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Chapter 1

Introduction

This thesis deals with several problems either explicitly or implictly involving
the notion of submodularity. Submodularity has attained an important role in
theoretical computer science, due to its beneficial properties in the design of
optimization algorithms. On the other hand, submodularity is not an artifical
mathematical concept. It appears naturally in many applications, either as a
structural property of combinatorial problems or as a natural assumption on
certain valuation functions. In economics, submodularity has been known for
a long time, although under different names (diminishing returns, decreasing
marginal values, etc.). Recently, submodularity re-appeared in the context
of combinatorial auctions. It seems like a fortunate phenomenon that this
property imposes a structure which allows much stronger algorithmic results
than we would be able to achieve without it.

Before proceeding to formal definitions, we discuss briefly the nature of
the problems that we study here. Typically, they involve submodular func-
tions f : 2X → R defined on a finite set of items X. The natural interpre-
tation of f(S) is the value of a subset of items S. As we mentioned, the
submodularity property has an economic interpretation meaning that addi-
tional items have less and less value, as the set we possess grows. However,
the function f(S) can also have a more abstract meaning, derived from a
problem not obviously involving submodularity.

We begin by studying the problem of maximizing a single submodular
function without any constraints. This problem already captures various
applications. More importantly, our investigation of this problem reveals
structural properties of submodular functions which turn out to be very
useful in further applications. We study the basic problem of submodular
maximization in Chapter 2. We proceed to variants of submodular maxi-
mization under various constraints. The most flexible and interesting type
of constraint seems to be a matroid constraint. We study the problem of
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2 CHAPTER 1. INTRODUCTION

maximizing a submodular function subject to a matroid constraint in Chap-
ter 3. This framework captures a number of special cases of interest, which
we examine in more detail. Two specific problems that we focus on are:

• The Submodular Welfare Problem: the problem of allocating
items to multiple players, each of which values subsets of items ac-
cording to a submodular “utility function”. This problem appears as a
fundamental building block in the framework of combinatorial auctions.
We give more details in Chapters 4 and 5.

• The General Assignment Problem: the problem of assigning items
to bins of limited capacity, where both “values” and “sizes” of items
can depend on the bin where the item is placed. This problem is a
generalization of many assignment/scheduling problems. For details,
we refer the reader to Chapter 6.

We study these problems from the point of view of approximation algo-
rithms. Since all the problems mentioned above are NP-hard, we settle for a
less ambitious goal than solving these problems optimally. We seek a solution
with an α-approximation guarantee, meaning that the value of our solution
is at least α ·OPT where α < 1 is the approximation factor and OPT is the
value of the optimal solution. We are also looking for hardness results, either
information-theoretic or complexity-theoretic. Such results indicate that a
certain approximation algorithm is either downright impossible, or it would
have unlikely consequences in complexity theory. In either case, we obtain
limits on the positive results that one can aspire to achieve.

1.1 Definitions

We begin with the definition of submodularity.

Definition 1.1 (submodularity). A function f : 2X → R is submodular if
for any S, T ⊆ X,

f(S ∪ T ) + f(S ∩ T ) ≤ f(S) + f(T ).

An alternative definition is in terms of marginal values. We do not prove
the equivalence here; we refer the reader to [51].

Definition 1.2 (marginal values). The marginal value of an item j added
to a set S is defined as fS(j) = f(S ∪ {j}) − f(S). Submodularity can be
alternatively defined by fS(j) ≥ fT (j) for all S ⊆ T, j /∈ T .
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Next, we define two additional properties that we will consider.

Definition 1.3 (monotonicity). A function f : 2X → R is monotone if for
any S ⊆ T ⊆ X,

f(S) ≤ f(T ).

Definition 1.4 (symmetry). A function f : 2X → R is symmetric if for any
S ⊆ X,

f(S) = f(X \ S).

Note that a function which is both monotone and symmetric would have
to be constant. Hence, it make sense to consider monotonicity and sym-
metricity only separately.

Examples.

• An example of a monotone submodular function is a coverage-type func-
tion. For a collection of finite sets {Aj}j∈X, we define

f(S) =

∣

∣

∣

∣

∣

⋃

j∈S
Aj

∣

∣

∣

∣

∣

.

Then f(S) is monotone and submodular. Finding the maximum of
f(S) over sets of size k is the Max k-cover problem.

• An example of a symmetric submodular function is a cut-type function.
For a graph G, let δ(S) denote the number of edges with exactly one
endpoint in S. Then δ(S) is symmetric and submodular. The problem
of maximizing δ(S) is the Max Cut problem.

• An example of a submodular function that is neither symmetric nor
monotone is a directed cut-type function. For a directed graph D, let
δ(S) denote the number of arcs pointing from S to S̄. Then δ is sub-
modular. The problem of maximizing δ(S) in directed graphs is the
Max Di-Cut problem.

• Another example of a non-monotone and non-symmetric submodular
function can be obtained from any monotone submodular function f(S)
(such as a coverage-type function) by subtracting a linear function
w(S) =

∑

j∈S wj. Then g(S) = f(S) − w(S) is again submodular
but not necessarily monotone. In fact, it can be verified that every
submodular function can be written in this form.
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Another important concept that we use is that of a matroid.

Definition 1.5. A matroid M is a pair (X, I) where X is a ground set of
elements and I is a collection of subsets of X (that we call “independent”),
satisfying two axioms:

1. B ∈ I, A ⊂ B ⇒ A ∈ I.

2. A,B ∈ I, |A| < |B| ⇒ ∃x ∈ B \ A;A ∪ {x} ∈ I.
There are many examples of matroids. The matroids of particular interest

here will be two very simple special cases:

• A uniform matroid is such that independent sets are all sets of size at
most k for some k ≥ 1.

• A partition matroid is such that X is partitioned into ℓ sets X1, X2,
. . . , Xℓ with associated integers k1, k2, . . . , kℓ, and a set I ⊆ X is inde-
pendent iff |I ∩Xi| ≤ ki for each i.

Matroids give rise to another example of a submodular function, the rank
function of a matroid.

Definition 1.6. For a matroid M = (X, I), the associated rank function is
defined as

r(S) = max{|I| | I ⊆ S, I ∈ I}.
It is known that the rank function of any matroid is monotone and sub-

modular.
Next, we define the notion of a matroid polytope which is useful in applying

linear programming to optimization over matroids.

Definition 1.7. For a matroid M = (X, I), the matroid polytope P (M) is
the convex hull of {χI | I ∈ I} where each χI is the characteristic vector of
an independent set I.

The matroid polytope has a nice description in terms of linear inequalities,
discovered by Edmonds [15]:

P (M) = {x ∈ R
X
+ | ∀S ⊆ X;

∑

j∈S
xj ≤ r(S)}

where r(S) is the rank function of M. The number of inequalities here is
exponential, but the submodular structure of r(S) allows us to implement a
separation oracle and hence optimize over P (M) in polynomial time. (See
[51] for more details.)
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Representation of submodular functions. Our goal here is to study
problems whose input involves one or more submodular functions. This raises
the issue of how such a function should be represented. If we were to list
the values for all possible sets, this would occupy space exponentially large
in |X|. We would prefer to avoid this, and there seem to be two approaches
to get around this obstacle.

1. Compact representation. In some cases, a submodular function can
be represented by a structure of polynomial size - e.g., by a collection
of sets in the case of a coverage-type function, or by a graph in the
case of a cut-type function. In such cases, it is natural to specify the
function by giving the respective combinatorial structure on the input
explicitly. However, an efficient encoding is not possible for a general
submodular function, since it is known that the number of submodular
functions is doubly exponential in |X|, even if the values are integers
in {0, . . . , |X|}.

2. Oracle access. The most general access to a function is through an
oracle, or “black box”, which answers queries about the function.

• Value oracle. The most basic query is: What is the value of
f(S)? An oracle answering such queries is called a value oracle.

• Demand oracle. Sometimes, a more powerful oracle is consid-
ered, which can answer queries of the following type: Given an
assignment of prices to items p : X → R, what is maxS⊆X(f(S)−
∑

j∈S pj)? Such an oracle is called a demand oracle.

We consider algorithms that run in polynomial time. In the case of oracle
access, this includes the requirement that the number of queries be polyno-
mially bounded. We will see that this already imposes limits on how good
an approximation we can obtain.

In oracle models, we consider two types of algorithms.

1. Nonadaptive algorithms. These algorithms are allowed to issue a
polynomial number of queries and then the answers can be processed by
a polynomial-time computation. Randomization is allowed but queries
must not depend on the answers of previous queries.

2. Adaptive algorithms. These algorithms are allowed to issue arbi-
trary queries in the process of a polynomial-time computation. Unless
otherwise noted, this is the default choice for our algorithms.



6 CHAPTER 1. INTRODUCTION

1.2 The problems and our results

Here we summarize the problems studied in this thesis, and we describe our
results in the context of previous work.

1.2.1 Nonnegative submodular maximization

Problem: Given a submodular function f : 2X → R+ with value-oracle
access, maximize f(S) over all subsets S ⊆ X.

This is perhaps the most basic maximization problem involving submodu-
lar functions. We remark that the analogous submodular minimization prob-
lem can be solved exactly in polynomial time [53, 21]. Unlike submodular
minimization, it is known that submodular maximization is NP-hard; for in-
stance, the NP-hard Max Cut problem is a special case [33]. Hence, we seek
to design approximation algorithms for this problem.

We consider only the value oracle model here; a demand oracle would
make the problem trivial. Our only additional assumption about the func-
tion is nonnegativity. Note that any function on a finite set can be made
nonnegative by adding a sufficiently large positive constant. This does not
change the optimal solution; however, it changes the problem in terms of
approximation guarantees. By a shifting argument, verifying whether the
maximum of a submodular function is greater than zero or not is NP-hard.
Thus, no approximation algorithm can be found for the maximization prob-
lem without any restrictions, unless P=NP.

Previous work. The maximization problem for general submodular func-
tions has been studied in the operations research community. Many efforts
have been focused on designing heuristics for this problem, including data-
correcting search methods [27, 28, 34], accelatered greedy algorithms [48],
and polyhedral algorithms [40]. Prior to our work, to the best of our knowl-
edge, no guaranteed approximation factor was known for the general problem
of maximizing non-monotone submodular functions.

A renowned special case is the Max Cut problem, for which a greedy 1
2
-

approximation was the best known algorithm for a long time. A breakthrough
came in 1995 when this was improved to a 0.878-approximation by Goemans
and Williamson [26]. Their approach introduced semidefinite programming
to the computer science community and led to advances on many other op-
timization problems. For the Max Di-Cut problem, a 0.874-approximation
algorithm was designed in [16, 39], also using semidefinite programming. The
approximation factor for Max Cut has been proved optimal, assuming the



1.2. THE PROBLEMS AND OUR RESULTS 7

Unique Games Conjecture [35, 43]. It should be noted that the best known
combinatorial algorithms for Max Cut and Max Di-Cut achieve only a 1

2
-

approximation, which is trivial for Max Cut but not for Max Di-Cut [31].
All these algorithms allow nonnegative edge weights. With possibly negative
edge weights, the Max Cut problem becomes much more difficult and no
constant factor approximation is likely to exist [37].

A number of other special cases have been investigated as well, such as
Max Cut in hypergraphs and Max SAT with no mixed clauses. For all these
special cases, there are approximation algorithms significantly beating the
factor of 1

2
. Tight results are known for Max Cut in k-uniform hypergraphs for

any fixed k ≥ 4 [32, 29]. Here, the optimal approximation factor (1− 2−k+1)
is achieved by a random solution (and the same result holds for Max (k−1)-
SAT with no mixed clauses [29, 30]). The lowest approximation factor (7

8
) is

achieved for k = 4; for k < 4, better than random solutions can be found by
semidefinite programming.

Our results. We design several constant factor approximation algorithms
for this problem. First, we show that simply choosing a random set gives
an expected value of at least 1

4
OPT . In the special case of symmetric sub-

modular functions, we show that a random set already gives at least 1
2
OPT .

In the general case, we design improved algorithms using local search: a de-
terministic 1

3
-approximation, and a randomized 2

5
-approximation. We also

design a nonadaptive randomized 1
3
-approximation. Perhaps the most note-

worthy of our algorithms is the randomized 2
5
-approximation. It proceeds by

searching for a local optimum of a function Φ(S) derived from f(S) by tak-
ing Φ(S) = E[f(R)] for a random set R sampled from a certain distribution
based on S. We call this a smooth local search algorithm.

In the symmetric case, a 1
2
-approximation can be also achieved by a

deterministic algorithm. The threshold of 1
2

seems significant: If the 1
2
-

approximation should be improved, it would have to be either with the help
of semidefinite programming, or using an entirely new method (which would
also be a new way to beat 1

2
for Max Cut). However, we prove that im-

proving 1
2

is impossible in the value oracle model. We prove that a (1
2

+ ǫ)-
approximation for any fixed ǫ > 0 would require exponentially many value
queries, regardless of our computational power. This result is independent
of the P 6= NP hypothesis.

We also obtain NP-hardness results in the case where the submodular
function is represented explicitly on the input, as a combination of elemen-
tary submodular functions of constant size. (All special cases such as Max
Cut fall in this category.) We prove that a (3

4
+ ǫ)-algorithm for maximiz-
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ing compactly represented submodular functions (or a (5
6

+ ǫ)-algorithm for
symmetric submodular functions) for any fixed ǫ > 0 would imply P = NP .
This shows that although 1

2
might not be the optimal answer for compactly

represented functions, the problem is still more difficult than Max Cut or
other special variants where approximations better than 3

4
are known.

Summary. The following table summarizes our results.

Model RS NA DET RAND VQ-hard NP-hard

Symmetric 1/2 1/2 1/2 1/2 1/2 + ǫ 5/6 + ǫ
General 1/4 1/3 1/3 2/5 1/2 + ǫ 3/4 + ǫ

The types of algorithms considered here are: RS = random set, NA = non-
adaptive (possibly randomized), DET = deterministic adaptive, and RAND
= randomized adaptive. The hardness results are either in the value query
model (VQ-hard) or in the compact representation model (NP-hard).

We present these results in Chapter 2. They also appeared in [23], a joint
work with Uriel Feige and Vahab Mirrokni.

1.2.2 Submodular maximization under a matroid con-
straint

Problem: Given a monotone submodular function f : 2X → R+ and a
matroid on M = (X, I), maximize f(S) over all independent sets S ∈ I.

Again, we work in the value oracle model here. We also assume that we
have a membership oracle forM available. This problem has a long history,
starting with the seminal paper of Nemhauser, Wolsey and Fisher in 1978
[45]. Even the very special case where f is a coverage-type function andM is
a uniform matroid (where independent sets are exactly those of size at most
k) is an interesting problem, the Max k-cover problem. A natural algorithm
for this problem is the following.

Greedy Algorithm.
Set S := ∅.
While (S is not a maximal independent set)
{ Compute fS(j) = f(S ∪ {j})− f(S) for all j /∈ S

such that S ∪ {j} is still independent.
Out of these elements, pick one maximizing fS(j) and include it in S. }

Output S.
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Note that when f is a linear function (f(S) =
∑

j∈S wj), this algorithm
is just the greedy algorithm for finding a maximum-weight independent set
in a matroid, which returns the optimal solution. However, this is not the
case for general submodular functions.

Previous work. The Greedy Algorithm provides a (1−1/e)-approximation 1

for the Max k-cover problem and more generally for submodular maximiza-
tion subject to |S| ≤ k [45]. It was known already by Nemhauser and Wolsey
that the factor of 1−1/e is optimal in the value oracle model, if only a polyno-
mial number of queries is allowed [47]. Moreover, it was proved by Feige [17]
that this approximation factor is best possible even for Max k-cover unless
P = NP .

For an arbitrary matroid constraint, Nemhauser, Wolsey and Fisher proved
that the Greedy Algorithm provides a 1

2
-approximation. It is easy to observe

that this algorithm does not yield a factor better than 1
2
, and it was not

known for a long time whether a better approximation than 1
2

is possible for
the general problem. Even for a special case of this problem, the Submodular
Welfare problem that we discuss later, only a 1

2
-approximation was known in

general (this result was rediscovered in the context of combinatorial auctions
[38]). In certain special cases, e.g. when the objective function is of coverage
type and the constraint is given by a partition matroid (Maximum Coverage
with Group Budget Constraints [5]), a (1− 1/e)-approximation has been de-
veloped [2]. It has been an open question whether (1 − 1/e)-approximation
might be possible in general.

Our result. There is a (1−1/e)-approximation for the problem max{f(S) :
S ∈ I}, where f(S) is any monotone submodular function given by a value
oracle, and M = (X, I) is an arbitrary matroid given by a membership
oracle.

An intermediate step towards this goal was our work with Calinescu,
Chekuri and Pál [4] where the same result is proved for a subclass of sub-
modular functions that we call weighted rank sums. We define the class of
weighted rank sums here: Let (X,X ) be a matroid and {wj}j∈X a collection
of weights. We define a weighted rank function,

rw(S) = max{
∑

j∈I
wj : I ⊆ S & I ∈ X}.

1The value of 1− 1/e is roughly 0.632, i.e. larger than 1/2. This constant will appear
frequently in this thesis.
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This is known to be a monotone submodular function. Our class of weighted
rank sums is the class of functions representable as f(S) =

∑

i gi(S) where
each gi is a weighted rank function. To be more precise, our algorithm re-
quires that the number of weighted rank functions in the sum is polynomially
bounded, and we are given a value oracle for each gi(S).

It is easy to see that the class of weighted rank sums is closed under taking
positive linear combinations, i.e. it forms a cone. It is strictly contained in
the cone of all monotone submodular functions, i.e. it is known that there
exist monotone submodular functions that cannot be written as a weighted
rank sum. Yet, the class of weighted rank sums seems to be a rather large
subclass of submodular functions, capturing some interesting special cases
such as coverage-type functions.

The structure of a weighted rank function allows us to write a linear
program which can be solved in polynomial time. The fractional solution
can then be rounded using the pipage rounding method, introduced by Ageev
and Sviridenko [2]. This method, originally developed in a slightly different
context, turns out to be very natural for rounding fractional solutions inside
the matroid polytope (which was observed by Gruia Calinescu, Chandra
Chekuri and Martin Pál [4]). However, for a general submodular function,
it is unclear how to write a helpful linear program. We have explored two
possibilities that we discuss later, but both linear programs turn out to be
NP-hard to solve.

The algorithm which works for all monotone submodular functions is a
“smooth greedy search” method which finds a good fractional solution with-
out solving a linear program. It proceeds by building up a fractional solution
by small modifications, based on marginal values of items with respect to
this fractional solution. The last part of the algorithm uses again pipage
rounding in order to convert the fractional solution into an integral one.

We present these results in Chapter 3.

1.2.3 The Submodular Welfare Problem

The following problem has appeared in the context of combinatorial auctions.

Problem: Given n players with utility functions wi : 2X → R+ which are
assumed to be monotone and submodular, find a partition X = S1∪S2∪. . .∪Sn
in order to maximize

∑n
i=1wi(Si).

This is an example of a combinatorial allocation problem, where m items
are to be allocated to n players with different interests in different combina-
tions of items, in order to maximize their total happiness. As we discussed
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before, we have to clarify the issue of accessing the players’ utility functions.
Unless the utility functions have a special form (such as coverage-type) which
allows us to encode them efficiently, we have to rely on oracle access. We
can consider either the value oracle, or the more powerful demand oracle (de-
fined in Section 1.1). Whether we want to allow the use of a demand oracle
depends on a particular setting, or on our point of view. From an economic
standpoint, it seems natural to assume that given an assignment of prices,
a player can decide which set of items is the most valuable for her. On the
other hand, from a computational point of view, this decision problem is NP-
hard for some very natural submodular utility functions (e.g. coverage-type
functions). Thus we can either assume that players have sufficient knowledge
of their utility functions (or the utility functions are simple enough) so that
they are able to answer demand queries, or we can restrict ourselves to the
value oracle model. In either case, the problem is non-trivial - it is NP-hard
to (1−ǫ)-approximate the Submodular Welfare Problem for some fixed ǫ > 0,
even in the demand oracle model [19].

We remark that in the context of combinatorial auctions, the utility func-
tions are actually unknown and players are not assumed to be necessarily
willing to reveal their true valuations. This leads to the design of incentive-
compatible mechanisms, where players are not only queried about their val-
uations but also motivated to answer truthfully. We do not deal with this
issue here and assume instead that players are willing to cooperate and give
true answers to our queries.

Previous work. It is a result of folklore that without any assumptions on
the utility functions, the problem is at least as hard as Set Packing (which
corresponds to “single-minded bidders” who are interested in exactly one
set each). Hence, no reasonable approximation can be expected in general.
Research has focused on classes of utility function that allow better posi-
tive results, in particular submodular utility functions. Lehmann, Lehmann
and Nisan [38] provide an approximation ratio of 1

2
for the Submodular Wel-

fare Problem, using a simple greedy algorithm using only value queries. A
randomized version of this algorithm is shown in [14] to give a somewhat
improved approximation ratio of n

2n−1
. It is shown in [36] that if only value

queries are allowed, then it is NP-hard to approximate Submodular Wel-
fare within a ratio strictly better than 1 − 1/e. It was unknown whether a
(1− 1/e)-approximation can be actually found with value queries.

Several earlier works [13, 14, 18] considered the following linear program-
ming relaxation of the problem, usually referred to as the Configuration LP.
Here, xi,S is intended to be an indicator variable that specifies whether player
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i gets set S.

Configuration LP: Maximize
∑

i,S xi,Swi(S) subject to:

• Item constraints:
∑

i,S|j∈S xi,S ≤ 1 for every item j.

• Player constraints:
∑

S xi,S ≤ 1 for every player i.

• Nonnegativity constraints: xi,S ≥ 0.

This linear program has an exponential number of variables but only a
polynomial number of constraints. Using the fact that the separation oracle
for the dual is exactly the demand oracle, this LP can be solved optimally in
the demand oracle model. We refer the reader to [44, 13] for more details.

The integrality gap of this LP is known (up to low order terms) for classes
of utility functions that are more general than submodular. For subadditive
utility functions 2, it is 1

2
[18], and for fractionally subadditive utility func-

tions 3 it is 1−1/e [14]. A 1
2
-approximation algorithm for subadditive utilities

and a (1 − 1/e)-approximation algorithm for fractionally subadditive func-
tions were given in [18, 14]. For submodular utility functions, which are
strictly contained in the classes we just mentioned, the positive results still
apply and hence a (1− 1/e)-approximation is possible in the demand oracle
model. Still, it was not known whether this approximation factor can be
improved for submodular utilities or whether the Configuration LP actually
has an integrality gap of 1− 1/e in this case. An example of integrality gap
7
8

was given in [14].

It is proved in [19] that even in the demand oracle problem, the prob-
lem is NP-hard to approximate within (1 − ǫ) for some fixed ǫ > 0. This
can be shown in several ways, using utility functions sufficiently simple so
that players can answer demand queries efficiently. In one possible reduc-
tion, each player is interested only in a constant number of items, hence any
“reasonable” kind of query can be answered in constant time, and yet the
problem is non-trivial. This shows that the difficulty of the problem can lie
in the coordination of the wishes of different players, rather than a compli-
cated structure of the individual utility functions, and this difficulty cannot
be circumvented by any reasonable oracle model.

2f is subadditive if f(A ∪B) ≤ f(A) + f(B) for any A, B.
3f is fractionally subadditive if f(S) ≤∑i αif(Ai) for any positive linear combination

such that
∑

i:j∈Ai
αi ≥ 1 for each j ∈ S.
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Connection to maximization under a matroid constraint. The Sub-
modular Welfare Problem is in fact a special case of submodular maximiza-
tion under a matroid constraint. The reduction is very natural and we briefly
describe it here.

Let the set of players be P , the set of items Q, and for each i ∈ P , let
the respective utility function be wi : 2Q → R+. We define a new ground
set X = P × Q, with a function f : 2X → R+ defined as follows: Every set
S ⊆ X can be written uniquely as S =

⋃

i∈P ({i} × Si). Then let

f(S) =
∑

i∈P
wi(Si).

The interpretation of P × Q is that we make |P | copies of each item, one
for each player. The function f(S) represents the total utility of all players
after allocating the items in S to the respective players (assuming that we
actually have multiple copies of each item for different players).

However, in reality we can only allocate one copy of each item. Therefore,
let us define a partition matroidM = (X, I) as follows:

I = {S ⊆ X | ∀j; |S ∩ (P × {j})| ≤ 1}.

Then, it is easy to see that the Submodular Welfare Problem is equivalent
to the problem maxS∈I f(S).

This has immediate corollaries (recall Section 1.2.2). For example, the 1
2
-

approximation developed by Lehman, Lehman and Nisan [38] can be actually
seen as a special case of the 1

2
-approximation by Nemhauser, Wolsey and

Fisher [46]. (It is also mentioned in [46] that the greedy algorithm in case
of a partition matroid can be implemented by processing the parts in an
arbitrary order, and for each part, choosing the best element greedily. This
corresponds to the on-line implementation of the greedy algorithm in [38].)

The question of improvement over 1/2 seems to be intimately related
to the same question for submodular maximization subject to a matroid
constraint. In fact, it was the special case of Submodular Welfare which led
us to the idea of ”smooth greedy search” that we mentioned in Section 1.2.2.

Our results.
The Submodular Welfare Problem can be (1 − 1/e)-approximated in the

value oracle model.
This is a corollary of our work on matroid constraints, since Submodular

Welfare is a special case of this framework (see above). Our algorithm is
randomized and succeeds with high probability. It is simpler than the gen-
eral algorithm for submodular maximization subject to a matroid constraint,
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because the relevant matroid here is just a partition matroid and hence we
can replace the pipage rounding technique by straightforward randomized
rounding.

Due to [36], (1− 1/e)-approximation is optimal in the value oracle model
unless P = NP . We provide an even stronger argument separating the
approximation results achievable in the two oracle models.

For any fixed ǫ > 0, a (1− 1/e+ ǫ)-approximation for Submodular Wel-
fare in the value oracle model would require an exponential number of value
queries, regardless of our computational power.

This result (see Section 4.4) is very similar in spirit to our value query
complexity result for submodular maximization that we mentioned at the
end of Section 1.2.1, and also to the query complexity result for a cardi-
nality constraint proved by Nemhauser and Wolsey [47]. Let us discuss our
construction briefly here. It involves two instances whose optima differ by
a factor arbitrarily close to 1 − 1/e, but the two instances cannot be dis-
tinguished by a subexponential number of value queries. In addition, the
result holds even when all players have the same utility function. We also
show that in this case, we can achieve a (1− 1/e)-approximation easily: by
allocating each item independently to a random player. Thus, value queries
are entirely fruitless when all players have the same the utility function. We
present these results in Chapter 4.

On the other hand, we show the following in the demand oracle model.
There is some absolute constant ǫ > 0 such that the Submodular Welfare

Problem can be (1− 1/e+ ǫ)-approximated in the demand oracle model.
Our algorithm is randomized and the approximation guarantee is in ex-

pectation. The value of ǫ that we obtain is small, roughly 10−5. The signifi-
cance of this result is that 1− 1/e is not the optimal answer, and hence it is
likely that further improvements are possible. Our algorithm uses the same
Configuration LP that was used before; only our rounding procedure is more
efficient. (In fact, it is significantly more complicated than the one needed
to obtain 1 − 1/e.) Our rounding is oblivious in the sense that its only in-
put is a fractional LP solution, which is rounded randomly, without knowing
anything about the actual utility functions of the players. We present this
result in Chapter 5. It also appeared in [19], a joint work with Uriel Feige.

Another way to look at this result is that the integrality gap of the
Configuration LP with submodular functions cannot be arbitrarily close to
1−1/e ≃ 0.632. We do not determine the worst case integrality gap; we only
improve the example of 7/8 from [14] to an example with a gap of roughly
0.782. It remains an interesting question to investigate, what is the worst
case integrality gap of this LP and whether this LP can achieve an optimal
approximation result for this problem. The range of possible answers for the
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possible approximation factor is still between (1 − 1/e + ǫ, 1 − ǫ′) for some
very small ǫ, ǫ′ > 0.

1.2.4 The Generalized Assignment Problem

Problem: An instance of the Generalized Assignment Problem (GAP) con-
sists of n bins and m items. Each item j has two nonnegative numbers for
each bin i; a value vij and a size sij. We seek an assignment of items to bins
such that the total size of items in each bin is at most 1, and the total value
of all packed items is maximized.

This problem has been considered in [52, 7] as a common framework for
a number of scheduling/assignment problems. Note that GAP can be also
seen as a combinatorial allocation problem (where bins correspond to players)
with utility functions

wi(S) = max{
∑

j∈T
vij : T ⊆ S,

∑

j∈T
sij ≤ 1}.

A 1
2
-approximation for this problem was announced in [7], by adapting an

LP-based 1
2
-approximation for the minimization version of a similar packing

problem [52]. In [22], this was improved to a (1− 1/e)-approximation using
an exponential large linear program very similar to the Configuration LP we
discussed in Section 1.2.3. It is known that GAP is NP-hard to approximate
within 1− ǫ for some small ǫ > 0 [7].

The linear program in [22] is shown as LP1 in Fig 1.1. In LP1, Fi de-
notes the collection of all feasible assignments for bin i, i.e. sets satisfying
∑

j∈S sij ≤ 1. The variable xi,S represents bin i receiving a set of items S.
Although this is an LP of exponential size, it is shown in [22] that it can be
solved to an arbitrary precision in polynomial time. (The reason being that
the separation oracle for the dual boils down to a knapsack problem, which
can be solved almost precisely.) Then the fractional solution can be rounded
to an integral one to obtain a (1− 1/e) approximation.

The authors in [22] also consider a more general problem, a “Separa-
ble Assignment Problem” (SAP). In SAP, each bin has an arbitrary down-
monotone collection of “feasible sets” which can be legally packed in it. For
this problem, a (1 − 1/e)-approximation is given in [22], assuming that we
have an FPTAS for the single-bin packing subproblem (which is the knap-
sack problem in the case of GAP). Also, it is shown in [22] that the 1− 1/e
factor is optimal for SAP, even when the single-bin packing subproblem can
be solved exactly. However, it was not known whether 1−1/e is the optimal
approximation factor for GAP.
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LP1 : max
∑

j,S∈Fi

yi,Svi(S);

∀j;
∑

S∈Fi

yi,S ≤ 1,

∀i;
∑

i,S∈Fi:j∈S
yi,S ≤ 1,

∀j, S; yi,S ≥ 0.

LP2 : max
∑

i,S∈Fi,j∈S
vijxi,j,S;

∀i, j, S; xi,j,S ≤ yi,S,

∀j; ~xj ∈ P (Xj),
~y ∈ P (M).

Figure 1.1: Different LP relaxations for GAP.

Chandra Chekuri later observed that this (1 − 1/e)-approximation al-
gorithm can be interpreted as a special case of submodular maximization
subject to a matroid constraint [4]. A (1

2
− o(1))-approximation can also

be obtained using the greedy algorithm from [46]. (The greedy selection
of an optimal element corresponds to a knapsack problem, which we can
solve almost optimally.) The reduction is not as straightforward as in the
case of Submodular Welfare, and in fact it blows up the size of the problem
exponentially, so one has to be careful when using this reduction.

Reduction to submodular maximization under a matroid constraint.
Consider a GAP instance with n bins and m items of values vij, and let Fi
denote the collection of sets feasible for bin i. We define X = {(i, S) | 1 ≤
i ≤ n, S ∈ Fi} and a submodular function f : 2X → R

+,

f(S) =
∑

j

max
i
{vij : ∃(i, S) ∈ S, j ∈ S}.

We maximize this function subject to a matroid constraintM, where S ∈ M
iff S contains at most one pair (i, S) for each i. Such a set S corresponds
to an assignment of set S to bin i for each (i, S) ∈ S. This is equivalent to
GAP: although the bins can be assigned overlapping sets in this formulation,
we only count the value of the most valuable assignment for each item. We
can write f(S) =

∑

j gj(S) where

gj(S) = max
i
{vij : ∃(i, S) ∈ S, j ∈ S}

is a weighted rank function of a matroid Xj on X. In the matroid Xj,
an element (i, S) ∈ X has weight vij if j ∈ S and 0 otherwise. A set is
independent in Xj iff its cardinality is at most 1. Therefore the problem falls
under the umbrella of the framework we described in Section 1.2.2.
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Let us write explicitly the LP arising from interpreting GAP as a submod-
ular maximization problem. We have variables yi,S for each i and S ∈ Fi. In
addition, for each matroid Xj , we define copies of these variables xi,j,S. The
resulting linear program is given as LP2 in Fig 1.1. LP2 has exponentially
many variables and exponentially many constraints. However, observe that a
feasible solution yi,S for LP1 is also feasible for LP2, when we set xi,j,S = yi,S
for j ∈ S and 0 otherwise. This is because the constraint

∑

i,S:j∈S yi,S ≤ 1 in
LP1 implies xj ∈ P (Xj), and the constraint

∑

S yi,S ≤ 1 implies ~y ∈ P (M).
Therefore, we can solve LP1 using the techniques of [22] and then convert
the result into a feasible solution of LP2. Finally, we can apply the pipage
rounding technique to obtain a (1− 1/e)-approximation.

This is simply a reformulation of the algorithm from [22]. However, the
flexibility of the matroid constraint allows for more complicated conditions
than each bin choosing at most one set. For example, one can handle a
variant of GAP where we are allowed to use only k bins for some k given
on the input. More generally, we can have a laminar matroid constraint
on the bins that we are allowed to use. Again, it is possible to achieve a
(1− 1/e)-approximation for this problem. For more details, see [4].

Our results. We return to the original LP1, as considered in [22]. Similarly
to the case of the Configuration LP, it was not known whether the integrality
gap of this LP is indeed 1− 1/e. We prove in Chapter 6 that this is not the
case.

There is an absolute constant ǫ > 0 such that any fractional solution of
LP1 can be rounded to an integral solution while losing at most a factor of
(1−1/e+ǫ). Thus, the Generalized Assignment Problem can be (1−1/e+ǫ)-
approximated in polynomial time.

In this case, there is no issue of oracle models, since the item sizes and
values can be specified explicitly on the input. Again, we use the technique of
[22] to solve LP1 (to an arbitrary precision). We achieve our improvement by
applying a more sophisticated rounding technique to the fractional solution.
The value of ǫ that we achieve here is even much smaller than in the case
of Submodular Welfare, roughly on the order of 10−120. It is reasonable to
expect that it is possible to achieve an improvement more significant that
this. The worst integrality gap that we found for LP1 is 4

5
.

This result also appeared in [19], a joint work with Uriel Feige.
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1.3 Concluding remarks

In this thesis, we present a number of approximation and hardness results
on problems involving submodular functions. It seems that the factor of
1− 1/e plays a very special role here, reappearing in almost every problem
that we study. In the context of submodular maximization, 1− 1/e is often
seen as a natural threshold beyond which any improvement is impossible,
and this intuition harks back to the remarkable inapproximability results of
Feige [17]. We show that although this intuition often proves to be true, in
two particular cases of interest (Submodular Welfare in the demand oracle
model and the Generalized Assignment problems), the threshold of 1− 1/e
can be in fact exceeded. It is intriguing that we were able to achieve only
such a miniscule improvement over 1 − 1/e, while on the other hand the
known inapproximability results are very close to 1. We have no conjecture
about what the optimal approximation factors for these two problems might
be.



Chapter 2

Nonnegative Submodular
Maximization

Problem: Given a submodular function f : 2X → R+ with value-oracle
access, maximize f(S) over all subsets S ⊆ X.

We develop a number of approximation algorithms for this problem. First
we consider nonadaptive algorithms, as defined in Section 1.1.

2.1 Nonadaptive algorithms

Recall that Max Cut and Max Di-Cut are special cases of submodular maxi-
mization. It is known that simply choosing a random cut is a good choice for
Max Cut, achieving an approximation factor of 1/2. Prior to the semidefinite
programming approach of Goemans and Williamson, this was the best known
approximation algorithm for Max Cut. Similarly, a random cut achieves a
1
4
-approximation for Max Di-Cut. We show that submodularity is the un-

derlying reason for these factors, by presenting the same results in the case
of general submodular functions.

2.1.1 A random set

The following “algorithm” does not use any queries at all. It simply returns
a random set. We show that this is already a reasonable approximation
algorithm for any nonnegative submodular function.

The Random Set Algorithm: RS.

• Return R = X(1/2), a random subset of X where each element appears
independently with probability 1/2.

19



20 CHAPTER 2. NONNEGATIVE SUBMODULAR MAXIMIZATION

Theorem 2.1. Let f : 2X → R+ be a submodular function, OPT = maxS⊆X f(S)
and let R denote a uniformly random subset R = X(1/2). Then E[f(R)] ≥
1
4
OPT. In addition, if f is symmetric (f(S) = f(X \ S) for every S ⊆ X),

then E[f(R)] ≥ 1
2
OPT.

Before proving this result, we show a useful probabilistic property of sub-
modular functions (extending the considerations of [18, 19]). This property
will be essential in the analysis of our more involved randomized algorithms
as well.

Lemma 2.2. Let g : 2X → R be submodular. Denote by A(p) a random
subset of A where each element appears with probability p. Then

E[g(A(p))] ≥ (1− p) g(∅) + p g(A).

Proof. By induction on the size of A: For A = ∅, the lemma is trivial. So
assume A = A′ ∪ {x}, x /∈ A′. We can also write A′(p) = A(p) ∩ A′; then

E[g(A(p))] = E[g(A′(p))] + E[g(A(p))− g(A(p) ∩ A′)]

≥ E[g(A′(p))] + E[g(A′ ∪ A(p))− g(A′)]

using submodularity on A′ and A(p). The set A′ ∪ A(p) is either equal to A
(when x ∈ A(p), which happens with probability p) or otherwise it’s equal
to A′. Therefore we get

E[g(A(p))] ≥ E[g(A′(p)] + p(g(A)− g(A′))

and using the inductive hypothesis, E[g(A′(p))] ≥ (1− p) g(∅) + p g(A′), we
get the statement of the lemma.

By a double application of Lemma 2.2, we obtain the following.

Lemma 2.3. Let f : 2X → R be submodular, A,B ⊆ X two (not necessarily
disjoint) sets and A(p), B(q) their independently sampled subsets, where each
element of A appears in A(p) with probability p and each element of B appears
in B(q) with probability q. Then

E[f(A(p)∪B(q))] ≥ (1−p)(1−q) f(∅)+p(1−q) f(A)+(1−p)q f(B)+pq f(A∪B).

Proof. Condition on A(p) = A′ and define g(T ) = f(A′ ∪ T ). This is a sub-
modular function as well and Lemma 2.2 implies E[g(B(q))] ≥ (1−q) f(A′)+
q f(A′ ∪ B). Also, E[g(B(q))] = E[f(A(p) ∪ B(q)) | A(p) = A′], and by
unconditioning: E[f(A(p)∪B(q))] ≥ E[(1− q) f(A(p))+ q f(A(p)∪B)]. Fi-
nally, we apply Lemma 2.2 once again: E[f(A(p))] ≥ (1− p) f(∅) + p f(A),
and by applying the same to the submodular function h(S) = f(S ∪ B),
E[f(A(p) ∪ B)] ≥ (1− p) f(B) + p f(A ∪B). This implies the claim.
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This lemma gives immediately the performance of Algorithm RS.

Proof. Denote the optimal set by S and its complement by S̄. We can write
R = S(1/2) ∪ S̄(1/2). Using Lemma 2.3, we get

E[f(R)] ≥ 1

4
f(∅) +

1

4
f(S) +

1

4
f(S̄) +

1

4
f(X).

Every term is nonnegative and f(S) = OPT , so we get E[f(R)] ≥ 1
4
OPT. In

addition, if f is symmetric, we also have f(S̄) = OPT and then E[f(R)] ≥
1
2
OPT.

A set of value very close to the expectation can be found, if we sample
independently a polynomial number of random sets and return the maximum.

We will see that for symmetric functions, the factor of 1/2 cannot be
improved by any (even adaptive) algorithm, using a polynomial number of
value queries. (See Section 2.3.) So the only remaining gap is in the general
case, where a random set gives only 1

4
-approximation. We will also show that

the factor of 1/4 is optimal for nonadaptive algorithms, assuming that the
algorithm returns one of the queried sets. However, it is possible to design a
1
3
-approximation algorithm which queries a polynomial number of sets non-

adaptively and then returns a possibly different set after a polynomial-time
computation. We present this algorithm next.

2.1.2 A nonadaptive randomized algorithm

The intuition behind the algorithm comes from the Max Di-Cut problem:
When does a random cut achieve only 1/4 of the optimum? This is if and
only if the optimum contains all the directed edges of the graph, i.e. the
vertices can be partitioned into V = A ∪ B so that all edges of the graph
are directed from A to B. However, in this case it’s easy to find the optimal
solution, by a local test on the in-degree and out-degree of each vertex. In
the language of submodular function maximization, this means that elements
can be easily partitioned into those whose inclusion in S always increases the
value of f(S), and those which always decrease f(S). Our generalization of
this local test is the following.

Definition 2.4. Let R = X(1/2) denote a uniformly random subset of X.
For each element x, define

ω(x) = E[f(R ∪ {x})− f(R \ {x})].
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Note that these values can be estimated by random sampling, up to an
error polynomially small relative to maxR,x |f(R∪{x})−f(R\{x})| ≤ OPT .
This is sufficient for our purposes; in the following, we assume that we have
estimates ω̃(x) such that |ω(x)− ω̃(x)| ≤ OPT/n2.

The Non-Adaptive Algorithm: NA.

• Use random sampling to find ω̃(x) for each x ∈ X.

• Independently, sample a random set R = X(1/2).

• With prob. 8/9, return R.

• With prob. 1/9, return

A = {x ∈ X : ω̃(x) > 0}.

Theorem 2.5. For any nonnegative submodular function, Algorithm NA
achieves expected value at least (1/3− o(1)) OPT .

Proof. Let A = {x ∈ X : ω̃(x) > 0} and B = X \ A = {x ∈ X : ω̃(x) ≤ 0}.
Therefore we have ω(x) ≥ −OPT/n2 for any x ∈ A and ω(x) ≤ OPT/n2

for any x ∈ B. We shall keep in mind that (A,B) is a partition of all the
elements, and so we have (A ∩ T ) ∪ (B ∩ T ) = T for any set T , etc.

Denote by C the optimal set, f(C) = OPT . Let f(A) = α, f(B∩C) = β
and f(B ∪ C) = γ. By submodularity, we have

α + β = f(A) + f(B ∩ C) ≥ f(∅) + f(A ∪ (B ∩ C)) ≥ f(A ∪ C)

and

α+ β + γ ≥ f(A ∪ C) + f(B ∪ C) ≥ f(X) + f(C) ≥ OPT.

Therefore, either α, the value of A, is at least OPT/3, or else one of β and
γ is at least OPT/3; we prove that then E[f(R)] ≥ OPT/3 as well.

Let’s start with β = f(B ∩ C). Instead of E[f(R)], we show that it’s
enough to estimate E[f(R ∪ (B ∩ C))]. Recall that for any x ∈ B, we have
ω(x) = E[f(R ∪ {x})− f(R \ {x})] ≤ OPT/n2. Consequently, we also have
E[f(R ∪ {x}) − f(R)] = 1

2
ω(x) ≤ OPT/(2n2). Let’s order the elements of

B ∩ C = {b1, . . . , bℓ} and write

f(R ∪ (B ∩ C)) = f(R) +
ℓ
∑

j=1

(f(R ∪ {b1, . . . , bj})− f(R ∪ {b1, . . . , bj−1})).
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By the property of decreasing marginal values, we get

f(R∪(B∩C)) ≤ f(R)+

ℓ
∑

j=1

(f(R∪{bj})−f(R)) = f(R)+
∑

x∈B∩C
(f(R∪{x})−f(R))

and therefore

E[f(R ∪ (B ∩ C))] ≤ E[f(R)] +
∑

x∈B∩C
E[f(R ∪ {x})− f(R)]

≤ E[f(R)] + |B ∩ C|OPT
2n2

≤ E[f(R)] +
OPT

2n
.

So it’s enough to lower-bound E[f(R ∪ (B ∩ C))]. We do this by defining a
new submodular function, g(R) = f(R∪ (B ∩C)), and applying Lemma 2.3
to E[g(R)] = E[g(C(1/2) ∪ C̄(1/2))]. The lemma implies that

E[f(R ∪ (B ∩ C))] ≥ 1

4
g(∅) +

1

4
g(C) +

1

4
g(C̄) +

1

4
g(X)

≥ 1

4
g(∅) +

1

4
g(C) =

1

4
f(B ∩ C) +

1

4
f(C)

=
β

4
+
OPT

4
.

Note that β ≥ OPT/3 implies E[f(R∪ (B ∩C))] ≥ OPT/3. Symmetrically,
we show a similar analysis for E[f(R ∩ (B ∪ C))]. Now we use the fact
that for any x ∈ A, E[f(R) − f(R \ {x})] = 1

2
ω(x) ≥ −OPT/(2n2). Let

A \ C = {a1, a2, . . . , ak} and write

f(R) = f(R \ (A \ C)) +

k
∑

j=1

(f(R \ {aj+1, . . . , ak})− f(R \ {aj , . . . , ak}))

≥ f(R \ (A \ C)) +

k
∑

j=1

(f(R)− f(R \ {aj})

using the condition of decreasing marginal values. Note that R \ (A \ C) =
R ∩ (B ∪ C). By taking the expectation,

E[f(R)] ≥ E[f(R ∩ (B ∪ C))] +
k
∑

j=1

E[f(R)− f(R \ {aj})]

= E[f(R ∩ (B ∪ C))]− |A \ C|OPT
2n2

≥ E[f(R ∩ (B ∪ C))]− OPT

2n
.
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Again, we estimate E[f(R ∩ (B ∪ C))] = E[f(C(1/2) ∪ (B \ C)(1/2))] using
Lemma 2.3. We get

E[f(R ∩ (B ∪ C))] ≥ 1

4
f(∅) +

1

4
f(C) +

1

4
f(B \ C) +

1

4
f(B ∪ C)

≥ OPT

4
+
γ

4
.

Now we combine our estimates for E[f(R)]:

E[f(R)] +
OPT

2n
≥ 1

2
E[f(R ∪ (B ∩ C))] +

1

2
E[f(R ∩ (B ∪ C))] ≥ OPT

4
+
β

8
+
γ

8
.

Finally, the expected value obtained by the algorithm is

8

9
E[f(R)] +

1

9
f(A) ≥ 2

9
OPT − 4

9n
OPT +

β

9
+
γ

9
+
α

9
≥
(

1

3
− 4

9n

)

OPT

since α + β + γ ≥ OPT .

2.2 Adaptive algorithms

2.2.1 A deterministic local search algorithm

Our deterministic algorithm is based on a simple local search technique. We
try to increase the value of our solution S by either including a new element
in S or discarding one of the elements of S. We call S a local optimum if
no such operation increases the value of S. Local optima have the following
property which was first observed in [8, 28].

Lemma 2.6. Given a submodular function f , if S is a local optimum of
f , and I and J are two sets such that I ⊆ S ⊆ J , then f(I) ≤ f(S) and
f(J) ≤ f(S).

This property turns out to be very useful in proving that a local optimum
is a good approximation to the global optimum. However, it is known that
finding a local optimum for the Max Cut problem is PLS-complete [50].
Therefore, we relax our local search and find an approximate local optimal
solution.

Local Search Algorithm: LS.

1. Let S := {v} where f({v}) is the maximum over all singletons v ∈ X.

2. If there exists an element a ∈ X\S such that f(S∪{a}) > (1+ ǫ
n2 )f(S),

then let S := S ∪ {a}, and go back to Step 2.
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3. If there exists an element a ∈ S such that f(S\{a}) > (1 + ǫ
n2 )f(S),

then let S := S\{a}, and go back to Step 2.

4. Return the maximum of f(S) and f(X\S).

It is easy to see that if the algorithm terminates, the set S is a (1 + ǫ
n2 )-

approximate local optimum, in the following sense.

Definition 2.7. Given f : 2X → R, a set S is called a (1 + α)-approximate
local optimum, if (1+α)f(S) ≥ f(S \{v}) for any v ∈ S, and (1+α)f(S) ≥
f(S ∪ {v}) for any v /∈ S.

We prove the following analogue of Lemma 2.6.

Lemma 2.8. If S is an (1+α)-approximate local optimum for a submodular
function f , then for any subsets such that I ⊆ S ⊆ J , f(I) ≤ (1 + nα)f(S)
and f(J) ≤ (1 + nα)f(S).

Proof. Let I = T1 ⊆ T2 ⊆ . . . ⊆ Tk = S be a chain of sets where Ti\Ti−1 =
{ai}. For each 2 ≤ i ≤ k, we know that f(Ti) − f(Ti−1) ≥ f(S) − f(S \
{ai}) ≥ −αf(S) using the submodularity and approximate local optimality
of S. Summing up these inequalities, we get f(S)− f(I) ≥ −kαf(S). Thus
f(I) ≤ (1 + kα)f(S) ≤ (1 + nα)f(S). This completes the proof for set I.
The proof for set J is very similar.

Theorem 2.9. Algorithm LS is a
(

1
3
− ǫ

n

)

-approximation algorithm for max-
imizing nonnegative submodular functions, and a

(

1
2
− ǫ

n

)

-approximation al-
gorithm for maximizing nonnegative symmetric submodular functions. The
algorithm uses at most O(1

ǫ
n3 log n) oracle calls.

Proof. Consider an optimal solution C and let α = ǫ
n2 . If the algorithm

terminates, the set S obtained at the end is a (1 + α)-approximate local
optimum. By Lemma 2.8, f(S ∩ C) ≤ (1 + nα)f(S) and f(S ∪ C) ≤ (1 +
nα)f(S). Using submodularity, f(S ∪ C) + f(X\S) ≥ f(C\S) + f(X) ≥
f(C\S), and f(S ∩ C) + f(C\S) ≥ f(C) + f(∅) ≥ f(C). Putting these
inequalities together, we get

2(1+nα)f(S)+f(X\S) ≥ f(S∩C)+f(S∪C)+f(X\S) ≥ f(S∩C)+f(C\S) ≥ f(C).

For α = ǫ
n2 , this implies that either f(S) ≥ (1

3
− o(1))OPT or f(X\S) ≥

(1
3
− o(1))OPT .
For symmetric submodular functions, we get

2(1 + nα)f(S) ≥ f(S ∩ C) + f(S ∪ C̄) = f(S ∩ C) + f(S̄ ∩ C) ≥ f(C)



26 CHAPTER 2. NONNEGATIVE SUBMODULAR MAXIMIZATION

and hence f(S) is a (1
2
− o(1))-approximation.

To bound the running time of the algorithm, let v be the element with the
maximum value f({v}) over all elements ofX. It is simple to see that OPT ≤
nf({v}). Since after each iteration, the value of the function increases by a
factor of at least (1 + ǫ

n2 ), if the number of iterations of the algorithm is k,
then (1 + ǫ

n2 )
k ≤ n. Therefore, k = O(1

ǫ
n2 logn) and the number of queries

is O(1
ǫ
n3 log n).

2.2.2 A smooth local search algorithm

Next, we present a randomized algorithm which improves the approximation
ratio of 1/3. The main idea behind this algorithm is to find a “smoothed” lo-
cal optimum, where elements are sampled randomly but with different prob-
abilities, based on some underlying set A. The general approach of local
search, based on a function derived from the one we are interested in, has
been referred to as “non-oblivious local search” in the literature [3].

Definition 2.10. We say that a set is sampled with bias δ based on A,
if elements in A are sampled independently with probability p = (1 + δ)/2
and elements outside of A are sampled independently with probability q =
(1− δ)/2. We denote this random set by R(A, δ).

The Smooth Local Search algorithm: SLS.

1. Choose δ ∈ [0, 1] and start with A = ∅. Let n = |X| denote the total
number of elements. In the following, use an estimate for OPT , for
example from Algorithm LS.

2. For each element x, estimate ωA,δ(x) = E[f(R(A, δ)∪{x})]−E[f(R(A, δ)\
{x})], within an error of 1

n2OPT . Call this estimate ω̃A,δ(x).

3. If there is an element x ∈ X \ A such that ω̃A,δ(x) >
2
n2OPT , include

x in A and go to Step 2.

4. If there is x ∈ A such that ω̃A,δ(x) < − 2
n2OPT , remove x from A and

go to Step 2.

5. Choose δ′ ∈ [−1, 1] and return a random set from the distribution
R(A, δ′).

In effect, we find an approximate local optimum of a derived function
Φ(A) = E[f(R(A, δ))]. Then we return a set sampled according to R(A, δ′);
possibly for δ′ 6= δ. One can run Algorithm SLS with δ = δ′ and prove that
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the best approximation factor for such parameters is achieved by setting
δ = δ′ =

√
5−1
2

, the golden ratio. Then, we get an approximation factor of
3−

√
5

2
− o(1) ≃ 0.38. Interestingly, one can improve this approximation factor

to 0.4 by choosing two parameter pairs (δ, δ′) and taking the maximum of
the two solutions.

Theorem 2.11. Algorithm SLS runs in polynomial time. If we run SLS for
two choices of parameters, (δ = 1

3
, δ′ = 1

3
) and (δ = 1

3
, δ′ = −1), the better of

the two solutions has expected value at least (2
5
− o(1))OPT .

Proof. Let Φ(A) = E[f(R(A, δ))]. Recall that in R(A, δ), elements from
A are sampled with probability p = (1 + δ)/2, while elements from B are
sampled with probability q = (1 − δ)/2. Consider Step 3 where an element
x is added to A. Also, let B′ = X \ (A∪{x}). The reason why x is added to
A is that ω̃A,δ(x) >

2
n2OPT ; i.e. ωA,δ(x) >

1
n2OPT . During this step, Φ(A)

increases by

Φ(A ∪ {x})− Φ(A) = E[f((A ∪ {x})(p) ∪ B′(q)]− E[f(A(p) ∪ (B′ ∪ {x})(q))]
= (p− q) E[f(A(p) ∪B′(q) ∪ {x})− f(A(p) ∪B′(q))]

= δ E[f(R(A, δ) ∪ {x})− f(R(A, δ) \ {x})]

= δ ωA,δ(x) >
δ

n2
OPT.

Similarly, executing Step 4 increases Φ(A) by at least δ
n2OPT . Since the

value of Φ(A) is always between 0 and OPT , the algorithm cannot iterate
more than n2/δ times and thus it runs in polynomial time. Also, note that
finding a local maximum of Φ(A) is equivalent to finding a set A such that
its elements x ∈ A have ωA,δ(x) ≥ 0, while elements x /∈ A have ωA,δ(x) ≤ 0.
Here, we find a set satisfying this up to a certain error.

From now on, let A be the set at the end of the algorithm and B = X \A.
We also use R = A(p) ∪ B(q) to denote a random set from the distribution
R(A, δ). We denote by C the optimal solution, while our algorithm returns
either R (for δ′ = δ) or B (for δ′ = −1). When the algorithm terminates,
we have ωA,δ(x) ≥ − 3

n2OPT for any x ∈ A, and ωA,δ(x) ≤ 3
n2OPT for any

x ∈ B. Consequently, for any x ∈ B we have E[f(R∪{x})]−f(R)] = Pr[x /∈
R]E[f(R ∪ {x})− f(R \ {x})] = 2

3
ωA,δ(x) ≤ 2

n2OPT , using Pr[x /∈ R] = p =
2/3. Let’s order the elements of B ∩ C = {b1, . . . , bℓ} and write

f(R ∪ (B ∩ C)) = f(R) +
ℓ
∑

j=1

(f(R ∪ {b1, . . . , bj})− f(R ∪ {b1, . . . , bj−1})).
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By the property of decreasing marginal values, we get f(R ∪ {b1, . . . , bj})−
f(R ∪ {b1, . . . , bj−1}) ≤ f(R ∪ {bj})− f(R) and hence

E[f(R ∪ (B ∩ C))] ≤ E[f(R)] +
∑

x∈B∩C
E[f(R ∪ {x})− f(R)]

≤ E[f(R)] + |B ∩ C| 2
n2
OPT ≤ E[f(R)] +

2

n
OPT.

Similarly, we can obtain E[f(R∩ (B ∪C))] ≤ E[f(R)] + 2
n
OPT. This means

that instead of R, we can analyze R ∪ (B ∩C) and R∩ (B ∪C). In order to
estimate E[f(R∪(B∩C))] and E[f(R∩(B∪C))], we use a further extension
of Lemma 2.3 which can be proved by another iteration of the same proof:

(∗) E[f(A1(p1) ∪ A2(p2) ∪A3(p3))] ≥
∑

I⊆{1,2,3}

∏

i∈I
pi
∏

i/∈I
(1− pi) f

(

⋃

i∈I
Ai

)

.

First, we deal with R ∩ (B ∪C) = (A∩C)(p) ∪ (B ∩C)(q) ∪ (B \C)(q).
We plug in δ = 1/3, i.e. p = 2/3 and q = 1/3. Then (*) yields

E[f(R ∩ (B ∪ C))] ≥ 8

27
f(A ∩ C) +

2

27
f(B ∪ C)

+
2

27
f(B ∩ C) +

4

27
f(C) +

4

27
f(F ) +

1

27
f(B)

where we denote F = (A∩C)∪ (B \C) and we discarded the terms f(∅) ≥ 0
and f(B\C) ≥ 0. Similarly, we estimate E[f(R∪(B∩C))], applying (*) to a
submodular function h(R) = f(R∪(B∩C)) and writing E[f(R∪(B∩C))] =
E[h(R)] = E[h((A ∩ C)(p) ∪ (A \ C)(p) ∪B(q))]:

E[f(R ∪ (B ∩ C))] ≥ 8

27
f(A ∪ C) +

2

27
f(B ∪ C)

+
2

27
f(B ∩ C) +

4

27
f(C) +

4

27
f(F̄ ) +

1

27
f(B).

Here, F̄ = (A \ C) ∪ (B ∩ C). We use E[f(R)] + 2
n
OPT ≥ 1

2
(E[f(R ∩ (B ∪

C))] + E[f(R ∪ (B ∩ C))]) and combine the two estimates.

E[f(R)] +
2

n
OPT ≥ 4

27
f(A ∩ C) +

4

27
f(A ∪ C) +

2

27
f(B ∩ C) +

2

27
f(B ∪ C)

+
4

27
f(C) +

2

27
f(F ) +

2

27
f(F̄ ) +

1

27
f(B).

Now we add 3
27
f(B) on both sides and apply submodularity: f(B)+ f(F ) ≥

f(B∪C)+f(B\C) ≥ f(B∪C) and f(B)+f(F̄ ) ≥ f(B∪(A\C))+f(B∩C) ≥
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f(B ∩ C). This leads to

E[f(R)] +
1

9
f(B) +

2

n
OPT ≥ 4

27
f(A ∩ C) +

4

27
f(A ∪ C)

+
4

27
f(B ∩ C) +

4

27
f(B ∪ C) +

4

27
f(C)

and once again using submodularity, f(A ∩ C) + f(B ∩ C) ≥ f(C) and
f(A ∪ C) + f(B ∪ C) ≥ f(C), we get

E[f(R)] +
1

9
f(B) +

2

n
OPT ≥ 12

27
f(C) =

4

9
OPT.

To conclude, either E[f(R)] or f(B) must be at least (2
5
− 2

n
)OPT , otherwise

we get a contradiction.

2.2.3 Discussion of possible improvements

The analysis of the SLS algorithm is tight, as can be seen from the following
example.

Example 2.12. Consider X = {a, b, c, d} and a directed graph on these
vertices, consisting of 3 edges (a, b), (b, c) and (c, d). Let’s define a function
f : 2X → R+ by defining f(S) as the number of edges going from S to X \S.
This is a directed cut type function, which is known to be submodular.

Observe that A = {a, b} could be the set found by our algorithm. In
fact, this is a local optimum of E[f(R(A, δ))] for any value of δ, since we
have E[f(R({a, b}, δ))] = 2pq + p2 = 1 − q2 (where p = (1 + δ)/2 and
q = (1− δ)/2). It can be verified that the value of E[f(R(A, δ))] for any A
obtained by switching one element is at most 1− q2.

Algorithm SLS returns either R(A, 1/3) of expected value 1 − (1/3)2,
with probability 9/10, or B of value 0, with probability 1/10. Thus the
expected value returned by SLS is 0.8, while the optimum is f({a, c}) = 2.

Of course, this example can be circumvented if we define SLS to take
the maximum of E[f(R(A, δ))] and f(B) rather than a weighted average.
However, it’s not clear how to use this in the analysis.

The SLS algorithm can be presented more generally as follows.

Algorithm SLS∗.

1. Find an approximate local maximum of E[f(R(A, δ))], for some δ ∈
[0, 1].
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2. Return a random set from the distribution R(A, δ′) for some δ′ ∈
[−1, 1].

The algorithm SLS uses a fixed value of δ = 2/3 and two possible values
of δ′ = 2/3 or δ′ = −1. More generally, we can search for the best values of
δ and δ′ for a given instance. Then the algorithm SLS∗ might have a chance
to improve the approximation factor of 2/5. Considering Section 2.3.3, the
best we can hope for would be a 1

2
-approximation in the general case. This

might be possible with SLS∗; however, we show that it is not enough to fix
a value of δ in advance, as we do in our algorithms above.

Example 2.13. Similarly to Example 2.12, consider a directed graph on
X = {a, b, c, d}, with 6 edges: (a, b) of weight p, (b, a) of weight q, (b, c) of
weight 1, (c, b) of weight 1, (c, d) of weight p and (d, c) of weight q.

It can be verified that A = {a, b} is a local optimum for E[f(R(A, δ))]
such that p = (1 + δ)/2 and q = (1 − δ)/2. Moreover, for any (possibly
different) probabilities p′ = (1 + δ′)/2 and q′ = (1− δ′)/2, we have

E[f(R({a, b}, δ′))] = p′q′(w(a, b) + w(b, a) + w(c, d) + w(d, c))

+p′2w(b, c) + q′2w(c, b) = 2p′q′ + p′2 + q′2 = 1.

Thus Algorithm SLS∗ with a fixed choice of δ and a flexible choice of δ′

returns a set of expected value 1. The optimum solution here is f({a, c}) =
1 + 2p, so this yields an approximation factor 1/(1 + 2p). Since p ≥ 1/2, the
only value which gives a 1

2
-approximation is δ = 0 and p = q = 1/2. For this

case, we design a different counterexample.

Example 2.14. Consider a directed graph on X = {a, b, c, d} with 5 edges:
(a, b) of weight 3

2
p, (b, a) of weight 3

2
q, (b, c) of weight 1, (c, d) of weight 3

2
p

and (d, c) of weight 3
2
q.

It can be seen that A = {a, b} is a local optimum for p ≤ 3/4. For a given
p′, q′, Algorithm SLS∗ returns

E[f(R({a, b}, δ′))] = p′q′(w(a, b) + w(b, a) + w(c, d) + w(d, c)) + p′2w(b, c)

= 3p′q′ + p′2

which is maximized for p′ = 3/4, q′ = 1/4. Then, the algorithm achieves 9/8
while the optimum is f({b, d}) = 1 + 3q = 5/2 for p = q = 1/2. Thus, for
small δ and p, q close to 1/2, the approximation factor is also bounded away
from 1/2.

We showed that in order to get close to a 1
2
-approximation, we would

need to run SLS∗ with different values of δ and take the best solution. The
analysis of such an algorithm remains elusive.
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2.3 Inapproximability Results

In this section, we give hardness results for submodular maximization. Our
results are of two flavors. First, we consider submodular functions that have
a succint representation on the input, in the form of a sum of “building
blocks” of constant size. Note that all the special cases such as Max Cut
are of this type. For algorithms in this model, we prove complexity-theoretic
inapproximability results. The strongest one is that in the general case, a
(3/4 + ǫ)-approximation for any fixed ǫ > 0 would imply P = NP .

In the value oracle model, we show a much tighter result. Namely, any
algorithm achieving a (1/2+ǫ)-approximation for a fixed ǫ > 0 would require
an exponential number of queries to the value oracle. This holds even in
the case of symmetric submodular functions, i.e. our 1/2-approximation
algorithm is optimal in this model.

2.3.1 NP-hardness results

Our reductions are based on H̊astad’s 3-bit and 4-bit PCP verifiers [32]. Some
inapproximability results can be obtained immediately from [32], by consid-
ering the known special cases of submodular maximization. The strongest
result along these lines is that the Max Cut problem in 4-uniform hypergraphs
is NP-hard to approximate within a factor better than 7/8. Therefore, we
get the same hardness result for submodular maximization.

We obtain stronger hardness results by reductions from systems of par-
ity equations. The parity function is not submodular, but we can obtain
hardness results by a careful construction of a “submodular gadget” for each
equation.

Theorem 2.15. There is no polynomial-time (5/6 + ǫ)-approximation al-
gorithm to maximize a nonnegative symmetric submodular function, unless
P = NP .

Proof. Consider an instance of Max E4-Lin-2, a system ofm parity equations,
each on 4 boolean variables. Let’s define two elements for each variable, Ti
and Fi, corresponding to variable xi being either true or false. For each
equation e on variables (xi, xj , xk, xℓ), we define a function ge(S). (This is
our “submodular gadget”.) Let S ′ = S ∩ {Ti, Fi, Tj , Fj, Tk, Fk, Tℓ, Fℓ}. We
say that S ′ is valid quadruple, if it defines a boolean assignment, i.e. contains
exactly one element from each pair {Ti, Fi}. The function value is determined
by S ′, as follows:

• If |S ′| < 4, let ge(S) = |S ′|. If |S ′| > 4, let ge(S) = 8− |S ′|.
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• If S ′ is a valid quadruple satisfying e, let ge(S) = 4 (a true quadruple).

• If S ′ is a valid quadruple not satisfying e, let ge(S) = 8/3 (a false
quadruple).

• If |S ′| = 4 but S ′ is not a valid quadruple, let ge(S) = 10/3 (an invalid
quadruple).

It can be verified that this is a submodular function, using the structure of
the parity constraint. We define f(S) =

∑

e∈E ge(S) by taking a sum over all
equations. This is again a nonnegative submodular function. Observe that
for each equation, it is more profitable to choose an invalid assignment than a
valid assignment which does not satisfy the equation. Nevertheless, we claim
that WLOG the maximum is obtained by selecting exactly one of Ti, Fi for
each variable: Consider a set S and call a variable undecided, if S contains
both or neither of Ti, Fi. For each equation with an undecided variable, we get
value at most 10/3. Now, modify S by randomly selecting exactly one of Ti, Fi
for each undecided variable. The new set S ′ induces a valid assignment to all
variables. For equations which had a valid assignment already in S, the value
does not change. Each equation which had an undecided varible is satisfied by
S ′ with probability 1/2. Therefore, the expected value for each such equation
is (8/3 + 4)/2 = 10/3, at least as before, and E[f(S ′)] ≥ f(S). Hence there
must exist a set S ′ such that f(S ′) ≥ f(S) and S ′ induces a valid assignment.
Consequently, we have OPT = max f(S) = (8/3)m + (4/3)#SAT where
#SAT is the maximum number of satisfiable equations. Since it is NP-
hard to distinguish whether #SAT ≥ (1 − ǫ)m or #SAT ≤ (1/2 + ǫ)m,
it is also NP-hard to distinguish between OPT ≥ (4 − ǫ)m and OPT ≤
(10/3 + ǫ)m.

In the case of general nonnegative submodular functions, we improve the
hardness threshold to 3/4. This hardness result is slightly more involved.
It requires certain properties of H̊astad’s 3-bit verifier, implying that Max
E3-Lin-2 is NP-hard to approximate even for linear systems of a special
structure. We formalize this in the following lemma, which is needed to
prove Theorem 2.17.

Lemma 2.16. Fix any ǫ > 0 and consider systems of weighted linear equa-
tions (of total weight 1) over boolean variables, partitioned into X and Y, so
that each equation contains 1 variable xi ∈ X and 2 variables yj, yk ∈ Y. De-
fine a matrix P ∈ [0, 1]Y×Y where Pjk is the weight of all equations where the
first variable from Y is yj and the second variable is yk. Then it’s NP-hard
to decide whether there is a solution satisfying equations of weight at least
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1 − ǫ or whether any solution satisfies equations of weight at most 1/2 + ǫ,
even in the special case where P is positive semidefinite.

Proof. We show that the system of equations arising from H̊astad’s 3-bit
verifier (see [32], pages 24-25) in fact satisfies the properties that we need. In
his notation, the equations are generated by choosing f ∈ FU and g1, g2 ∈ FW
where U,W , U ⊂ W , are randomly chosen and FU ,FW are the spaces of
all ±1 functions on {−1,+1}U and {−1,+1}W , respectively. The equation
corresponds to a 3-bit test on f, g1, g2 and its weight is the probability that
the verifier performs this particular test. One variable is associated with
f ∈ FU , indexing a bit in the Long Code of the first prover, and two variables
are associated with g1, g2 ∈ FW , indexing bits in the Long Code of the second
prover. This defines a natural partition of variables into X and Y .

The actual variables appearing in the equations are determined by the
folding convention; for the second prover, let’s denote them by yj, yk where
j = φ(g1) and k = φ(g2). The particular convention will not matter to us, as
long as it is the same for both g1 and g2 (which is the case in [32]). Let Pjk be
the probability that the selected variables corresponding to the second prover
are yj and yk. Let PU,W

jk be the same probability, conditioned on a particular

choice of U,W . Since P is a positive linear combination of PU,W , it suffices
to prove that each PU,W is positive semidefinite. The way that g1, g2 are
generated (for given U,W ) is that g1 : {−1,+1}W → {−1,+1} is uniformly
random and g2(y) = g1(y)f(y|U)µ(y), where f : {−1,+1}U → {−1,+1}
uniformly random and µ : {−1,+1}W → {−1,+1} is a “random noise”,
where µ(x) = 1 with probability 1− ǫ and −1 with probability ǫ. The value
of ǫ will be very small, certainly ǫ < 1/2.

Both g1 and g2 are distributed uniformly (but not independently) from
FW . The probability of sampling (g1, g2) is the same as the probability of
sampling (g2, g1), hence PU,W is a symmetric matrix. It remains to prove
positive semidefiniteness. Let’s choose an arbitrary function A : Y → R and
analyze

∑

jk

PU,W
jk A(j)A(k) = Eg1,g2[A(φ(g1))A(φ(g2))] = Eg1,f,µ[A(φ(g1))A(φ(g1fµ))]

where g1, f, µ are sampled as described above. If we prove that this quantity
is always nonnegative, then PU,W is positive semidefinite. Let B : FW → R,
B = A ◦ φ; i.e., we want to prove E[B(g1)B(g1fµ)] ≥ 0. We can expand B
using its Fourier transform,

B(g) =
∑

α⊆{−1,+1}W

B̂(α)χα(g).
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Here, χα(g) =
∏

x∈α g(x) are the Fourier basis functions. We obtain

E[B(g1)B(g1fµ)] =
∑

α,β⊆{−1,+1}W

E[B̂(α)χα(g1)B̂(β)χβ(g1fµ)]

=
∑

α,β⊆{−1,+1}W

B̂(α)B̂(β)
∏

x∈α∆β

Eg1[g1(x)]Ef [
∏

y∈β
f(y|U)]

∏

z∈β
Eµ[µ(z)].

The terms for α 6= β are zero, since then Eg1[g1(x)] = 0 for each x ∈ α∆β.
Therefore,

E[B(g1)B(g1fµ)] =
∑

β⊆{−1,+1}W

B̂2(β) Ef [
∏

y∈β
f(y|U)]

∏

z∈β
Eµ[µ(z)].

Now all the factors are nonnegative, since Eµ[µ(z)] = 1 − 2ǫ > 0 for ev-
ery z and Ef [

∏

y∈β f(y|U)] = 1 or 0, depending on whether every string in

{−1,+1}U is the projection of an even number of strings in β (in which case
the product is 1) or not (in which case the expectation gives 0 by symmetry).
To conclude,

∑

j,k

PU,W
jk A(j)A(k) = E[B(g1)B(g1fµ)] ≥ 0

for any A : Y → R, which means that each PU,W and consequently P is
positive semidefinite.

Theorem 2.17. There is no polynomial-time (3/4 + ǫ)-approximation al-
gorithm to maximize a nonnegative submodular function, representable as a
sum of functions on a constant number of elements, unless P = NP .

Proof. We use a reduction from a system of linear equations as in Lemma 2.16.
For each variable xi ∈ X , we have two elements Ti, Fi and for each variable
yj ∈ Y , we have two elements T̃j , F̃j. Denote the set of equations by E .
Each equation e contains one variable from X and two variables from Y . For
each e ∈ E , we define a submodular function ge(S) tailored to this structure.
Assume that S ⊆ {Ti, Fi, T̃j, F̃j , T̃k, F̃k}, the elements corresponding to this
equation; ge does not depend on other than these 6 elements. We say that S
is a valid triple, if it contains exactly one of each {Ti, Fi}.

• The value of each singleton Ti, Fi corresponding to a variable in X is 1.

• The value of each singleton T̃j, F̃j corresponding to a variable in Y is
1/2.
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• For |S| < 3, ge(S) is the sum of its singletons, except ge({Ti, Fi}) = 1
(a weak pair).

• For |S| > 3, ge(S) = ge(S̄).

• If S is a valid triple satisfying e, let ge(S) = 2 (true triple).

• If S is a valid triple not satisfying e, let ge(S) = 1 (false triple).

• If S is an invalid triple containing exactly one of {Ti, Fi} then ge(S) = 2
(type I).

• If S is an invalid triple containing both/neither of {Ti, Fi} then ge(S) =
3/2 (type II).

The analysis of this gadget is more involved. We first emphasize the
important points. A true triple gives value 2, while a false triple gives value
1. For invalid assignments of value 3/2, we can argue as before that a random
valid assignment achieves expected value 3/2 as well, so we might as well
choose a valid assignment. However, in this gadget we also have invalid
triples of value 2 (type I). (We cannot avoid this due to submodularity.)
Still, we prove that the optimum is attained for a valid boolean assignment.
The main argument is, roughly, that if there are many invalid triples of type
I, there must be also many equations where we get value only 1 (a weak pair).
For this, we use the positive semidefinite property from Lemma 2.16.

Verifying that ge(S) is submodular is somewhat tedious. We have to check
marginal values for two types of elements. First, consider Ti (or equivalently
Fi), associated with a variable in X . The marginal value gA(Ti) is equal to
1 if A does not contain Fi and contains at most two elements for variables
in Y , except when these elements would form a false triple with Ti; then
gA(Ti) = 0. Also, gA(Ti) = 0 if A does not contain Fi and contains at
least three elements for Y , or if A contains Fi and at most two elements
for Y , except when these elements would form a true triple with Ti; then
gA(Ti) = −1. Finally, gA(Ti) = −1 if A contains Fi and at least three
elements for Y . Hence, the marginal value depends in a monotone way on
the subset A.

For an element like T̃j, associated with a variable in Y , we have gA(T̃j) =
1/2 if A does not contain any element for X and contains at most two el-
ements for Y , or A contains one element for X and at most one element
for Y (but not forming a false triple with T̃j), or A is a false triple, or A
contains both elements for X and no other element for Y . In all other cases,
gA(T̃j) = −1/2. Here, the only way submodularity could be violated is that
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gA(T̃j) < fB(T̃j) for A ⊂ B where A forms a false triple with T̃j and B is a
false triple - but then B = A ∪ {T̃j}, contradiction.

We define f(S) =
∑

e∈E w(e)ge(S) where w(e) is the weight of equation
e. We claim that max f(S) = 1 + maxwSAT , where wSAT is the weight of
satisfied equations. First, for a given boolean assignment, the corresponding
set S selecting Ti or Fi for each variable achieves value f(S) = wSAT · 2 +
(1−wSAT ) · 1 = 1+wSAT . The non-trivial part is proving that the optimum
f(S) is attained for a set inducing a valid boolean assignment.

Consider any set S and define V : E → {−1, 0,+1} where V (e) = +1 if S
induces a satisfying assignment to equation e, V (e) = −1 if S induces a non-
satisfying assignment to e and V (e) = 0 if S induces an invalid assignment
to e. Also, define A : Y → {−1, 0,+1}, where A(yj) = |S ∩ {T̃j, F̃j}|− 1, i.e.
A(yj) = 0 if S induces a valid assignment to yj, and A(yj) = ±1 if S contains
both/neither of T̃j , F̃j . Observe that for an equation e whose Y-variables are
yj, yk, only one of V (e) and A(yj)A(yk) can be nonzero. The gadget ge(S) is
designed in such a way that

ge(S) ≤ 1

2
(3− A(yj)A(yk) + V (e)).

This can be checked case by case: for valid assignments, A(yj)A(yk) = 0
and we get value 2 or 1 depending on V (e) = ±1. For invalid assignments,
V (e) = 0; if at least one of the variables yj, yk has a valid assignment, then
A(yj)A(yk) = 0 and we can get at most 3/2 (an invalid triple of type II). If
both yj, yk are invalid and A(yj)A(yk) = 1, then we can get only 1 (a weak
pair or its complement) and if A(yj)A(yk) = −1, we can get 2 (an invalid
triple of type I). The total value is

f(S) =
∑

e∈E
w(e)ge(S) ≤

∑

j,k

∑

e=(xi,yj ,yk)

w(e) · 1
2
(3− A(yj)A(yk) + V (e)).

Now we use the positive semidefinite property of our linear system, which
means that

∑

j,k

∑

e=(x,yj ,yk)

w(e)A(yj)A(yk) =
∑

j,k

PjkA(yj)A(yk) ≥ 0

for any function A. Hence, f(S) ≤ 1
2

∑

e∈E w(e)(3 + V (e)). Let’s modify
S into a valid boolean assignment by choosing randomly one of Ti, Fi for
all variables such that S contains both/neither of Ti, Fi. Denote the new
set by S ′ and the equations containing any randomly chosen variable by R.
We satisfy each equation in R with probability 1/2, which gives expected
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value 3/2 for each such equation, while the value for other equations remains
unchanged.

E[f(S ′)] =
3

2

∑

e∈R
w(e)+

1

2

∑

e∈E\R
w(e)(3+V (e)) =

1

2

∑

e∈E
w(e)(3+V (e)) ≥ f(S).

This means that there is a set S ′ of optimal value, inducing a valid boolean
assignment.

2.3.2 Smooth submodular functions

In this section, we introduce a formalism which is very convenient for con-
structing examples of submodular functions; in particular, for proving our
query complexity bound on maximizing symmetric submodular functions.
Instead of constructing explicit discrete functions, we want to define contin-
uous function with certain analytic properties.

Assume that a ground set X is partitioned into (X1, X2, . . . , Xn) where
each Xi has a large number of elements. The function f that we construct
depends only on the fractions of X1, . . . , Xn that S contains: xi = |S ∩
Xi|/|Xi|. We think of xi as real variables in [0, 1] and define our function as
f̃(x1, . . . , xn). This induces a discrete function on X. The following lemma
provides a link between the analytic and discrete properties that we are
interested in.

Lemma 2.18. Let X = X1 ∪X2 ∪ . . . ∪Xn as above and let f̃ : [0, 1]n → R

be a function with continuous first partial derivatives, and second partial
derivatives almost everywhere. Define a discrete function f : X → R so that

f(S) = f̃

( |S ∩X1|
|X1|

, . . . ,
|S ∩Xn|
|Xn|

)

.

Then,

1. If f̃(x1, . . . , xn) = f̃(1− x1, . . . , 1 − xn) everywhere, then the function
f is symmetric.

2. If ∂f̃
∂xi
≥ 0 everywhere for each i, then the function f is monotone.

3. If ∂2f̃
∂xi∂xj

≤ 0 almost everywhere 1 for any i, j, then the function f is

submodular.

1To be more precise, on any axis-parallel line there are only finitely many points where
∂2f̃

∂xi∂xj
might not be defined.
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Proof. The first property is clear: If f̃(~x) = f̃(~y) where yi = 1 − xi, then
f(S) = f(X \ S).

For monotonicity, it’s sufficient to observe that if ∂f
∂xi
≥ 0, then f̃ is non-

decreasing in each coordinate. Hence, adding elements cannot decrease the
value of f .

For the submodularity condition, fix an element in a ∈ Xi and consider
a set S parametrized by xi = |S ∩Xi|/|Xi|. The marginal value of a added
to S is equal to

fS(a) = f̃(x1, . . . , xi + 1, . . . , xn)− f̃(x1, . . . , xi, . . . , xn)

=

∫ 1

0

∂f̃

∂xi
(x1, . . . , xi + t, . . . , xn)dt.

We want to prove that fS(a) cannot increase by adding elements to S, i.e.

by increasing any coordinate xj . Because ∂f̃
∂xi

is continuous and its derivative

along xj ,
∂2f̃

∂xi∂xj
, is non-positive except at finitely many points, ∂f̃

∂xi
is non-

increasing in xj . By shifting the entire integral to a higher value of xj , the
marginal value cannot increase.

2.3.3 Query complexity results

Finally, we prove that our 1
2
-approximation for symmetric submodular func-

tions is optimal in the value oracle model. First, we present a similar result
for the “random set” model, which illustrates some of the ideas needed for
the more general result.

Proposition 2.19. For any δ > 0, there is ǫ > 0 such that for any (random)
sequence of queries Q ⊆ 2X, |Q| ≤ 2ǫn, there is a nonnegative submodular
function f such that (with high probability) for all queries Q ∈ Q,

f(Q) ≤
(

1

4
+ δ

)

OPT.

Proof. Let ǫ = δ2/32 and fix a sequence Q ⊆ 2X of 2ǫn queries. We prove the
existence of f by the probabilistic method. Consider functions corresponding
to cuts in a complete bipartite directed graph on (C,D), fC(S) = |S ∩ C| ·
|S̄ ∩D|. We choose a uniformly random C ⊆ X and D = X \ C. The idea
is that for any query, a typical C bisects both Q and its complement, which
means that fC(Q) is roughly 1

4
OPT . We call a query Q ∈ Q “successful”,

if fC(Q) > (1
4

+ δ)OPT . Our goal is to prove that with high probability, C
avoids any successful query.
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We use Chernoff’s bound: For any set A ⊆ X of size a,

Pr[|A ∩ C| > 1

2
(1 + δ)|A|] = Pr[|A ∩ C| < 1

2
(1− δ)|A|] < e−δ

2a/2.

With probability at least 1− 2e−2δ2n, the size of C is in [(1
2
− δ)n, (1

2
+ δ)n],

so we can assume this is the case. We have OPT ≥ (1
4
− δ2)n2 ≥ 1

4
n2/(1+ δ)

(for small δ > 0). No query can achieve fC(Q) > (1
4

+ δ)OPT ≥ 1
16
n2

unless |Q| ∈ [ 1
16
n, 15

16
n], so we can assume this is the case for all queries. By

Chernoff’s bound, Pr[|Q ∩ C| > 1
2
(1 + δ)|Q|] < e−δ

2n/32 and Pr[|Q̄ ∩ D| >
1
2
(1 + δ)|Q̄|] < e−δ

2n/32. If neither of these events occurs, the query is not
successful, since fC(Q) = |Q∩C|·|Q̄∩D| < 1

4
(1+δ)2|Q|·|Q̄| ≤ 1

16
(1+δ)2n2 ≤

1
4
(1 + δ)3OPT ≤ (1

4
+ δ)OPT.

For now, fix a sequence of queries. By the union bound, we get that the
probability that any query is successful is at most 2ǫn2e−δ

2n/32 = 2(2/e)ǫn.
Thus with high probability, there is no successful query for C. Even for a
random sequence, the probabilistic bound still holds by averaging over all
possible sequences of queries. We can fix any C for which the bound is valid,
and then the claim of the lemma holds for the submodular function fC .

This means that in the model where an algorithm only samples a sequence
of polynomially many sets and returns the one of maximal value, we cannot
improve our 1

4
-approximation (Section 2.1). Perhaps surprisingly, this exam-

ple can be modified for the model of adaptive algorithms with value queries,
to show that our 1

2
-approximation for symmetric submodular functions is

optimal, even among adaptive algorithms!

Theorem 2.20. For any ǫ > 0, there are instances of nonnegative symmetric
submodular maximization, such that there is no (adaptive, possibly random-
ized) algorithm using less than eǫ

2n/16 queries that always finds a solution of
expected value at least (1/2 + ǫ)OPT .

Proof. We construct a nonnegative symmetric submodular function on [n] =
C ∪ D by defining a smooth function f(x, y) of two variables, as in Sec-
tion 2.3.2. By slight abuse of notation, we denote the correponding smooth
and discrete functions by the same symbol. Our function will have the fol-
lowing properties.

• When |x− y| ≤ ǫ, the function has the form

f(x, y) = (x+ y)(2− x− y)
which corresponds to the cut function of a complete graph. The value
depends only on x + y, and the maximum attained in this range is
f(1/2, 1/2) = 1.
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• When |x− y| > ǫ, the function has the form

f(x, y) = 2x(1− y) + 2(1− x)y − O(ǫ),

corresponding (up to an O(ǫ) term) to the cut function of a complete
bipartite graph on (C,D) with edge weights doubled compared to the
previous case. The maximum in this range is f(0, 1) = f(1, 0) = 2 −
O(ǫ).

If we construct such a function, we can argue as follows. Consider any
algorithm, for now deterministic. (For a randomized algorithm, let’s condi-
tion on its random bits.) Let the partition (C,D) be random and unknown
to the algorithm. The algorithm issues some queries Q to the value oracle.
Call Q “unbalanced”, if x = |Q ∩ C|/|C| differs from y = |Q ∩ D|/|D| by
more than ǫ. For any query Q, the probability that Q is unbalanced is at
most e−ǫ

2n/8, by the Chernoff bound. Therefore, for any fixed sequence of
eǫ

2n/16 queries, the probability that any query is unbalanced is still at most
eǫ

2n/16 ·e−ǫ2n/8 = e−ǫ
2n/16. As long as queries are balanced, the algorithm gets

the same answer regardless of (C,D). Hence, it follows the same path of com-
putation and issues the same queries. With probability at least 1− e−ǫ2n/16,
all its queries will be balanced and it will never find out any information
about the partition (C,D). For a randomized algorithm, we can now aver-
age over its random choices; still, with probability at least 1 − e−ǫ2n/16 the
algorithm will never query any unbalanced set.

Alternatively, consider a function g(x, y) which is defined by g(x, y) =
(x + y)(1 − x − y) everywhere. This is a smooth function with nonposi-
tive second partial derivatives, hence it induces a submodular function by
Lemma 2.18. We proved that with high probability, the algorithm will never
query a set where f 6= g and hence cannot distinguish between the two in-
stances. However, max f(x, y) = 2 − O(ǫ), while max g(x, y) = 1. This
means that there is no (1/2 + ǫ)-approximation algorithm with a subexpo-
nential number of queries, for any ǫ > 0.

It remains to construct the function f and prove its submodularity. For
this purpose, we use Lemma 2.18. In the range where |x−y| ≤ ǫ, we already
defined f(x, y) = (x + y)(2− x − y). In the range where |x − y| ≥ ǫ, let us
define

f(x, y) = (x+ y)(2− x− y) + (|x− y| − ǫ)2

= 2x(1− y) + 2(1− x)y − 2ǫ|x− y|+ ǫ2.

The ǫ-terms are chosen so that f(x, y) is a smooth function on the boundary
of the two regions. E.g., for x − y = ǫ, we get f(x, y) = (x + y)(2− x − y)
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for both expressions. Moreover, the partial derivatives also extend smoothly.
We have

• ∂f
∂x

= 2− 2x− 2y for |x− y| ≤ ǫ,

• ∂f
∂x

= 2− 4y − 2ǫ for x− y > ǫ,

• ∂f
∂x

= 2− 4y + 2ǫ for x− y < −ǫ.

It’s easy to see that the derivative values coincide for |x − y| = ǫ; similarly
for ∂f

∂y
. The second partial derivatives are clearly nonpositive in all ranges,

except on the boundary |x − y| = ǫ where they are not defined. Due to
Lemma 2.18, this defines a submodular function.

2.4 Concluding remarks

For nonadaptive algorithms, one remaining question is whether our algo-
rithms can be derandomized and implemented by querying only a predeter-
mined collection of polynomially many sets.

For adaptive algorithms, it would be nice to achieve a 1
2
-approximation

in the general case (as was done for Max Di-Cut in [31]). We lean toward the
opinion that this might be possible, which would settle the approximation
status of submodular maximization in the value oracle model.

It is still conceivable that a better than 1
2
-approximation might be achieved

in a model of computation requiring an explicit representation of f(S). Our
NP-hardness results in this case are still quite far away from 1/2. Consid-
ering the known approximation results for Max Cut, such an improvement
would most likely require semidefinite programming. Currently, we do not
know how to implement such an approach.
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Chapter 3

Submodular Maximization over
a Matroid

Problem: Given a monotone submodular function f : 2X → R+ and a
matroid on M = (X, I), maximize f(S) over all independent sets S ∈ I.

As we discussed in Section 1.2.2, this problem generalizes the classical
Max k-cover problem, where we take a coverage-type function for f and a
uniform matroid for M. (See Section 1.1 for definitions.) In this special
case, we know that the greedy algorithm provides a (1− 1/e)-approximation
and this is optimal unless P = NP [17]. Furthermore, the greedy algorithm
gives a (1− 1/e)-approximation for any monotone submodular function and
a uniform matroid [45]. For any monotone submodular function and an
arbitrary matroid, the greedy algorithm provides a 1

2
-approximation [46].

On the other hand, a (1− 1/e)-approximation was also known in certain
cases where the matroid is not uniform. One example is the Maximum Cov-
erage Problem with Group Budget Constraints [5, 2], where we have groups
of sets and we want to choose one set from each group to maximize the size
of their union. Another example is the Submodular Welfare Problem with
coverage-type utilities [14]. Both of these problems can be seen as coverage
maximization under a partition matroid constraint (for the reduction from
Submodular Welfare, see Section 1.2.3). Hence, there is some indication that
a (1− 1/e)-approximation might be possible for any monotone submodular
function and any matroid. We indeed achieve this goal in this chapter.

Theorem 3.1. Let f : 2N → R+ be a monotone submodular function given
by a value oracle, and M = (N, I) a matroid given by a membership oracle.
Then there is a randomized polynomial time (1− 1/e− o(1))-approximation
to the problem maxS∈I f(S).

43
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3.1 Preliminaries

Given a submodular function f : N → R
+ and A ⊂ N , the function fA

defined by fA(S) = f(S ∪ A) − f(A) is also submodular. Further, if f is
monotone, fA is also monotone. For i ∈ N , we abbreviate S ∪ {i} by S + i.
By fA(i), we denote the “marginal value” f(A+ i)−f(A). Submodularity is
equivalent to fA(i) being non-increasing as a function of A for every fixed i.

Given a matroid M = (N, I), we denote by rM the rank function of M
where rM(A) = max{|S| : S ⊆ A, S ∈ I}. The rank function is monotone
and submodular.

By P (M), we denote the matroid polytope ofM:

P (M) = conv {1I | I ∈ I},

where 1I is the characteristic vector of I. For a vector y ∈ R
N , we de-

note y(S) =
∑

j∈S yj. Edmonds showed that an equivalent definition of the
matroid polytope is

P (M) = {y ≥ 0 | ∀S; y(S) ≤ rM(S)}.

Further, given a membership oracle for M (i.e., given S ⊆ N , the oracle
answers whether S ∈ I or not), one can optimize linear functions over P (M).
(See [51] for more details.)

A base of M is a set S ∈ I such that rM(S) = rM(N). The base
polytope B(M) of M is given by {y ∈ P (M) | y(N) = rM(N)}. The
extreme points of B(M) are the characteristic vectors of the bases of M.
Given the problem maxS∈I f(S), where M = (N, I) is a matroid, there
always exists an optimum solution S∗ where S∗ is a base of M. Note that
this is false if f is not monotone. Thus, for monotone f , it is equivalent to
consider the problem maxS∈B f(S) where B is the set of bases ofM. See [51]
for more details on matroids and polyhedral aspects.

3.2 Overview

Given a monotone submodular function f : 2N → R
+ and a matroid M =

(N, I), we wish to solve maxS∈I f(S). Let yi ∈ {0, 1} be a variable that
indicates whether i ∈ S. Then maxS∈I f(S) can be written as the following
problem: max{f(y) : y ∈ P (M), y ∈ {0, 1}N}. As we observed in Sec-
tion 3.1, this is equivalent to max{f(y) : y ∈ B(M), y ∈ {0, 1}N} where
B(M) is the base polytope ofM.
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Our framework relies on the ability to solve (at least approximately) a
relaxation of the problem in polynomial time. To obtain a relaxation, we
define F : [0, 1]N → R+ by

F (y) = E[f(ŷ)]

where ŷ a randomly rounded version of y, with each coordinate ŷj indepen-
dently rounded to 1 with probability yj and 0 otherwise. Our algorithm
proceeds as follows.

1. We consider the (non-linear) problem

max{F (y) : y ∈ P (M)}.
We show how to find y∗ ∈ P (M) such that F (y∗) ≥ (1− 1/e) ·OPT .

2. In the second stage, we use the pipage rounding technique to convert
y∗ into an integral solution S. Pipage rounding guarantees that at the
end, we have

f(S) ≥ F (y∗) ≥ (1− 1/e) ·OPT.
In keeping with the chronological order of how things evolved, we turn to

the second stage of our framework first.

3.3 Pipage rounding

Ageev and Sviridenko [2] developed an elegant technique for rounding solu-
tions of linear and non-linear programs that they called “pipage rounding”.
Subsequently, Srinivasan [54] and Gandhi et al. [25] interpreted some applica-
tions of pipage rounding as a deterministic variant of dependent randomized
rounding. In a typical scenario, randomly rounding a fractional solution of a
linear program does not preserve the feasibility of constraints. Nevertheless,
the techniques of [2, 54, 25] show that randomized rounding can be applied
in a certain controlled way to guide a solution that respects a certain class
of constraints. Gruia Calinescu, Chandra Chekuri and Martin Pál observed
that this framework can be also adapted to submodular maximization over a
matroid polytope, and this is the version of pipage rounding that we describe
here.

In the following, we assume that we start with a point y∗ in the basis
polytope B(M). The pipage rounding technique aims to convert y∗ into
an integral solution. Given y ∈ [0, 1]n we say that i is fractional in y if
0 < yi < 1. For y ∈ P (M), a set A ⊆ N is tight if y(A) = rM(A). The
following well-known proposition follows easily from the submodularity of
the rank function rM.
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Proposition 3.2. If A and B are two tight sets with respect to y then A∩B
and A ∪ B are also tight with respect to y.

Proof. Using y(A) = rM(A), y(B) = rM(B), y(A ∩B) ≤ rM(A ∩ B), y(A ∪
B) ≤ rM(A ∪B), the submodularity of rM and the linearity of y, we get

y(A) + y(B) = rM(A) + rM(B) ≥ rM(A ∩B) + rM(A ∪B)

≥ y(A ∩ B) + y(A ∪ B) = y(A) + y(B).

Therefore, all inequalities above must be tight.

We are interested in tight sets that contain a fractional variable. Observe
that a tight set with a fractional variable has at least two fractional variables.
Given a tight set A with fractional variables i, j, we let yij(t) be the vector
obtained by adding t to yi, subtracting t from yj and leaving the other values
unchanged. We define a real-valued function F y

ij where F y
ij(t) = F (yij(t)).

We want to argue that F (yij(t)) cannot decrease for both t > 0 and t < 0,
and hence we can move in one of the two directions without losing on the
value of F (y). The following lemma gives us the property that we need.

Lemma 3.3. For any submodular f , if F (y) = E[f(ŷ)], then F y
ij is convex

for any y ∈ [0, 1]N and i, j ∈ N .

Proof. For S ⊆ N \ {i, j} and y ∈ [0, 1]N , let

py(S) = Pr[ŷ|N\{i,j} = 1S] =
∏

l∈S
yl

∏

l∈N\{i,j}\S
(1− yl).

Then

F (y) =
∑

S⊆N\{i,j}
py(S) ((1− yi)(1− yj)f(S) + (1− yi)yjf(S + j)

+yi(1− yj)f(S + i) + yiyjf(S + i+ j)).

We have F y
ij(t) = F (yij(t)). Let x = yij(t), i.e. xi = yi + t, xj = yj − t

and xl = yl for all l ∈ N \ {i, j}. Hence it follows that px(S) = py(S) for
S ⊆ N \ {i, j}. It can be seen that F (yij(t)) = F (x) = c2t

2 + c1t+ c0 where
c2, c1, c0 do not depend on t (they depend only on y and f). Thus to show
that F y

ij(t) is convex in t, it is sufficient to prove that c2 ≥ 0. It is easy to
check that

c2 =
∑

S⊆N\{i,j}
py(S)(−f(S) + f(S + j) + f(S + i)− f(S + i+ j)).

By submodularity, f(S + i) + f(S + j) ≥ f((S + i) ∩ (S + j)) + f((S + i) ∪
(S + j)) = f(S) + f(S + i+ j) which proves that c2 ≥ 0.
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Therefore, we will be able to modify the fractional variables yi, yj by
increasing one of them and decreasing the other, without decreasing the value
of F (y). We do this until we hit another constraint of the matroid polytope.
The subroutine HitWall performs this task. It returns a new tight set A,
which contains exactly one of i, j: either i ∈ A if the new tight constraint is
y(A) = r(A), or A = {j} if the new tight constraint is yj = 0. In the first
case, we can continue with a smaller tight set A ∩ T (due to Prop. 3.2). In
the second case, we restart with T = N .

Subroutine HitWall(y, i, j):
Denote A = {A ⊆ N : i ∈ A, j /∈ A};
Find δ = minA∈A(r(A)− y(A)) and A ∈ A achieving this;
If yj < δ then {δ ← yj, A← {j}};
yi ← yi + δ, yj ← yj − δ;
Return (y, A).

Algorithm PipageRound(y):
While (y is not integral) do
T ← N ;
While (T contains fractional variables) do

Pick i, j ∈ T fractional;
(y+, A+)← HitWall(y, i, j);
(y−, A−)← HitWall(y, j, i);
If F (y+) ≥ F (y−)

Then {y ← y+, T ← T ∩A+};
Else {y ← y−, T ← T ∩ A−};

EndWhile
EndWhile
Output y.

Lemma 3.4. Given y ∈ B(M) and oracle access to F (y), PipageRound(y)
outputs in polynomial time an integral solution S ∈ I of value f(S) ≥ F (y).

Proof. The algorithm does not alter a variable yi once yi ∈ {0, 1}. An in-
variant maintained by the algorithm is that y ∈ B(M) and T is a tight set.
To verify that y ∈ B(M), observe that y(N) = r(N) remains unchanged
throughout the algorithm; we need to check that y(S) ≤ r(S) remains sat-
isfied for all sets S. Consider the subroutine HitWall. The only sets whose
value y(S) increases are those containing i and not containing j, i.e. S ∈ A.
We increase yi by at most δ = minS∈A(r(S)− y(S)), therefore y(S) ≤ r(S)
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is still satisfied for all sets. We also make sure that we don’t violate nonneg-
ativity, by checking whether yj < δ. In case yj < δ, the procedure makes yj
zero and returns A = {j}.

Concerning the tightness of T , we initialize T ← N which is tight because
y ∈ B(M). After calling HitWall, we obtain sets A+, A− which are tight for
y+ and y−, respectively. The new set T is obtained by taking an intersection
with one of these sets; in any case, we get a new tight set T at the end of
the inner loop, due to Proposition 3.2.

Note that each of the sets A+, A− returned by HitWall contains exactly
one of the elements i, j. Therefore, the size of T decreases after the execution
of the inner loop. As long as we do not make any new variable integral, one
of the fractional variables yi, yj is still in the new tight set T and so we can in
fact find a pair of fractional variables in T . However, due to the decreasing
size of T , we cannot repeat this more than n − 1 times. At some point, we
must make a new variable integral and then we restart the inner loop with
T = N . The outer loop can also iterate at most n times, since the number
of integral variables increases after each outer loop.

The non-trivial step in the algorithm is the minimization of r(S)− y(S)
over A = {S ⊆ N : i ∈ S, j /∈ S}. Since r(S) − y(S) is a submodular
function, minimization can be implemented in polynomial time [21].

Finally, we need to show that the value of F (y) does not decrease through-
out the algorithm. In each step, we choose the larger of F (y+) = F y

ij(ǫ
+) and

F (y−) = F y
ij(ǫ

−) where ǫ− < 0 < ǫ+. If both values were smaller than
F (y), we would have F y

ij(ǫ
−) < F y

ij(0) > F y
ij(ǫ

+) but this would contradict
Lemma 3.3 which says that F y

ij is convex.

We remark that in fact we do not have access to exact values of F (y).
However, we can estimate F (y) by random sampling. This can be done
within an additive error ±OPT/poly(n) in polynomial time. Due to this, we
may lose o(OPT ) overall which decreases the approximation factor by o(1);
we omit the details.

3.4 The smooth greedy algorithm

Now we return to the first stage, where we need to find a point y ∈ B(M)
with a good value of F (y) = E[f(ŷ)]. What follows is a conceptual descrip-
tion of our algorithm. It can be viewed as a continuous greedy algorithm,
which strives to move in the direction of maximum gain, while staying in the
matroid polytope.
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A dynamic process.

• For each y ∈ [0, 1]N , define I(y) ∈ I to be an independent set maxi-
mizing

∑

j∈I
∂F
∂yj

(y).

• Let y(t) be a trajectory starting at y(0) = ~0 and satisfying the following
differential equation:

dy

dt
= 1I(y).

• We run this process for t ∈ [0, 1] and return y(1).

We sketch an argument explaining why this leads to a (1−1/e)-approximation.
First, it can be seen that y(1) is a convex linear combination of independent
sets,

y(1) =

∫ 1

0

1I(y(t))dt.

In fact, each I(y(t)) is WLOG a basis of M, and hence y(1) ∈ B(M). To
analyze the value of F (y(t)), we first show the following bound.

Lemma 3.5. Let OPT = maxS∈I f(S). Consider any y ∈ [0, 1]N and let R
denote a random set corresponding to ŷ, with elements sampled independently
according to yj. Then

OPT ≤ F (y) + max
I∈I

∑

j∈I
E[fR(j)] ≤ F (y) + max

I∈I

∑

j∈I

∂F

∂yj
.

Proof. Fix an optimal solution O ∈ I. By submodularity, we have

OPT = f(O) ≤ f(R) +
∑

j∈O
fR(j)

for any set R. By taking the expectation over a random R as above,

OPT ≤ E[f(R)+
∑

j∈O
fR(j)] = F (y)+

∑

j∈O
E[fR(j)] ≤ F (y)+max

I∈I

∑

j∈I
E[fR(j)].

To prove the second inequality in the lemma, write explicitly

F (y) = E[f(R)] =
∑

R⊆N
f(R)

∏

j∈R
yj
∏

j /∈R
(1− yj).

Note that F (y) is linear in each yj and therefore ∂F
∂yj

= F (y|yj = 1)−F (y|yj =

0) = E[f(R + j)] − E[f(R − j)]. By monotonicity, ∂F
∂yj
≥ E[f(R + j)] −

E[f(R)] = E[fR(j)].
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Now consider how F (y(t)) evolves as time progresses. We know that
dy
dt

= 1I(y) and I(y) is an independent set maximizing
∑

j∈I
∂F
∂yj

. By the chain

rule, we get

dF

dt
=
∑

j

∂F

∂yj

dyj
dt

=
∑

j∈I(y)

∂F

∂yj
= max

I∈I

∑

j∈I

∂F

∂yj
≥ OPT − F (y(t))

using Lemma 3.5. This implies that F (y(t)) dominates the solution of the
differential equation φ′(t) = OPT −φ(t), which is φ(t) = (1− e−t)OPT . For
t = 1, we get F (y(1)) ≥ φ(1) = (1− 1/e)OPT .

Inspired by the continuous dynamic process above, we design a finite
algorithm that mimicks this process. Recall that the process follows a path
whose direction is given by replacing F (y) locally by a linear function and
optimizing it over I. Luckily, we are able to find such a direction efficiently.

The Smooth Greedy Algorithm.

1. Let δ = 1/n2 where n = |N | is the total number of elements. Start
with t = 0 and y(0) = ~0.

2. Let R(t) contain each item j independently with probability yj(t). For
each j ∈ N , estimate

ωj(t) = E[fR(t)(j)].

By repeated sampling, we can get an estimate within an additive error
±OPT/poly(n) in polynomial time w.h.p.

3. Let I(t) be an independent set inM, maximizing
∑

j∈I ωj(t). This can
be found by the greedy algorithm in linear time. Let

y(t+ δ) = y(t) + δ · 1I(t).

4. Set t := t+ δ; if t < 1, go back to Step 2. Otherwise, return y(1).

Lemma 3.6. The fractional solution y found by the Smooth Greedy Algo-
rithm is contained in the basis polytope B(M) and

F (y) ≥
(

1− 1

e
− o(1)

)

·OPT
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Proof. In each time step, y increases by δ · 1I where I is a maximum-weight
independent set, WLOG a basis of M. The final fractional solution y(1) is
a sum of 1/δ such vectors, hence it is contained in B(M).

Our goal is to estimate how much F (y) increases during one step of the
algorithm. Consider a random set R(t) corresponding to ŷ(t), and an in-
dependently random set D(t) that contains each item j independently with
probability ∆j(t) = yj(t + δ) − yj(t). I.e., ∆(t) = y(t + δ) − y(t) = δ · 1I(t)
and D(t) is a random subset of I(t) where each element appears inde-
pendently with probability δ. It can be seen easily that F (y(t + δ)) =
E[f(R(t + δ))] ≥ E[f(R(t) ∪ D(t))]. This follows from monotonicity, be-
cause R(t+ δ) contains items independently with probabilities yj(t) + ∆j(t),
while R(t) ∪D(t) contains items independently with (smaller) probabilities
1− (1− yj(t))(1−∆j(t)).

Now we are ready to estimate how much F (y) gains at time t. Again,
it is important that the probability that any item appears in D(t) is very
small, so we can focus on the contributions from singleton sets D(t). From
the discussion above, we obtain

F (y(t+ δ))− F (y(t)) ≥ E[f(R(t) ∪D(t))− f(R(t))]

≥
∑

j

Pr[D(t) = {j}] E[fR(t)(j)]

=
∑

j∈I(t)
δ(1− δ)|I(t)|−1E[fR(t)(j)]

≥ δ(1− δ)n−1
∑

j∈I(t)
E[fR(t)(j)].

Recall that I(t) is an independent set maximizing
∑

j∈I E[fR(t)(j)]. Hence,

F (y(t+ δ))− F (y(t)) ≥ δ(1− δ)n−1 max
I∈I

∑

j∈I
E[fR(t)(j)]

≥ δ(1− δ)n−1(OPT − F (y(t)))

using the first inequality in Lemma 3.5. From here, OPT − F (y(t + δ)) ≤
(1 − δ(1 − δ)n−1)(OPT − F (y(t))) and by induction, OPT − F (y(kδ)) ≤
(1− δ(1− δ)n−1)k OPT. With our choice of δ = 1/n2 and k = n2, we get

OPT − F (y(1)) ≤
(

1− 1

n2

(

1− 1

n2

)n−1
)n2

OPT ≤ e−(1−1/n)OPT.

Therefore, F (y(1)) ≥ (1− 1/e− o(1))OPT .
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Summary. This completes the proof of Theorem 3.1. First we find a point
y∗ ∈ B(M) using the smooth greedy algorithm, which satisfies F (y∗) ≥
(1 − 1/e − o(1))OPT . Then, we convert y∗ into an integral solution S ∈ I
such that f(S) ≥ F (y∗) − o(OPT ). Both stages rely on random sampling
estimates which succeed with high probability.

3.5 Extensions of submodular functions

In this section, we consider some alternative ways of extending a monotone
submodular function f : 2N → R

+ to a continuous function f̃ : [0, 1]N →
R

+. Our initial hope was to find an extension such that f̃(y) could be
optimized over P (M) in polynomial time and the value of the solution could
be compared approximately with F (y). These considerations helped us gain
a lot of insight into the problem, and they also led to the LP-based algorithm
for weighted rank sums which appeared in [4].

Extension f+: Our first candidate for f̃ is an extension similar to the
objective function of the “Configuration LP” [22, 18, 19].

• f+(y) = max
{

∑

S⊆N αSf(S) :
∑

S αS ≤ 1, αS ≥ 0 & ∀j;∑S:j∈S αS ≤ yj

}

.

Extension f ∗: Another candidate is a function appearing in [45] and subse-
quently [46, 56, 57], where it is used indirectly in the analysis of the greedy
algorithm for submodular function maximization:

• f ∗(y) = min
{

f(S) +
∑

j∈N fS(j)yj : S ⊆ N
}

.

Unfortunately, as we show later (in Section 3.7), it is NP-hard to optimize
f+(y) and f ∗(y) over matroid polytopes. Still, f+(y) and f ∗(y) provide
interesting information about the problem.

It is known and easy to see that for y ∈ {0, 1}N , both f+ and f ∗ functions
coincide with f and thus they are indeed extensions of f . For any y ∈ [0, 1]N ,
we first show the following.

Lemma 3.7. For any monotone submodular f , F (y) ≤ f+(y) ≤ f ∗(y).

Proof. To see the first inequality, let αS =
∏

i∈S yi
∏

i/∈S(1 − yi) be the
probability that we obtain ŷ = χS by independent rounding of y. Since
∑

S:j∈S αS = Pr[ŷj = 1] = yj, this is a feasible solution for f+(y) and there-
fore f+(y) ≥∑S αSf(S) = E[f(ŷ)] = F (y).
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For the second inequality, consider any feasible vector αS and any set
T ⊆ N :

∑

S

αSf(S) ≤
∑

S

αS

(

f(T ) +
∑

j∈S
fT (j)

)

≤ f(T ) +
∑

j∈N
yjfT (j)

using submodularity and the properties of αS. By taking the maximum on
the left and the minimum on the right, we obtain f+(y) ≤ f ∗(y).

It is tempting to conjecture that f+(y) and f ∗(y) are in fact equal, due
to some duality relationship. However, this is not the case: both inequalities
in Lemma 3.7 can be sharp and both gaps can be close to 1 − 1/e. For the
first inequality, consider the submodular function f(S) = min{|S|, 1} and
yj = 1/n for all j; then F (y) = 1 − (1 − 1/n)n and f+(y) = 1. For the
second inequality, choose a large but fixed k, f(S) = 1 − (1 − |S|/n)k and
yj = 1/k for all j. The reader can verify that f+(y) = 1− (1− 1/k)k, while
f ∗(y) ≥ 1− k/n→ 1 as n→∞. We prove that 1− 1/e is the worst possible
gap for both inequalities. Moreover, even the gap between F (y) and f ∗(y) is
bounded by 1− 1/e.

Lemma 3.8. For any monotone submodular f , F (y) ≥
(

1− 1
e

)

f ∗(y).

Proof. For each element j ∈ N , set up an independent Poisson clock Cj of rate
yj, i.e. a device which sends signals at random times, in any infinitesimal time
interval of size dt independently with probability yjdt. We define a random
process which starts with an empty set S(0) = ∅ at time t = 0. At any time
when the clock Cj sends a signal, we include element j in S, which increases
its value by fS(j). (If j is already in S, nothing happens; the marginal value
fS(j) is zero in this case.) Denote by S(t) the random set we have at time t.
By the definition of a Poisson clock, S(1) contains element j independently
with probability 1− e−yj ≤ yj. Since such a set can be obtained as a subset
of the random set defined by ŷ, we have E[f(S(1))] ≤ F (y) by monotonicity.
We show that E[f(S(1))] ≥ (1− 1/e)f ∗(y) which will prove the claim.

Let t ∈ [0, 1]. Condition on S(t) = S and consider how f(S(t)) changes in
an infinitesimal interval [t, t+dt]. The probability that we include element j
is yjdt. Since dt is very small, the events for different elements j are effectively
disjoint. Thus the expected increase of f(S(t)) is (up to O(dt2) terms)

E[f(S(t+ dt))− f(S(t)) | S(t) = S] =
∑

j∈N
fS(j)yjdt ≥ (f ∗(y)− f(S))dt

using the definition of f ∗(y). We divide by dt and take the expectation over
S:

1

dt
E[f(S(t+ dt))− f(S(t))] ≥ f ∗(y)− E[f(S(t))].
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We define φ(t) = E[f(S(t))], i.e. dφ
dt
≥ f ∗(y)−φ(t). We solve this differential

inequality by considering ψ(t) = etφ(t) and dψ
dt

= et(dφ
dt

+ φ(t)) ≥ etf ∗(y).
Since ψ(0) = φ(0) = 0, this implies

ψ(x) =

∫ x

0

dψ

dt
dt ≥

∫ x

0

etf ∗(y)dt = (ex − 1)f ∗(y)

for any x ≥ 0. We conclude that E[f(S(t))] = φ(t) = e−tψ(t) ≥ (1−e−t)f ∗(y)
and F (y) ≥ E[f(S(1))] ≥ (1− 1/e)f ∗(y).

We remark that we did not actually use submodularity in the proof of
Lemma 3.8! Formally, it can be stated for all monotone functions f . However,
f ∗(y) is not a proper extension of f when f is not submodular (e.g., f ∗(y) is
identically zero if f(S) = 0 for |S| ≤ 1). So the statement of Lemma 3.8 is
not very meaningful in this generality.

To summarize what we have proved so far, we have two relaxations of our
problem:

• max{f+(y) : y ∈ P (M)}

• max{f ∗(y) : y ∈ P (M)}

Our framework together with Lemma 3.7 and Lemma 3.8 implies that both
of these relaxations have integrality gap at most 1−1/e (and this is tight, see
Section 3.8). Unfortunately, there exist submodular functions f for which it
is NP-hard to solve either of these relaxations. (See Theorem 3.10) We show
how to use the framework efficiently in a restricted case of interest which is
described in the following section.

3.6 Algorithm for weighted rank sums

We can use the extension f+(y) to achieve an LP-based (1−1/e)-approximation
for any submodular function f that can be expressed as a weighted rank sum.
Here we describe this class of functions in detail.

Weighted rank functions of matroids: Given a matroid (N,X ) and a
weight function w : N → R

+, we define a weighted rank function g : 2N →
R

+,

g(S) = max{
∑

j∈I
wj : I ⊆ S & I ∈ X}.

It is well known that such a function is monotone and submodular. A simple
special case is when X = {I | |I| = 1}. Then g(S) returns simply the
maximum-weight element of S; this will be useful in our application to GAP.



3.6. ALGORITHM FOR WEIGHTED RANK SUMS 55

Weighted rank sums: We consider functions f : 2N → R
+ of the form

f(S) =
∑m

i=1 gi(S) where each gi is a weighted rank function for matroid
(N,Xi) with weights wij. Again, f(S) is monotone and submodular.

The functions that can be generated in this way form a fairly rich subclass
of monotone submodular functions. In particular, they generalize submod-
ular functions arising from coverage systems. Coverage-type submodular
functions can be obtained by considering a simple uniform matroid (N,X )
with X = {I ⊆ N | |I| ≤ 1}. For a collection of sets {Aj}j∈N on a ground
set [m], we can define m collections of weights on N , where wij = 1 if
Aj contains element i, and 0 otherwise. Then the weighted rank function
gi(S) = max{wij : j ∈ S} is simply an indicator of whether

⋃

j∈S Aj covers
element i. The sum of the rank functions gi(S) gives exactly the size of this

union f(S) =
∑m

i=1 gi(S) =
∣

∣

∣

⋃

j∈S Aj

∣

∣

∣
. Generalization to the weighted case

is straightforward.

LP formulation for weighted rank sums: For a submodular function
given as f(S) =

∑m
i=1 gi(S) where gi(S) = max{wi(I) : I ⊆ S, I ∈ Xi},

consider an extension g+
i (y) for each gi, as defined in Section 3.5:

g+
i (y) = max{

∑

S⊆N
αSgi(S) :

∑

S

αS ≤ 1, αS ≥ 0 & ∀j;
∑

S:j∈S
αS ≤ yj}.

Here, we can assume without loss of generality that αS is nonzero only for
S ∈ Xi (otherwise replace each S by a subset I ⊆ S, I ∈ Xi, such that
gi(S) = wi(I)). Therefore, g+

i can be written as

g+
i (y) = max{

∑

I∈Xi

αI
∑

j∈I
wij :

∑

I∈Xi

αI ≤ 1, αI ≥ 0 & ∀j;
∑

I∈Xi:j∈I
αI ≤ yj}.

We can set xij =
∑

I∈Xi:j∈I αI and observe that a vector xi = (xij)j∈N can
be obtained in this way if and only if it is a convex linear combination of
independent sets; i.e., if it is in the matroid polytope P (Xi). The objective
function becomes

∑

j∈N wij
∑

I∈Xi:j∈I αI =
∑

j∈N wijxij and so we can write
equivalenly:

g+
i (y) = max{

∑

j∈N
wijxij : xi ∈ P (Xi) & ∀j; xij ≤ yj}.

We sum up these functions to obtain an extension of f , f̃(y) =
∑m

i=1 g
+
i (y).

This leads to the following LP formulation for the problem max{f̃(y) : y ∈
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P (M)}:

max
m
∑

i=1

∑

j∈N
wijxij;

∀i, j; xij ≤ yj,

∀i; xi ∈ P (Xi),
y ∈ P (M).

We can solve the LP using the ellipsoid method, since a separation oracle
can be efficiently implemented for each matroid polytope, and therefore also
for this LP. To obtain a (1 − 1/e)-approximation via the above LP using
the pipage rounding framework from Section 3.3, it is sufficient to prove the
following lemma.

Lemma 3.9. For any weighted rank sum f , F (y) ≥ (1− 1/e)f̃(y).

Proof. By Lemma 3.8, F (y) ≥ (1− 1/e)f ∗(y) and hence it suffices to prove
that f ∗(y) ≥ f̃(y). By Lemma 3.7, g+

i (y) ≤ g∗i (y) where g∗i (y) = minSi
(gi(Si)+

∑

j yjgi,Si
(j)). (Here, gi,Si

(j) = gi(Si + j)− gi(Si).) Consequently,

f̃(y) =
m
∑

i=1

g+
i (y) ≤

m
∑

i=1

min
Si

(gi(Si) +
∑

j∈N
yjgi,Si

(j))

≤ min
S

m
∑

i=1

(gi(S) +
∑

j∈N
yjgi,S(j)) = min

S
(f(S) +

∑

j∈N
yjfS(j)) = f ∗(y).

3.7 NP-hardness results for our relaxations

In this section, we show negative results concerning the possibility using a
linear programming approach based on the relaxations max{f+(y) : y ∈
P (M)} or max{f ∗(y) : y ∈ P (M)}.

Theorem 3.10. There is δ > 0 such that for a given matroid M it is NP-
hard to find any point z ∈ P (M) such that f+(z) ≥ (1 − δ) max{f+(y) :
y ∈ P (M)}. Similarly, it is NP-hard to find any point z ∈ P (M) such
that f ∗(z) ≥ (1 − δ) max{f ∗(y) : y ∈ P (M)}. These results hold even for
coverage-type submodular functions and partition matroids.

We present the proof in two parts.
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3.7.1 Optimizing f+(y)

Proposition 3.11. There is δ > 0 such that for a given monotone submod-
ular function f and matroid M, it is NP-hard to find any point y∗ ∈ P (M)
such that

f+(y∗) ≥ (1− δ) max{f+(y) : y ∈ P (M)}.

Proof. We use the following hardness result for the max-k-cover problem
[17, 19]:

For any ǫ > 0, given a collection of sets {Si ⊆ U | i ∈ N} where |Si| = s
and |U | = ks, it is NP-hard to distinguish the case where U can be covered by
k disjoint sets Si and the case where any collection of k sets covers at most
(1− 1/e+ ǫ)|U | elements.

Given such a collection of sets, we define a coverage function f(A) =
|⋃i∈A Si|. A natural matroid here is the uniform matroid M = {I ⊆ N |
|I| ≤ k}, i.e. P (M) = {y ∈ [0, 1]N |∑ yi ≤ k}.

Note that if there are k sets indexed by A, |A| = k, such that
⋃

i∈A Si =
U , then 1A ∈ P (M) and f+(1A) = f(A) = |U |. On the other hand, if
there are no such k sets, then max{f+(y) : y ∈ P (M)} < |U |, because
f+(y) for any y ∈ P (M) is a convex linear combination

∑

αAf(A) where
∑

αA|A| ≤ k, and therefore all sets in the linear combination cannot satisfy
f(A) = |U |. This proves that it is NP-hard to compute max{f+(y) : y ∈
P (M)}. However, we want to prove NP-hardness even for the problem of
finding a (near-)optimal point y, without computing its value.

We extend the set system by k additional sets T1, . . . , Tk, each containing
(1 − 1

4e
)s elements disjoint from everything else. The index set becomes

N ′ = N ∪K, |K| = k. Our goal is to show that in case of a YES instance
(k sets covering U), the optimum is attained for a vector y supported by N .
In case of a NO instance, it is more profitable to use the sets T1, . . . , Tk and
therefore the optimal point is y = 1K . By careful analysis, we get hardness
even for finding an approximately optimal point.

First, consider a YES instance, where f(A) = |U | = ks for A ⊆ N, |A| =
k. Then f+(1A) = ks is clearly an optimum over P (M), because f(B) ≤
|B|s for any B ⊆ N ′ and hence f+(y) ≤ ∑i∈N ′ yis ≤ ks for y ∈ P (M).
Moreover, any vector y such that

∑

i∈K yi > 4eδk has f+(y) < (1 − δ)ks,
because each element i ∈ K can contribute only (1 − 1

4e
)s rather than s.

Therefore, any (1− δ)-approximate optimum satisfies
∑

i∈K yi ≤ 4eδk.

Next, consider a NO instance, i.e. for any A ⊆ N, |A| ≤ k, we have
f(A) ≤ (1− 1/e+ ǫ)ks. By submodularity, we get f(A) ≤ (1− 1/e+ ǫ)|A|s
for |A| > k, since otherwise we could find a subset A′ ⊆ A of size k and value
f(A′) > (1−1/e+ǫ)ks. We also have f(A) ≤ |A|s for any |A| < (1−1/e+ǫ)k.
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By combining these 3 bounds in the ranges of |A| between [(1−1/e+ ǫ)k, k],
above k and below (1− 1/e+ ǫ)k, we obtain

f(A) ≤ (1− 1/e+ ǫ)(|A|+ (1/e− ǫ)k)s

for all A ⊆ N . Since this bound is linear in |A|, it implies a similar bound
for f+(y), y ∈ [0, 1]N : Assume

∑

i∈N yi = a. Then f+(y) is a convex linear
combination

∑

A⊆N αAf(A) where
∑

A⊆N αA|A| = a and
∑

A⊆N αA = 1.
Consequently,

f+(y) ≤ (1− 1/e+ ǫ)(a + (1/e− ǫ)k)s.

Now assume y ∈ [0, 1]N∪K where
∑

i∈N yi = a and
∑

i∈K yi = k − a. Since
each element of K contributes (1− 1

4e
)s, independently of other elements, we

have

f+(y) ≤ (1− 1

e
+ ǫ)(a+ (

1

e
− ǫ)k)s+ (k − a)(1− 1

4e
)s

≤ (1 +
3

4e
− 1

e2
)ks− (

3

4e
− ǫ)as.

If a ≥ (1 − 4eδ)k, we get f+(y) ≤ (1 − 1
e2

+ O(ǫ + δ))ks, while f+(1K) =
(1− 1

4e
)ks is a substantially larger value. Therefore, any near-optimal point

y ∈ P (M) must satisfy
∑

i∈K yi = k − a > 4eδk.
If we could find any (1− δ)-approximate optimum y ∈ P (M), we could

test whether
∑

i∈K yi is above or below 4eδk and hence distinguish YES and
NO instances.

3.7.2 Computing f ∗(y)

In this section, we show that it is NP-hard to compute f ∗(y).

Proposition 3.12. Let G = (V,E) be a graph. For S ⊆ V , let c(S) denote
the number of edges incident with S, and let f(S) = |S|+c(S). Then there is
δ > 0 such that it is NP-hard to (1− δ)-approximate f ∗(y) for a given graph
G and y = (3/4, . . . , 3/4).

Note that c(S) is a coverage-type submodular function and hence f(S)
also, by adding one distinct element to each set in the system.

Proof. Let’s analyze the extension f ∗(y) = minS f(S) +
∑

j yjfS(j) for this
particular submodular function. Here, fS(j) = 1 + cS(j) where cS(j) is the
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number of edges incident with j but not with S. For y = (3/4, . . . , 3/4), we
get

f ∗(y) = min
S
|S|+c(S)+

3

4

∑

j∈V \S
(1+cS(j)) = min

S
|S|+c(S)+

3

4
|V \S|+3

2
|E(S̄)|.

Here, E(S̄) denotes the edges disjoint from S, which get a contribution of
3/4 from each endpoint. Using c(S) + |E(S̄)| = |E| and joining the terms,
we get

f ∗(y) = min
S

3

4
|V |+ 3

2
|E|+ 1

4
|S| − 1

2
c(S).

Note that if S doesn’t cover all edges, we can decrease this expression by
including another vertex in S, covering a new edge. The minimum can be
attained only when all edges are covered by S and c(S) = |E|. Therefore,
f ∗(y) = 3

4
|V |+ |E|+ 1

4
k∗ where k∗ is the minimum vertex cover of G. Since

this number is NP-hard to compute, so is f ∗(y). In fact, vertex cover is
APX-hard, even for instances where |E| = O(|V |), and hence f ∗(y) is also
APX-hard.

3.7.3 Optimizing f ∗(y)

Proposition 3.13. There is δ > 0 such that for a given monotone submod-
ular function f and matroid M, it is NP-hard to find any point y∗ ∈ P (M)
such that

f ∗(y∗) ≥ (1− δ) max{f ∗(y) : y ∈ P (M)}.

Proof. We use the following hardness result on Vertex Cover in r-uniform
hypergraphs [12]:

For any ǫ > 0 and r > 2/ǫ constant, it is NP-hard for a given r-uniform
hypergraph H on n vertices to distinguish whether the minimum vertex cover
in H has size at most ǫn or at least (1− ǫ)n.

Here, the reduction is somewhat less intuitive. We denote the vertices
of H by V , edges by E, and we define our ground set to be N = V ′ ∪ V ′′,
a union of two disjoint copies of V . In other words, we produce two clones
j′, j′′ for each vertex j ∈ V . Our submodular function is the following:

f(S) = |S ∩ V ′|+ 2|S ∩ V ′′|+ c(S)

where c(S) is the number of edges e ∈ E such that S contains some clone of
a vertex in e. In other words, c(S) is the vertex-cover function for a derived
hypergraph where each vertex is replaced by two clones.
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We prove that it is NP-hard to optimize f ∗(y) over P (M) for the following
matroid:

M = {I ⊆ V ′ ∪ V ′′ | ∀j ∈ V ; |I ∩ {j′, j′′}| ≤ 1},
i.e. we allow at most one clone of each vertex to be chosen. The matroid
polytope P (M) is defined by the constraints yj′ + yj′′ ≤ 1 for each vertex j.
Since the maximum of a monotone function over P (M) must be attained on
the basis face of P (M), we can assume that yj′ + yj′′ = 1 for any candidate
for an optimum.

Observe that maximizing f(S) over independent sets S ∈ M yields
f(V ′′) = 2n + |E|, which does not depend on the structure of H in any
way. However, f ∗(y) for fractional vectors y ∈ P (M) will depend on the
minimum vertex cover of H in a way similar to the previous section. Then
the value can be possibly larger than 2n + |E|. The intuition here is that if
the minimum vertex cover is very small, the gain for a fractional vector is not
significant and it is more profitable to take y = 1V ′′ where f ∗(y) = 2n+ |E|.
On the other hand, if the minimum vertex cover is very large, the gain for
a fractional solution outweighs the loss incurred by the fact that elements of
V ′ contribute 1 rather than 2 to f(S). Then we can achieve a value close to
7
3
n + |E|, for yj′ = 1/3, yj′′ = 2/3. (The reader can verify that this is the

exact optimum when the minimum vertex cover is |V | = n.) Note that the
optimal point does not necessarily indicate what the minimum vertex cover
is, but testing how close the optimal point is to being integral can help us
decide about the size of the minimum vertex cover.

Let’s write f ∗(y) in the following form:

f ∗(y) = min
S
f(S) +

∑

i∈N
yifS(i)

= min
S
|S ∩ V ′|+ 2|S ∩ V ′′|+ c(S) + y(V ′ \ S) + 2y(V ′′ \ S) +

∑

e:e∩S=∅
y(e).

Again, we want to argue that the minimum is attained for a vertex cover.
We assume that yj′ + yj′′ = 1 for each pair of clones, i.e. we get y(e) = r > 4
for each edge. Therefore, covering a new edge by including a new vertex in
S can only decrease the subject of minimization and

f ∗(y) = min
vertex cover S

|S ∩ V ′|+ 2|S ∩ V ′′|+ y(V ′ \ S) + 2y(V ′′ \ S) + |E|.

Consider a YES instance, where H has a vertex cover of size ǫn. We can
set yj′ = 0, yj′′ = 1 for each j ∈ V and we get f ∗(y) = f(V ′′) = 2n + |E|.
We do not claim that this is exactly the optimum but we claim that any
approximately optimal point must be close to 1V ′′ . Suppose that for at least



3.7. NP-HARDNESS RESULTS FOR OUR RELAXATIONS 61

n/2 vertices, we have yj′ ≥ 1/6 and yj′′ ≤ 5/6. Then choosing S ⊆ V ′ to be
a vertex cover of size at most ǫn shows that

f ∗(y) = |S ∩ V ′|+ 2|S ∩ V ′′|+ y(V ′ \ S) + 2y(V ′′ \ S) + |E|

≤ ǫn+ y(V ′) + 2y(V ′′) + |E| ≤ ǫn+
n

2

(

1

6
+ 2 · 5

6

)

+
n

2
(0 + 2 · 1) + |E|

≤
(

2− 1

12
+ ǫ

)

n+ |E|.

For sufficiently small ǫ, this is smaller than the optimum. Thus for any
near-optimal point y ∈ P (M), more than n/2 vertices must satisfy yj′ <
1/6, yj′′ > 5/6.

On the other hand, consider a NO instance, where any vertex cover has
size at least (1− ǫ)n. Here, let’s choose y∗j′ = 1/3, y∗j′′ = 2/3 for each j ∈ V .
This gives

f ∗(y∗) = |S∩V ′|+2|S∩V ′′|+1

3
|V ′\S|+4

3
|V ′′\S|+|E| = 2

3
|S|+1

3
|V ′|+4

3
|V ′′|+|E|

for some vertex cover S. Since |S| ≥ (1− ǫ)n, we have

f ∗(y∗) ≥ 2

3
(1− ǫ)n+

1

3
n+

4

3
n + |E| =

(

7

3
− 2

3
ǫ

)

n+ |E|.

We claim that any near-optimal point y must be close y∗. Suppose on the
contrary that there are at least n/2 vertices for which yj′ ≤ 1/6 and yj′′ ≥
5/6. Let

S = {j′ ∈ V ′ | yj′ ≥ 1/3} ∪ {j′′ ∈ V ′′ | yj′ < 1/3}.
This is a vertex cover, containing exactly one clone of each vertex. Note that
we have yj′ < 1/3 for j′ ∈ V ′ \ S, and at least n/2 of these coordinates in
fact satisfy yj′ ≤ 1/6. For j′′ ∈ V ′′ \ S, we have yj′′ ≤ 2/3. Therefore

f ∗(y) ≤ |S ∩ V ′|+ 2|S ∩ V ′′|+ y(V ′ \ S) + 2y(V ′′ \ S) + |E|

≤ |S ∩ V ′|+ 2|S ∩ V ′′|+
(

1

3
|V ′ \ S| − n

2
· 1
6

)

+
4

3
|V ′′ \ S|+ |E|

= |S|+ |V ′′|+ 1

3
|(V ′ ∪ V ′′) \ S| − 1

12
n+ |E| = 7

3
n− 1

12
n + |E|

which is smaller than f ∗(y∗). Therefore, for any near-optimal vector, more
than n/2 vertices must satisfy yj′ > 1/6, yj′′ < 5/6. If we could find such a
near-optimal vector y, we could distinguish YES and NO instances by testing
how many vertices satisfy this condition. We note that the hard instances of
H in [12] have constant (albeit large) degrees, therefore |E| = O(n) and the
hardness gap is a constant factor.
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3.8 Integrality gaps of our relaxations

In this section, we show that the integrality gap for both of our relaxations,
max{f+(y) : y ∈ P (M)} and max{f ∗(y) : y ∈ P (M)} can be arbitrarily
close to 1 − 1/e, even for coverage-type submodular functions. This might
seem unsurprising, since we have a (1− 1/e+ ǫ)-inapproximability result for
the discrete optimization problem already. However, let’s not forget that
these relaxations themselves are NP-hard to solve in the value oracle model.
Thus it is plausible that by having some means to solve them (e.g., a demand
oracle), we might achieve an approximation better than 1− 1/e. But this is
not the case.

Proposition 3.14. The relaxation max{f+(y) : y ∈ P (M)} can have an
integrality gap arbitrarily close to 1−1/e, even for a coverage-type submodular
function and a partition matroid.

Since we know f+(y) ≤ f ∗(y), we get at least the same gap for max{f ∗(y) :
y ∈ P (M)} as well.

Proof. Let X = X1 ∪ . . . ∪ Xn and let M = (X, I) be a partition matroid
where I ∈ I iff |I ∩ Xi| ≤ 1 for each i. We also define a submodular
function f : X → R in the following way: Let T be a random set containing
independently one random element from each Xi, and let

f(S) = Pr
T

[S ∩ T 6= ∅].

This is a coverage-type submodular function, since probability is measure on
a probability space and the event [S ∩ T 6= ∅] can be written as a union of
events

⋃

j∈S[j ∈ T ].
For any independent set I ∈ I, we have

f(I) = Pr
T

[I ∩ T 6= ∅] ≤ 1− (1− 1/n)n

where equality is achieved when I contains exactly one element from each
Xi.

On the other hand, consider a fractional vector y ∈ P (M) where each
element j ∈ X gets value yj = 1/n. This is a convex combination of inde-
pendent sets, hence a feasible vector in P (M). What is the value of f+(y)?
By the definition of f+(y),

f+(y) = max

{

∑

S⊆X
αSf(S) :

∑

S

αS ≤ 1, αS ≥ 0 & ∀j;
∑

S:j∈S
αS ≤ yj

}

.
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We choose αXi
= 1/n for each i = 1, 2, . . . , n. Then

∑

S:j∈S αS = 1/n because
each element appears in exactly one set Xi. Also,

f(Xi) = Pr
T

[T ∩Xi] = 1

since T always contains some element of Xi. Hence, f+(y) ≥ 1 and the
integrality gap is at least 1− (1− 1/n)n.
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Chapter 4

The Submodular Welfare
Problem

Problem: Given n players with utility functions wi : 2X → R+ which are
assumed to be monotone and submodular, find a partition X = S1∪S2∪. . .∪Sn
in order to maximize

∑n
i=1wi(Si).

This problem is sometimes referred to as combinatorial auctions, in which
case the players are referred to as bidders. However, in this thesis we do
not consider issues of auction design such as players not being necessarily
truthful. We regard this as an optimization problem where we have access to
the true utility functions that the players hold. We discussed in Section 1.1
how this access can be implemented. We consider two models: (a) the value
oracle model, and (b) the demand oracle model. We leave the (b) option to
the next chapter, and focus here on the value oracle model.

We already mentioned in Section 1.2.3 that the Submodular Welfare Prob-
lem is in fact a special case of submodular maximization under a matroid
constraint. We review the reduction here.

Reduction from Submodular Welfare to Submodular Maximization
over a Matroid. Let the set of players be P , the set of items Q, and for
each i ∈ P , let the respective utility function be wi : 2Q → R+. We define a
new ground set X = P ×Q, with a function f : 2X → R+ defined as follows:
Every set S ⊆ X can be written uniquely as S =

⋃

i∈P ({i} × Si). Then let

f(S) =
∑

i∈P
wi(Si).

The interpretation of P × Q is that we make |P | copies of each item, one
for each player. The function f(S) represents the total utility of all players

65
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after allocating the items in S to the respective players (assuming that we
actually have multiple copies of each item for different players).

However, in reality we can only allocate one copy of each item. Therefore,
let us define a partition matroidM = (X, I) as follows:

I = {S ⊆ X | ∀j; |S ∩ (P × {j})| ≤ 1}.

Then, it is easy to see that the Submodular Welfare Problem is equivalent
to the problem maxS∈I f(S).

Due to our results on submodular maximization under a matroid con-
straint (see Chapter 3), we obtain immediately the following.

Theorem 4.1. There is a randomized polynomial-time (1−1/e)-approximation
to the Submodular Welfare Problem in the value oracle model.

In addition, we include the following observations.

• The factor of 1 − 1/e, or in fact (1 − (1 − 1/n)n for n players, can
be achieved in expectation without any queries when the n players all
have the same submodular utility function.

• We give a (1−1/e)-approximation algorithm for n players (with possi-
bly different utility functions) which is simpler than the algorithm for
a general matroid constraint. In particular, we do not need the pipage
rounding technique.

Due to [36], (1−1/e)-approximation for Submodular Welfare in the value
oracle model is optimal unless P = NP . We provide unconditional evidence
that the 1− 1/e ratio cannot be improved in the value oracle model.

• Using polynomially many value queries, a factor better than 1 − (1 −
1/n)n for n players is impossible to achieve (regardless of P = NP ).
This holds even when all players have the same utility function.

• The same result holds for maximizing a monotone submodular func-
tion subject to a cardinality constraint; i.e. a better than (1 − 1/e)-
approximation for max{f(S) : |S| ≤ k} is impossible with polynomially
many value queries.
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4.1 A sampling lemma on submodular func-

tions

We prove a lemma about submodular function which will be useful in the
following. Roughly speaking, the lemma says that by combining random
subsets of given sets, we recover a good fraction of their values.

Lemma 4.2. Let w : 2X → R+ be a monotone submodular function and
A1(p1), . . ., An(pn) random sets, where each item of Ai appears in Ai(pi)
independently with probability pi. If

∑n
i=1 pi ≤ 1, then

E[w(A1(p1) ∪ A2(p2) ∪ . . . ∪ An(pn))] ≥
(

1−
(

1− 1

n

)n) n
∑

i=1

piwi(Ai).

We note that, although this is not important for our applications, the
sets A1, . . . , An need not be necessarily disjoint, and also the elements of
each Ai need not be sampled independently. The crucial assumption is that
the subsets Ai(pi) are sampled independently for different values of i.

First, we prove the following inequality, which is a generalization of
Lemma 2.3.

Lemma 4.3. Let w : 2X → R be submodular and A1, A2, . . . , An ⊆ X. For
each i independently, sample a random subset Ai(pi) which contains each
element of Ai with probability pi. Then

E[w(A1(p1) ∪ . . . ∪ An(pn))] ≥
∑

I⊆[n]

∏

i∈I
pi
∏

i/∈I
(1− pi) w

(

⋃

j∈I
Aj

)

.

Proof. We proceed by induction on n. Let’s condition on A1(p1) = A′
1, . . .,

An−1(pn−1) = A′
n−1. By Lemma 2.2 applied to g(S) = w(A′

1∪ . . .∪A′
n−1∪S),

we have

E[w(A′
1 ∪A′

2 ∪ . . . ∪ A′
n−1 ∪ An(pn))] ≥ pnw(A′

1 ∪ A′
2 ∪ . . . ∪A′

n−1 ∪An)
+(1− pn)w(A′

1 ∪ A′
2 ∪ . . . ∪A′

n−1).

Plugging in A′
i = Ai(pi) and taking the expectation, we get

E[w(A1(p1) ∪ . . . ∪An(pn))] ≥ pnE[w(A1(p1) ∪ . . . ∪ An−1(pn) ∪An)]
+(1− pn)E[w(A1(p1) ∪ . . . ∪ An−1(pn−1))].

Now we can use the inductive hypothesis for n− 1 sets:

E[w(A1(p1) ∪ . . . ∪ An−1(pn−1))] ≥
∑

I⊆[n−1]

∏

i∈I
pi

∏

i∈[n−1]\I
(1− pi) w

(

⋃

j∈I
Aj

)



68 CHAPTER 4. THE SUBMODULAR WELFARE PROBLEM

and the same for the submodular function h(S) = w(S ∪An):

E[w(A1(p1)∪. . . An−1(pn−1)∪An)] ≥
∑

I⊆[n−1]

∏

i∈I
pi

∏

i∈[n−1]\I
(1−pi) w





⋃

j∈I∪{n}
Aj



 ,

We multiply the first inequality by 1 − pn and the second one by pn, which
yields

E[w(A1(p1) ∪ . . . An(pn))] ≥ (1− pn)
∑

I⊆[n−1]

∏

i∈I
pi

∏

i∈[n−1]\I
(1− pi) w

(

⋃

j∈I
Aj

)

+ pn
∑

I⊆[n−1]

∏

i∈I
pi

∏

i∈[n−1]\I
(1− pi) w





⋃

j∈I∪{n}
Aj





=
∑

I⊆[n]

∏

i∈I
pi
∏

i/∈I
(1− pi) w

(

⋃

j∈I
Aj

)

.

Now we are ready to prove Lemma 4.2.

Proof. Using Lemma 4.3, we only need to estimate
∑

I⊆[n]

∏

i∈I pi
∏

i/∈I(1−pi)
w
(

⋃

j∈I Aj
)

. Let’s assume that w(A1) ≥ w(A2) ≥ . . . ≥ w(An). We define

Im = {I ⊆ [n] : min(I) = m},

the collection of subsets I whose minimum element is m. For any I ∈ Im,
we can use monotonicity to replace

⋃

j∈I Aj by Am. Then we get

∑

I⊆[n]

∏

i∈I
pi
∏

i/∈I
(1− pi) w

(

⋃

j∈I
Aj

)

≥
n
∑

m=1

w(Am)
∑

I∈Im

∏

i∈I
pi
∏

i/∈I
(1− pi)

=
n
∑

m=1

w(Am) pm

m−1
∏

i=1

(1− pi).

We used the fact that
∑

I∈Im

∏

i∈I pi
∏

i/∈I(1− pi) can be interpreted as the
probability that m is the minimum of a random set, where i is sampled with
probability pi. Next, we prove that

n
∑

m=1

w(Am) pm

m−1
∏

i=1

(1− pi) ≥
(

1−
(

1− 1

n

)n) n
∑

m=1

pmw(Am). (4.1)



4.2. SUBMODULAR WELFARE WITH EQUAL PLAYERS 69

Since this is a linear inequality in the parameters w(Am), it’s enough to
prove it for a special case where w(A1) = w(A2) = . . . = w(Aℓ) = 1 and
w(Aℓ+1) = . . . = w(An) = 0. (A general decreasing sequence of w(Ai) can
be obtained as a positive linear combination of such special cases.) For this
special choice of w(Ai), the left-hand side becomes

ℓ
∑

m=1

pm

m−1
∏

i=1

(1− pi) = 1−
ℓ
∏

i=1

(1− pi) ≥ 1−
(

1− 1

ℓ

ℓ
∑

i=1

pi

)ℓ

using the arithmetic-geometric mean inequality. Finally, using the concavity
of φ(x) = 1− (1− 1

ℓ
x)ℓ, and the fact that x =

∑ℓ
i=1 pi ∈ [0, 1] and φ(0) = 0,

we get φ(x) ≥ φ(1) · x; i.e.,

1−
(

1− 1

ℓ

ℓ
∑

i=1

pi

)ℓ

≥
(

1−
(

1− 1

ℓ

)ℓ
)

ℓ
∑

i=1

pi ≥
(

1−
(

1− 1

n

)n) ℓ
∑

i=1

pi

because ℓ ≤ n. This proves (4.1) and hence the lemma.

4.2 Submodular Welfare with equal players

Let us consider a special case of the Submodular Welfare Problem where all
players have the same utility function. We show that a uniformly random
allocation for n players achieves expected approximation factor at least 1−
(1− 1/n)n > 1− 1/e. Note that no queries at all are needed to generate this
allocation.

Theorem 4.4. For n players with the same submodular utility function, a
uniformly random allocation yields expected value at least (1−(1−1/n)n) OPT .

Proof. This is a simple application of Lemma 4.2. Let (A1, A2, . . . , An) be
the optimal allocation, and (R1, R2, . . . , Rn) a uniformly random allocation.
This means that each Ri has the same distribution, containing each element
independently with probability p = 1/n. Equivalently, we can write

Ri = X(p) = A1(p) ∪ A2(p) ∪ . . . ∪ An(p).

Applying Lemma 4.2, we get

E[w(Ri)] ≥
(

1−
(

1− 1

n

)n) n
∑

i=1

p w(Ai) =
1

n

(

1−
(

1− 1

n

)n)

OPT.

Thus all players together obtain
∑n

i=1 E[w(Ri)] ≥ (1− (1− 1/n)n)OPT.
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4.3 Submodular Welfare with general players

Theorem 4.5. There is a randomized algorithm for Maximum Submodu-
lar Welfare in the value oracle model which returns a (1 − 1/e − o(1))-
approximation in expectation.

This is a consequence of Theorem 3.1. However, we show a simpler al-
gorithm in this case, which is self-contained and does not require the pipage
rounding technique. Before describing our algorithm formally, we explain
our intuition behind it. The algorithm works as follows:

1. We run a variant of the greedy algorithm, whose output is a fractional
solution yij. The interpretation of yij is the extent to which player i
receives item j. This solution will satisfy

∑n
i=1 yij = 1 for every item

j. Our aim is to optimize the following function:

F (y) =

n
∑

i=1

E[wi(Ri)]

where Ri contains each item j independently with probability yij . We
prove that we can find a fractional solution of value F (y) ≥ (1− 1/e−
o(1))OPT .

2. We allocate each item j independently at random, with probability yij
to player i. This yields a solution of expected value F (y).

The way we build up the fractional solution yij is through a process that
is best viewed as running continuously over a unit time interval. At time
t ∈ [0, 1], we have a fractional solution yij(t). We start with yij(0) = 0. At
time t, we increase exactly one of the variables yij for each item j, namely the
one corresponding to the player who derives the maximum marginal value
E[wi(Ri(t) + j) − wi(Ri(t))] (as above, Ri(t) is a random set sampled with
probabilities yij(t)). We call this player the preferred player for item j at time
t. The rate of increase is 1, i.e. we increase yij exactly by dt over a small
time interval dt. In order to implement this in polynomial time, though, we
need to discretize the time scale and proceed in finite steps of length δ. It is
enough to choose δ sufficiently small, e.g. δ = 1/m2 where m is the number
of items. Next, we describe the algorithm formally.

The Smooth Greedy Algorithm.

1. Let δ = 1/m2. Start with t = 0 and yij(0) = 0 for all i, j.
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2. Let Ri(t) be a random set containing each item j independently with
probability yij(t). For all i, j, estimate the expected marginal profit of
player i from item j,

ωij(t) = E[wi(Ri(t) + j)− wi(Ri(t))].

By repeated sampling, we can get an arbitrarily close estimate in poly-
nomial time w.h.p.

3. For each j, let ij(t) = argmaxi ωij(t) be the preferred player for item j
(breaking possible ties arbitrarily). Set yij(t+δ) = yij(t)+δ if i = ij(t)
and yij(t+ δ) = yij(t) otherwise.

4. Set t := t+δ; if t < 1, go back to Step 2. Otherwise, return yij = yij(1).

Lemma 4.6. The fractional solution found by the Smooth Greedy Algorithm
satisfies

∑n
i=1 yij = 1 for each item j. Let F (y) =

∑n
i=1 E[wi(Ri)] where Ri

contains each item j independently with probability yij. Then

F (y) ≥
(

1− 1

e
− o(1)

)

·OPT

Proof. For each item j, the algorithm increments the value of yij for exactly
one player i in each step. Hence,

∑n
i=1 yij increases by δ in each step and

equals 1 at the end.
As the fractional solution yij evolves, F (y) =

∑n
i=1 E[wi(Ri)] grows, by

the monotonicity of wi. To analyze the growth of F (y), we use the following
bound on OPT : For any y ∈ [0, 1]N ,

OPT ≤ F (y) +
∑

j

max
i
ωij (4.2)

where ωij = E[wi(Ri + j)−wi(Ri)] and Ri is sampled with probabilities yij.
This can be seen as follows: Consider an optimal solution (O1, . . . , On). By
submodularity, wi(Oi) ≤ wi(Ri)+

∑

j∈Oi
(wi(Ri+ j)−wi(Ri)) for any set Ri,

and therefore

OPT =
∑

i

wi(Oi) ≤
∑

i

E[wi(Ri) +
∑

j∈Oi

(wi(Ri + j)− wi(Ri))]

= F (y) +
∑

i,j∈Oi

ωij ≤ F (y) +
∑

j

max
i
ωij

since every item j is in at most one set Oi. This proves (4.2).
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Our goal is to estimate how much F (y) increases during one step of the
algorithm. Consider the random set Ri(t) defined by yij(t), and an inde-
pendently random set Di(t) that contains each item j independently with
probability ∆ij(t) = yij(t+ δ)−yij(t). Note that this difference can be either
δ or 0, depending on whether yij was incremented at time t. Let Ei(t) denote
the set of items j for which ∆ij(t) = δ; this is the set of items for which i is
the preferred player at time t. The sets Ei(t) form a partition of all items and
Di(t) is a random subset of Ei(t) where each element appears independently
with probability δ.

The first (easy) claim is that F (y(t + δ)) =
∑

iE[wi(Ri(t + δ))] ≥
∑

i E[wi(Ri(t)∪Di(t))]. This follows from monotonicity, because the random
set Ri(t+ δ) contains items independently with probabilities yij(t) + ∆ij(t),
while Ri(t)∪Di(t) contains items independently with (smaller) probabilities
1− (1− yij(t))(1−∆ij(t)).

Now we are ready to estimate how much F (y) gains at time t. The
important fact here is that the probability that any item appears in Di(t) is
very small, so we can focus on the contributions from sets Di(t) that turn
out to be singletons.

F (y(t+ δ))− F (y(t)) ≥
∑

i

E[wi(Ri(t) ∪Di(t))− wi(Ri(t))]

≥
∑

i

∑

j

Pr[Di(t) = {j}] E[wi(Ri(t) + j)− wi(Ri(t))]

=
∑

i

∑

j∈Ei(t)

δ(1− δ)|Ei(t)|−1ωij(t)

≥ δ(1− δ)m−1
∑

i

∑

j∈Ei(t)

ωij(t).

Recall that each item j is in exactly one set Ei(t), for i such that ωij(t) is
maximized. Hence,

F (y(t+ δ))− F (y(t)) ≥ δ(1− δ)m−1
∑

j

max
i
ωij(t)

≥ δ(1− δ)m−1(OPT − F (y(t)))

using (4.2). From here, OPT−F (y(t+δ)) ≤ (1−δ(1−δ)m−1)(OPT−F (y(t)))
and by induction,

OPT−F (y(kδ)) ≤ (1−δ(1−δ)m−1)k(OPT−F (y(0))) = (1−δ(1−δ)m−1)k OPT.
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With our choice of δ = 1/m2 and k = m2, we get

OPT − F (y(1)) ≤
(

1− 1

m2

(

1− 1

m2

)m−1
)m2

OPT ≤ e−(1−1/m)OPT.

Hence, F (y(1)) ≥ (1− 1/e− o(1))OPT as we claimed.

In the second stage of our algorithm, we need to convert the fractional
solution into an integral one. This is very easy here, since we can use ran-
domized rounding directly to find a desired solution.

Randomized rounding.

• Allocate each item j independently at random, to player i with proba-
bility yij.

The random sets Ri received by different players are not independent, but
the items in each set appear independently, just like in the definition of
F (y). The total expected value of our solution is

∑n
i=1 E[wi(Ri)] = F (y) ≥

(1− 1/e− o(1))OPT .

4.4 Value query complexity bounds

On the negative side, we construct examples showing the following bounds
on the value-query complexity of the Submodular Welfare Problem.

Theorem 4.7. For any fixed β > 0, there is no (3/4 + β)-approximation
algorithm for 2 players with submodular utility functions in the value oracle
model, using a subexponential number of queries.

More generally, we show the following.

Theorem 4.8. For any fixed β > 0 and n ≥ 2, there is no (1−(1−1/n)n+β)-
approximation algorithm for n players with submodular utility functions in
the value oracle model, using a subexponential number of queries.

Corollary 4.9. For any fixed β > 0, there is no (1−1/e+β)-approximation
for an arbitrary number of players, using a subexponential number of queries.

We note that our examples use the same submodular utility function for
all players. We showed in Section 4.2 that in this setting, the 1 − (1 −
1/n)n approximation factor is obtained by a uniformly random allocation.
Therefore, in some sense value queries do not bring any benefit when the
utility functions are equal.
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4.4.1 The bound for 2 players

First we prove the bound for 2 players (Theorem 4.7). This bound can
be obtained easily from our example showing the value-query hardness of
(1/2+ǫ)-approximation for maximization of symmetric submodular functions
[23]. Here, we choose a slightly more involved approach, using a construction
that generalizes more easily to the case of n players.

We define monotone submodular functions on a ground set X. The
ground set is partitioned into (X1, X2). This partition can be thought of as
random and “hidden” from the algorithm. The functions f(S) that we define
depend only on the fractions of X1, X2 that S contains: x1 = |S ∩X1|/|X1|,
x2 = |S∩X2|/|X2|. We think of x1, x2 as real variables in [0, 1] and define our
functions as f(x1, x2) - we refer the reader to Section 2.3.2 for a justification
of this. Due to Lemma 2.18, the fact that f is monotone is implied by ∂f

∂xi
≥ 0

for i ∈ {1, 2}. The fact that f is submodular is implied by ∂2f
∂xi∂xj

≤ 0 for all

i, j ∈ {1, 2} (possibly i = j). Thus we will try to construct functions with
these analytic properties. In accordance with Section 2.3.2, we call these
functions smooth submodular.

We will consider instances of the Submodular Welfare Problem where
players have the same utility function. A solution to the problem corresponds
to a choice of x1, x2 ∈ [0, 1] such that player 1 obtains value f(x1, x2) and
player 2 obtains f(1 − x1, 1 − x2). Thus, it will be sufficient to prove the
following.

Lemma 4.10. For any β > 0, there is ǫ > 0 and two smooth submodular
functions f, g : [0, 1]2 → R+ such that

• For |x1 − x2| ≤ ǫ, f(x1, x2) = g(x1, x2).

• maxx1,x2
(f(x1, x2) + f(1− x1, 1− x2)) ≥ 2− β.

• maxx1,x2
(g(x1, x2) + g(1− x1, 1− x2)) ≤ 3/2 + β.

From these functions, we can reconstruct discrete set functions using
the formula f(S) = f(|S ∩ X1|/|X1|, |S ∩ X2|/|X2). These functions are
monotone, submodular, and the optima of the respective allocation prob-
lems differ by a factor close to 3/4. For any algorithm using a subexponen-
tial number of value queries, the two functions are indistinguishable, because
f(x1, x2) = g(x1, x2) for all queries such that |x1 − x2| ≤ ǫ. Due to standard
Chernoff bounds, this happens with high probability when the number of
elements tends to infinity. Hence, no algorithm using subexponentially many
value queries can decide whether the optimum is 2−β or 3/2+β. It remains
to prove Lemma 4.10.
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Proof. We start by considering two smooth submodular functions,

• f(x1, x2) = x1 + x2 − x1x2

• g(x1, x2) = x1 + x2 − 1
4
(x1 + x2)

2.

In the discrete picture, these functions can be interpreted as the numbers
of edges incident with S in a complete bipartite graph on (X1, X2) (for f(S))
or a complete graph with edge weights 1/2 (for g(S)). Observe that the
maximum of f(x1, x2)+f(1−x1, 1−x2) is 2, obtained for x1 = 1, x2 = 0, while
the maximum of g(x1, x2)+g(1−x1, 1−x2) is 3/2, obtained for x1 = x2 = 1/2.
Also, the two functions coincide for x1 = x2. However, it is not true that the
two functions coincide for |x1 − x2| ≤ ǫ. Our goal is to perturb f(x1, x2) in
order to make it equal to g(x1, x2) on this “diagonal zone”, without corrupting
its submodularity or the value of its optimum significantly. A suitable value
of ǫ will be chosen at the end.

Let h(x1, x2) denote the difference of the two functions,

• h(x1, x2) = f(x1, x2)− g(x1, x2) = 1
4
(x1 − x2)

2.

We construct the perturbed function as

• f̃(x1, x2) = f(x1, x2)− φ(h(x1, x2))

where φ : R→ R has the following properties:

• For t ∈ [0, ǫ1], ǫ1 = 1
4
ǫ2, we set φ(t) = t. Hence, in this range, which

corresponds to |x1−x2| ≤ ǫ, we have f̃(x1, x2) = f(x1, x2)−h(x1, x2) =
g(x1, x2).

• For t ∈ [ǫ1, ǫ2], we define φ by specifying that its first derivative is
continuous at t = ǫ1 and its second derivative is φ′′(t) = −α/t for
t ∈ [ǫ1, ǫ2]. (We choose a suitable constant α > 0 later.) Hence,

φ′(t) = 1−
∫ t

ǫ1

α

τ
dτ = 1− α ln

t

ǫ1
.

We choose α = 2/ ln 1
ǫ1

and ǫ2 =
√
ǫ1, so that φ′(ǫ2) = 0. In other

words, we make φ concave, with a controlled second derivative, up to
a point where its first derivative becomes zero. The value at this point
can be computed, but it suffices for us to observe that φ(ǫ2) ≤ ǫ2 ≤ ǫ.

• For t > ǫ2, we set φ(t) = φ(ǫ2).
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We have 0 ≤ φ(t) ≤ ǫ everywhere and therefore

f̃(x1, x2) = f(x1, x2)− φ(h(x1, x2)) ≥ f(x1, x2)− ǫ.

It remains to show that we didn’t corrupt the monotonicity and submodu-
larity of f too badly. We have

∂f̃

∂xj
=

∂f

∂xj
− φ′(h)

∂h

∂xj
= (1− φ′(h))

∂f

∂xj
+ φ′(h)

∂g

∂xj
.

The way we constructed φ, we have 0 ≤ φ′(h) ≤ 1, therefore ∂f̃
∂xj

is a convex

combination of ∂f
∂xj

and ∂g
∂xj

which are both nonnegative. So, ∂f̃
∂xj
≥ 0.

For the second partial derivatives, we get

∂2f̃

∂xi∂xj
=

∂2f

∂xi∂xj
− φ′(h)

∂2h

∂xi∂xj
− φ′′(h)

∂h

∂xi

∂h

∂xj

= (1− φ′(h))
∂2f

∂xi∂xj
+ φ′(h)

∂2g

∂xi∂xj
− φ′′(h)

∂h

∂xi

∂h

∂xj
.

Again, we get a convex combination of the second derivatives of f and g,
which are non-positive, but also an additional term −φ′′(h) ∂h

∂xi

∂h
∂xj

which could

potentially cause some trouble. (This is why we have to control the second
derivative of φ carefully.) Recall that h(x1, x2) = 1

4
(x1 − x2)

2 and so

∣

∣

∣

∣

∂h

∂xi

∣

∣

∣

∣

=
1

2
|x1 − x2| =

√

h(x1, x2).

Since |φ′′(h)| ≤ α/h, we can conclude that

∂2f̃

∂xi∂xj
≤
∣

∣

∣

∣

φ′′(h)
∂h

∂xi

∂h

∂xj

∣

∣

∣

∣

≤ α.

Recall that α = 2/ ln 1
ǫ1

= 1/ ln 2
ǫ
. Thus, the second partial derivatives of

f̃ could be positive, but not very large. This can be fixed easily by adding
a small multiple of g(x1, x2) to both functions: let f̂(x1, x2) = f̃(x1, x2) +

2αg(x1, x2) and ĝ(x1, x2) = (1 + 2α)g(x1, x2). Since ∂2g
∂xi∂xj

= −1
2

for all i, j,

this makes both f̂ and ĝ smooth submodular.
For a given β > 0, we choose ǫ = 2e−2/β, so that β = 2α and we increase

g only by a factor of 1 + β. We also get ǫ ≤ β, so f̂(x1, x2) ≥ f(x1, x2)− β.
Therefore, f̂ and ĝ satisfy the conditions of the lemma.
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4.4.2 The bound for n players

Here we extend the ideas of the previous section to n players. We assume
throughout this section that n ≥ 3. The intuition for 2 players is that it
is hard to distinguish between the submodular functions corresponding to
the complete bipartite graph and the complete graph with edge weights 1/2.
For n players, we design an example based on n-uniform hypergraphs. The
submodular functions here correspond to the number of hyperedges incident
with a set S. We will show essentially that it is hard to distinguish between
the submodular functions corresponding to the complete n-partite hyper-
graph, and the complete n-uniform hypergraph with appropriately scaled
edge weights.

We consider a ground set X partitioned into X1∪X2∪. . .∪Xn. As before,
the functions f(S) that we define depend only on the fractions of Xi that
S contains: xi = |S ∩ Xi|/|Xi|. We seek functions f(x1, . . . , xn) satisfying
∂f
∂xi
≥ 0 and ∂2f

∂xi∂xj
≤ 0 for all i, j ∈ [n], which implies monotonicity and

submodularity in the discrete case (see Lemma 2.18). To shorten notation,
we write f(x) = f(x1, . . . , xn). In each instance, all players have the same
utility function.

We find two functions f, g such that we have f(x) = g(x) whenever
maxi,j |xi − xj | ≤ ǫ. This will be the case for most queries, since a typical
query is partitioned into n equal parts by X1, . . . , Xn. (It should be noted
here that we keep n constant, while the number of vertices N tends to in-
finity.) Therefore, f and g will be indistinguishable by a subexponential
number of queries. If the gap between the optima of f and g is close to
1− (1−1/n)n, this implies that any approximation algorithm improving this
factor would require an exponential number of value queries. Therefore it
remains to prove the following.

Lemma 4.11. For any β > 0 and integer n ≥ 3, there is ǫ > 0 and two
smooth submodular functions f, g : [0, 1]n → R+ such that

• If maxi,j |xi − xj | ≤ ǫ, then f(x) = g(x).

• max{∑i f(xi1, . . . , xin) | ∀j;
∑

i xij = 1} ≥ (1− β)n.

• max{∑i g(xi1, . . . , xin) | ∀j;
∑

i xij = 1} ≤ (1− (1− 1/n)n + β)n.

Proof. We start by considering two smooth submodular functions, motivated
by the discussion above.

• f(x) = 1−∏n
i=1(1− xi).

• g(x) = 1− (1− x̄)n, where x̄ = 1
n

∑n
i=1 xi.
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In the discrete picture, these function correspond to the following:

f(S) = 1−
n
∏

i=1

(

1− |S ∩Xi|
|Xi|

)

,

the vertex cover function of a complete k-partite hypergraph, and

g(S) = 1−
(

1− |S|
∑n

i=1 |Xi|

)n

,

the (scaled) vertex cover function of a complete k-uniform hypergraph.

The optimal solution with utility function f is xii = 1, xij = 0 for i 6= j.
This way, each player gets the maximum possible value 1. For g, on the other
hand, the value depends only on the average of the coordinates x̄. By the
concavity of g, the optimum solution is to allocate x̄ = 1/n to each player,
which gives her a value of 1− (1− 1/n)n.

It remains to perturb the functions so that f(x) = g(x) for vectors satis-
fying maxi,j |xi−xj | ≤ ǫ. Let h(x) denote the difference of the two functions,

• h(x) = f(x)− g(x) = (1− x̄)n −∏n
i=1(1− xi).

Again, we denote x̄ = 1
n

∑n
i=1 xi. Also, let δ = maxi,j |xi − xj |. First, we

estimate h(x) and its first derivatives in terms of x̄ and δ. We use very crude
bounds, to simplify the analysis.

Claim.

1. h(x) ≤ nδ(1− x̄)n−1.

2. h(x) ≥ n−4δ2(1− x̄)n−2.

3. | ∂h
∂xj
| ≤ nδ(1− x̄)n−2, i.e. | ∂h

∂xj
| ≤ n3(1− x̄)n/2−1

√

h(x).

1. We have h(x) = (1−x̄)n−∏n
i=1(1−xi). If nδ ≥ 1−x̄, we get immediately

h(x) ≤ (1 − x̄)n ≤ nδ(1 − x̄)n−1. So let’s assume nδ < 1 − x̄. Then, since
xi ≤ x̄+ δ for all i, we get

h(x) ≤ (1−x̄)n−(1−x̄−δ)n = (1−x̄)n
(

1−
(

1− δ

1− x̄

)n)

≤ (1−x̄)n nδ

1− x̄ .
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2. For a lower bound on h(x), suppose that δ = x2 − x1 and define η =
1

n−2
(x̄− 1

2
(x1 + x2)). I.e., x1 = x̄− (n− 2)η − δ/2, x2 = x̄− (n− 2)η + δ/2,

and the average of the remaining coordinates is x̄ + 2η. By the arithmetic-
geometric mean inequality,

∏

i6=1,2(1−xi) is maximized when these variables
are all equal:

h(x) ≥ (1− x̄)n − (1− x̄+ (n− 2)η +
1

2
δ)(1− x̄+ (n− 2)η − 1

2
δ)(1− x̄− 2η)n−2

= (1− x̄)n − (1− x̄+ (n− 2)η)2(1− x̄− 2η)n−2 +
1

4
δ2(1− x̄− 2η)n−2.

Again by the arithmetic-geometric inequality, the first term is always larger
than the second term. If η ≤ 1

n
(1 − x̄), we are done because then the last

term is at least 1
4e2
δ2(1− x̄)n−2. So we can assume η > 1

n
(1− x̄). In this case,

we throw away the last term and write

h(x) ≥ (1− x̄)n − (1− x̄+ (n− 2)η)2(1− x̄− 2η)n−2

= (1− x̄)n
(

1−
(

1 + (n− 2)
η

1− x̄

)2(

1− 2η

1− x̄

)n−2
)

≥ (1− x̄)n
(

1−
(

1 +
η

1− x̄

)2(n−2)(

1− η

1− x̄

)2(n−2)
)

= (1− x̄)n
(

1−
(

1− η2

(1− x̄)2

)2(n−2)
)

≥ (1− x̄)n
(

1−
(

1− 1

n2

)2(n−2)
)

≥ 1

n2
(1− x̄)n.

We observe it always holds that δ ≤ n(1− x̄): If the minimum coordinate
is xmin, we have x̄ ≤ 1

n
xmin + n−1

n
· 1, hence xmin ≥ nx̄ − (n − 1) and

δ ≤ 1− xmin ≤ n(1− x̄).
Consequently, h(x) ≥ n−2(1− x̄)n ≥ n−4δ2(1− x̄)n−2.

3. Let δ = maxi,j |xi − xj |. We estimate the partial derivative

∂h

∂xj
=
∏

i6=j
(1− xi)− (1− x̄)n−1.

Define η = 1
n−1

(xj − x̄). I.e., xj = x̄ + (n − 1)η and the average of the
remaining coordinates is x̄− η. By the arithmetic-geometric inequality,

∂h

∂xj
≤ (1− x̄+ η)n−1 − (1− x̄)n−1 = (1− x̄)n−1

(

(

(1 +
η

1− x̄

)n−1

− 1

)

.
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Since η = 1
n−1

(xj−x̄) ≤ 1
n−1

(1−x̄), we can estimate (1+ η
1−x̄)

n−1 ≤ 1+2n η
1−x̄ .

Also, we know that all coordinates differ from x̄−η by at most δ, in particular
xj = x̄+ (n− 1)η ≤ x̄− η + δ, hence nη ≤ δ and

∂h

∂xj
≤ (1− x̄)n−1 · 2n η

1− x̄ ≤ 2δ(1− x̄)n−2.

For a lower bound, it’s enough to observe that each coordinate is at most
x̄+ δ, and so

∂h

∂xj
≥ (1− x̄− δ)n−1 − (1− x̄)n−1

= (1− x̄)n−1

(

(

1− δ

1− x̄

)n−1

− 1

)

≥ (1− x̄)n−1

(

−(n− 1)
δ

1− x̄

)

= −(n− 1)δ(1− x̄)n−2

assuming that (n − 1) δ
1−x̄ ≤ 1; otherwise we get the same bound directly

from ∂h
∂xj
≥ −(1− x̄)n−1. This finishes the proof of the claim.

We return to our construction. We define f̃(x) = f(x) − φ(h(x)) where
φ : R→ R is defined similarly as in the proof of Lemma 4.10.

• For t ∈ [0, ǫ1], we set φ(t) = t. We choose ǫ1 = nǫ. I.e., for maxi,j |xi −
xj | ≤ ǫ, we have h(x) ≤ ǫ1 by Claim 1 and then f̃(x) = g(x).

• For t ∈ [ǫ1, ǫ2], the first derivative of φ is continuous at t = ǫ1 and its
second derivative is φ′′(t) = −α/t for t ∈ [ǫ1, ǫ2]. Hence,

φ′(t) = 1−
∫ t

ǫ1

α

τ
dτ = 1− α ln

t

ǫ1
.

We choose α = 2/ ln 1
ǫ1

and ǫ2 =
√
ǫ1, so that φ′(ǫ2) = 0. Since φ′(t) ≤ 1

everywhere, we have φ(ǫ2) ≤ ǫ2.

• For t > ǫ2, we set φ(t) = φ(ǫ2).

Hence, we have 0 ≤ φ(t) ≤ ǫ2 everywhere and f̃(x) = f(x) − φ(h(x)) ≥
f(x) − ǫ2. Next, we want to show that we didn’t corrupt the monotonicity
and submodularity of f too badly. We have

∂f̃

∂xj
=

∂f

∂xj
− φ′(h)

∂h

∂xj
= (1− φ′(h))

∂f

∂xj
+ φ′(h)

∂g

∂xj
.
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Exactly as in the case of 2 players, 0 ≤ φ′(h) ≤ 1, and ∂f
∂xj

, ∂g
∂xj

are both

nonnegative. So, ∂f̃
∂xj
≥ 0. For the second partial derivatives, we get

∂2f̃

∂xi∂xj
=

∂2f

∂xi∂xj
− φ′(h)

∂2h

∂xi∂xj
− φ′′(h)

∂h

∂xi

∂h

∂xj

= (1− φ′(h))
∂2f

∂xi∂xj
+ φ′(h)

∂2g

∂xi∂xj
− φ′′(h)

∂h

∂xi

∂h

∂xj
.

The first two terms form a convex combination of non-positive values. To

control the third term, we have |φ′′(h)| ≤ α/h. We also showed
∣

∣

∣

∂h
∂xi

∣

∣

∣
≤

n3(1− x̄)n/2−1
√

h(x) (Claim 3). We can conclude that

∂2f̃

∂xi∂xj
≤
∣

∣

∣

∣

φ′′(h)
∂h

∂xi

∂h

∂xj

∣

∣

∣

∣

≤ αn6(1− x̄)n−2.

We need to make the second partial derivatives non-positive. Since ∂2g
∂xi∂xj

=

−n−1
n

(1−x̄)n−2, it is enough to add a suitable multiple of g to both functions:

f̂ = f̃ + 2αn6g, ĝ = (1 + 2αn6)g. Then f̂ , ĝ are smooth submodular.
Recall that we have α = 2/ ln 1

nǫ
. For a given β > 0, we choose ǫ =

1
n
e−4n6/β, so that β = 2αn6 and we increase g only by a factor of 1 + β. We

also get ǫ2 =
√
nǫ ≤ β, and therefore f̂(x) ≥ f̃(x) ≥ f(x) − ǫ2 ≥ f(x)− β.

Thus f̂ and ĝ satisfy the conditions of the lemma.

Remark. In fact, our construction shows the following: In the value query
model, it is impossible to distinguish between instances with n players and
kn items where each player can get value close to 1 and instances where no
set of k items has value much more than 1− 1/e.
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Chapter 5

Submodular Welfare with
demand queries

Here we continue studying the Submodular Welfare Problem, however now
in the demand oracle model. Let us recall the statement of the problem.

Problem: Given n players with utility functions wi : 2X → R+ which are
assumed to be monotone and submodular, find a partition X = S1∪S2∪. . .∪Sn
in order to maximize

∑n
i=1wi(Si).

Following the greedy 1
2
-approximation of [38] and a lack of further progress

in the value oracle model, several works [13, 14, 18] considered the following
linear programming relaxation of the problem.

Configuration LP.

max
∑

i,S

xi,Swi(S);

∀j;
∑

i,S:j∈S
xi,S ≤ 1,

∀i;
∑

S

xi,S ≤ 1,

∀i, S; xi,S ≥ 0.

Here, xi,S is intended to be an indicator variable that specifies whether
player i gets set S. The constraints express the facts that every player chooses
at most one set and every item can be allocated to at most one player. This
linear program has an exponential number of variables but only a polynomial
number of constraints. It can be solved optimally in the demand oracle

83
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model, since the separation oracle for the dual is exactly the demand oracle.
See [44, 13] for more details.

Therefore, if we show that any fractional solution of this LP can be
rounded to an integral solution while losing at most a factor of ρ, then we
obtain an ρ-approximation algorithm in the demand oracle model. Using
this approach, a (1 − 1/e)-approximation was obtained in [14]. However, it
was not clear whether this is the best approximation one can obtain using
the Configuration LP.

Some intuition might indicate that the 1 − 1/e is indeed the integrality
gap of the Configuration LP. In particular, this LP is a special case of an
optimization problem over a partition matroid polytope:

max{f+(y) : y ∈ P (M)}.

See Section 3.5 for the definition of f+(y) and Section 1.2.3 for a reduction
of the Submodular Welfare Problem to a partition matroid constraint. We
know that max{f+(y) : y ∈ P (M)} has an integrality gap arbitrarily close
to 1− 1/e (Section 3.8), even for a coverage-type f and a partition matroid.
Also, the Configuration LP itself can have an integrality gap arbitrarily close
to 1−1/e when the utility functions are fractionally subadditive rather than
submodular [18].

Yet, 1 − 1/e is not the optimal answer for submodular utility functions.
We prove the following.

Theorem 5.1. There is some universal constant ǫ > 0 and a random-
ized rounding procedure for the Configuration LP, such that given any feasi-
ble fractional solution, the rounding procedure produces a feasible allocation
whose expected value is at least a (1 − 1/e + ǫ)-fraction of the value of the
fractional solution.

Our rounding procedure is oblivious in the sense of [18]: its only input
is a fractional LP solution and it need not know anything about the actual
utility functions of the players.

The following corollary follows from combining Theorem 5.1 with the fact
that demand queries suffice in order to find an optimal fractional solution to
the Configuration LP.

Corollary 5.2. The Submodular Welfare Problem can be approximated in
the demand oracle model within a ratio of 1 − 1/e + ǫ (in expectation), for
some absolute constant ǫ > 0.
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5.1 Overview of techniques

First, let us recall how one achieves an approximation ratio of 1 − 1/e (or
in fact, 1 − (1 − 1/n)n) for the Submodular Welfare Problem [14, 18]. One
uses the given feasible solution to the Configuration LP in the following way.
Every player independently selects a tentative set, where the probability that
player i selects set S is precisely xi,S. (If for some player,

∑

S xi,S < 1, then
it may happen that the player will select no tentative set at all.) Per player,
the expected utility after this step is equal to her contribution to the value
of the fractional solution of the Configuration LP. However, the tentative
allocation may not be feasible, because some items may be in more than
one tentative set. To resolve this issue, one uses a “contention resolution
procedure”. In [14], contention resolution is based on further queries to the
players is order to determine which player will benefit the most from getting
the contended item. In [18], contention resolution is done in an oblivious
way, without further interaction with the players. In both cases it is shown
that contention resolution can be done while preserving (in expectation) at
least a (1− 1/e)-fraction of the total utility.

The above two-step rounding procedure seems to have a lot of slackness.
Namely, there are many items that are not allocated at all because they are
not in any tentative set. In fact, on what appear to be worst case instances of
the two-step rounding procedure, every item has probability roughly 1/e of
not being allocated at all. It appears that adding a third step to this rounding
procedure, in which the remaining items are allocated, could potentially allow
one to improve the 1− 1/e ratio.

Somewhat surprisingly, one can design instances (see Section 5.4.2) where
the utility functions are submodular, and regardless of how contention reso-
lution is performed, and of how items outside the tentative sets are allocated,
one cannot obtain an approximation ratio better than 1− 1/e.

We show in Section 5.4.1 that there is also a simpler one-step randomized
rounding procedure (namely, item j is given to player i with probability
∑

j∈S xi,S, without a need to first choose tentative sets), which achieves an
approximation ratio of 1−1/e (though not (1− (1−1/n)n)). One may hope
that on every instance, the best of the two rounding procedures (the three-
step procedure and the one-step procedure) would give an approximation
ratio better than 1− 1/e. Nevertheless, again, this is not true.

Our new algorithm (that does improve 1 − 1/e) is based on a random
choice between two rounding procedures. The analysis of our algorithm uses
algebraic manipulations that might not be easy to follow. To help the reader
see the reasoning behind our final algorithm, we break its derivation into five
stages.
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The first stage (Section 5.2.3) is perhaps the most instructive one, as it
addresses a simple case which is relatively easy to understand. There are only
two players, and the fractional solution is half-integral. The goal is to design a
rounding procedure that improves the ratio of 1−(1−1/2)2 = 3/4 guaranteed
by previous rounding procedures. Neither the three-step rounding procedure
(as described above, based on each player choosing one tentative set) nor the
one-step rounding procedure achieve such an improvement. We present a new
rounding procedure that achieves an approximation ratio of 5/6. Moreover,
our analysis of the approximation ratio serves as an introduction to the kind
of algebraic manipulations that will be used in the more complicated proofs.
We also show that the 5/6 ratio for this case is best possible, by showing a
matching integrality gap.

Section 5.2.4 deals with the case of two players and a balanced fractional
solution, in the sense that for every item j,

∑

S|j∈S x1,S =
∑

S|j∈S x2,S =

1/2. We design an algorithm using two tentative sets S, S ′ for player 1 and
T, T ′ for player 2, sampled independently according to the fractional solution.
Using two sets instead of one allows us to allocate more items overall, and
also it gives us more freedom in designing an allocation scheme. Using a
submodularity argument inspired by the half-integral case, we show that
either a player gains by taking the entire complement of the other player’s
tentative set, or she can combine items from S, S ′ to obtain what we call a
“diagonal set” Y . Similarly, player 2 obtains a diagonal set Z. The sets Y
and Z are designed so that their average overlap is less than that of S and
T . Thus by resolving contention between Y and Z, we get a factor better
than 3/4. Specifically, we obtain a 7/9-approximation in this case.

Section 5.2.5 combines the balanced and unbalanced case for two players.
We gain for different reasons in the balanced and unbalanced cases, but we
always beat the factor of 3/4. For two players, we obtain an approximation
factor of 13/17. This result convinced us that an improvement over 1− 1/e
in the general case of n players should be possible.

Section 5.3.1 presents the “Fair Rounding Procedure” for n players, which
achieves at least a (1− 1/e)-approximation, and actually beats it unless the
fractional solution is balanced. This stage is based on a Fair Contention Res-
olution technique which might be interesting on its own. It is a variation and
simplification of the contention resolution technique used in [18]. Apart from
other interesting features (that we discuss in Section 5.1.1 below), the Fair
Rounding Procedure procedure has the following property. Call a fractional
solution to the LP unbalanced if for a ”typical” item j, there is some player
i (that may depend on j) for which

∑

S|j∈S xi,S > ǫ, where ǫ > 0 is some
fixed constant. Then the approximation ratio provided by our procedure is
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1− 1/e+ ǫO(1).
It remains to handle the case of balanced fractional solutions. In Sec-

tion 5.3.2, we develop the “Butterfly Rounding Procedure” which achieves
an improvement over 1 − 1/e for any balanced fractional solution. This is
the key part of the proof of Theorem 5.1. It is based on ideas used for the
two-player case, but again, with added complications. The main structural
difference between this rounding procedure and earlier ones is that we let ev-
ery player choose two tentative sets rather than one. Thereafter, we perform
contention resolution for every item that is in tentative sets of more than one
player. The exact way in which we perform contention resolution is rather
complicated.

Finally, the two rounding procedures are combined to obtain an approxi-
mation ratio strictly above 1−1/e for any fractional solution (Section 5.3.3).

5.1.1 Fair Contention Resolution

A key component in previous (1 − 1/e)-approximation algorithms for Sub-
modular Welfare (and for more general classes of utility functions as well) is
a method for resolving contention among several tentative sets that contain
the same item. In our current work, we generalize and improve upon the
method used for this purpose in [18] so that it can be combined more easily
with other parts of our new rounding procedure. Our method gives a solution
to a problem that we call Fair Contention Resolution. We now describe this
problem.

There are n players and one item. Every player i is associated with a
probability 0 ≤ pi ≤ 1 of requesting the item. Our goal is to allocate the
item to at most one player, and have the probability that a player i receives
the item be proportional to its respective pi. We call this balanced contention
resolution. Among all such contention resolution schemes, we wish to find
one that maximizes for the players the probability that they get the item
(the balancing requirement implies that maximizing this probability for one
player maximizes it for all players). Given complete coordination among the
players, we may assign the item to player i with probability pi/

∑

j pj, and
this would be optimal. But we will be dealing with a two-step situation in
which there is only partial coordination.

1. In step 1, there is no coordination among the players. Every player i
independently requests the item with probability pi.

2. In step 2, those players who requested the item in step 1 may coordinate
a (randomized) strategy for allocating the item to one of them.
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The probability that the item is allocated at all is at most the probability
that the set of players reaching step 2 is nonempty, namely, 1 − ∏j(1 −
pj). Hence in balanced contention resolution, player i can get the item with
probability at most pi

P

j pj
(1 − ∏j(1 − pj)). What we call Fair Contention

Resolution is a method which indeed attains this maximum. In previous
work [18], such contention resolution methods were designed for some special
cases. Here, we prove the following general statement.

There is an explicit Fair Contention Resolution method. More specifically,
there is a simple formula that for every set A and player i ∈ A, determines
the probability with which the item is given to i conditioned on A being the
set of players that reach step 2. This formula depends on the size of A, on
the values of pj for those j ∈ A, and on the sum

∑n
j=1 pj.

See Lemma 5.12 for a proof of this claim.

5.2 The allocation problem for two players

In this section, we start working towards the goal of proving Theorem 5.1.
First we consider a special case of the welfare maximization problem where
only two players are interested in a given set of m items. The analysis of this
case is not formally needed for the proof of Theorem 5.1 but we consider it
instructive for the reader to understand this simpler case before proceeding
to the proof of Theorem 5.1. Also, our techniques are really geared to the
case of two rather than n players. The improvement we achieve here (from
3/4 to 13/17) is relatively significant, as opposed to the purely theoretical
improvement in Theorem 5.1.

In the setting with two players, it is not very difficult to achieve an approx-
imation factor of 3/4 (even assuming only fractional subaditivity), as shown
in [18]. Since our improvements are built on top of the 3/4-approximation
algorithm, let’s review it first.

5.2.1 3/4-approximation for two players

The basic idea is to use the fractional LP solution to generate random sets
suitable for each player. When we say that “player 1 samples a random set
from his distribution”, it means that he chooses set S with probability x1,S.
(Since

∑

S x1,S ≤ 1, this is a valid probability distribution.) Similarly, player
2 samples a random set T from her distribution defined by x2,T . We define

• pj = Pr[j ∈ S] =
∑

S:j∈S x1,S.
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• qj = Pr[j ∈ T ] =
∑

T :j∈T x2,T .

Ideally, we would like to assign S to player 1 and T to player 2 which
would yield an expected value equal to the LP optimum. The only issue is
that the sets S and T can overlap, so we cannot satisfy the players’ requests
exactly. One way to allocate the disputed items is by making a random
decision. It turns out that the best way to do this is to allocate disputed
items to one of the two players with reversed probabilities compared to the
fractional solution (see [18]). For this purpose, we use a random “splitting
set” X which contains each item j with probability pj .

X X

S

T

Figure 5.1: Algorithm 1.

Algorithm 1. (3/4-approximation for 2 players)

• Let player 1 sample a random set S and let player 2 sample a random
set T from their respective distributions.

• Independently, generate a random set X which contains item j with
probability pj .

• Assign S \ T to player 1.

• Assign T \ S to player 2.

• Divide S ∩ T into S ∩ T \X for player 1 and S ∩ T ∩X for player 2.

Before analysing Algorithm 1, let us introduce a class of utility functions
that is more general than submodular functions (see more details in [18]).
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Definition 5.3. A function w is fractionally subadditive if w(S) ≤∑αiw(Ti)
with 0 ≤ αi ≤ 1 for all i, whenever the following condition holds: for every
item j ∈ S,

∑

i|j∈Ti
αi ≥ 1. (Namely, if the sets Ti form a “fractional cover”

of S, then the sum of their utilities weighted by the corresponding coefficients
is at least as large as that of S.)

The key to the analysis of Algorithm 1 is the following lemma stated in
[18].

Lemma 5.4. Let p ∈ [0, 1] and w : 2[m] → R+ fractionally subadditive. For
a set S, consider a probability distribution over subsets S ′ ⊆ S such that each
element of S is included in S ′ with probability at least p. Then

E[w(S ′)] ≥ p w(S).

Now consider Algorithm 1 from the point of view of player 1, conditioned
on a specific choice of S. He receives each element of S, unless it also appears
in T ∩X. This set is sampled independently of S and

Pr[j ∈ T ∩X] = qjpj ≤
1

4

because pj+qj ≤ 1. Therefore, conditioned on S, each element is taken away
with probability at most 1/4. By Lemma 5.4,

E[w1(S \ (T ∩X)) | S] ≥ 3

4
w1(S).

Taking the expectation over S, we get

E[w1(S \ (T ∩X))] ≥ 3

4
E[w1(S)] =

3

4

∑

S

x1,Sw1(S).

Similarly, player 2 gets at least 3
4

∑

T x2,Tw2(T ), since any element appears

in S ∩X with probability pj(1− pj) ≤ 1/4. This shows that in expectation,
we not only recover at least 3/4 of the optimum, but each player individually
obtains at least 3/4 of his share in the LP.

5.2.2 Examples and integrality gaps

The 3/4-approximation algorithm for two players is optimal for fractionally
subadditive utility functions, in the sense that our LP can have an integrality
gap equal to 3/4. The proof is a simple example with 4 items which we
present here. As shown in [18], the class of fractionally subadditive functions
is equal to “XOS”, the class of functions obtained as a maximum of several
linear functions. We use this property here to define our example.
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Example 5.5 (3/4 integrality gap for two players with XOS functions).

T1 T2

S1 a b
S2 c d

Consider 4 items {a, b, c, d} partitioned in two ways: S1 = {a, b}, S2 =
{c, d} and T1 = {a, c}, T2 = {a, d}. For a set of items A ⊆ {a, b, c, d}, we
define two utility functions by

• w1(A) = max{|A ∩ S1|, |A ∩ S2|}

• w2(A) = max{|A ∩ T1|, |A ∩ T2|}.

In other words, S1, S2 are the sets desired by player 1 and T1, T2 are the
sets desired by player 2. The optimal LP solution is

x1,S1
= x1,S2

= x2,T1
= x2,T2

=
1

2

which makes each player maximally happy and yields a total value of LP = 4.
On the other hand, there is no integral solution of value 4. Such a solution
would require two disjoint sets Si and Tj of value 2 but no such pair of disjoint
sets exists. The optimum integral solution has value 3 = 3/4 · LP .

The question arises whether 3/4 is also optimal for submodular functions.
It can be seen easily that the utility functions above are not submodular -
for example w1({a, c}) +w1({b, c}) = 2 but w1({c}) +w1({a, b, c}) = 3. The
easiest way to make the functions submodular is to increase the value of the
diagonal sets {b, c} and {a, d} to 2.

Example 5.6 (two players with submodular functions). Consider the items
as above, where we also define Y = {a, d} and Z = {b, c}. Each singleton
has value 1 and any set of at least 3 elements has value 2. For pairs of items,
define the utility function of player 1 as follows:

w1(Y ) = w1(Z) = 2 w1(T1) = 1 w1(T2) = 1

w1(S1) = 2 a b
w1(S2) = 2 c d

In other words, player 1 wants at least one of items {a, c} and at least
one of {b, d}. Symmetrically, player 2 wants at least one of items {a, b}
and at least one of {c, d}. Her utility function is w2(S1) = w2(S2) = 1,
w2(Y ) = w2(Z) = 2 and w2(T1) = w2(T2) = 2. The functions w1 and w2 can
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be verified to be submodular (being the rank functions of partition matroids).
As before, a fractional solution assigning each of the sets S1, S2, T1, T2 with
weight 1/2 has value LP = 4. However, here the integrality gap is equal to
1, since there is an integral solution (Y, Z) of value 4 as well!

This example illustrates a different phenomenon: Any optimal solution
must combine items from the two sets desired by each player. If we allo-
cate one set from the fractional solution to each player and resolve conflicts
arbitrarily, we get only a value of 3/4 · LP . Moreover, even allocating the
remaining item does not help! Regardless of who gets the last item, the ob-
jective value is still only 3/4 ·LP . Therefore, we must combine different sets
and the only optimal solution uses the two diagonals.

Observe that instead of increasing the value of the diagonals, we could
have increased the value of the orthogonal sets (T1, T2 for player 1; S1, S2

for player 2). This produces submodular functions as well and again the
integrality gap is 1. Here, it’s enough to allocate for example S1 to player 1
and the complement S2 to player 2.

These examples might suggest that there is a chance to recover the full
LP value by either taking sets from the fractional solution or “diagonals” as
above. However, this is not the case. A linear combination of these two cases
gives the following example.

Example 5.7 (5/6 for two players with submodular functions). Each sin-
gleton has value 1 and any set of at least 3 elements has value 2. For pairs
of items, define the utility function of player 1 as follows:

w1(Y ) = w1(Z) = 5
3

w1(T1) = 4
3

w1(T2) = 4
3

w1(S1) = 2 a b
w1(S2) = 2 c d

Symmetrically, the utility function of player 2 is the same except that
w2(S1) = w2(S2) = 4/3 and w2(T1) = w2(T2) = 2. This can be verified to be
a submodular function.

As before, a fractional solution assigning each of the sets S1, S2, T1, T2

with weight 1/2 has value LP = 4. Whereas, any integral solution such as
(S1, S2), (Y, Z) or (T1, T2) has value at most 10/3 = 5/6 · LP .

There are extensions of these examples to the case of n players. We defer
them to Section 5.4.3.
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5.2.3 Two players with a half-integral solution

We have seen that the integrality gap for two players with submodular func-
tions can be 5/6. We show that an approximation factor of 5/6 can be
achieved in a special case as above, where the optimum fractional solution is
half-integral: xi,S ∈ {0, 1

2
, 1}.

If there is a variable xi,S = 1, we can assign S to player i and all the
remaining items to the other player, in which case we recover the LP value
without any loss. Therefore, we can assume that there are sets S1, S2, T1, T2

such that x1,S1
= x1,S2

= x2,T1
= x2,T2

= 1/2. Items that appear only in
sets requested by one player can be simply assigned to the respective player,
which can only improve the approximation factor. So let’s assume that each
item appears in two sets assigned to different players. I.e, (S1, S2) and (T1, T2)
are two (possibly different) partitions of the set of all items.

S1

S2

T1 T2

Y

Z

Figure 5.2: A half-integral solution.

It is necessary to allow the option to combine items from the two sets
desired by each player, as described in Example 2. Any solution which starts
by allocating one set to each player and resolving conflicts cannot beat the
factor of 3/4. On the other hand, it is thanks to submodularity that we
can extract improved profit by combining two different sets. In analogy with
Example 2, we define two “diagonal sets”

• Y = (S1 ∩ T1) ∪ (S2 ∩ T2).

• Z = (S1 ∩ T2) ∪ (S2 ∩ T1).

Our algorithm then chooses a random allocation scheme according to the
following table:
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Probability 1/6 1/6 1/6 1/6 1/6 1/6

Player 1 S1 S2 Y Z T1 T2

Player 2 S2 S1 Z Y T2 T1

We use submodularity to analyze the expected profit of this allocation
procedure. For player 1, submodularity yields

w1(Y ) + w1(T1) ≥ w1(S1 ∩ T1) + w1(S2 ∪ T1)

and

w1(Z) + w1(T2) ≥ w1(S1 ∩ T2) + w1(S2 ∪ T2).

Intuitively, T1 and T2 are not the sets desired by player 1 and their values
could be as low as w1(S1 ∩ T1) and w1(S1 ∩ T2). However, if that is the
case, submodularity implies that the diagonal sets Y, Z are very desirable for
player 1.

Since (S1∩T1)∪(S1∩T2) = S1, we have w1(S1∩T1)+w1(S1∩T2) ≥ w1(S1),
and by monotonicity w1(S2 ∪ Tj) ≥ w1(S2). In total, player 1 gets expected
profit

1

6
(w1(S1)+w1(S2)+w1(Y )+w1(Z)+w1(T1)+w1(T2)) ≥

1

6
(2w1(S1)+3w1(S2))).

Alternatively, we can also estimate w1(Y )+w1(T2) ≥ w1(S2∩T2)+w1(S1∪
T2) and w1(Z) + w1(T1) ≥ w1(S2 ∩ T1) + w1(S1 ∪ T1) which yields

1

6
(w1(S1)+w1(S2)+w1(Y )+w1(Z)+w1(T1)+w1(T2)) ≥

1

6
(3w1(S1)+2w1(S2))).

By averaging the two estimates, player 1 gets expected profit at least 5
12

(w1(S1)+
w1(S2)). We get a similar estimate for player 2, so the expected value of our
integral solution is at least 5

6
LP .

5.2.4 Two players with a balanced fractional solution

Our goal now is to generalize the ideas of the previous section in order to
improve the approximation factor of 3/4 for two players in general. First, we
relax the condition that the fractional solution is half-integral. Instead, we
assume that for any item j,

∑

S:j∈S
x1,S =

∑

T :j∈T
x2,T =

1

2
.
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We call such a fractional solution balanced. Observe that this is the worst
case for Algorithm 1. If the fractional solution is significantly unbalanced,
then even Algorithm 1 performs better than 3/4, since items are removed
from each player with probabilities smaller than 1/4.

So, let’s assume for now that the fractional solution is balanced. In par-
ticular, we can make this assumption in case both players have the same
utility function, since then any solution xi,S can be replaced by x̃1,S = x̃2,S =
(x1,S + x2,S)/2 without change of value.

Intuition. Suppose that each player gets value 1 from the fractional so-
lution. Let S denote a random set sampled from the distribution of player
1 and T a random set sample from the distribution of player 2. Due to
our assumption of balance, Pr[j ∈ S] = Pr[j ∈ T ] = 1/2 for any item
j. We can try to allocate S to player 1, and the entire complement of S
to player 2. Then player 1 gets expected value 1, while player 2 obtains
E[w2(S)] ≥ E[w2(T ∩ S)] ≥ 1/2, but this might be tight and we still don’t
achieve more than 3/4 of the fractional value.

However, this is essentially the only case in which we do not gain com-
pared to 3/4. Assuming that the complement of S is not very valuable for
player 2, let’s consider another set: Z = (T ∩S)∪(T ′∩S) where T, T ′ are sets
sampled independently from the distribution of player 2. (This is analogous
to one of the diagonal sets in the previous section.) Linearity of expectation
allows us to use submodularity for expected values of random sets just like
for values of deterministic sets:

E[w2(Z)]+E[w2(S)] ≥ E[w2(Z∪S)]+E[w2(Z∩S)] ≥ E[w2(T )]+E[w2(T
′∩S)].

In other words, if S presents no improvement on the average over T ′ ∩ S,
then Z is a set as good as T which is exactly what player 2 would desire.
Similarly, let player 1 generate two independent sets S, S ′. If he does not gain
by taking T instead of S ′∩T , then Y = (S∩T )∪(S ′∩T ) is by submodularity
just as good as S or S ′. Note that each player uses the other player’s set to
“combine” two of his/her sets. Let’s be more specific and define which of the
other player’s sets is used for this purpose:

• Y = (S ∩ T ) ∪ (S ′ ∩ T ), Z = (T ∩ S ′) ∪ (T ′ ∩ S ′).

Note that unlike the diagonal sets in the previous section, Y and Z are
not disjoint here. They are random sets, typically intersecting; however,
the punch line is that Y and Z are not independent, and in fact the events
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S

S
′

T T S
′ S ′

Y Z

T

T
′

Figure 5.3: Diagonal sets Y and Z.

j ∈ Y, j ∈ Z are negatively correlated. Observe that Z intersects Y only
inside the first part (S ∩ T ), and more precisely

Y ∩ Z = (S ∩ T ) ∩ (S ′ ∪ (T ′ ∩ S ′)) = (S ∩ T ) ∩ (S ′ ∪ T ′).

The sets S, S ′, T, T ′ are sampled independently and contain each item with
probability 1/2. Similarly, Pr[j ∈ Y ] = Pr[j ∈ Z] = 1/2 for any item j, while

Pr[j ∈ Y ∩ Z] = Pr[j ∈ (S ∩ T ) ∩ (S ′ ∪ T ′)] =
3

16

rather than 1/4 which is the probability of appearance in S ∩ T . Thus the
interests of the two players are closer to being disjoint and we are able to
allocate more items to each of them, using Y and Z. Our next algorithm
takes advantage of this fact, combining the two allocation schemes outlined
above.

Algorithm 2. (37/48-approximation for 2 balanced players)

• Let player 1 sample independently random sets S, S ′.

• Let player 2 sample independently random sets T, T ′.

• Let X contain each item independently with probability 1/2.

• Let Y = (S ∩ T ) ∪ (S ′ ∩ T ), Z = (T ∩ S ′) ∪ (T ′ ∩ S ′).

We assign items randomly based on the following table:

Probability 1/3 1/3 1/3

Player 1 S ′ T Y \ (Z ∩X)

Player 2 S ′ T Z \ (Y ∩X)
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Theorem 5.8. For any balanced fractional solution xi,S, Algorithm 2 gives
expected profit at least 37/48

∑

S xi,S wi(S) to each player i.

Proof. Consider player 1. The sets S and S ′ are sampled from the same
distribution. E[w1(S)] = E[w1(S

′)] =
∑

S x1,Sw1(S) is the share of player 1
in the fractional solution, ideally what we would like player 1 to receive. For
the sets allocated to him in the second and third scheme, T and Y \ (Z ∩X),
we use submodularity. We use the fact that Y ∩Z = (S ∩ T )∩ (S ′ ∪ T ′), i.e.

Y \ (Z ∩X) = ((S ∩ T ) \ ((S ′ ∪ T ′) ∩X)) ∪ (S ′ ∩ T ).

By submodularity,

w1(T ) + w1(Y \ (Z ∩X)) ≥ w1(((S ∩ T ) \ ((S ′ ∪ T ′) ∩X)) ∪ T ) + w1(S
′ ∩ T )

≥ w1(S \ ((S ′ ∪ T ′) ∩X ∩ T )) + w1(S
′ ∩ T ).

Now we use the linearity of expectation and Lemma 5.4: each item appears
in (S ′ ∪ T ′) ∩ X ∩ T with probability 3/16, and in T with probability 1/2.
Therefore

E[w1(T )] + E[w1(Y \ (Z ∩X))] ≥ 13

16
E[w1(S)] +

1

2
E[w1(S

′)] =
21

16
E[w1(S)].

The expected profit of player 1 is

1

3
E[w1(S)]+

1

3
E[w1(T )]+

1

3
E[w1(Y \(Z∩X))] ≥ 37

48
E[w1(S)] =

37

48

∑

S

xi,S w1(S).

For player 2, the analysis is similar, although not exactly symmetric: here,
we have

Z \ (Y ∩X) = (T ∩ S ′ \ (S ∩X)) ∪ (T ′ ∩ S ′ \ (S ∩ T ∩X)).

Submodularity yields

w2(S ′) + w2(Z \ (Y ∩X)) ≥ w2((T ∩ S ′ \ (S ∩X)) ∪ S ′) + w2(T
′ ∩ S ′ \ (S ∩ T ∩X))

≥ w2(T \ (S ′ ∩ S ∩X)) + w2(T
′ ∩ S ′ \ (S ∩ T ∩X)).

Finally, we apply Lemma 5.4:

E[w2(S ′)] + E[w2(Z \ (Y ∩X))] ≥ 7

8
E[w2(T )] +

7

16
E[w2(T

′)] =
21

16
E[w2(T )]

and the rest follows as for player 1.

For two players with a balanced fractional solution, we also have a slightly
improved algorithm which has an approximation factor 7/9

.
= 0.777 (as com-

pared to 37/48
.
= 0.771). Its analysis is slightly more involved; it uses a new

trick, the application of Lemma 5.4 to marginal values of subsets. This trick
and the structure of the next algorithm will be useful for our final solution
for n players.
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Algorithm 2’. (7/9-approximation for 2 balanced players)

• Let player 1 sample independently random sets S, S ′.

• Let player 2 sample independently random sets T, T ′.

• Let Y = (S ∩ T ) ∪ (S ′ ∩ T ), Z = (T ∩ S) ∪ (T ′ ∩ S).

• Let Y ′ = (S ∩ T ′) ∪ (S ′ ∩ T ′), Z ′ = (T ∩ S ′) ∪ (T ′ ∩ S ′).

We assign items according to the following table:

Probability 5/18 5/18 4/18 4/18

Player 1 S ′ T Y ′ Y \ Z ′

Player 2 S ′ T Z \ Y ′ Z ′

Theorem 5.9. For any balanced fractional solution xi,S, Algorithm 2’ gives
expected profit at least 7/9

∑

S xi,S wi(S) to each player i.

Proof. Let’s define α = E[w1(S)], β = E[w2(T )], γ = E[w1(T )] and δ =
E[w2(S)]. I.e., α+β =

∑

i,S xi,S wi(S) is the value of the fractional solution,
while α + δ and β + γ are the expected values achieved by the first two
allocation schemes. It remains to estimate the expected profit obtained in
the last two schemes. By submodularity and linearity of expectation, we get

E[w2(Z
′)]+E[w2(S ′)] ≥ E[w2(T∪S ′)]+E[w2(T

′∩S ′)] ≥ E[w2(T )]+
1

2
E[w2(T

′)]

using Lemma 5.4. I.e.,

E[w2(Z
′)] ≥ 3

2
β − δ.

It is a little bit more complicated to estimate the value of Y \Z ′. We use
the fact that Y \ Z ′ simplifies to (S ∩ T ) \ (S ′ ∪ T ′) ∪ (S ′ ∩ T ), and then by
submodularity:

E[w1(Y \ Z ′)] + E[w1(T )] = E[w1(((S ∩ T ) \ (S ′ ∪ T ′)) ∪ (S ′ ∩ T ))] + E[w1(T )]

≥ E[w1(((S ∩ T ) \ (S ′ ∪ T ′)) ∪ T )] + E[w1(S
′ ∩ T )]

≥ E[w1(((S ∩ T ) \ (S ′ ∪ T ′)) ∪ T )] +
1

2
α.

To estimate the last expectation, let’s consider g(A) = w1(A∪T )−w1(T ),
a function on subsets A ⊆ T which gives the marginal value of adding some
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items to T . This is also a submodular function and therefore Lemma 5.4
applies to it; in particular, conditioning on S, T , we get

ES′,T ′[g((S ∩ T ) \ (S ′ ∪ T ′)) | S, T ] ≥ 1

4
g(S ∩ T )

because S ′ ∪ T ′ contains each element with probability 3/4. This means,

E[w1(((S ∩ T ) \ (S ′ ∪ T ′)) ∪ T )− w1(T ) | S, T ]

≥ 1

4
(w1((S ∩ T ) ∪ T )− w1(T )) ≥ 1

4
(w1(S)− w1(T )),

E[w1(((S ∩ T ) \ (S ′ ∪ T ′)) ∪ T ))− w1(T )]

≥ 1

4
E[w1(S)− w1(T )] =

1

4
(α− γ)

and therefore

E[w1(Y \ Z ′)] ≥ 1

4
(α− γ) +

1

2
α =

3

4
α− 1

4
γ.

By symmetry, we also get E[w1(Y
′)] ≥ 3

2
α−γ and E[w2(Z\Y ′)] ≥ 3

4
β− 1

4
δ.

By combining all of the above, we obtain that the total expected profit of
player 1 is

5

18
E[w1(S)] +

5

18
E[w1(T )] +

4

18
E[w1(Y \ Z ′)] +

4

18
E[w1(Y

′)]

≥ 5

18
α +

5

18
γ +

4

18

(

3

4
α− 1

4
γ

)

+
4

18

(

3

2
α− γ

)

=
7

9
α.

By symmetry, the expected profit of player 2 is at least 7
9
β.

5.2.5 Two players with an arbitrary fractional solution

Given our algorithm for balanced fractional solutions, it seems plausible that
we should be able to obtain an improvement in the general case as well.
This is because Algorithm 1 gives a better approximation than 3/4 if the
fractional solution is unbalanced. However, a fractional solution can be bal-
anced on some items and unbalanced on others, so we have to analyze our
profit more carefully, item by item. For this purpose, we prove the following
generalization of Lemma 5.4.
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Lemma 5.10. Fix an ordering of items [m] = {1, 2, . . . , m}; we denote by
[j] = {1, 2, . . . , j} the first j items in this ordering. Let S and X be random
subsets of [m] such that conditioned on any S, Pr[j ∈ X | S] ≥ pj. Let w be
a monotone submodular function and define

σj = E[w(S ∩ [j])− w(S ∩ [j − 1])].

Then

E[w(S ∩X)] ≥
m
∑

j=1

pjσj .

This implies Lemma 5.4 as a special case, since we can have X contain
each item with probability pj = p and then E[w(S ′)] ≥ E[w(S ∩ X)] ≥
∑

j pjσj = p w(S).

Proof. Using the marginal value definition of submodularity, we obtain

w(S ∩X) =

m
∑

j=1

(w(S ∩X ∩ [j])− w(S ∩X ∩ [j − 1]))

≥
m
∑

j=1

(w((S ∩ [j − 1]) ∪ (S ∩X ∩ {j}))− w(S ∩ [j − 1])).

Conditioned on S, j appears in X with probability at least pj, so taking
expectation over X yields

EX [w(S ∩X) | S] ≥
m
∑

j=1

pj(w(S ∩ [j])− w(S ∩ [j − 1]))

and finally

E[w(S ∩X)] ≥
m
∑

j=1

pjE[w(S ∩ [j])− w(S ∩ [j − 1])] =

m
∑

j=1

pjσj .

In the following, we assume that S is a set sampled by player 1, T is a
set sampled by player 2, and we set

• pj = Pr[j ∈ S], σj = E[w1(S ∩ [j])− w1(S ∩ [j − 1])].

• qj = Pr[j ∈ T ], τj = E[w2(T ∩ [j])− w2(T ∩ [j − 1])].
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We seek to estimate our profit in terms of E[w1(S)] =
∑

j σj and E[w2(T )] =
∑

j τj which are the shares of the two players in the fractional solution.
First, let’s give a sketch of an argument that a strict improvement over

3/4 is possible in the general case. Let’s choose a very small constant ǫ > 0
and define “unbalanced items” by U = {j : |pj − 1/2| > ǫ}. We distinguish
two cases:

• If a non-negligible value comes from unbalanced items, e.g.
∑

j∈U(σj +
τj) ≥ ǫ · LP , then we use Algorithm 1. A refined analysis using
Lemma 5.10 implies than the algorithm yields profit at least

∑

j(1− pj(1− pj))σj +
∑

j(1− pj(1− pj))τj
≥ 3

4
LP +

∑

j∈U(1
4
− pj(1− pj))(σj + τj) ≥ (3

4
+ ǫ3)LP.

• If the contribution of unbalanced items is negligible,
∑

j∈U(σj + τj) <
ǫ · LP , then let’s remove the unbalanced items. Also, we scale the
remaining fractional solution by 1/(1 + 2ǫ) and possibly extend some
sets so that we get a balanced solution with pj = qj = 1/2. We incur at
most a factor of (1 − 3ǫ) compared to the original fractional solution.
Then we run Algorithm 2 on this balanced fractional solution which
yields expected value at least 37

48
(1− 3ǫ) · LP .

Choosing for example ǫ = 1/150 gives an approximation factor slightly
better than 3/4. However, we can do better than this, by analyzing more
carefully how Algorithm 2 performs on unbalanced items. For balanced items
(pj = 1/2) Algorithm 1 gives factor 3/4, while Algorithm 2 gives factor
37/48. On the other hand, observe that items which are extremely unbal-
anced (pj → 0) are recovered by Algorithm 1 with probability almost 1,
whereas Algorithm 2 recovers them with probability only 2/3. The best
we can hope for (by combining these two algorithms) is to take a convex
combination which optimizes the minimum of these two cases. This convex
combination takes Algorithm 1 with probability 5/17 and Algorithm 2 with
probability 12/17 which yields a factor of 13/17 in the two extreme cases.
We show that this is indeed possible in the entire range of probabilities pj .
Since Algorithm 2 turns out to favor the player whose share (pj or qj) is
higher than 1/2, we offset this advantage by generating a splitting set X
which gives more advantage to the player with a smaller share.

Algorithm 3. (13/17-approximation for 2 players)

• Let player 1 sample independently random sets S, S ′.
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• Let player 2 sample independently random sets T, T ′.

• Let

f(x) =
4x

(1− x)(9− 4x(1− x)) .

Generate independently a random set X containing item j with proba-
bility φ(pj) = f(pj) for pj ≤ 1/2, or with probability φ(pj) = 1− f(1−
pj) for pj > 1/2.

• Let Y = (S ∩ T ) ∪ (S ′ ∪ T ), Z = (T ∩ S ′) ∪ (T ′ ∩ S ′).

We assign items randomly based on the following table:

Probability 5/17 4/17 4/17 4/17

Player 1 S \ (T ∩X) S ′ T Y \ (Z ∩X)

Player 2 T \ (S ∩X) S ′ T Z \ (Y ∩X)

Theorem 5.11. For 2 players with an arbitrary fractional solution, Algo-
rithm 3 yields expected profit at least 13/17

∑

S xi,S wi(S) for player i.

Proof. By definition, we have E[w1(S)] = E[w1(S
′)] =

∑

j σj and E[w2(T )] =
E[w2(T

′)] =
∑

j τj . Now consider the first allocation scheme. The definition
of set X is symmetric in the sense that φ(1−pj) = 1−φ(pj), i.e. if pj+qj = 1,
the set is generated equivalently from the point of view of either player. Since
item j appears in T∩X with probability qjφ(pj) ≤ (1−pj)φ(pj), and in S∩X
with probability pj(1− φ(pj)) = pjφ(1− pj), Lemma 5.10 implies

E[w1(S \ (T ∩X))] ≥
∑

j

(1− (1− pj)φ(pj))σj ,

E[w2(T \ (S ∩X))] ≥
∑

j

(1− pjφ(1− pj))τj .

To estimate the combined profit of the remaining allocation schemes, we
use submodularity and Lemma 5.10:

E[w1(Y \ (Z ∩X))] + E[w1(T )]

≥ E[w1((S ∩ T ) \ ((S ′ ∪ T ′) ∩X) ∪ T )] + E[w1(S
′ ∩ T )]

≥ E[w1(S \ (T ∩X ∩ (S ′ ∪ T ′)))] + E[w1(S
′ ∩ T )]

≥
∑

j

(1− qjφ(pj)(1− (1− pj)(1− qj)))σj +
∑

j

(1− qj)σj

≥
∑

j

(1 + pj − (1− pj)φ(pj)(1− pj(1− pj)))σj .
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The total expected profit of player 1 is:

5

17
E[w1(S \ (T ∩X))] +

4

17
E[w1(S)] +

4

17
E[w1(T )] +

4

17
E[w1(Y \ (Z ∩X))]

≥ 5

17

∑

j

(1− φ(pj)(1− pj))σj +
4

17

∑

j

(2 + pj − (1− pj)φ(pj)(1− pj(1− pj)))σj

=
13

17

∑

j

σj +
1

17

∑

j

(4pj − φ(pj)(1− pj)(9− 4pj(1− pj))σj .

We show that the last sum is nonnegative. It can be verified that the function

f(x) =
4x

(1− x)(9− 4x(1− x))
is increasing and convex on the interval (0, 1). Also, f(1/2) = 1/2 and by
convexity f(pj) + f(1 − pj) ≥ 1. We have φ(pj) = f(pj) for pj ∈ [0, 1

2
] and

φ(pj) = 1 − f(1 − pj) for pj ∈ [1
2
, 1]; i.e., φ(pj) ≤ f(pj) for any pj ∈ (0, 1).

Consequently, φ(pj)(1 − pj)(9 − 4pj(1 − pj)) ≤ 4pj and so player 1 gets
expected profit at least 13

17

∑

j σj .
For player 2, we get the following:

E[w2(Z \ (Y ∩X))] + E[w2(S ′)]

≥ E[w2(((S
′ ∩ T ) \ (Y ∩X))) ∪ S ′] + E[w2((T

′ ∩ S ′) \ (Y ∩X))]

≥ E[w2(T \ (S ∩ S ′ ∩X))] + E[w2(T
′ ∩ S ′ \ (S ∩ T ∩X))]

≥
∑

j

(1− φ(1− pj)p2
j )τj +

∑

j

(1− pj)(1− φ(1− pj)pjqj)τj

≥
∑

j

(1 + (1− pj)− φ(1− pj)pj(1− pj(1− pj)))τj.

This is just like the expression for player 1 after substituting pj → 1 − pj .
The same analysis gives that the total expected profit of player 2 is at least
13
17

∑

j τj .

5.3 The allocation problem for n players

As we discussed, our final algorithm will use a combination of two rounding
techniques.

5.3.1 The Fair Rounding Technique

The first technique can be seen as an alternative way to achieve a factor
of 1 − 1/e. This is a refinement and simplification of the previously used



104CHAPTER 5. SUBMODULAR WELFARE WITH DEMAND QUERIES

techniques for fractionally subadditive utility functions [18]. Compared to
previous approaches, it has several advantages; the most important for us
now being that if the fractional solution is significantly unbalanced (some
items are allocated to some players with a significantly large probability), we
already gain over 1− 1/e. This rounding procedure is based on a technique
that we call Fair Contention Resolution.

Fair Contention Resolution. Suppose n players compete for an item
independently with probabilities p1, p2, . . . , pn. Denote by A the random set
of players who request the item, i.e. Pr[i ∈ A] = pi independently for each i.

• If A = ∅, do not allocate the item.

• If A = {k}, allocate the item to player k.

• If |A| > 1, allocate the item to each k ∈ A with probability

rA,k =
1

∑n
i=1 pi





∑

i∈A\{k}

pi
|A| − 1

+
∑

i/∈A

pi
|A|



 .

It can be seen that rA,k ≥ 0 and
∑

k∈A rA,k = 1 so this is a valid probability
distribution.

Lemma 5.12. Conditioned on player k requesting the item, she obtains it
with probability exactly

ρ =
1−∏n

i=1(1− pi)
∑n

i=1 pi
.

This is the best possible value of ρ, since the total probability that the
item is allocated should be ρ

∑

i pi and this cannot be higher than the prob-
ability that somebody requests the item, 1−∏i(1− pi).
Proof. First, suppose that we allocate the item to player k with probability
rA,k for any A containing k, even A = {k}. (For the sake of the proof, we
interpret the sum over A\{k} for A = {k} as zero, although the summand is
undefined.) Then the conditional probability that player k receives the item,
when she competes for it, would be E[rA,k | k ∈ A].

However, when A = {k}, our technique actually allocates the item to
player k with probability 1, rather than

r{k},k =

∑

i6=k pi
∑n

i=1 pi
= 1− pk

∑n
i=1 pi

.
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So player k gains an additional probability Pr[A = {k}](1− r{k},k) = Pr[A =
{k}] pk/

∑

i pi which makes the total probability that player k obtains the
item equal to

qk = pk E[rA,k | k ∈ A] +
pk

∑n
i=1 pi

Pr[A = {k}]. (5.1)

We would like to show that qk = pk
P

pi
Pr[A 6= ∅]. This means that E[rA,k | k ∈

A] should be equal to 1
P

pi
Pr[A \ {k} 6= ∅]. Let’s define B = [n] \ {k} and

let A′ = A \ {k} be the set of players competing with k. The probability of
a particular set A′ occurring is p(A′) =

∏

i∈A′ pi
∏

i∈B\A′(1− pi). Let’s write

E[rA,k | k ∈ A] as a weighted sum over all possible subsets A′ ⊆ B:

E[rA,k | k ∈ A] =
∑

A′⊆B
p(A′) rA′∪{k},k

=
1

∑n
i=1 pi

∑

A′⊆B
p(A′)





∑

i∈A′

pi
|A′| +

∑

i∈B\A′

pi
|A′|+ 1



 .

Ideally, we would like to see 1
P

pi

∑

A′ 6=∅ p(A
′) = 1

P

pi
Pr[A′ 6= ∅] instead, but

we have to perform a certain redistribution of terms to achieve this. Observe
that for i, A′ such that i ∈ B \ A′, the contribution can be also written as

p(A′)
pi

|A′|+ 1
=

1− pi
pi

p(A′ ∪ {i}) pi
|A′|+ 1

= p(A′ ∪ {i}) 1− pi
|A′ ∪ {i}| .

Using this equality to replace all the terms for i ∈ B \ A′, we get

E[rA,k | k ∈ A] =
1

∑n
i=1 pi





∑

A′⊆B
p(A′)

∑

i∈A′

pi
|A′| +

∑

A′⊆B

∑

i∈B\A′

p(A′ ∪ {i}) 1− pi
|A′ ∪ {i}|





=
1

∑n
i=1 pi





∑

A′⊆B
p(A′)

∑

i∈A′

pi
|A′| +

∑

∅6=A′′⊆B

∑

i∈A′′

p(A′′)
1− pi
|A′′|





=
1

∑n
i=1 pi

∑

∅6=A′⊆B
p(A′)

∑

i∈A′

(

pi
|A′| +

1− pi
|A′|

)

=
1

∑n
i=1 pi

∑

∅6=A′⊆B
p(A′) =

1
∑n

i=1 pi
Pr[A \ {k} 6= ∅].

So indeed, from (5.1), player k receives the item with probability

qk =
pk

∑n
i=1 pi

(Pr[A \ {k} 6= ∅] + Pr[A = {k}]) =
pk

∑n
i=1 pi

Pr[A 6= ∅].
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This gives immediately an approximation factor of 1−(1−1/n)n > 1−1/e,
assuming only fractional additivity.

Algorithm 4. (Fair Rounding Procedure)

• Let each player i sample a set Si from his/her probability distribution.

• Using the Fair Contention Resolution technique, obtain disjoint sets S∗
i

and allocate them to the respective players.

Lemma 5.13. For n players with fractionally subadditive utility functions,
Algorithm 4 delivers expected value at least (1− (1− 1/n)n)

∑

S xi,S wi(S) to
player i.

Proof. Each player requests a set of expected value E[wi(Si)] =
∑

S xi,S wi(S).
Define

• yij =
∑

S:j∈S xi,S = Pr[j ∈ Si]
i.e., the probability that player i competes for item j. By Lemma 5.12,
conditioned on player i competing for item j, the item is allocated to him/her
with probability

ρ =
1−∏n

i=1(1− yij)
∑n

i=1 yij
≥ 1−

(

1− 1

n

)n

since
∑n

i=1 yij ≤ 1. This is done independently of the particular set Si con-
taining j that the player has chosen. Therefore, conditioned on any particular
chosen set Si, the player obtains each of its items with probability at least
1− (1− 1/n)n. The result follows by Lemma 5.4.

This already improves the approximation factor of 1− 1/e for any fixed
number of players. However, our goal is to obtain an absolute constant larger
than 1 − 1/e, independent of n. We will also show that the Fair Rounding
Procedure achieves a factor better than 1− 1/e whenever the fractional so-
lution is unbalanced, similarly to the case of two players. However, the most
difficult case to deal with is when the fractional solution is balanced.

5.3.2 The Butterfly Rounding Technique

Let’s assume for now that the fractional solution is balanced in the sense
that for each player i and item j, we have yij =

∑

S:j∈S xi,S = 1/n1, which

1There is always a balanced optimal LP solution when all players have the same utility
function. Hence the results in this section can be applied directly to this special case.



5.3. THE ALLOCATION PROBLEM FOR N PLAYERS 107

is the worst case for the Fair Rounding Procedure. We also assume that the
number of players n is very large; otherwise, we have an improvement over
1 − 1/e already. In other words, we consider the variables yij infinitesimal
and we write (1− 1/n)n

.
= e−1, (1− 1/n)n/2

.
= e−1/2, etc.

In this case, we use ideas from the two-player case in order to obtain a
small improvement over 1 − 1/e. Roughly speaking, we divide the players
into two groups and treat them as two super-players, using our algorithm for
two players. The items obtained by the super-players are allocated within
each group. We would have liked to employ Algorithm 3 as a black box for
the two super-players, but the additional complication of conflicts inside each
group forces us to modify the previous algorithms slightly.

Let us also assume that we can split the players evenly into two groups
A,B such that for each item j,

∑

i∈A
yij =

∑

i∈B
yij =

1

2
.

For a collection of sets {Si : i ∈ A} sampled by players in one group, we will
use Lemma 5.12 to make the sets disjoint; we call this “resolving conflicts
among a group of players”. Recall that players in a group A such that
∑

i∈A yij = 1/2 can resolve conflicts in such a way that each requested item
is allocated with probability (1−∏i∈A(1− yij))/(

∑

i∈A yij) ≥ 2(1− e−1/2)
.
=

0.787. This is significantly better than 1−e−1 .
= 0.632; however, 0.787 is not

the approximation factor we can achieve. First we have to distribute items
between the two groups, and for this purpose we use ideas inspired by the
two-player case. In the end, we recover roughly 0.645 of the LP value for
each player.

Algorithm 5. (Butterfly Rounding Procedure)

• Let each player in group A sample two independent random sets Si, S
′
i.

• Let each player in group B sample two independent random sets Ti, T
′
i .

• Let U =
⋃

i∈A Si, U ′ =
⋃

i∈A S
′
i, V =

⋃

i∈B Ti, V ′ =
⋃

i∈B T
′
i .

• Let the players in A resolve conflicts among Si to obtain disjoint sets
S∗
i . Similarly, resolve conflicts among S ′

i to obtain disjoint sets S ′∗
i .

• Let the players in B resolve conflicts among Ti to obtain disjoint sets
T ∗
i . Similarly, resolve conflicts among T ′

i to obtain disjoint sets T ′∗
i .

• Let Y ∗
i = (S∗

i ∩ V ) ∪ (S ′∗
i ∩ V ), Z∗

i = (T ∗
i ∩ U) ∪ (T ′∗

i ∩ U).



108CHAPTER 5. SUBMODULAR WELFARE WITH DEMAND QUERIES

• Let Y ′∗
i = (S∗

i ∩ V ′) ∪ (S ′∗
i ∩ V ′), Z ′∗

i = (T ∗
i ∩ U ′) ∪ (T ′∗

i ∩ U ′).

We assign the items using one of four allocation schemes:

1. With probability e1/2/(1 + 2e1/2):
Each player i ∈ A receives S∗

i . Each player i ∈ B receives (T ∗
i \ U) ∪

(T ′∗
i \ U \ V ).

2. With probability e1/2/(1 + 2e1/2):
Each player i ∈ B receives T ∗

i . Each player i ∈ A receives (S∗
i \ V ) ∪

(S ′∗
i \ V \ U).

3. With probability 1/(2 + 4e1/2):
Each player i ∈ A receives Y ′∗

i . Each player i ∈ B receives Z∗
i \
⋃

i∈A Y
′∗
i .

4. With probability 1/(2 + 4e1/2):
Each player i ∈ B receives Z ′∗

i . Each player i ∈ A receives Y ∗
i \
⋃

i∈B Z
′∗
i .

U U

Ti

T
′

i

Si
Si

S
′

i

V V

Ti

Figure 5.4: Allocation schemes 1 and 2.

Si

S
′

i

V
′ V ′ U U

Y
′

i
Zi

Ti

T
′

i

Zi ∩
⋃

Y
′

k

Figure 5.5: Allocation scheme 3.

See the figures depicting the four allocation schemes (without considering
conflicts inside each group of players). In the following, we also use Yi =
(Si ∩ V ) ∪ (S ′

i ∩ V ), Y ′
i = (Si ∩ V ′) ∪ (S ′

i ∩ V ′), etc., to denote sets before
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Si

S
′

i

V V U
′ U ′

Yi Z
′

i

Ti

T
′

i

Yi ∩
⋃

Z
′

k

Figure 5.6: Allocation scheme 4.

resolving conflicts. Taking the union over each group, we get the same set
regardless of resolving conflicts or not:

⋃

i∈A Si =
⋃

i∈A S
∗
i = U ,

⋃

i∈A Yi =
⋃

i∈A Y
∗
i = (U ∩ V ) ∪ (U ′ ∩ V ), etc.

Intuition. If we use only the first two schemes, we get an approximation
factor of at least 1 − 1/e. In fact, we get 1 − 1/e even without using the
sets S ′

i, T
′
i - if each player chooses one set and we resolve conflicts first in one

preferred group and then in the second group, we get exactly 1 − 1/e (see
the proof below). Adding some elements of T ′

i to a player i ∈ B and some
elements of S ′

i to a player i ∈ A might or might not help - but if it doesn’t
help, we prove that we can construct other good sets Yi, Y

′
i for player i ∈ A

and Zi, Z
′
i for i ∈ B, which have the property of negative correlation (we

repeat the trick of Algorithm 2). Then we can extract more than 1− 1/e of
their value for each player.

Theorem 5.14. For n players with a balanced fractional solution and n →
∞, Algorithm 5 yields expected profit at least 0.645

∑

S xi,Swi(S) for player
i.

Proof. We set the following notation:

• For i ∈ A, αi = E[wi(Si)]. For i ∈ B, βi = E[wi(Ti)].

• For i ∈ A, γi = E[wi((Si ∪ S ′
i) \ V ) − wi(Si \ V )]. For i ∈ B, δi =

E[wi((Ti ∪ T ′
i ) \ U)− wi(Ti \ U)].

• For every i, j: yij =
∑

S:j∈S xi,S; i.e.
∑

i∈A yij =
∑

i∈B yij = 1/2.

First, recall that in each group of sets like {Si : i ∈ A}, Lemma 5.12 allows
us to resolve conflicts in such a way that each item in Si is retained in S∗

i

with conditional probability at least 2(1− e−1/2). We will postpone this step
until the end, which will incur a factor of 2(1− e−1/2) on the expected value
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of all allocated sets. Instead, we analyze the sets “requested” by each player,
which are formally obtained by removing the stars from the sets appearing
in each allocation scheme. Note that some requested sets are formed by
combining Si and S ′

i, such as Yi = (Si∩V )∪(S ′
i∩V ); however, the resolution

of conflicts for each fixed item requested by player i involves only one of the
sets Si, S

′
i.

Consider a player i ∈ A. In the first allocation scheme, he requests the
set Si of expected value E[wi(Si)] = αi. In the second allocation scheme, he
requests (Si \ V ) ∪ (S ′

i \ V \ U). First, let’s just consider Si \ V . Each item
survives outside of V with probability (1− 1/n)n/2

.
= e−1/2, therefore

E[wi(Si \ V )] ≥ e−1/2αi.

Observe that at this point, we already have an approximation factor of
1− 1/e: By averaging the two cases, we get 1

2
E[wi(Si) +wi(Si \ V )] ≥ 1

2
(1 +

e−1/2)αi. Player i actually receives each requested item with probability at
least 2(1−e−1/2), so his expected profit is at least 2(1−e−1/2)· 1

2
(1+e−1/2)αi =

(1− e−1)αi.
However, rather than Si \V , player i requests (Si \V )∪ (S ′

i \V \U). This
might yield some gain or not; we would like to express this gain in terms of
γi. Let’s write Ũ =

⋃

k∈A\{i} Sk; we can use this instead of U = Ũ ∪ Si here,

since (Si \ V ) ∪ (S ′
i \ V \ Ũ) = (Si \ V ) ∪ (S ′

i \ V \ U). The way we analyze
the contribution of S ′

i \ V \ Ũ is that we look at the marginal value

γ′i = E[wi((Si \ V ) ∪ (S ′
i \ V \ Ũ))− wi(Si \ V )]

as opposed to γi = E[wi((Si \ V ) ∪ (S ′
i \ V )) − wi(Si \ V )]. Let’s fix Si, V

and define gi(A) = wi((Si \ V )∪A)−wi(Si \ V ), the marginal value of a set
added to Si \ V . This is also a submodular function. We are interested in
gi(S

′
i \ V \ Ũ), as opposed to gi(S

′
i \ V ). Each item present in S ′

i \ V survives
in S ′

i \ V \ Ũ with conditional probability
∏

k∈A\{i}(1− ykj)
.
= e−1/2. Since Ũ

is sampled independently of Si, S
′
i and V , Lemma 5.10 implies

EŨ [gi(S
′
i\V \Ũ)] ≥ e−1/2gi(S

′
i\V ) = e−1/2(wi((Si\V )∪(S ′

i\V ))−wi(Si\V )).

Taking expectation over the remaining random sets, we get

γ′i = E[gi(S
′
i \V \ Ũ)] ≥ e−1/2E[wi((Si \V )∪ (S ′

i \V ))−wi(Si \V )] = e−1/2γi.

To summarize,

E[wi((Si \ V ) ∪ (S ′
i \ V \ U))] = E[wi(Si \ V )] + γ′i ≥ e−1/2(αi + γi).
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Now, let’s turn to the third allocation scheme. Player i requests Y ′
i =

(Si ∩ V ′) ∪ (S ′
i ∩ V ′) which by submodularity satisfies

E[wi(Y
′
i )] + E[wi((Si ∪ S ′

i) ∩ V ′)] ≥ E[wi(Y
′
i ∪ (Si ∩ V ′))] + E[wi(S

′
i ∩ V ′)]

≥ E[wi(Si)] + E[wi(S
′
i ∩ V ′)],

i.e.

E[wi(Y
′
i )] ≥ E[wi(Si)]− (E[wi((Si ∪ S ′

i) ∩ V ′)− E[wi(S
′
i ∩ V ′)]) = αi − γi.

Note that either player i gains in the second allocation scheme (when γi is
large), or otherwise Y ′

i has very good expected value, close to αi.
In the fourth allocation scheme, player i requests Yi \

⋃

k∈B Z
′
k, where

Yi = (Si ∩ V ) ∪ (S ′
i ∩ V ) and

⋃

k∈B Z
′
k = (V ∩ U ′) ∪ (V ′ ∩ U ′), and so

Yi \
⋃

k∈B
Z ′
k = ((Si ∩ V ) ∪ (S ′

i ∩ V )) \ ((V ∩ U ′) ∪ (V ′ ∩ U ′))

= ((Si ∩ V ) \ (U ′ ∪ V ′)) ∪ (S ′
i ∩ V ).

By submodularity,

E[wi(Yi \
⋃

k∈B
Z ′
k)] + E[wi((Si ∪ S ′

i) ∩ V )]

≥ E[wi(Si \ (V ∩ (U ′ ∪ V ′)))] + E[wi(S
′
i ∩ V )]

and therefore, using γi = E[wi((Si ∪ S ′
i) ∩ V )]− E[wi(S

′
i ∩ V )],

E[wi(Yi \
⋃

k∈B
Z ′
k)] ≥ E[wi(Si \ (V ∩ (U ′ ∪ V ′)))]− γi

≥ (1− (1− e−1/2)(1− e−1))αi − γi

since item j appears in V ∩ (U ′ ∪ V ′) with probability (1− e−1/2)(1− e−1).
This makes the profit of player i significantly smaller compared to the third
allocation scheme; nonetheless, he does not lose as much as if we removed
from him a union of independently sampled sets for players in B (which would
contain each element with probability (1− e−1/2) rather than (1− e−1/2)(1−
e−1)). Here, we benefit from the negative correlation between sets Yi and Z ′

k.
Finally, conflicts are resolved within each group which incurs an additional

factor of 2(1− e−1/2). The overall expected profit of player i ∈ A is

e1/2

1 + 2e1/2
2(1− e−1/2)

(

αi + e−1/2(αi + γi)
)
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+
1− e−1/2

1 + 2e1/2
(

αi − γi + (1− (1− e−1/2)(1− e−1))αi − γi
)

=
1− e−1/2

1 + 2e1/2
(

2e1/2 + 4− (1− e−1/2)(1− e−1)
)

αi ≥ 0.645 αi.

The analysis for a player i ∈ B would be exactly the same, yielding expected
profit at least 0.645 βi.

5.3.3 Sketch of a small improvement in the general
case

Let’s convince the reader that a tiny (but constant) improvement over 1−1/e
in the general case is possible. We have the Butterfly Rounding Procedure
which requires that players be divided into groupsA,B with balanced interest
in each item, namely

∑

i∈A
yij =

∑

i∈B
yij =

1

2
,

and we regard the values yij as infinitesimal. In fact, the analysis of the
Butterfly Rounding Procedure is quite exact, provided that the values yij
are not too large. Also, in this case we can argue that a random partition
is likely to be approximately balanced. So, let’s propose a variant of the
Butterfly Rounding Procedure for the general case.

Algorithm 5’.

• Partition the players into groups A,B by assigning each player uni-
formly and independently to A or B. Define

zj = max

{

∑

i∈A
yij,

∑

i∈B
yij ,

1

2

}

.

• Now consider the fractional solution as a probability distribution over
subsets S for each player. Let X be an independently sampled random
set, where item j is present with probability 1/(2zj). We modify the
probability distribution of each player by taking S ∩ X instead of S.
This defines a probability distribution corresponding to a new fractional
solution x̃i,S∩X where

x̃i,S∩X = xi,S Pr[X] = xi,S
∏

j∈X

1

2zj

∏

j /∈X

(

1− 1

2zj

)

.
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Then, we get ỹij =
∑

S:j∈S x̃i,S = yij/(2zj) so that max(
∑

i∈A ỹij,
∑

i∈B ỹij) ≤
1/2.

• Then run Algorithm 5 on the fractional solution x̃i,S. Note that the
fractional solution x̃i,S is “sub-balanced” rather than balanced, but this
is sufficient for Algorithm 5 to work properly.

Let’s fix a very small ǫ > 0 and call an item “unbalanced” if some player
requests it with probability yij > ǫ. We claim that Algorithm 5’ works well
for fractional solutions where no item is unbalanced. This is true because
then,

∑

i∈A yij and
∑

i∈B yij are random variables well concentrated around
1
2

∑n
i=1 yij; more precisely, their variance is

V ar

[

∑

i∈A
yij

]

=
n
∑

i=1

1

4
y2
ij ≤

ǫ

4

n
∑

i=1

yij ≤
ǫ

4
.

Therefore, the expected amount by which either sum exceeds 1/2 is

E[zj − 1/2] ≤ E

[

∣

∣

∑

i∈A
yij −

1

2

n
∑

i=1

yij
∣

∣

]

≤

√

√

√

√V ar

[

∑

i∈A
yij

]

=
1

2

√
ǫ.

The way we obtain the new fractional solution x̃i,S corresponds to a sampling
procedure where each item remains with probability 1/(2zj). Therefore, the
expected factor we lose here is

E

[

1

2zj

]

≥ 1

2E[zj]
≥ 1

1 +
√
ǫ
.

Moreover, the analysis of Algorithm 5 (which assumed infinitesimal values of
yij) is quite precise for such a fractional solution. For 0 ≤ yij ≤ ǫ, we have
−yij ≥ log(1− yij) ≥ −yij/(1− ǫ), i.e.

e−
P

i yij ≥
∏

i

(1− yij) ≥ e−
1

1−ǫ

P

i yij ≥ (1− 2ǫ)e−
P

i yij .

Thus all the estimates in the analysis of Algorithm 5 are precise up to an
error ofO(ǫ). Accounting for the balancing step, we get a solution of expected
value (0.645− O(

√
ǫ))LP .

If some items are unbalanced, then running Algorithm 5’ might present a
problem. However, then we gain by running Algorithm 4. As in Section 5.2.5,
we decide which algorithm to use based on the importance of unbalanced
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items in the fractional solution. Let U denote the set of unbalanced items,
and define

σij = E[wi(Si ∩ [j])− wi(Si ∩ [j − 1])],

the expected contribution of item j to player i. Then we distinguish two
cases:

• If a non-negligible value comes from unbalanced items, e.g.
∑

i

∑

j∈U σij ≥
ǫ ·LP , then we use Algorithm 4. For each unbalanced item j ∈ U , since
yij > ǫ for some i, Lemma 5.12 allocates the item to each player with
conditional probability

ρj ≥ 1−
∏

i

(1− yij) ≥ 1− 1− ǫ
e−ǫ

e−
P

i yij ≥ 1−
(

1− 1

2
ǫ2
)

e−1.

By Lemma 5.10, the expected value of our solution is at least

∑

i

∑

j

ρjσij ≥
∑

i

∑

j

(

1− 1

e

)

σij+
∑

i

∑

j∈U

1

2e
ǫ2σij ≥

(

1− 1

e
+
ǫ3

2e

)

·LP.

• If the contribution of unbalanced items is negligible,
∑

i

∑

j∈U σij <
ǫ · LP , then let’s remove the unbalanced items. This incurs a factor of
(1− ǫ) on the value of the fractional solution. Then we run Algorithm
5’ which yields expected value at least (0.645− O(

√
ǫ)) · LP .

For a very small ǫ > 0, one of the two algorithms beats 1 − 1/e by a
positive constant amount. A rough estimate shows that we should choose
ǫ
.
= 10−4 in order to keep 0.645 − O(

√
ǫ) above 1 − 1/e, and then the first

case gives an improvement on the order of 10−12.

5.3.4 Our currently best algorithm in the general case

Let’s analyze Algorithm 5’ more precisely. For each item j, we measure the
“granularity” of the fractional solution by

∑n
i=1 y

2
ij, which could range from

1/n (for a perfectly balanced solution) to 1 (when only one player requests
item j). We show later that the analysis of Algorithm 5 can be carried
through for any balanced fractional solution, with error terms depending
on the granularity of the solution. But first, let’s look at the balancing
procedure.

Lemma 5.15. Let player i have a distribution over sets Si with expected
value E[wi(Si)] =

∑

j σij where

σij = ESi
[wi(Si ∩ [j])− wi(Si ∩ [j − 1])].
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Then after the balancing procedure executed for a given partitioning of play-
ers, the new marginal values for player i are

σ̃ij = ESi,X [wi(Si ∩X ∩ [j])− wi(Si ∩X ∩ [j − 1])]

such that averaging over random partitions,

E(A,B)[σ̃ij ] ≥
σij

1 +
√

∑n
i=1 y

2
ij

.

Proof. Conditioned on a specific partition (A,B), the balancing procedure
gives to player i a random set Si ∩X where Pr[j ∈ X] = 1/(2zj). The proof
of Lemma 5.10 implies that the new marginal values will be at least σ̃ij ≥
σij/(2zj). Averaging over random partitions (A,B), and using E[1/zj] ≥
1/E[zj], we get

E(A,B)[σ̃ij ] ≥
σij

2E[zj]
.

To estimate E[zj], we use the second moment. Let Yij be independent
random variables that take values 0 or yij with probability 1/2, corresponding
to player i being assigned to group A or B. We have

∑n
i=1 E[Yij] = 1/2

and zj = max(
∑n

i=1 Yij, 1 −
∑n

i=1 Yij) = 1/2 + |∑n
i=1 Yij − 1/2|. Due to

independence, V ar[
∑n

i=1 Yij] =
∑n

i=1 V ar[Yij] = 1
4

∑n
i=1 y

2
ij and therefore

E[zj] =
1

2
+ E

[∣

∣

∣

∣

∣

n
∑

i=1

Yij −
1

2

∣

∣

∣

∣

∣

]

≤ 1

2
+

√

√

√

√V ar

[

n
∑

i=1

Yij

]

=
1

2
+

1

2

√

√

√

√

n
∑

i=1

y2
ij.

Thus, we are likely to get a good balanced solution for fractional solutions
with low granularity. Now we apply Algorithm 5 to this modified fractional
solution, and estimate the expected profit. In the analysis, we need the
following bounds.

Lemma 5.16. For any y1j, . . . , ynj ≥ 0 such that
∑n

i=1 yij ≤ 1,

e−
Pn

i=1
yij

(

1−
n
∑

i=1

y2
ij

)

≤
n
∏

i=1

(1− yij) ≤ e−
Pn

i=1
yij

(

1− 1

2

n
∑

i=1

y2
ij

)

.

Proof. By taking logs and Taylor’s series,

log

n
∏

i=1

(1− yij) =

n
∑

i=1

log(1− yij) = −
n
∑

i=1

yij −
1

2

n
∑

i=1

y2
ij −

1

3

n
∑

i=1

y3
ij − . . . ,
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log

(

e−
Pn

i=1
yij

(

1−
n
∑

i=1

y2
ij

))

= −
n
∑

i=1

yij−
n
∑

i=1

y2
ij−

1

2

(

n
∑

i=1

y2
ij

)2

−1

3

(

n
∑

i=1

y2
ij

)3

−. . . ,

log

(

e−
Pn

i=1
yij

(

1− 1

2

n
∑

i=1

y2
ij

))

= −
n
∑

i=1

yij−
1

2

n
∑

i=1

y2
ij−

1

8

(

n
∑

i=1

y2
ij

)2

− 1

24

(

n
∑

i=1

y2
ij

)3

−. . .

To compare the first two series, we simply note that

1

k

(

∑

y2
ij

)k

≥ 1

k

∑

y2k
ij ≥

1

2k

∑

y2k
ij +

1

2k + 1

∑

y2k+1
ij

and so the first inequality in the lemma follows.
To compare the first and the third series, observe that the first two

terms match, while starting from the third we have to compare
∑

i y
k
ij with

(
∑

i y
2
ij)

k−1. We use Hölder’s inequality

(
∑

api )
1/p (

∑

bqi )
1/q) ≥

∑

aibi

with ai = y
k/(k−1)
ij , bi = y

(k−2)/(k−1)
ij , p = k − 1 and q = (k − 1)/(k − 2):

(

n
∑

i=1

ykij

)
1

k−1

(

n
∑

i=1

yij

)
k−2

k−1

≥
n
∑

i=1

y
k−2

k−1

ij y
k

k−1

ij =

n
∑

i=1

y2
ij.

Using
∑n

i=1 yij ≤ 1, we get
∑

i y
k
ij ≥ (

∑

i y
2
ij)

k−1, and therefore the second
inequality holds as well.

Lemma 5.17. For n players with an arbitrary fractional solution, the bal-
ancing procedure followed by Algorithm 5 gives player i expected profit at
least

0.645
∑

j

1−∑n
i=1 y

2
ij

1 +
√

∑n
i=1 y

2
ij

σij .

Proof. Let player i have a fractional solution of value E[wi(Si)] =
∑

j σij . We
proved that after the balancing procedure, this solution is modified to a new

(random) one with marginal values σ̃ij where E[σ̃ij ] ≥ σij/(1 +
√

∑n
i=1 y

2
ij).

We denote the new fractional solution by x̃i,S and ỹij =
∑

S:j∈S x̃i,S.
Now we apply Algorithm 5. We have to go through the analysis of

Algorithm 5 more carefully, keeping in mind that the solution has finite
granularity. We need to be especially cautious about estimates like

∏

(1 −
yij) ≥ e−

P

yij which incur an error term depending on the granularity (see
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Lemma 5.16). Inequalities like
∏

(1− yij) ≤ e−
P

yij hold without change, as
well as (1−∏(1− yij))/

∑

yij ≥ 2(1− e−1/2) for
∑

yij ≤ 1/2.
In the first allocation scheme, player i ∈ A receives

E[wi(S
∗
i )] ≥

∑

j

1−∏i∈A(1− ỹij)
∑

i∈A ỹij
σ̃ij ≥ 2(1− e−1/2)

∑

j

σ̃ij ;

here, the inequality goes the right way.
In the second allocation scheme, player i ∈ A receives

E[wi((S
∗
i \ V ) ∪ (S ′∗

i \ V \ U))] ≥
∑

j

1−∏i∈A(1− ỹij)
∑

i∈A ỹij

∏

i∈B
(1− ỹij) σ̃ij + γ∗i

≥ 2e−1/2(1− e−1/2)

(

∑

j

(

1−
n
∑

i=1

ỹ2
ij

)

σ̃ij + γi

)

where γ∗i = gi(S
′∗
i \V \U) and gi(A) = wi((Si\V )∪A)−wi(Si\V ), similarly to

the analysis of Algorithm 4. We needed to employ Lemma 5.16 to estimate
∏

i∈B(1 − ỹij) ≥ e−1/2(1 − ∑i∈B ỹ
2
ij). The remaining estimates are okay,

including γ∗i ≥ 2(1−e−1/2)γi; since each element of S ′
i\V survives in S ′∗

i \V \U
with probability

∏

i∈A(1−ỹij) (1−∏i∈A(1−ỹij))/
∑

i∈A ỹij ≥ 2e−1/2(1−e−1/2)
for
∑

i∈A ỹij ≤ 1/2, regardless of granularity.
In the third allocation scheme, player i ∈ A receives

E[wi(Y
′∗
i )] ≥ 2(1− e−1/2)

(

∑

j

σ̃ij − γi
)

which is valid without any change, since the inequality goes the right way.
In the fourth allocation scheme, we have

E[wi(Yi \
⋃

k∈B
Z ′
k)] ≥ E[wi(Si \ (V ∩ (U ′ ∪ V ′)))]− γi

≥
∑

j

(

1−
(

1−
∏

i∈A
(1− ỹij)

)(

1−
∏

i∈A∪B
(1− ỹij)

))

σ̃ij − γi

≥
∑

j

(

1−
(

1−
(

1−
n
∑

i=1

ỹ2
ij

)

e−1/2

)(

1−
(

1−
n
∑

i=1

ỹ2
ij

)

e−1

))

σ̃ij − γi

≥
∑

j

(

1−
n
∑

i=1

ỹ2
ij

)

(

e−1/2 + e−1 − e−3/2
)

σ̃ij − γi
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using Lemma 5.16 and max(
∑

i∈A ỹij,
∑

i∈B ỹij) ≤ 1/2. Finally, we use Y ∗
i

instead of Yi which costs us a factor of 2(1− e−1/2):

E[wi(Y
∗
i \
⋃

k∈B
Z ′
k)] ≥ 2(1−e−1/2)

(

∑

j

(

1−
n
∑

i=1

ỹ2
ij

)

(

e−1/2 + e−1 − e−3/2
)

σ̃ij − γi
)

.

Observe that compared to the proof of Theorem 5.14, some terms get the
error factor (1 −∑i ỹ

2
ij). By taking the appropriate linear combination of

the four allocation schemes, player i obtains expected profit at least

1− e−1/2

1 + 2e1/2
(

2e1/2 + 3 + e−1/2 + e−1 − e−3/2)
)

∑

j

(

1−
n
∑

i=1

ỹ2
ij

)

σ̃ij

≥ 0.645
∑

j

(

1−
n
∑

i=1

ỹ2
ij

)

σ̃ij .

This is for a fixed balanced solution with marginal values σ̃ij . For a ran-
dom partition (A,B) and the associated balanced solution, we have E[σ̃ij] ≥
σij/(1 +

√

∑n
i=1 y

2
ij). Also, observe that by the balancing procedure, granu-

larity can only decrease:
∑n

i=1 ỹ
2
ij ≤

∑n
i=1 y

2
ij, so player i gets at least

0.645
∑

j

(

1−
n
∑

i=1

ỹ2
ij

)

σ̃ij ≥ 0.645
∑

j

1−∑n
i=1 y

2
ij

1 +
√

∑n
i=1 y

2
ij

σij .

This procedure works well for fractional solutions of low granularity. On
the other hand, if the granularity is not low, then Algorithm 4 performs
better than 1− 1/e. A combination of the two is our final algorithm.

Algorithm 6. ((1− 1/e+ 0.00007)-approximation for general n players)

1. With probability 0.99, run Algorithm 4.

2. With probability 0.01, run Algorithm 5’.

Theorem 5.18. For any fractional solution, Algorithm 6 gives each player
expected value at least 1 − 1/e + 0.00007

.
= 0.63219 of their share in the

fractional solution.
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Proof. Consider a fractional solution with σij and yij defined as before. By
Lemma 5.12 and 5.16, the first allocation scheme gives each player a set S∗

i

of expected value

E[wi(S
∗
i )] ≥

∑

j

(

1−
n
∏

i=1

(1− yij)
)

σij ≥
∑

j

(

1− 1

e

(

1− 1

2

n
∑

i=1

y2
ij

))

σij .

By Lemma 5.17, the balancing procedure followed by Algorithm 4 yields
an allocation where player i has expected profit at least

0.645
∑

j





1−∑n
i=1 y

2
ij

1 +
√

∑n
i=1 y

2
ij



 σij .

A numerical analysis shows that

0.99

(

1− 1

e

(

1− 1

2

n
∑

i=1

y2
ij

))

+0.01·0.645





1−∑n
i=1 y

2
ij

1 +
√

∑n
i=1 y

2
ij



 ≥ 1−1

e
+0.00007

for any
∑

i y
2
ij ∈ [0, 1] and therefore the overall expected profit of player i is

at least

∑

j

(

1− 1

e
+ 0.00007

)

σij =

(

1− 1

e
+ 0.00007

)

∑

S

xi,Swi(S).

5.4 Other notes

In this section, we present some related notes and observations which are not
essential to our main result (Theorem 5.1). First, we show that a very simple
rounding technique already achieves a (1−1/e)-approximation. On the other
hand, some natural attempts to improve or combine the known (1 − 1/e)-
approximations based on the Configuration LP are doomed to fail. Hence,
it seems that improving the factor of 1− 1/e requires non-trivial techniques.

Finally, we address the question of further possible improvements using
the Configuration LP. We present an example with an integrality gap of 0.782
(recall that 1 − 1/e ≃ 0.632), which shows that a factor better than 0.782
certainly cannot be obtained using the same LP.
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5.4.1 A simple (1− 1/e)-approximation

The Simple Rounding Procedure.

• Let yij =
∑

S:j∈S xi,S. For each j, we have
∑n

i=1 yij ≤ 1.

• Assign each item independently, to player i with probability yij.

Using the formalism of submodular maximization subject to a matroid con-
straint, we show that this yields a (1−1/e)-approximation. For a submodular
function wi, recall how we define the extension w+

i (Section 3.5):

w+
i (yi) = max

{

∑

S

xi,Swi(S) :
∑

S

xi,S ≤ 1, xi,S ≥ 0 & ∀j;
∑

S:j∈S
xi,S ≤ yij

}

.

Here yi is the vector with coordinates yij for j = 1, . . . , m. So the Configu-
ration LP can be written as

max
∑

i

w+
i (yi);

∀j;
∑

i

yij ≤ 1,

∀i, j; yij ≥ 0.

and w+
i (yi) corresponds to the share player i in the fractional solution. Our

Simple Rounding Procedure allocates to player i a random set Si which is
obtained by rounding the coordinates of the vector yi independently to 0 and
1, based on probabilities yij. From Lemma 3.7 and Lemma 3.8, we obtain

E[wi(Si)] ≥ (1− 1/e)w+
i (yi).

In other words, each player receives in expectation at least a (1−1/e)-fraction
of her LP share.

We remark that we could have used Lemma 4.2 to prove the same result.
(And likewise, to analyze the relationship between F (y) and f+(y) in Sec-
tion 3.5.) We can imagine that we sample a random subset of S, each element
with probability xi,S, for each set appearing in the fractional solution, and
then allocate the union of the respective subsets

⋃

S S(xi,S) to each player
i. (This random assignment is very close to, and in fact dominated by what
the Simple Rounding Procedure does.) We would obtain

E

[

wi

(

⋃

S

S(xi,S)

)]

≥ (1− (1− 1/m)m)
∑

S

xi,Swi(S)
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where m is the number of sets for player i in the fractional solution. This
is slightly better than 1− 1/e if the number of items is small; however, this
rounding procedure does not achieve factor 1− (1− 1/n)n for n players like
the Fair Rounding Procedure.

5.4.2 Obstacles to improving 1− 1/e

We show here that the Simple Rounding Procedure does not yield a fac-
tor better than 1 − 1/e, and also another natural approach to achieve an
improvement fails on the same example.

Example 5.19. Consider nn items arranged in an n-dimensional hypercube,
Qn = {1, 2, . . . , n}n. For a vector ~y ∈ Qn, let Fi(~y) denote the “fiber” of ~y
in direction i

Fi(~y) = {~x ∈ Qn | ∀j 6= i; xj = yj},
i.e. the set of elements coinciding with y in all coordinates except i. The goal
of player i is to obtain at least one item from each fiber in direction i. We
define her utility function as

wi(S) = Pr
y

[Fi(~y) ∩ S 6= ∅]

where ~y ∈ Qn is a uniformly random element. This is a monotone submodular
function, the probability measure of a union of events indexed by S.

An optimal fractional solution can be defined as follows. The sets desired
by player i are layers orthogonal to dimension i:

Hi,j = {~x ∈ Qn : xi = j}.

Each of these sets has value wi(Hi,j) = 1. In our fractional solution, player i
receives each set Hi,j with fractional value xi,Hi,j

= 1/n, for a value of 1.
Consider the Simple Rounding Procedure. It allocates each item inde-

pendently and uniformly to a random player. For player i, the probability
that she receives some item in a fixed fiber is 1− (1− 1/n)n. Averaging over
all fibers, the utility of each player is 1− (1− 1/n)n on the average.

However, the actual optimum gives value 1 to each player. This can
be achieved by a “chessboard pattern” where item ~x ∈ Sn is allocated to
player p(x) =

∑n
i=1 xi mod n. So our Simple Rounding Procedure gets only

1− (1− 1/n)n of the optimum.
As an alternative approach, recall Section 5.1 where we described a generic

“three-step” procedure which might improve 1 − 1/e. Here, each player
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chooses a random set S with probability xi,S. Then, conflicts between play-
ers are resolved somehow and finally, the remaining items are allocated. For
our fractional solution, this would mean that each player chooses a random
layer Hi,j; we can assume WLOG that she chooses Hi,1. Regardless of how we
resolve conflicts, only nn− (n− 1)n = (1− (1− 1/n)n)nn items are allocated
at this point, so we cannot get more value than 1 − (1 − 1/n)n per player.
But the situation is even worse that this. We still have (n− 1)n unallocated
items, but regardless of how we assign them to players, we do not gain any
additional value at all! This is because for any of these (n − 1)n remaining
items ~x and any player i, the fiber Fi(~y) already has an item in the first layer
which was allocated to player i and hence player i is not interested in any
more items from this fiber. Thus again, this approach cannot achieve more
than 1− (1− 1/n)n of the optimum.

5.4.3 Integrality gap of 0.782

Example 5.19 does not actually have any integrality gap. But we can mod-
ify this example to achieve an integrality gap of 0.782, thus improving our
example of 5/6 for two players (Section 5.2.2).

Example 5.20. Consider a set of items Qn as above. For each i ∈ [n],
consider a random set Ti which contains independently one random item
from each layer Hi,j, j = 1, . . . , n. Then we define the utility function of
player i as

wi(S) = Pr
Ti

[S ∩ Ti 6= ∅].

Observe that each layer Hi,j is still optimal for player i, because the ran-
dom set Ti intersects it with probability 1. We consider the same fractional
solution, xi,Hi,j

= 1/n for each i, j. This gives value 1 to each player, for a
total LP optimum of n.

Lemma 5.21. The optimal integral solution for Example 5.20 has value
OPT ≤ (0.782 + o(1))n.

Consider a partition where Si is the set obtained by player i. Let

zij =
1

nn−1
|Si ∩Hi,j|,

the fraction of layer Hi,j obtained by player i. Recall that Ti contains one
random element independently from each layer Hi,j for j = 1, . . . , n. Hence,
we have

wi(Si) = Pr
Ti

[Si ∩ Ti 6= ∅] = 1−
n
∏

j=1

(1− zij).
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What can be a possible assignment of the variables zij? For a selection
of subsets K1, K2, . . . , Kn ⊆ [n], the total number of items in the union of
layers

⋃n
i=1

⋃

j∈Ki
Hi,j is nn−∏n

i=1(n−|Ki|). All the players together cannot
obtain more than this many items from the respective layers, which yields

n
∑

i=1

∑

j∈Ki

zijn
n−1 ≤ nn −

n
∏

i=1

(n− |Ki|).

We can also assume that the variables zi1, zi2, . . . are ordered decreasingly for
each i, which makes it sufficient to consider Ki = {1, 2, . . . , ki}. Thus the
maximum value of an integral solution is OPT ≤ OPT1 where

OPT1 = max
{

nn−1
n
∑

i=1

(

1−
n
∏

j=1

(1− zij)
)

:

∀ 1 ≤ k1, k2, . . . , kn ≤ n;
1

n

n
∑

i=1

ki
∑

j=1

zij ≤ 1−
n
∏

i=1

(

1− ki
n

)

∀ 1 ≤ i ≤ n; 1 ≥ zi1 ≥ zi2 ≥ . . . ≥ zin ≥ 0
}

In the following, we estimate OPT1 from above.

Lemma 5.22. (1− ǫ(n))OPT1 ≤ OPT2 where ǫ(n)→ 0 and

OPT2 = max
{

nn−1
n
∑

i=1

(

1−
n
∏

j=1

(1− yij)
)

:

∀ 1 ≤ k1, k2, . . . , kn ≤ n;
1

n

n
∑

i=1

ki
∑

j=1

yij ≤ 1− e−
Pn

i=1
ki/n

∀ 1 ≤ i ≤ n; 1 ≥ yi1 ≥ yi2 ≥ . . . ≥ yin ≥ 0
}

Proof. Note that we are replacing the contraints by stronger conditions, so
OPT1 ≥ OPT2. But we are more interested in the opposite inequality.
Choose an arbitrarily small ǫ > 0 and consider an optimal solution zij to
OPT1. We modify this to a near-optimal solution z′ij with a bounded sum
∑n

j=1 z
′
ij for each i. Recall that zi1 ≥ zi2 ≥ . . .; set Cǫ = log(1/ǫ) and if

∑n
j=1 zij > Cǫ, take ki minimum such that

∑ki

j=1 zij > Cǫ. Keep only these
ki values, z′ij = zij for j ≤ ki, and set the rest to z′ij = 0 (for j > ki). Now,

n
∑

j=1

z′ij ≤ Cǫ + 1 ≤ 2Cǫ.
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On the other hand, since we have
∑n

j=1 z
′
ij > Cǫ for any i where we modified

the solution, and then

n
∏

j=1

(1− zij) ≤
n
∏

j=1

(1− z′ij) ≤ e−Cǫ = ǫ,

we didn’t lose more than ǫnn in the objective function. We will see that the
optimum is OPT1 = Ω(nn), so we lose only O(ǫ)OPT1.

We claim that for n sufficiently large and any ℓ ≤ n,

1− ǫ
n

ℓ
∑

i=1

ki
∑

j=1

z′ij ≤ 1− e−
Pℓ

i=1
ki/n. (5.2)

If this holds, then yij = (1−ǫ)z′ij is a feasible solution to OPT2, which means
that OPT2 ≥ (1− O(ǫ))OPT1.

Assume WLOG that 1 ≤ k1 ≤ k2 ≤ . . . ≤ kℓ. If all the ki’s are bounded
by a constant, for instance 4

ǫ
Cǫ, then we are done, since then 1 − ki/n =

(1−O(n−2))e−ki/n and

1−
ℓ
∏

i=1

(

1− ki
n

)

= 1− (1−O(ℓn−2))e−
Pℓ

i=1
ki/n ≤ 1

1− ǫ
(

1− e−
Pℓ

i=1
ki/n
)

for a sufficiently large n.
If kℓ >

4
ǫ
Cǫ, we use induction on ℓ. We assume that (5.2) holds for ℓ− 1.

Going from ℓ− 1 to ℓ, the right-hand side of (5.2) increases by

(

1− e−
Pℓ

i=1
ki/n
)

−
(

1− e−
Pℓ−1

i=1
ki/n
)

= e−
Pℓ−1

i=1
ki/n

(

1− e−kℓ/n
)

We can assume that e−
Pℓ

i=1
ki/n ≥ ǫ, otherwise (5.2) is trivial. Also, we

assumed kℓ >
4
ǫ
Cǫ, so the RHS increases by at least

ǫ(1− e−kℓ/n) ≥ ǫ(1− e−1)
kℓ
n
≥ 2Cǫ

n
.

Meanwhile, the LHS increases by

1− ǫ
n

kℓ
∑

j=1

z′ij ≤
1− ǫ
n
· 2Cǫ

which proves (5.2).
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Now we estimate OPT2. The constraints imply that when we order the
yij’s in a decreasing sequence, the sum of the m largest ones is bounded by
n(1 − e−m/n). We claim that the optimum is attained when this bound is
tight for any m, i.e. the m-th largest yij is equal to n(e−(m−1)/n − e−m/n) .

=
e−m/n. This can be seen by considering the first yij, being the m-th largest,
which violates this condition and is smaller than e−m/n. Denote by Pm =
∏

j′ 6=j(1 − yij′) the product for the remaining entries in the i-th row, apart
from yij. Similarly, let ykl be the (m + 1)-th largest entry and denote by
Pm+1 =

∏

l′ 6=l(1 − ykl′) the product for the remaining entries in its row. If
Pm > Pm+1 then we can switch yij and ykl and decrease the sum of row
products

∏

j(1 − yij) +
∏

l(1 − ykl). If Pm ≤ Pm+1 then we can increase
yij slightly and decrease ykl by the same amount, which again decreases the
average of the two row products. In both cases, we increase the objective
function.

Thus we know exactly the optimal sequence of entries yij: them-th largest
one is roughly e−m/n. We only have to find their optimal placement in the
n × n matrix yij. Since the product

∏

i,j(1 − yij) is fixed, and we minimize
the sum of the row products

∑

i

∏

j(1 − yij), we try to make these products
as uniform as possible. We claim that

∑n
i=1

∏n
j=1(1−yij) is minimized under

these conditions, when

• There is m such that the first m rows contain yi1 = e−i/n, and yij
.
= 0

for j > 1 (i.e., the smallest possible entries are placed here).

• The remaining entries are distributed in the remaining n −m rows so
that their products

∏n
j=1(1− yij) are all approximately equal to

ρ =





n2−m(n−1)
∏

r=m+1

(

1− e−r/n
)





1/(n−m)

.

• m is chosen so that ρ
.
= 1− e−m/n.

To see this, denote by M the rows containing the m largest entries (it’s
easy to see that these should be in m distinct rows). Any of these rows has a
product

∏n
j=1(1−yij) ≤ 1−e−m/n = ρ. Outside of M , consider the row with

the largest product
∏n

j=1(1− yij). By averaging, this must be larger than ρ.
If there is any entry in it smaller than some entry in M , switch these two
entries and gain in the objective function. Therefore, all the smallest entries
must be next to the m largest entries in M .

Outside of M , the optimal way is to make the products
∏n

j=1(1− yij) as
uniform as possible, since we are minimizing their sum. So we make them
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all approximately equal to ρ. The value of m is chosen so that the last row
in M has a product approximately equal to ρ as well.

We find the approximate solution of

1− e−m/n =





n2−m(n−1)
∏

r=m+1

(

1− e−r/n
)





1/(n−m)

by taking logs and replacing a sum by an integral. We substitute m = µn
and r = xn, which yields

log
(

1− e−µ
)

=
1

1− µ

∫ ∞

µ

log
(

1− e−x
)

dx. (5.3)

The numerical solution of this equation is µ
.
= 0.292. The value of our

optimal solution is then

OPT2 = nn−1

(

m
∑

i=1

e−i/n + (n−m)e−m/n

)

.
= nn

(
∫ µ

0

e−xdx+ (1− µ)e−µ
)

= nn(1− µe−µ).

Substituting the solution of (5.3) yields OPT2
.
= 0.782 nn.



Chapter 6

The Generalized Assignment
Problem

Problem: Given m items and n bins; for each bin i and item j, there is given
value vij and size sij. A partition of the items into disjoint sets S1, S2, . . . , Sn
is feasible if

∑

j∈Si
sij ≤ 1 for each bin i. We seek a feasible partition which

maximizes
∑n

i=1 vi(Si) where vi(Si) =
∑

j∈Si
vij.

This problem has been considered in [22], where a (1−1/e)-approximation
is given. The approximation algorithm is based on the following LP, very
similar to the Configuration LP discussed in Chapter 5.

max
∑

i

∑

S∈Fi
xi,S vi(S);

∀j; ∑

i

∑

S∈Fi:j∈S xi,S ≤ 1,

∀i; ∑

S∈Fi
xi,S ≤ 1,

xi,S ≥ 0.

Here, Fi denotes the set of all feasible assignments for bin i, i.e. sets such
that

∑

j∈Si
sij ≤ 1. As shown in [22], this LP can be solved to an arbitrary

precision, and the fractional solution has polynomial size. Given a fractional
solution to the LP, a randomized rounding technique is given in [22], which
retrieves at least a (1− 1/e)-fraction of the value of the fractional solution.
A proof of NP-hardness of (1− 1/e+ ǫ)-approximation is given in [22] for a
more general problem, the Separable Assignment Problem (SAP) where Fi
is an arbitrary down-monotone family. Also, GAP can be seen as a special
case of submodular maximization under a matroid constraint (Section 1.2.4),
for which a better than (1−1/e)-approximation is NP-hard. Still, it was not
known whether 1− 1/e is the optimal approximation factor for GAP.

127
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We resolve this question here by showing an improved rounding technique
for the same LP which gives a factor strictly better than 1 − 1/e. Our
improvement is of purely theoretical interest (on the order of 10−120). To put
things in perspective, the algorithm of [22] actually gives an approximation
ratio of 1− (1− 1/n)n ≥ 1 − 1/e + 1/(2en) where n is the number of bins.
Therefore, our main result is relevant only for instances with at least 10120

bins.

6.1 Integrality gap for 2 bins

Consider first the Generalized Allocation Problem with 2 bins. It can be
seen that the approach of [22] gives a 3/4-approximation here. The following
example shows that the approximation factor cannot be improved to more
than 4/5, using the same LP.

Example with integrality gap 4/5. Consider 3 items {a, b, c} and 2 bins.
The following table shows the values and sizes for each bin:

Item Size for bin 1 Value for bin 1 Size for bin 2 Value for bin 2

a 0.5 1 1.0 2
b 0.5 2 0.5 2
c 1.0 2 0.5 1

The optimal fractional solution is: x1,{a,b} = x1,{c} = 1/2 and x2,{a} =
x2,{b,c} = 1/2 which has value 5. However, it is impossible to achieve value
5 integrally; since the item values are integers, this would require one bin to
receive a set of value at least 3 but the only feasible set of value 3 for each
bin leaves only an item of value 1 for the other bin. Therefore the integral
optimum is 4 and the integrality gap is 4/5.

Half-integral LP solutions. It turns out that in the special case of a half-
integral solution to the LP, the approximation factor of 4/5 can be achieved.
Suppose that the fractional solution is

x1,S1
= x1,S2

= x2,T1
= x2,T2

=
1

2

as shown in the figure.
We could choose a random set Si, Tj for each bin and then allocate the

requested items, resolving the conflict on Si ∩ Tj randomly. This would give
an approximation factor of 3/4. A useful observation is, however, that in
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S1

S2

T1 T2

Figure 6.1: A half-integral solution.

some cases we can in fact allocate the entire complement of one set to the
other bin. The fractional solution implies that the total size of all items is
at most 2, for each of the two bins. This implies that one of the two sets
S1, S2 must be feasible also for bin 2. Similarly, one of the two sets T1, T2

must be feasible for bin 1. Let’s assume without loss of generality that S2 is
feasible for bin 2 and T1 is feasible for bin 1. We use the following randomized
allocation scheme.

Probability 1/5 1/5 1/10 1/5 1/5 1/10

Bin 1 S1 S2 S2 T1 S1 ∩ T2 S2 ∩ T2

Bin 2 S2 S1 ∩ T2 S1 ∩ T1 T2 T1 T1

By analysis per item, it can be seen that each item is allocated to each
bin with total probability at least 2/5. Therefore, we recover at least 4/5 of
the LP value on the average.

This is analogous to our improvement to a 5/6-approximation for Sub-
modular Welfare with a half-integral LP solution (Section 5.2.3). The fact
that 3/4 is not optimal for n = 2 seems to indicate that most probably the
1− 1/e factor is also suboptimal in general.

6.2 The improved GAP algorithm

We proceed to the general case with n bins. We use the aforementioned
LP, which can be solved to an arbitrary precision in polynomial time [22].
The remaining issue is how to convert a fractional LP solution to an actual
assignment of items to bins. First, let’s review the (1− 1/e)-approximation
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rounding technique given in [22]. We call it greedy since it assigns an item
preferably to the bin which gives it the maximum value.

Definition 6.1. Given a fractional solution xi,S, we say that bin i samples
a random set from its distribution if set S is selected with probability xi,S.

The Greedy Allocation Procedure.

• Let each bin i sample a tentative set Si from its distribution, indepen-
dently for different bins.

• If an item appears in multiple tentative sets, we place it in the bin
where it brings maximum value.

As shown in [22], this technique yields a solution of expected value at
least (1− 1/e) times the value of the fractional solution. It is our goal here
to improve upon this approximation factor. We prove the following.

Theorem 6.2. There is some universal constant ǫ > 0 and a randomized
rounding procedure for the Generalized Assignment Problem such that given
any feasible fractional solution, the rounding procedure produces a feasible
allocation whose expected total welfare is at least a (1 − 1/e+ ǫ)-fraction of
the value of the fractional solution.

By combining this with the LP solver from [22], we obtain:

Corollary 6.3. There is an absolute constant ǫ > 0 such that the General
Assignment Problem admits a (1− 1/e+ ǫ)-approximation.

Theorem 6.2 is analogous to Theorem 5.1 for the Submodular Welfare
Problem. Nevertheless, the issues arising in this problem are quite different
than those we had to deal with in the Submodular Welfare Problem. Since
there are no capacity constraints in Submodular Welfare, we were able to
sample two sets for each player and then combine them in some way to
achieve an improvement. Here, this is impossible due to capacities. On the
other hand, allocating additional items under a submodular utility function
does not necessarily bring any additional profit. Here, the utility functions
are linear and additional items always bring profit. Thus the main issue here
is, how can we ensure that we can pack some valuable items in addition to
the (1− 1/e)-approximation algorithm?
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6.2.1 A tight example for the Greedy Allocation Pro-

cedure

First, let us consider the Greedy Allocation Procedure and verify that the
approximation factor achieved by it is indeed only 1 − 1/e. The intuitive
reason why we lose a 1/e-fraction of the value is that a 1/e-fraction of items
can remain unallocated to any bin. It is natural to ask whether the procedure
can be extended by adding another step where unused items are allocated to
some bins if possible. We show that this is not the case.

Example 6.4. We construct a very special instance where the values and
sizes don’t depend on bins (i.e. this is a “multiple knapsack problem”). Con-
sider n bins and n+1 items, indexed by {0, 1, . . . , n}. All item sizes are equal
to 1 (the bin capacity), for all bins. Item 0 is the most valuable item, with
vi0 = 1 for all i ∈ [n]. Items 1 ≤ j ≤ n have value vij = 1/n2 for all i ∈ [n].

In this example, a possible LP solution is: xi,{0} = 1/n and xi,{i} = 1−1/n
for all i. The value of this solution is

∑

xi,Svi(S) = n(1/n · 1 + (1 − 1/n) ·
1/n2) = 1 + 1/n− 1/n2. There is also an integral solution of the same value,
e.g. the first bin gets item 0 and every other bin i gets item i.

Consider the Greedy Allocation Procedure (or in fact any procedure
where tentative sets are sampled with probabilities xi,S in the first step, and
contention is resolved arbitrarily). We sample a random set Si for each bin i.
With probability (1− 1/n)n, we choose Si = {i} for each bin. Then we allo-
cate item i to bin i which yields value 1/n. With probability 1− (1− 1/n)n,
at least one bin chooses item 0. The obtained value depends on how many
bins choose item 0, but in any case we cannot obtain more than the total
value of all items, which is 1 + 1/n. Hence, the expected value obtained by
the algorithm is at most 1− (1− 1/n)n + 1/n, which converges to 1− 1/e.

Even worse, suppose that we want to extend this algorithm by allocating
the remaining items to some bins. With probability (1− 1/n)n, bin i takes
item i and no bin has space to accommodate the remaining item 0. With
probability 1−(1−1/n)n, we get at most the total value of all items, 1+1/n.
Again, the expected value obtained is at most 1− (1− 1/n)n + 1/n.

Thus, we cannot hope to improve the Greedy Allocation Procedure (or
any similar procedure with the same first step) by allocating additional items
in a second stage. We have to redesign the algorithm, possibly by giving up
some items in the first stage. We proceed in a number of stages, where in
each stage we either achieve a definite improvement, or we prove that the
fractional solution must be of a special form which allows us to proceed to
the next stage.
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6.2.2 Stage 1: Unbalanced fractional solutions

First, we apply the Fair Contention Resolution technique that we developed
in Section 5.3.1 for the purpose of the Submodular Welfare Problem. We
summarize this technique here without proof.

The Fair Allocation Procedure.

• Let each bin i sample independently a random tentative set Si from its
distribution. Each bin “competes” for the items in its tentative set.

• Consider an item j. Denote by Aj the random set of bins competing
for item j and let yij be the probability that bin i competes for item j:

yij = Pr[i ∈ Aj] =
∑

S∈Fi:j∈S
xi,S.

– If Aj = ∅, do not allocate the item.

– If Aj = {k}, allocate the item to bin k.

– If |Aj| > 1, allocate the item to each k ∈ Aj with probability

rAj ,k =
1

∑n
i=1 yij





∑

i∈Aj\{k}

yij
|Aj| − 1

+
∑

i/∈Aj

yij
|Aj |



 .

It can be seen that rAj ,k ≥ 0 and
∑

k∈Aj
rAj ,k = 1, so this is a probability

distribution.

As we prove in Lemma 5.12, this technique ensures that conditioned on
tentatively allocating item j to bin k, the bin actually receives the item with
probability

ρj =
1−∏n

i=1(1− yij)
∑n

i=1 yij
≥ 1− 1

e
.

This technique actually achieves a factor strictly better than 1− 1/e, unless
the fractional solution is very well “balanced”. (We also take advantage of
this fact in the analysis of the Submodular Welfare Problem.)

Definition 6.5. Fix ǫ1 > 0. Call an item j ǫ1-balanced if ∀i; yij ≤ ǫ1 and
∑n

i=1 yij ≥ 1− ǫ1.

Let U denote the set of ǫ1-unbalanced items.
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1. If a non-negligible value comes from U , e.g.
∑

i

∑

j∈U yijvij ≥ ǫ31 ·
LP , then we gain by applying the Fair Allocation Procedure to resolve
conflicts. For each unbalanced item j ∈ U , if yij > ǫ1 for some i then
we allocate the item to each bin with conditional probability

ρj =
1−∏i(1− yij)

∑

i yij
≥ 1− 1−ǫ1

e−ǫ1
e−

P

i yij

∑

i yij
≥ 1− 1

e

(

1− 1

2
ǫ21

)

.

In case
∑

i yij < 1− ǫ1, we gain at least the same amount. Therefore,
the expected value of our solution is at least

∑

i

∑

j

ρjyijvij ≥
∑

i

∑

j

(

1− 1

e

)

yijvij +
∑

i

∑

j∈U

1

2e
ǫ21yijvij

≥
(

1− 1

e

)

LP +
ǫ51
2e
· LP.

2. If the contribution of U is small,
∑

i

∑

j∈U yijvij < ǫ31 · LP , then let’s

remove the unbalanced items. This incurs a factor of (1 − ǫ31) on the
value of the fractional solution and in the following, we can assume
that the fractional solution is ǫ1-balanced.

The value of ǫ1 that we use is determined by the subsequent stages (in fact,
exceedingly small). We will choose ǫ1 = 10−24, hence the improvement that
we achieve in Case 1 is on the order of 10−120. The improvement in Case 2
depends on what we can achieve in the following. We will prove that for any
ǫ1-balanced fractional solution, we can get a (1 − 1/e + ǫ31)-approximation.
Since we lost a factor of 1 − ǫ31 by making the solution ǫ1-balanced, the
resulting approximation factor will be (1−ǫ31)(1−1/e+ǫ31) = 1−1/e+ǫ31/e−ǫ61,
i.e. on the order of 10−72.

6.2.3 Stage 2: Non-uniform item values

Here, we treat the case where item values vary significantly among different
bins. We know that in any case, the Fair Allocation Procedure yields a factor
of 1 − 1/e. We show that if the item values are significantly non-uniform,
the Greedy Allocation Procedure (assigning each item to the best bin) gains
significantly compared to the Fair Allocation Procedure. We choose ǫ2 = 2ǫ1.

Lemma 6.6. For each item j, let Wj =
∑

i yijvij and Bj = {i : vij <
(1− ǫ2)Wj}. Call the value of item j non-uniform if

∑

i∈Bj
yij > ǫ2. For any

non-uniform-value item, the Greedy Allocation Procedure retrieves value at
least (1− 1/e+ (ǫ2/e)

2)Wj.
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We interpret the set Bj as “bad bins” for item j. The meaning of this
lemma is that if many bins are bad for item j, then we gain by placing it in
a good bin rather than a bad one.

Proof. Let j be an item of non-uniform value. Let’s focus on the event that
exactly one good bin and one bad bin compete for item j. Let i ∈ Bj and
k /∈ Bj; the probability that the competing bins are exactly i and k is

Pr[Aj = {i, k}] = yijykj
∏

ℓ 6=i,k
(1− yℓj) ≥ (1− ǫ1)e−1yijykj,

using yℓj < ǫ1 and
∑

yℓj ≤ 1. In this case, the Fair Allocation Procedure
assigns the item to bin i or k with probabilities 1/2 ± O(ǫ1). On the other
hand, the Greedy Allocation Procedure places the item always in bin k.
Conditioned on i, k being the bins competing for item j, Greedy gains at
least (1/2−O(ǫ1))(vkj − vij) ≥ (1/2−O(ǫ1))(vkj − (1− ǫ2)Wj) compared to
the Fair Allocation Procedure. The total expected gain is

E[gain] ≥
∑

i∈Bj

∑

k/∈Bj

Pr[Aj = {i, k}]
(

1

2
−O(ǫ1)

)

(vkj − (1− ǫ2)Wj)

≥
∑

i∈Bj

∑

k/∈Bj

(1− ǫ1)e−1yijykj

(

1

2
−O(ǫ1)

)

(vkj − (1− ǫ2)Wj)

≥ e−2
∑

i∈Bj

yij
∑

k/∈Bj

ykj(vkj − (1− ǫ2)Wj)

≥ e−2ǫ2
∑

k/∈Bj

ykj(vkj − (1− ǫ2)Wj).

using
∑

i∈Bj
yij > ǫ2, since item j has non-uniform value. Also, this means

Wj =
∑

k

ykjvkj =
∑

i

yij(1− ǫ2)Wj +
∑

k

ykj(vkj − (1− ǫ2)Wj)

≤ (1− ǫ2)Wj +
∑

k/∈Bj

ykj(vkj − (1− ǫ2)Wj)

since
∑

i yij ≤ 1 and (vkj − (1− ǫ2)Wj) < 0 for k ∈ Bj. We get

∑

k/∈Bj

ykj(vkj − (1− ǫ2)Wj) ≥ ǫ2Wj.

We conclude that E[gain] ≥ e−2ǫ22Wj.
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If at least an ǫ2-fraction of the LP value comes from non-uniform-value
items, we gain a factor of e−2ǫ32 ≥ 1

8
ǫ32 = ǫ31 which was our goal. If the

contribution of non-uniform-value items is smaller than ǫ2, we define Wj and
Bj as before, and

• remove all non-uniform-value items from all sets.

• redefine the value of item j to vj = (1− ǫ2)Wj .

• remove item j from all sets for the bins in Bj.

The first step removes at most ǫ2 · LP by assumption. The second step
decreases the contribution of item j by ǫ2Wj, losing at most ǫ2 · LP over
all items. The third step decreases the contribution of item j further by
∑

i∈Bj
yijvj ≤ ǫ2Wj . Thus we lose at most 3ǫ2 · LP in total. After this

procedure, each item has the same value for each bin where it is used (and the
new value is not higher than the original value, so any approximation result
that we prove with the new values also holds with the old values). In the
following, our goal is to achieve an approximation factor at least 1−1/e+3ǫ2.
If we achieve this, we obtain total value at least (1−3ǫ2)(1−1/e+3ǫ2)LP ≥
(1− 1/e+ ǫ2)LP for small ǫ2 > 0.

6.2.4 Stage 3: Precious sets

Now we can assume that the value of each item j is independent of the bin
where it’s placed. We denote that value of item j by vj and the value of
a set S by v(S) =

∑

j∈S vj . Next, we consider the distribution of values
among different sets for a given bin. The average value assigned to bin i is
Vi =

∑

S xi,Sv(S) =
∑

j yijvj. We prove that if many sets are much more
valuable than this, we can gain by taking these sets with higher probability.
We set ǫ3 = 500ǫ2.

Definition 6.7. We call a set S “precious” for bin i if v(S) > 10Vi.

Also, from now on we fix a preference order of all the pairs (i, S) where
S is a set potentially allocated to bin i. We choose this order in such a way
that all non-precious sets come before precious sets. Note that the rule to
resolve contention does not change the expected profit here, since each item
has the same value for all bins. However, the analysis is cleaner if we adopt
the following convention.
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The Preferential Allocation Procedure.

• Each bin i chooses a random tentative set Si independently from its
distribution.

• The selected pairs (i, Si) are processed in their preferential order. Bin
i gets all the items in Si that have not been assigned to any preceding
bin.

Before presenting our improvement, let us define another useful notion.

Definition 6.8. We say that the priority of item j for a set S potentially
allocated to bin i is

pi,j,S =
∑

(i′,S′)<(i,S),j∈S′

xi′,S′

where (i′, S ′) < (i, S) means precedence in our preferential order.

Lemma 6.9. Let j ∈ S where S is a set potentially allocated to bin i. As-
suming that the fractional solution is ǫ1-balanced, the probability that item j
is allocated to some pair (i′, S ′) preceding (i, S) is 1− e−pi,j,S +O(ǫ1).

Proof. The probability that item j is not allocated to any pair (i′, S ′) pre-
ceding (i, S) is

∏

i′



1−
∑

S′:(i′,S′)<(i,S),j∈S′

xi′,S′



 ≥ exp



−
∑

(i′,S′)<(i,S),j∈S′

xi′,S′

1− ǫ1



 = e
− pi,j,S

1−ǫ1

since yi′j =
∑

S′:j∈S′ xi′,S′ ≤ ǫ1 for any bin i′, and so 1 − yi′j ≥ e−yi′j/(1−ǫ1),
due to the condition of ǫ1-balancedness. Hence, the probability that item j
is allocated to some preceding pair is at most 1−e−pi,j,S/(1−ǫ1) ≤ 1−e−pi,j,S +
O(ǫ1) for small ǫ1 > 0 and pi,j,S ∈ [0, 1]. Similarly, it is easy to see that this
probability is at least 1− e−pi,j,S .

Lemma 6.10. Assume that a β-fraction of the LP value comes from precious
sets, β ≥ ǫ3. Then there is an algorithm that achieves expected value at least
(1− 1/e+ ǫ3/100) · LP .

Proof. We assume that the contribution of precious sets is β ·LP . We want to
prove that in this situation, we gain by doubling the probabilities of precious
sets. Denote the precious sets for bin i by Pi. Denote the probability of
sampling a precious set for this bin by γi =

∑

S∈Pi
xi,S. Note that γi ≤ 1

10
,

because Vi ≥
∑

S∈Pi
xi,Sv(S) ≥ γi · 10Vi. We boost the probability of each

precious set to x′i,S = 2xi,S, while the probability of taking each non-precious
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set is reduced to x′i,S = 1−2γi

1−γi
xi,S. The total probability of choosing some

non-precious set is modified from 1− γi to 1− 2γi. How does this affect the
expected profit of the algorithm?

Observe that x′i,S is not necessarily a feasible solution but we can still
consider its LP value and use it to generate a random allocation, which
we compare to that generated by xi,S. First, consider what we lose on non-
precious sets. In terms of LP value, bin i loses at most γiVi, since the average
value of a non-precious set is at most the average value over all sets for bin
i, which is Vi. The contribution of precious sets to bin i is at least 10γiVi,
therefore the loss on non-precious sets is at most 1

10
of the contribution of

precious sets, i.e. 1
10
β · LP in total. In both allocation schemes, the order of

preference when resolving conflicts is the same and non-precious sets come
first in this order; hence, the priority pi,j,S of any item in a non-precious set
can only decrease. Therefore, the total loss on non-precious sets cannot be
greater than 1

10
β · LP even after resolving conflicts.

Secondly, consider the profit from precious sets. Rather than analyzing
the profit per bin, we consider the overall probability that an item is allo-
cated to a precious set. Consider an item j which appears in non-precious
sets with total probability αj =

∑

i

∑

S∈Fi\Pi
xi,S and in precious sets with

total probability βj =
∑

i

∑

S∈Pi
xi,S. This is the original (unmodified) LP

solution. Due to Lemma 6.9, item j is still available for after the non-precious
sets have been processed with probability 1 − e−αj + O(ǫ1). On the other
hand, it is available even after all precious sets have been processed with
probability 1− e−αj−βj +O(ǫ1). This means that it was actually allocated to
a precious set with probability e−αj − e−αj−βj − O(ǫ1).

Now βj has been boosted to 2βj, while αj decreased to α′
j (which only

helps). So in the new setting, the item is allocated to a precious set with
probability at least e−α

′
j−e−α′

j−2βj−O(ǫ1). Ignoring O(ǫ1) terms, the relative
gain in probability is

e−α
′
j − e−α′

j−2βj

e−αj − e−αj−βj
≥ 1− e−2βj

1− e−βj
= 1 + e−βj ≥ 1 + e−1.

Previously, precious sets contributed ǫ3 · LP and at least ǫ3e
−1LP was

actually retrieved by the rounding technique (since any item for any set has
priority at most 1 and hence is available for any set with probability at least
e−1). Now, we get at least (1 + e−1)ǫ3e

−1LP for precious sets; i.e. the gain
for precious sets is at least ǫ3e

−2LP . The net gain is at least
( ǫ3
e2
− ǫ3

10

)

LP ≥ ǫ3
100

LP.
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Therefore, if Lemma 6.10 applies, we achieve a (1−1/e+ ǫ3
100

)-approximation
which is better than what we need (since ǫ3 = 500ǫ2). Otherwise, let us as-
sume that the contribution of precious sets is less than ǫ3 · LP . If that’s
the case, we actually remove precious sets from the fractional solution. If
the larger part of a bin’s value comes from precious sets, we remove the bin
from the solution completely. For other bins, the expected value Vi might go
down by a factor of 2; overall we lose at most 2ǫ3 ·LP . In the following, any
set possibly allocated to bin i has value at most 20Vi and we seek to achieve
approximation factor at least 1− 1/e+ 2ǫ3. Again, this will produce a gain
on the order of ǫ3 · LP , even larger than we need.

6.2.5 Stage 4: Migrant items

We can now assume that the fractional solution is ǫ1-balanced, it has no
precious sets (of value more than 20Vi for bin i) and item values are uniform.
Since any bin gives the same value vj to item j, resolving conflicts does not
make any difference in terms of value. However, item sizes still depend on
the bin and this complication appears to be fundamental. Our final goal is to
pack some additional items into the gaps created by conflicts between bins.
It seems beneficial to try to merge these gaps and make them as large as
possible. To this purpose, we use the following algorithm which treats the
bins in a preferential order and creates most gaps in the bins towards the
end of this order.

The Sequential Allocation Procedure.

• Recall the LP share of bin i, Vi =
∑

j yijvj. Order bins according to
these values: V1 ≤ V2 ≤ V3 ≤ . . .

• Bin i chooses a tentative set Si with probability xi,Si
.

• Each item goes to the first bin that requests it in its tentative set.

Denote by Uk = ∪i<kSi the items occupied by bins preceding k. Every
item outside of Uk is allocated to bin k with probability ykj. This algorithm
still achieves a factor of only 1 − 1/e, since every item is left unclaimed
at the end with probability

∏

i(1 − yij) ≃ 1/e. However, we will modify
this algorithm. We will prove that in many bins, there will be some space
produced by items taken by preceding bins, and there will be also items still
available to fill this space.



6.2. THE IMPROVED GAP ALGORITHM 139

Definition 6.11. Define the priority of item j for bin k as

pkj =

k−1
∑

i=1

yij.

An item j is migrant for bin k, if pkj ≥ 1 − ǫ4. We denote the set of items
migrant for bin k by Mk.

Choice of ǫ4. We choose ǫ4 = 0.01; recall that ǫ1 = 10−24, ǫ2 = 2ǫ1 and
ǫ3 = 500ǫ2 = 10−21.

The definition of priority here is analogous to Definition 6.8, now reflecting
the fact that the procedure follows a fixed ordering of bins. The intuition
behind “migrant items” is that they arrive at the end of the ordering, when it
is likely that some other bin already claimed the same item. It is important
to keep in mind that an item is migrant only with respect to certain bins; in
fact, every item is migrant for some (typically small) fraction of bins. Due
to an argument similar to Lemma 6.9, at the moment a migrant item is
considered for bin k, it is still available with probability roughly 1/e.

A non-negligible fraction of the LP value corresponds to migrant items,
since

∑n
i=1 yij > 1 − ǫ1 (the condition of balancedness). Therefore, we can

assume that the LP value in migrant items is at least (ǫ4 − ǫ1)LP ≥ 3
4
ǫ4LP .

items. Consequently, at least a 1
4
ǫ4-fraction of bins (by LP contributions)

have a 1
2
ǫ4-fraction of their value in migrant items. Let’s call these bins

“flexible bins”. We will prove that each flexible bin k can gain a constant
fraction of Vk in addition to the value that the Sequential Allocation Proce-
dure allocates to it.

For each set S that could be assigned to bin k, let’s defineMk(S) = Mk∩S
to be the items in S which are migrant for bin k. We can assume that the
value of these items is either v(Mk(S)) ≥ 1

4
ǫ4Vk or Mk(S) = ∅. For sets with

migrant items of value less than 1
4
ǫ4Vk, we can set Mk(S) = ∅; this decreases

the contribution of migrant items at most by a factor of 2. Let’s call the sets
with v(Mk(S)) ≥ 1

4
ǫ4Vk “flexible sets”, and the collection of all flexible sets

for bin k byMk. The contribution of migrant items in flexible sets is now

∑

S∈Mk

xk,S v(Mk(S)) ≥ 1

4
ǫ4Vk.

Suppose that the total probability of sampling a flexible set for bin k is
∑

S∈Mk

xk,S = rk.
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Note that since v(Mk(S)) ≤ 20Vk for any flexible set S, we get 1
4
ǫ4Vk ≤

20Vkrk, i.e. rk ≥ 1
80
ǫ4. The probability of sampling each individual set is at

most ǫ1 << ǫ4 which allows us to assume that we can split the collection of
flexible sets into three (roughly) equal parts in terms of probability. Let’s
select a portion of flexible sets with the largest sizes of Mk(S) and denote
them by Ak. For each set A ∈ Ak, order the remaining flexible sets S ∈
Mk\Ak by the size ofMk(S)\Mk(A). Fix a threshold σk(A) and partition the
sets into two parts Bk(A), Ck(A) and so that for any B ∈ Bk(S), C ∈ Ck(S),

sizek(Mk(B) \Mk(A)) ≥ σk(A) ≥ sizek(Mk(C) \Mk(A)).

We make these groups of sets roughly equal in the sense that for any A ∈ Ak,

1

2
rk ≥

∑

S∈Ak

xk,S ≥
∑

S∈Bk(A)

xk,S ≥
∑

S∈Ck(A)

xk,S ≥
1

4
rk.

The purpose of this partitioning is that we will be able to switch migrant
items between sets: for any A ∈ Ak and B ∈ Bk(A), Mk(B) fits into the space
occupied by Mk(A). Also, for any B ∈ Bk(A) and C ∈ Ck(A), Mk(C)\Mk(A)
fits into the space occupied by Mk(B) \Mk(A).

Our plan of attack is the following: Since migrant items survive until
their turn with probability ≃ 1/e, many of them will be gone by the time
they are considered for allocation. We prove that with a certain probability,
we can join the migrant items in A ∈ Ak and B ∈ Bk(S) and pack them
together, where we would normally pack only A. This gives an advantage to
some sets in Bk(S) - but we don’t know which ones, and in fact this alone
might not bring any profit since the additional set B might be effectively
empty (allocated to preceding bins). However, we can use the fact that
the migrant items in some sets B ∈ Bk(S) have increased their probability
of being requested by bin k, and we can decrease this probability back to
original, by giving up the migrant items in B voluntarily in the case where
B is the primary tentative set selected by bin k. Instead, we can use this
space later to pack some migrant items in C ∈ Ck(S). Now the probability
of packing each set of migrant items in Ck(S) has increased uniformly. The
final argument is that a constant fraction of migrant items in Ck(S) is almost
always available, therefore we must gain something by this procedure.

First, consider the following variant of our algorithm.

The Modified Sequential Allocation Procedure.

• Process the bins in the order of V1 ≤ V2 ≤ V3 ≤ . . .
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• For each k, let Uk be the items allocated to bins 1, . . . , k − 1.

• Let bin k sample two random sets Sk, S
′
k from its distribution.

• Unless k is a flexible bin, allocate Sk \ Uk to it and go to the next bin.

• If Sk ∈ Ak, S ′
k ∈ Bk(Sk) and (Sk ∪Mk(S

′
k)) \Uk fits in bin k, then pack

this set into bin k.

• If S ′
k ∈ Ak, Sk ∈ Bk(S ′

k) and (S ′
k ∪Mk(Sk)) \ Uk fits in bin k (as in the

previous case but with the roles of Sk and S ′
k exchanged), then pack

(Sk \ (Mk(Sk) \Mk(S
′
k))) \ Uk into bin k.

• In all other cases, allocate Sk \ Uk to bin k and go to the next bin.

This algorithm still achieves only a (1−1/e)-approximation. However, it has
the advantage that some bins have provably some remaining space at the
end.

Lemma 6.12. In the Modified Sequential Allocation Procedure, every bin k
still tentatively requests item j with probability ykj, independently of preceding
bins, and hence it achieves a (1− 1/e)-approximation.

Conditioned on a selected pair of sets (Sk = B, S ′
k = A) for a flexible bin

k such that A ∈ Ak, B ∈ Bk(A), the algorithm leaves available space at least
σk(A) in the bin with probability at least 1/5.

Proof. Suppose we already processed the first k − 1 bins and Uk are the
items allocated so far. Consider two sets A ∈ Ak and B ∈ Bk(A) such that
(A ∪ Mk(B)) \ Uk fits in bin k. When sampling the sets Sk, S

′
k for bin k,

we have two symmetric events of equal probability: (Sk = A, S ′
k = B) and

(Sk = B, S ′
k = A). The difference between the two allocation procedures is

that instead of choosing Sk = A in the first event and Sk = B in the second
event, we choose Sk ∪Mk(S

′
k) = A∪Mk(B) = (A \Mk) ∪ (Mk(A) ∪Mk(B))

in the first event, and Sk \ (Mk(Sk) \Mk(S
′
k)) = B \ (Mk(B) \Mk(A)) =

(B \Mk)∪ (Mk(A)∩Mk(B)) in the second event. Both of these sets fit in bin
k, and together they contain each element in A ∩ B twice and each element
in A∆B once. Therefore, the total probability of bin k requesting any given
item j remains the same, ykj, as in the Sequential Allocation Procedure. The
probability of allocating item j is 1−∏k(1− ykj) ≥ (1− 1/e)

∑

k ykj, so this
is a (1− 1/e)-approximation.

Now fix a pair (Sk = B, S ′
k = A) such that A ∈ Ak and B ∈ Bk(S ′

k) and
let us estimate the probability that (A ∪Mk(B)) \ Uk fits in bin k. If this
happens, we allocate only the set (B \ (Mk(B) \Mk(A))) \ Uk to bin k, and
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then the remaining space is at least sizek(Mk(B) \Mk(A)) ≥ σk(A). Since
any migrant item survives outside of Uk with probability at most e−(1−ǫ4) < 2

5
,

and the size of Mk(B) is at most the size of Mk(A), we get

EUk
[sizek((Mk(A) ∪Mk(B)) \ Uk)] ≤

2

5
sizek(Mk(A) ∪Mk(B))

≤ 4

5
sizek(Mk(A)).

By Markov’s inequality, we get

Pr
Uk

[(A ∪Mk(B)) \ Uk fits]

≥ Pr
Uk

[sizek((Mk(A) ∪Mk(B)) \ Uk) ≤ sizek(Mk(A))] ≥ 1

5
.

Let’s call a flexible bin k available, if after the procedure above, it still has
available space at least σk(A) for some flexible set A ∈ Ak. We know that
this happens with probability at least 1/5 for any fixed pair of sets A ∈ Ak,
B ∈ Bk(A). Our final goal is to pack some additional items in the available
space. For this purpose, we have the flexible sets C ∈ Ck(A) for each bin. We
know that these sets have the property that sizek(Mk(C) \Mk(A)) ≤ σk(A),
and this is exactly the space that’s available in bin k. The only remaining
question is whether there is a suitable set in Ck(S) whose migrant items have
not been allocated to other bins yet. However, since we have a choice from
all the possible sets in Ck(S), we will prove that some of their items must be
still available. This is our final algorithm.

The Extended Sequential Allocation Procedure.

• Run the Modified Sequential Allocation Procedure.

• After it finishes, process all the available bins k with remaining space
at least σk(S

′
k), S

′
k ∈ Ak, in an arbitrary order. For bin k, sample a

random set S ′′
k from its distribution.

• If S ′′
k ∈ Ck(S ′

k), then allocate the available items in Mk(S
′′
k) \Mk(S

′
k) to

bin k.

Theorem 6.13. For any balanced fractional solution where item values are
uniform and there are no precious sets, the Extended Sequential Allocation
Procedure with the choice of ǫ4 = 0.01 achieves expected value at least (1 −
1/e+ 2 · 10−21) · LP .
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Recall that our goal was to achieve a gain of 2ǫ3LP = 2 ·10−21LP . All we
need to show in order to prove Theorem 6.13 is that there are still enough
migrant items available in Ck(S ′

k) for most available bins, so that we can gain
something by packing additional items from these sets. For this purpose, we
prove the following concentration result.

Lemma 6.14. Let X be a finite set with a weight function w : X → R+,
w(X) = 1; α, λ > 0 and 0 < ǫ < 1/2. Let S1, S2, . . . , Sq be independent
random subsets of X where Pr[j ∈ Si] = yij (but elements in Si do not
necessarily appear independently). Let

• ∀i; ∀j ∈ X; yij ≤ ǫ.

• ∀j ∈ X;
∑q

i=1 yij ≤ 1.

• We always have w(Si) ≤ α.

Then

Pr

[

w

(

q
⋃

i=1

Si

)

> 1− e−(1+ǫ) + λ

]

<
α + 2ǫ

λ2
.

Proof. Let’s define a random variable

X = w

(

q
⋃

i=1

Si

)

.

We apply the second moment method to X. First, the expectation is

E[X] =
∑

j∈X
wj Pr

[

j ∈
q
⋃

i=1

Si

]

=
∑

j∈X
wj

(

1−
q
∏

i=1

(1− yij)
)

≤
∑

j∈X
wj

(

1−
q
∏

i=1

e−(1+ǫ)yij

)

≤ 1− e−(1+ǫ)

using 1 − yij ≥ e−(1+ǫ)yij for yij ≤ ǫ < 1/2, and
∑

j∈X wj = 1. The second
moment is:

E[X2] =
∑

j,k∈X
wjwk Pr

[

j, k ∈
q
⋃

i=1

Si

]

=
∑

j,k∈X
wjwk Pr [∃ℓ,m; j ∈ Sℓ, k ∈ Sm]

≤
q
∑

ℓ=1

∑

j,k∈X
wjwk

(

Pr [j, k ∈ Sℓ] + Pr

[

j ∈ Sℓ \
⋃

i<ℓ

Si, k ∈
⋃

m6=ℓ
Sm

])

.
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We estimate the first term using the condition w(Sℓ) ≤ α:
∑q

ℓ=1

∑

j,k∈X wjwk Pr [j, k ∈ Sℓ]
≤∑q

ℓ=1

∑

j∈X wj Pr[j ∈ Sℓ]
∑

k∈X wk Pr[k ∈ Sℓ | j ∈ Sℓ]
=
∑q

ℓ=1

∑

j∈X wjyℓj · E[w(Sℓ) | j ∈ Sℓ] ≤
∑q

ℓ=1

∑

j∈X wjyℓj · α ≤ α.

The second term is:
∑q

ℓ=1

∑

j,k∈X wjwk Pr
[

j ∈ Sℓ \
⋃

i<ℓ Si, k ∈
⋃

m6=ℓ Sm
]

=
∑q

ℓ=1

∑

j∈X wj Pr
[

j ∈ Sℓ \
⋃

i<ℓ Si
]
∑

k∈X wk Pr
[

k ∈ ⋃m6=ℓ Sm | j /∈
⋃

i<ℓ Si

]

=
∑q

ℓ=1

∑

j∈X wj Pr
[

j ∈ Sℓ \
⋃

i<ℓ Si
]
∑

k∈X wk(1−
∏

m6=ℓ Pr
[

k /∈ Sm | j /∈
⋃

i<ℓ Si
]

).

We use the fact that the event k ∈ Sm is independent of Si for any i 6= m
and since Pr[j ∈ Sm] = ymj , conditioning on j /∈ Sm can only increase the
probability that k ∈ Sm by a factor of 1/(1 − ymj) ≤ 1/(1 − ǫ). Therefore,
we get

∑

k∈X wk
(

1−∏m6=ℓ Pr
[

k /∈ Sm | j /∈
⋃

i<ℓ Si
]

)

≤∑k∈X wk
(

1−∏n
m=1

(

1− ymk

1−ǫ
))

≤∑k∈X wk
∑n

m=1
ymk

1−ǫ ≤ (1 + 2ǫ)E[X].

Then, we can also simplify
∑q

ℓ=1

∑

j∈X wj Pr
[

j ∈ Sℓ \
⋃

i<ℓ Si
]

=
∑

j∈X wj Pr [j ∈ ⋃q
ℓ=1 Sℓ] = E[X].

So the second moment can be bounded by

E[X2] ≤ α+ (1 + 2ǫ)E[X]2 ≤ E[X]2 + α + 2ǫ.

This means that the variance of X is at most α + 2ǫ and Chebyshev’s in-
equality yields the lemma.

Now we use this lemma to argue that there is enough value in Ck(S ′
k) with

high probability. Recall that for any available bin k, we sample a new set S ′′
k

and whenever S ′′
k ∈ Ck(S ′

k), we add all available items from Mk(S
′′
k) \Mk(S

′
k)

to bin k. Items could be unavailable because they were already allocated
before this stage, or because they were allocated to preceding bins in this
stage. To stay on the safe side, we only count the contribution of Mk(S

′′
k ) \

Mk(S
′
k) \ U6=k where

U6=k =
⋃

i6=k
(Si ∪Mk(S

′
i) ∪Mk(S

′′
i )),

the union of all items potentially allocated to other bins. The following
lemma summarizes our final claim.
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Lemma 6.15. Consider a flexible bin k and fix S ′
k = A ∈ Ak. Call the bin

“lucky” if U6=k is such that the expected value of the set Mk(S
′′
k)\Mk(A)\U6=k

is
∑

S′′∈Ck(A)

xk,S′′v(Mk(S
′′) \Mk(A) \ U6=k) ≥ 10−8Vk.

Then, for ǫ4 = 0.01, each available bin is lucky with probability at least 5/6.

Proof. For a fixed A ∈ Ak, define

y′′kj =
∑

S′′∈Ck(A):j∈Mk(S′′)

xk,S′′.

Then we have
∑

S′′∈Ck(A)

xk,S′′v(Mk(S
′′) \Mk(A) \ U6=k) =

∑

j /∈U 6=k∪Mk(A)

y′′kjvj .

Our goal is to prove that this is at least 10−8Vk with probability close to 1.
First, we define a normalized weight function

wj =
y′′kjvj

V ′′
k

where V ′′
k =

∑

S′′∈Ck(A) xk,S′′v(Mk(S
′′)) =

∑

j y
′′
kjvj, so that

∑

j wj = 1. V ′′
k is

the LP contribution of migrant items in Ck(A) to bin k. We know that this
contribution is V ′′

k ≥ 1
4
rk · 1

4
ǫ4Vk ≥ 1

1280
ǫ24Vk. In the following, we prove that

w(U6=k ∪Mk(A)) ≤ 0.85 (6.1)

with probability ≥ 5/6, which implies the statement of the lemma:

∑

j /∈U 6=k∪Mk(A)

y′′kjvj = (1−w(U6=k∪Mk(A)))V ′′
k ≥ 0.15V ′′

k ≥ 10−4ǫ24Vk = 10−8Vk.

We proceed in three steps to estimate w(U6=k ∪Mk(A)).

1. For sets S1, S2, . . . , Sk−1, we apply Lemma 6.14. We always have y′′kj ≤
ykj ≤ ǫ1. We use q = k − 1. The set Si chosen by any preceding
bin i < k has value at most 20Vi ≤ 20Vk (here it’s important that we
ordered the bins by their values). Therefore, the weight of Si can be at
most w(Si) =

∑

j∈Si
y′′kjvj/V

′′
k ≤ ǫ1v(Si)/V

′′
k ≤ 20ǫ1Vk/V

′′
k . We know

that the contribution of the flexible sets in Ck(A) is V ′′
k ≥ 1

1280
ǫ24Vk, i.e.

w(Si) ≤ 25600ǫ1/ǫ
2
4 ≤ 10−15, considering our values of ǫ1 = 10−24 and
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ǫ4 = 10−2. Choosing ǫ = ǫ1, α = 10−15 and λ = 0.01, Lemma 6.14
implies that

Pr

[

w

(

k−1
⋃

i=1

Si

)

> 1− e−(1+10−24) + 0.01

]

≤ α + 2ǫ1
λ2

≤ 10−10.

2. Concerning the remaining items in U6=k, we only have to consider mi-
grant items for each respective bin: in Mk(S

′
i) and Mk(S

′′
i ), all items

are migrant by definition, and in Si, i > k, the only relevant items are
those migrant for bin k and hence also for i > k. The total probability
that j is sampled as a migrant item by any bin is at most 3ǫ4 (since in
each of the collections of sets {Si}, {S ′

i} or {S ′′
i }, an item appears as

migrant with probability at most ǫ4). Therefore

E

[

w

(

⋃

i>k

Si ∪
⋃

i6=k
Mk(S

′
i) ∪

⋃

i6=k
Mk(S

′′
i )

)]

≤ 3ǫ4
∑

j

wj = 3ǫ4

and

Pr

[

w

(

⋃

i>k

Si ∪
⋃

i6=k
Mk(S

′
i) ∪

⋃

i6=k
Mk(S

′′
i )

)

> 0.2

]

≤ 15ǫ4 = 0.15.

3. Finally, the items occupied by Mk(A) need to be considered separately,
since A is not random here. However, by the same reasoning that we
used in step 1,

w(Mk(A)) =
1

V ′′
k

∑

j∈Mk(A)

y′′kjvj ≤
1280

ǫ24Vk
ǫ1v(Mk(A)) ≤ 105 ǫ1

ǫ24
= 10−15.

By adding up the contributions of the three types of sets, we obtain that the
probability that w(U6=k∪Mk(A)) > 1−e−(1+10−24)+0.01+0.2+10−25 = 0.842...
is at most 0.15 + 10−10 ≤ 1/6, which proves (6.1).

We summarize: For any flexible bin k, the probability that the first two
selected sets are S ′

k ∈ Ak and Sk ∈ Bk(S) is 1
4
r2
k ≥ 1

25600
ǫ24. Conditioned on

any such pair of sets S ′
k = A and Sk = B, bin k is has available space at least

σk(A) after the first stage with probability at least 1/5 (Lemma 6.12). Also,
the bin is “lucky” with probability at least 5/6 (Lemma 6.15). Hence, with
probability at least 1/5 + 5/6 − 1 = 1/30, both events happen and the bin
is available and lucky at the same time. Then, it gains an expected value at
least 10−8Vk (Lemma 6.15).

Thus the expected gain is at least 1
25600

ǫ24 · 1
30
·10−8Vk ≥ 10−14ǫ24Vk, for each

flexible bin k. These bins constitute a 1
4
ǫ4-fraction of the LP value, therefore

the total gain is at least 1
4
· 10−14ǫ34LP = 1

4
· 10−20LP .
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