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grants 205/03/1047, 205/07/0502, the Charles University grants (GAUK) 279/2006/B-

GEO/MFF,235/2003/B-GEO/MFF, the research project of the Czech Ministry of Educa-

tion MSM 0021620800, the EU projects EVG1-CT-1999-00001 PRESAP, 3HAZ-CORINTH

- GOCE-4043, and the Marie Curie training network SPICE in the 6th Framework Program

of the European Commission (MRTN- CT-2003-504267).

Missprints corrected 6.9.2007.

3



4



Contents

1 Introduction 7

2 Method of Calculation of Dynamic Stress 17

2.1 Formulation of the problem and solution . . . . . . . . . . . . . . . . . . . 17

2.2 Test and demonstration of the method . . . . . . . . . . . . . . . . . . . . 21

2.2.1 Static circular crack . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Haskell fault model . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.3 Dynamic stress field due to a finite circular crack . . . . . . . . . . 30

3 Dynamic Stress Field of the k-squared Model 37

3.1 Introduction to stochastic source models . . . . . . . . . . . . . . . . . . . 37

3.2 k-squared slip model with asperities . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Static stress field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Dynamic stress field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 A parametric study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Rupture velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5.2 Maximum rise time . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.3 Nucleation point position . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5.4 Slip velocity function shape . . . . . . . . . . . . . . . . . . . . . . 71

3.5.5 Static slip distribution . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6 Discussion of the results for the k-squared model . . . . . . . . . . . . . . . 73

4 Conclusions and Outlook 77

5



6 CONTENTS

A Discrete Wavenumber Method 79

A.1 A solution for a point force . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A.2 A solution for a plane dislocation . . . . . . . . . . . . . . . . . . . . . . . 84

A.3 Discretization of the spectra . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.4 Space-time discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.5 An implementation for shear traction . . . . . . . . . . . . . . . . . . . . . 92

References 97



Chapter 1

Introduction

An important practical goal of present seismology is to reduce loses due to earthquakes by

estimating the probable ground motions for future earthquakes at given site. A natural way

of the solution is to extrapolate the information on past earthquakes. One approach is based

on straight extrapolation of ground motions due to previous earthquakes. However, such

approach is not reliable at present time because recurrence times of strong earthquakes

are very long - up to several thousands of years and first quantitative ground motion

observations are scarcely one hundred years old. Moreover, seismic observations are not

(even nowadays) dense enough to make a coherent picture of damaging ground motions

for a area of even several square kilometers close to the causative fault. Another approach

is based on ‘deciphering’ observed ground motion due to earthquakes employing both the

physical theories and mathematical models which could fill the gaps in recent observations.

The latter approach is very promising and under rapid development. This thesis belongs

to the latter class and is focused on the modelling of an earthquake source. In the following

paragraphs we describe the state of art briefly, and outline the objectives and goals of the

thesis.

It has been recognized soon that the observed Earth surface shaking contain the in-

formation on both seismic wave propagation through the Earth’s interior and the source

of these waves - earthquake source. However, as it is pointed in the book by Kostrov

& Das (1988), it was paid much less attention to the earthquake source than to seismic

wave propagation effects. The main reason was simple - at first, one has to know the seis-
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8 CHAPTER 1. INTRODUCTION

mic waves response of Earth’s structure to make the conclusions about earthquake source

which is usually buried several kilometers under the ground. Another and may be a less

apparent reason is that studies concerning seismic wave propagation are based on theory

of elasticity which was formed already in the nineteenth century. For example, Kostrov &

Das (1988) mention in this context Wiechert-Herglotz formula, a quite sophisticated tool

for the retrieval of seismic wave velocity depth dependence, obtained already in 1907. On

the other hand, there was at the very beginning of the twentieth a lack of the physical

theories which would be capable to even describe the phenomena of an earthquake source.

The idea that the cause of an earthquake is a failure of Earth’s material along the fault

due to accumulated elastic strain was formulated in the famous work of Reid (1910) on

1906 San Francisco earthquake, but it was rather just a qualitative description.

The useful mathematical framework for the description of displacement jumps in elas-

tic solids was introduced in the works of Volterra (1907) and Somigliana (1914, 1915).

The physical concept of the fracture mechanics of solids was founded as late as by Grif-

fith (1921). However, these mathematical-physical concepts waited nearly another forty

years for their geophysical application. Steketee (1958) was one of the first who recog-

nized the possibility of application of the Volterra-Somigliana dislocations in geophysics.

The dislocation model was afterwards accepted by seismological community as an useful

earthquake source model, because it was generally consistent with the point source double-

couple model (Vvedenskaya, 1956) satisfying the properties of observed polarities of the

first seismic waves arrivals. The dislocation model represents a definition of space-time slip

(tangential displacement jump) distribution along the fault. This slip distribution is not

constrained by the dislocation model itself, in other words, for example, it does not have to

reflect the properties of the material surrounding the fault, slip could appear on the fault

instantaneously etc. It is clear that this is not the case of the earthquake source - the true

slip distribution always reflects somehow the stress state along the fault. Nevertheless,

the dislocation model has been widely applied in the seismology to both the forward and

inverse problems. Let us mention for example line source model of Haskell (1964), which

explains some features of the far-field seismograms successfully, although it is very crude
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approximation, which leads to the infinite average static stress change over the fault.

The fracture mechanics concept (crack model) of Griffith (1921) was quite different.

Griffith studied the energy balance on the fracture edge and introduced the formal criterion

for the fracture extension. Such approach was very general but not practical. To model

the displacement jump along the fault, one had to assume physical law governing the

fracturing, initial stress and elastodynamic response of the medium surrounding the fault.

Despite the fact that neither initial stress nor governing constitutive relations were known

for the faults, a formal solution represented also a tough mathematical problem itself with

very few known analytical solutions. Nonetheless, fracture mechanics represents a solid

framework for the earthquake source physics.

The dislocation and crack models are not far from each other. A crack model results

exactly in a specific dislocation model. It was already pointed by Steketee (1958) that

the Griffith crack could be also considered as a type of the Somigliana dislocation. This

is analogous to the two descriptions of the motion of a material point. If we know the

trajectory of the point, we speak about material-point kinematics. On the other hand,

if we know the force acting on this point, the laws governing its motion (e.g., Newton

laws) and the trajectory is to be determined, we speak about the material-point dynamics.

Hence, the term kinematic fault model is usually used for the dislocation model and the

term dynamic1 fault model for the crack model.

Since they were introduced to seismology, both the kinematic and dynamic earth-

quake source models have developed considerably (reviews by, e.g., Kostrov & Das, 1988;

Madariaga & Olsen, 2002; Das, 2003). However, only kinematic models found the direct

use in interpreting seismic data for a long time, because dynamic models were based mainly

on the sophisticated numerical solutions. Analytic dynamic source models are known only

for the fractures which are semi-infinite (e.g., Kostrov, 1966), expand self-similarly forever

(e.g., Kostrov, 1964; Burridge & Willis, 1969; Nielsen & Madariaga, 2003) or for steady

1It is worthy to note that the term ‘dynamic’ has also another meaning: ‘dynamic’ as the opposite of
‘static’. Hereafter we will use the terms ‘dynamic model’ as the opposite of ‘kinematic model’, ‘earthquake
dynamics’ as the opposite of ‘earthquake kinematics’ and on the contrary in the rest of cases we will use
‘dynamic’ as the opposite of ‘static’, e.g., ‘dynamic stress change’ as the opposite of ‘static stress change’.
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state fracture pulses (Broberg, 1978; Freund, 1979; Rice et al., 2005), and these are hardly

applicable for real cases.

Kinematic models were applied for both forward and inverse problems. The forward

kinematic problem concern calculation of ground motion due to prescribed space-time slip

distribution along the fault, these find mainly use in strong ground motion simulation

studies or in modelling of other earthquake induced phenomena (tsunami, landslides, etc.).

Various slip distribution have been proposed from simple uniform slip models Haskell

(1964) to stochastic k-squared models (Andrews, 1980; Herrero & Bernard, 1994; Mai

& Beroza, 2002; Gallovič & Brokešová, 2007). The inverse kinematic problem, usually

called kinematic source inversion or slip inversion, is formulated as a retrieval of space-

time slip distribution along the fault (Spudich, 1980), fitting the observed records of both

the static (GPS, InSAR) and dynamic displacements (seismograph records) on the Earth

surface. The well-recorded 1979 Imperial Valley, California, earthquake was an impulse for

developing kinematic source inversions (Olson & Apsel, 1982; Hartzell & Heaton, 1983).

Since that time kinematic source inversion have been performed for a significant set of

earthquakes and a number of the empirical scaling relations for kinematic source parameters

have appeared (Somerville et al., 1999; Mai & Beroza, 2002).

As a computer power increased a couple of dynamic models of recent earthquakes were

also developed in 90’ (e.g., Quin (1990) for the M6.5 1979 Imperial Valley earthquake

and Olsen et al. (1997) for the M7.2 1992 Landers earthquake). These models were

constructed by trial-error method from the results of kinematic source inversions. Until

the work of Quin (1990), the kinematic and dynamic source models were treated more or

less separately2. Quin recognized, that some features of the kinematic source model of real

earthquake could be utilized for the boundary conditions in the forward dynamic modelling.

The work of Quin was followed by group of Japanese scientists who extended Quin’s trial

and error approach with several iterative schemes (Mikumo, 1994; and references therein).

The common point of these first dynamic inversions was that they all utilized forward

2The one of the exceptions was the paper by Madariaga (1978), who studied the dynamic (transient)
stress field due kinematic Haskell’s source model.
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dynamic source modelling for the retrieval of frictional parameters along the fault for a

priori given friction law.

Remark: Let us make a note on the term ‘friction’, which will be used frequently further

in the text. It has been recognized that the most earthquakes occur on pre-existing faults

and thus these earthquakes are rather stick-slip phenomenon than the fracturing of the

rock. However, the process of transition from the ‘stick phase’ to ‘slip phase’ and the

slippage itself can be described in the framework of the fracture mechanics. That is why

the term ‘friction law’ is often mentioned instead of ‘law governing the fracture’. The sides

of the fault are pressed together at least by the hydrostatic pressure and thus the fault

faces ‘separated’ during the fracture process still interact via friction during the slippage.

This remains true even in the case of tensile fractures, because the fracture contact is

usually filled with some material, e.g., fluids. The terms ‘fault constitutive relation’ or

‘fault rheology’ are more general as they should also describe the ‘stick phase’, e.g, healing

of the fault. In this thesis we use terms ‘fault rheology’, ‘fault constitutive relation’, ‘law

governing the fracture’, and ‘friction law’ as synonyms.

An alternative approach of the dynamic source model parameters inversion from the

kinematic source model was presented by Chen & Aki (1996). They assumed neither any

friction law nor forward dynamic modelling, they just solved the elastodynamic equation

for the stress perturbation due to the space-time slip distribution of the kinematic model.

Let us clarify the latter approach writing down the basic equations, and show the difference

from the forward dynamic model. Consider the equation of motion:

ρ
∂2un

∂t2
= ρfn +

∂σmn

∂xm

, (1.1)

where σmn(x, t) is the stress tensor, un(x, t) is the displacement vector, fn(x, t) is the body

force per unit mass vector, ρ(x) is the density, xm and t are the space-time coordinates

respectively. Consider also Hooke’s law in the following form:

σmn = σ0
mn + cmnpq

∂up

∂xq

, (1.2)

where σ0
mn(x) is the initial stress tensor and cmnpq(x) is the elastic stiffness tensor. So

that we do not assume stress-free state as a reference state, but the prestressed state as
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an initial state. We made an assumption of the small initial stress components compared

with elastic moduli for validity of equation (1.2). We assume that the medium is in the

equilibrium at the initial state:

∂σ0
mn

∂xm

+ ρfG
n = 0, (1.3)

and that the gravitation force fG
n (x) the only body force at the initial state does not change

with the time due to the rupture, i.e. the initial stress σ0
mn also does not depend on time

within the time frame of the rupture process. Introducing a notation for the incremental

stress (or stress perturbation)

τmn = σmn − σ0
mn = cmnpq

∂up

∂xq

, (1.4)

equation (1.1) can be rewritten using (1.3) as

ρ
∂2un

∂t2
=
∂τmn

∂xm

. (1.5)

assuming that there are no other body forces then gravitational (i.e., fn = fG
n ). Now let

us discuss boundary conditions along the fault surface. By the fault we mean two adjacent

internal surfaces Σ− and Σ+. These two surfaces - the fault faces - can be understood as

sides of a single fault surface Σ characterized by its normal vector ν. The other boundary

and initial conditions are not of the interest now (let us assume an unbounded medium

with the smoothly varying properties and zero initial conditions for both the displacement

and velocity). Further, let us distinguish the kinematic and dynamic model which differ by

their fault boundary conditions. For the kinematic model we prescribe boundary conditions

τ+
mnνm − τ−mnνm = 0

u+
n − u−n = ∆un (ξ, t) , (1.6)

along the fractured fault surface Σ∗(t), which is changing with time (as rupture grows

over the entire fault Σ), where u+ (u−) are displacements on the positive (negative) side

of the fault, ∆un (ξ, t) is the displacement jump (dislocation), τ+
mn (τ−mn) are the stress

perturbations on the positive (negative) side of the fault and ξ denotes the position along
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the fractured fault Σ∗(t). Hence, one could obtain both the displacement and stress in the

whole volume by solving the system of equations (1.4),(1.5) with the boundary condition

(1.6). It is clear that the problem is linear.

For the dynamic model we prescribe boundary conditions

τ+
mnνm − τ−mnνm = 0

τmnνm = −σ0
mnνm + Υn (σν ,∆u,∆u̇, θ, . . . , ξ) , (1.7)

along the fractured fault surface Σ∗(t), which is changing with time (as rupture grows over

the entire fault Σ) where the function Υn represents the law controlling the fracture. In

the earthquake dynamics the term friction law (or fault constitutive relation) is usually

used. Υn generally depends on a large number of parameters (see Bizzarri & Cocco, 2005;

for general discussion), we show just the most important ones - the normal stress along

the fault (σν = σmnνmνn), the displacement jump ∆u, the displacement jump rate ∆u̇,

the fault state variable θ and the position along the fractured fault ξ. A lot of authors

present a much broader set of dependencies, however, it is known very little about the true

fault friction laws, so in practice, the huge set of the proposed dependencies shrinks usually

to these mentioned above. Hence, one could obtain both the displacement (including the

displacement jump along the fault) and stress in the whole volume by solving the system of

equations (1.4), (1.5) with the boundary condition (1.7) along Σ∗(t). The time dependence

of Σ∗(t), i.e., the rupture propagation, is part of the solution which is determined by some

fracture criterion (e.g, Griffith criterion, Kostrov & Das, 1988). It has to be determined

simultaneously with the solution of the both equations (1.4) and (1.5), thus the problem

is non-linear and hard to solve. The term ’spontaneous rupture’ is usually used in the

connection with these dynamic models. Sometimes, instead of spontaneous, the rupture

front propagation is assumed a priori to make the problem easier (e.g., Madariaga, 1976).

The clear difference between the two approaches (kinematic vs. dynamic model) can

be recognized from the boundary condition (1.7) which depends on the solution of (1.4),

(1.5) itself (e.g., the displacement jump is present in the argument of friction law in (1.7)).

Another, less apparent, but a serious difference is the time dependence of Σ∗(t). In the
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kinematic model, the time dependence of the fractured area is immaterial, as we can

prescribe some ultimate fault area (e.g., Σ∗(t) → ∞) and control the rupture directly by

the prescription of the displacement jump (zero displacement jump is prescribed at the

unfractured part of the fault).

Now let us assume some specific kinematic source model of an earthquake, i.e., some

specific ∆u′(ξ, t). The boundary conditions (1.6), prescribed for the kinematic model,

postulate the traction continuity across the fault, but neither the magnitude nor the di-

rection of the traction are constrained a priori at all. However, one can obtain the stress

perturbation3 τ
(∆u′)
mn (ξ, t) along the fault due to the slip distribution ∆u′(ξ, t) by solving

the system of equations (1.4), (1.5) with the boundary condition (1.6). Now the question

arises: ‘What can the stress perturbation τ
(∆u′)
mn tell us about the possible friction on the

fault?’ To provide an answer, let us check the fault boundary conditions for the dynamic

model. The relation between the stress perturbation and friction can be read from the

equation (1.7):

Υ̃n (σν′,∆u′,∆u̇′, θ′, . . . , ξ) = τ (∆u′)
mn ν̃m + σ0′

mnν̃m, (1.8)

where Υ̃ is the unknown friction law. The dash symbol denotes the properties connected

with the particular earthquake, whereas the tilde symbol denotes the properties connected

with the particular fault (friction law and fault geometry). Hence, e.g., initial stress σ0′
mn is

the reference state just before the earthquake. Thus, if we know the initial stress σ0′
mn(ξ), we

can determine resulting friction at the fault for the earthquake. Generally, performing such

procedure for several earthquakes acting on the same fault would lead to the estimation of

the possible friction laws holding at that particular fault. It is useful to substitute for the

time dependency in the stress perturbation τ
(∆u′)
mn (ξ, t) as the friction law do not usually

depend explicitly on time, but rather on the other quantities suggested in the argument of

the friction law Υ̃n (σν′,∆u′,∆u̇′, θ′, . . . , ξ). In other words, it is reasonable to study, e.g.,

τ
(∆u′)
mn [σν′(ξ, t),∆u′(ξ, t),∆u̇(ξ, t), ξ].

An estimation of the fault constitutive relations Υ outlined above is much more straight-

3Let us just note that the term ‘dynamic stress field’ is used in the literature for the stress perturbation

τ
(∆u′)
mn (ξ, t) to emphasize its time dependence, as the analysis of static stress fields are much common.
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forward and easier to solve than the approach of Mikumo (1994), who employs forward

dynamic modelling. Moreover, one does not have to assume a friction law a priori, as in the

dynamic modelling. In practice, the estimation of the fault friction parameters strongly

depends on the ‘quality’ of the utilized kinematic models, i.e., on the space-time resolution

of the slip, accompanied with serious difficulties mentioned above. A very serious problem

is also represented by the initial stress present in (1.8), which is generally heterogeneous

but not known in the crust. The homogenous initial stress is usually assumed. Nevertheless

such an assumption can clearly lead to biased friction estimations. However, the problem

of the initial stress is common to the forward dynamic problem, too. A number of authors

applied the methodology described above for the friction estimation along existing faults

(Chen & Aki, 1996; Bouchon 1997; Ide & Takeo 1997; Day et al., 1998; Dalguer et al.,

2002; and Tinti et al., 2005b) for several kinematic source models of real earthquakes. Au-

thors of these studies did not study quantitatively the effects of space-time filtering which

is applied during the kinematic inversion, although it can affect the results considerably.

Also uncertainties of the space-time slip distributions were not take into account. A partial

step forward was done in the papers by Piatanesi et al. (2004) and Tinti et al. (2005a),

where the authors study the influence of slip velocity function on the friction parameters

estimation.

Nevertheless, opposed to studies based on slip inversions of real earthquakes, one can

also investigate the stress implications of the theoretical slip distributions. There is a broad

class of theoretical kinematic models, which are used mainly for the near fault ground

motion modelling. The most widely applied has been the Haskell fault model (Haskell,

1964; Haskell, 1969) and more recently the k-squared source model (e.g., Andrews, 1981;

Herrero & Bernard, 1994; Bernard et al., 1996; Hisada, 2000; Gallovič & Brokešová, 2007).

The dynamic stress field of the Haskell model was studied by Madariaga (1978), who found

strong contradictions to earthquake source physics (see Chapter 2 in this thesis). The static

stress field of k-squared model was analyzed by Andrews (1980), however, k-squared model

has undergone some development since that time (e.g., k-squared models with asperities,

Gallovič & Brokešová, 2004a). The dynamic stress field of k-squared models has not been
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studied yet. Thus it has been nearly impossible to confront the k-squared model with the

earthquake dynamics, e.g., it has not been assured yet whether the k-squared model is

consistent with earthquake source physics.

Based on the previous analysis, the main goal of this thesis is formulated as to fill the

existing gap between k-squared models recently developed for the strong ground motion

predictions and recent findings in the dynamic source model studies. To this goal, we

develop a method of dynamic stress calculations, apply the method to the k-squared model

and perform the quantitative analysis of the resulting stress field. Such computation and

analysis of the dynamic stress field due to k-squared model should clarify the physical basis

of this model. Particularly, we want to understand if the k-squared model is consistent

with some friction laws of the earthquake dynamics. Moreover, k-squared source model

has a lot free parameters, which are to be tuned a priori. A parametric study concerning

the dynamic stress field analysis can help in constraining some of these parameters, so

it is included in this work, too. Thus the study can be useful for future strong ground

motion simulations. The space-time filtering effects on the dynamic stress field can be

also demonstrated for the case of k-squared model, as it includes short-wavelength and

short-period variations which are smeared out in the results of kinematic inversions. Thus

it is possible to discuss these effects quantitatively.

To perform the study outlined above, we have to adopt some method of dynamic stress

field calculation. Particularly, the method which is capable of solving the system of equa-

tions (1.4), (1.5) with the boundary condition (1.6) including the solution at the boundary

itself. We decided to adopt the boundary element method, calculating Green’s functions by

the discrete wavenumber method of Bouchon (1997). The method of calculation, numerical

tests and some basic applications are presented in Chapter 2. The mathematical basis of

the discrete wavenumber method is presented with complete derivation in the Appendix

A. The dynamic stress field calculations and analysis of the k-squared model are presented

in Chapter 3.



Chapter 2

Method of Calculation of Dynamic
Stress

The objective of the thesis is the study of dynamic stress history on a fault induced by

prescribed space-time slip distribution. In this chapter we formulate the mathematical

problem exactly and describe the solution we follow. The test of the method against

known analytic solution for a static circular crack is presented. The basic characteristics

of dynamic stress field along the fault during an earthquake are illustrated on the Haskell

fault model. An application for the dynamic stress field induced by simple circular crack is

also presented to better understand the dynamic stress radiation pattern along the fault.

Generally, we refer to Aki & Richards (1980) for basic definitions and theorems concerning

the seismic source representation and continuum mechanics.

2.1 Formulation of the problem and solution

We assume an infinite body with the smoothly varying properties including two adjacent

internal surfaces Σ− and Σ+ which represent the faces of a buried fault. Σ− and Σ+ can

be understood as sides of a single fault surface Σ. Further, we assume a kinematic model

which prescribes a displacement discontinuity along the fault surface - relative movement

of the fault faces. The stress is continuous across the fault surface. The displacement

discontinuity - dislocation can be viewed as a boundary condition for the system of equation

17



18 CHAPTER 2. METHOD OF CALCULATION OF DYNAMIC STRESS

of motion and stress-strain relation. Hence, for a linear perfectly elastic solid we write

ρ
∂2un

∂t2
= fn +

∂τmn

∂xm

(2.1)

τmn = cmnpq
∂up

∂xq

, (2.2)

with the boundary conditions

[τmn (ξ, τ) νm (ξ, τ)]
∣∣
Σ+ − [τmn (ξ, τ) νm (ξ, τ)]

∣∣
Σ− = 0

uk (ξ, τ)
∣∣
Σ+ − uk (ξ, τ)

∣∣
Σ− = ∆uk (ξ, τ) , ξ ∈ Σ, (2.3)

where t denotes the time, x denotes the position within the volume, un = un(x, t) are

the displacement, fn = fn(x, t) are the body force, τmn = τmn(x, t) are the stress tensor,

cijpq = cijpq(x) are the elastic stiffness tensor components respectively, ρ = ρ(x) is the

density and ∆uk (ξ, τ) are the dislocation components at time τ and position ξ along the

fault surface Σ characterized by its normal vector ν. One has to solve the system of

partial differential equations (2.1-2.2) with the boundary condition (2.3) to get the both

displacement and stress fields in the volume and also the stress field on the fault surface.

Our goal is the determination of the dynamic stress field just at the fault surface due to

the prescribed slip history.

A broad spectrum of both analytic and numerical methods is available for the solu-

tion of such problem. For example, Madariaga (1978) applied analytic Cagniard-De Hoop

method for the dynamic stress evaluation due to the Haskell kinematic fault model in a

homogeneous space. However, we want to evaluate stress fields for slip functions given

numerically, hence we need a semi-analytical or fully numerical method. Let us assume a

homogeneous unbounded isotropic medium for which the elastodynamic Green functions

are known analytically. Hence a boundary element method (BEM) is applicable. A solu-

tion for a more general medium will be discussed briefly later. The boundary integrals,

known also as representations theorems, are published for several elastodynamic problems

(e.g., Aki & Richards, 1980; Kostrov & Das 1988). Aki & Richards (1980) gives for a
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displacement

un (x, t) =

∫ ∞

−∞

∫
Σ

cijpqνj (ξ) ∆ui (ξ, τ)
∂

∂ξq
Gnp (x− ξ,0, t− τ, 0) dΣ dt (2.4)

where νj(ξ) are the surface Σ normal components and Gnp(x, ξ, t, τ) are the elastodynamic

Green functions - the nth component of the displacement at position x and time t due to

an impulse point force applied in the p-direction at position ξ and time τ . A solution for

a stress can be simply obtained applying (2.2) on (2.4) and interchanging the order of the

differentiations with respect to x and integrations, so that

τmn (x, t) =

∫ ∞

−∞

∫
Σ

cijpqνj (ξ) ∆ui (ξ, τ)
∂

∂ξq
Hmnp (x− ξ,0, t− τ, 0) dΣ dt (2.5)

with

Hmnp (x, ξ, t, τ) = cmnkl
∂

∂xl

Gkp (x, ξ, t, τ) . (2.6)

Problems arise solving boundary integral (2.5) due to the hypersingular terms present in

the stress Green functions (2.6), so their direct discretization is difficult (see, e.g., discussion

by Kostrov & Das, 1988). One possibility is the extraction and separate integration of the

strong singularities (Bonnet & Bui, 1993; Fukuyama & Madariaga, 1998) or the spectral

representation of the boundary integral (Geubelle & Rice, 1995; Bouchon, 1997).

Following the method presented by Bouchon (1997), we developed a parallelized code

for dynamic stress change calculations along a planar fault in a homogeneous unbounded

isotropic medium. The method is based on the discrete wavenumber expansion of the stress

Green function. The discrete wavenumber (DW) method was introduced to elastodynamics

by Bouchon & Aki (1977) and has been used extensively in seismology for a variety of

problems, including tests of the accuracy of other numerical methods (for a review, see

Bouchon, 2003). The popularity of the DW method is based on its great accuracy and

simplicity. The fundamental of the DW method is based on the work of Lamb (1904), who

recognized that the elastodynamic Green function can be expressed as a superposition

of the harmonic plane waves, i.e., as a single and double Fourier integral for 2D and
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3D problems respectively1. The idea of the discrete wavenumber method is the direct

evaluation of these Fourier integrals by discrete Fourier series. Thus the space-time and

spectral periodicities are introduced into the problem. The space-time periodicity can be

quite tricky, because one deals with an infinite response of infinity of sources aliased to

a single interval of interest. One has to pay also attention to the discretization of the

space-time slip distribution in both space and time applying the sampling theorem, to

prevent from the alias effect. This requires a sufficient smoothness of the space-time slip

distribution. The complete derivation and description of the discrete wavenumber method

for stress calculations in the homogeneous unbounded isotropic medium on a planar fault

can be found in Appendix A.

Now, let us briefly discuss the case of inhomogeneous medium. The stress calculations

by the DW method can be extended to layered medium, applying the propagator matrices.

However the efficiency of such calculation is questionable. Note, that the most applications

of the DW method have been carried out for the ground motion calculations in the layered

medium with the DW formulation presented by Bouchon (1981) and the matrix method

of Kennet & Kerry (1979). In this formulation, the Green function is expressed as a

superposition of the harmonic cylindrical waves. Particularly, the Green function for 3D

problem is expanded in 1D series of Bessel functions. It can be shown (e.g., Aki & Richards,

1980) that the reflection and transmition coefficients are the same for both the plane and

cylindrical (with the axes of symmetry perpendicular to the interface) waves. Hence,

the advantage of later DW formulation is clear - the evaluation of 1D series of Bessel

functions is much more effective than evaluation of 2D Fourier series. However, this effective

formulation cannot be used for our purposes, as it is singular just at the source (for x = ξ).

For even more general medium it would be necessary to apply a finite difference or finite

element method to solve the system of equations (2.1-2.2) with boundary condition (2.3),

as it was done, e.g., by Ide & Takeo (1997) or Day et al. (1998). Note that the asymptotic

methods (e.g., the ray method) cannot be applied for this kind of problem, as we seek the

1The term Weyl integral is sometimes used for such representation of fundamental wave equation
solution.
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solution of equation of motion just at and very close to the source and near field terms

dominate in the solution.

2.2 Test and demonstration of the method

In the following section we demonstrate the DW method, which is thoroughly described in

Appendix A, on the well known cases - static circular crack and Haskell fault model. We

also present the dynamic stress field along fault due to simple circular crack, where the

stress radiation pattern is demonstrated for the first time. In all cases a fault plane in a

homogeneous unbounded isotropic medium is assumed.

2.2.1 Static circular crack

The accuracy of the static DW solution can be demonstrated on the well known static

circular crack problem. Keilis-Borok (1959) found the analytic formula for the static slip

distribution due to an uniform stress drop within a circle in homogeneous elastic space.

We use his result as our input slip distribution and we will compare the resulting static

stress change distributions with the analytic ones. Analytic formulas for the static stress

change outside the crack are presented, e.g., in Andrews (1974). For circular crack of radius

R = 1 and static stress drop ∆σ = 1 placed in unbounded homogeneous isotropic space

(µ = λ = ρ = 1) we have following relations

∆u (r, ϕ, 0) =

{(
24
7π

√
1− r2, 0, 0

)
r ≤ 1

0 r > 1
(2.7)

τxz (r, ϕ, 0) =

{
−1 r ≤ 1
2
π

(
− arctan 1√

r2−1
+ 1√

r2−1
+ 1

7
cos 2ϕ

r2
√

r2−1

)
r > 1

(2.8)

τyz (r, ϕ, 0) =

{
0 r ≤ 1

− 2
7π

sin 2ϕ

r2
√

r2−1
r > 1

(2.9)

τzz (r, ϕ, 0) = 0 (2.10)

in cylindrical coordinates (r, ϕ, z) with the origin in the center of the crack and ϕ measured

from the x-axes in the clockwise direction. A comparisons of the DW solutions against
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a)

b)

Figure 2.1: A comparison of the DW (circles with dots) and analytic (solid line) solutions
for a static stress change due to the slip generated by equation (2.7): a) τxz for x = 0 cross
section and b) τyz for x = y cross section. The discretized slip distribution which enters
DW calculation is plotted for the given cross sections by crosses.
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Figure 2.2: a) original and b) filtered slip amplitude in x-direction for the discretization
used. The arrow marks the region most affected by the filtration.

the analytical ones are shown in Fig. 2.1. The τxz component for x = 0 cross section is

shown in Fig. 2.1a and τyz for x = y cross section is shown in Fig. 2.1b. The discrete

representation of the slip distribution which enters DW calculation is also plotted in these

figures. Note the sharp termination of the slip at the border of the crack. It causes a stress

discontinuity at the crack border and consequently the oscillation in the DW solution. It

is well-known Gibbs’ phenomenon which comes from the truncation of the Fourier series

of discontinuous functions. Increasing the number of terms in the Fourier series just shifts

the oscillation closer to the discontinuity, but does not affect its amplitude. Thus, it

results in heavy calculations with just modest improvement. A more effective way of the

regularization is straightforward, although not enough discussed in literature. We remove

the high wavenumber contribution from DW solution with a smooth low-pass filter. This is

equivalent to the application of the low-pass filter on the input slip model, as the equation

(2.5) can be written also in form of spatial convolution (equation A.82 from Appendix A,

after extending the integration over the fault to the whole plane z = 0). Particularly, we

applied the double cosine window

1

4

[
cos

(
kx

kmax
x

π

)
+ 1

] [
cos

(
ky

kmax
y

π

)
+ 1

]
. (2.11)
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a)

b)

Figure 2.3: A comparison of the DW (circles with dots) solution for a static stress change
due to the filtered slip distribution shown in Fig. 2.2a and analytic solution (solid line) for
the original unfiltered slip distribution shown in Fig. 2.2b: a) τxz for x = 0 cross section and
b) τyz for x = y cross section. The filtered slip distribution which enters DW calculation is
plotted for the given cross sections by red symbols. The original slip distribution is plotted
for the given cross sections by black crosses.
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The results of low-pass filtering of the slip distribution are shown in Fig. 2.2. One can see

that high wavenumber contribution come just from the borders of the crack. Resulting

stress change τxz for x = 0 cross section is shown in Fig. 2.3a and τyz for x = y cross

section is shown in Fig. 2.3b. The utilization of the low-pass filter improved the match

with the analytical solution considerably. The oscillations were damped and the amplitude

of the Gibbs’ overshoot was also reduced. On the other hand, the filter did not affect the

slip distribution much (in fact it affected just a few points in the proximity of the crack’s

circumference, see red symbols in both Fig. 2.3a and Fig. 2.3b). We remark, that none of

numerical methods can fit the singular solution and one has to be very cautious of them.

In the discrete wavenumber method, one easily prevent singularities to distort the solution

by using the filter like (2.11), which is very easy to apply in this method.

2.2.2 Haskell fault model

A rectangular dislocation, usually called Haskell model, is the kinematic earthquake source

model introduced by Ben-Menahem (1961) and studied in detail by Haskell (1964, 1969).

It can be described by the relation for slip amplitude

|∆u (ξ, τ)| =


0 τ < ξ1

vr

D
τ− ξ1

vr

τn

ξ1
vr
≤ τ ≤ ξ1

vr
+ τn

D ξ1
vr

+ τn < τ

(2.12)

with ξ1 ∈ 〈0, L〉 and ξ2 ∈ 〈0,W 〉, where vr is the rupture velocity, τn is the rise time, D

is the static slip value and W , L are the width and length of the fault respectively. The

direction of the slip is arbitrary, but constant over the fault. Several restriction to (2.12)

are sometimes assumed, e.g. the instantaneous slip (tn → 0) approximation, or line source

(W → 0) approximation. Such models are usually used to demonstrate the influence of

finite source on the far-field radiation (directivity, apparent source time function duration).

Madariaga (1978) applied the Cagniard-De Hoop method for the evaluation of the both

near-field displacement and stress field of the Haskell model with the instantaneous slip.

He found strong contradictions with earthquake source physics. The most severe one was,



26 CHAPTER 2. METHOD OF CALCULATION OF DYNAMIC STRESS

Figure 2.4: Haskell fault modell.

that the average static stress drop2 was infinite due to strong singularities at the edges

of the dislocation. Bouchon (1997) compared his results obtained by his DW method

for the Haskell model with Madariaga’s (1978) solution and made a conclusion that the

DW method was robust solving such singular model, i.e., singularities did not distort

qualitatively the solution. Additionally, we remak that both spatial and time singularities

are expanded into finite Fourier series in the discrete wavenumber method and thus these

singularities are represented accurately up to a certain wavenumber and frequency. In

other words, such Fourier series expansions represent a ‘natural’ way of the regularization.

We also present the dynamic stress field of the Haskell fault model, as basic features

of the transient stress can be simply described for this model. We set vP = 6 km/s,

vS = 3.46 km/s, ρ = 2800 kg/m3, L = 10.0625 km, W = 5.0625 km, D = 1 m, vr =

0.9 vS = 3.11 km/s. The calculations were carried out with the following DW configuration

(for details, we refer to sections A.3-A.5 of Appendix A): spatial periods Lx = Ly =

100.0625 km, time period T = 16 s, spatial steps ∆x = ∆y = 62.5 m, time step ∆t =

2Average static stress change over the total area of the dislocation.
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0.03125 s, artificial attenuation ωI = π/T . We assume an instantaneous slip, to get result

comparable with that of Madariaga (1978). As we use discrete Fourier series for slip

time function representation, we encounter Gibbs’ phenomenon in time domain. Thus we

remove high-frequency contribution from the slip function applying the cosine window (see

later relation (2.13)) with fmax = 10 Hz, making the rise time non-zero effectively. A

snapshot of the slip at some time 0 < τ0 < L/vr is shown in Fig. 2.4 (ξ1 and ξ2 are parallel

to x and y respectively). The rupture starts from the line (ξ1 = 0) of the length W . The

direction of slip is chosen either parallel or perpendicular to the rupture front. The case

of the rupture front parallel slip mirrors an inplane mode fracture, while the case of the

rupture front perpendicular slip mirrors an antiplane mode fracture.

A time history of the slip-parallel component of the shear stress at a point on the fault

for the ‘inplane’ mode is plotted in Fig. 2.5. One can recognize wave group associated with

the rupture onset - starting phase and wave group associated with the rupture termination

- stopping phase. Neither Madariaga (1978), nor Bouchon (1997) showed or mentioned the

stopping phase in their results, as they stopped their calculation too early. Starting phase

consists of P-wave onset, S-wave onset and the rupture arrival. S-waves present square root

singularity pointing to negative stress. Note the negative stress values between S-wave and

rupture front arrivals. This correspond to the range of formal ‘velocities’ close to vS, which

resemble ‘prohibited’ band for rupture velocity of in-plane cracks3. The Rayleigh velocity

is approximately 0.92 vS for homogeneous medium. After passage of the rupture front,

stress become close to the static solution (approximately the times from 2 s to 4 s). The

stopping phase consists of P-wave and S-wave arrivals coming from the terminating edge

(ξ1 = L) of the fault. These onsets have reversal polarity with respect to starting phase.

A time history of the slip-parallel component of the shear stress at a point on the fault

for the ‘antiplane’ mode is plotted in Fig. 2.6. One can recognize again starting phase and

also very weak stopping phase. The P-wave onset is very weak, what is understandable,

as P-waves are not present in the pure antiplane mode at all. Hence, generally, ‘antiplane’

3For example, Andrews (1976b) showed for 2D in-plane crack model and the slip weakening friction
that rupture does not propagate with rupture velocities between Rayleigh and S-wave velocities.
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Figure 2.5: Stress time history at the point ξ1 = 1/2L, ξ2 = 1/2W on the fault for the
‘inplane’ mode rupture. Distinct phases are annotated.

Figure 2.6: Stress time history at the point ξ1 = 1/2L, ξ2 = 1/2W on the fault for the
‘antiplane’ mode rupture. Distinct phases are annotated.
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Figure 2.7: A snapshot of starting phase for the ‘inplane’ mode rupture.

Figure 2.8: A snapshot of starting phase for the ‘antiplane’ mode rupture.
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mode ruptures result in simpler stress time histories.

A snapshot of starting phase at some time 0 < τ0 < L/vr is shown in Fig. 2.7 for the

‘inplane’ mode and in Fig. 2.8 for the ‘antiplane’ mode. One can see large stress drop

(stopping phase does not influence the static solution much, see Fig. 2.5, Fig. 2.6) close to

the edge of the dislocation.

2.2.3 Dynamic stress field due to a finite circular crack

Infinitely expanding circular cracks were of the main concern in the 60’ and 70’, as they

presented the simplest 3D solutions for dynamic source models. Kostrov (1964) found

analytic self-similar4 circular crack solution in the isotropic homogeneous space, Burridge

& Willis (1969) found analytic self-similar elliptical crack solution in the anisotropic media.

These solutions describe cracks starting in a point and expanding self-similarly forever.

Dynamic motions due to elliptical crack were further studied in detail by Richards (1976).

Although these models are of high theoretical importance, they are hardly applicable for

real cases. Analytic solutions for finite sources would be much better applicable, but they

are more complicated due to the diffracted waves coming from the crack edges and none

of them has been found yet. Madariaga (1976) presented numerical dynamic simulations

of finite circular cracks with prescribed rupture velocities. Although, he also presented

far-field displacement due to these cracks, near field dynamic stress changes remained

unresolved.

Here, we calculate the dynamic stress field due to a circular crack on a planar fault, not

yet published (as far as we know). By crack we mean the fault area which undergoes the

slip. In this case we are rather interested in the dynamic stress field outside the crack itself,

to demonstrate the stress radiation pattern along the fault plane. Our formulation of the

problem is different from Madariaga (1976). We prescribe the space-time slip distribution

and seek for the space-time stress change distribution, while Madariaga prescribed space-

time stress distribution and sought for the space-time slip distribution. We prescribe

4In this case, self-similarity means that the slip velocity is a homogeneous function of zero degree, i.e.,
∆u̇(t, ξ) = ∆u̇(ξ/t).



2.2. TEST AND DEMONSTRATION OF THE METHOD 31

the space-time slip as follows: the static slip distribution is same as for static circular

crack with the constant stress drop using the relation (2.7), the slip is assumed to appear

instantaneously, however we remove high frequencies with the cosine window

1

2

[
cos

(
f

fmax

π

)
+ 1

]
(2.13)

which results in the constant finite rise time over the crack. Madariaga did not solve

a spontaneous rupture problem, the rupture velocity was prescribed as a constant (either

finite or infinite) in his calculations and the final static stress change was the same as in our

calculations, thus the only difference is in the slip time functions. Generally, Madariaga’s

calculations result in non-uniform rise times - the rise time was decreasing with the distance

from the crack’s center.

Further, we set vP = 6.2 km/s, vS = 3.55 km/s, ρ = 2800 kg/m3, R = 0.1 km. The slip

was adjusted by changing the constant of proportionality in (2.7) to get the static stress

drop of 10 MPa. Such choice was not arbitrary. The values of seismic velocities and density

correspond to the seismogenic zone of Western Bohemia (WB) and the source parameters

correspond to a WB M2.8 swarm earthquake, as the purpose of these calculations was

also to recover possible dynamic stress triggering mechanism controlling the WB seismic

swarms. The calculations were carried out up to fmax = 20 Hz with the following DW

configuration (for details, we refer to sections A.3-A.5 of Appendix A): spatial periods

Lx = Ly = 25 km, time period T = 3 s, spatial steps ∆x = ∆y = 8 m, time step

∆t = 3/128 s, artificial attenuation ωI = π/T , and fault dimensions L = W = 2.5 km.

An utilization of the cosine window (2.13), fmax=20 Hz, static stress drop of 10 MPa and

final slip distribution (2.7) results in the maximum slip velocity function of 0.5 m/s at the

center of the crack, which is reasonable (e.g., Kanamori, 1994). The slip time functions

at several radial positions from the crack’s center are shown in Fig. 2.9. The snapshots

of both the slip-parallel and slip-perpendicular components of the dynamic stress change

over the fault plane are plotted in Fig. 2.10 and Fig. 2.11 respectively. The slip direction is

parallel to the horizontal axis. The circular crack can be easily recognized in both figures.

Very large stress changes are induced close to the crack and are not resolved by the color
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Figure 2.9: Slip functions for several radial distances from the crack’s center.

scale. A black color denotes very low values (<-0.05 MPa) and a white color denotes very

large values (<0.05 Mpa). The time displayed above each snapshot is measured from zero

in the Fig. 2.9.

Let us comment the slip-parallel component of the dynamic stress change (Fig. 2.10).

The first snapshot is taken approximately 0.01 s after the slip finished on the crack. One

can see the near-field P-wave build up, and how P-waves propagate away from the crack.

Moving to 0.2031 s snapshot, one can recognize the near field P-wave (positive onset in the

slip direction) followed by the S-wave (overshoot to the negative values and then to the

positive values again). Since 0.2500 s snapshot the P-wave has become relatively weak and

the transient solution has become controlled by the S-wave. The static solution dominates

up to distance of about 5R from the center. Maximal slip-parallel stress changes lie on

the horizontal crack axis which is parallel to the slip vector. On the other hand, minimal

slip-parallel stress changes lie on the vertical crack axis which is perpendicular to the slip

vector.
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The slip-perpendicular component of the dynamic stress change (Fig. 2.11) has gen-

erally a lower magnitude. The stress radiation pattern follows the static stress change

distribution. One can again recognize the near field P-wave followed by the S-wave. The

static solution dominates up to distance of about R from the center.

The dynamic stress field due to a finite circular crack along a planar fault outside the

crack itself has not been published yet. It represents an illustrative solution, reflecting

a typical elastodynamic response of the fault walls, throwing some light on the forward

dynamic modelling. For example one can read from the results that rupture would rather

follow along the slip-parallel direction, as the dynamic stress changes have generally lower

magnitude along the slip-perpendicular direction. Further, dynamic stress changes may

also induce seismicity (e.g., review by Steacy et al., 2005; and references therein). In

particular, these results have been already applied in the study concerning dynamic stress

triggering of earthquakes during Western Bohemia seismic swarms published by Fischer &

Horálek (2005).
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Figure 2.10: Snapshots of the slip-parallel component of the dynamic shear stress change.
The values <-0.05 MPa are plotted in black, the values >0.05 MPa are plotted in white.
The time measured from zero in the Fig. 2.9 is displayed above each snapshot. Fault plane
has dimension of 2.5 km × 2.5 km.



2.2. TEST AND DEMONSTRATION OF THE METHOD 35

Figure 2.11: Same as in the Fig. 2.10 but just for slip-perpendicular component.
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Chapter 3

Dynamic Stress Field of the
k-squared Model

In this chapter we describe the k-squared slip model, and present the analysis of the

dynamic stress field due to k-squared model with k-dependent rise time. This chapter

represents the main results of the thesis.

3.1 Introduction to stochastic source models

Realistic and accurate estimation of strong ground motion in a broad frequency range

for future large earthquakes is one of the major topics of present seismology. A realistic

earthquake source model should form an integral part of every study concerning strong

ground motions in the proximity of an active fault.

It has been recognized soon in seismology, that a stochastic heterogeneity plays an

important role in the earthquake source process. This was supported both by a rather

complicated, let us say stochastic, high-frequency ground motion due to earthquakes and

by a complex seismicity pattern even within a single fault. Both phenomena have been

found to embody some specific statistical characteristics, e.g., a power law for frequency-

size earthquake distribution, scaling of radiated energy with magnitude, etc. Hence, sev-

eral stochastic source models were introduced to explain these phenomena. Haskell (1966)

presented a kinematic stochastic source model for calculating the stochastic ground mo-

tion. Hanks (1979) made a step further, linking the properties of ground motions with the

37
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frequency-size earthquake distribution through stress fluctuations along the fault. Andrews

(1980) then introduced an earthquake source model based on the stochastic self-similar sta-

tic slip and stress distributions, which was primarily designed as a model of the seismicity.

Further, Andrews (1981) proceeded with a kinematic stochastic model of the fault motion

applicable to the ground motion simulation. A new insight was brought up by Boatwright

(1982), who introduced so-called composite source models, where the ground motion due

to earthquake was modeled as a series of subevents of various sizes. This concept was fur-

ther developed by Frankel (1991), who derived theoretical relations connecting the ground

motion spectral falloff, fractal dimension of the subevent size distribution and b-value.

Although the works by Andrews (1980, 1981) were full of fresh ideas, they were not fol-

lowed by the thorough studies concerning the influence of the prescribed heterogeneity on

the radiated wavefield. Herrero & Bernard (1994) took the stochastic slip distribution of

Andrews (1980, 1981) and showed analytically the properties of corresponding radiated

wavefield. Particularly, they found that for the slip amplitudes having the spectral falloff

proportional to k−2 and the instantaneous slip, the radiated wavefield obeys the widely

accepted ω-squared model (Aki, 1967). Herrero & Bernard (1994) established the term

‘k-squared model’ for such stochastic models. Bernard et al. (1996) relaxed the unphysi-

cal assumption of the instantaneous slip and introduced a slip function with the so called

k-dependent rise time, what led to more realistic slip time evolution preserving ω-squared

model. Since then, k-squared model was applied in a number of strong ground motion

modelling studies (e.g., Zollo et al., 1997; Hartzell et al., 1999; Berge-Thierry et al., 2001;

Emolo & Zollo, 2001; Gallovič & Brokešová, 2004b) and further generalized in the following

works: Hisada (2000, 2001), Gallovič & Brokešová (2004a), Liu et al. (2006).

Concurrently, great effort has been put into the dynamic modeling of earthquake

sources; an overview can be found in Madariaga & Olsen (2002). A number of dynamic

models of recent earthquakes were also developed (e.g., Quin, 1990; Olsen et al., 1997),

since a number of good quality kinematic earthquake source inversions have been obtained

and computer power increased. Several attempts have been made to apply these new

findings in forward modeling of rupture propagation in stochastic stress fields, to provide
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physical scenarios for possible future earthquakes (Oglesby & Day, 2002; Guatteri et al.,

2003). Such studies are very valuable since they introduce more physics into the problem,

but there are still many open questions concerning possible strength and stress distribu-

tions which are generally unknown. Problems are also connected with the computation

itself, which is still very time consuming and thus not very convenient for seismic hazard

assessment. Another approach is represented by the so-called pseudo-dynamic model of

Guatteri et al. (2004), who constrain the parameters of the theoretical kinematic model

by relations obtained from forward dynamic simulations.

In the present study we follow an alternative way. We investigate the stress field gener-

ated by theoretical k-squared kinematic models. Previously, Madariaga (1978) studied the

dynamic stress field of Haskell’s fault model and found strong contradictions with earth-

quake source physics (e.g., an infinite average static stress drop). Analogous studies on

earthquake source dynamics using kinematic source inversions were presented by Chen &

Aki (1996), Bouchon (1997), Ide & Takeo (1997), Day et al. (1998), Dalguer et al. (2002),

Piatanesi et al. (2004) and Tinti et al. (2005b). These studies led to estimates of fault

friction parameters. In this study we calculate the dynamic stress field caused by a slip

history prescribed by the k-squared kinematic model. The combination of these stress

changes and prescribed slip time series implies a constitutive relation at every point along

the fault, and we ask whether these constitutive relations are ‘reasonable’. Specifically, we

confront these constitutive relations with the slip weakening friction law. We analyze the

strength excess, breakdown stress drop, and critical slip weakening distance Dc distribu-

tions. A new parameter, the stress delay Tx, is introduced to map the fault points where

the peak stress precedes the rupture onset - points where implied constitutive relations vi-

olate the slip weakening friction law. We choose the following criteria for the ‘reasonable’

constitutive relation: 1) minimal areas of stress delay Tx (less than 5% of the fault area),

2) minimal areas of negative strength excess (less than 5% of the fault area). Additionally

we require a small ratio of Dc to total slip. If a kinematic source model fails to fulfill these

criteria, we suggest its rejection. The choice of 5% is arbitrary.

Another point of this chapter is the analysis of effects of space-time filtering on resulting
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dynamic stress field, which is important for the correct interpretation of band-limited slip

inversions of real earthquakes.

3.2 k-squared slip model with asperities

Let us introduce the k-squared model with asperities, which is the subject of our further

study. The basis of all kinematic k-squared models is a stochastic final slip distribution,

which is defined as follows: the amplitude spectrum of the static slip distribution is flat

up to a certain characteristic corner wavenumber, then falling off as the inverse power of

two, thus matching the condition of self-similarity (Andrews, 1980; Herrero & Bernard,

1994). The corner wavenumber represents the fault roughness. Attempts were made to

estimate this wavenumber and spectral falloff from the static slip distributions obtained

by kinematic source inversions (Somerville et al., 1999; Mai & Beroza, 2002). However,

such results may be biased by the smoothing procedures common to most slip inversions

and hence one has to be very careful in taking them into account.

In the paper of Somerville et al. (1999), an attempt was made to investigate the hetero-

geneity of static slip distribution directly in the space domain, defining asperities as regions

covering some minimum predefined areas, where the average slip exceeds the prescribed

limit. The asperities1 should represent the behavior of slip models at low wavenumbers.

Since the asperities seem to be the dominant regions of the earthquake source in seismic

wave generation (Miyake et al., 2003), synthetic slip models for strong ground motion pre-

diction should mimick asperities. The total area of asperities and the area of the greatest

asperity exhibit clear seismic moment dependence and thus can be estimated for future

earthquakes of a given magnitude. The position of asperities within the fault is difficult to

predict, although attempts were made to link the center of the largest asperity with the

1We are aware of too many different asperity definitions in seismology. The term asperity was origi-
nally introduced in physics of friction for regions of direct material contacts (e.g., Scholz, 2002). To our
knowledge it appeared in seismological literature in late 70’. It was used to annotate high-stress drop
areas of the fault (e.g, Kanamori & Stewart, 1978; Madariaga, 1979). Since that time it has been used in
seismology to call various characteristic fault heterogeneities, including high slip areas (Somerville et al.,
1999).
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position of hypocenter (Somerville et al., 1999; Mai et al., 2005). Alternatively, attempts

have been made to verify the hypothesis of permanent asperities (Irikura, private commu-

nication, 2003), who proposes that the asperity always takes the same place on a particular

fault.

There are several ways of generating a stochastic k-squared static slip distribution.

Most common is the method of filtering noise (Andrews, 1980; Herrero & Bernard, 1994;

Somerville et al., 1999; Mai & Beroza, 2002; Gallovič & Brokešová, 2004a). The random

phase generator is usually based on either a uniform or Gaussian probability distribu-

tion. Such synthetic slip models do not generally provide a direct control of the asperities.

Lavallée & Archuleta (2003) applied Lévy probability density function to pronounce asperi-

ties. Another way is to assume the asperities in the space domain and add high wavenumber

noise with given properties (Gallovič & Brokešová, 2004a). Hence one has a direct control

of asperities - one can prescribe the size, the seismic moment and the position of the as-

perities. It is especially useful in cases when the smooth slip distribution is known (i.e.,

the properties of asperities). Then the broadband source model can be easily created by

adding the high wavenumber stochastic component. Particularly, the 2D Fourier spectrum

of the slip distribution reads

U (kx, ky) =
∆ūLW√

1 +

[(
kxL
Kc

)2

+
(

kyW

Kc

)2
]2
eiΦ(kx,ky) (3.1)

where kx, ky are horizontal wavenumbers (in the fault plane), ∆ū is the average slip, L is the

length and W is the width of the fault, Kc is a dimensionless constant - the relative corner

wavenumber, Φ is the random phase function of kx, ky. Note that the amplitude spectrum

has the form of a low-pass Butterworth filter with the cut-off wavenumber controlled by

Kc. By changing Kc we can then demonstrate the effect of spatial filtering of the final

slip distribution. The Kc is chosen same for the both kx and ky wavenumber directions.

However, this may be refined in the future, as fault heterogeneities (e.g., fault geometry)

seem to vary differently in the slip-parallel and slip-perpendicular directions (Scholz, 2002;

and references therein).
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Another approach is represented by superposing slip patches with an average slip pro-

portional to the size of the patch, such that the overall slip provides k-squared falloff at

high wavenumbers (Frankel 1991; Zeng et al., 1994; Gallovič & Brokešová, 2007). The

position of these patches is random, except for the largest ones, which can be employed to

build up an asperity.

We have used both types of k-squared slip generators: the one described in Gallovič

& Brokešová (2004a) and the one described in Gallovič & Brokešová (2007). We assume

scalar seismic moment M0 = 7.8 × 1017 Nm released along a rectangular fault, size 11 ×

8 km located in an infinite, homogeneous, isotropic, elastic space characterized by P-wave

velocity vp = 6 km/s, S-wave velocity vs = 3.46 km/s and density ρ = 2800 kg/m3. We

also assume a rectangular asperity in one corner of the fault with an average asperity

slip contrast of 2 following Somerville et al. (1999). The direction of the slip vector is

constant (parallel to the fault length over the whole fault) to make the analysis easier.

Eight different slip distributions are shown in Fig. 3.1A, which all include an asperity with

the same properties - rectangular quadrant of the fault with its average slip two times

larger than the average slip along the whole fault. One slip distribution was generated by

the patch method (vii. slip distribution) with the largest subevent of the asperity size.

The other seven were generated by filtering white noise.

The three slip distributions (i., iii., v.) differ only in their relative corner wavenumber

Kc (i. - Kc = 1, iii. - Kc = 0.75, v. - Kc = 0.5). All the three were created by filtering

white noise (Kc = ∞). One can see the effect of Kc - the higher Kc, the rougher the

slip distribution. We can interpret alternatively the two slip distributions (Kc = 0.75,

Kc = 0.5) as the low-pass filtered versions of the Kc = 1 slip distributions. Thereby

we demonstrate the effect of spatial filtering, which is naturally present in kinematic slip

inversions. The three slip distributions (ii., iv., vi.) differ from (i., iii., v.) only by the

different random seed respectively. The viii. slip distribution is created with the asperity

in the center of the fault and with Kc = 0.5.
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Figure 3.1: Final slip distributions (A) and corresponding slip-parallel static shear stress
changes (B). The i-ii. slip distributions were generated with Kc = 1.00 for two different
random seeds, iii-iv. for Kc = 0.75 and two different random seeds, v-vi. for Kc = 0.50
and two different random seeds, vii. slip distribution was created by the patch method and
viii. slip distribution for Kc = 0.50 and asperity placed in the center of the fault
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3.3 Static stress field

Firstly we analyze the static stress change along the fault due to the slip distributions

described in the previous section. A static stress change due to the self-similar rupture

model with the k-squared slip distribution was already studied by Andrews (1980). We

extend the study to the k-squared model with an asperity and also for different slip rough-

nesses. As the fault is planar, the normal stress change along the fault is zero. This could

be easily viewed as the normal stress change is a odd function along the fault normal

with respect to the fault (e.g., equations A.79-A.80 in the Appendix A) and the stress is

continuous across the fault. We thus calculated just the shear traction change expressed

in slip-parallel and slip-perpendicular components. The slip-parallel component dominates

over the slip-perpendicular component along most of the fault. However, in some sections

of the fault both components are comparable. Thus the shear traction change there can

become even perpendicular to the slip vector. Nevertheless, the magnitudes of these shear

stress changes are low compared to the rest of the fault (up to 10% of the peak shear stress

changes). An example of the shear traction change along the fault is shown in Fig. 3.2

for v. slip distribution from Fig. 3.1A. Quantitatively, the shear traction deviates by less

than ±45◦, ±15◦, ±10◦ from the slip-parallel direction over 94%, 75%, 61% of the fault

area, respectively for the all slip distributions shown in Fig. 3.1A. Let us make a short

remark about the relationship between the traction and slip vector along the fault. Gen-

erally, initial stress (prestress) has to be accounted in the discussions concerning direction

of the slip and the shear stress change along the fault during and after earthquake. A

usual assumption in the earthquake dynamics is that the slip rate and the total traction

are antiparallel along the fault (e.g., Spudich, 1992). Since the total traction is a sum of

prestress (time independent in a time scale of earthquake rupture) and shear stress change

perturbation (generally time dependent) due to a slip, the slip rate vector may rotate with

time along the fault. Thus the absolute level of prestress plays an important role. If the

absolute level of prestress is high, the direction of total traction along the fault will follow

prestress and fault will slip in the direction just opposite to the prestress. On the contrary,
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Static Stress Changes
Kc = 1 Kc = 0.75 Kc = 0.5 PM CA

∆σmin (MPa) -75 -78 -41 -40 -27 -26 -28 -21
∆σmax (MPa) 55 57 33 28 17 14 11 11
〈∆σ〉 (MPa) -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.6 -1.5
〈∆σ+〉 (MPa) 16.2 16.5 8.8 8.9 5.8 5.8 4.7 4.8

A∆σ+
/Afault (%) 45 45 49 51 55 54 60 52

Table 3.1: Some basic parameters of the static stress field due to the k-squared slip dis-
tributions of Fig. 3.1. ∆σmin and ∆σmax are ranges of the stress changes along the fault,
〈∆σ〉 is the average stress change over the fault, 〈∆σ+〉 is the average positive stress drop
and A∆σ+

/Afault is the ratio of the positive stress drop area to the whole fault area.

if the initial prestress is low, the direction of total traction along the fault will rotate with

time making also the rake time dependent along the fault. It was shown by Spudich (1992)

and Guatteri & Spudich (1998) that estimates of absolute stress levels could be made from

time dependent rake rotations. However, prestress is usually supposed to be much higher

then stress changes due to earthquakes, thus only slip and traction changes in the prestress

direction are assumed.

Rake changes neither with the position along the fault nor with the time in the kine-

matic model presented here. Hereafter, we work just with the slip-parallel stress change

component, assuming an absolute stress level much greater than the stress change. We

distinguish the stress drop (or positive stress drop) and negative stress drop if the stress

change points along or in the opposite direction of the slip vector, respectively. The results

are depicted in Fig. 3.1B. One can see the areas of both the positive (blue) and negative

(yellow to red) stress drops. As the vii. slip distribution is smoother, the resulting static

stress change appears to be simpler, and almost all the areas of stress drop are connected.

On the other hand, the static stress change due to the i. slip distribution is very complex

and areas of stress drop create isolated islands. Some characteristics of the static stress

change are summarized in Table 1. The average stress change is nearly the same for all Kc

slip distributions, but the spatial variability of the static stress change and the area of the

negative stress drop increase with increasing Kc. The characteristics of the static stress

changes do not change much (up to few percent) with the different stochastic realization.
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The vii. slip model will be broadly discussed in further text, as it might correspond

to smooth results of kinematic source inversion of real earthquakes. We point out that

the limited spatial resolution of the kinematic source inversions can drastically affect the

retrieved static stress change. Not enough attention has so far been paid to this important

issue.

3.4 Dynamic stress field

If we want to study the dynamic stress field we have to prescribe the slip time history.

We have employed Dirac’s delta function and slip velocity functions with the so-called k-

dependent rise time as, together with the k-squared slip distribution (Herrero & Bernard,

1994; Bernard et al., 1996), they generate the widely accepted ω-squared model. Gallovic

& Brokesova (2004a) generalized the concept of the k-dependent rise time for the general

slip velocity function (SVF), so that the spectrum of the slip velocity function ∆u̇ can be

expressed as:

∆u̇ (ξ, ω) = exp
iω

∥∥ξ − ξhyp

∥∥
vr

∫ ∫ +∞

−∞
U (k) X̂

[ ω
2π
τ (k)

]
exp [2πi (k · ξ)] dk, (3.2)

with

τ(k) =
τmax√

1 + τ2
maxv2

r

a2 ‖k‖2
, (3.3)

where ω is the angular frequency, ξ is the position along the fault, ξhyp is the position of

the nucleation point, vr is the rupture velocity, k is the horizontal wave vector (in the fault

plane), U(k) is the 2D Fourier spectrum of the static slip distribution, X̂ is the spectrum

of the slip velocity function of 1 s duration, τ(k) is the k-dependent rise time, τmax is the

maximum rise time, and a is the non-dimensional coefficient described in Bernard et al.

(1996), where the authors suggested a=0.5. The rupture velocity vr has to be constant. We

have performed the calculation for three SVFs with k-dependent rise time - boxcar, Brune’s

function and the Kostrov-like function proposed by Hisada (2000) (we have thus denoted

it Hisada’s function) with maximum rise time τmax = 1 s. We have taken vr = 2.6 km/s

(= 0.75vs). The slip is thus propagating in a pulse of width L0 = 2.6 km in case of the SVF
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Figure 3.3: Stress time histories for different shapes of slip velocity functions (Dirac’s,
boxcar, Brune’s, Hisada’s) at a point of the fault. The slip functions were generated for
the slip distribution denoted as PM in Figure 3.1. To demonstrate the effect of filtering we
applied the low-pass filter changing cutoff frequency fmax gradually (3Hz, 6Hz, 12Hz).
The origin of the time axis is arbitrary and the plots are additionally shifted for clarity by
the same amount according to the slip velocity function. The plot is clipped in the case of
Dirac’s slip velocity function.

with k-dependent rise time. The nucleation point was chosen in the middle of the fault left

border - just at the corner of the asperity (indicated later by an asterisk in Fig. 3.5). The

calculations were carried out with the following DW configuration (for details, we refer to

sections A.3-A.5 of Appendix A): spatial periods Lx = 1201∆x, Ly = 1201∆y, time period

T = 10.24 s, spatial steps ∆x = 11/128 km, ∆y = 8/128 km, time step ∆t = 0.02 s, and

artificial attenuation ωI = π/T .

An example of the stress time histories at a point along the fault for four different

SVFs is shown in Fig. 3.3. One can recognize the onset due to P-waves, and the peaks

associated with the S-wave and rupture front arrivals, respectively, for all types of SVFs.
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The static part of the stress histories is independent of SVF. There is a clear singularity

associated with the rupture front arrival in case of Dirac’s SVF. Brune’s SVF is similar

to Hisada’s SVF, thus the stress time histories are also very similar. We also show the

effect of frequency filtering, the stress time histories being plotted for three different cutoff

frequencies. As we are working with step-like functions, we use a filter whose Fourier

amplitude spectrum falls off very slowly to overcome the spurious overshoots in the signal,

i.e. a cosine window 0.5[cos(0.5ω/fmax) + 1]. The filter is acausal. Note the strong effect

of the frequency filtering on the peak stress associated with the rupture onset.

For further quantitative analysis of the dynamic stress field we determine several dy-

namic source characteristics - strength excess (SE), dynamic stress drop (DS), breakdown

stress drop (BS) and stress delay Tx. The definition of these quantities for the representa-

tive set of stress time histories is shown in Fig. 3.4. The strength excess (SE) is the value

of the stress level (with respect to initial stress) at the very onset of the rupture (e.g.,

Bouchon, 1997). The dynamic stress drop (DS) is defined as the minimal stress level (with

respect to initial stress) after rupture arrival (e.g, Dalguer et. al, 2002). The breakdown

stress drop (BS) is the sum of the strength excess and the dynamic stress drop. We define

BS=0 for points, where it was not possible to read DS, and points where the rupture onset

is followed by an immediate stress increase (see Fig. 3.4c). Finally, we define a new quan-

tity, stress delay Tx, as the delay between the rupture front and the peak stress arrivals. If

the rupture front arrival coincides with the peak stress arrival, then Tx = 0. However, we

have found some points along the fault where the peak stress precedes the rupture front

arrival (Tx < 0). Taking into account simple friction (e.g., the slip weakening law), the

fault would start slipping earlier at these points - immediately after the peak stress arrival,

which does not agree with the prescribed rupture velocity. Hence, points Tx < 0 are very

probably inconsistent with source dynamics. Although this opinion is oversimplified and

more sophisticated constitutive laws (e.g., the rate and state friction) allow a broader class

of stress time histories (even with non-zero Tx), we do not expect the k-squared model to

imply such complex friction laws, as it is just a schematic kinematic model.

The spatial distributions of the dynamic parameters for Hisada’s SVF are depicted in
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Figure 3.4: Four representative stress change time histories. Reading of the strength excess,
dynamic stress drop, breakdown stress drop and definition of stress delay Tx is pointed out
for each time history. Cases a) and b) represent time histories with peak stress preceding
rupture front onset. Case b) represents the time history with negative strength excess.
Case c) represents the time history with immediate stress increase just after the rupture
onset - with zero breakdown stress drop. Case d) represents the time history with negative
static stress drop but with positive breakdown stress drop.
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Figure 3.5: The effect of filtering on a) strength excess, b) breakdown stress drop and c)
stress delay Tx distributions for Hisada’s slip velocity function. Each column of the panel
refers to a different cutoff frequency (fmax = 3Hz, fmax = 6Hz, fmax = 12Hz). The black
contours in the right column indicate the boundary between positive and negative static
stress drops. The nucleation point is indicated by an asterisk.
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Fig. 3.5. The white color in the strength excess distribution indicates regions of negative or

zero values (values below or equal to the initial stress), which is not physically consistent -

these regions ruptured after a zero stress change or even after stress release. We recognize

the strong effect of frequency filtering: the peak associated with the rupture front arrival is

smeared by filtering (see Fig. 3.3). Since our filter is acausal, the stress drop may precede

the rupture front. The problem disappears with increasing cutoff frequency. However,

small regions of the negative strength excess remain close to the nucleation point. This is

not surprising, as we start the rupture from a point, and not from a small but finite area,

the latter being necessary in forward dynamic simulations (e.g., Andrews, 1976a). Bouchon

(1997) found that the strength excess inversely correlates with the local rupture velocity.

Since we assume a constant rupture velocity, the strength excess is partly correlated just

with the static stress change. The breakdown stress drop is clearly correlated with the

static stress drop and grows with increasing cutoff frequency. The white color in the break

down stress drop distribution indicates regions where the stress just rises in time after

rupture front arrival (see Fig. 3.4c). Stress delay Tx is non-zero in the vicinity of the

nucleation point, as well as non-positive strength excess regions. Other regions of non-zero

Tx disappear with increasing cutoff frequency, except the small areas near the border of

the fault.

An example of stress time histories over the fault for Hisada’s SVF is shown in Fig. 3.6.

The difference between the dynamic and the static stress drop distributions (DS-SS), the

stress recovery, is displayed in the background. An interesting result is that the slip

pulse propagates without strong recovery of stress along most of the fault, unlike the

model of Heaton (1990). Former was also found in the dynamic stress field studies of real

earthquakes (Day et al., 1998). However, a closer look at Fig. 3.3 suggests that the amount

of stress recovery would depend on the pulse width. Particularly in case of Dirac’s SVF,

pulse width L0 → 0, and one can see strong stress recovery. Reminding the reader that

L0 = vr τmax, we carried out the calculation for nine combinations of τmax ∈ {0.5, 1, 2} s

and vr ∈ {2.3, 2.6, 2.9} km/s with Hisada’s SVF, fmax = 12 Hz and the nucleation point

at the left border of the fault. The difference (DS-SS) over the fault is plotted for all the
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nine models in Fig. 3.7. We found that the change in the pulse width only causes a change

in the absolute values of (DS-SS). The average values of the stress recovery (DS-SS) are

plotted against pulse width L0 in Fig. 3.8, showing that (DS-SS) is inversely proportional

to L0. This is consistent with the analytic relations of Broberg (1978) and Freund (1979),

valid for 2D in-plane and anti-plane steady state pulses respectively, which generally imply

inverse proportionality of L0 and DS (the constant of the proportionality depends slightly

on the rupture velocity). All calculations resulted in the largest absolute values of (DS-SS)

near the nucleation point (see Fig. 3.6). Even in case of narrow pulse L0 ' 1 km, the stress

recovery (DS-SS) is low (<2 MPa) farther away than L/2 from nucleation point.

The concept of the slip pulse was introduced to the k-squared model by Bernard et al.

(1996) just by assumption. Slip pulses are usually observed in kinematic models of past

earthquakes (Heaton, 1990), however, their origin is not clear. Two possible mechanisms

were presented to explain the existence of slip pulses (for a detailed discussion refer to Ben-

Zion, 2001). One explanation is a large dynamic variation of the frictional force along the

fault, which can be caused, e.g, by a strong velocity dependence of the friction coefficient

(e.g., Heaton, 1990) or by the variation of the normal stress along the fault separating two

materials with different properties - the so-called wrinkle pulse (e.g., Andrews & Ben-Zion,

1997). Another explanation is that the slip pulse is just the result of fault heterogeneities,

which was demonstrated not only in theoretical forward dynamic models (e.g., Das &

Kostrov, 1988), but also in models of particular earthquakes (Beroza & Mikumo, 1996;

Day et al., 1998). The latter explanation is consistent with the k-squared model with

broader pulses (L0 > L/5), as we do not observe stress recovery after dynamic weakening.

The slip pulse could then be substantiated by the natural spatial heterogeneity of the k-

squared model. The limit L0 > L/5 confirms the value proposed by Bernard et al. (1996)

for a crack like behavior of ‘broad-pulse’ slip model. In case of narrow pulses (L0 < L/5)

stress recovery is significant close to the nucleation point and, therefore, the slip pulse

cannot be explained merely by fault heterogeneity.

In earthquake dynamics, the source process is controlled by the instantaneous stress

state surrounding the fault and the constitutive equations describing the relationships
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Figure 3.7: The difference between static and dynamic stress values over the fault. The
simulations were run for Hisada’s slip velocity function, nucleation point at the left border
of the fault and nine combinations of τmax ∈ {0.5, 1., 2.} s and vr ∈ {2.3, 2.6, 2.9} km/s.
We remind that L0 = vrτmax.
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Figure 3.8: The mean value of the difference between static and dynamic stress drops over
the fault in dependence on pulse width L0. The average values were obtained from the
distributions depicted in Fig 3.7.

among the kinematic, mechanical, thermal or even chemical field variables along the fault.

One of the simplest and most widely used constitutive equations is the slip weakening

(SW) law introduced to earthquake source studies by Ida (1972). It relates shear traction

along the fault only to the fault slip. An example of the linear slip weakening friction

law is depicted in Fig. 3.9. In particular, a slip is zero until shear stress reaches (from

the initial stress level τ0) a critical value - the yield stress (τy). Once the yield stress is

reached, the slip starts to grow while the shear stress decreases. After the slip exceeds

the critical displacement Dc, the shear stress no longer decreases and remains constant at

the so-called dynamic stress level (τd) till the end of the rupture process. Hatched region

denotes the work per area done against friction in producing the crack (fracture energy

density, shortly fracture energy) and cross-hatched region denotes the energy per area

transformed to heat (Andrews, 1976a). The boundary between the fracture energy and

heat may be more complicated and may not follow the dynamic stress level τd, which may

be refined in the future (see discussion by Tinti et al., 2005b). Although other constitutive

laws exist, e.g., the rate and state dependent friction law derived from laboratory rock

friction measurements (Dieterich, 1979; Ruina, 1983; Marone, 1998) and explaining even

pre- and post-seismic phenomena, the SW law has been used successfully to interpret
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Figure 3.9: An example of the slip weakening friction law. Thick solid line represents the
shear stress dependence on the slip at a point on the fault. τ0, τy and τd denote the initial,
yield and dynamic stress levels respectively. Dc is the critical slip weakening distance and
Dtot is the final slip. Hatched area denotes the fracture energy and cross-hatched denotes
the energy per area transformed to heat.

ground motions with dynamic models (e.g., Beroza & Mikumo, 1996; Olsen et al., 1997;

Guatteri & Spudich, 2000; Peyrat & Olsen, 2004). Moreover, the SW behavior was found

to be a feature of the rate and state dependent friction law itself (Cocco et al., 2004 and

references therein) and also in the dynamic stress field of the kinematic models derived

by the inversion of earthquake waveforms (Ide & Takeo, 1997). Since SW is an important

feature of the dynamic stress change during earthquake rupture, we analyzed the stress slip

curves for the k-squared model. We fitted stress slip curves using the linear SW relation

(the stress falls linearly with the slip), arriving at the optimal value of Dc. Particularly, we

fixed both the strength excess and dynamic stress drop and performed a direct search in

the interval 〈0, Dtot〉 for optimal Dc (in the sense of the L2 norm), Dtot is the final slip. An

example of such optimal solution over the fault is in Fig. 3.10 and in more detail for eight

selected points in Fig. 3.11. SW dominates in regions of positive static stress drop, where

the variance reduction of the optimal solution exceeds 90%. Regions of negative static

stress drop and positive breakdown stress drop exhibit slip weakening or a combination of

slip weakening and slip hardening. The SW fit is generally worse (variance reduction up to

50%) in these regions. The SW fit has no meaning in regions of zero breakdown stress drop.
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Figure 3.11: An example of stress-slip curves (black) and corresponding linear slip weak-
ening fit (red) at eight points along the fault denoted in Fig. 3.10 by A - H respectively.
A worse fit in the negative static but positive breakdown stress drop areas is presented in
the bottom row (E-H).

The optimal values of Dc/Dtot for three values of fmax are plotted in Fig. 3.12. We show

Dc/Dtot just for areas of positive static stress drop, as there is a high reduction variance

of the slip weakening fit (over 90%) for the three values of fmax and thus the results are

comparable. One can see that the values of Dc/Dtot depend on the cut-off frequency - the

lower fmax, the closerDc toDtot. Generally, Dc followsDtot, butDc/Dtot slowly varies along

the fault from 20% to 40%, to 60% to 100% for fmax=12 Hz, 6 Hz, 3 Hz, respectively. Total

slip Dtot versus Dc for all points within positive stress drop areas is plotted in Fig. 3.13

to be comparable with the published results for real earthquakes. The effect of filtering is

clear, a lower fmax pushes the values of Dc closer to Dtot. Note the points Dc = Dtot. The

scaling becomes less apparent for fmax = 12 Hz, but generally still holds. Both the green

and red lines denote maxima of the Dc/Dtot frequency-magnitude distributions shown later

in Fig. 3.18. The scaling of Dc with the final slip was found by Mikumo et al. (2003),

Zhang et al. (2003) and Tinti et al. (2005b) for several earthquakes. However, Spudich

& Guatteri (2004) pointed out that this could be caused by the limited bandwidth of the
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Figure 3.12: The effect of filtering on Dc/Dtot (ratio of critical and total slip) distributions
for Hisada’s slip velocity function. Three cutoff frequencies are considered (fmax = 3Hz,
fmax = 6Hz, fmax = 12Hz). The nucleation point is indicated by an asterisk.

Figure 3.13: Total slip Dtot versus critical slip Dc at points within positive stress drop areas
and for three filter cutoff frequencies (fmax = 3Hz, fmax = 6Hz, fmax = 12Hz). The red
solid line indicates 1:1 ratio. The green dashed line indicates a maximum of the Dc/Dtot

frequency-magnitude distribution (see later Fig. 3.18).
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Figure 3.14: The effect of filtering on the fracture energy density distributions calculated
from the breakdown stress drop and Dc distributions presented in Fig. 3.5 and Fig. 3.12
respectively. Three cutoff frequencies are considered (fmax = 3Hz, fmax = 6Hz, fmax =
12Hz). The nucleation point is indicated by an asterisk.

kinematic inversions. Our results are similar to that of Zhang’s results for fmax = 6 and

12 Hz and Tinti’s results for fmax = 3 Hz. On the other hand Mikumo presented lower

values of Dc/Dtot from the interval (0.27-0.52) for Tottori earthquake. Though, it has

been already pointed by Mikumo et al. themselves, that their Dc estimation method fails

near strong barriers - exactly at the regions where we find Dc/Dtot ' 1. Actually, the Dc

estimates for earthquakes are quite peculiar (Guatteri & Spudich, 2000) and it seems that

recent kinematic source inversions were unable to resolve Dc correctly due to the limited

bandwidth of the data (Spudich & Guatteri, 2004; Piatanesi et al., 2004). Therefore it

is difficult to compare the Dc from observational studies with the Dc we obtained for the

theoretical k-squared model in this study.

If we have both the breakdown stress drop τb and Dc estimates, it is straightforward

to evaluate also the fracture energy density Gc assuming the slip weakening friction of

Andrews (1976a), so that

Gc =
1

2
τbDc. (3.4)

Fracture energy density distributions are shown in Fig. 3.14 for the three values of fmax.

One can see that the fracture energy is quite unaffected by the frequency filtering and

is correlated with the static slip distribution. The absolute values are of the same order
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Figure 3.15: Fracture energy density Gc versus total slip Dtot for the all points along the
fault and for three filter cutoff frequencies (fmax = 3Hz, fmax = 6Hz, fmax = 12Hz). The
red solid line indicates the fit by a quadratic function.

of these found by Tinti et al. (2005b). We also made plots of the fracture energy values

against total slip for all points over the fault (Fig. 3.15). Fracture energy density was found

to scale with a second power of the local slip, which is in agreement with both the results

of Tinti et al. (2005b) for real earthquakes and results of Rice et al. (2005) for 2D steady

state slip weakening pulse model. As it was pointed by Tinti et al. (2005b), such scaling is

not in agreement with the one originally proposed by Andrews (1976a). Andrews presented

the fracture energy dependent on the length of the crack from the nucleation point. The

k-squared model with the k-dependent rise time thus seems to be self-consistent from this

point of view - it includes slip pulse and the fracture energy follows scaling independently

predicted by Rice et al. (2005) for the dynamic source pulse model.

The fracture energy seems to be a stable parameter, insensitive to the frequency fil-

tering, thus the estimations for the real earthquakes might be promising from this point

of view. On the other, there is a clear trade-off between strength excess and Dc distrib-
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utions. These findings are in agreement with Guatteri & Spudich (2000), Peyrat et al.,

2001, Peyrat & Olsen (2004).

3.5 A parametric study

As the k-squared model with k-dependent rise time has a relatively high number of free

model parameters (length and width of the fault, asperity slip contrast, slip roughness -

represented by Kc, stochastic slip distribution, number and positions of asperities, position

of nucleation point, rupture velocity, maximum rise time, coefficient a, and SVF type), it

represents a large set of source models. We have performed a parametric study which

covers some sections of this model space to explore its projection into the space of dynamic

parameters, and to possibly find some restrictions on the k-squared model originating from

source dynamics. The scope of the parametric study is limited. We have focused on the

combination of low-wavenumber deterministic and high-wavenumber stochastic slip model

of Mw = 5.9 earthquake. The low-wavenumber model (fault and total asperities area,

asperity slip contrast, number of asperities - in this case just one deterministic asperity)

is based on the empirical scaling relations of Somerville et al. (1999). We have varied

the rupture velocity, maximum rise time, nucleation point position, SVF type, stochastic

slip distribution and asperity position. Each of these were studied separately, fixing the

other parameters at the reference values. The model, which was analyzed in the previous

sections (Hisada’s SVF, vr = 2.6 km/s, a=0.5, τmax = 1 s, fmax = 12 Hz) served as a

reference model. The results of the parametric study are presented in Fig. 3.16, Fig. 3.17

and Fig. 3.18. Dc/Dtot is plotted just for areas of positive static stress drop, as the reduc-

tion variance of the slip weakening fit is 90±5% for all models in these areas, except for

the case of vr = 3.18 km/s (65%). Thus Dc/Dtot should be comparable in the different

models. Further, it was difficult to represent Dc/Dtot by a single value (e.g, by the average

value), since its frequency-magnitude distribution has 2 local maxima (at Dc/Dtot = 1 and

Dc/Dtot ' 0.5), hence we plot frequency-magnitude distribution for all models in Fig. 3.18.

The frequency magnitude distributions of strength excess, breakdown stress drop and frac-
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ture energy density are also plotted in Fig. 3.18 to present the differences between the

studied models in more comprehensive way.

3.5.1 Rupture velocity

The information on the earthquake rupture velocity generally comes both from the seismo-

logical observations and theoretical dynamic source models concerning spontaneous rup-

ture propagation. Particularly, the maximum possible rupture velocity has been discussed

broadly since first earthquake dynamic models appeared in late 60’. Several authors pro-

posed different limits for rupture speed - Rayleigh speed (vR) limit for in-plane fracture

mode and shear wave speed (vS) for anti-plane fracture mode for perfectly brittle bodies2.

This has been supported by many observations of average rupture speeds of 0.7 − 0.9vS.

However, Andrews (1976b) showed both theoretically and numerically that for the non-

ideally brittle bodies and in-plane fracture mode (particularly for the slip weakening friction

law) rupture speed vr can exceed vS a can even reach P-wave velocity vP . The transition

from vR to supershear speeds is not smooth, the rupture front makes a sudden jump ahead

(e.g., Andrews 1976b, Dunham et al., 2003). Nevertheless, supershear rupture velocity

remained mysterious as it was not validated by observations for a long time. The first

observations of supershear rupture speed in laboratory were reported by Rosakis et al.

(1999). Moreover, Bouchon et al. (2001) and Bouchon & Vallée (2003) found supershear

rupture speed for the two 1999 Turkey earthquakes and 2001 M8.1 Kunlunshan, Tibet

earthquake respectively.

As the transition from the Rayleigh to supershear speeds is complicated, we decided to

study at first sub-Rayleigh velocities. Particularly, we set vr to values of 2.3 km/s(=0.66Vs),

2.9 km/s(=0.84Vs) and 3.18 km/s(=0.92Vs) (Fig. 3.16b-d). The last one is the Rayleigh

velocity vR in the medium surrounding the fault. The strength excess (SE) distribution is

very sensitive to rupture velocity vr. Specifically, the SE values decrease almost linearly

with vr (the average positive SE values decrease linearly from 5 MPa for vr = 2.3 km/s to

1.8 MPa for vr = 3.18 km/s). The spatial pattern of the SE distribution follows the SE

2materials which can support infinite stress at the crack tip
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Figure 3.16: Strength excess, breakdown stress drop, Dc/Dtot (ratio of critical and total
slip) distributions and stress delay Tx for 14 different sets of k-squared model input pa-
rameters. a) our reference model (Hisada’s slip velocity function, nucleation point at left
border of the fault, rupture velocity 2.6 km/s); b)-d) three different values of the rupture
velocity (2.3km/s, 2.9km/s, 3.18km/s); e)-f) two different values of maximum rise time;
g)-h) two different positions of the nucleation point (center, right border of the fault);
i)-j) two different types of slip velocity functions (Brune, boxcar); k) a different k-squared
slip distribution - v. slip distribution from Fig. 3.1A; l) a different stochastic realization
of Kc=0.5 slip distribution - vi. slip distribution from Fig. 3.1A; m) a different k-squared
slip distribution - iii. distribution from Fig. 3.1A; n) a different stochastic realization of
Kc=0.75 slip distribution - iv. distribution from Fig. 3.1A; o) Kc=0.5 slip distribution with
a different position of the asperity - viii. slip distribution from Fig. 3.1A.
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reference solution (Fig. 3.16a). The negative SE values covering less than 5% of the fault

area close to the nucleation point are present for all the tested vr. When vr reaches the

Rayleigh velocity, negative SE values appear even outside the rupture nucleation region and

cover about 30% of the fault. We found that the dynamic stress drop (DS) did not change

with vr, hence the breakdown stress drop (BS) follows the SE distribution, as BS=DS+SE

(the average BS values decrease linearly from 8.9 MPa for vr = 2.3 km/s to 5.4 MPa for

vr = 3.18 km/s). Dc/Dtot distribution does not change much with vr. The Tx distribution

depends on vr. Non-zero Tx covers less than 5% of the fault area close to the nucleation

point for vr = 2.3 km/s, 2.6 km/s. Tx becomes non-zero outside the rupture nucleation

region with vr approaching the Rayleigh velocity (non-zero Tx at 21% and 67% of the fault

area, for vr = 2.9 km/s and vr = 3.18 km/s respectively). Average fracture energy density

values decrease almost linearly with vr (from 1.5 MJ/m2 for vr = 2.3 km/s to 0.9 MJ/m2

for vr = 3.18 km/s).

3.5.2 Maximum rise time

The rise time - time for the slip to reach the static value at a point - is the parameter

which probably scales with the earthquake size, e.g., Somerville et al. (1999) presented the

seismic moment dependence. However, such scalings may not be reliable because the rise

times are not usually well constrained in the kinematic source inversions. Some authors

propose the slip velocity to be bounded at about 4 m/s (Kanamori, 1994; and references

therein). We tested two values of the maximum rise time - 0.5 s and 2 s, so the values of

the slip velocity do not exceed 4 m/s. The results are depicted in Fig. 3.16e-f. SE increased

with shorter rise time (5 MPa average SE for τmax = 0.5 s) and, vice versa, SE decreased

with longer rise time (2.9 MPa average SE for τmax = 2 s)). The change in BS is not hidden

just in SE as in the case of variable vr. We obtained 9.3 MPa and 6.1 MPa average BS for

shorter and longer τmax, respectively. Also there is a clear dependence of Dc/Dtot on τmax:

the longer τmax, the smaller Dc/Dtot. Also, the non-zero Tx area (10% of the fault area)

is larger for longer τmax. Average fracture energy density values decrease with τmax (from

1.9 MJ/m2 for τmax = 0.5 s to 1.0 MJ/m2 for τmax = 2 s).
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Figure 3.17: Fracture energy density estimation for the 14 models presented in Fig. 3.16.

3.5.3 Nucleation point position

We performed the calculations also for another two positions of the nucleation point (in

the center and on the right border of the fault), which are, together with the reference

solution, three basic representative models from the rupture directivity point of view. The

change in the position of the nucleation point (Fig. 3.16g-h) leads to clear changes in the

spatial patterns of the SE, BD, Dc/Dtot and Tx distributions. However, the average values

of both SE and BS are very close to the reference solution (average SE=3.8 MPa, 3.6 MPa,

3.8 MPa and average BS=7.4 MPa, 7 MPa, 7.5 MPa, for a rupture starting from the left
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a)

b)

c)

d)

Figure 3.18: Frequency-magnitude distributions of a) Dc/Dtot, b) strength excess, c) break-
down stress drop and d) fracture energy density at all points along the fault for three filter
cutoff frequencies (fmax = 3Hz, fmax = 6Hz, fmax = 12Hz) and for 14 models of the para-
metric study in the order presented in Fig. 3.16. fmax = 12Hz is the reference solution in
the parametric study. The empty square bullets indicate arithmetic mean values.
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border, center and right border of the fault, respectively). Tx is zero almost for the whole

fault (less than 1% of the fault area) in case of the rupture nucleating from the center of

the fault and non-zero along less than 5% of the fault for the other two nucleation points.

Also the change in the fracture energy density was less than 5%.

3.5.4 Slip velocity function shape

Further, we tested boxcar and Brune’s slip velocity functions (Fig. 3.16i-j), which were

previously used in strong motion modelling studies concerning k-squared model with the

k-dependent rise time (e.g., Gallovič & Brokešová, 2004b). The SE (1.8 MPa average),

BS (6.4 MPa average) and Tx distributions for the boxcar SVF resemble the results for

τmax = 2 s (see Fig. 3.16f), which can be explained by a shorter “efficient” duration

of Hisada’s SVF (e.g., Fig. 6 in Gallovic & Brokesova, 2004a). The distributions of SE

(3.6 MPa average) and BS (7.8 MPa average) in the case of Brune’s SVF are close to the

results for Hisada’s SVF. Non-zero Tx covers less than 10% of the fault and appears even

outside the rupture nucleation region. The Dc/Dtot values tend to 1 over most of the fault

in the case of the boxcar SVF. The Dc/Dtot values are also higher for Brune’s SVF than

for Hisada’s SVF. Average fracture energy density values were 1.4 MJ/m2 for the boxcar

SVF and 1.6 MJ/m2 for Brune’s SVF.

3.5.5 Static slip distribution

Finally, we performed the analysis for other static slip distributions (Fig. 3.16k-o), partic-

ularly for the both Kc = 0.5 and Kc = 0.75 slip distributions from Fig. 3.1A, two different

stochastic distributions of these two and a different position of the asperity. The average

SE (3.9, 3.9 MPa) and BS (7.6, 7.7 MPa) values are very close to the reference solution

(3.8 MPa and 7.4 MPa, respectively) for the two stochastic realizations of Kc = 0.5 slip

distribution. However, the spatial patterns of the SE and BS distributions differ in details

from the reference solution. The differences are mainly due to the differences in the static

stress change distributions (see Fig. 3.1B). The Dc/Dtot and Tx (non-zero along less than

5% of the fault) distributions are close to the reference solution. Average fracture energy
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density values (1.8 MJ/m2, 1.9 MJ/m2) are higher than the reference solution. The av-

erage SE (4.3, 4.4 MPa) and BS (9.4, 9.8 MPa) values are higher for the two stochastic

realizations of Kc = 0.75 slip distribution. Non-zero Tx covers less than 10% of the fault

and appears even outside the rupture nucleation region. The frequency-magnitude distri-

bution of Dc/Dtot is similar to the reference solution, however, as the areas of negative

stress drop are larger and static stress change is more complicated (Fig. 3.1b) the Dc/Dtot

spatial distribution is also more complicated. Zero BS area also increases considerably with

Kc = 0.75. Average fracture energy density values (2.3 MJ/m2, 2.6 MJ/m2) are higher

than the reference solution. The average SE (3.8 MPa) and BS (7.3 MPa) values are very

close to the reference solution for the different position of the asperity. The spatial pat-

terns of the SE and BS distributions differ from the reference solution, it follows the static

stress change distribution. The Dc/Dtot and Tx (non-zero along less than 5% of the fault)

distributions are also close to the reference solution. Average fracture energy density value

(1.7 MJ/m2) is similar to the reference solution.

We emphasize that the results do not depend on a single stochastic realization, except

for the changing of the pattern of small scale features, and surprisingly, for the values of

fracture energy, which seem to be sensitive to the peak slip values (10% change in average

fracture energy density for Kc = 0.75 slip distributions). Such result might be quite

troublesome, as in the literature, fracture energy is supposed to be a robust parameter,

well constrained for a number of earthquakes. However, it can be understood. Fracture

energy density values scale with the power two of local slip value (Fig. 3.15). Hence,

average fracture energy density might be quite strongly affected by local very high fracture

energy values coming from even small high slip patches. The spatial patterns of the results

depend mostly on the position of the asperity. Even in the case of rougher fault (Kc = 0.75),

shifting more power to higher wavenumbers, the influence of asperity is still present - the

band of negative stress drops enclosing the asperity. The Dc/Dtot frequency-magnitude

distributions also change very little with the different slip distributions.
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3.6 Discussion of the results for the k-squared model

The purpose of this chapter was to investigate both the static and dynamic stress change

due to a theoretical kinematic source model: the k-squared source model with asperities.

We found that the stress field of the k-squared slip distribution and the slip velocity function

with k-dependent rise time is free of singularities3. Let us compare the results with the

findings of Madariaga (1978), who studied Haskell’s fault model. Contrary to Haskell’s

model with an infinite average static stress drop, the k-squared model has a finite average

static stress drop since the slip vanishes smoothly at the border of the fault, so that the

static stress change is bounded. Further, the k-squared model with k-dependent rise time

generates stress time histories which are also bounded as the slip velocity functions have

finite rise times. On the other hand, stress time histories generated by Haskell’s model with

instantaneous slip contain singularities associated with S-wave and rupture front arrivals.

Thus, the k-squared model with k-dependent rise time is not in such clear contradiction

to earthquake source dynamics as Haskell’s model.

A detailed analysis was carried out to compare the stress state along the fault with

the constitutive relations used in earthquake source dynamics. Attention was paid to the

stress recovery associated with the slip pulse, the slip pulse being an ingredient of the

k-squared model with k-dependent rise time. We found the stress recovery to be close

to the nucleation point for narrow pulses (L0 < L/5). We point out that the amount

of stress recovery depends on the rupture velocity and rise time, i.e., on the pulse width.

Further, we determined the strength excess, breakdown stress drop and dynamic stress drop

distributions. We found that it was also possible to fit stress slip curves to a simple linear

slip weakening law, obtaining Dc with high variance reduction (∼ 90%) in the positive

static stress drop areas. Stress delay Tx, a parameter introduced in this work, agrees with

the yielding criteria of the simple slip weakening friction law (characterized only by yield

stress, dynamic stress and critical slip weakening distance Dc).

3Strictly speaking, there is a possible stress singularity just at the nucleation point, whose existence
depends on details of the space-time slip distribution close to a rupture initiation (both in space and time).
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The stress time histories due to the k-squared model are very similar to the stress time

histories due to the kinematic models of real earthquakes (see Figures 4 and 5 in Day et

al., 1998). The values of the strength excess and dynamic stress drop are in tenths of MPa

as for real earthquakes as found, e.g., by Bouchon (1997), Piatanesi et al. (2004). The

average value of Dc/Dtot in the positive stress drop area is 0.65±0.05 (except for the cases

of Brune’s SVF, boxcar SVF and τmax = 0.5 s) which is similar to the value 0.63 found by

Zhang et al. (2003) for the 1999 Chi-Chi earthquake. The Dc/Dtot frequency-magnitude

distributions present two maxima. One maximum lays around 50% and the other at 100%.

Dc ' Dtot is found at the edges of the both asperity and fault.

The parametric study helped us to reject or adopt some values of the free parame-

ters of the k-squared model, taking into account the simple slip weakening friction law.

Particularly, rupture velocities close to the Rayleigh velocity vR lead to a worse linear

slip weakening fit (65% variance reduction for vr = vR) and large areas of both negative

strength excess and non-zero Tx. Thus we conclude that rupture velocities 0.9 vR to vR

are not suitable for the k-squared model with k-dependent rise time. Super shear rupture

velocities were not studied in this thesis. The constant rupture velocity in the k-squared

model seems to be the most problematic constraint. The phenomenon of constant rupture

velocity is not present even in simple forward dynamic problems of spontaneous rupture

propagation. However, a constant rupture velocity can be modeled by heterogeneous fric-

tional parameters (e.g., by the strength excess and breakdown stress drop distributions

obtained in our study). Nevertheless, a constant rupture velocity is very unlikely, and the

k-squared model should be refined in this sense to become more realistic.

Non-zero Tx vanishes with short maximum rise time (τmax = 0.5 s), however, stress

recovery after a pulse passage increases and Dc becomes closer to Dtot. On the other hand,

longer rise time (τmax = 2 s) leads to lower Dc, negligible stress recovery, but to larger areas

of non-zero Tx. Thus we conclude that the maximum rise time τmax = 1 s is optimal for

our fault dimensions and elastic parameters. It is necessary to extend the parametric study

to generalize this conclusion. Mai et al. (2005) found more probable ruptures nucleating

from regions close to asperities and not from zero slip areas. Our results partially agree
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with these findings. The nucleation point in the center of the fault (non-zero slip, asperity

border) leads to smallest non-zero Tx area, however, areas of non-zero Tx cover less than

5% of the fault for the two other positions of nucleation points (fault border - zero slip).

Thus, we do not prefer any position of the studied nucleation points. The area of non-zero

Tx is smallest for Hisada’s slip velocity function. Also Dc is shortest for Hisada’s SVF.

Hence, employing Hisada’s SVF is more consistent with applications of the slip weakening

law in earthquake source dynamics than boxcar, Brune’s and Dirac’s SVF. We attribute it

to its similarity with the Kostrov function, which is an analytical solution of the forward

dynamic problem. We conclude that nine k-squared models with dynamic parameters

plotted in Fig. 3.16(a, b, g, h, k-o) can be explained by a dynamic model with the slip

weakening friction law. However, this should be proved with forward dynamic simulations

in the future. The parametric study should be also extended in the future to cover various

fault sizes, multiple asperities and different rake values.

We also analyzed the effect of filtering on the dynamic stress field of a kinematic source

model in both the space and time domains. Low-pass frequency filtering decreases the

values of the strength excess and increases the values of both Dc and stress delay Tx, while

the low-pass wavenumber filtering decreases the values of the fracture energy. We point

out the effect of spatial filtering influences the results considerably but has not yet been

studied sufficiently. The limited spatial resolution of kinematic source inversions could

smear numerous negative stress drop heterogeneities within the fault. These could play an

important role in forward dynamical simulations, since they act as barriers for the rupture.
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Chapter 4

Conclusions and Outlook

The main outcome of this work is the new approach for evaluation of synthetic kinematic

models from the viewpoint of the earthquake dynamics. It resulted in a (thoroughly proved)

finding that the k-squared slip model with k-dependent rise time (shortly k-squared model)

is basically not in contradiction to earthquake source dynamics. The k-squared model

was studied in terms of the slip weakening friction law - strength excess, dynamic stress

drop, breakdown stress drop, critical slip weakening distance Dc, fracture energy. Another

outreach of the work is the impact on the strong motion prediction. Indeed, a class of

k-squared models which are most consistent with the slip weakening friction law (Hisada’s

slip velocity function) was found. On the other hand, the models which violate the slip

weakening friction law considerably (rupture velocity close to Rayleigh speed) were found

too. Thus the analysis provided constraints on the k-squared models to be used in practice.

Further, the work contributes to general methodology of fault constitutive relations

estimations. A new parameter, the stress delay Tx, was introduced to map the fault points

where the peak stress precedes the rupture onset. A simple but original Dc estimation

method directly from the stress-slip curves was also presented. The effect of spatial filtering

was shown on various dynamic source parameters. The bimodal character of Dc/Dtot

frequency-magnitude distribution was found and discussed, but it remains for future study,

whether the same holds for kinematic models of real earthquakes.

The discrete wavenumber code (parallelized with OpenMP directives) for dynamic stress

calculations, developed in this thesis, can be utilized for a broader set of problems. It has
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been already applied in the work of Fischer & Horálek (2005) who studied dynamic stress

triggering of earthquakes during Western Bohemia seismic swarms. It could be also used

for tuning other, more general, numerical methods. The method of the calculation could be

easily extended to more general geometries, as the fundamentals of discrete wavenumber

method are presented in detail in the appendix of this thesis. For example, the dynamic

stress calculation could be in the future extended to account also for the presence of free

surface (homogeneous half-space).



Appendix A

Discrete Wavenumber Method

In this appendix, we explain the discrete wave number (DW) method in detail. Specifically,

DW method for evaluation of the stress change due to a dislocation on a planar fault.

Although, a number of papers exist on the general theme of DW (e.g., review paper by

Bouchon, 2003; and references therein), these contain only fragments of the derivations.

We point out, that results in this part are not original (except slight generalizations,

mentioned in the text), but provide a complete derivation. Let us define Fourier transforms

of functions of position f (x, y, z) and time g (t) as

f̂ (kx, ky, kz) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f (x, y, z) exp (ikxx+ ikyy + ikzz) dx dy dz, (A.1)

g (ω) =

∫ ∞

−∞
g (t) exp (−iωt) dt (A.2)

respectively and correspondent inverse Fourier transforms

f (x, y, z) =
1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f̂ (kx, ky, kz) exp (−ikxx− ikyy − ikzz) dkx dky dkz, (A.3)

g (t) =
1

2π

∫ ∞

−∞
g (ω) exp (iωt) dω (A.4)

where kx, ky, kz denote wavenumbers, ω denotes angular frequency. Consider a displace-

ment field u = u (x, y, z, t) satisfying the equation of motion and Hooke’s law in a homo-

geneous, unbounded, isotropic, elastic medium

ρü = f +∇ · τ (A.5)

τ = λ∇ · u I + µ
[
∇u+ (∇u)T

]
(A.6)
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where ρ is the density, f = f (x, y, z, t) is the body force, τ is stress tensor, I is the identity

matrix, µ and λ are the Lamé coefficients. If the body force a and initial values of u̇ and

u are expressed in terms of Helmholtz potentials A,B, C,D, E,F so that

f =∇A+∇×B, ∇ ·B = 0, (A.7)

u̇ =∇C +∇×D, ∇ ·D = 0, (A.8)

u =∇E +∇× F , ∇ · F = 0, (A.9)

then Lamé’s theorem (Aki & Richards, 1980) gives

u =∇φ+∇×ψ (A.10)

0 =∇ ·ψ (A.11)

φ̈ =
A

ρ
+ v2

P ∆φ, vP =

√
λ+ 2µ

ρ
(A.12)

ψ̈ =
B

ρ
+ v2

S∆ψ, vS =

√
µ

ρ
(A.13)

where vP is the P-wave velocity, vS is the S-wave velocity, φ and ψ are the Lamé potentials.

Thus the equation of motion (three partial differential equations) broke to a wave equation

(A.12) plus three wave equations (A.13) coupled with an equation (A.11). The Helmholtz

potentials A,B for the body force f can be found solving the vector Poisson equation for

an auxiliary function W (Aki & Richards, 1980)

∆W = f (A.14)

then

A =∇ ·W , (A.15)

B =−∇×W . (A.16)

A.1 A solution for a point force

Firstly, let us find the Lamé potentials for a unit point force at origin. Later, we will derive

potentials for a dislocation source from the point force solution. The answer to the point



A.1. A SOLUTION FOR A POINT FORCE 81

force problem is well known Stoke’s solution, however, we want it as a superposition of

plane waves. Such solution was found by Bouchon (1979). Here, we present a different

way of derivation. The first step is to find spectra of the body force potentials Â, B̂ for a

point source

f = exp (−iωt)δ (x, y, z) ez (A.17)

where δ (x, y, z) is the Dirac delta function, ez is a direction of z-axis. Putting (A.17) into

(A.14) and applying the Fourier transform (A.1) yields

Ŵx = Ŵy = 0, Ŵz (kx, ky, kz, t) =
exp (−iωt)
− |k|2

. (A.18)

Then from (A.15) and (A.16)

Â =
ikz exp (−iωt)

|k|2
, (A.19)

B̂x =
iky exp (−iωt)

|k|2
, B̂y =

ikx exp (−iωt)
− |k|2

, B̂z = 0. (A.20)

Applying the Fourier transforms (A.1) and (A.2) to (A.12) together with substitution from

(A.19) we obtain harmonic solution

φ̂z (kx, ky, kz, ω) exp (iωt) =
ikz exp (iωt)

ρ |k|2
(
v2

P |k|
2 − ω2

) . (A.21)

So the scalar Lamé potential for a unit point force applied at origin in the directions ez is

φz (x, y, z, t) =
exp (iωt)

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

ikz exp (−ikxx− ikyy − ikzz)

ρv2
P |k|

2
(
|k|2 − ω2

v2
P

) dkx dky dkz. (A.22)

φz is expressed in form of superpositions of planes waves. However, these plane waves have

arbitrary velocities. It is necessary to perform an integration over a wavenumber to get

the superposition of the plane waves which propagate in the medium with a given velocity

vP . We choose to integrate over kz without loss of generality. We apply residue theory to

evaluate the integral

I (ω, kx, ky, z) =

∫ ∞

−∞

kz exp (−ikzz)(
k2

x + k2
y + k2

z

) (
k2

x + k2
y + k2

z − ω2

v2
P

) dkz. (A.23)
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Figure A.1: Poles location and integration paths in the complex kz-plane for two frequencies
(ω0,ω1) and a small value of the artificial attenuation transcribed to an imaginary part ωI

of frequency. Short dashed curve (I) denote integration path in lower half-plane around -ν
pole and long dashed curve (II) denote integration path in upper half-plane around ν pole.

Let us extend kz to complex values and assume kx 6= 0 ∧ ky 6= 0, then the integrand in

(A.23) has poles at kz = ±ν, where

ν =

√
ω2

v2
P

− k2
x − k2

y, Im ν < 0. (A.24)

Consider integration paths depicted in Fig. A.1. The poles interfere with the integration

paths for k2
x + k2

y < ω2/v2
P . Hence, a small artificial attenuation is introduced by making

1/vP complex and the poles are shifted into fourth and second quadrant for ν and −ν

respectively, see Fig. A.1. Then for z > 0 we choose integration path (I), and (A.23) yields

I (ω, kx 6= 0 ∧ ky 6= 0, z > 0) = −2πiRes− = −πiv
2
P exp (−iνz)

ω2
(A.25)

where Res− is the residue in lower kz half-plane, thus for a pole kz = ν. Similarly, for

z < 0 we choose integration path (II), and (A.23) yields

I (ω, kx 6= 0 ∧ ky 6= 0, z < 0) = 2πiRes+ = πi
v2

P exp (iνz)

ω2
(A.26)
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where Res+ is the residue in upper kz half-plane, thus for a pole kz = −ν. Combining

results (A.25) and (A.26), we obtain

I (ω, kx 6= 0 ∧ ky 6= 0, z) = −sgn (z)πi
v2

P exp (−iν |z|)
ω2

. (A.27)

Now, let us assume kx = ky = 0, so

I (ω, kx = 0, ky = 0, z) =

∫ ∞

−∞

exp (−ikzz)

kz

(
k2

z − ω2

v2
P

) dkz (A.28)

which can be rewritten as

I (ω, kx = 0, ky = 0, z) =
v2

P

ω2

∫ ∞

−∞

kz exp (−ikzz)

k2
z − ν2

dkz −
v2

P

ω2

∫ ∞

−∞

exp (−ikzz)

kz

dkz. (A.29)

The first integral can be evaluated in the same way as for the previous case (kx 6= 0∧ky 6= 0)

and we read the Fourier transform of sgn(z) function in the integrand of the second integral,

so that

I (ω, kx = 0, ky = 0, z) = −sgn (z)πi
v2

P exp (−iν |z|)
ω2

+ sgn (z)πi
v2

P

ω2
. (A.30)

The first term in (A.30) is identical to (A.27). The second term appears only if kx = ky = 0

and as it is bounded. An equation∫ ∞

−∞

∫ ∞

−∞
I (ω, kx, ky, z) dkx dky = −

∫ ∞

−∞

∫ ∞

−∞
sgn (z)πi

v2
P exp (−iν |z|)

ω2
dkx dky (A.31)

holds in sense of L2 norm and (A.22) becomes

φz (x, y, z, t) =
sgn (z)

8π2ρω2

∫ ∞

−∞

∫ ∞

−∞
exp (iωt− ikxx− ikyy − iν |z|) dkx dky. (A.32)

Note the φz (x, y, z, t) is now expressed as a superposition of plane waves with vP phase

velocity, in other words, these plane waves satisfy wave equation (A.12) for A = 0. Here-

after, we omit the time factor exp (iωt) for a brevity. Analogically, we could obtain similar

expansions for ψz
x, ψ

z
y , ψ

z
z and also for point forces pointing in ex and ey directions. Thus

the Lamé potentials resulting from a unit point force applied at origin in the directions
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ex,ey,ez respectively are given by the expressions

φx (x, y, z, ω) =
1

8π2ω2ρ

∫ ∞

−∞

∫ ∞

−∞

kx

ν
exp (−ikxx− ikyy − iν |z|) dkxdky (A.33)

ψx
x (x, y, z, ω) = 0 (A.34)

ψx
y (x, y, z, ω) =

−sgn (z)

8π2ω2ρ

∫ ∞

−∞

∫ ∞

−∞
exp (−ikxx− ikyy − iγ |z|) dkxdky (A.35)

ψx
z (x, y, z, ω) =

1

8π2ω2ρ

∫ ∞

−∞

∫ ∞

−∞

ky

γ
exp (−ikxx− ikyy − iγ |z|) dkxdky (A.36)

φy (x, y, z, ω) =
1

8π2ω2ρ

∫ ∞

−∞

∫ ∞

−∞

ky

ν
exp (−ikxx− ikyy − iν |z|) dkxdky (A.37)

ψy
x (x, y, z, ω) =

sgn (z)

8π2ω2ρ

∫ ∞

−∞

∫ ∞

−∞
exp (−ikxx− ikyy − iγ |z|) dkxdky (A.38)

ψy
y (x, y, z, ω) = 0 (A.39)

ψy
z (x, y, z, ω) =

−1

8π2ω2ρ

∫ ∞

−∞

∫ ∞

−∞

kx

γ
exp (−ikxx− ikyy − iγ |z|) dkxdky (A.40)

φz (x, y, z, ω) =
sgn (z)

8π2ω2ρ

∫ ∞

−∞

∫ ∞

−∞
exp (−ikxx− ikyy − iν |z|) dkxdky (A.41)

ψz
x (x, y, z, ω) =

−1

8π2ω2ρ

∫ ∞

−∞

∫ ∞

−∞

ky

γ
exp (−ikxx− ikyy − iγ |z|) dkxdky (A.42)

ψz
y (x, y, z, ω) =

1

8π2ω2ρ

∫ ∞

−∞

∫ ∞

−∞

kx

γ
exp (−ikxx− ikyy − iγ |z|) dkxdky (A.43)

ψz
z (x, y, z, ω) = 0 (A.44)

where

γ =

√
ω2

v2
S

− k2
x − k2

y, Im γ < 0. (A.45)

Discretized expressions (A.33-A.44) were presented in Bouchon (1979).

A.2 A solution for a plane dislocation

Let us move to the dislocation source. Aki & Richards (1980) gives a representation of

the displacement field by displacement discontinuity along the surface and elastodynamic
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Green’s tensor (a displacement point force response). Such representation theorem can be

also formulated for the Lamé potentials, so that for a dislocation ∆u(x′, y′, ω) acting on a

fault plane Σ : z′ = 0 we get

φ (x, y, z, ω) =

∫
Σ

mαβ (x′, y′, ω)
∂φα (x− x′, y − y′, z − z′, ω)

∂β′
dΣ′ (A.46)

ψx (x, y, z, ω) =

∫
Σ

mαβ (x′, y′, ω)
∂ψα

x (x− x′, y − y′, z − z′, ω)

∂β′
dΣ′ (A.47)

ψy (x, y, z, ω) =

∫
Σ

mαβ (x′, y′, ω)
∂ψα

y (x− x′, y − y′, z − z′, ω)

∂β′
dΣ′ (A.48)

ψz (x, y, z, ω) =

∫
Σ

mαβ (x′, y′, ω)
∂ψα

z (x− x′, y − y′, z − z′, ω)

∂β′
dΣ′ (A.49)

with the so-called moment tensor density spectra

mαβ (x′, y′, ω) = λ∆uzδαβ + µ (∆uαδβ3 + ∆uβδα3) , (A.50)

where we sum over α and β, which take one of symbols x, y, z. Combining relations (A.33-

A.44) with relations (A.46-A.50) yields

φ (x, y, z, ω) =
i

8π2ω2ρ

∫
Σ

∫ ∞

−∞

∫ ∞

−∞

{
µ [2 sgn (z) kx∆ux + 2 sgn (z) ky∆uy + 2ν∆uz] +

λ
ω2

α2ν
∆uz

}
exp [−ikx (x− x′)− iky (y − y′)− iν |z|] dkxdkydΣ

′ (A.51)

ψx (x, y, z, ω) =
i

8π2ω2ρ

∫
Σ

∫ ∞

−∞

∫ ∞

−∞
µ

[
− kxky

γ
∆ux +

(
γ −

k2
y

γ

)
∆uy − 2 sgn (z) ky∆uz

]
exp [−ikx (x− x′)− iky (y − y′)− iγ |z|] dkxdkydΣ

′ (A.52)

ψy (x, y, z, ω) =
i

8π2ω2ρ

∫
Σ

∫ ∞

−∞

∫ ∞

−∞
µ

[(
k2

x

γ
− γ

)
∆ux +

kxky

γ
∆uy + 2 sgn (z) kx∆uz

]
exp [−ikx (x− x′)− iky (y − y′)− iγ |z|] dkxdkydΣ

′ (A.53)

ψz (x, y, z, ω) =
i

8π2ω2ρ

∫
Σ

∫ ∞

−∞

∫ ∞

−∞
µ [sgn (z) ky∆ux − sgn (z) kx∆uy]

exp [−ikx (x− x′)− iky (y − y′)− iγ |z|] dkxdkydΣ
′. (A.54)
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We denote the integrands as φ̃, ψ̃x, ψ̃y, ψ̃z respectively, then applying (A.10) results in

expressions for displacement

ũx (kx, ky, x, y, z, ω) =− ikxφ̃− ikyψ̃z + i sgn (z) γψ̃y (A.55)

ũy (kx, ky, x, y, z, ω) =− ikyφ̃− i sgn (z) γψ̃x + ikxψ̃z (A.56)

ũy (kx, ky, x, y, z, ω) =− i sgn (z) νφ̃− ikyψ̃y + ikxψ̃x, (A.57)

and further applying (A.6) results in expressions for stress

τ̃xx (kx, ky, x, y, z, ω) = λ
ω2

α2
φ̃+ 2µ

[
−k2

xφ̃+ kxγ sgn (z) ψ̃y − kxkyψ̃z

]
(A.58)

τ̃xy (kx, ky, x, y, z, ω) = µ
[
−2kxkyφ̃− kxγ sgn (z) ψ̃x + kyγ sgn (z) ψ̃y +

(
k2

x − k2
y

)
ψ̃z

]
(A.59)

τ̃xz (kx, ky, x, y, z, ω) = µ
[
−2kxν sgn (z) φ̃+ kxkyψ̃x +

(
γ2 − k2

x

)
ψ̃y − kyγ sgn (z) ψ̃z

]
(A.60)

τ̃yy (kx, ky, x, y, z, ω) = λ
ω2

α2
φ̃+ 2µ

[
−k2

yφ̃− kyγ sgn (z) ψ̃x + kxkyψ̃z

]
(A.61)

τ̃yz (kx, ky, x, y, z, ω) = µ
[
−2kyν sgn (z) φ̃+

(
k2

y − γ2
)
ψ̃x − kxkyψ̃y + kxγ sgn (z) ψ̃z

]
(A.62)

τ̃zz (kx, ky, x, y, z, ω) = λ
ω2

α2
φ̃+ 2µ

[
−ν2φ̃+ kyγ sgn (z) ψ̃x − kxγ sgn (z) ψ̃y

]
. (A.63)

By substituting for the integrands φ̃, ψ̃x, ψ̃y, ψ̃z from (A.51-A.54) and omitting the factor

exp [−ikx (x− x′)− iky (y − y′)] we obtain τ̃x
αβ, τ̃ y

αβ, τ̃ z
αβ for unit dislocation in the directions

ex, ey, ez respectively:

τ̃x
xx (kx, ky, z, ω) =2µ2sgn (z)

[
−2k3

x exp (−iν |z|) +
(
k3

x − kxk
2
y − kxγ

2
)
exp (−iγ |z|)

]
+

2λµ sgn (z) kx
ω2

α2
exp (−iν |z|) (A.64)

τ̃ y
xx (kx, ky, z, ω) =4µ2sgn (z)

[
−k2

xky exp (−iν |z|) + k2
xky exp (−iγ |z|)

]
+

2λµ sgn (z) ky
ω2

α2
exp (−iν |z|) (A.65)

τ̃ z
xx (kx, ky, z, ω) =4µ2

[
−k2

xν exp (−iν |z|) + k2
xγ exp (−iγ |z|)

]
+(

−2λµk2
x

ω2

α2ν
+ 2λµν

ω2

α2
+ λ2 ω

4

α4ν

)
exp (−iν |z|) (A.66)



A.2. A SOLUTION FOR A PLANE DISLOCATION 87

τ̃x
xy (kx, ky, z, ω) =µ2sgn (z)

[
−4k2

xky exp (−iν |z|) +
(
−k3

y + 3k2
xky − kyγ

2
)
exp (−iγ |z|)

]
(A.67)

τ̃ y
xy (kx, ky, z, ω) =µ2sgn (z)

[
−4kxk

2
y exp (−iν |z|) +

(
−k3

x + 3kxk
2
y − kxγ

2
)
exp (−iγ |z|)

]
(A.68)

τ̃ z
xy (kx, ky, z, ω) =4µ2 [−kxkyν exp (−iν |z|) + kxkyγ exp (−iγ |z|)]−

2λµkxky
ω2

α2ν
exp (−iν |z|) (A.69)

τ̃x
xz (kx, ky, z, ω) =− µ2

γ

{
4k2

xνγ exp (−iν |z|) +
[
k2

yγ
2 + k2

xk
2
y +

(
γ2 − k2

x

)2
]
exp (−iγ |z|)

}
(A.70)

τ̃ y
xz (kx, ky, z, ω) =

µ2kxky

γ

[
−4νγ exp (−iν |z|) +

(
3γ2 − k2

x − k2
y

)
exp (−iγ |z|)

]
(A.71)

τ̃ z
xz (kx, ky, z, ω) =− 2µ2sgn (z)

[
2kxν

2 exp (−iν |z|) +
(
k3

x + kxk
2
y − γ2kx

)
exp (−iγ |z|)

]
−

2λµ sgn (z) kx
ω2

α2
exp (−iν |z|) (A.72)

τ̃x
yy (kx, ky, z, ω) =4µ2sgn (z)

[
−kxk

2
y exp (−iν |z|) + kxk

2
y exp (−iγ |z|)

]
+

2λµ sgn (z) kx
ω2

α2
exp (−iν |z|) (A.73)

τ̃ y
yy (kx, ky, z, ω) =2µ2sgn (z)

[
−2k3

y exp (−iν |z|) +
(
k3

y − k2
xky − kyγ

2
)
exp (−iγ |z|)

]
+

2λµ sgn (z) ky
ω2

α2
exp (−iν |z|) (A.74)

τ̃ z
yy (kx, ky, z, ω) =4µ2

[
−k2

yν exp (−iν |z|) + k2
yγ exp (−iγ |z|)

]
+(

−2λµk2
y

ω2

α2ν
+ 2λµν

ω2

α2
+ λ2 ω

4

α4ν

)
exp (−iν |z|) (A.75)

τ̃x
yz (kx, ky, z, ω) =

µ2kxky

γ

[
−4νγ exp (−iν |z|) +

(
3γ2 − k2

x − k2
y

)
exp (−iγ |z|)

]
(A.76)

τ̃ y
yz (kx, ky, z, ω) =− µ2

γ

{
4k2

yνγ exp (−iν |z|) +
[
k2

xγ
2 + k2

xk
2
y +

(
γ2 − k2

y

)2
]
exp (−iγ |z|)

}
(A.77)

τ̃ z
yz (kx, ky, z, ω) =− 2µ2sgn (z)

[
2kyν

2 exp (−iν |z|) +
(
k3

y + k2
xky − kyγ

2
)
exp (−iγ |z|)

]
−

2λµ sgn (z) ky
ω2

α2
exp (−iν |z|) (A.78)
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τ̃x
zz (kx, ky, z, ω) =− 2µ2sgn (z)

[
2kxν

2 exp (−iν |z|) +
(
k3

x + kxk
2
y − kxγ

2
)
exp (−iγ |z|)

]
+

2λµ sgn (z) kx
ω2

α2
exp (−iν |z|) (A.79)

τ̃ y
zz (kx, ky, z, ω) =− 2µ2sgn (z)

[
2kyν

2 exp (−iν |z|) +
(
k3

y + k2
xky − kyγ

2
)
exp (−iγ |z|)

]
+

2λµ sgn (z) ky
ω2

α2
exp (−iν |z|) (A.80)

τ̃ z
zz (kx, ky, z, ω) =− 4µ2

[
ν3 exp (−iν |z|) +

(
k2

xγ + k2
yγ

)
exp (−iγ |z|)

]
+

λ2 ω
4

α4ν
exp (−iν |z|) , (A.81)

so the stress change due to the dislocation ∆u(x′, y′, ω) acting on a fault plane Σ : z′ = 0

is

ταβ (x, y, z, ω) =
i

8π2ω2ρ

∫
Σ

∫ ∞

−∞

∫ ∞

−∞

(
τ̃x
αβ∆ux + τ̃ y

αβ∆uy + τ̃ z
αβ∆uz

)
exp [−ikx (x− x′)− iky (y − y′)] dkxdkydΣ

′. (A.82)

Formulas (A.64-A.81) are originally presented in this work.

A.3 Discretization of the spectra

Let us assume that the fault area is bounded. The response ταβ of a periodic fault repetition

in the plane z = 0 with period Lx in the x-direction and with period Ly in the y-direction

can be written as

ταβ (x, y, z, ω) =
i

8π2ω2ρ

∞∑
nx=−∞

∞∑
ny=−∞

∫
Σ

∫ ∞

−∞

∫ ∞

−∞

(
τ̃x
αβ∆ux + τ̃ y

αβ∆uy + τ̃ z
αβ∆uz

)
exp [−ikx (x− x′ − nxLx)− iky (y − y′ − nyLy)] dkxdkydΣ

′. (A.83)

We interchange the sums and the integrals, and since

∞∑
nx=−∞

exp (ikxnxLx) =
2π

Lx

∞∑
m=−∞

δ

(
kx −

2πm

Lx

)
(A.84)

∞∑
ny=−∞

exp (ikynyLy) =
2π

Ly

∞∑
n=−∞

δ

(
ky −

2πn

Ly

)
(A.85)
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where δ is the Dirac delta function, we obtain

ταβ (x, y, z, ω) =
i

2LxLyω2ρ

∫
Σ

∞∑
m=−∞

∞∑
n=−∞

(
τ̃x
αβ∆ux + τ̃ y

αβ∆uy + τ̃ z
αβ∆uz

)
exp

[
−i2πm

Lx

(x− x′)− i
2πn

Ly

(y − y′)

]
dΣ′. (A.86)

Thus the integrals over wavenumbers kx and ky with infinite limits change to sum with

discrete wavenumbers

kxm =
2πm

Lx

(A.87)

kyn =
2πn

Ly

, (A.88)

running from −∞ to ∞. Time domain solution can be obtained by inverse Fourier trans-

form (A.4), so

ταβ (x, y, z, t) =

∫ ∞

−∞

i

4πLxLyω2ρ

∫
Σ

∞∑
m=−∞

∞∑
n=−∞

(
τ̃x
αβ∆ux + τ̃ y

αβ∆uy + τ̃ z
αβ∆uz

)
exp [iωt− ikxm (x− x′)− ikyn (y − y′)] dΣ′dω. (A.89)

This is a time response of an infinite number of identical faults, equally distributed in the

plane z = 0 surrounded by an infinite medium. It is easy to isolate just the response of

a single fault for horizontal coordinates x, y within Lx, Ly spatial periods respectively.

We have to just assume that time evolution of the dislocation takes finite period, e.g,

(0, t′), and also 0 < t < t′′, where t′′ is the time of the first disturbance arrival from the

neighboring faults. Following inequalities hold for rectangular faults:

min


√(

Lx − L
2

)2
+ z2

vP

,

√(
Ly − W

2

)2
+ z2

vP

 ≥ t′′ ≥

min


√

(Lx − L)2 + z2

vP

,

√
(Ly −W )2 + z2

vP

 . (A.90)

An exact value of t′′ depends on a one or several nucleation points positions (if the ruptures

does not start from single point). The inverse Fourier transform is usually evaluated also by
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the discrete Fourier transform. Similarly to introduction of spatial periodicity, we consider

dislocation process repeats again and again on each fault with frequency 1/T , hence (A.89)

becomes

ταβ (x, y, z, t) =
∞∑

j=−∞

i

2TLxLyω2
jρ

∫
Σ

∞∑
m=−∞

∞∑
n=−∞

(
τ̃x
αβ∆ux + τ̃ y

αβ∆uy + τ̃ z
αβ∆uz

)
exp [iωjt− ikxm (x− x′)− ikyn (y − y′)] dΣ′. (A.91)

where

ωj =
2πj

T
. (A.92)

However, it is not straightforward to isolate the response of a single fault, as we deal with

the response of an infinite number of the faults and the response of the neighboring faults

is aliased into the time interval of the interest. Aki & Larner (1970) solved this problem

by performing the Fourier expansion in the complex frequency ω̃ domain:

g (ω̃j) =
1

T

∫ T

0

g (t) exp
(
−iωR

j t+ ωIt
)
dt (A.93)

g (t) = exp
(
−ωIt

) ∞∑
j=−∞

g (ω̃j) exp
(
iωR

j t
)

(A.94)

where ω̃j = ωR
j + i ωI , ωI < 0 is the constant imaginary part of the complex frequency and

is chosen such that

exp
(
ωIT

)
� 1. (A.95)

Thus the response generated in the time interval [−T, 0] is attenuated by exp
(
ωIT

)
, the

response generated in the time interval [−2T,−T ] is attenuated by exp
(
2ωIT

)
, and so on.

The responses generated in the time interval [0, T ] are not affected by ωI at all. Hence

we have to assume just times 0 < t < t′′, where t′′ is the time of the first disturbance

arrival from the neighboring faults. The results should not depend on particular value of

ωI , Bouchon (2003) recommends ωI from interval [−π/T,−2π/T ], which should suppress

the responses from previous time periods sufficiently. If the spatial periods Lx, Ly are long,

we do not have to care much about the choice of ωI , as the geometrical spreading damps

the time responses from neighboring faults.
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A.4 Space-time discretization

We generally apply the method for the dislocation given numerically at discrete set of points

both in the space and time. Thus we have to calculate both the integral over the fault in

(A.92) and the discrete Fourier spectrum of ∆uζ with (A.93) numerically. We evaluate the

integral over the fault (A.92) applying extended trapezoidal rule, so the integration changes

just to the summation (assuming that dislocation vanishes at the border of the fault) with

element size of ∆x′∆y′ = (LW )/(NLNW ), where L is a length andW is a width of the fault.

The discrete Fourier spectrum of the dislocation integral is calculated by discrete Fourier

series introducing periodicity in the frequency domain with the period NT/T , where NT

is number of time samples with step ∆t = T/NT . Thus the summation over j in (A.92)

becomes finite. It is also reasonable to assume periodicity in the wavenumber domain

with the periods (2NM + 1)/Lx, (2NN + 1)/Ly respectively. This results in the spatial

discretization with ∆x = Lx/(2NM + 1), ∆y = Ly/(2NN + 1) steps, respectively. Thus

both the summations over m and n in (A.92) become finite. Then

ταβ (xp, yq, z, ts) =

NT−1∑
j=0

i

2NTLxLyω̃2
jρ

NL−1∑
k=0

NW−1∑
l=0

NM∑
m=−NM

NN∑
n=−NN

(
τ̃x
αβ∆ux + τ̃ y

αβ∆uy + τ̃ z
αβ∆uz

)
exp [iω̃jts − ikxm (xp − x′k)− ikyn (yq − y′l)] ∆x

′∆y′, (A.96)

where

∆ux (x′k, y
′
l, ω̃j) =

NT−1∑
s=0

∆ux (x′k, y
′
l, ts) exp

(
iω̃Its

)
exp

(
−iω̃R

j ts
)
, (A.97)

x′k = k∆x′, y′l = l∆y′, xp = p∆x, yq = q∆y, ts = s∆t. (A.98)

The truncation of the sum limits does not affect the results, if the periodic continuation

of the spectra (kx, ky, ω̃-domain) is done in the proper way, by careful utilization of the

sampling theorem. Particularly, the spectrum

τ̃αβ(kx, ky, ω̃j, z) =

NL−1∑
k=0

NW−1∑
l=0

i

ω̃2
j

(
τ̃x
αβ∆ux + τ̃ y

αβ∆uy + τ̃ z
αβ∆uz

)
exp (−ikxnx

′
k − ikymy

′
l) (A.99)
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has to vanish for increasing frequencies and wavenumbers. This requires appropriate

smoothness of the dislocation, what can be seen from (A.82). Extending the integration

over the fault to the whole plane z = 0 yields

ταβ (x, y, z, ω) =
i

8π2ω2ρ

∫ ∞

−∞

∫ ∞

−∞

(
τ̃x
αβ∆̃ux + τ̃ y

αβ∆̃uy + τ̃ z
αβ∆̃uz

)
exp (−ikxx− ikyy) dkxdky. (A.100)

where ∆̃uζ = ∆̃uζ(kx, ky, ω) is the Fourier spectrum of the dislocation ∆uζ , as the dis-

location is zero outside the fault area Σ. If we assume ∆x′ = ∆x, ∆y′ = ∆y and

∆uζ(xk, yl, ω̃j) = 0 for NL ≤ k ≤ 2MM + 1, NW ≤ l ≤ 2MN + 1, then (A.99) results

in

τ̃αβ(kx, ky, ω̃j, z) =
i∆x∆y

ω̃2
j

(
τ̃x
αβ∆̃ux + τ̃ y

αβ∆̃uy + τ̃ z
αβ∆̃uz

)
. (A.101)

Closer look at relations (A.64-A.81) suggests that τ̃ ζ
αβ are not functions from L2 space with

respect to kx, ky (see later Fig. A.2). Consequently, ∆̃uζ has to decrease rapidly enough

to suppress τ̃ ζ
αβ. In other words, ∆uζ has to be smooth enough. Now let us return to the

spatial discretization, both NM and NN have to be chosen such that τ̃αβ(kxm, kyn, ω̃j, z) is

effectively zero for m ≥ NM , n ≥ NN .

A.5 An implementation for the stress change along

the fault due to the shear dislocation

A stress change along the fault due to the shear dislocation (slip) is a case of our special

interest. The details of implementation come from private communication with Prof. Bou-

chon. Particularly, we want to evaluate traction, force per unit area acting on the fault,

at every point of the fault. We consider slip with only non-zero component ∆ux along

the fault. The normal traction change τzz is zero in this case, as the traction has to be

continuous across the fault and expression (A.79) for τ̃x
zz is an odd function of z. The shear
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traction change T t = (τxz, τyz) can be evaluated in following way

τxz (xp, yq, z = 0, ts) = exp
(
−ωIts

) NT−1∑
j=0

NL−1∑
k=0

NW−1∑
l=0

iµ2∆ux (x′k, y
′
l, ω̃j)

2NT (2NM + 1) (2NN + 1) ρω̃2
j

NM∑
m=−NM

NN∑
n=−NN

Ajmn exp [iω̃jts − ikxm (xp − x′k)− ikyn (yq − y′l)] ,

(A.102)

τyz (x, y, z = 0, ts) = exp
(
−ωIts

) NT−1∑
j=1

NL−1∑
k=0

NW−1∑
l=0

iµ2∆ux (x′k, y
′
l, ω̃j)

2NT (2NM + 1) (2NN + 1) ρω̃2
j

NM∑
m=−NM

NN∑
n=−NN

Bjmn exp [iω̃jts − ikxm (xp − x′k)− ikyn (yq − y′l)] ,

(A.103)

with

Ajmn := τ̃x
xz (kxm, kyn, z = 0, ω̃j) =

= − 1

γjmn

[
4k2

xmνjmnγjmn + k2
xmk

2
yn + k2

ynγ
2
jmn +

(
γ2

jmn − k2
yn

)2
]
, (A.104)

Bjmn := τ̃x
yz (kxm, kyn, z = 0, ω̃j) =

=
kxmkyn

γjmn

[
−4νjmnγjmn + 3γ2

jmn − k2
xm − k2

yn

]
, (A.105)

νjmn =

√
ω̃2

j

v2
P

− k2
xm − k2

yn, Im νjmn < 0, (A.106)

γjmn =

√
ω̃2

j

v2
S

− k2
xm − k2

yn, Im γjmn < 0, (A.107)

kxm =
2πm

Lx

, kyn =
2πn

Ly

, (A.108)

∆x′ = ∆x = Lx/(2NM + 1), ∆y′ = ∆y = Ly/(2NN + 1) (A.109)

xp = p∆x, p = 0 . . . NL − 1 (A.110)

yq = q∆x, q = 0 . . . NW − 1 (A.111)

x′k = k∆x, k = 0 . . . NL − 1 (A.112)

y′l = l∆x, l = 0 . . . NW − 1 (A.113)

These expressions were first presented by Bouchon (1997). An example of both |Ajmn|

and |Bjmn| is plotted in Fig. A.2. Hereafter, we hold z = 0 and we do not write it to the
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arguments for a brevity. Both the expressions (A.102) and (A.103) form convolution in

spatial domain. This convolution can be evaluated either in the spectral or spatial domain.

Both length L and width W of the fault have to be smaller than spatial periods Lx and Ly

respectively, to provide sufficient t′′. Thus, NL is several times smaller than 2NM + 1 and

NW is several times smaller than 2NN +1, so that evaluation of the slip spectrum by the fast

Fourier transform (FFT) would require substantial zero padding. Moreover, subsequent

inverse Fourier transform over discrete wavenumbers, carried out by FFT, would lead to

many useless operations, getting the results for points out of our interest (the points out

of the fault, where the aliased response of multiple faults is assumed). Thus we implement

the convolution directly in the spatial domain. Assuming NM=NN and taking into the

account properties Ajmn = Aj(−m)n = Ajm(−n) and Bjmn = −Bj(−m)n = −Bjm(−n), it is

possible to reduce summations over wavenumbers, so (A.102) and (A.103) become in the

frequency domain

τxz (xp, yq, ω̃j) =

NL−1∑
k=0

NW−1∑
l=0

iµ2∆u (x′k, y
′
l, ω̃j)

2T (2NM + 1)2 ρω̃2
j

NM∑
m=1

NM∑
n=1[

2Ajmn cos
2πm (p− k)

2M + 1
cos

2πn (q − l)

2M + 1
+

Ajm0 cos
2πm (p− k)

2M + 1
+ Aj0n cos

2πn (q − l)

2M + 1
+ Aj00

]
, (A.114)

τyz (xp, yq, ω̃j) =

NL−1∑
k=0

NW−1∑
l=0

iµ2∆u (x′k, y
′
l, ω̃j)

2T (2NM + 1)2 ρω̃2
j

NM∑
m=1

NM∑
n=1

− 2Bjmn sin
2πm (p− k)

2M + 1
sin

2πn (q − l)

2M + 1
. (A.115)

These expressions can be rewritten in the following way,

τxz (xp, yq, ω̃j) =

NL−1∑
k=0

NW−1∑
l=0

iµ2∆u (x′k, y
′
l, ω̃j)

2T (2NM + 1)2 ρω̃2
j

Cj(p−k)(q−l), (A.116)

τyz (xp, yq, ω̃j) =

NL−1∑
k=0

NW−1∑
l=0

iµ2∆u (x′k, y
′
l, ω̃j)

2T (2NM + 1)2 ρω̃2
j

Dj(p−k)(q−l) (A.117)
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Figure A.2: An example of a) |Ajmn| = |τ̃x
xz (kxm, kyn, z = 0, ω̃j) | and b) |Bjmn| =∣∣τ̃x

yz (kxm, kyn, z = 0, ω̃j)
∣∣ for 8 frequencies. The amplitude spectra grow with increasing

kx and ky.

with

Cjuv =

NM∑
m=1

NM∑
n=1

(
2Ajmn cos

2πmu

2M + 1
cos

2πnv

2M + 1
+

Ajm0 cos
2πmu

2M + 1
+ Aj0n cos

2πnv

2M + 1
+ Aj00

)
, (A.118)

Djuv =

NM∑
m=1

NM∑
n=1

−2Bjmn sin
2πmu

2M + 1
sin

2πnv

2M + 1
(A.119)

where

u =−NL + 1 . . . NL − 1, (A.120)

v =−NW + 1 . . . NW − 1. (A.121)
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Hence expressions (A.102) and (A.103) can be evaluated as

τxz (xp, yq, ω̃j) =

NL−1∑
k=0

NW−1∑
l=0

iµ2∆u (x′k, y
′
l, ω̃j)

2T (2M + 1)2 ρω̃2
j

Cj|p−k||q−l|, (A.122)

τyz (xp, yq, ω̃j) =

NL−1∑
k=0

NW−1∑
l=0

iµ2∆u (x′k, y
′
l, ω̃j)

2T (2M + 1)2 ρω̃2
j

sgn (p− k) sgn (q − l)Dj|p−k||q−l|, (A.123)

τxz (xp, yq, ts) = exp
(
−ωIts

) NT−1∑
j=0

τxz (xp, yq, ω̃j) exp (iω̃jts), (A.124)

τyz (xp, yq, ts) = exp
(
−ωIts

) NT−1∑
j=0

τyz (xp, yq, ω̃j) exp (iω̃jts). (A.125)

Since both slip and stress time histories have non-zero static parts, we cannot simply

apply FFT, as it would lead to alias effect in the time domain. Thus it is convenient

to work with slip velocity functions, getting stress rates, which are to be integrated in

the time domain to stress time histories. Hence we can perform frequency filtering easily

and apply FFT algorithm for the inverse Fourier transform. The algorithm is then very

simple1: i) We calculate (A.97) the Fourier transform of the slip velocity function applying

1D FFT. ii) We fix the frequency and calculate (A.104-A.108) respectively for all m, n.

iii) We perform summation over wavenumbers (A.118-A.119) for all u = 0 . . . NL − 1,

v = 0 . . . NW − 1. iv) We evaluate the convolution with the slip velocity distribution at

given frequency (A.122-A.123). Further, we repeat steps ii)-iv) for different frequencies.

At the end we perform inverse Fourier transforms (A.124-A.125) for each point along

the fault and integrate resulting stress rates to stress time histories adopting extended

trapezoidal rule. Loop over frequencies is parallelized using OpenMP directives. In fact,

the parallelization is very effective in this case, as the calculation for one frequency is

completely independent from others.

1The all referred expressions are written for stress and slip functions. Equivalently, these expressions
are also valid substituting first and latter for stress and slip rates, respectively.
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