SOUHRN

Prokázali jsme, že všechny námi sledované buňky hematologického systému hynou po ozáření apoptózou. Ke studiu jsme použili buňky immortalizovaných nádorových linii HL-60 a MOLT-4, kmenové buňky krvvetorky a periferní lymfocyty. Apoptózu jsme sledovali pomocí stanovení subG1 vrcholu detekujícím buňky s nízkým obsahem DNA, stanovení mitochondriálního membránové antigenu APO2.7, a stanovení exprese fosfatidylinerinu na buněčné membráně pomocí Annexinu V. Buňky HL-60 (lidská promyelocytařní leukémie) jsou buňky relativně málo diferencované, bez funkčního proteinu p53 a po ozáření dávkami do 10 Gy je u nich indukována apoptóza až do bloku v G2 fázi (oddalená apoptóza). Po ozáření vysokými dávkami je indukována rychlá apoptóza z té fáze buněčného cyklu, ve které byly buňky ozářeny. Druhou modelovou linii byly buňky T lymfocytařní leukémie MOLT-4. MOLT-4 mají wild typ proteinu p53 a jsou velmi radiosenzitivní. Za 16 hodin po ozáření jsme prokázali dávkovou závislost vzestupu indukce apoptózy od 0,2 do 5 Gy měřením exprese mitochondriálního membránového antigenu APO2.7 bez permeabilizace. Pro studium indukce apoptózy u lidských lymfocytů jsme sledovali vazbu Annexinu V a propidium jodídou ve souvislosti s CD znaky jednotlivých subpopulací lymfocytů.

V rozmezí 1-10 Gy jsme 16 h po in vitro gama ozáření pozorovali dávkově závislý vzestup A\(^{+}\) PBMC. Prokázali jsme, že relativní velikost populace A\(^{+}/G\) se s časem významně nemění, jsou to buňky kráteč žijící a apoptické buňky se akumulují v pozdní A\(^{+}/G\) fázi, kde jejich počet stoupá v dávkové závislosti. V subpopulaci A\(^{+}/G\) buňek jsme prokázali v rozmezí 1-10 Gy dávkovou závislost poklesu počtu NK buněk 16 hodin po ozáření, což představuje dobrý indikátor obdržené dávky v oblasti vysokých dávek záření. U malých dávek (do 3 Gy) jsme dávkovou závislost poklesu počtu CD3\(^{+}/CD8^{+}\) buněk prokázali za 48 hodin po ozáření. NK buňky mohou být rozděleny na dvě subpopulace, podle density znaku CD56, tj. CD56\(^{\text{high}}\) a CD56\(^{\text{low}}\). Při srovnání radiosensitivity CD56\(^{\text{high}}\) a CD56\(^{\text{low}}\) je subpopulace CD56\(^{\text{high}}\) významně citlivější k účinkům ionizujícího záření než subpopulace CD56\(^{\text{low}}\). Studium NK buňek při ozáření in vivo pacientů s nádory je komplikováno faktum, že NK buňky reagují zvýšenou apoptózou na přítomnost nádorových buněk a procento apoptických buněk je již před ozářením významně vyšší než u zdravých dárců. V případě ozáření pacientů s karcinomy endometria a čípuch děložního technikou box (relativně malý objem oblasti břicha) dávkou 2 Gy došlo po 24 h inkubaci lymfocytů in vitro k relativně malému poklesu počtu NK buněk. Po celotělovém ozáření pacientky s hematologickou malignitou (2 Gy) jsme prokázali výrazný pokles NK buněk především 48 h po ozáření, což je v souladu s experimenty in vitro.