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Abstrakt. Préice je zaméfena na problém detekce zmeény (zmén) rozdéleni u ndhodnych velicin,
které jsou nezéavislé, ale mohou byt cenzorovany. Testové statistiky a jim odpovidajici odhady
jsou sestaveny na zakladé znalosti pro uplnd data. Konkrétné se zde zabyvame poradovymi
testovymi statistikami maximalniho typu vhodnymi pro detekovani jedné zmeény a poradovymi
MOSUM statistikami zalozenymi na diferencich klouzavych souéti, které se pouzivaji v ptipadé,
kdy oc¢ekavame vice zmén. Za platnosti hypotézy, ze ke zméné rozdéleni u cenzorovanych dat
nedoslo, je studovano limitni chovani uvazovanych testovych statistik. Ve specidlnim piipadé,
za podminky shody rozdéleni cenzorovani, je pouzit permutaéni princip. Je ukazano, ze prezen-
tované testy jsou konzistentni. Dale jsou navrzeny odhady odvozené od statistiky maximalniho
typu a jsou vySetfovany jejich limitni vlastnosti. Teoretické vysledky jsou demonstrovany na
simulacich.
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Abstract. The thesis deals with the problem of detection of a change (changes) in the distri-
bution of variables that are independent but possibly censored. The test statistics and corre-
sponding estimators are derived using the same principle as for uncensored data. We consider
max-type rank test statistics applied to one-change problem and MOSUM-type rank statistics
suitable for testing multiple changes. The limit behavior for such classes of test statistics under
the hypothesis of “no change” in the distribution of censored data is studied. Particularly, under
equal censorship, the permutation principle can be used. Moreover, the consistency of our test
procedures is shown. Further, rank based estimators of the change point corresponding to the
class of the max-type test statistics are proposed and their limit properties are investigated.
Theoretical results are demonstrated on simulations.
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Preface

In the thesis, two important topics from the statistical analysis the change point detection
and the survival analysis are brought together, in other words we will show how to detect a change
(or changes) in distribution of variables which are not completely observable. The research was
initiated by Stute [32], because this problem is very important in medical studies and statistical
quality control in industry. In spite of this fact, this problem is considered only in a few papers.
Contributions of the authors to this area is described in Chapter 1.

We will study nonparametric methods, particularly, rank-based test procedures and corre-
sponding estimation procedures. We will use the knowledge about the change point problem in
the case of completely observable variables, because there has been already much written about
it. For a review of the classical change point problems and an extensive reference list, we refer
to Csorgd and Horvdth [10] and Antoch et al [6].

In Chapter 1, we will introduce the model and formulate the change point problem for ran-
domly censored data. We will summarize the results of other authors and assign the aim of work.
In Chapter 2, various rank test statistics as two-sample, max-type and MOSUM-type statistics
will be proposed. Estimators of the change point corresponding to max-type test statistics will fol-
low in Chapter 3. The properties of suggested statistics and estimators under the null hypothesis
of no change and also under the alternative of one change or multiple changes will be thoroughly
studied. For particular situations, we will discuss the assumptions of the presented theorems
in Chapter 4. Chapter 5 contains all the calculation and auxiliary results needed in previous
chapters. Various simulation studies will be presented in Chapter 6 and finally in Conclusions
the summary of open problems and the plan of the future research can be found.






CHAPTER 1

Introduction

1. Formulation of the problem

We introduce the basic notation concerning random censorship models. For more detailed
information see e.g. Kalbfleisch and Prentice [25]. Typically, X9, X9 ... X9 is a sequence of in-
dependent nonnegative random variables (the lifetimes or the survival times), where the index i
of XZ-O corresponds to the chronological order in which the subject of interest (e.g. patient) has
entered the study. The patient can be withdrawn from the study due to many reasons, e.g. an ac-
cidental death, a migration of human population or limited time of the study. More precisely,
the lifetimes can be censored from the right by independent random variables Cy, Cs, ..., C},

the so-called censoring times. In other words, instead of the survival times X9, X9 ... X0 we
observe pairs (X1,A1), (X2, A2),..., (X, Ay,) only, where

X]Q, if XJQ < Cj, Xj is uncensored,

j = min( J i) {C]’ if X]Q > (), X; is censored,

and
Aj = [(X;),Cj) _ )L %f X; %S uncensored,
0, if X is censored,
for j = 1,2,...,n. We assume that the lifetimes and the censoring times are independent

variables. Particularly, their distributions need not be the same over the observation period.
More precisely, we suppose that for some unknown v € (0,1] and n € (0, 1] (generally, n and
~ need not be the same) X?,XS, . ’XE“/HJ and XE’ynJ—l—l’X(L)'ynJ-l—Q’ ..., XY have absolutely con-
tinuous distribution functions Fy and Fy, respectively, F1 # F, and C1,Cy,...,C|,, and
Clynj+1>Clyn)+2 - - - Cn have absolutely continuous distribution functions G1 and Gs, respec-
tively, G1 # G. The point v (or |yn]) is called the change point. Let fi, fo and g1, g2 denote
densities corresponding to Fi, F5 and G, G, respectively. Notice that the distribution functions
F1, 5 and G1, Gy are unknown.

We wish to test the no-change null hypothesis
Hy: Fi(t) = Fo(t) = F(t) forallteR, ie y=1, (1.1)
against the one-change alternative hypothesis
Hi : Fi(t) # F5(t) for some t € R, ie. v€(0,1).

This is one of the basic tasks in the change point analysis to decide if there is a change in
the model in our case due to medical care. If we reject the no-change null hypothesis, we would
like

e to decide if there is just one change or wether there are more changes;

e to locate when the model changed;

e to determine the total number of changes.

11



12 1. INTRODUCTION

Next, we make few notes. Notice that the testing problem does not concern the behavior of
the censoring variables even though their distribution has the influence on the distribution of
the observed variables X; = min(X]Q, Cj), j =1,2,...,n. By the independence of the lifetimes

XJQ’S and the censoring times C}’s, the observed variables X7, Xs,..., X, have the following
distribution function under the null hypothesis Hy for all x € R

Hi(z)=P(X; <z)=P (min(XjQ,Cj) <z)=1-(1-F(2)(1-Gi(z), 1<j<|nnl,
Hy(z) =P(X; <z) =P (min(X},C;) <z) =1— (1 - Fi(2))(1 - G2(x)), [nn] <j<n,

and under the alternative hypothesis H; (suppose n < 7)

Hi(z) =P(X; <2)=1-(1-F(2)(1 - Gi(2)), 1<j < [nn]

Hy(z) =P(X; <2) =1 (1= F(2))(1 - Gz(2)), lnn| <j < [nv],

Hy(z) = P(X; <2) =1 - (1 - F3(2))(1 = G2(2)), [ny] <j <n. (1.2)
Notice that (X1,Aq), (X2, Ag) ..., (Xm,, Am,) have the common distribution function Li(x,d)

of the following form

Li(z,1) =P(X; <z,A1=1)=P(X{ <z, XV <)

://t< e dFl(t)dGl(C) :/Om(l—Gl(t))dFl(t),
m@unzpdig@Alzm:P«hgmxa<X%

= //< ., dFl(t) dGl(C) — /Ox(l - Fl(C))dGl(C) (1.3)

and similarly for the distribution function Ly(z, d) corresponding to (X, A;), [nn] < j < [nv],
and for L3(x,d) denoting the distribution function of (X;,A;), [nvy] <j < n.

In the following we suppose that the distribution of the censoring times can change (G1 # G2)
which can occur more often in practical situations and in this case we will detect the change
in the distribution of the survival variables with an appropriate limit test. We will mention
the particular situation G; = G9 as well. However, we will be able to use the permutation
principle and we will obtain in this way an exact test.

REMARK 1.1. The time of a change |nn| in the distribution of the censoring variables is
then a nuisance parameter in our testing problem. It is important to realize that in the case
of 7 =7 it can occur such a situation when the distributions Hi(z) and Hy(z) of the observed
variables before and after the change point time |ny| are the same, i.e.

(1-F(2)(1-Gi(@) = (1 - Fy(x))(l - Galz)), VaeR.

This equality is valid e.g. when F; = G2 and F5 = G or when Fy, F5 and G1, G, respectively,
come from the exponential distribution with the expectations i, pe and pf, p$, respectively,
and

p1 + pg = pio + ps.
The situation mentioned above is not much probable so we do not take it into account.

Koziol-Green model. The so-called Koziol-Green model (KGM) is a simple model of
informative censoring, where the survival function of the censoring times is supposed to be
a power of the survival function of the lifetimes, i.e. in our case

Vi>0  1-Gi(t)=(1—F@t)% with 8 >0, i=1,2.
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The parameters (1 and (9, respectively, are usually called the censoring parameters. This
particular model of random censorship (without the change point) was introduced by Koziol
and Green [26] and it is a single proportional hazard model, because by standard tools we get

_dlog(1-Gift) __, dlog(1—Fi(1)

dt = i dt ’ 1=1,2,
gi(t) fi(t) :
N =1,2
G 1o R LT
and
)\Gi(t) :Bi )\Fi(t)7 1=1,2,
where
P(t < X9 <t+At|X) > 1) fi(t)
) = li - J J = 7 — 1<5< 1.4
A (1) Jim A7 RO <j < |nvl, (1.4)
P(t < X9 <t+At|X) > 1) fa(t)
. Pt<Cj<t+At|C;>1) g1 (1) .
— J ] - 1<j<
)\Gl(t) At%‘k At 1_G1(t)7 —j — £n7J7
. Pt<C;<t+At|C; >t) g2(t) )
t)= 1 J g = <
>‘G2( ) Atl—>r%+ At 1 —Gg(t)’ Ln'YJ <J<n,

are the so-called hazard functions of the lifetimes and the censoring times before and after
the change point |nvy]. The hazard function Ap,(t) specifies the instantaneous rate at which
failures occur for items that are surviving at time ¢. It fully determines the distribution F;(t).
Integrating

dlog (1 - Fy(t))
z(t) dt ) ? =

with respect to t and by F;(0) = 0, we get

Si(t) =1-Fi(t) = eXP<— /Ot AR, () du) =exp(—Ag(t), i=1,2,

where S;(t) is the survivor function and Ap,(t fo Ar, (u) du is called the cumulative hazard
function corresponding to F;(t).
Clearly, in this case the expected proportion of uncensored observations is

1

1+ 6
1

1+B

REMARK 1.2. In the Koziol-Green model 7 is equal to 7y, therefore under the hypothesis
Hy the censoring variables C, (o, ..., (), are i.i.d. too, and under the alternative H; the distri-
butions of the survival times and the censoring times change at the same time point |n+y| and
the distribution functions of the observed variables X;’s are Hi(x) before the change point and
Hs(z) after one, see (1.2).

Moreover, if G = B2 = 0, the survival variables X]Q’s are not censored.

EAj:P<X?scj>:/OOO<1—F1< 1) AR (1) = 1< < ml,

EA; =P(X? <)) :/Ooo(l—Fz( £))% dFy(t) = [ny] <j <n.
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2. Notation

We use the following notation in the rest of the thesis. Let m = |nvy] denote the change in
the distribution of the survival variables X?, X9,..., X% and let m. = |nn| denote the change
in the distribution of the censoring variables Cy,Cs, ..., C,. Write

1= Hyo () = (1 = Fy(0)(1 = G1(8)) + (v =) (1 = F1 () (1 — Ga(t))
1

(1= 7)1~ B(#)(1 - Ca(t)), (1.6)
L= B (1) =71 = F0)(1 - Gi(0) + (1 - (1 - BEO)1 - Gat),  (L7)
1= Hy(t) = (1= F0)(n(1 = G1(t)) + (1 = m)(1 = Ga(t)), (1.8)
1 H(t) = (1 - F())(1 - () (1.9)
for all ¢ > 0 and

By (1) = | (101 = Ga(w) + (2 = 0)(1 = Ga(w)) dFi(w)

+(1-9) [ (1= Galw) dFs(u), (1.10)
0

R(t) = 'y/o (1= Gy (w) dFy (u) + (1 — ’y)/o (1 — G (u)) dFy(u), (1.11)
Ry(®) = [ (11 = Ga(w) + (1= )1 = Gafu))) dP(w). (112
R(t) = /O (1— G(u) dF (u). (1.13)

Notice that 1—H, -(t) and 1—H,,(t) are “distribution functions” of Y (¢)/n under the alternative
Hy for m. < m and m. = m, respectively. Similarly, under the hypothesis Hy, 1 — H,/(t) is
a “distribution function” of Y'(¢)/n in the case of m. < n and 1 — H (t) is a distribution function
of Y(t)/n in the case of m, = n. We make use of the notation “distribution function” because
there have been used approximations for m./n and m/n.

Further, set

Qi(t) = (n(1 = G1(t)) + (v = n)(1 = Ga(t))) (1 = Fi(t)),
Q2(t) = (1 —7)(1 — Ga(t))(1 — Fa(2)). (1.14)

Notice that
1—H,,(t) = Qi(t) + Q2(1),
Ry (1) = / (@1 (wWAr (1) + Qalw)Ap () du,

where Ar, (t) and Ap,(t) are defined in (1.4) and (1.5).

CONVENTION 1.1. In the following text we use simpler notation
AM(t) = Ap (t) and  Aa(t) = Ap,(t)

for the hazard functions Ap, (t) and Ag,(t) corresponding to the lifetime distribution functions
Fi(t) and Fy(t).
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3. State of arts

Stute [32] initiated research in the area of change point analysis for randomly censored
data. He suggested estimators for the change point and he studied their properties. He proposed
the class of estimators of the form
k n

.1 K(X;, X;) AA,
922 = —argmax (R inlaV} 1= I(max XZ-,X' <
TSR 2 G Ry ) ) <)
n_ ('1" y) r 1 "’0
= ar max A () dET ’
1§k<n / / (1— )) (1- HO( )) k‘( ) k()

where R; is a rank of X; among X1, Xo,..., X, and

k k
1 - 1
x) k;I(XZ < x), Hy(x) kizll(Xl < z)A;, (1.15)
~ 1 n 5 1 n
HY(z) = — > I(X; <), HY(z) = — > IX; < 3)A; (1.16)
i=k+1 i=k+1

and K : R? — R is a measurable mapping with the antisymmetry property K (z,y) = —K(y, z).
We call such mapping K kernel. The value 7y is chosen as a positive number fulfilling
0 <7 <7:=sup{zx; Fi(x) <1, Gi(z) < 1,i=1,2}.
He considered only bounded antisymmetric kernels K which satisfy
(z,y)
dFi(z) dFy(y) # 0,
/ / (1- ) (1—F(y))

where F(z) = vFi(x) 4+ (1 — ) (x ) He proved that under the alternative hypothesis H; and
the equal censorship G; = Go, as n — 00,

0) —~| = O<10in> a.s.

His results were extended by Ferger [13] and Horvath [20]. They divided the random
sample into two groups up to and after the k-th observation and made the comparison, which
leads to the estimator

bon =79 = — argmax
N 1<k<n

Z:X_n—k Z X‘

j=k+1

and to their generalization using U-type statistic accordlng to Ferger [13]

0 :'Ay:largmaxv< )‘ Z ZK Xi, X ‘

" 1<k<n i=k+1 j=1

where v : (0,1) — (0,00) is a weight-function of the type
1
f=—— 0<ab<]l,
o(t) fa(l—gp S o®P=
and K is an antisymmetric kernel. The former estimator is obtained from the later one letting
K(xz,y) =x—yand a = b = 1. Ferger [13] showed that under H; and the assumption G; = G,

as n — 0o,
1
|0y, — | = O(—) a.s.
n
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Horvéth [20] studied the functional

with

- z,y) N
_/ / (1-F (1—F(y)) dF (z)dF (y),
/oo/oo (1— f{k(x—)) (1-— ﬁg(y_)) k() k()

where Hy, Hy and HY, HY are defined in (1.15) and (1.16). He considered not only antisym-
metric kernels K(z,y) = —K(y,z) but also symmetric ones K(z,y) = K(y,z). Setting q(t)
a positive function on (0,1) which is non-decreasing in a neighborhood of 0, non-increasing in
a neighborhood of 1 and

. 1
egig—e q(t) >0 forall0<e< 2 (1.17)

he proved that under Hy and G; = Gg, as n — oo,

@u(rt) o 1B

— sup , K antisymmetric,
o 0<t<1 Cq(t) o<t<1 q(t)
t 1-tOWi(t t(W(1) —W(t
Lo ] o W@ Wy
0 0<t<1 Q(t) o<t<1 Q(t)

where

s [T o K(z,y) 2 dL(z,1)
“"1m<1m1—F@4d”w><u—F@—»u—Gm4»2

with L(z,1) = Li(z,1) defined in (1.3) and B and W denoting Brownian bridge and Wiener
process, respectively, if and only if

1 2
Ini(gq,c) = /0 o exp <_t?;1 _(ti)) dt < oo for some ¢ > 0. (1.18)
Moreover, he showed that under Hy and G; = G, as n — oo,
1
(dl(log n)— max M <y + da(log n)) — exp{ - Qe_y}, Vy € R,

o 1<k<n k k
n(1=1)

where

dy(t) = +/2logt, da(t) = 2logt + 1 loglogt — 3 log . (1.19)

The last limit property is valid for both classes symmetric and antisymmetric kernels K.
Aly [2] applied the idea of combining proposed by Albers and Akritas [1] to the change point
setup. He treated the uncensored and the censored observations separately. Note that Ny ;, (resp.
Na ) is the number of the uncensored (resp. censored) observations Xi,X1,... ,X}Vl . (resp.

X2, X2,... ,XJQVM) among X1, Xo, ..., Xy and Hy, and Qyy, (resp. Hoyy, and ng)

I <), i=1,2,

Qlk(y) = Sup{x : ﬁlk(x) S y}7 1= 1727
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are their empirical and quantile processes, respectively. He proposed the test statistics for
particular groups of observations (uncensored and censored events) as follows

Nivl_nSJ
. 1 . a
YZ 7t = v XZ_ in(t ) 7t€ 0717 ‘:1727
n(s ) \/N—m ]Z:; t( j an( )) S ( ) v
where
Uy(2) = —(1— ) itz <0,
=1 if x> 0.

Finally, he mixed both the proposed test statistics Y,'(s,t), i = 1,2 based on the quantile
processes together. He investigated the various modifications of such established test statistics
and under Hy and G1(t) = Ga(t), as n — oo, he obtained

Ty, = max sup |V (s, t)\—>max sup |Ti(s,t)],
=1,20<5,t<1 =1,20<s,t<1
Tgn—max/ / dtds—»max/ / dtds
1=1,2 1=1,2
Tsm(s0) = ———— max_sup [¥;!(s0,t)| —> max sup |By(t)],
30(1 — 80) =120<s,t<1 =12 0<¢<1
1
Tin(te) = ———— max_sup_[Vi(s.to)] -2 max sup |Bi(s)].
to(l—to) i=1,20<s,t<1 i=1,20<s<1

Ts.n(to) = 1_t0 22/ (s,t0)) s—>2/

T6n —12max/ / Y’stdtds—wnaxZZ,
i=1,2 1=1,2

12 ) D
T77n = — / / Yri(s,t) dtds — Zl,
V2 ; 0o Jo

T&n(to):’/ 1—t0 ?121155/ Yi(s,to) ds—»maXZZ,
Tgnto ” 1_t0 Z/Ysto ds—>Z1,

where By and By are two independent Brownian bridges, Z; and Zs are two independent N(0, 1)
random variables and I'y (s, t) and I's(s, t) are two independent mean zero two-parameter Gauss-
ian processes with the same covariance function

ET;(s,t)T;(u,v) = (min(s,u) — su)(min(¢,v) — tv), =1,2.

Gombay and Liu [18] based their test on a generalization of the Wilcoxon rank statistic
k
12251 Uj]
max

1<k<n n 2
N \/ Zj:l Uj
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with the generalized rank U; of (X i Aj)
Uj=>Y (I(X; > X, A =1) - I(X; < X;,A; =1)), j=12,...,n.
i=1

They used the theory of exchangeable variables to investigate its properties. Precisely, they
proved that under the no-change hypothesis Hy and Gy = Ga, as n — oo,
k
‘Zj:l Uj’ D

max ———— —— sup |B(t)|,
1<k<n /Z;‘L:1Uj2 o<t<1

where B denotes a Brownian bridge. Through this limit distribution which is given by the well-
known identity

P(sup |B(t)] >b) =2 (—1)'"exp(—2i®?), b>0,
0<t<1 i1

we get the approximation of the critical values for our test Hg versus H; under equal censorship.
In the case of rejection Hy, they proposed the estimator of the change point |ny] as the point &
where the test statistic takes its maximum, i.e.

k
Tn = |n7y| = argmax | Ujl
1<k<n 1
J
and they showed that under alternative H; and G; = (9 this estimator is consistent with

the following rate

g 1
T—n—w :Op(—>, n — oo.
n n

Extensive studies for such procedures were conducted in the doctoral thesis of Liu [28].
There have been proposed also the weighted-type forms of the previous test statistic

| gy u?
sup

o<t<1 ‘J(t)

where ¢(t) is a positive function defined on (0,1) with property (1.17), and

| Z?:l Uj|/ Z?:l Uj2
max .

SETE

Under the no-change hypothesis Hy and G1 = G3, as n — oo,

n+1 n
DR VIO S B(?)]

sup

0<t<1 q(t) o<t<1 q(t)
if and only if (1.18) holds, and
’ Zk}:l UJ‘/ anl U2
P(dl(logn) max ’ ’ ’ Sy—i—dg(logn)) —exp{ -2V}, VyeR,

SCEE

where d;(t) and da(t) are defined in (1.19).
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4. Aim of work

In all the papers listed above the censoring times C1,Ch,...,C, are supposed to be i.i.d.
variables. HuSkova and Neuhaus [23] developed a test along the lines of the two-sample
weighted log-rank tests under the random censoring (see e.g. Neuhaus [29] and [30]). In
contrast to the other mentioned authors, they considered not only the change in the distribution
of the survival variables but also the change in the distribution of the censoring variables. We
present their point of view in the next chapter and use their results described in Theorem 2.3
and Theorem 2.6 for our research.

The work of Huskovd and Neuhaus [23] is based on max-type test statistics which are usually
applied to one-change point problem. The thesis aims to further study the max-type statistics
and develop MOSUM-type tests statistics for one and multiple changes. For investigation we
use theory of ranks, mainly the extreme value theorem for the max-type and the MOSUM-type
forms of simple linear rank statistics, see Huskovd [21]. Except asymptotic tests we construct
their exact counterparts through the permutation principle which can be used also in change
point analysis according to the papers by Antoch, Huskova [4] or Huskova [22]. We also prove
the consistency of the proposed tests using asymptotic representations of the test statistics.

Moreover, we investigate properties of the corresponding max-type estimators under the al-
ternative Hy and also under the hypothesis Hy. We apply ideas of Gombay and Huskova [17],
but our investigation is complicated by a nuisance parameter m,. denoting a time of a change in
the distribution of the censoring variables.

The useful tools are the limit behavior of empirical processes, theory of counting processes,
the Chebyshev inequality and the Kolmogorov-Hajek-Rényi-Chow inequality.

Theoretical results are illustrated by simulations based on the Monte Carlo repetitions or
on the resampling methods.






CHAPTER 2

Tests

1. Introduction

We focus on the rank based test procedures for the testing problem (1.1). At first, for
simplicity, we attend to the situation, when the parameter v is known and after that, we con-
centrate on v unknown, which is the main problem. In the first case of v known the problem
reduces to a two-sample problem. There are a lot of papers offering a solution for such problem,
e.g. Neuhaus [29] and [30]. We briefly summarize commonly used tests. In the second case
of v unknown we construct the rank test statistics for the censored data as for the completely
observable data. We present the max-type test statistics which are used when we expect only
one change-point and the MOSUM-type test statistics which are used as a diagnostic tool in
multiple-change case. We investigate properties of both these classes of test statistics. We also
propose other modifications for solving our change point testing problem.

2. Two-sample test statistics (m known)

If the possible change point m = |n7| is known, then our problem (1.1), how it was said
above, is a common two-sample problem, i.e. we suppose that the lifetimes X¥, X9, ..., X2
and X0 1, X9 o, ..., XY have arbitrary absolutely continuous distribution functions Fy and
Fy, respectively, F1 # F5, and the censoring times Cy,Cy,...,Cy, and Cpyp1, Cryt2, - . ., Cy, have
absolutely continuous distribution functions G; and Gs, respectively, G1 # G2, and our problem
is to test the null hypothesis of randomness

Hy : Fl(t) :Fg(t) :F(t) for all t € R,
where the distribution function F'(¢) is unknown, against the omnibus alternative hypothesis
Hlm : Fl(t) 7§ Fg(t) for some t € R

with m known. In this case we assume that n = 7 (the distribution G of the censoring variables
changed into the distribution G2 at known time m) or n = 1 (the censoring variables are i.i.d.
under both the hypotheses Hy and Hy,, , i.e. the so-called equal censorship occurs). We present
tests for these particular situations. The rank based test statistic for the two-sample problem
has the form

Sul0) = 3 anl)
j=1

with the scores
i) = [ wn@ a0 - M0 P ave, (2.1)

The process
Y(t) =3 Y0, Yilt) = I(X; > 1), (2.2)

21
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denotes the number at risk just before time ¢ or the size of the risk set, and
n
N(t) =Y Nj(t),  Nj(t) = AI(X; < 1), (2.3)
j=1

counts the observed failures by time ¢. The value 7y denoting the end of medical study is such
a positive number for which

0 <71 <7:=sup{z; Fi(zx) <1,G;(x) <1,i=1,2}. (2.4)

Since N(t) is a counting process and wy,(t) is the nonnegative function (random or nonran-
dom) of time, it follows that [° wy(t) AN (t) is the Stieltjes integral representation of the sum
of the values of w,, at the jump times of N in the interval [0, 79]. If we use this notation, we can
rewrite the scores in the well-arranged form

A;
Y(Xi) |’

an(j) = I(Xj < 7o) wn(Xj)Aj — Z wp(X5) i=12 ... ,n.

The statistic Sy, (70) is called the weighted log-rank test statistic which was studied in a num-
ber of papers, e.g. Neuhaus [29] and [30] or Fleming and Harrington [14] or Kalbfleisch and
Prentice [25]. Now, we focus on the form of the weight function wy,.

The weight function. An important class of weight functions is

walt) = (Su(t-))" (@)Hum) > 0) (25)

n

where p,k > 0 and

S =11 (135

is the left-continuous Kaplan—Meier estimate of the survival function. Notice that the weights
of the form (2.5) are bounded |w,(t)| <1 for all t > 0.

Such a class of weighted test statistics includes commonly used test statistics in practice
like the log-rank statistic (p = 0, k = 0), the Prentice-Wilcoxon statistic (p = 1, kK = 0)
and the Gehan—Wilcoxon statistic (p = 0, k = 1) which are generalizations of the Savage and
the Wilcozon statistic for uncensored data, for more information see e.g. Hdjek et al [19]. Other
discussion will be done in Chapter 4.

Larger values of |S,,(7)| indicates that the null hypothesis is violated. The critical region
for testing Hy against H1,, has the form as follows

[Sm(10)| > en(e),

where the critical value ¢,(«) is determined in such a way that the test has the prescribed
significance level . The task is to find an appropriate approximation of our critical value.
The common way is the approximation through the limit behavior of the statistic Sy, (79), but
it requires the large sizes of both samples m and n — m.

Under the hypothesis of randomness and some mild conditions the standardized version
of this statistic has asymptotically standard normal distribution. This limit property can be
obtained through the martingale theory. Let us denote by

S (70)

B =
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and

0

= v2()

- AN ().

THEOREM 2.1. Suppose that XV, X3, ... . X9, C1,Co,...,C, are independent random vari-
ables. Let survival variables X?, XS, ..., X0 have an arbitrary absolutely continuous distribution
function F. Let censoring variables C1,Cy,...,Cp and Chpi1,Chpgo, ..., Cy have absolutely
continuous distribution functions G1 and Ga,respectively, which can be but need not be the same.
Let wy(s) = v(S,(t—)) or wp(s) = v(@) for some nonnegative continuous function v with
bounded variation on [0,1]. Then for all y € R we have, as min(m,n —m) — oo,

P(Lm(TO) < y) - (I)(y)
with ® denoting the distribution function of the standard normal distribution N(0,1).
PRrROOF. The proof can be found in Fleming and Harrington [14], Theorem 7.2.1. O

According to Theorem 2.1 we use quantiles of the standard normal distribution for our
decision rule. We reject the hypothesis of randomness Hy : F} = Fb against the alternative
Hyyy o Fy # By, if

| L (10)| = Sm(mo)| >u

Vi (10)
with ua denoting 100(1 — 5)%-quantile of the standard normal distribution N(0,1).

Another possibility how to obtain an approximation of the critical value is through one of
the resampling methods which gets reasonable approximation even for small sample sizes. But
here it is important to mention that this cannot be used in general case as we see below. In
the next subsection we describe this method and we call it permutation principle.

n|R

Permutation principle. We use the knowledge of permutation tests for the two-sample
problem. We assume the hypothesis Hy only under the equal censorship, i.e. we assume the so-
called restricted null hypothesis

Hy : Fl(t) = Fg(t), Gl(t) = Gg(t), vVt € R.

Use in the following the notation

o2(a) = —— 3" a2()) (2.6)

and denote by
(X, 8)0) = (X, Am), X2, Apy)s - (X(m), Apm))
the random sample of observations ordered according to Xy, Xo,..., X,, i.e.

Xy < X(g) < < X

and A;)’s are corresponding censoring indicators to the variables X ;)’s and R = (R1,Ra,...,Ry)
the corresponding ranks. Notice that under H the paired observations

(X,A) = ((X1,A1), (X2, 82), ..., (X, An))
are i.i.d., (X,A)() and R are independent and
(X(Rj)7A[Rj}) - (X]7Aj)7 ]:1727n
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LY (70) ‘/ mn—m) o Zan
n(a) =

Notice that the statistic L7, (1) differs from the statistic Lm(T()) only by the standardization.

Then according the principle of permutation tests (see e.g. Lehmann [27] or Good [16])
the permutation tests related to the test statistic |L7 (79)| can be described as the conditional
test given (X,A)() and the randomized critical function has the following form

Write

1, if |L?n(7—0)| > C;(a’ (X’A)()),
Y(t, (XvA)()) =qve(01), if ’Lgn(TO)‘ = cp(a, (X7A)())7 (2.7)
0, if ’L%(TO)‘ < C:L(Oév (X7A)())7

where ¢, (a, (X,A)() stands for the 100(1 — «a)%-quantile corresponding to the conditional
distribution of |Lf, (10)| given (X(1), App), (X(2)s A))s - - - » (X(n), Apn)) and v is chosen such that
under Hy

P (L7, (10)l > e, (X, A)()) (X, A)()) +v P(IL7,(70)] = cj (o, (X, A) () | (X, A) () =
The conditional distribution P(|Lg,(70)| < z|(X,A())) is sometimes called permutation distri-
bution and it can be expressed as follows

1
P(IL7 ()l < @ | (X,A()) = = #{r € Qu|LL(ro,r)| <a}, w€R,

where Q,, is the set of all permutations of (1,2,...,n), #A denotes the cardinality of a set A
and L7, (70,7) is defined as L7, (7o) with (X, A;) replaced by (X(;,), A1), 3 =1,2,...
Notice that the test in (2.7) can be also described as the test with the critical functlon

1, if |7, (10, @)] > ¢ (a, (X, A)),
Ut (X,A)) = (v e (0,1), if [L7,(70,Q)] = ¢ (e, (X, A)), (2.8)
0, if L5, (0, @)] < ¢, (X, A)),

with ¢, (e, (X,A)) denoting the critical value corresponding to the conditional distribution of
|LS, (10,@Q)| given (X1,A1),(X2,As),...,(Xn,Ay,) and v is chosen such that under H

P (L7, (10, @) > e, (X, A)) [(X, A)) + v P(|L7,(0, Q)] = ey, (X, A)) [ (X, A)) = a

Here L7 (70,Q) is defined as Ly (79) with (Xj, Aj) replaced by (X(q,), A1) J = 1,2,...,n,
and @ = (Q1,Q2,...,Qy) being a random permutation of (1,2,... n) Le.

o.(10,Q 1/ p Zan Qj

The conditional distribution of |LZ, (79, Q)| given (X,A) has the form

1
P(|L7,(10,Q) < = |(X,A)) = 1714 € Qs [ L7, (70, 9)| < 2}, r €R,
1
) #am € Q'3 |L7,(10,qm)| < z}, z €R,
where Q,, is the set of all permutations of (1,2,...,n) and Q] is the set of all combinations of

(1,2,...,n) of size m. Under the restricted null hypothesis Hy the distributions of the statistics
LS (19) and LS, (70,Q) are the same and the permutation distribution provides the exact critical
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values for our testing problem (the level of our testing problem is «). It is clear, that the critical
values ¢ (a, (X,A)) depend on the observations (X1, A1), (X2, Ag), ..., (Xn, An).

Now we investigate the behavior of the critical value ¢ (a, (X,A)). Toward this we derive
the limit behavior of the permutation distribution of |L,(79,@Q)| (resp. LZ (70,Q)) through
the classic theory of ranks and we show that its conditional and unconditional limit distribution
coincide.

THEOREM 2.2. Suppose that X0, X9,..., X%, Cy,Csy,...,C, are independent random vari-
ables. Let X¥, X9, ..., X% and XSHl, XSHQ, ..., X9 have arbitrary absolutely continuous distri-
bution functions Fy and Fy, respectively (the distribution functions Fy and Fy can be the same).
Let C1,Cy,...,Cyh and Cpy1,Cipso, ..., C, have absolutely continuous distribution functions
G1 and Gy, respectively (the distribution functions G1 and Go can be the same). Let

sup |wy(t) —w(t)] = op(1), (2.9)
0<t<7g

where w is a continuous nonrandom function on [0,7y] and
70
/ w?(t)(1 — Gy(t)) dF;(t) >0, i=1,2. (2.10)
0
Then for all y € R we have, as min(m,n —m) — oo,

P (LS, (70,Q) < y|(X,A)) = d(y).

PROOF. Our proof starts with the observation that the variable S,,(70,@Q) given (X,A)
can be viewed as a simple linear rank statistic, where the role of ranks is played by a random
permutation @ = (Q1,Q2,...,Qy) of (1,2, ...n) and therefore limit theorem on two-sample
rank statistics can be applied. By the result of Hajek et al [19], the conditional distribution of
Ly (70,Q) given (X, A) is asymptotically standard normal if the scores satisfy

maxi<j<n (an(j) — an)? P

S (@) —an)? 0, n—oco (2.11)

By Corollary 5.6 bellow we obtain, as n — oo,

. _ 1
maxi<j<n (an(]) - dn)2 _ % maxi<j<n (an(J) - an)2 _ OP(") _ Op(l) c>0

2i—1(an(j) — an)? 5 i (an(y) —an)? ¢

so the condition (2.11) for the asymptotic normality is fulfilled and the proof is finished. O

Notice that the assumptions of Theorem 2.2 cover both the null restricted hypothesis and
alternatives. Moreover, the limit permutation distribution is the same in both cases and does not
depend on (X1, A1), (X2,A2),. .., (Xn, Ap) and that is why also the unconditional distribution of
LS, (70, @Q) is asymptotically standard normal. Recall that under the null restricted hypothesis Hy
the distributions of L7, (79) and L7, (79,Q) coincide, so we get, as min(m,n —m) — oo,

Pg, (Lo (10) <y) — ®(y), VyeR.

Thus, the rejection region for testing Hy versus Hi,, based on the limit distribution of L7, ()
is given by
m

Zan(j)‘ > ua,

m(n —m) o,(a) P

n 1
|Lon (10)| =

where ug stands for 100(1 — §)%-quantile of the standard normal distribution N(0,1).



26 2. TESTS

REMARK 2.1. The test with the critical function (2.8) is called the permutation test and it
could be interpreted also as the bootstrap without replacement. Checking step by step through
the proof one observes that the bootstrap with replacement also works here and hence, both
variants of the bootstrap provide approximations to the desired critical values.

m(n—m) 2 (@) for the variance of the statistic

Finally, we compare the estimators V;,(70) and — -

ﬁ Sm(TQ).
LEMMA 2.1. If (2.9) and
/m w?(t)(1 — G(t)) dF(t) > 0. (2.12)
0

hold, then, under Hy, as n — oo,

‘Vm(To) — ————o0,.(a)| = op(1). (2.13)

Proor. By Corollary 5.14 below we have, as n — oo,

n? o,
mvm(m) :/0 w(t)(1 — G(t) dF(t) 4+ op(1).

Moreover, by Corollary 5.5 below we find that, as n — oo,

. L 2(a) = /O w2 () dR(E) + op(1) = /0 w2(t) (1 — G(t)) dF(t) + op(1).
Thus, the assertion (2.13) holds. O

Consequently, by the Cramer—Slutsky theorem we get that under the restricted null hypoth-
esis Hy the test statistics L,,(79) and L, (79) are asymptotically equivalent, i.e.

|L(10) — LY, (10)] = op(1), as min(m, (n —m)) — co.

3. Max-type test statistics (m unknown, one change case)

Generally, m is unknown, so the change in the distribution of the survival variables can

occur at an arbitrary time-point kK = 1,2,...,n — 1. Along the lines of a two-sample rank test
for randomly censored data, the test procedure is based on
S
Li(mo) = ﬂ, k=1,2,...,n—1, (2.14)
nVi(70)
with
k
Se(r0) = an(j), k=1,2,...,n, (2.15)
j=1
k n
1 [ 2 =1 Yi(t) D25 g Yi(t)
Vi(0) = — 2 / d dN(t 2.16
) = [k s (1) + s, (216)
k(n —k
v = Lz) (I(k <loglogn)+ I(k > n —loglogn)).
n
The terms vg, k = 1,2,...,n, ensure that Vj(79) are bounded away from 0. The weight functions
wy, = wy(X;,A4;1 < j <n) >0 fulfil, as n — oo,
sup |wy(t) —w(t)] = op ((log log n)*1>, (2.17)

0<t<ro
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where w(t) is a continuous nonrandom function on [0,79]. Under Hy the condition (2.17) is
satisfied for the commonly used weights given by (2.5), see Chapter 4.

We apply the union-intersection principle, for more details see e.g. Csorgé and Horvath [10].
Since in the one-change point testing problem the alternative is Hy = UZ;%A;C, Ag : [yn] = k,
we reject Hy if at least one of |Li(79)|, k =1,2,...,n — 1, defined in (2.14) is large. This leads
to the maximum-type (or max-type) test statistic and the rejection region

Tu(mo) = max [Ly(1o)| = en(a), (2.18)

where ¢, («) is determined in such a way that the test has the prescribed level a.
To apply this test procedure we need at least an approximation for the critical value ¢, («).
We can find this approximation applying the Bonferroni inequality

1<k<n

P< max |Ly (7o) > Cn(Oé)> = P(nUI{’Lk(TO)’ > Cn(a)})
k=1

-1

< S P(1Lk(0)] = enl@)) = P(ILk(70)| = enla)).

=1

3

=

By Theorem 2.1, the critical value ua of the standard normal distribution can be used as un

upper estimate of the critical value cn2 Eloz). The approximate critical values obtained in this way
are good enough for small values of n, but they are too conservative for n large. The other
way commonly used in the change point analysis, is to get it through the limit distribution of
the test statistic 7, (79) under the no-change null hypothesis H.

THEOREM 2.3. Suppose that XV, X9,..., X9, Cy,Cs,...,C, are independent random vari-
ables. Let XV, X9, ..., X% have an arbitrary absolutely continuous distribution function F. Let
C1, O, ..., Oy and Clypj41, Clngl42, - - - Cn have absolutely continuous distribution func-
tions Gy and Ga, respectively, G # G, for some n € (0,1]. Let (2.17) be satisfied and let

/Om W2(t)(1 — Ga(®)) dF(t) > 0, i=1,2, (2.19)
then we have, as n — 0o,
p (dl(log n) Tn(m0) <y + da(log n)) —exp{—2Y}, VyeR, (2.20)
where dy and dy are defined in (1.19).
PRrROOF. The proof can be found in Huskova and Neuhaus [23], Theorem 1.1. O

Under Hy the limit distribution of T;,(7) belongs to the so-called extreme value distributions
and the convergence rate is extremely slow (see Csorg6é and Horvath [10] and Antoch et al [6]).
Using this limit distribution for an approximation of the critical value ¢,(«) in (2.18), we get

enla) = —log(—log(v/1 — ) + da(logn)
S d (logn)

. (2.21)

REMARK 2.2. The assertion (2.20) remains true if the distribution of the censoring variables
Cy,Cy,...,C, changes more than one time, i.e. there exist 0 =np <m < -+ <1y < Ngg1 = 1
with some finite g such that C|,,p, |11, Clng; |25 - - - s Clnyiy, ) have an absolutely continuous dis-
tribution function G;y1, i =0,1,...,q.
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Permutation principle. In this subsection we show that the permutation principle for
the change-point problem can be used similarly to the two-sample problem considered in Sec-
tion 2. Assume that the parameters v and 7 are equal to each other. Thus, under the no-change
null hypothesis Hy the censoring variables C1,Cy,...,C, are i.i.d. too (so we get the null
restricted hypothesis Hp), and under the alternative H; the distributions of the survival and
the censoring variables changed at the same time point.

Set

k

Zan(j)

j=1

1
TZ(m0) = max |L{(r)| = max |

—_ 2.22
1<k<n 1<k<n \| k(n — k) o,(a) ’ (222)

where 02 (a) is defined in (2.6). The permutation distribution F,(-, (X, A)) of the test statistic
T (79) can be described as the conditional distribution given (X1, A1),...,(X,,Ay) of

k
n 1
T? - Le - _nr :
w (70:Q) = max |Li (o, Q) = mx | Jom s T ;a"@]) ’
where @ = (Q1,Q2,...,Qy) is a random permutation of (1,2,...,n), precisely it can be ex-
pressed as

1
P(T7(n) <o (X,4)) = = #{g € QuT(ma) a}, 2€R

where Q,, is the set of all permutations of (1,2,...,n). Under the restricted null hypothesis Hy
the distributions of T (19) and T)¢ (19, Q) are the same and the permutation distribution provides
the exact critical values for our testing problem. Denoting by ¢, («, (X,A)) the corresponding
100(1 — ) %-quantile, the critical function of the exact (permutation) test based on T)? (1) with
the level « is given by

1’ if TT(LT(TO) > Cn(aa (X’A )
¢2(t’ (X’A)) =€ (O, 1)7 if Tg(TO) :Cn(av (X7A))7
0, if T (19) < en(a, (X, A)),

where 9 is chosen such that
P, (T3 (10) > enla, (X, A)) [ (X, A)) + v2 P,y (T3 (70) = enle, (X, A)) [ (X,A)) = .

Practically, for large n it is not possible to calculate the value of the statistic 7.7 (79, q) for all
n! permutations ¢. So instead, we generate a random sample from all possible permutations
of size B large enough and determine the empirical critical value z,(«, (X,A)) from this sam-
ple. Such calculated critical value z,(c, (X,A)) provides a good estimate for the actual value
enla, (X, A)).

Next we derive the limit distribution of the permutation distribution of T (7).

THEOREM 2.4. Suppose that XV, X9, ... X% C1,Cs,...,C, are independent random vari-
ables. Let the survival times X9, X3, ... ’XFMJ have an absolutely continuous distribution func-

. 0 0
tion Fy and XLmJH’XLTWHQ’ .

some v € (0,1]. Let the censoring times C1,Ca,. .. s Clny| have an absolutely continuous dis-
tribution function G1 and C|yyjy1,Clny)42; - - - Cn have an absolutely continuous distribution

function Gy. Let (2.9) and (2.10) be satisfied, then we have, as n — oo,

.., X0 have an absolutely continuous distribution function Fy for

p <d1 (logn) T, (10,Q) < y + da(logn) | (X,A)) L, exp{ —2e7Y}, Vy € R, (2.23)
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and, moreover, under Hy :y =1, as n — oo,
P <d1(log n) T2 (10) <y + da(log n)) —exp{—2e7Y}, Vy €R, (2.24)

where dy and dg are defined in (1.19).

PRrROOF. We repeat the basic idea of the proof of Theorem 2.2. Realize that the random
variables 25:1 an(Qj), k =1,2,...,n, given (X,A), can be viewed as simple linear rank sta-
tistics, where the role of ranks is played by @ = (Q1,Q2,...,Q»). Consequently, the statistic
T7(70,Q) given (X,A) can be viewed as a function of a simple linear rank statistic and theorem
on rank statistics for change point problem can be used. By Corollary 5.6 below the assumptions
(5.47) and (5.48) of Theorem 5.1 below are satisfied for convergence in probability and therefore
the assertion (2.23) holds.

Moreover, under Hy, the random variables 22?21 an(j), k = 1,2,...,n, have the same distri-

bution as 2;?21 an(Q;). Thus, the distributions of T)7 (1) and T}J (79, Q) coincide and the limit
distribution does not depend on the condition (X,A), we can conclude that (2.24) holds. O

Notice that the assumptions of Theorem 2.4 cover both the restricted null hypothesis Hy :
v =mn =1 and the particular alternative H; : v = n € (0,1). Moreover, the limit conditional
distribution does not depend on the original observations (X3, A1), (X2, A2),..., (X, Ay), so
the conditional and unconditional limit distribution of T)7(7p,Q) is the same in both these
cases. This means that the critical value for the permutation test provides an approximation
for the critical value of the test based on T)?(79). The model considered in Theorem 2.4 includes
also the Koziol-Green model of the random censorship, see Chapter 1.

Moreover, the assertion (2.23) remains true also under the particular case of multiple-change
alternative Hy : 0 =y =m0 <y =m < - < Yg = Mg < Yg+1 = Ng+1 = 1 with finite ¢ (i.e.
the distribution of C;’s changes together with X;’s more than ones) as we see below.

COROLLARY 2.1. Suppose that X?, XS, ..., X% Cy,Cs,...,C, are independent random vari-
ables. There exist 0 = v9 < 7 < -+ < 7g < Yg+1 = 1 with some finite ¢ € N such that vari-

ables X(L)mz'Hl’X(L)n%HQ’ e ,X(L)mi+1J have an absolutely continuous distribution function F;iq

and Clpy 1415 Cloy |42 -+ Clnmga | have an absolutely continuous distribution function G,
i=0,1,...,q. Let (2.9) be satisfied and let

70
/ w?(t)(1 — Gi(t))dF;(t) >0, i=1,2,...,q+1, (2.25)
0
then for all y € R we have, as n — oo,
P (d1(logn) T (10,Q) < y + da(logn) | (X,A)) - exp { — 2077},

where dy(t) and da(t) are defined in (1.19).

PRrROOF. We proceed in much the same way as in the proof of Theorem 2.4. We have to check
whether the assumptions (5.47) and (5.48) of Theorem 5.1 below are satisfied. Toward this we
need a small modification of Lemma 5.4 below. If in the proof of that lemma, the functions
1 — H,,(t) and R, ,(t) of the forms (1.6) and (1.10) are replaced by

1= Hy oy (0) =1 (1 = F1(8))(1 = Gi(t) + (2 = 1) (1 = F2(8)) (1 — Ga(?))
+ (1= 7g) (1 = Foya (8)) (1 = Ggpa (1)), (2.26)
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t

Ry () = /0 (1= G1() dFi (u) + (3 — ) /O (1 - Ga(u)) dFy(u)

¢
+(1=2) [ (1= Gorlw) dFpw (2.27)
corresponding to the considered multiple-change case, then we get, as n — oo
1 < N 1
w2 lnli) =l =2 Z an(DI* = O ((max o (7)|*) = Op(1).
= —
1 n
E Z(an( - an - Za ‘ —>/ ’Yh---,’Yq(t) >0
j=1
These relamons ensure that the assumptions (5.47) and (5.48) for
O

since a, = 0 and (2.25).
convergence in probability are fulfilled and the assertion of our corollary follows
Now we investigate the convergence relation between Vi (7p) and k( k) o2 (a).

LEMMA 2.2. Let (2.17) be satisfied. Under Ho :n = v = 1, if (2.12) is fulfilled, then we

obtain, as n — 00,

2
(2.28)

L Vi(ro) - 0%(a)

W =) =op <(log log n)_l),

max

(log n)« <k<n—(logn)~

where w > 0 is arbitrary but fired.
ProoF. By Corollary 5.13 below we get, as n — oo,

k(n”iik) Vi(mo) = (/OTO w2 (t)(1 — G(t)) dF () + op ((10g 10gn)1>>
<1+O <\/1°gk \/log”_ )) (2.29)

uniformly in loglogn < k < n — loglog n and consequently, as n — oo
n2 oo, »
k(n —k) Vi(mo) = /0 w(t) (1= G(t) dF(t) + op <(log logn) )

uniformly in (logn)¥ < k < n — (logn)“.
Further, Corollary 5.5 below says that, as n — oo,

/O VW21 dR(t) = /0 P20 — Gt) dF () + op ((1oglogn) ™).

n—1

—— o2(a) =

Thus, the assertion (2.28) holds.

It can be seen that
k:(n—k:)<k:(n—k)1 1
max - =
1<k<loglogn 7”L2Vk - n2 Vg

and together with (2.29) we get, as n — oo,

k(n —k)
———= = 0Op(1).
1§kgl(%>}én)w n2Vj, p(1)

By Corollary 5.15 below we obtain, as n — oo,

n
j__ = v/1ogl
1Skgl(%)}én)w k(n — k) 15&(o)| = op(v/loglogn),
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where Sy (70) is defined in (2.15). Thus, under the hypothesis Hy : 7 = v = 1 and the assumptions
(2.12) and (2.17), the test statistics T}, (7o) and T (79) are asymptotically equivalent, i.e.

[ Tu(70) = T (r0)| = op ((loglog n)1/2), 0 — 0.

Notice that the assumption (2.17) for the weights w,,(t) is stronger than the assumption (2.9)
in Theorem 2.4.

REMARK 2.3. In the case of equal censorship G1(t) = Ga(t) for all ¢ we can apply a general
principle how to construct tests appropriate for detection of a change in distribution in our setup.
Thus, except the max-type test statistic 7.7 (7p) of the form (2.22) can be used e.g. the following
max-type test statistics derived by the maximum likelihood principle

1 ko kY ISk(no)]
T 128X (E(“ﬁ)) @) 1€10:1/2)

and the sum-type test statistics obtained by the pseudo-Bayes method
1 - (k k) % S?
s X (G0-0)  EE weva
n = \n n o2(a)

For details about various forms of the test (for complete data) and methods of construction see
e.g. the work of Antoch et al [5]. The max-type form of the test statistic with b, = 0 and
wp(t) = Y (t)/n was studied by Liu and Gombay [18] and extensions for by € (0,1/2] have been
done by Liu [28], see Section 3 in Chapter 1.

4. MOSUM type test statistics (m unknown, multiple change case)

Here we consider the random censorship model with multiple changes. Particularly, we
assume that the lifetimes and the censoring times are independent nonnegative variables. There
exist 0 = 79 < 11 < -+ < 93 < Y+1 = 1 with some finite ¢ € N such that the lifetimes
X fn% [ X fn% 4200 , X ?n%’ﬂ [ have an absolutely continuous distribution function Fjiq, ¢ =
0,1,...,¢q, and there exist also 0 =9 < 1 < --- < g, < Ygo+1 = 1 with some finite go € N
such that the censoring times CLWU J+1’C|_7”7j J+25--,C) | have an absolutely continuous
distribution function G411, j =0,1,...,qc.

We wish to test the no-change null hypothesis against the multiple-change alternative hy-

pothesis
Hy:yi=mpm==7=1 (F1(t) = Fo(t) =+ = Fgy1(t) for allt € R), (2.30)
Hy:y <7 <---<7v€(0,1)
(F1(t1) # Fa(th), Fa(te) # Fs(t2),. .., Fy(ty) # Fyy1(ty) with some ¢y, t9,... 1),

where the integer ¢ > 1 can be known or unknown.
Now, we introduce another class of test statistics for our problem (2.30). They are based on
the moving sums (MOSUM) of the statistics Sk(7p) defined in (2.15)

Ly, p(10) = Sk+0(70) — 25k(70) + Sk—p(70)

n1j+1

k+D k
=Y ani)— >, an(j), k=D+1,...,n-D-1 (2.31)
j=k+1 j=k—D+1

The test procedure also depends on D. We assume that D = D(n) satisfies, as n — oo,

D n2/ 2+ Jogn
= 0, S .-

0 2.32
n D . ( )
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where u is a positive constant such that
1 n
=3 lan(i) = anf** = Op(1). 1 — o,
j=1

for the scores defined in (2.1). It is satisfied for every finite u > 0 because of (5.14) and (5.15)
below. The term (2.32) means that D tends to infinity together with n but not too fast.

The MOSUM-type test statistic Ly p(79) given by (2.31) is convenient to use if we expect
more than one change in the distribution of the survival variables, i.e. the alternative Ho. Mainly,
it is suitable in the case of equal censorship Go(t) = G1(t) = --- = G, (¢) for all t, when the test
procedure is simple. This situation will be described in the subsection called Permutation
principle. For the sake of completeness, we deal with general event when the distribution of
the censoring variables can change. In this case the test procedure becomes rather complicated
and we develop it now.

In the following we suppose only at most one change (qc < 1) in the distribution of the cen-
soring variables given by the parameter 171 = n € (0,1]. Let us denote the point of the change
in the distribution of the censoring times by me, i.e. m. = |nn|. Assume that m. is known.
Consider the random variable

| L, p(70)| | Lk,p(70)|
T = max max @ ——— max —_— 2.33
n’D(TO) <D<k<mc—D ‘/2D0'mc (a,) me+D<k<n—D ‘/2D09nc (a) ( )
with
JR 1 &
Tine@) = - D () = am, ), e = 2= > an(j); (2.34)
7j=1 7j=1
1 & 1 &
T (@) = > (anh) —ap,)?, dy,, = > anly), (2.35)
n—me—1 n—mc .
j=me+1 j=me+1
where a,,(j) are defined in (2.1).
THEOREM 2.5. Suppose that XV, X9, ... X%, C1,Cs,...,C, are independent random vari-
ables. Let the lifetimes XV, X8, ..., XY have an absolutely continuous distribution function F.
Let C1,Ca, ..., Clpy) and Cpyiq1, Clg| 425 - - - » Cn have absolutely continuous distribution func-

tions G1 and Ga, respectively, G1 # Ga, for some n € (0,1]. Let (2.9) and (2.19) be satisfied.
Then for all y € R we have, as n — oo,

3
P (di(55) Tun(ro) <y+da( ) +log(5)) = exp{ — 267} (2.36)
D ’ D 2
with dy and dg defined in (1.19).

ProOF. Notice that the random variables Zle an(j), k =1,2,...,n, have the same distri-
bution as the variables Zle an(Qj), k =1,2,...,n, where Qm, = (Q1,Q2,...,Qn,. ) and @, =
(Qmot1,Qme+2,-- -, Qn) are random permutations of (1,2,...,m.) and (m.+ 1,m.+2,...,n),
respectively. Moreover, th