.2 - ”Hide the rest” functionality
The user shall be able to hide all non-queried entities with a single action.

• F6.3 - Edge description
The user shall be able to view information about edges connecting different
entities.

• F6.4 - Entity duplication
The user shall be able to duplicate entities in the schema, allowing them to
query for recursive properties with a different target entity or differentiating
two entity instances in the query.

• F6.5 - Entity deletion
The user shall be able to delete entities from the data schema, allowing
them to reduce the size of the schema by removing entities of no interest.

• F6.6 - Save edit
When opening a remote project file, the user shall be asked to edit the
original file, save it to their own location or not save it at the moment.

• F6.7 - Notify about custom SPARQL query
The user shall be warned about the SPARQL query being manually edited,
to prevent them from accidentaly interacting with the graph and removing
this change.

2.3.2 Non-functional requirements
This section describes non-functional requirements, denoted by N, which lay out
aspects of this work that are not directly related to its functionality and as such
can not always be evaluated in a yes or no fashion.

N1 - Deployment

• N1.1 - Documentation
Administrators shall be able to deploy the application easily by following
corresponding installation steps.

• N1.2 - Bundle
Administrators shall be provided with all necessary resources to deploy the
application.

12

N2 - Demo scenarios

The application shall be accompanied by demo scenarios which the users could
follow to get introduced to the basic functionalities of the application.

N3 - Manual test scenarios

The application shall be provided with manual test scenarios, allowing the testers
to cover all the functional requirements targeted in subsection 2.3.1.

N4 - Unit tests

The application shall be provided with automatic test suites covering basic various
code functionality.

N5 - Code documentation

The application shall be provided with a generated documentation describing the
code functionalities.

N6 - Demo

The application shall be hosted and available to users to test out without their
need of deployment.

2.4 Use cases
The following section describes possible use cases for the application users and
its administrators. Overview is provided by one use case diagram2 accompanied
by textual descriptions of each separate use case.

2https://www.uml-diagrams.org/use-case-diagrams.html

13

https://www.uml-diagrams.org/use-case-diagrams.html

Figure 2.1: Use case diagram

2.4.1 Administrator
Administrators will take care of deploying the application and providing access
to the end user. They will able to change the application configuration, resulting
in different data sets being displayed to the user.

Deploy application

Administrators will be able to deploy the application utilizing common means of
deployment for the chosen technology.

In the case of a web application, such an option could be adding an information
about the data to the link directing the users to the application. The application
would in turn parse the information during initialization and display the required
data, effectively allowing the administrators to show users different data loaded
just by a simple configuration change.

Configure application

A necessary requirement for the application to work properly is providing input
data schema and endpoint against which the generated SPARQL queries will be
run. The administrators can provide these encoded in the URL for the links
which would be directing users to the application. The administrators can also
opt deploy the application without this information, since the required inputs can
also be edited inside the application.

• Endpoint
A valid endpoint URL against which generated SPARQL queries can be
run. E.g. https://linked.opendata.cz/sparql

14

https://linked.opendata.cz/sparql

• Data schema
Data schema describing the catalogue in a specific format required by this
application.
An example of such a schema can be found at https://jaresan.github.
io/simplod/dataSchema.html.

For simplicity, in the rest of the text, we will consider every mention of the
application as if it were properly provided with these parameters, unless stated
otherwise.

2.4.2 User
Users will care mostly about requesting the appropriate data and about being able
to persist these selection. They might also be interested in using the application
with their own setup of data schema and endpoint.

Configure application

Allows users to change the endpoint for the SPARQL queries and provide the
data schema URL if the application is not provided with one.

View visualized data schema

Allows every user, regardless of their role, to be able to see the data schema
provided visualized for easier navigation.

Generate SPARQL SELECT query

Users are able to create a SPARQL select query by utilizing visual tools in the
application, there is no necessity of users to directly write SPARQL queries. We
refer to every such set of criteria created by the user as a view.

Get query result

Users are able to execute their generated SPARQL query against the selected
endpoint and retrieve the results of the generated SPARQL SELECT query in
different formats.

Obtain URL with encoded query

Users are able to export their generated query and endpoint in a single URL to
share and store in a data catalogue.

Manage views

Anonymous users are able to import views from other sources via a URL, provided
the URL is publicly accessible. Additionally allows authorized users to save their
created views, list all views they currently have saved and delete them.

15

https://jaresan.github.io/simplod/dataSchema.html
https://jaresan.github.io/simplod/dataSchema.html

2.5 Application inputs
As mentioned in section 2.4, the data schema and endpoint URLs are required
for the application to work properly.

2.5.1 SPARQL endpoint
One of the required application inputs is the endpoint against which the gen-
erated SPARQL queries can be run. Such endpoint is provided as an URL to
the application. Examples of SPARQL compliant endpoints can be found on w3
site3.

2.5.2 Data schema
The application also requires a data schema to be provided on the input in a
form of a public accessible URL. The data schema can be created via various
means. Based on the data structure, it could also be described manually. One
of the automated ways is a pipeline dedicated to this purpose, its use is briefly
described in subsection 5.2.2. The data schema is provided in a specific format4

corresponding to the following example:
3https://www.w3.org/wiki/SparqlEndpoints
4https://en.wikipedia.org/wiki/Turtle_(syntax)

16

https://www.w3.org/wiki/SparqlEndpoints
https://en.wikipedia.org/wiki/Turtle_(syntax)

Figure 2.2: Data schema example

Prefixes
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix nobel: <http://data.nobelprize.org/terms/> .
@prefix dbpedia: <http://dbpedia.org/property/> .

<urn:uuid:e6702622-087a-4fb7-bc3c-d3d08464a0ec> # 1
rdf:object rdf:Literal; # 2
rdf:predicate foaf:name; # 3
rdf:subject <http://data.nobelprize.org/terms/Laureate/instance> . #4

<urn:uuid:c45bb448-459c-48e2-ad3e-bec71dc16813>
rdf:object rdf:Literal;
rdf:predicate dbpedia:dateOfBirth;
rdf:subject <http://data.nobelprize.org/terms/Laureate/instance> .

<urn:uuid:e999257d-89b5-473a-8e0f-c14db7822eeb>
rdf:object <http://data.nobelprize.org/terms/Laureate/instance>;
rdf:predicate nobel:laureate;
rdf:subject <http://data.nobelprize.org/terms/NobelPrize/instance> .

<urn:uuid:3d70e7e0-f406-4415-91cd-b1c91e6b11bd>
rdf:object rdf:Literal;
rdf:predicate nobel:category;
rdf:subject <http://data.nobelprize.org/terms/NobelPrize/instance> .

<urn:uuid:0d7d4327-1d99-42f8-8ddc-faf2e32e8a32>
rdf:object rdf:Literal;
rdf:predicate nobel:year;
rdf:subject <http://data.nobelprize.org/terms/NobelPrize/instance> .

5
<http://data.nobelprize.org/terms/NobelPrize/instance>

a nobel:NobelPrize .
<http://data.nobelprize.org/terms/Laureate/instance> a nobel:Laureate .

Figure 2.2 can be described as follows:

• #Prefixes - The definition of prefixes used throughout the document.

• #1 - Unique identifier tied to the triple entry.

• #2, 3, 4 - Definition of the triple consisting of subject, predicate, object
respectively

• #5 - Type definition. Defining object and subject types

Figure 2.3 shows how the data might be displayed in the final application.

17

Figure 2.3: Data schema example mockup

Figure 2.3 illustrates how Figure 2.2 would look visualized. Every entity (#5
in Figure 2.2) from the data schema is represented as a node in the graph with
edges representing relations between entities.

represents data properties, as such, these properties do not describe rela-
tionships between entities in the data schema and do not add any edges.

represents object properties, in this case there is a single object prop-
erty for nobel:NobelPrize, which is nobel:laureate, with the target of no-
bel:Laureate. This relationship is depicted in the graph by an arrow between
nobel:NobelPrize → nobel:Laureate.

A longer example with fully populated data can be found on GitHub5.

2.6 Existing solutions
The problem area of this thesis is different from other various solutions as it aims
to provide users with a tool to select data from already specified data schema.

Existing solutions providing visual tools for SPARQL query building are usu-
ally aimed at allowing users to explore the various relations and entities described
by the selected vocabulary or data schema.

2.6.1 Comparison criteria
To allow for an objective comparison between existing solutions, a set of require-
ments has to be established. Taking section 2.3 into account, following criteria
are established as a means of comparison between the works mentioned:

• C1 - Executable query
The user is able to run the generated SPARQL query and retrieve the results
in an arbitrary format.

• C2 - Configurable endpoint
The user is able to execute the SPARQL query and choose an endpoint
against which the queries are run.

• C3 - Property options
The user is able to tweak the generated query, e.g. hiding results from the
result set and marking properties as optional.

5https://github.com/jaresan/simplod/blob/master/docs/example.ttl

18

https://github.com/jaresan/simplod/blob/master/docs/example.ttl

• C4 - Ability to query arbitrary properties
The user is able to query any properties specified in the vocabularies pro-
vided by the application.
For example, per the Figure 2.3 in an application that satisfies this cri-
teria, the users would be able to query any property specified in the foaf
vocabulary6, e.g. foaf:familyName.
If the application does not allow that, and for example it only allows to
query for foaf:name as per Figure 2.3, the application would fail to meet
this criteria.

• C5 - Constraints
The user is able to impose value constraints on queried properties, resulting
in a more specific SPARQL query.

• C6 - Documentation
The user is able to read up on how to use the application and is guided in
its use to understand the features implemented.

• C7 - Scenarios
The user is able to follow examples provided by the authors to understand
how to use the application.

• C8 - Demo
The user is able to test the application without having to deploy it them-
selves.

2.6.2 Solution comparison
Table 2.1 describes comparison between existing solutions from this chapter based
on criteria based on comparison criteria outlined in subsection 2.6.1:

Table 2.1: Comparison criteria

RDF Explorer VSB This work
Executable query x ✓ ✓
Configurable endpoint x x ✓
Property options x ✓ ✓
Arbitrary properties ✓ x o
Constraints ✓ ✓ o
Documentation ✓ x ✓
Scenarios ✓ x ✓
Demo ✓ ✓ ✓

✓- Satisfies; x - Does not satisfy; o - Can be achieved using a workaround

6http://xmlns.com/foaf/spec/

19

http://xmlns.com/foaf/spec/

RDF Explorer7

Solution created by authors Vargas, H., Buil-Aranda, C., Hogan, A., & López,
C. in Vargas et al. [2019] might seem very similar at first sight, but the problem
it solves is different from the goal of this thesis.

The application provides users with the possibility to query and explore RDF
graphs via a web based visual tool. Users can access the Wikidata endpoint in
a simple yet effective way and navigate through the dataset how they see fit,
querying arbitrary data and imposing constraints on their properties. It does not
allow for optional properties and other fine tuning of the generated queries.

Application also provides quality of life features for the user’s convenience like
an FAQ section, non trivial guided tour and multiple examples of usage.

Users are able to query the data set and navigate through the catalogue with
ease, but there is no way to export their created queries. The hosted demo
application is also statically targeted at the Wikidata endpoint, not allowing
users to override this setting. The data query solution and navigating through
the results does overlap with the scope of this thesis, but while appropriate for
specific use cases, some of the missing features make this solution impractical for
our target audience.

Figure 2.4: Lakes found in Chile

Figure 2.5: Drugs for cancer that target genes related to cell proliferation

7https://www.rdfexplorer.org/,http://ceur-ws.org/Vol-2456/paper60.pdf

20

https://www.rdfexplorer.org/, http://ceur-ws.org/Vol-2456/paper60.pdf

VSB: Visual SPARQL Builder8

Author Lukas Eipert aims to provide similar solution to the problem area as the
one proposed in this work. Unfortunately the solution itself nor the page provide
any information on how to properly use the application.

The application allows users to visually create SPARQL queries against the
dbpedia9 endpoint. Users are able to fine tune the queries by selecting properties
as optional, hiding properties from the result set or negating their existence.
The solution seems to be able to provide only properties from the domain of the
chosen endpoint, limiting its use severely. There is also no option to run the
application with a custom endpoint without cloning the repository and deploying
the application as the one provided on the project website does not work.

Taking all its features and limitations into account, this solution seems more
like a proof of concept for something that hasn’t been finished entirely.

Figure 2.6: Example of querying people’s alma maters and birth place

This work

As stated in chapter 1 the aim of this thesis is to provide the users with the
possibility of querying data in a provided data set. Since the reader can be
familiarized with the functionalities of this application and the goals of this work
in chapter 2 we will describe what features our proposed solution is lacking and
why, based on the comparison list specified in subsection 2.6.1.

Both of the features that are not fully implemented via the visualization tool
can be worked around thanks to the requirement F3.3 in section 2.3, which
allows the user to edit the SPARQL query directly, however they wish.

• C4 - Ability to query arbitrary properties
Since the main use case of this application is for the users to be able to
query for properties and entities in a specific data set they are provided,
querying arbitrary properties from different dictionaries does not come into
play.
Users are able to create specific views to query for any of the properties
found in the data set.

8https://leipert.github.io/vsb/
9http://dbpedia.org/

21

https://leipert.github.io/vsb/
http://dbpedia.org/

Querying for properties outside of the scope of the data set provided to
the sure then does not make sense and does not provide any additional
functionality to the user and hence is not implemented.

• C5 - Constraints
While imposing value constraints on the properties queried is possible and
might be beneficial to the user, it is outside of this scope of work. Developers
familiarized with this work are welcome to submit changes to the application
implementing this feature.

22

3. Design
This chapter describes the chosen technologies, proposed application architecture
and the reasons behind these choices. It also proposes a simple view of possible
solutions to the use cases described in section 2.4.

3.1 Type of application
The first decision to take is choosing the appropriate way to provide the solution
to the user, in this case, the choice is between a desktop or a web application.

Desktop application Web application
Global distribution x ✓
Portability x ✓
Mobile access x ✓
Easy update distribution x ✓
Hassle-free user entry x ✓
Offline capabilities ✓ x
No resource limitations ✓ x

Table 3.1: Application type comparison

Table 3.1 describes the key differences we are taking into account when choos-
ing the appropriate solution for this work. For clarity, the comparison table dis-
plays just the few key differences which have the most impact on the final choice.
There are many more differences between desktop and web application but the
choice of technology is mainly dependant on the key ones chosen above.

3.1.1 Web application advantages:
• Global distribution

With a web application, the solution can be run virtually anywhere in the
world immediately after deployment, provided the end user has access to
an internet connection.

• Portability
Expanding on the previous point, the solution can be run on virtually any
operating system without having the need to introduce changes to the code,
provided that the users view it in a supported web browser.

• Mobile access
If the web application is properly designed, the users are able to use it on
their mobile devices as well without the need of installing anything. This
also saves time for the developer as they don’t have to develop two separate
versions of the application.

23

• Easy update distribution
Web applications benefit from being able to force the users to use the newest
versions at all times. There is no need for version checks and update down-
loads, since the users have a single point of entry to the application provided
by the deployer. This also makes bug fixes and improvements take imme-
diate effect.

• Hassle-free user entry
Since the application is not to be downloaded and installed, the users are
able to start using it immediately after vising its point of entry, resulting
in better user experience.

3.1.2 Desktop application advantages:
• Offline capabilities

Desktop applications can usually be used without the need for internet
connection.

• No resource limitations
Desktop applications are not resource constrained by the web browser. They
are able to use the local system’s file system and all its peripherals. In ad-
dition to that, desktop applications do not suffer from reduced performance
issues out of the box.

3.1.3 Conclusion
With the pros and cons described, requirements described in section 2.3 and the
audience of this application in mind, web application was chosen as the best
suitable option for the implementation part of this work.

3.2 Storage options
We discuss three main approaches to file handling in this section: local file system,
general cloud based solutions and Solid Pods.

3.2.1 Local file system
As the type of application chosen is a web application, utilizing the user’s com-
puter file system is not convenient as direct file handling is not universally sup-
ported1.

While all users are able to upload and download files when using a web appli-
cation, implementing all file related use cases such way would be detrimental to
the end user’s experience. Local file system can be used as a fallback for situations
where cloud solutions fail or are not accessible, but should not be considered as
the main file handling approach.

1https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_
Entries_API

24

https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API

3.2.2 Cloud solutions
There is a plethora of cloud based storage options2 for the developer to choose
from when creating a web application. Utilizing such options provides the user
with superior experience, as opposed to utilizing local file system, as there is no
burden on the user to transfer and handle data by themselves. This in turn allows
seamless transitions between machines, keeping the user experience consistent
without their need for any additional setup.

3.2.3 Solid Pods
One such cloud based solution that can be utilized is a Solid Pod. It provides
a user-driven decentralized way of storing data with the user being the owner of
their data.

What is Solid?

Solid3 (derived from ”social linked data”) is a set of open specifications which
promote the creation of applications supporting user-ownership of data, its re-
usability, data/application decoupling, and interoperability.

The key points could be summarized as follows:

• Data ownership
Users should be able to choose where to store their data and allowed to
manage accessibility permissions to it.

• Vendor lock-in
With Solid compliant applications, the users are able to avoid vendor lock-
ins and switch between services without losing any data since they are their
data’s exclusive owners.

• Reusability & single source of truth
Instead of repetitively creating data, users can just point third-party appli-
cations to the common resources shared amongst multiple applications.

What is a Solid Pod?

Solid Pod (personal online data store) is a place for users to store their data with
whichever hosting service they prefer, using Solid.

Users can have a single Pod or multiple ones among which they might dis-
tribute different data. One Pod could be used for profile data, another for contact
information, another for health information and so on. The user can then join
an application by giving it permission to access the appropriate information in
a specific pod. Users themselves define access to read and write permissions on
the data in their associated Pods for each specific application separately, while
retaining complete ownership and control of the data.

2https://www.g2.com/categories/object-storage
3https://solidproject.org/faqs

25

https://www.g2.com/categories/object-storage
https://solidproject.org/faqs

Utilizing available Solid browser libraries4, applications are not required to
have their own back-end layer implemented, and can directly access and handle
the user provided data. The data is also decentralized and users can choose any
type of hosting they want, provided it meets the Solid operability criteria.

Users can also opt for enterprise Solid server5 which provides advanced secu-
rity, higher performance, monitoring and other services.

3.2.4 Chosen solution
Taking the requirements of this work into account outlined in chapter 2 and
considering the limitations of local file system storage, cloud storage solution is
the clear pick.

While there are cloud storage solutions provided free of charge6, Solid Pods
were picked as the storage solution for this project due to their ease of use, com-
plete permission control and data ownership for the users. Additionally utilizing
Solid Pods results in zero storage fees for the application provider and makes
implementing new features which operate with Solid Pod data easier thanks to
the official Solid client library7.

3.3 Language
The solution being a single page web application (SPA) restricts the language
choices to JavaScript based languages and HTML with CSS used for its styling.

While vanilla JavaScript and HTML can be used, it is much easier to utilize
one of the available frameworks which provide the developer with multitude of
functionalities out of the box.

Such tools provide an already established and tested approach to the devel-
opment process and allow the developer to utilize a higher level language for
implementing more complex functionalities all the while the lower level details
that might be prone to errors or more tedious to implement are taken care of by
the framework. On top of that this way the project becomes easier to maintain
and the development time is shortened as well.

One such example of shortening development time can be components for cre-
ating user friendly interfaces and design. There are numerous8 libraries providing
ready-to-use components with a unified design style across the board, allowing
the developer to choose a single framework to use and effectively utilizing the
same design principles across the whole application, making it design consistent.

3.3.1 Libraries & Frameworks
There are multiple different JavaScript frameworks to choose from when creating
a single page application. Some of the examples include Vue.js9, Angular10,

4https://github.com/solid/solid-auth-client
5https://inrupt.com/products/enterprise-solid-server/
6https://www.whizlabs.com/blog/best-free-cloud-storage/
7https://github.com/solid/solid-auth-client
8https://tinyurl.com/52jctn7d
9https://vuejs.org/

10https://angular.io/

26

https://github.com/solid/solid-auth-client
https://inrupt.com/products/enterprise-solid-server/
https://www.whizlabs.com/blog/best-free-cloud-storage/
https://github.com/solid/solid-auth-client
https://tinyurl.com/52jctn7d
https://vuejs.org/
https://angular.io/

and React11. While all of these frameworks are different, majority of the web
applications today could be implemented with either one.

In the case of this work the author decided to work with React/Redux12 stack
as React is the most popular 13 framework as of now and this stack is the one the
author has the most experience with.

For creating visually pleasing user interfaces Ant Design14 framework was
selected due to its ease of use, sleek design and personal preference.

One of the crucial parts of this work is data visualization of selected queries
and data sets. For this part there are multiple different JS libraries to choose
from 15. In this case the AntV16 library was chosen. Reasons include ease of
use, easily customizable data nodes, support for automatic layouts and its theme
based on Ant Design which was selected for creating user interfaces in the course
of this work.

React

React functions as a rendering layer for the application in which all of the HTML
and dynamic functionality is implemented. With it, developers can easily create
encapsulated components that manage their own state and compose them to
make complex UIs. These components should be independent of other parts of
the system and should only care about their inputs and how to display them and
provide feedback back up the component chain.

Redux

Redux is a library that helps manage complex states of an application. It does so
by having a single point of truth, so-called store, which should be managed only
by special functions called reducers. This store - or its parts - is then provided to
the React components in read-only mode.

To update the state with new values, the components have to dispatch special
events called actions which get propagated further and are caught by the reducers.
The reducers can then change the state based on the action’s parameters.

To further separate concerns, so-called sagas17 are often used as well. Sagas
are usually used as a layer for handling side effects and structuring of more
complex business logic, as well reacting to user interactions. Sagas can dispatch
actions as well and this way change the global state via reducers.

3.4 Application architecture
The application should be divided into several layers where each layer should
have its own separate responsibility. Basic separation can be a view layer with
an application logic layer acting as a controller. Last layer would be concerned

11https://reactjs.org/
12https://redux.js.org/
13https://tinyurl.com/nvhjwtcx
14https://ant.design/
15https://tinyurl.com/hrwknadb
16https://antv.vision/en
17https://redux-saga.js.org/

27

https://reactjs.org/
https://redux.js.org/
https://tinyurl.com/nvhjwtcx
https://ant.design/
https://tinyurl.com/hrwknadb
https://antv.vision/en
https://redux-saga.js.org/

with data storage and persistence, which would rely on Solid Pods, requiring the
implementation to only use access to the layer hosted in the cloud, and not having
to implement the storage layer directly.

3.4.1 View layer
Rendering of DOM elements and and all UI logic should be handled by React and
it’s supportive libraries (e.g. AntD, AntV) only. While the application’s state
updates effectively change what the user should see on their end, such changes
should only be handled and wrapped by React with no direct connection between
the model and UI elements. This in turn enables future developers to replace each
layer separately allowing them to use different frameworks, should they so choose.

Apart from handling the rendering of components and data, React also pro-
vides user behaviour feedback upon which other layers (most importantly the saga
layer) can react and decide what changes should be propagated to the application
state or what additional events to initiate.

3.4.2 Application logic
When dealing with application logic, the main problems are handling user be-
haviour, persisting and propagating changes to the application’s own state and
handling side effects, such as fetching arbitrary data. To handle these problems
two main layers are introduced: reducers for app state management and sagas
for handling user interaction and side effects.

Reducers

Reducers are a layer responsible for changes made to the application’s state. They
are the only resource allowed to change the state of the application as a whole.
While other layers can submit actions, specific subset of these actions gets caught
in the reducers which in turn update the state. No other source of changes should
be introduced for better readability and scaling.

Sagas

Sagas act as an intermediary layer between the user and application logic. Simple
behaviours can be directly implemented in the UI components in the view layer,
but when a user action is supposed to alter the application’s state and cause
data manipulation, extracting these interactions into a separate layer provides
code clarity and ease of maintenance. UI elements then just fire actions with a
payload and appropriate saga functions react to them and possibly fire additional
actions to be handled by other sagas or reducers, resulting in state changes. This
way the code can be split into logical pieces based on its functionality, separating
the concerns.

Sagas are also used for handling asynchronous operations, e.g. data fetching
and consequent operations.

28

3.4.3 Persistent data handling, Solid Pods
For user identification and authentication, Solid Pods are used. While the ap-
plication should be usable by anonymous users as well, some the functionality
would only be provided for authenticated users.

User’s Solid Pods act as a cloud based data layer. Every user should be able
to login on a different machine and navigate through their saved content with
ease without the need to use any other storage methods.

3.4.4 SPARQL Editor
An integral part of the application is also the possibility of executing the generated
SPARQL query against the specified endpoint. While this behaviour could be
implemented directly as a part of this work, it is much easier to use an existing
solution.

In this case, the author decided to choose the YASGUI18 tool, due to its
popularity and customizability. It allows for direct query handling via the code,
listening on events, and handles showing the results in a meaningful format right
out of the box.

3.4.5 Overview
The application should be divided into several layers where each layer should
have its own separate responsibility. Such separation is readily available thanks
to the utilization of above mentioned React & Redux libraries.

React framework supplies the role of the view layer, rendering necessary UI
components based on provided parameters obtained from the application model,
in our case the Redux store. Redux framework is then used for handling state
management for the whole application, with sagas for handling side effects, data
fetching and interconnecting these two layers.

Solid specific side effects, such as user authentication and subsequent data
fetching from user’s Pods, should be handled by third party libraries19 dedicated
specifically for such purpose.

An example of event handling and data flow through the architecture is pro-
vided in Figure 3.1.

An example of the flow could be as follows:

• User clicks the login button
Corresponding react component gets notified via onClick handlers registered
in the DOM and creates an action with specific payload.

• Action catch
Since login will require side effects to be handled (e.g. calling the login
API), this action uses the optional saga route. Corresponding saga will
process the login action and utilize the Solid API to authenticate the user
and wait for the result.

18https://yasgui.triply.cc/
19https://github.com/solid/solid-auth-client

29

https://yasgui.triply.cc/
https://github.com/solid/solid-auth-client

• Login result
After the login result is obtained (either successful or unsuccessful), the
saga then creates a new action with appropriate payload that is sent to the
reducer, or in case of more complex side effects can be further processed by
other sagas.

• State change
The final action is then captured by the reducer which changes the actual
application state values, in this case populating the application’s session
with the authenticated user’s data. There are no additional effects created
here. Reducers are the only sources of change to the state without exception.

• View update
React components utilizing data from a subset of the application state get
rendered with the new data where applicable.

Figure 3.1: Overview of the application life cycle

3.5 Mockups
This sections describes the approach taken to implementing use cases mentioned
in section 2.4. The overview of the main screen is discussed first, followed by
the description of separate parts of the application and their mockups. Each
mockup is accompanied by short description of the visible elements and their
purpose. Items marked with in requirements do not have a corresponding
mockup because they were introduced at a later stage of the implementation
process.

30

3.5.1 Title page

Figure 3.2: Main screen

Figure 3.2 provides an overview of the main screen of the application. Considering
the solution proposed is a web application without the need of transitions and
additional screens, the chosen design is consisting of a single page separated into
areas based on the application’s business logic.

This way the user can have overview of everything that is happening on the
screen at once without the need of switching between screens. The proposed
design also allows displaying the main interactive area in a separate window to
allow the user to navigate in the data set more easily if needed.

3.5.2 User information

Figure 3.3: User information - Anonymous

Figure 3.4: User information - Logged in

31

Figure 3.3 and Figure 3.4 depict the part of the application with user information
and view management for anonymous and logged in users respectively.

Anonymous users are limited to log in and view import functionalities.
Logged in users are additionally able to manage the views they have saved

with the application.
Screen functionalities can be described as follows:

• Login - Allows the user to log in to a Solid Pod

• Logout - Allows the user to log out of a Solid Pod

• Import - Allows the user to display a view created by this application by
providing a URL at which the view is saved

• ”Your views” list - List of views the user has previously saved in their
Solid Pod with the application

• Load - Functionally the same as ”Import”, except the view is directly
loaded from the user’s Solid Pod

• Delete - Deletes specific view from the user’s Solid Pod

This screen fulfills requirements introduced in F4 - User data storage.

3.5.3 Data area

Figure 3.5: Main area

Figure 3.5 depicts the main area of the application where the user can view the
data schema provided in a visual format.

32

Every entity from the schema is represented as a node with edges signifying
relations between these entities.

Users are able to open this area in a new window, providing them with an
option to view the schema on a larger scale. Additionally, logged in users are able
to save their current selection as a view, effectively adding it to their catalogue
shown in Figure 3.4.

Data entities

Figure 3.6: Data entity

Figure 3.6 shows an element of the data area that the user can interact with.
Every entity displays the list of their data and object properties. The user is able
to interact with each property of the entity via the following means:

• Clicking the property
Marks the property as selected, requesting the entity and the specific prop-
erty in the result set. Selected properties are marked with a different color
than not selected ones.

•
Toggles between displaying the property value in the query result or omit-
ting it. Entities queried with properties hidden this way are still required
to have such a property, the result would just omit it.

•
Toggles the property as optional, changing the generated SPARQL query.
Queried entities shown in the result set do not need to contain relationships
marked as optional.

This screen fulfills requirements introduced in F3 - Generate SPARQL SE-
LECT query.

33

3.5.4 Query editor

Figure 3.7: Query editor

Figure 3.7 depicts the SPARQL query editor. Here the user can see the generated
query from the selection created in Figure 3.5. Interactive elements on this screen
can be described as follows:

• Endpoint field
Allows the user to change the endpoint that should be used to run the
generated generated SPARQL query.

• ’Run”
Runs the generated SPARQL query against the specified endpoint.

• ”Export”
Exports the received result from running the generated SPARQL query
against the endpoint in a CSV format to be downloaded by the user.

• Result table
Apart from exporting the result set, the users are able to see the data
directly in a table form as well.

This screen fulfills requirements introduced in F5 - Run SPARQL query.

34

4. Implementation
In the first part, this chapter describes the changes in implementation introduced
as opposed to the proposed design in section 3.4.

The second part mentions interesting implementation tasks and the approach
that was taken to solve them.

The chapter concludes with a description of improvements that could be added
to the application to enhance the user’s experience and allow for more granular
control over the results.

4.1 Limited mobile experience
While the advantages of a web application discussed in section 3.1 mention mobile
access as well, during the course of implementation of this work, this feature was
not implemented in full for the following reasons:

• Out of the box support
Chosen AntV1 used for graph handling does not out of the box support
behaviors same as on desktop. For example dragging nodes2 is implemented
on desktop by default, but for mobile, the implementation would have to
be custom.

• Lack of added value
Navigation around the canvas and other UI elements was deemed more user
friendly with the desktop experience due to a larger screen and intuitive
mouse controls.

• Development time
Implementing custom canvas event handling that is intuitive for touch
events is not trivial. While mobile touch events in a way simulate the
behaviour of the mouse, the experiences differ.
Another issue to tackle is styling for mobile devices which are vastly differ-
ent, adding more the the development overhead.

However, the users are still able to access the application via their mobile
devices and use most of the functionality in a similar fashion to the desktop
experience.

For example the entity list view has no limited interactions available on mo-
bile devices. Some issues can be found with interaction with the graph, mainly
dragging of nodes as mentioned above. Selecting properties, clicking the edges
and moving around the graph is not impacted on mobile devices.

1https://g6.antv.vision/en
2https://g6.antv.vision/en/docs/manual/middle/states/defaultBehavior#

drag-node

35

https://g6.antv.vision/en
https://g6.antv.vision/en/docs/manual/middle/states/defaultBehavior#drag-node
https://g6.antv.vision/en/docs/manual/middle/states/defaultBehavior#drag-node

4.2 State handling with Ramda
One notable change is removing Redux Sagas altogether and utilizing Ramda
lenses3 instead. One major downside of utilizing Sagas is having no direct un-
derstanding and control over the flow of the application due to the nature of the
listener registrations and action propagation. Utilizing Ramda, the effects are
directly observable and can be reasoned about, which in turn allows for more
understandable developer experience.

Ramda lenses are also used for handling state changes in the place of reducers.
Utilizing Ramda’s functions has the added benefit of always returning a new copy
of the object where necessary, not requiring the developer to keep track of where
to use the spread operator to prevent changing the state without returning a
new reference and in turn preventing the UI to update. Another such library
that could be used is immutablejs4. The author has picked Ramda over the
other solutions mainly to notable experience with it and its ease of use and
maintainability.

What this ultimately means in the code is that instead of dispatching actions,
state updating functions are dispatched instead. This is provided by a custom
dispatch method which in turn applies the provided state updating functions and
propagates the changes to the redux store.

As opposed to the picture in Figure 3.1, the newly implemented architecture
looks as follows:

Figure 4.1: Overview of the implemented application architecture

4.3 SPARQL Proxy
Due to the nature of this work, requests to remote sources that are not a part
of this application are inevitable. This mainly includes the need for querying
third-party SPARQL endpoints, which can come with obstacles, namely regarding
CORS5 and Cross-origin policy6.

3https://ramdajs.com/docs/#lens
4https://github.com/immutable-js/immutable-js
5https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
6https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

36

https://ramdajs.com/docs/#lens
https://github.com/immutable-js/immutable-js
https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

As mentioned in subsection 3.4.4, YASGUI7 is used as the tool for handling
SPARQL queries and their execution. This tool also allows the developer to set
up a proxy which can be used as a fallback scenario, should the default requests
fail. To alleviate the aforementioned problems, this work is shipped with its own
implementation of such proxy, that is used to propagate the created SPARQL
requests further to the endpoints specified.

The proxy repository is hosted on GitHub8 and with the shipment of this
work, a running instance can be found on heroku9. The flow of the SPARQL
requests can be described by the following figure:

Figure 4.2: SPARQL proxy

4.4 Interesting implementation tasks
This section describes interesting tasks that arose during the development process
and the approach that was taken to resolve them.

4.4.1 SPARQL generation
One of the most important tasks of the development process was proper SPARQL
query generation based on the selection provided by the user.

This subsection provides overview of the approach taken to this problem and
some interesting caveats. The whole algorithm for generating the SPARQL query
is defined in src/@@data/parseQuery.js.

Object properties vs data properties

For the query to be parsed properly, an important distinction has to be made
between object properties and data properties. For object properties (properties
whose object is a class10), the query also needs to contain a definition of the

7https://yasgui.triply.cc/
8https://github.com/jaresan/sparql-proxy/
9https://simplod.herokuapp.com/

10https://www.w3.org/TR/rdf-schema/#ch_class

37

https://yasgui.triply.cc/
https://github.com/jaresan/sparql-proxy/
https://simplod.herokuapp.com/
https://www.w3.org/TR/rdf-schema/#ch_class

object type via the rdf:type11 predicate. For data properties this is not needed,
since they are not an instance of a class.

To properly and completely correctly distinguish between object and data
properties, it would be necessary to query the respective vocabularies and parse
the information for every object type. A shortcut approach however can be
implemented by treating every entity that is not listed as a subject in the data
schema as a data type. Every property with an object that is not used as a
subject anywhere in the data schema is then considered a data property.

Default query creation

Users are able to influence what the generated query looks like via multiple inter-
actions available in the graph and the list view. The default example is clicking
the properties in the graph, which in turn adds them to the query as follows:

Figure 4.3: Default use case

(a) Graph view (b) Corresponding query

In the example depicted in Figure 4.3, the user is simply requesting the Nobel
prizes and the corresponding laureates and their names. Since all the properties
represent a triple of subject, predicate, object, all of this data has to somehow be
represented in the resulting query. As mentioned above, data properties do not
have their object types specified in the query. The subject and object types will
then be added as follows:

?NobelPrize a nobel:NobelPrize.
?Laureate a nobel:Laureate.

Finally the predicates linking the subjects and objects are simply represented
by ?subject ?pred ?object, in this case:

?NobelPrize nobel:laureate ?Laureate. # object property
?Laureate foaf:name ?name. # data property

The users are also able to change the selection order by reordering the items
in the ”Selected” tab in list view. This interaction just changes the order of the
variables in the SELECT part of the query as follows:

11https://www.w3.org/TR/rdf-schema/#ch_type

38

https://www.w3.org/TR/rdf-schema/#ch_type

Figure 4.4: Selection order

(a) Name first (b) Laureate first

Finally, one of the features provided to the user, as per section 2.3.1, is the
option to hide a variable from the result set if they wished to query data satisfying
certain relationships, but would not care about the details.

For data properties, this is just a simple removal of ?variable from the
SELECT part of the query, but for object properties, the behaviour is more
complicated. Since object properties directly target other entities that include
their own controls, the behaviour and representation has to be synchronized.
Properties targeting the same entity have to be synchronized as well, because if
the user removes an entity from the result set via one property, they arguably
would not want other properties displaying the same information.

In the application, this behaviour is then implemented as a propagation of
hide/show actions throughout all the properties targeting the same entity, and
the entity itself. This means removing a property from the result set marks all
properties with the same target as removed and also marks the entity itself as
removed. Vice versa, removing an entity from the result set marks all properties
targeting it as removed as well, as illustrated by the following picture. The fields
marked in red are always synchronized:

Figure 4.5: Selection and hiding always have the same state

39

Figure 4.6: Laureate removed from the result set

Optional clauses

Using a visualization tool naturally limits the user’s influence on adjusting the
query as opposed to using the SPARQL editor directly. Using the visualization
tool, there can be different ways how to implement user’s interactions and what
role these interactions play in creating the final query. One of the interactions
that can be interpreted in different ways is marking items as optional.

For the use of this application, the assumption is that the vast majority of
users would like to request data that are linked. Optional data properties do not
create links and are therefore of no concern. Object properties, however, create
links between entities that are to be queried and could potentially introduce
requesting data that the user might not be interested in. Take the following
example:

Figure 4.7: Optional link

(a) Query n.1 (b) Query n.2

Figure 4.7 depicts an example where the user would like to query for Nobel
prizes and their Laureate’s names. The relation between Laureate and Nobel
prizes is marked as optional here, which in turn can be interpreted two different
ways, depicted by Query n.1 and Query n.2.

As mentioned before, we assume the user requests only resources that are
linked, which in turn would result in Query n.1. The way this behaviour is
implemented in the application is as follows: Every entity requested through

40

an optional edge is, along with all its requested properties, defined in the same
optional clause.

This works recursively, creating nested optional clauses, as depicted in the
following example:

Figure 4.8: Nested optionals

Every relationship edge is marked as optional, providing another level of nest-
ing for optional clauses. This way only properly linked data is shown to the user
without the concern of requesting arbitrary data that is not linked.

4.4.2 Cartesian product detection
One of the requirements mentioned in section 2.3 is to warn the user about the
query potentially requesting a cartesian product.

In short, the check whether the query might result in fetching a cartesian
product is based on the connectivity of the graph. If the graph can be considered
a single connected component12 there should be no concern of querying for a
cartesian product, due to how the SPARQL query is generated, as pointed out in
subsection 4.4.1.

The functionality can be illustrated on the following examples:
12https://en.wikipedia.org/wiki/Component_(graph_theory)

41

https://en.wikipedia.org/wiki/Component_(graph_theory)

• Disconnected graph
Creating a selection that contains multiple connected components would in
turn possibly query a cartesian product:

Figure 4.9: Two connected components

• Connected by an edge
Adding a single edge to the previous example, even if it is optional, connects
the two connected components, removing the possibility of querying for a
cartesian product.
Trivially, if the edge is not considered optional, the same holds true.

Figure 4.10: Two components connected by an optional edge

• Multiple optional edges

42

An interesting example for cartesian product detection is nested optional-
ity. As mentioned in subsection 4.4.1, the optional clauses are generated
recursively so that data that is not properly linked is not queried.
Because of this, a path of optional edges cannot introduce a cartesian prod-
uct into the query, because all of the subsequent optionals are nested into
one another. This way, the example depicted in Figure 4.8 cannot result in
querying for a cartesian product and hence the cartesian product warning
wouldn’t be shown.

4.4.3 Optionality cycles
While not a common scenario, the application should be able to handle a setup
where the selection graph contains a cycle. For non-optional properties this is
trivial, the query does in no way reflect that and would execute just fine. For
optional properties however, this becomes an issues, since they are resolved re-
cursively as pointed out in subsection 4.4.1.

The chosen approach to solve this problem is simple, the algorithm responsible
for expanding node after node does not follow edges that are pointing to already
introduced nodes. This way the cycle is cut and the optional clause recursion can
work properly. This can be seen in the following example:

Figure 4.11: Optionality cycle

The node chosen as the first one to expand is based on the user’s order of
interactions with the application.

43

4.5 Room for improvement
This sections describes functionalities that would be considered beneficial to the
end user but have not been implemented as a part of this work for various rea-
sons. The first part discusses different features that could be added to the graph
tool, following up with improvements that could be made to support additional
distinction in the generated SPARQL query.

4.5.1 Graph tool
The utilized AntV graphing library comes with a variety of features out of the
box, including, but not limited to, zoom, node dragging, panning and automatic
node layout. Improvements that could be built on top of this library include some
of the following:

Edge direction

The RDF triples13 representing the data schemas used in this application effec-
tively describe a graph with directed edges. This works implements edges without
any directional information, not allowing the users to see the directions of the
relations in the graph. While AntV supports adding directional edges, the simple
example tried has been deemed unsatisfactory and further implementation has
been put on hold.

Figure 4.12: AntV edge direction

Automatic node layout

It would be ideal if the users could select different options how to distribute
the nodes in the graph when the data schema is loaded. While AntV supports
different layout options out of the box, due to the variety of data schemas that can
be presented to the application, there is not a one-size-fits all solution. Properly

13https://en.wikipedia.org/wiki/Semantic_triple

44

https://en.wikipedia.org/wiki/Semantic_triple

distributing nodes in the graph to show the data in the best possible way is a non-
trivial task and one that requires a significant amount of effort to implement. If
the future developer wants to use an algorithm that would take the graph data as
an input and would return the positions for each node, adding it to the application
should be a simple task.

User defined node layout

Considering that the positions of graph nodes is information that is saved as a
part of the project, the curators are able to edit data schemas in a way that would
future users to vied the data in a more compact way.

It would be beneficial to allow these curators to align and distribute items
based on certain criteria.

4.5.2 Query improvements
By the nature of the application being a visualization tool, the query customiza-
tion will necessarily be limited as opposed to the direct manipulation of the query.
Some of the following options would improve users experience with generating the
query.

While not implemented directly through user’s interaction with the graph or
the list view, all of the features described in this subsection can be re-
placed with directly editing the SPARQL query thanks to the requirement
F3.3 in Section 2.3.1.

Distinction between two entities of the same type

Copying a node in the graph via creates another node with the same type and
allows for querying for it as a new target of appropriate properties. Consider the
following example:

Figure 4.13: Same type distinction

The example pictured in Figure 4.13 queries for a person, their university and
cities for both of the entities. The user might expect the cities in this case to

45

represent strictly different values, due to them being represented by two different
nodes in the graph, but that is not the case. The generated query would look as
follows:

SELECT DISTINCT ?University ?City_1 ?Person ?City WHERE {
?Person a foaf:Person.
?Person dbpo:affiliation ?University.
?University a dbpo:University.
?University dbpo:city ?City_1.
?City_1 a dbpo:City.
?Person dbpo:birthPlace ?City.
?City a dbpo:City.

}

Should the user not copy the node via the icon, they would query for a
person and their university only if they studied in the same city they were born
in.

More granular optionality handling

The way this work is implemented, every optional property has its own separate
clause in the final generated SPARQL query. While such an approach is not
invalid, sometimes the users could benefit from being able to group optional
clauses into one. To better illustrate the feature, let’s consider the following
picture:

Figure 4.14: Double optional target

Figure 4.14 depicts a selection of two optional relations and one required
relation. From the graph, we can see, that the data queried is a person, their
university, and for each of these entities, their corresponding city. The generated
query would be as follows:

SELECT DISTINCT ?Person ?City ?University WHERE {
?Person a foaf:Person.
?Person dbpo:affiliation ?University.
?University a dbpo:University.
OPTIONAL {

?University dbpo:city ?City.
?City a dbpo:City.

}

46

OPTIONAL {
?Person dbpo:birthPlace ?City.
?City a dbpo:City.

}
}

In this case, since the properties are considered optional, the ?City variable
would be populated with either the city of the university, or the city of birth
of the queried person. The user however has no means to distinguish between
these two and might want to create a selection that would return a city only if
the person was born and attended university in the same city. In that case, the
desired query would look as follows:

SELECT DISTINCT ?Person ?City ?University WHERE {
?Person a foaf:Person.
?Person dbpo:affiliation ?University.
?University a dbpo:University.
OPTIONAL {

?University dbpo:city ?City.
?Person dbpo:birthPlace ?City.
?City a dbpo:City.

}
}

The application does not support such a way to group optional queries in this
regard. The user can still directly manipulate the SPARQL query however to
achieve this result.

Property value constraining

One of the comparison criteria described in subsection 2.6.1 is the ability to
constrain the values of properties to be selected. Such a feature would allow the
users to create more specific queries, searching for data satisfying a set of criteria
imposed by the user.

47

5. Documentation
This chapter provides additional information about the application to users, ad-
ministrators and programmers who might look to improve the application or
would want to understand its inner workings better.

This chapter can also be found on GitHub1.

5.1 User documentation
This section describes how the user can connect to the application, utilize their
Solid Pod and furthermore shows basic manipulation of the application data and
view creation.

The reader is encouraged to navigate through the user guide2 should they
have any problems following specific steps setting up the Solid environment.

5.1.1 Solid Pod setup
This subsection describes the requirements necessary to enable the application to
persist its data by utilizing the user’s Solid Pod. While the application can be used
without Solid Pods as illustrated in section 2.4, no data and view management
can be established, therefore severely limiting the functionality of the application.
The user is encouraged to read through the documentation and follow all the steps
outlined to familiarize themselves with the application and set up the environment
properly.

Preliminaries

The following sections are written for Solid Pods hosted at Inrupt3. This applica-
tion shall be usable with any Solid Pod providing service but the details regarding
its use might differ.

We assume the reader has their own Solid Pod set up, if not, they are able to
create a new one for free on the registration page4.

Logging in with Solid Pod

To set up all permissions for the application, the user has to sign in to their Solid
Pod first via the application’s avatar button in the top right corner.

Figure 5.1: Avatar menu

1https://jaresan.github.io/simplod/documentation.pdf
2https://github.com/solid/userguide
3https://inrupt.net/
4https://inrupt.net/register

48

https://jaresan.github.io/simplod/documentation.pdf
https://github.com/solid/userguide
https://inrupt.net/
https://inrupt.net/register

Upon clicking on the login button, the user is required to choose their Solid
Pod provider either from the list provided or by specifying it themselves.

Figure 5.2: Picking Solid Pod provider

After the provider is chosen, the user is able to authenticate via the provider’s
login screen.

Figure 5.3: Provider login screen

When the login is successful, the user is requested to grant permission to the
application which would allow it to save and handle its data across the user’s
Solid Pod.

Figure 5.4: App permission prompt

49

If all of the above steps resolve correctly, the user is shown a positive feedback
message and able to start working with the application fully.

With all of the steps outlined above complete, the application shall have all
the permissions it needs to properly manage its data utilizing the user’s Solid
Pod.

Should the reader experience problems with the application data management,
they are encouraged to resolve the problems manually directly in their Solid Pod,
as outlined in Appendix A.

5.1.2 UI Elements
This subsection describes the layout of the application with a detailed explanation
of each interactive element available to the user.

Layout

Figure 5.5: Layout

Figure 5.5 displays the overview ”main screen” of the application. It is split
into three main parts:

• Top bar
Contains user information with project save status and functionality regard-
ing application settings and file handling. Right part contains additional
controls for the user, such as authentication and file sharing.

• Left part - Graph
Contains the graphical representation of the open data schema. Users are
able to view different entities and their properties and the relations between

50

them. Upper-right part of the graph also contains shortcuts to certain func-
tionalities like showing all entities, clearing selection, and others. Described
in subsection 5.1.3.

• Right part - Entity list
A list view of the data displayed in the graph with additional controls.
Contains a search bar to allow users to quickly filter out entities by their
name. Described in subsection 5.1.4.

Project bar

Figure 5.6: Project status

Figure 5.6 contains the following:

• Project title
Title of the project. Allows the user to edit by directly clicking in the text
field.

• Change status
Displays current project change status based on whether the newest changes
are saved locally or in SOLID pod. Clicking the status text/icon saves the
current state of the project to the corresponding location.

Avatar menu

Figure 5.7: Avatar menu

Figure 5.7 contains the following:

• Run SPARQL Query
Opens a SPARQL query editor and runs the user generated query, display-
ing results.

51

• Share
Allows the users to share the project and set view permissions for other
users.

Figure 5.8: Share menu

Clicking the ”Share” item in Figure 5.7 opens Figure 5.8. These controls allow
the user to share the project in different ways as follows:

• Data fetching links
Links used to fetch the data represented in the project. These links could
potentially be saved and used to retrieve specific data sets directly.

– YASGUI Query Tool
Opens YASGUI Query Tool5 with the query representing the project
loaded.

– CSV URL
Downloads the result set directly as a CSV if the endpoint properly
supports it by adding format=text/csv parameter to the URL.

– Direct Web URL
Represents a GET request that directly returns the data set selected
in the project.

– cURL POST Request
Since some of the endpoints might not be set up in a way that enables
GET requests, the user is also provided with the option of running a
cURL POST request that accepts CSV (Header ”Accept: text/csv”).
The endpoint has to support this functionality.

5https://yasgui.triply.cc/

52

https://yasgui.triply.cc/

• App links
Links regarding the project and its usage in the app.

– Direct application URL
On access, launches the application and loads the project from the
project file saved

– Current file URL
Displayed if the user has the project saved in a Solid pod. Remote
location of the file.

– Permissions
Allows the user to set the file permissions directly.
Private - Can’t be viewed by anyone else than the current user
Public/read - Can be viewed by anyone but not edited
Public/write - Can be edited by anyone

Settings

Figure 5.9: Settings menu

Clicking on ”Settings” in Figure 5.5 opens the settings menu displayed in Fig-
ure 5.9 containing the following:

• Show labels

Figure 5.10: Label

Turning this option on/off allows the able to switch between human readable
names for the entities or their IRI definitions.
Figure 5.10 shows such an example with the labels disabled on the left and
enabled on the right.

53

Human readable names are only displayed if they are provided by the end-
point.

• Label language

Figure 5.11: Label language

Allows the user to choose a language of the displayed labels if available.
If the language selected is not available, the application defaults to display-
ing the English variant.
Figure 5.11 shows an example of English labels on the left and French on
the right.

• Application language
Language of the application interface. Czech and English are provided with
this work being published.

• View orientation
Allows the user to select between horizontal/vertical view for the setup of
the graph and the list screen.

File menu

Figure 5.12: File menu

Figure 5.12 allows the user to create a new project, save/load one or change the
project’s properties.

54

Figure 5.13: New file

Figure 5.13 shows new project window, allowing the user to create a new
project with fields as follows:

• Data schema URL
URL from which the data schema should be retrieved. This URL should
return a file in the format described in subsection 2.5.2.

• SPARQL Endpoint
URL of a SPARQL endpoint which will be queried for the data selected in
the application.

• Title
Title of the project

• Description
Additional textual description of the project.

• Create
Creates the project via the application, loading the data and populating
the graph and the list.

• From example
Users are also able to create a new project from a predefined set of examples
for testing purposes or getting to know the application. This set of examples
might not correspond to the examples displayed in Figure 5.13.

55

Figure 5.14: Save & load

Clicking on ”save” in Figure 5.12 opens the save menu with the following
items. Load menu is the same with opposite functionality:

• Download file
Downloads a file representing the project to the user’s disk. This file can
be than shared and distributed to allow users to load the same project in
the application.

• Save to browser storage
Saves the current state of the project to the browsers storage, allowing the
user to close the application and resume their work later. Due to the nature
of this application, only one file can be saved to the browser storage at one
time.

• Last file
Description of the last file saved in the browser storage in the format
”Project name @ DATE”.

• Solid pod

56

Figure 5.15: Solid pod

Unauthorized users see a button Login to Solid Pod.
Authorized users see a list of their files in the Solid Pod they are currently
logged in.
Selecting a file allows the user to delete or save to it directly.
Clicking the ”+” button allows the user to create a new file in the selected
folder.

• By URI

Figure 5.16: By URI

Figure 5.16 allows the user to specify the full URI path where the project file
should be saved. The authenticated user has to be granted write permission
to be able to save to this location.

57

Edit original file

Figure 5.17: Properties

If the user has write access to the project loaded from a remote location, they
are asked to pick one of the following options:

• Edit original file
Saving the changes directly modifies the original file at its location.

• Save
Opens a dialog, allowing the user to save the file to a new location.

• Do not save
Closes the prompt, letting the user pick a location of their choice later on.

Project properties

Figure 5.18: Properties

58

Figure 5.18 allows the user to change the properties of the project. Fields in this
menu correspond to the same fields as in Figure 5.13 with extra items as follows:

• Property languages
Languages that should appear in the resulting query for data properties sup-
porting different languages. Will return every available language if nothing
is specified.

• Custom prefixes
Allows the users to rename the prefixes found in the application.
Figure 5.18 represents an example where every ”nobel” prefix would be re-
named to ”custom”, e.g. ”nobel:laureate” would become ”custom:laureate”.

allows the users to delete their custom property entry.

Warnings

Figure 5.19: Cartesian product warning

This warning is displayed when the user queries for data in the graph that does not
represent a strongly connected component and could therefore result in querying
for a cartesian product.

Figure 5.20: Customized query warning

This warning is shown if the SPARQL query has been manually edited. By
changing anything regarding the selection, the user effectively removes these edits.

5.1.3 Graph interface
This subsection describes the graph part of the application and how users can
interact with it. First the graph as a whole is described with its controls and
controls for node separately following.

59

Graph component

Figure 5.21: Graph area

Figure 5.21 shows the data schema as a graph where nodes represent entities and
edges represent the relationships between them. The users are able to interact
with the graph in the following ways:

• Node drag
Users are able to position the nodes in the graph by dragging them. This
change in position is saved to the project model file and is persistent, loading
the project again will result in the same positioning of the nodes.

• Empty space drag
Users are able to navigate around the graph by dragging an empty space
on it.

• Zoom
Utilizing the mouse wheel/scroll controls, users are able to control the zoom
level of the graph.

• Hover
Hovering over an edge highlights its source and target nodes. Hovering over
a node highlights all nodes connected to it with an edge and the correspond-
ing edges.

60

Figure 5.22: Graph node

Figure 5.22 represents a single entity from the data schema. Its controls are
as follows:

• Highlight
If some properties of the entity are selected, the entity is highlighted to
easily distinguish it from other entities in the graph that are not being
queried.

• Delete entity
Remove the entity and its corresponding relationships from the schema
altogether. Curators can use this feature to split up large data schemas
into smaller, more specific chunks.

• Copy entity
Creates a new instance of the same entity in the schema. This way users are
able to query for the same entity types with different entity instances. In
the nobel prize example provided users might want to query two different
sets of countries, one for the people and one for their respective universities.
Using only a single entity would not be able to achieve that in this case.

• ”?Name”
Name of the entity in the resulting data set. Can be changed in the list
controls described in the next section.

• Hide
Hides the entity from the schema.

• Select all
Selects all properties of the given entity.

• prefix:Name
Entity type.

• Expand/Collapse
Expands/collapses the container of the properties, displaying all data and
object properties available on the entity. Collapsing the container keeps the
selected properties visible.

61

• Property container
List of properties for the given entity. This list contains both data properties
and object properties. Selecting a property highlights both the node and
the property itself.

Figure 5.23: Edge

As shown in Figure 5.23, edges in the graph represent relationships between
entities in the data schema. If there exists an edge between two entities, there
exists at least on property on one of the entities that has the other entity as a
subject. The edge controls are as follows:

• Highlight
Hovering over an edge highlights it and also its corresponding nodes. High-
lighting a node from Figure 5.22 also highlights its all corresponding edges
and their end nodes.

• Click
Clicking an edge opens a menu with a list of properties the edge represents.
Users are able to perform all actions on these properties the same way as
they would via the list view.

Edges can also appear with different styles based on the user’s interaction
with them:

62

Figure 5.24: Edge states

• Default grey color
None of the properties represented by the edge are selected.

• Blue color
Some properties represented by the edge are selected.

• Green color
The edge has been selected by clicking on it and its description menu is
being shown. The user can deselect the edge by clicking anywhere else in
the graph.

• Dash pattern
All of the edge’s selected properties are marked as optional.

Figure 5.25: Graph toolbar

Figure 5.25 represents a toolbar with access to action shortcuts for the user’s
convenience as follows:

• Show all
Toggles all entities as shown that were previously hidden via Figure 5.22

.

• Hide rest
Toggles all entities that are not selected as hidden, functionally the same
as toggling entity as hidden directly in the graph via Figure 5.22 .

• Fit into view
Fits the whole graph in to the current graph container, allowing the users
to view all entities in the window at once.

63

• Deselect all
Deselect all currently selected properties and entities.

• Run Query
Opens SPARQL Query editor and runs the query representing user’s selec-
tion.

5.1.4 List view
Similarly to the graph interface, the user can use the list view to achieve the
same results. This subsection describes the elements of the list view and how to
interact with them.

List overview

Figure 5.26: List overview

The list displays all the entities to be found in the data schema with controls that
enable similar interaction to the ones described in subsection 5.1.3.

Starting from the top:

64

List view controls

• Available tab
This tab displays all available entities in the data schema. If the user deletes
an entity from the project, this list is updated accordingly and the entity
is removed from it.

• Selected Tab
This tab displays only entities that themselves, or their properties, are
requested in the result set by the user.

Figure 5.27: Selected tab

The user is able to change the order of the requested resources in the top
part by dragging the entries to the desired position, resulting in different
order of the queried variables.

Figure 5.28: Column order example 1

Figure 5.29: Column order example 2

65

• Search bar
This bar allows the user to filter out results by text search with immediate
response. The search is run on the labels, descriptions and the actual IRI
representation.

Figure 5.30: Search functionality

Entity rows

Each entity is represented by its own row entry in the list view.

Figure 5.31: Entity row

Every such row can be interacted with in the following ways:

• Expand/Collapse icon
Clicking this icon allows the user to expand/collapse the properties linked
to this entity.

66

Figure 5.32: Expanded properties

• Title hover
Hovering over an entity name displays its full IRI as a tooltip.

Figure 5.33: Entity title hover

• hover
Hovering over the icon displays human readable description of the entity
if available (has to be supported by the endpoint set in the project).

Figure 5.34: Entity description

Entity row controls

On the right side, every entity row includes also quick actions similar to the
actions in described Figure 5.1.3

67

Figure 5.35: Entity description

• - Variable name
Variable name to be used in the result set of the SPARQL query as per
example:

Figure 5.36: Variable name field

Figure 5.37: Renamed variable result

Right side of the entity row offers quick actions as follows:

Figure 5.38: Entity row actions

• ✓ - Select entity
Queries the entity under given variable name.

68

• - Copy entity
Creates another instance of the same entity, same behaviour as in Fig-
ure 5.1.3.

• - Delete entity
Deletes the entity instance from the data schema, same behaviour as in
Figure 5.1.3.

• - Hide entity
Hides the entity in the data schema, same behaviour as in Figure 5.1.3.

Property row

Property rows are divided into data properties and object properties (tar-
geting other entities in the graph, resulting in a graph edge) with the property’s
target being specified at the end of the row. Every property has its own row in
the list view as follows:

Figure 5.39: Data property row

Figure 5.40: Object property row

The control elements are as follows:

• ✓ - Select property
Selects the property under given variable name.

• or - Property type
An icon representing the type of the property, data or object.

• ”XXX or grey field”
XXX represents the property’s predicate.

denotes variable name field, same as for entity rows.
Greyed out field is present on object properties, informing the user that
the name of the target entity has to changed in order to change the name
of this property as per the tooltip:

69

Figure 5.41: Object property variable field tooltip

The user has to rename the entity directly if they wish to query the property
under a different name:

Figure 5.42: Object property target

• - Hide property from the result set
Hides the property from the result set. Useful when user wants to query
only entities with an existing relation but does not care about the property
value, e.g. user wants to query theses that have already been submitted
(have property ”submitDate”) but does not care about the actual date
itself.

• - Mark property as optional
Marks property as optional.

5.1.5 Examples
The following subsection outlines example scenarios which can be followed to
introduce the user to the features of the application.

Every example is started from the new start of the application with default
settings. The reader is welcome to use the accompanying deployment of this
work on GitHub6 by clicking Demo7.

Nobel prize categories - graph

The first example is based on a data schema of Nobel prizes. This data schema
represents the information about Nobel prizes and their laureates. Let’s illustrate
a simple example where we would like to know what Nobel prize categories there
are.

First we have to load the data schema in the application, we can do that
either by accessing the demo application8 with the data already encoded at or by
following the steps below:

1. Click File → New
6https://jaresan.github.io/simplod/
7https://jaresan.github.io/simplod/build/index.html
8https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.

github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/
sparql

70

https://jaresan.github.io/simplod/
https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql

2. Create a New project with the following configuration:
Data Schema:
https://jaresan.github.io/simplod/example.ttl

Endpoint: https://data.nobelprize.org/store/sparql

3. Click Create

Figure 5.43: Nobel prize example default view

When we open the application (depicted in Figure 5.43) we can notice the
”NobelPrize” entity in the graph.

Figure 5.44: NobelPrize entity

Clicking on the entity, we can expand its properties and see what it is linked
to. Let’s go ahead and select the nobel:category property.

71

https://jaresan.github.io/simplod/example.ttl
https://data.nobelprize.org/store/sparql

Figure 5.45: Selected property

For a more detailed overview of what we have selected, we can take a look at
the list view under the graph, or next to it, in the tab selected.

Figure 5.46: List view

Here we can see we have selected the category property, named Nobel-
Prize category. Also the entity itself is selected (checkbox next to Nobel-
Prize), which will select the prizes as well. For the sake of the example, let’s
leave the selection as is. Clicking the ”Run SPARQL Query” at the top of the
screen, the editor opens and we can see the fetched results:

Figure 5.47: Run Query

72

Figure 5.48: SPARQL Results

In Figure 5.48 we can see the result created by our selection. First we have
the NobelPrize which represents the IRI of a Nobel Prize. Second we have
the NobelPrize category property, which is the textual representation of the
category for the given prize.

Considering we wanted to find only what categories Nobel prizes are awarded
in, this result is superfluous. To get rid of the prizes, we can go back to the list
view to deselect them:

Figure 5.49: List view

Deselecting the entity will remove its IRI from the results set. Executing the
query again, we get the following:

73

Figure 5.50: Cleaner results

In Figure 5.50 we can see that we have now only fetched the categories. Any-
body shown these results can immediately understand what they represent.

Now that we’ve fetched the data, we might want to share them. We can do
so by downloading the result directly in the CSV format and sharing that file:

Figure 5.51: Download CSV

We can also share the data by sharing a link to a third party tool populated
with our query. To do that, we can open the share menu via the ”Share” button
at the top of the screen. By clicking on the icon for YASGUI Query Tool,

74

we copy the URL with the query encoded into our clipboard and can then just
paste it in the browser and view the result. We can also click the icon to launch
the tool directly.

Figure 5.52: Copy yasgui query URL

75

Figure 5.53: Yasgui query results

We can also use ”Direct access URL” which returns the results directly, or
get the cURL POST request to use in the terminal. All of the share options are
described in Figure 5.1.2.

Nobel prize categories - list view

What if we don’t want to navigate through the graph because it might seem too
clunky?

We can use the search functionality in the list view. We are looking for Nobel
prizes. By typing ”prize” in the search field, we can see entity rows being filtered
out based on their matching text.

Figure 5.54: List view

76

In this case, we can select the property directly by checking the box on its
left side. The rest of the steps is the same as the end for the graph variant.
The graph and list are connected and new changes are reflected in both of these
components.

Nobel prize laureates

Continuing with the example of nobel prizes, let’s try an example where we’d like
to get nobel laureates with some additional info about them. Let’s begin with
the default view by following the same steps as previously, either accessing the
example directly9 or by following the steps below:

1. Click File → New

2. Create a New project with the following configuration:
Data Schema:
https://jaresan.github.io/simplod/example.ttl

Endpoint: https://data.nobelprize.org/store/sparql

3. Click Create

Figure 5.55: Nobel prize example default view

9https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.
github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/
sparql

77

https://jaresan.github.io/simplod/example.ttl
https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/demo.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql

Since we are interested in nobel prize laureates, we can click the Laureate
entity to see what relationships there are:

Figure 5.56: Laureate entity properties

Let’s say we are interested in the laureate’s birth country, their name and ad-
ditional information about the prize they received. If we take a look at the prop-
erties, the corresponding ones would be dbpo:birthPlace (dbpo:Country),
foaf:name and nobel:nobelPrize (nobel:NobelPrize) respectively. The se-
lection would look as follows:

Figure 5.57: Laureate properties of interest

We can notice that the entities for nobel:NobelPrize, dbpo:Country are
highlighted as well, this is because we have selected the properties targeting them.
Let’s say for the dbpo:Country we are interested in its label rdfs:label. For
nobel:NobelPrize, we would like to know for which nobel:category it was
awarded. After selecting all of this information, the resulting selection would
look as follows in the graph:

78

Figure 5.58: All properties of interest

We can clean up the graph by removing data we aren’t interested in. We can
do this by pressing the icon in the top right of the graph, which will in turn
hide all the data that is not requested.

We can also manually delete every single entity via the icon, this in turn
would make it impossible to get the entities back for this project (as opposed to

which just hides the entities, they can be made visible afterwards).
After hiding the data, let’s arrange the nodes better by moving them around.

After cleaning the graph up a bit, we get something that could look as follows:

Figure 5.59: Cleaned up selection

This is already a valid selection. Using the graph quick action toolbar in the
top right, we can hit the button and execute the query for the following results
(the order might differ based on the specific order of selecting the properties):

Figure 5.60: Execute query button

79

Figure 5.61: Results

You might notice that some of the rows repeat themselves. This is due to
the Country label having entries in multiple languages. If the data is set up
properly, properties utilizing multiple languages are of type rdfs:langString. To
query only for English variants of the country labels, we can change the project
properties:

Figure 5.62: Results

80

Figure 5.63: Results

Doing this ensures that all of the selected properties will be queried in their
English variant if their type is rdfs:langString. You can set multiple languages
this way, the result set will then contain all of them. With the properties set to
query for English only, the results look as follows:

Figure 5.64: Results

While this query is valid, a person interested in this information might not
want the IRIs to be present in the result set, the textual representation provided
via labels might be sufficient. To get rid of the IRIs in the result set, we have to
deselect the entities via the list view as follows:

Figure 5.65: Selected entities

81

Figure 5.66: Deselected entities

This effectively removes the IRIs from the query and displays only the queried
properties (in this case the labels we selected). The result is more concise and
shorter:

Figure 5.67: Result set without IRIs

Nobel prize laureates - part 2

We have retrieved information about Nobel prize laureates and about the awards
they received. Let’s extend the search by querying for the places where the
laureates passed away.

Checking Figure 5.56, we can see there are two properties of interest, namely
deathPlace (dbpo:Country) and dateOfDeath. Let’s query for deathPlace
(dbpo:Country) then. Understandably this will result in a data set of only
deceased laureates, since laureates with no such property will be omitted from
the result set, as the property is marked as required, not optional. Marking the
property as optional would allow to search for both living and deceased laureates
with place of death filled in where applicable.

Updated selection and the results with death place under Country label
would look as follows:

Figure 5.68: Selection with place of death

82

Figure 5.69: Results with place of death

You might notice the new result didn’t change from Figure 5.67. This is
because we are querying for a single country. Our query actually translates
to find laureates who were born and died in the same country due to
the links/edges being pointed to the same Country entity. While this is not an
invalid query and can have its uses, it is not what we are looking for. This is
where we need to use the icon on the Country node in the graph (or use the
same on in the list view) and create a separate entity instance for Country to
introduce a distinction between the death place and birth place.

Clicking the icon on the Country entity, we get the following:

Figure 5.70: Selection with cloned Country entity

By copying the node, the Laureate entity has new properties added that
target the new Country entity:

83

Figure 5.71: Newly listed properties

Next we just have to remove the old deathPlace and use the new one:

Figure 5.72: Proper selection

We again pick label on the newly copied Country 1 and remove the IRI
specification by deselecting the checkbox in the list view for Country 1. Exe-
cuting the query via now yields results even if the laureate wasn’t born and
died in the same country:

Figure 5.73: Proper death place results

84

If we were looking for all laureates (living and dead) and just adding the
information of their death place if it exists, we could mark the deathPlace
property as optional via the list view or clicking the edge:

Figure 5.74: Death place optional

Which in turn returns all laureates, living and dead, with the country of their
death if it’s specified:

Figure 5.75: Results with death place optional

Another nice example would be to query only for living laureates. However,
such an example would require the ability to constrain the values of properties,
which is not a feature implemented in the graph tool. However, users can also
directly edit the SPARQL query, should they want to tweak it.

German books - Save & Load example

Let us finish with an example that will show the loading and saving capabilities
of the application. This example is based on B3Kat cataloguing platform10 which
we will use to fetch data about books and their relevant information.

Unlike in the previous examples, here we will be starting from an already
curated example project file. Files like these can be created by appointed users
to separate bigger data sets into smaller, better manageable chunks. The data
schema used in this example has been curated directly via the application from
a ttl file available at GitHub11.

10https://www.kobv.de/services/katalog/b3kat/
11https://raw.githubusercontent.com/jaresan/simplod/master/public/german_

books.ttl

85

https://www.kobv.de/services/katalog/b3kat/
https://raw.githubusercontent.com/jaresan/simplod/master/public/german_books.ttl
https://raw.githubusercontent.com/jaresan/simplod/master/public/german_books.ttl

We will also be utilizing a Solid pod for data persistence. Before proceeding
further, it is important we follow the steps outlined in subsection 5.1.1 and have
the Solid pod set up with the necessary application permissions up correctly.

Let’s open the application Demo - https://jaresan.github.io/simplod/
build/index.html.

To start with the example, we will first load the appropriate project file by
navigating to File → Load → By URI.

In the input field we put https://jaresan.github.io/simplod/examples/
german_books.json and press Load.

Figure 5.76: Load by URI

Upon loading the project file, we can see the default view for the curated book
data set:

Figure 5.77: Graph loaded

By clicking on the edges between the nodes, we can inspect the relationships
they represent:

86

https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/examples/german_books.json
https://jaresan.github.io/simplod/examples/german_books.json

Figure 5.78: Edge descriptions

By inspecting all three edges presented, we will get the following information
for the existing relations in the data schema:

Figure 5.79: Edge descriptions

From this, we can gather that a book can have an exemplar item which in
turn is owned by an organization. A book can also be a part of a series.

Let’s find books with their respective series, should they be a part of one.
If we are looking for books, we might also be interested where we could borrow
them from. We are then going to query their respective exemplar Items, and for
the items, we will select the Organizations that represent the owner.

As usual, we want to get the labels or titles for each item. Organizations
in this case also contain the property homepage which could be useful as a
reference to the owner as well. With all of this data in mind, the selection would
look as follows:

• Book
bibo:isbn - ISBN of the book
dce:title - Title of the book
dcterms:partOf, Optional - Book series
frbrcore:exemplar - Exemplar of the book

87

• Series
bibo:shortTitle - Title of the series

• Item
frbrcore:owner - Organizational owner of the exemplar

• Organization
foaf:homepage - Homepage of the organization
foaf:name - Name of the organization

Figure 5.80: Graph selection

Notice the dashed edge, this means the relationship between book and its
series is optional, meaning we will query for all books and return their respective
series, if existing. Not marking this edge as optional, we would only query for
books that exist in a series. In the list selection, we can deselect the entities
themselves to omit the IRIs from displaying in the result set:

Figure 5.81: List selection

88

We can run the query via the icon. For the demonstration purposes of this
example, it would be a good idea to limit the maximum number of results we can
retrieve to 100. The data set provided by B3Kat spans over 25 million titles and
querying across them all might take a significant amount of time.

Figure 5.82: Query limit

After changing the limit and running the query again by pressing the , we
can get the following results:

Figure 5.83: Results

What if we want to save this result to our Solid pod? We just go to File →
Save. If we are logged in, we already see our Solid pod files. If we are not logged
in, we can log in either directly through the button in this menu, or through the
top right avatar menu.

Figure 5.84: Save menu

89

After successfully logging in, we can see our the list of our Solid pod files. We
can list through the folders and in each one click the icon to save the file in
that location. Let’s go with the root folder and click the icon.

Figure 5.85: Solid pod files

After clicking the icon, we just have to pick a file name. Let’s type in
german books and click on save or hit enter.

Figure 5.86: New filename

If the file got saved correctly, we are greeted with a notification confirming
the new save location:

Figure 5.87: File saved notification

We can also see the new file location in the status bar. Hitting ctrl+s now
saves the changes to the new remote location.

Figure 5.88: Status bar after remote save

90

Finally, we might want to share this project file among other users. To do
that, first we need to set its permission appropriately from the Share menu in
the top-right.

Figure 5.89: Permission drop-down

From the drop-down list, we can select Public/read, so that every user will
be able to read this project file, but only we, as the owner, will be able to edit it.

Figure 5.90: Permission drop-down

If everything goes correctly, the action is confirmed by a notification and we
can proceed to copy the file URL via the icon and share it among other users.

91

Figure 5.91: Permissions changed successfully

The copied URL (in this case https://jaresan.inrupt.net/german_books.
json) leads directly to the model file in our Solid pod. Same way as in the first
step of this example this URL can be directly loaded in the application by File
→ Load → By URI.

5.2 Administrator documentation
In the first part this section describes the steps to take to deploy the application.
The second part focuses on providing the application with initialization inputs to
change what data the application displays when the users enter from a specific
source.

5.2.1 Prerequisites
The minimum required configuration to be able to follow the deployment and
development steps are:

1. NodeJS12

Version ≥ 10.0.

2. Npm13.
This documentation is written for npm, but other package managers, e.g.
yarn14 can be used as well.

12https://nodejs.org/en/
13https://www.npmjs.com/
14https://yarnpkg.com/

92

https://jaresan.inrupt.net/german_books.json
https://jaresan.inrupt.net/german_books.json
https://nodejs.org/en/
https://www.npmjs.com/
https://yarnpkg.com/

5.2.2 Data schema creation
As mentioned in section 2.5, one of the required inputs for the application is
a data schema. One of the ways to create such a schema is by providing an
endpoint containing the data to a LinkedPipes ETL Kĺımek and Škoda [2017]
pipeline created by the supervisor of this thesis.

This subsection describes how to create a data schema from an endpoint
utilizing the demo instance15 and the pipeline specification16.

Preparing the endpoint specification

Before running the pipeline, we have to create an input file specifying the end-
points we would like the pipeline to use. For this purpose we can edit the template
file on GitHub17 with our own endpoint by replacing http://vocabularies.
unesco.org/sparql with the URL of the SPARQL endpoint of our choosing.

We can also provide more endpoints at once, as shown in a template file on
GitHub18. However, in such a case case, the pipeline would aggregate all the
results into one .ttl file, which might not be desirable. To prevent this, we can
always update the single endpoint file and run the pipeline again.

We then make the file remotely accessible and in the steps outlined below can
provide the URL to the pipeline. For the sake of this example, let’s consider the
file hosted on GitHub19.

Running the pipeline

To run the pipeline with our endpoint specification, we can follow these steps:

1. Access https://demo.etl.linkedpipes.com/#/pipelines and click on
the upload button:

Figure 5.92: Upload button

15https://demo.etl.linkedpipes.com/#/pipelines
16https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_

schema_pipeline.jsonld
17https://github.com/jaresan/lod-cloud/blob/master/endpoint.ttl
18https://github.com/jaresan/lod-cloud/blob/master/LODCloud_SPARQL_Endpoints.

ttl
19https://raw.githubusercontent.com/jaresan/lod-cloud/master/endpoint.ttl

93

http://vocabularies.unesco.org/sparql
http://vocabularies.unesco.org/sparql
https://demo.etl.linkedpipes.com/#/pipelines
https://demo.etl.linkedpipes.com/#/pipelines
https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld
https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld
https://github.com/jaresan/lod-cloud/blob/master/endpoint.ttl
https://github.com/jaresan/lod-cloud/blob/master/LODCloud_SPARQL_Endpoints.ttl
https://github.com/jaresan/lod-cloud/blob/master/LODCloud_SPARQL_Endpoints.ttl
https://raw.githubusercontent.com/jaresan/lod-cloud/master/endpoint.ttl

2. Provide the .jsonld file specification20 and click ”Upload”:

Figure 5.93: Upload detail

3. The graphical representation of the pipeline is shown on successful upload.
If the graph is not in edit mode, click on the ”edit mode” button in the
bottom right:

Figure 5.94: Pipeline graph

4. Double click on the first node in the graph marked as ”HTTP get” to enter
its edit mode:

Figure 5.95: Pipeline start node

5. Change the File URL to point to your .ttl file with the endpoint specifi-
cation. The filename is not important for our use case, but make sure to
specify .ttl as suffix:

20https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_
schema_pipeline.jsonld

94

https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld
https://raw.githubusercontent.com/jaresan/lod-cloud/master/simplod_data_schema_pipeline.jsonld

Figure 5.96: Start node options

6. After the data is properly changed, click on the ”execute” button at the
bottom of the graph:

Figure 5.97: Execute button

7. Wait for the execution of the pipeline to finish. The success of the run is
symbolized by the status bar or by the final node’s edge being green:

Figure 5.98: Execute button

8. The process can also fail for various reasons, this fact is similarly by an icon
and by the edge of the failing node being red. This work does not cover
troubleshooting for failing pipeline executions.

95

Figure 5.99: Execute button

9. Click on the output (yellow) socket on the last node of the graph:

Figure 5.100: Results location

10. Click on the download icon to get an archive with the results:

Figure 5.101: Download results

The resulting .ttl can then be directly loaded in the application. The .ttl file
generated by this example can be found on GitHub21.

5.2.3 SPARQL proxy
As described in section 4.3, the application might also require a proxy to be used
in the case of failing requests due to various reasons, mainly due to CORS and
Same-Origin policy issues. To prevent this, this work is also submitted with an
Express22 application, that can be hosted and used as the proxy.

• Clone the repository
Clone the repository at https://github.com/jaresan/sparql-proxy/.

21https://github.com/jaresan/lod-cloud/blob/master/unesco.ttl
22https://expressjs.com/

96

https://github.com/jaresan/sparql-proxy/
https://github.com/jaresan/lod-cloud/blob/master/unesco.ttl
https://expressjs.com/

• Deploy the proxy Express application
Follow basic deployment steps.
The steps to deploy an Express application are not a part of this work since
there are various hosting services with their specific guides each.

• Change the application proxy path
To use the proxy, you have to change src/@@constants/api.js:

const root = ’YOUR_PROXY_PATH_HERE’;
const useProxy = true;

This application is submitted using a proxy running at https://simplod.
herokuapp.com/.

Not using a proxy can result in failing to fetch human readable labels for
the entities in the list view and potentially failing query execution due to the
endpoint not being set up correctly.

5.2.4 Deployment
There are only few steps the administrator has to take to deploy the application.
The steps are written utilizing npm23, but the same pattern can be followed when
using other package managers:

Direct build download

For convenience, the build files24 are committed as well in the repository. The
deployment steps in that case are as follows:

1. Download the repository25 as zip

Figure 5.102: Download as zip

2. Upload the build file to your hosting and specify index.html as the entry-
point

23https://www.npmjs.com/
24https://github.com/jaresan/simplod/tree/master/build
25https://github.com/jaresan/simplod/

97

https://simplod.herokuapp.com/
https://simplod.herokuapp.com/
https://www.npmjs.com/
https://github.com/jaresan/simplod/tree/master/build
https://github.com/jaresan/simplod/

Project deployment

Since this application has been developed with Creact React App26, the adminis-
trators can also follow the steps outlined on the React deployment page27 directly,
hosting via npm start.

1. Clone the repository
First, clone the repository at https://github.com/jaresan/simplod.

2. Install the dependencies
From inside the repository, run npm install.

3. Build the repository
Build the production version of the repository by running npm run build
inside the repository.

4. Publish build and expose build/index.html

Upload the build directory to a hosting service and make index.html acces-
sible.

This work also includes a heroku28 postbuild hook29, meaning all new pushed
changes to heroku are automatically built.

In conclusion, as terminal commands, the steps could be summed up as fol-
lows:

... cd to the location you want to save this project

git clone https://github.com/jaresan/simplod your_project_name
cd your_project_name
npm install
npm run build

upload ./build to a hosting site and make index.html accessible

5.2.5 Application parameters
When deployed, the administrator is able to change the data with which the appli-
cation opens by utilizing one of the three available parameters in the application
URL.

• schemaURL=

URL of the data schema to load. For example:
https://jaresan.github.io/simplod/example.ttl

26https://github.com/facebook/create-react-app
27https://create-react-app.dev/docs/deployment/
28https://www.heroku.com/
29https://devcenter.heroku.com/articles/nodejs-support#

customizing-the-build-process

98

https://github.com/jaresan/simplod
https://jaresan.github.io/simplod/example.ttl
https://github.com/facebook/create-react-app
https://create-react-app.dev/docs/deployment/
https://www.heroku.com/
https://devcenter.heroku.com/articles/nodejs-support#customizing-the-build-process
https://devcenter.heroku.com/articles/nodejs-support#customizing-the-build-process

• endpointURL=

SPARQL endpoint to be set in the application.
For example https://data.nobelprize.org/store/sparql.

• modelURL=

URL of a project file to load, acting in the same way as File → Load → By
URI. This option overrides both schemaURL= and endpointURL=

For example: https://jaresan.inrupt.net/german_books.json

Example usage:

• index.html path
https://jaresan.github.io/simplod/build/index.html

• Data schema
https://jaresan.github.io/simplod/example.ttl

• Endpoint
https://data.nobelprize.org/store/sparql

• Project
https://jaresan.inrupt.net/german_books.json

The link pointing to the application would have these two added as URL
params30 named schemaURL and endpointURL.

With the parameters set up, we get a link31 pointing to the instantiated ap-
plication with the data schema and endpoint, or a link32 to the application with
project file to be loaded.

5.3 Programmer documentation
This section gives a basic overview of the application for the developers. The first
part describes how to set up the development environment locally, following with
a brief description of the code structure and examples of new features and how to
implement them. Lastly, automatically generated documentation from the code
is mentioned.

30https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
31https://jaresan.github.io/simplod/build/index.html?schemaURL=https:

//jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.
org/store/sparql

32https://jaresan.github.io/simplod/build/index.html?modelURL=https:
//jaresan.inrupt.net/german_books.json

99

https://data.nobelprize.org/store/sparql
https://jaresan.inrupt.net/german_books.json
https://jaresan.github.io/simplod/build/index.html
https://jaresan.github.io/simplod/example.ttl
https://data.nobelprize.org/store/sparql
https://jaresan.inrupt.net/german_books.json
https://developer.mozilla.org/en-US/docs/Web/API/URLSearchParams
https://jaresan.github.io/simplod/build/index.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/build/index.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/build/index.html?schemaURL=https://jaresan.github.io/simplod/example.ttl&endpointURL=https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/build/index.html?modelURL=https://jaresan.inrupt.net/german_books.json
https://jaresan.github.io/simplod/build/index.html?modelURL=https://jaresan.inrupt.net/german_books.json

5.3.1 Prerequisites
The minimum required configuration for developing the application:

1. NodeJS33

Version ≥ 10.0.

2. Npm34.
This documentation is written for npm, but other package managers, e.g.
yarn35 can be used as well.

5.3.2 Local development setup
• Clone the repository

First, clone the repository at https://github.com/jaresan/simplod.

• Install the dependencies
From inside the repository, run npm install.

• Run local environment
From inside the repository, run npm run start:dev. After running the
command, the application will be available on http://localhost:3000. If
you want to run a version with SSL on, you can use
npm run start:dev:https.
Run this way, the server listens to changes to the codebase, and reloads the
application if any are detected.

• OPTIONAL - Add localhost to your trusted apps
If you wish to use a Solid Pod while running the application locally, you
have to add the hosting address to your Solid Pod. This can be done
automatically through signing to the Solid Pod in the upper right corner,
or by following the steps mentions in Appendix A

• OPTIONAL - Link SPARQL Proxy
Add SPARQL Proxy based on subsection 5.2.3.
This work is submitted with a proxy avaiable on Heroku36.

5.3.3 Overview
This subsection provides an overview of the application state and code structure.

33https://nodejs.org/en/
34https://www.npmjs.com/
35https://yarnpkg.com/
36https://simplod.herokuapp.com

100

https://github.com/jaresan/simplod
http://localhost:3000
https://nodejs.org/en/
https://www.npmjs.com/
https://yarnpkg.com/
https://simplod.herokuapp.com

Redux state

As mentioned in section 3.4, Redux is used for handling the application state.
The whole state is split up into 5 separate sub-states as follows:

{
"solid": {},
"model": {},
"settings": {},
"controls": {},
"yasgui": {}

}

• solid
Represents the authentication state. Contains user’s information and their
session.

• model
Represents all of the data in the application that can be exported. When a
user saves/downloads the project file, the file they create is a direct copy
of this sub-state. Importing a file directly replaces this sub-state.

• settings
User’s specific settings, e.g. language, view layout.

• controls
Contains arbitrary information used to help render components interac-
tively to the user. For example contains the currently selected edge, which
is used to highlight the edge and display the properties it represents.

• yasgui
YASGUI specific information. Contains the currently parsed query and the
YASGUI instance.

Detailed description of the state can be found on GitHub37.

Folder structure

The source files of the application are split into folders as follows:

• @@actions

More complex actions that can be triggered throughout the application and
can trigger state changes.

• @@app-state

State handling functionality for every sub-state of the application and the
definition of the main reducer and how changes propagate to the store.

37https://github.com/jaresan/simplod/tree/master/src/%40%40app-state

101

https://github.com/jaresan/simplod/tree/master/src/%40%40app-state

• @@components

All React components in the application split further into:

– controls
Helper interaction components, for example modals, confirm dialogs.

– entityList
List view, allowing the user to interact with the data set via a list
component instead of through the graph.

– menu
All menu components, e.g. the menu bar, save/load menu, share menu.

• @@constants

Declaration of the constants used throghout the application.

• @@data

Data handling, be it graph calculations, parsint .ttl files or the SPARQL
query itself.

• @@graph

All of the graph layer, as described in subsection 3.3.1, the graph library
used is AntV. The graph folder is split further into two more folders:

– wrappers
Classes wrapping the interaction with the actual graph elements and
reacting to it.

– handlers
Classes handling and triggering state changes, as opposed to wrappers,
these classes don’t react to user interactions directly.

• @@selectors

State selectors, used by the components to subscribe to specific subsets of
the application state.

More thorough description of all files with generated code documentation by
JsDoc38 can be found on GitHub39.

5.3.4 Implementation examples
This subsections describes an example of how to implement some features that
are not present in the application.

38https://jsdoc.app/
39https://jaresan.github.io/simplod/documentation

102

https://jsdoc.app/
https://jaresan.github.io/simplod/documentation

Hide rest → Delete rest

As mentioned in subsection 5.1.3, the ”Hide rest” hides all entities that are
not selected via any means. For this exmaple let’s change this to delete all such
entities instead of hiding them.

Checking the source code, we can find the button in the graph component
in @@components/GraphContainer.js. Following the functionality, we can see
that the main logic taking place is implemented in @@app-state/model/state’s
hideUnselected. To build it in a similar way, we could do the following:

export const deleteUnselected = s => {
const properties = pipe(

getProperties,
filter(prop(’selected’)),
values

)(s);
const toKeep = properties

.reduce((acc, p) => Object.assign(acc, {
[p.target]: true,
[p.source]: true

}), {});

const toDelete = keys(
filter(

c => !c.selected,
omit(keys(toKeep), view(classes, s))

));

return toDelete.reduce((acc, id) => deleteClass(id, acc), s);
}

If you test this out, you will see that while the entities disappeared from the
list view, they remained intact in the graph. This is because the graph items
have to be handled separately and deleted directly in the graph. Luckily there’s
already a static method onDeleteEntity in @@graph/Graph.js, which handles
both. This means we just have to find ids we would like to delete and pass them
to onDeleteEntity.

The simplest way would be to add a selector to @@selectors akin to the
following:

export const getIgnoredEntityIds = s => {
const properties = pipe(

getProperties,
filter(prop(’selected’)),
values

)(s);
const toKeep = properties

.reduce((acc, p) => Object.assign(acc, {
[p.target]: true,

103

[p.source]: true
}), {});

return keys(
filter(

c => !c.selected,
omit(keys(toKeep), getClasses(s))

)
);

};

This way, we get a function that return ids of entities that could potentially
be completely deleted. Now we just have to extract this information from the
state somewhere and add a control element to handle the graph method invoca-
tion. This can be simply added to @@components/GraphContainer.js. The full
implementation of this feature can be found in a pull request40 on GitHub.

Custom schema node layout

Another example that might be interesting to implement is implementing a new
node layout. Based on the AntV documentation41 we can see that nodes expose a
updatePosition method. To implement this then, we just need to add a method
to the graph handler and lay out the nodes based on predefined criteria. For the
sake of simplicity let’s go with a simple grid layout.

All graph functionality related to the canvas and its data is contained in
@@graph/Graph.js. We just need to implement a simple static method that
accesses the graph instance, gets its nodes and updates their positions. It could
look something like the following:

static gridLayout() {
const rowCount = 5;
const columnGap = 250;
const rowGap = 200;
const nodes = this.instance.getNodes();

let rowIndex = 0;
let columnIndex = 0;
nodes.forEach(n => {

n.updatePosition({
x: columnIndex * columnGap,
y: rowIndex * rowGap

})

n.getEdges().forEach(e => e.refresh());
// Edges need to be refreshed to properly link to the nodes,
// otherwise they stay in empty space

40https://github.com/jaresan/simplod/pull/28
41https://g6.antv.vision/en/docs/api/Items/itemMethods

104

https://github.com/jaresan/simplod/pull/28
https://g6.antv.vision/en/docs/api/Items/itemMethods

columnIndex++;
if (columnIndex === rowCount) {

columnIndex = 0;
rowIndex++;

}
});

}

The only thing left to do is to tie a call to this method through a control
element in the graph. Complete implementation of this feature can be found in
a pull request42 on GitHub.

5.3.5 Automatically generated documentation
This work also includes generated documentation from the JavaScript annotations
inside the codebase using JsDoc43.

The documentation is accessible directly on GitHub Pages44.

42https://github.com/jaresan/simplod/pull/29
43https://github.com/jsdoc/jsdoc
44https://jaresan.github.io/simplod/documentation

105

https://github.com/jaresan/simplod/pull/29
https://github.com/jsdoc/jsdoc
https://jaresan.github.io/simplod/documentation

6. Tests
This chapter describes the approach to tests and their implementation split into
two sections.

The first describes unit tests, used to make sure the functionality present in
the code is kept intact when the developer is adding implementing new features.
This way, the developer can be confident that the changes they are making will
not negatively impact other functionalities and break the application.

The second section presents manual test scenarios that act as an acceptance
criteria for the requirements laid out in subsection 2.3.1. The reader is welcome
to go through these scenarios one by one to confirm that all the requirements,
as presented, are present in the final application and functional. These scenarios
might as well be used as a necessary manual checklist to ensure the flow of the
application hasn’t broken before releasing a new version of the application. In a
more rigorous version, this approach is also know as end to end testing1.

6.1 Unit testing
An integral part of every production ready application is also a suite of tests
which covers critical functionality. This section describes what tools were used to
test the implemented code, the choice of what to cover, the reasons behind these
choices, and what the resulting code coverage was.

6.1.1 Libraries
There are numerous available JavaScript testing frameworks2. We have used
Mocha3 for testing purposes of this application for its ease of use, popularity and
familiarity. Nyc4 package is used to measure code covered by the unit tests and
provide an easy to read HTML output of the code coverage.

Every test file is specified with a *.spec.js suffix. The application also
contains auxiliary test scripts declared in the package.json file as follows:

• test

Runs all the test suites interactively, waiting and rerunning tests when
changes are detected.

• test:nowatch

Runs all tests once, does not wait.

• test:coverage

Runs all tests and creates a code coverage report in HTML format.

• test:coverage:show

Opens the HTML code coverage file.
1https://www.browserstack.com/guide/end-to-end-testing
2https://www.browserstack.com/guide/top-javascript-testing-frameworks
3https://mochajs.org/
4https://github.com/istanbuljs/nyc

106

https://www.browserstack.com/guide/end-to-end-testing
https://www.browserstack.com/guide/top-javascript-testing-frameworks
https://mochajs.org/
https://github.com/istanbuljs/nyc

6.1.2 Covered code
Majority of the codebase of this work consists of React components and wrappers
around the graphing library itself, which are not ideal targets for unit testing.
The design of the React components is an ever-changing process during the de-
velopment phase and would impose additional time burden on the development
while providing very little value. The graphing library is subject to the same, and
moreover has to be worked around due to the utilisation of the canvas element,
resulting in much higher time demands with little value added.

Based on the above mentioned reasons, it was decided to cover only the nec-
essary and non-trivial functions with unit tests. These functions represent data
handling and data transformation regarding RDF and the application model.
All of the functionality regarding this area of the code is located in @@data and
@@app-state/model respectively.

All of the logic in the @@data folder is 100% covered by corresponding unit
tests. Non-trivial logic in @@app-state/model is covered by unit tests, which
amounts to 81.9% coverage of the file.

Altogether, the code coverage provided by the unit tests is 26.54% for the
whole project.

6.2 Manual test scenarios
This section describes step by step scenarios that can be used to make sure every
functional requirement laid out in subsection 2.3.1 is present in the application.
The section goes through all of the requirements, which are grouped based on
similarities and the ease of being tested at once.

✓ icons represent a step where the user should check that the current appli-
cation state corresponds to the result described in the scenario.

The requirements are covered by respective test cases according to the follow-
ing table:

Table 6.1: Requirements tested by scenarios

T1 T2 T3 T4 T5 T6
F1 ✓ x x x x x
F2.1 ✓ x x x x x
F2.2 ✓ x x x x x
F2.3 x ✓ x x x x
F2.4 x ✓ x x x x
F2.5 x ✓ x x x x
F2.6 x ✓ x x x x
F2.7 x x ✓ x x x
F3.* x x x x ✓ x
F4.* x x ✓ x x x
F5.* x x x x ✓ x
F6.* x x x x x ✓
F6.6 x x ✓ x x x
F6.7 x x x x ✓ x

107

6.2.1 Preliminaries
For the manual test scenarios to be properly usable, the reader is at some steps
required to input their Solid pod credentials. It is required the reader followed the
steps in subsection 5.1.1 and set up their Solid pod accordingly before proceeding
with the manual scenarios.

Every test scenario is started from the new start of the application with de-
fault settings, the reader is welcome to use the accompanying deployment of
this work on GitHub5 by clicking Demo.

The reader is encouraged to read through every scenario completely before
going by their steps.

Default project

Some manual test scenarios require the tester to first load a project in the applica-
tion. For the sake of removing repetition, the scenarios will refer to the following
steps below as Load the default project:

1. Click File → New

2. Create a New project with the following configuration:
Data Schema: https://jaresan.github.io/simplod/example.ttl

Endpoint: https://data.nobelprize.org/store/sparql

3. Click Create

6.2.2 T1 - Visualization and simple configuration
This scenario tests the requirements F1, F2.1, F2.2:

1. Load the default project

2. ✓ The user is greeted with the default view of the nobel prizes data schema
example as the following:

Figure 6.1: Default data schema view

5https://jaresan.github.io/simplod/

108

https://jaresan.github.io/simplod/example.ttl
https://data.nobelprize.org/store/sparql
https://jaresan.github.io/simplod/

3. Click in the top right corner of the graph to execute a query. This step is
to check the SPARQL endpoint, the query result is irrelevant at this point.

4. ✓ The SPARQL endpoint shows https://data.nobelprize.org/store/
sparql

Figure 6.2: Sparql endpoint

5. Click File → Properties

6. Under SPARQL Endpoint, change
https://data.nobelprize.org/store/sparql

to http://example.com/sparql

7. Click Ok

8. Click in the top right corner of the graph to execute a query

9. ✓ The SPARQL endpoint shows http://example.com/sparql

6.2.3 T2 - Language selection
This scenario tests the requirements F2.3, F2.4, F2.5, F2.6:

1. Open the application

2. Click ”Settings”, the menu looks as follows”:

Figure 6.3: Settings in English

3. Under ”Application language”, change the language to ”cs”

4. Refresh the application

109

https://data.nobelprize.org/store/sparql
https://data.nobelprize.org/store/sparql
https://data.nobelprize.org/store/sparql
http://example.com/sparql
http://example.com/sparql

5. Open Settings

6. ✓ The Settings menu now has its language updated and looks as follows:

Figure 6.4: Settings in Czech

7. Change the application language back to English for the sake of the test
and refresh the application

8. Load the default project

9. Make sure ”Show labels” in Settings is turned on and ”Label language” is
set to en

10. ✓ The list view contains the following items:

Figure 6.5: English labels

11. Change the ”Label language” in Settings to fr

12. ✓ Items from the previous step changed to the following:

Figure 6.6: French labels

110

13. Turn ”Show labels” in Settings off

14. ✓ Items from the previous step changed to the following:

Figure 6.7: Labels turned off

15. Create a New project with the following configuration:
Data Schema:
https://jaresan.github.io/simplod/examples/opendata.ttl

Endpoint:
http://linked.opendata.cz/sparql

16. For entity skos:Concept select the property skos:prefLabel

17. Execute the query by pressing the button

18. ✓ Check there are results for both English (@en) and Czech (@cs) language

19. Under File → Properties → Property languages, add en

20. Execute the query by pressing the button

21. ✓ Check there are results only for English (@en) language

6.2.4 T3 - Offline capabilities
This scenario tests the requirements F2.7 in that the user is able to make changes
if the internet goes offline after the user has opened the application, it shows that
the user can make a selection, save it locally and load it afterwards:

1. Load the default project

2. Turn the internet offline for the application (e.g. turn the wifi off or use
throttling from developer tools in the browser)

3. Delete all entities except for NobelPrize from the list by pressing the
icon

4. Select nobel:category on NobelPrize

111

https://jaresan.github.io/simplod/examples/opendata.ttl
http://linked.opendata.cz/sparql

5. Save the changes made to browser (press ctrl+s or go to File → Save →
Save to browser storage The graph should look like this:

Figure 6.8: Saved state

6. Close the application

7. Turn the internet on and reload the application

8. Turn the internet off for the application

9. Load the data from browser storage File → Load → Load from browser
storage

10. ✓ Loaded graph reflects the changes saved in previous steps:

Figure 6.9: Loaded state

6.2.5 T4 - Data handling
This scenario tests the user’s capability to save their data to their Solid pod, view
the files they have saved, load and delete them and update the project’s permis-
sions, testing all of the requirements under F4 and an interaction requirement
F6.6:

1. Click File → New

2. Create a New project with the following configuration:
Data Schema:
https://jaresan.github.io/simplod/examples/images.ttl

Endpoint:
http://www.imagesnippets.com/sparql/images

3. Click Create

4. Hover over the top right avatar → Login

5. Proceed to login with the Solid pod provider of your choice

6. ✓ Hovering over the top right avatar now shows ”Logout”

112

https://jaresan.github.io/simplod/examples/images.ttl
http://www.imagesnippets.com/sparql/images

7. Select dce:title on the Image entity. The resulting graph looks like this:

Figure 6.10: Selection to save

8. Turn the internet off for the application

9. Save the data to Solid pod via File → Save → Click the ”+” button, name
the file testScript and click save

10. ✓ Notification is displayed about the inability to save the file with a retry
counter

11. Turn the internet on for the application

12. ✓ Retry counter counts to 0 and the files is saved

13. Execute the query and set the limit to 1

14. Click the ”Share” button in the top right corner

15. Copy the ”Direct Web URL” by clicking the icon

16. Open the copied URL in a new window

17. ✓ Visually check that the loaded URL corresponds to sensible data (can
also be presented in the .json format):

<sparql xmlns="http://www.w3.org/2005/sparql-results#">
<head>

<variable name="Image"/>
<variable name="title"/>

</head>
<results>

<result>
<binding name="Image">

<uri>...</uri>
</binding>
<binding name="title">

<literal xml:lang="en">...</literal>
</binding>

</result>
...

113

18. Open the ”CSV URL” by clicking the icon

19. ✓ A .csv file with sensible Image and Title information is downloaded

20. Under ”Permissions” select ”private”

21. Copy the ”Current file URL” by clicking the icon

22. Open an anonymous window and paste the URL from previous step

23. ✓ Access to the requested resource is denied

24. Under ”Permissions” select ”Public/read”

25. Refresh the anonymous window from the previous step

26. ✓ The contents of the .json file are displayed

27. Load the default project

28. Open the Load menu File → Load

29. ✓ File testScript.json is present

30. Click testScript.json and click ”Load”

31. ✓ The user is greeted with the option to edit the original file:

Figure 6.11: Loaded project

32. ✓ The saved project is loaded and looks like this:

Figure 6.12: Loaded project

33. Open the Load menu File → Load

34. Click testScript.json and click ”Delete”

35. ✓ The file testScript.json is deleted

114

6.2.6 T5 - SPARQL Capabilities
The following scenario test the basic capabilities of running a SPARQL query
and retrieving the results, it encompasses the requirements F3 and F5.

1. Load the default project

2. For the entity Laureate select dbpedia2:dateOfDeath as optional via
the and foaf:name

3. Execute the query via the button

4. Sort the results in ascending order by name by clicking on the name column
header

5. ✓ The results are as follows:

Figure 6.13: Death date optional

6. Change ?Laureate name to ?Laureate name2 in the SELECT part of
the SPARQL query

7. ✓ SPARQL Query edited warning is shown Figure 5.20

8. Execute the query via the button

9. ✓ The result column is renamed to ?Laureate name2

10. Close the query editor

11. Mark dbpedia2:dateOfDeath as not optional via and mark it as hidden
via

12. Execute the query via the button

13. ✓ The results are as follows:

Figure 6.14: Death date required but hidden

14. Click the icon in the top right corner of the result table

15. ✓ .csv file is downloaded with Laureate names

115

6.2.7 T6 - Graph interactions
The following scenario tests arbitrary features laid out in requirements F6:

1. Load the default project

2. Click on any one edge

3. ✓ Menu containing the properties between the entities linked is shown

4. Select a single property from the popup menu and mark it as optional via
the

5. ✓ Cartesian product warning is shown Figure 5.19

6. ✓ The edge has a dash pattern

7. Click the icon in the top right corner of the graph to hide all not selected
entities

8. ✓ The graph now only displays the two nodes which are connected by the
selected edge

9. Copy any one of the entities via the button on the graph node

10. ✓ New node is created with the same entity type, new edge is added between
this node and the node that wasn’t copied

11. Delete the newly created entity via the button node

12. ✓ The newly created entity and its edge are now deleted and the graph is
showing only two items and their edge again

If all of the test scenarios laid out above were followed step by step and all ✓
have been successfully validated, the manual testing process has been successful
and the requirements laid out in subsection 2.3.1 can be considered working.

116

7. Evaluation
This chapter describes the final evaluation of this work. In the first part, the
author discusses how well the set goal was fulfilled and what was achieved. The
second part contains a consolidated output of the System Usability Scale forms
filled out by participants and its conclusion.

7.1 Goal fulfillment
The goal of this work was to create an application that would allow users to query
Linked Data they would be interested in without the need to learn SPARQL. To
achieve this, requirements covering the use cases were laid out in the assignment
of this work and were continuously updated in section 2.3 during various meet-
ings held between the author and their supervisor. The established goals were
fulfilled completely, as can be confirmed by following the manual test scenarios
in section 6.2.

While the application can still be improved in various ways, e.g. by examples
provided in section 4.5, the functionality that was required to be implemented
is present in the final product and hence allows the users to operate over data
schemas in a visual fashion with ease, instead of having to learn SPARQL.

7.2 System usability scale results
To evaluate the usability of the application, we chose to utilize the industry
standard SUS1 due to its ease of administration and reliable results even for
smaller samples.

The form consists of 10 questions. On each question, the participants can
answer between 0-4, where 0 represents ”strongly disagree” and 4 means ”strongly
agree”. The questions are as follows:

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to
use this system.

5. I found the various functions in this system were well integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very
quickly.

8. I found the system very cumbersome to use.
1https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.

html

117

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

”To calculate the SUS score, first sum the score contributions from each item.
Each item’s score contribution will range from 0 to 4. For items 1,3,5,7,and 9
the score contribution is the scale position minus 1. For items 2,4,6,8 and 10, the
contribution is 5 minus the scale position. Multiply the sum of the scores by 2.5
to obtain the overall value of SU.” Brooke [1996]

In our evaluation, 4 participants, 3 of which had no prior exposure to Linked
Data, were provided with brief introduction to the problem and instructed to
follow the examples outlined in subsection 5.1.5. After completing the examples,
the participants were asked to fill out the SUS form.

The gathered results were as follows - every cell represents a number of oc-
currences of a given mark for the given question:

Table 7.1: SUS form results

0 1 2 3 4
Q1 1 1 2 0 0
Q2 1 3 0 0 0
Q3 0 0 1 3 0
Q4 0 1 2 1 0
Q5 0 0 0 2 2
Q6 1 3 0 0 0
Q7 0 0 3 1 0
Q8 1 1 0 1 1
Q9 0 1 3 0 0
Q10 1 3 0 0 0

Applying the calculation system mentioned above on the results provided in
Table 7.1, we can calculate the SU value to be 63.125.

Considering 68 to be the average, as per Interpreting Scores2, this would mark
the application as below average in usability. It is important to keep in mind,
however, that 3 out of the 4 participants had no prior experience with Linked
Data.

The score received from the participant with prior Linked Data experience was
72.25, which might point to the fact that the application or the accompanying
materials are not well suited for inexperienced users.

Based on the feedback from the participants, this score could be improved
by having a better onboarding experience for the users to better understand the
problematic, accompanied by more intuitive controls.

2https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.
html

118

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

8. Conclusion
During the process of this work, a visualization tool was created to help users gen-
erate SPARQL queries without the need of knowledge of SPARQL itself. While
other data schema visualizers exist, as described in Table 2.6.2, no such solution
really aims at tackling the same problem that is solved in this work.

This work simplifies working with the RDF schemas for the user, but it also al-
lows SPARQL knowledgeable users to edit the query directly, effectively removing
any limitation that could stem from using such a tool.

The application could be improved with various features, some of which are
described in section 4.5, and would benefit from better designed UI and UX.
However, even in its current state, it can be used to better navigate around
RDF data schemas and allows the users to further share their created views or
catalogue them to later directly download the desired data. The application also
seemingly integrates with Solid Pods, allowing the users to manage the files in
their Pods and share their findings with ease.

A byproduct of the application development was creating a SPARQL server
proxy to be used in case of failing YASGUI requests. This proxy, described
in section 4.3, acts as fallback option for executing SPARQL queries against
endpoints that might fail due to various reasons, mainly CORS and Same-Origin
policy.

One of the downsides of utilizing this tool is having to manually use the
pipeline to create the data schema as described in subsection 5.2.2. In the future
this could be alleviated by incorporating the pipeline execution as a part of the
application, allowing the users to create data schemas in the application directly.

Otherwise the deployment process for administrators is quite simple, as de-
scribed in subsection 5.2.4. Since the application is a front-end one, it can con-
veniently be used directly from the demo site1 with proper set up, without the
need for custom deployment.

1https://jaresan.github.io/simplod/build/index.html

119

https://jaresan.github.io/simplod/build/index.html

Bibliography
Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web.

Scientific American, 284(5):34–43, May 2001. http://www.sciam.
com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21,
https://www.researchgate.net/publication/225070375_The_Semantic_
Web_A_New_Form_of_Web_Content_That_is_Meaningful_to_Computers_
Will_Unleash_a_Revolution_of_New_Possibilities.

John Brooke. ”SUS-A quick and dirty usability scale.” Usability evaluation in
industry. CRC Press, June 1996. URL https://www.crcpress.com/product/
isbn/9780748404605. ISBN: 9780748404605, https://www.researchgate.
net/publication/228593520_SUS_A_quick_and_dirty_usability_scale.

Jakub Kĺımek and Petr Skoda. Linkedpipes DCAT-AP viewer: A native DCAT-
AP data catalog. In Marieke van Erp, Medha Atre, Vanessa López, Kavitha
Srinivas, and Carolina Fortuna, editors, Proceedings of the ISWC 2018 Posters
& Demonstrations, Industry and Blue Sky Ideas Tracks co-located with 17th In-
ternational Semantic Web Conference (ISWC 2018), Monterey, USA, October
8th - to - 12th, 2018, volume 2180 of CEUR Workshop Proceedings. CEUR-
WS.org, 2018. URL http://ceur-ws.org/Vol-2180/paper-32.pdf.

Jakub Kĺımek and Petr Škoda. LinkedPipes ETL in use: practical publication and
consumption of linked data. In Maria Indrawan-Santiago, Matthias Steinbauer,
Ivan Luiz Salvadori, Ismail Khalil, and Gabriele Anderst-Kotsis, editors, Pro-
ceedings of the 19th International Conference on Information Integration and
Web-based Applications & Services, iiWAS 2017, Salzburg, Austria, December
4-6, 2017, pages 441–445. ACM, 2017. doi: 10.1145/3151759.3151809. URL
https://doi.org/10.1145/3151759.3151809.

Roger Menday and Nandana Mihindukulasooriya. Linked Data Platform 1.0
Primer. W3C note, W3C, April 2015. URL https://www.w3.org/TR/2015/
NOTE-ldp-primer-20150423/.

Guus Schreiber and Yves Raimond. RDF 1.1 Primer. W3C note, W3C, June
2014. URL https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/.

Andy Seaborne and Steven Harris. SPARQL 1.1 Query Language. W3C
recommendation, W3C, March 2013. URL https://www.w3.org/TR/2013/
REC-sparql11-query-20130321/.

Hernán Vargas, Carlos Buil-Aranda, Aidan Hogan, and Claudia López. RDF
Explorer: A Visual SPARQL Query Builder, pages 647–663. Aidan Hogan, 10
2019. ISBN 978-3-030-30792-9. doi: 10.1007/978-3-030-30793-6 37.

120

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
https://www.researchgate.net/publication/225070375_The_Semantic_Web_A_New_Form_of_Web_Content_That_is_Meaningful_to_Computers_Will_Unleash_a_Revolution_of_New_Possibilities
https://www.researchgate.net/publication/225070375_The_Semantic_Web_A_New_Form_of_Web_Content_That_is_Meaningful_to_Computers_Will_Unleash_a_Revolution_of_New_Possibilities
https://www.researchgate.net/publication/225070375_The_Semantic_Web_A_New_Form_of_Web_Content_That_is_Meaningful_to_Computers_Will_Unleash_a_Revolution_of_New_Possibilities
https://www.crcpress.com/product/isbn/9780748404605
https://www.crcpress.com/product/isbn/9780748404605
https://www.researchgate.net/publication/228593520_SUS_A_quick_and_dirty_usability_scale
https://www.researchgate.net/publication/228593520_SUS_A_quick_and_dirty_usability_scale
http://ceur-ws.org/Vol-2180/paper-32.pdf
https://doi.org/10.1145/3151759.3151809
https://www.w3.org/TR/2015/NOTE-ldp-primer-20150423/
https://www.w3.org/TR/2015/NOTE-ldp-primer-20150423/
https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://www.w3.org/TR/2013/REC-sparql11-query-20130321/

List of Figures

1.1 London Linked Data example . 5

2.1 Use case diagram . 14
2.2 Data schema example . 17
2.3 Data schema example mockup . 18
2.4 Lakes found in Chile . 20
2.5 Drugs for cancer that target genes related to cell proliferation . . 20
2.6 Example of querying people’s alma maters and birth place 21

3.1 Overview of the application life cycle 30
3.2 Main screen . 31
3.3 User information - Anonymous . 31
3.4 User information - Logged in . 31
3.5 Main area . 32
3.6 Data entity . 33
3.7 Query editor . 34

4.1 Overview of the implemented application architecture 36
4.2 SPARQL proxy . 37
4.3 Default use case . 38
4.4 Selection order . 39
4.5 Selection and hiding always have the same state 39
4.6 Laureate removed from the result set 40
4.7 Optional link . 40
4.8 Nested optionals . 41
4.9 Two connected components . 42
4.10 Two components connected by an optional edge 42
4.11 Optionality cycle . 43
4.12 AntV edge direction . 44
4.13 Same type distinction . 45
4.14 Double optional target . 46

5.1 Avatar menu . 48
5.2 Picking Solid Pod provider . 49
5.3 Provider login screen . 49
5.4 App permission prompt . 49
5.5 Layout . 50
5.6 Project status . 51
5.7 Avatar menu . 51
5.8 Share menu . 52
5.9 Settings menu . 53
5.10 Label . 53
5.11 Label language . 54
5.12 File menu . 54
5.13 New file . 55
5.14 Save & load . 56

121

5.15 Solid pod . 57
5.16 By URI . 57
5.17 Properties . 58
5.18 Properties . 58
5.19 Cartesian product warning . 59
5.20 Customized query warning . 59
5.21 Graph area . 60
5.22 Graph node . 61
5.23 Edge . 62
5.24 Edge states . 63
5.25 Graph toolbar . 63
5.26 List overview . 64
5.27 Selected tab . 65
5.28 Column order example 1 . 65
5.29 Column order example 2 . 65
5.30 Search functionality . 66
5.31 Entity row . 66
5.32 Expanded properties . 67
5.33 Entity title hover . 67
5.34 Entity description . 67
5.35 Entity description . 68
5.36 Variable name field . 68
5.37 Renamed variable result . 68
5.38 Entity row actions . 68
5.39 Data property row . 69
5.40 Object property row . 69
5.41 Object property variable field tooltip 70
5.42 Object property target . 70
5.43 Nobel prize example default view 71
5.44 NobelPrize entity . 71
5.45 Selected property . 72
5.46 List view . 72
5.47 Run Query . 72
5.48 SPARQL Results . 73
5.49 List view . 73
5.50 Cleaner results . 74
5.51 Download CSV . 74
5.52 Copy yasgui query URL . 75
5.53 Yasgui query results . 76
5.54 List view . 76
5.55 Nobel prize example default view 77
5.56 Laureate entity properties . 78
5.57 Laureate properties of interest . 78
5.58 All properties of interest . 79
5.59 Cleaned up selection . 79
5.60 Execute query button . 79
5.61 Results . 80
5.62 Results . 80

122

5.63 Results . 81
5.64 Results . 81
5.65 Selected entities . 81
5.66 Deselected entities . 82
5.67 Result set without IRIs . 82
5.68 Selection with place of death . 82
5.69 Results with place of death . 83
5.70 Selection with cloned Country entity 83
5.71 Newly listed properties . 84
5.72 Proper selection . 84
5.73 Proper death place results . 84
5.74 Death place optional . 85
5.75 Results with death place optional 85
5.76 Load by URI . 86
5.77 Graph loaded . 86
5.78 Edge descriptions . 87
5.79 Edge descriptions . 87
5.80 Graph selection . 88
5.81 List selection . 88
5.82 Query limit . 89
5.83 Results . 89
5.84 Save menu . 89
5.85 Solid pod files . 90
5.86 New filename . 90
5.87 File saved notification . 90
5.88 Status bar after remote save . 90
5.89 Permission drop-down . 91
5.90 Permission drop-down . 91
5.91 Permissions changed successfully 92
5.92 Upload button . 93
5.93 Upload detail . 94
5.94 Pipeline graph . 94
5.95 Pipeline start node . 94
5.96 Start node options . 95
5.97 Execute button . 95
5.98 Execute button . 95
5.99 Execute button . 96
5.100Results location . 96
5.101Download results . 96
5.102Download as zip . 97

6.1 Default data schema view . 108
6.2 Sparql endpoint . 109
6.3 Settings in English . 109
6.4 Settings in Czech . 110
6.5 English labels . 110
6.6 French labels . 110
6.7 Labels turned off . 111

123

6.8 Saved state . 112
6.9 Loaded state . 112
6.10 Selection to save . 113
6.11 Loaded project . 114
6.12 Loaded project . 114
6.13 Death date optional . 115
6.14 Death date required but hidden 115

A.1 Solid Pod menu . 126
A.2 Trusted applications . 127
A.3 Creating a folder . 128

124

List of Tables

2.1 Comparison criteria . 19

3.1 Application type comparison . 23

6.1 Requirements tested by scenarios 107

7.1 SUS form results . 118

125

A. Solid Pod troubleshooting
This chapter describes manual setup of Solid Pods in detail, should the steps
outlined in subsection 5.1.1 fail.

A.1 Logging in with Solid Pod
To set up all permissions for the application, the user has to sign in1 to their
Solid Pod first.

After signing in, the user can navigate in the application utilizing a tooltip
menu by hovering over their avatar in the top right corner.

In the following sections navigating to a certain part of the Solid Pod takes
this menu into account and references it.

Figure A.1: Solid Pod menu

A.2 Enabling trusted apps
To allow the application to manipulate data in the Solid Pod, it has to be added
to the Solid Pod’s trusted sources. The application can be marked as trusted by
following these steps:

• Go to ”Preferences” in the menu

• Go to ”Manage your trusted applications” section and add the URL where
the application is hosted, as a demo example https://jaresan.github.io
can be used as the application URL
Note: Make sure you omit the trailing slash, i.e. https://hosting.com,
not https://hosting.com/

• Check ”Read”, ”Write”, ”Append” privileges

• Click on ”Add”
1https://solid.community/login

126

https://jaresan.github.io
https://hosting.com
https://hosting.com/
https://solid.community/login

This allows the application to manipulate data in the user’s Solid Pod when
they are logged in via their Solid Pod providing entity.

Figure A.2: Trusted applications

A.3 Creating a save destination
To create a new folder where the application data could be stored, the user can
follow the steps below:

• Go to ”Your storage” in the menu

• Click the green plus button

• Select the folder icon and choose new folder name

• Click the green check button

• The newly created folder can be found at
https://USERNAME.solid.community/FOLDER_NAME

where USERNAME and FOLDER NAME represent the user’s Solid Pod
login and the folder name chosen in the previous steps respectively

127

Figure A.3: Creating a folder

128

B. Resources
• Attached .zip file

This work comes attached with a .zip archive consisting of the GitHub
repository archive for this application and an archive for the proxy appli-
cation described in section 4.3. Both archives correspond to the repository
versions under tag base.

• https://jaresan.github.io/simplod/

GitHub Pages with description of the application and its live demo.

• https://github.com/jaresan/simplod

GitHub repository of the application. The version this work is submitted
with corresponds to tag base.

• https://github.com/jaresan/sparql-proxy/

GitHub repository of the SPARQL proxy described in section 4.3.

• https://github.com/jaresan/lod-cloud

Repository with resources for proper execution of the data schema pipeline
described in subsection 5.2.2.

129

https://jaresan.github.io/simplod/
https://github.com/jaresan/simplod
https://github.com/jaresan/sparql-proxy/
https://github.com/jaresan/lod-cloud

	Introduction
	What is Linked Data?
	What is a Solid Pod?
	Goals
	Thesis structure

	Analysis
	Target audience
	User roles
	Requirements
	Functional requirements
	Non-functional requirements

	Use cases
	Administrator
	User

	Application inputs
	SPARQL endpoint
	Data schema

	Existing solutions
	Comparison criteria
	Solution comparison

	Design
	Type of application
	Web application advantages:
	Desktop application advantages:
	Conclusion

	Storage options
	Local file system
	Cloud solutions
	Solid Pods
	Chosen solution

	Language
	Libraries & Frameworks

	Application architecture
	View layer
	Application logic
	Persistent data handling, Solid Pods
	SPARQL Editor
	Overview

	Mockups
	Title page
	User information
	Data area
	Query editor

	Implementation
	Limited mobile experience
	State handling with Ramda
	SPARQL Proxy
	Interesting implementation tasks
	SPARQL generation
	Cartesian product detection
	Optionality cycles

	Room for improvement
	Graph tool
	Query improvements

	Documentation
	User documentation
	Solid Pod setup
	UI Elements
	Graph interface
	List view
	Examples

	Administrator documentation
	Prerequisites
	Data schema creation
	SPARQL proxy
	Deployment
	Application parameters

	Programmer documentation
	Prerequisites
	Local development setup
	Overview
	Implementation examples
	Automatically generated documentation

	Tests
	Unit testing
	Libraries
	Covered code

	Manual test scenarios
	Preliminaries
	T1 - Visualization and simple configuration
	T2 - Language selection
	T3 - Offline capabilities
	T4 - Data handling
	T5 - SPARQL Capabilities
	T6 - Graph interactions

	Evaluation
	Goal fulfillment
	System usability scale results

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Solid Pod troubleshooting
	Logging in with Solid Pod
	Enabling trusted apps
	Creating a save destination

	Resources

