
Evaluation of the Doctoral Thesis entitled 'Covariance estimation for filtering in 
high dimensions' by Mgr. Marie Turcicova. 

 
 The thesis focuses on estimating covariance matrices from small ensembles. It consists of an 
introductory chapter on covariance operators and an overview chapter on existing methods for 
covariance estimation in high dimensions. This is followed by 3 chapters on maximum likelihood 
estimators, score matching estimators, and M-estimators containing many new results. Chapter 6 
provides an introduction to Stochastic Ensemble Kalman filters (SEnKF), and chapter 7 uses the 
results from chapters 3,4 and 5 to develop new filtering algorithms that are tested in numerical 
experiments and their performance compared to the SEnKF and its diagonal variant. 
 The thesis is well-written and the logical development of ideas is well laid out. It was a joy to 
read. Below the different chapters are evaluated, and some discussion points raised. 
 
 Chapter 1 defines the covariance operator and its connection with covariance matrices in 
finite-dimensional spaces. It further introduces the idea of transforming a covariance matrix to a 
(near) diagonal form to reduce the estimation burden in the transformed space. Chapter 2 contains 
a very useful and clear overview of methods that generate full rank covariance matrices with 
minimal spurious correlations, including the tapering method via a Shur product which is most used 
in the geosciences. Then parametric methods are discussed, specifically regularization in the spectral 
and inverse.  
 For Maximum Likelihood Estimators (MLE), Chapter 3 contains a very elegant proof that a 
minimum parameter set gives a lower asymptotic posterior error covariance than any larger 
parameter set. Asymptotic analytical solutions are provided for several settings where the to-be-
estimated covariance matrix is diagonal, after a Fourier transformation. Simple numerical 
experiments are provided that illustrate the accuracy of the theory, even for ensemble sizes that are 
much smaller than the size of the system. Furthermore, experiments with a non-diagonal covariance 
matrix also showed the superiority of using all prior knowledge on the covariance structure. 
 Unfortunately, in practice we will seldom know details of the structure of the covariance 
matrix, and the size of the minimal parameter set is unknown. I would love to discuss this with the 
candidate as it would be interesting to see what happens if the parameter set is chosen too low, or, 
more importantly, how one would determine the minimal parameter set, given a finite ensemble 
size. 
 Score matching estimators (SME) are introduced in chapter 4. Their introduction to 
covariance estimation in data assimilation is brilliant as it does provide closed-form expressions for 
the estimators where MLE does not. After a much-appreciated thorough introduction, a small 
Lemma (7) is provided and proven which states that if an N-sample operator converges for N to 
infinity to an operator that has an inverse, than the inverse of the N-sample operator exists with 
probability 1 for N to infinity. This result will be quite useful for later developments.  
 This chapter also proves continuity of the Score matching Estimator with respect to random 
perturbations from the exponential family, a crucial result for application to data assimilation. A 
main result is the closed-form expression for the SME for the parameters in a linear model of the 
precision matrix.  Furthermore, for Gaussian Markov random fields this SME is proven to be 
consistent. These results hold when the matrix formed by elements tr(SAkAj), where S is the sample 
covariance and Ai are the design matrices for the linear model for the precision matrix, is invertible. 
It is very useful that a simple to apply condition for this invertibility is given: the Ai have to be linearly 
independent.  
 A question came up while studying this chapter. MLE can be considered the mode of the 
posterior pdf on theta using a flat prior. Can the SME also be connected to Bayes Theorem, and if so, 
how? A bit more discussion on the fact that while the MLE and SME result in similar precision 
matrices, the corresponding covariance matrices can be quite different. For instance, in Fig 4.8 on 



page 61 MLE does not have negative values, while SME does have negative off diagonal elements. It 
would great to discuss this further with the candidate. 
 Chapter 5 discusses the asymptotic variance of M-estimators, of which both MLE and SME 
are examples. This chapter nicely generalizes the nested results from chapter 3.  
 The standard Stochastic Ensemble Kalman Filter is introduced in Chapter 6. It uses the 
formulation that needs the full ensemble covariance matrix and does not discuss more recent 
algorithms in which this matrix is never formed by transforming the problem to ensemble space. The 
matrix to be inverted is of the size of the ensemble in these formulations. However, interestingly, 
removal of spurious correlations is still essential for accurate data assimilation. It would be 
interesting to discuss how these ideas connect to the developments in this thesis.  
 Chapter 7 develops three new ensemble Kalman filter algorithms based on the SME and 
applies them to two toy examples. The assumption is made that the model error covariance and the 
observation error covariance are diagonal, but I must confess I do not see why. That said, the 
methods are elegant, simple but efficient. One of them is based on Gaussian resampling, and a 
much-wanted proof of the consistency of this filter for linear model and observation operator is 
provided. The performance of two methods is tested and is remarkable (the third is only of use for 
small dimensional models with fixed design matrices for the precision matrix). The so-called Score 
Matching Ensemble Filter (SMEF) even systematically outperforms the standard Stochastic Ensemble 
Kalman Filter, although a consistency proof could not be provided because Gaussianity is lost in this 
filter.  
 The numerical experiments could have been described in slightly more detail (How does the 
ensemble spread, crucial for useful weather forecasting, perform compared to the RMSE? How are 
the truth and the observations generated? Note that Lorenz 1996 is for mid-latitudes, not the 
equator.), but provide a valuable demonstration of the filters in action. It is found that the SMEF 
performs better than SMF-GR, and the explanation given is that the latter explicitly assumes 
Gaussian processes, while the system under study is non-Gaussian. However, no proof of the non-
Gaussianity is given and my guess is that the Gaussian assumption is not far off. This would point to 
a deeper reason, perhaps related to the performance discussed in chapter 4, which would be great 
to discuss further. 
 
 To conclude, this thesis is a very valuable addition to existing knowledge, both on the 
fundamental mathematical side and for operational applications. It triggers further scientific 
discussion, which is exactly the way it should be. I expect that the material in this thesis can have 
serious impact in numerical weather prediction and similar fields because of 1) the thorough 
mathematical analysis of the consistency of the schemes, so that we understand their limitations 
and applicability, and 2) covariance estimation from small samples is a hot topic in operational 
weather prediction and related fields and will be so for some time in the future, and 3) the 
developed schemes are practical and can be implemented with minor modifications in real 
operational systems. 
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