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Abstract

In this thesis, we study a range of questions concerning submodels of models
of Peano arithmetic (PA) or its fragments. Our study focuses on three differ-
ent areas that share a common central topic, namely diagonally indiscernible
elements.

In the first part, we explore a diagonal version of the Infinite Ramsey The-
orem provable in PA and partially provable in fragments of PA. We provide
a detailed level-by-level analysis of the principle in terms of the arithmetical
hierarchy and the corresponding fragments of the schemes of induction and
collection. Then we derive a theorem characterizing Σn-elementary initial
segments of a given model that satisfy (fragments of) PA as cuts on certain
systems of diagonal indiscernibles.

In the second part, we study initial segments with some specific proper-
ties, and especially their distribution in a given countable model M |= PA.
We provide a theorem that gathers general topological consequences of the
method of indicators. We then extend the theorem with further results about
some prominent families of Σn-elementary initial segments (among others,
those satisfying PA or IΣn+k, and those isomorphic to M). For example, by
applying the results from the first part, we prove that every interval that
contains an Σn-elementary initial segment satisfying IΣn+k (or PA) contains
a closed subset of such initial segments that is order-isomorphic to the Can-
tor set. We conclude by proving some strict inclusions between the topological
closures of the studied families.

In the last part, we study the properties of the Stone space of the alge-
bra of definable subsets of a given countable model M |= PA. We present
the topic from a non-standard viewpoint, situating the countable base model
M into some ℵ1-saturated elementary extension C, under which ultrafilters
from the Stone space appear as sets of 1-indiscernible elements, called mon-
ads. Our main tool here is the Rudin-Keisler (RK) pre-order on monads. We
investigate monads of diagonally indiscernible elements and diagonal parti-
tion properties on monads. Among other results, we prove that RK-minimal
monads (which correspond to selective ultrafilters), p-monads (which corre-
spond to p-points), and regular monads, in this order, are properties of strictly
decreasing strengths. Furthermore, we show that the counter-examples (e.g.
p-points that are not RK-minimal) form dense subsets in the the correspond-
ing subspaces of the Stone space.
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the topic of the thesis and model theory in general, for his guidance, support,
and patience during the long years of my postgraduate study; Emil Jeřábek
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INTRODUCTION

The first-order theory of Peano arithmetic (PA) is attractive for many reasons:
it is probably the most direct formalization of our understanding of the con-
cept of natural numbers; it is a fundamental axiomatic system for arithmetic
and number theory; it interprets (and is interpreted in) the Finite Set Theory.
With all these features, it necessarily plays a central role in the study of the
foundations of mathematics.

Although the intended model for PA is N (the standard model),
Skolem [Sko34] in the 1930’s discovered that it is not (up to isomorphism) the
only model; at about the same time, Gödel proved his First Theorem [Göd31],
by which PA is incomplete and has no recursively axiomatized completion.
Gödel’s remarkable result has many notable consequences, namely that there
is no consistent decidable extension of Peano arithmetic (Church [Chu36]),
and that consistency of any reasonably rich axiomatic system cannot be
established within the very same system (Gödel’s Second Theorem). Ryll-
Nardzewski ([RN52]) showed that PA is not finitely axiomatizable, and Ra-
bin ([Rab61]) further strengthened this result by proving that PA cannot be
reformulated as an axiomatic system with a bounded quantifier complexity.

The existence of non-standard models of PA, implied by both Skolem’s
and Gödel’s results, attracted further attention: Tennenbaum [Ten59] proved
that non-standard models are not recursive, McDowell and Specker proved
that every countable non-standard model of Peano arithmetic has an elemen-
tary end-extension; it turned out that this property characterizes PA among
theories that include a certain weak fragment of PA, as follows from the re-
sults of Paris and Kirby [PK78]. Further characterizations of PA of this type
were later given by Kaye [Kay91a]. Other remarkable results were the theo-
rems of Gaifman and Friedman, formulated elsewhere in this thesis. Thanks
to work by Paris, Kirby, Clote, Kay, Dimitrocopulos, Slaman, and many oth-
ers, much is known about various fragments of PA and alternatives of the
induction scheme.

A substantial result was accomplished by Paris and Harrington [PH77],
who proved that besides the independent formulae obtained in the Gödel’s
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INTRODUCTION 2

First Theorem, which may not have a direct mathematical interpretation,
there are mathematically ‘interesting statements’, true in N, but unprovable
in PA. The statement, called Paris-Harrington principle (PH), is basically a
strengthening of the Finite Ramsey Theorem (FRT) (which is provable in PA).
FRT asserts that for given k,n, l there is a large-enough finite set u such that
for every k-coloring of all increasing n-tuples from u there is a subset v ⊆ u of
cardinality at least l such that all increasing n-tuples from v have the same
color. Then v is referred to as being homogeneous for the given coloring. Now,
PH is a similar statement with the additional requirement that v is relatively
large, i.e. |v| ≥ min(v). Paris and Harrington demonstrated that while the
principle is provable in PA for every k, l and every concrete numeral n, it is
unprovable when n is quantified in the theory.

Ramsey-like theorems are widely used in model theory for constructing
sets of indiscernible elements, i.e. such that no two increasing tuples of the
elements can be distinguished by a formula without parameters. The crucial
point in the Paris and Harrington’s unprovability result lies in the notion of
diagonally indiscernible elements which are one of the main themes of this
thesis. The notion comes probably from Harrington. X is a set of diago-
nally indiscernible elements if no two increasing tuples from X can be distin-
guished by a formula with parameters that are smaller than the minimum of
the tuples and separated from the tuples by an element from X .

Obtaining diagonally indiscernible elements from PH requires some effort
and cleverness. Kanamori and McAloon [KM87] found a principle, which pro-
duces sets of (almost) diagonally indiscernible elements in a more straight-
forward way.

In their usual form, the independence results take advantage of the full
induction scheme in PA, which makes PA quite a strong theory (once means
of coding are developed, theorems about finite sets are obtained as easily in
PA as in the Finite Set Theory). However, for fragments of PA, where the
induction is restricted to formulae of some bounded complexity, say Σn, the
situation becomes more intricate. In [Par80], Paris meticulously analyzed the
strength of PH restricted to (n+1)-tuples and showed how it relates to the in-
duction scheme for Σn formulae. Most of his arguments were model-theoretic;
proof-theoretic versions of his results and a similar analysis of the Infinite
Ramsey Theorem in arithmetic can be found in Hájek and Pudlák’s [HP93].

As Kanamori and McAloon noted in their paper, Paris’ detailed analy-
sis relating PH and fragments of PA can be translated for the Kanamori-
McAloon principle, too, but doing so requires clever and rather compli-
cated methods based on Mills’s analysis of arboreal combinatorial proper-
ties [Mil80].

In Section 2.1, we consider a combinatorial principle that, as we show,
can be viewed as the infinite version of the Kanamori-McAloon principle with
some further generalization. The principle is provable in PA in the same
sense in which the Infinite Ramsey Theorem is provable in PA. By following
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the example of [HP93], we are able to give a detailed level-by-level analysis
of the strength of the principle, avoiding complicated combinatorics. As an
immediate consequence of the results we get the existence of bounded and
unbounded systems of diagonally indiscernible elements in fragments of PA,
which we further exploit in Section 2.3.

The achievements of Paris and Harrington and the above-mentioned work
of Paris and Kirby introduced several other fruitful ideas, such as the method
of indicators, which we make use of in Chapter 3 of this thesis. Using their
and similar methods, Smoryński, Lessan, Wilkie, McAloon, Kotlarski, Mu-
rawski, and many others, presented various interesting results about initial
segments, cofinal extensions, and various other independent combinatorial
statements in PA.

One of the open problems about models of arithmetic concerns the order
of the set of initial segments satisfying PA. Given a countable model M |=PA,
let P0 be the family of all its initial segments that satisfy PA and let P0 be its
closure under unions and intersections of arbitrary subsystems. It is known,
and in fact easily proved, that P0 ordered by inclusion has the order type of
the Cantor set. But what is the order type of P0 itself? How does it relate to
P0 in topological terms (beside being a dense subset)? What types of initial
segments can we expect to find in P0 \P0? Are there any ‘interesting’ families
R 6=P0 of initial segments of M that are symbiotic with P0, i.e.R=P0? Similar
and various related questions were asked by Kotlarski in [Kot84b] with some
interesting partial results.

In Chapter 3, we provide some general answers to these questions for an
arbitrary family of initial segments of M that has an indicator in M. We then
look in more detail at some prominent families of Σn-elementary initial seg-
ments; we prove the considered families to be non-symbiotic and give some
further results about each of them. For example, by applying our results from
Chapter 2 about systems of diagonal indiscernibles, we learn that every inter-
val in the ordering of all initial segments of M that contains a Σn-elementary
initial segment satisfying IΣn+k includes a closed subset order-isomorphic to
the Cantor set of initial segments of the same kind.

This is an example of a theorem of a ‘one-means-many’ type, when the ex-
istence of one witness for some property implies the existence of some ‘large’
set of such witnesses. Theorems of this sort are quite common in the model
theory of PA, although they may sometimes differ in the definition of ‘many’
or ‘large’. Sometimes many in one sense may turn out to be not that many in
some other sense (for example, P0 is dense but meager in P0).

We see several examples of this type of theorems also in Chapter 4, where
we study the algebra of definable subsets of a given countable model M |=PA
and the associated Stone space. The topic relates to previous work, espe-
cially that of Kirby [Kir84] for models of fragments of the second-order arith-
metic and various mathematicians studying indiscernibility in the context of
Vopěnka’s Alternative Set Theory. The latter connection is more than appar-
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ent when we study the situation in an enlarged context of an ℵ1-saturated
elementary extension C of M; C has features of a ‘big model’, a tool widely
exploited in modern model theory. In this enlarged context, the studied ul-
trafilters can be identified with their non-empty intersections, called monads.
After developing the necessary tools such as Rudin-Keisler (RK) ordering, we
confront the properties of monads with properties of the corresponding initial
segments of M. Although this introductory part does not contain any partic-
ularly novel or surprising results, we develop a tool for obtaining results of
the ‘one-means-many’ type mentioned before.

The central and largely novel part of Chapter 4 is in Section 4.4, where
we return to the main theme of diagonally indiscernible elements, proving
several results about diagonal partition properties of monads. We also in-
troduce the notion of a p-monad and prove by counter-examples of the ‘one-
means-many’ type that this notion lies strictly between RK-minimality and
regularity.

The text of this thesis is accompanied by two appendices. In Appendix A
we reprove McDowell’s and Specker’s theorem by means of the combinatorial
principle from Section 2.1; the proof includes a ‘one-means-many’ addendum,
attributed to Gaifman. Appendix B, reproving certain results about strong
cuts, is intended to complement Chapter 4 and make it largely self-contained.



CHAPTER 1
PRELIMINARIES AND FACTS

This chapter introduces basic notions and notational conventions used in
this theses. In the last section of this chapter, we recall some useful facts
about models of Peano arithmetic so that we may refer to them later. A
reader familiar with the model theory of Peano arithmetic and its fragments
may skip this chapter and use it only as a reference. For the most part
our language and notation follows the mainstream publications in this area,
namely [Kay91b], [HP93], and [KS06].

1.1 Language and notation

We use df= to define the symbol on the left to be what is on the right; similarly
we use

df⇐⇒ in definitions of formulae. We reserve the letters ϕ,ψ,θ,ξ, . . .
for formulae, the letters x, y, z, . . . for first-order variables, and n,m,k, l for
natural numbers; in each case we allow subscripts or primes. For a language
L, Fm(L) denotes the set of all L-formulae.

The language of first-order arithmetic, denoted by LAr, is the first-order
language with the signature 〈0,S,+, ·,<,=〉.

For every natural n, we define

n df= S(. . . (S︸ ︷︷ ︸
n-times

(0)) . . .),

the n-th numeral; concrete numerals are written plainly, as 1,2,3, . . . , etc.
We use the following symbols for propositional connectives: → implica-

tion, ↔ equivalence, ∧ conjunction, ∨ disjunction. The symbol (∃!x) reads
‘there exists a unique x’. Formally, (∃!x1, . . . , xn)ϕ(x1, . . . , xn) abbreviates

(∃x1, . . . , xn)ϕ(x1, . . . , xn)∧
(∀y1, . . . , yn)(ϕ(y1, . . . , yn)→ (y1 = x1 ∧ . . .∧ yn = xn)).

5



1.2 ARITHMETIC HIERARCHY, INDUCTION, AND FURTHER SCHEMES 6

The symbol x̄ abbreviates the finite list x1, . . . , xn of variables or elements.
We use it in contexts where n—the length of the list—is known or not specifi-
cally important. Sometimes we write~x instead of x̄ to express the assumption
that the tuple x̄ is ordered increasingly with respect to <. The notation x̄ ∈ X
reads x1 ∈ X ∧ . . .∧ xn ∈ X ; similarly,~x ∈ X reads x1 < ·· · < xn ∧ x̄ ∈ X .

1.2 Arithmetic hierarchy, induction, and further
schemes

We write (∀x < t)ϕ and (∃x < t)ϕ to abbreviate the formulae (∀x)(x < y→ϕ)
and (∃x)(x < y∧ϕ), respectively, and it is assumed that x has no occurrence
in the term t.

1.2.1 Definition. Bounded formulae are formulae whose all quantifiers are
bounded, i.e. occur in a context that can be written as (∀x < y)ϕ or (∃x < y)ϕ,
where x and y are distinct variables. The class of all bounded formulae is
denoted by ∆0. The classes of LAr-formulae ∆n, Σn, and Πn are defined by
induction on n ∈ω as follows:

Σ0
df= Π0

df= ∆0 with ∆0 as defined above. A formula is Σn+1 if it is either
Πn or of the form (∃x̄)ϕ with ϕ ∈ Πn; a formula is Πn+1 if it is Σn or of the
form (∀x̄)ϕ with ϕ ∈ Σn. If Γ is a class of formulae (Σn or Πn) and T is an
LAr-theory, then ϕ is said to be Γ in T, briefly Γ(T), if T ` ϕ↔ψ for some Γ
formula ψ. Analogously is defined Γ(M) for a model M.

A formula ϕ is ∆n, respectively, if there are a Πn formula ψ and a Σn
formula θ such that ` ϕ↔ψ↔ θ. If the equivalence is provable in a theory
T, we say that ϕ is ∆n(T); similarly for a model. The hierarchy of formula
classes Σn,Πn,∆n for n ∈ω is called the arithmetic hierarchy.

Every first-order formula is equivalent in the predicate calculus to a for-
mula in the prenex normal form, thus every LAr-formula is either Πn or Σn
for some n ∈ω.

The basic arithmetic theory, denoted by PA−, is the LAr-theory of non-
negative parts of discretely ordered rings whose axioms are the universal clo-
sures of the following formulae (the given axiomatic system is not meant to
be minimal, but clear and easy to deal with):

Ax1: (x+ y)+ z = x+ (y+ z)
Ax2: x+ y= y+ x
Ax3: (x · y) · z = x · (y · z)
Ax4: x · y= y · x
Ax5: x · (y+ z)= x · y+ x · z
Ax6: x+0= x∧ x ·0= 0
Ax7: x ·S(0)= x
Ax8: x < y∧ y< z → x < z

Ax9: ¬x < x
Ax10: x < y∨ x = y∨ y< x
Ax11: x < y→ x+ z < y+ z
Ax12: (0< z∧ x < y)→ x · z < y · z
Ax13: x < y→ (∃z)(x+ z = y)
Ax14: 0< S(0)
Ax15: x > 0↔ (∃z)(x = S(z))
Ax16: 0≤ x
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If ϕ(x, ȳ) is an LAr-formula, the axiom of induction on x for ϕ(x, ȳ), written
as Ixϕ, is the sentence

Ax17: (∀p̄)[ϕ(0, p̄)∧ (∀x)(ϕ(x, p̄)→ϕ(S(x), p̄))→ (∀x)ϕ(x, p̄)]

Peano arithmetic, denoted by PA, is the first-order theory containing all
axioms of PA− together with axioms of induction for all LAr-formulae.

We shall often work with subtheories of PA that include only a limited
portion of the induction scheme. Specifically, if Γ (=Σn or Πn) is a class of LAr-
formulae, then IΓ will denote the theory containing all axioms of PA− and the
induction axiom Ixϕ for every ϕ ∈ Γ. We define I∆n as the theory extending
PA− with the scheme of axioms (∀x, ȳ)(ϕ↔ ¬ψ) → Ixϕ for all ϕ,ψ ∈ Σn (we
assume all free variables of ϕ,ψ are among x, ȳ).

Apart from induction, we also refer to the schemes defined below. Let Γ
be a class of LAr-formulae (namely Σn or Πn). We define:

• LΓ is the theory obtained by adding to PA− the least element axioms Lϕ
(we should write Lxϕ in fact) for all ϕ ∈Γ, where Lϕ is the sentence

(∀p̄)[(∃x)ϕ(x, p̄)→ (∃x0)(ϕ(x0, p̄)∧ (∀x < x0)¬ϕ(x, p̄))].

For a formula ϕ(x, p̄), the expression x0 = µx : ϕ(x, p̄) denotes the for-
mula ϕ(x0, p̄)∧(∀x < x0)¬ϕ(x, p̄) which reads ‘x0 is the least x such that
ϕ(x, p̄)’.

• L∆n denotes the theory obtained by adding to PA− the scheme of axioms
(∀x̄)(ϕ↔¬ψ) → Lϕ for all ϕ,ψ ∈Σn (assuming all free variables of ϕ,ψ
are among x̄).

• BΓ is obtained by adding to IΣ0 the collection axioms Bϕ for all ϕ ∈ Γ,
where Bϕ is the sentence

(∀p̄)(∀x0)[(∀x < x0)(∃y)ϕ(x, y, p̄)→ (∃y0)(∀x < x0)(∃y< y0)ϕ(x, y, p̄)].

• Colln is obtained by adding to PA− the formula Bϕ for every ϕ ∈Σn.

• SΓ is obtained by adding to IΣ0 the strong collection axioms Sϕ for all
ϕ ∈Γ, where Sϕ is the sentence

(∀p̄)(∀x0)(∃y0)(∀x < x0)[(∃y)ϕ(x, y, p̄)→ (∃y< y0)ϕ(x, y, p̄)].

1.2.2 Fact. Σn(Colln), Πn(Colln), and ∆n(Colln) are closed under bounded
quantification for all n ∈ω. More specifically, if ϕ(x, ȳ) is a Σn formula, ψ(x, ȳ)
a Πn formula, and t( ȳ) an LAr-term, then the formulae (∀x < t( ȳ))ϕ(x, ȳ) and
(∀x < t( ȳ))ψ(x, ȳ) are Σn(Colln) and Πn(Colln) respectively. 2



1.3 MODEL-THEORETIC NOTATION AND TERMINOLOGY 8

1.2.3 Fact. The following relations between arithmetic schemes are provable
in IΣ0:

IΣn+1 ⇔LΣn+1 ⇔SΠn

⇓
BΣn+1 ⇔BΠn ⇔L∆n+1 ⇒ I∆n+1

⇓
IΣn ⇔ IΠn ⇔LΣn ⇔LΠn ⇔SΣn

(T ⇒ S denotes T ` S, and T ⇔ S denotes T ` S and S ` T; the vertical arrows
cannot be reverted).

Proof. Most implications are folklore; the proofs can be found in [Kay91b],
except for those concerning SΓ, for which the reader may refer to [HP93]. 2

1.2.4 Remark. Slaman [Sla04] proved recently I∆n+1+Exp⇒L∆n+1, where
Exp asserts that exponential is a total function.

1.3 Model-theoretic notation and terminology

We denote models of LAr theories by the letters A,B,C, . . . , M, N, . . .. If A is
a model, then the domain (universe) of A will also be denoted by A. Unless
stated otherwise, A ⊆ B (or A ⊂ B) means that A is a (proper) submodel of
B, rather than ‘the domain of A is a (proper) subset of the domain of B’. If
deleting or adding the symbols to the language or if the relaxed convention
identifying a model with its domain leads to confusion, we specify structures
by explicitly listing their domain and all their functions and relations, like
〈A,F1,F2, . . . ,R1,R2, . . .〉.

For an LAr-structure A, the symbols +A, ·A,<A, . . . denote the realizations
of LAr-symbols +, ·,<, . . . in A. However, if it cannot lead to a confusion, we
tend to drop the superscript. If A is a substructure of B, we use the same
set of symbols for realizations in A and B with the understanding that the
realizations in A are restrictions of those in B.

If ϕ(x1, . . . , xn) is a formula with all free variables among x1, . . . , xn and
a1, . . . ,an ∈ A, we write A |= ϕ(a1, . . . ,an), or briefly A |= ϕ(ā), asserting that
the formula ϕ is true in A when each variable xi is interpreted as ai. In this
notation we may sometimes mingle variables and elements of models in a
formula, as in A |= (∀y)ψ(y, ā) for ā ∈ A.

If A is an LAr-structure and X ⊆ A subset, then LAr
X denotes the language

obtained by extending LAr by a new constant for every element of X . We
naturally expand the model A to the language LAr

X by interpreting each of the
constants by the corresponding element. Unless a confusion may arise, we
denote the expanded model again by A.
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1.3.1 Definition. Let A,B be LAr-structures and I ⊆ A a subset.

a) B is a cofinal substructure of A (written as B ⊆cf A) if B is a substruc-
ture of A and for every a ∈ A, there exists b ∈ B such that a < b.

b) I is an initial segment of A if b < a implies b ∈ I for all a ∈ I. We use
this term also if A is only a model for the language 〈<〉.

c) I is a cut of A if it is an initial segment of A closed under the successor.
I is a proper cut of A if it is a cut and I 6= A.

d) I is an an initial substructure of A (written as I ⊆e A) if I is a cut
of A closed under addition and multiplication. (In particular, I is a
substructure of A).

e) If I is proper initial substructure of A (i.e. A 6= I ⊆e A, or shortly I ⊂e A),
we also say that A is an end-extension of I.

Remark. In some literature, the term cut is used for what we call an ini-
tial segment, in other for what we call an initial substructure. Our use of
the terms cut and initial segment is in agreement with the mainstream text-
books [Kay91b] and [KS06]. In [Kay91b], the definition of an initial segment
is given for models, but the term appears to be used in the context of our
definition. The term initial substructure is introduced to prevent a similar
confusion.

Every model A of basic arithmetic includes a unique initial substructure
isomorphic to the structure of natural numbers N. We will always identify
this unique initial substructure with N and assume N ⊆e A. (We use the
symbol N in the context of an LAr-structure and ω as the first non-zero limit
ordinal number; nevertheless, they are the same set).

1.3.2 Definition. Let A be an LAr-structure.

a) For an LAr-formula ϕ(x, ȳ) and parameters p̄ ∈ A, ϕ(A, p̄) denotes the
subset of A defined by ϕ over p̄, i.e.

ϕ(A, p̄) df= {a ∈ A | A |=ϕ(a, p̄)}.

b) If X ⊆ A is a subset and Γ a set of LAr-formulae, then DΓ(A, X ) denotes
the set of all Γ-definable subsets of A over parameters from X , i.e.

DΓ(A, X ) df= {ϕ(A, p̄) |ϕ ∈Γ, p̄ ∈ X }.

We denote DFm(LAr)(A, X ) by just D(A, X ).

c) An element a ∈ A is Γ-definable in A over X if {a} ∈ DΓ(A, X ), i.e. if
A |= (∃!x)ϕ(x, p̄)∧ϕ(a, p̄) for some ϕ(x, ȳ) ∈Γ and p̄ ∈ X .
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d) The symbol DfeΓ(A, X ) denotes the set of all Γ-definable elements in A
over X . We let Dfe(A, X ) df=DfeFm(LAr)(A, X ).

Note that D(A, X ) is a Boolean algebra of sets.

1.3.3 Definition. For LAr-structures A,B and an LAr-formula ϕ(x̄), A4ϕ B
denotes the fact that ‘A is ϕ-elementary substructure of B’, i.e. for all ā ∈ A,
A |=ϕ(ā) iff B |=ϕ(ā). For a set of LAr-formulae Γ, A4Γ B denotes that A4ϕ B
for every ϕ ∈ Γ; A 4n B is an abbreviation for A 4Σn B (which we read ‘A is
an n-elementary substructure of B’), and A4B for A4Fm(LAr) B (i.e. the usual
notion of ‘A being an elementary substructure of B’). We write A 4e

n B if
A4n B and A ⊆e B, and A4cf

n B if A4n B and A ⊆cf B, etc.

Clearly, if A 4 B, then D(A, A) and D(B, A) are isomorphic as Boolean
algebras.

1.4 Second-order arithmetic

We now briefly introduce the basic second-order systems for arithmetic.

1.4.1 Definition. The language LII of second-order arithmetic is obtained
by expanding the language LAr by a set of new variables (written in capital
letters) to represent sets and the symbol ∈ for set membership. Equality for
set is defined by extensionality. A structure for LII is a pair 〈N,X〉, where N
is an LAr-structure and X is the domain for the set variables, X ⊆ P(N). We
define Σ0

0 as the smallest class of formulae containing all open LII formulae
and closed under bounded quantification of the form (∃x < y) . . . and (∀x <
y) . . ., where x, y are distinct. Σ0

n and Π0
n formulae are defined just like Σn

and Πn but for the language LII. Formulae occurring on some level of this
hierarchy are called arithmetic LII-formulae (that is to say, arithmetic are
those LII formulae that do not quantifying over set variables).

If 〈N,X〉 is as above and Γ is a class of LII formulae, then ΓX denotes the
set of all subsets of N of the form

{x ∈ N | 〈N,X〉 |=ϕ(x,Y1, . . . ,Yk)},

with ϕ(x, X1, . . . , Xk) ∈ Γ and Y1, . . . ,Yk ∈ X. We put ∆0
nX

df= Σ0
nX∩Π0

nX as
usual. The Γ-comprehension is a scheme of axioms postulating that every Γ
formula defines some set, i.e. semantically, ΓX ⊆ X. (This semantic inter-
pretation justifies use of the term ∆0

n-comprehension, even though ∆0
n does

not directly correspond to a class of formulae.) ΓCA0 denotes the theory con-
sisting of first-order axioms of basic arithmetic PA−, the Γ-comprehension
scheme, and the following axiom of restricted induction:

(1.1) (∀X )[(0 ∈ X ∧ (∀x)(x ∈ X → x+1 ∈ X ))→ (∀x)x ∈ X ].
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ACA0 denotes ΓCA0 where Γ are all arithmetic LII-formulae, i.e. Γ=⋃
n∈ωΣ0

n.
The theories IΣ0

n and BΣ0
n are defined analogously to their LAr-counterparts

(allowing set parameters). By (1.1), Σ0
nCA0 implies IΣ0

n. In particular, if
〈N,X〉 |= ACA0, then N |=PA.

1.4.2 Proposition. Σ0
1CA0 implies ACA0.

Proof. Let n ≥ 1 and let N = 〈N,X〉 |= Σ0
nCA0. Then clearly N |= Π0

nCA0,
since X is closed under complement. Let ϕ be Π0

n. If Y = {a ∈ N | N |=
(∃y)ϕ(a, y, . . .)}, then Y ′ df= {b ∈ N | N |= ϕ((b)0, (b)1, . . .)} ∈ X by Π0

nCA0, so
Y = {a ∈ N |N |= (∃y)(y ∈ Y ∧ (y)0 = a)}. Thus Y ∈X by Σ0

1CA0. This proves
that N |=Σ0

n+1CA0. 2

Every LAr formula of the form ϕ(x, p̄) can also be viewed as a class (more
specifically, a class with parameters p̄) of all individuals x satisfying ϕ(x, p̄).
We often enforce such interpretation, by denoting the class by a new set vari-
able, say X , and writing X = {x |ϕ(x, p̄)}. Then ϕ is referred to as the defining
formula of the class X . All arithmetical LII formulae in the variable X then
translate to LAr formulae by replacing the atomic subformulae of the form
t ∈ X with ϕ(t, p̄). We say that a class is Σn, Πn,. . . etc., if its defining formula
is. When we quantify over classes, we usually quantify over the defining
formulae in metatheory. In 1.6 we introduce a method of quantifying over
classes of bounded complexity in sufficiently strong theories. We then refer
to such classes as sets.

For every first-order structure A |= LAr, there is the canonical expansion
of A into the second-order structure 〈A,D(A, A)〉, satisfying comprehension
scheme for arithmetical formulae. We usually exploit this and denote the
second-order structure just by A, writing A |= ϕ(Y1,Y2, . . .) for an arithmeti-
cal LII formula ϕ and Y1,Y2, . . . ∈ D(A, A). Sometimes we push this habit
even further, writing A |= ϕ(Y1,Y2, . . .) even if Y1,Y2, . . . are just arbitrary
subsets of A, not necessarily from D(A, A). Such notation just abbreviates
〈A, {Y1,Y2, . . .}〉 |=ϕ(Y1,Y2, . . .). We only use these conventions for arithmetical
formulae, so there is no real danger of confusion.

1.5 Coding and set-theoretic notation

It is well known that IΣ1 (as well some weaker theories) provides definable
coding of bounded sequences of individuals (see e.g. [HP93] for details).

To avoid the tedious details, we take for granted that the predicates and
functions described informally below have Σ1-definitions and that IΣ1 proves
all their usual properties:
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Seq(u)
df⇐⇒ ‘u codes a sequence’,

`(u) df= ‘the length of the sequence coded by u’,

Min(u) df= ‘the minimum of elements of the sequence u’,

Max(u) df= ‘the maximum of elements of the sequence u’,

(u)y
df= ‘the y+1-st element of the sequence coded by u’,

provided y< `(u) (otherwise we let (u)y
df= 0),

u`v df= ‘the code of the concatenation of the sequences coded
by u and v’,

‹x0, . . . , xn−1› df= ‘the code of the sequence x0, . . . , xn−1’,

x ε u
df⇐⇒ ‘x is an element of u’, formally (∃y< `(u))x = (u)y,

OSeq(u)
df⇐⇒ ‘u codes an increasing sequence’, formally

Seq(u)∧ (∀x < y< `(u))(u)x < (u)y.

We may further assume that all the functions above are in fact ∆1-definable.
The subsequent definitions are meaningful at least in the following con-

texts: X ,P,R,F are classes in some theory T ⊇ IΣ1, or X ,P,R,F are subsets
of some model A of IΣ1.

X is bounded, iff there is some x such that (∀y)(y ∈ X → y < x). It is
unbounded iff it is not bounded.

If our assumptions (e.g. induction) assure that X has a least element, we
denote the element by min(X ). If X has a greatest element, it is denoted by
max(X ).

X is said to be codable or coded, if there is an increasing sequence u that
enumerates all elements of X , i.e. if

OSeq(u)∧ [x ∈ X ↔ (∃y< `(u)) x = (u)y].

We the refer to u as the code of X and the length of `(u) also as the cardinality
of X , written as |X |.

In PA, a class is codable iff it is bounded; a subset Y ⊆ A of a model A |=PA
is codable (in A) iff it is bounded and definable.

In fragments of PA, the situation is more complicated. It is said that X
has the order-type of the universe if for each y there is an increasing sequence
u of length y that enumerates the first y elements of X (in such case we may
write |X | = ∞). Now, IΣ1 proves that if a class X has the order-type of the
universe, then X is unbounded. However, in general, IΣn is required to prove
that an unbounded Σn class has the order-type of the universe (cf. [HP93,
Chapter I, 3(c)]).

X is said to be relatively large, if it is either unbounded or min(X )≤ |X |.
We use Cantor’s pairing function for coding pairs:

(1.2) 〈x, y〉 df= (x+ y+1)(x+ y)
2

+ x.
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and define X ×Y df= {〈x, y〉 | x ∈ X ∧ y ∈Y }. For a pair u we denote 〈u〉0 and 〈u〉1
the elements such that p df= 〈〈u〉0,〈u〉1〉.

With pairing at hand, we may introduce common set-theoretic notions to
arithmetic in a natural way: A class R whose only elements are pairs is also
called a (binary) relation. The domain of a relation R is the class dom(R) df=
{x | (∃y)〈x, y〉 ∈ R}. The range of R is the class rng(R) df= {y | (∃x)〈x, y〉 ∈ R}. The
image of X in R is R′′X df= {y | (∃x ∈ X )〈x, y〉 ∈ R}. The class Rx

df= R[x] df= R′′{x}
is the extension of x in R. Other common set-theoretic notions and operations
translate naturally.

Let P be an equivalence relation. Then P[x] is the P-equivalence class
of x. We write x P y iff 〈x, y〉 ∈ P. The family of P-equivalence classes forms a
partition of dom(P). Since, conversely, every partition induces an equivalence
on its domain whose equivalence classes are the blocks of the partition, we
identify these two notions and represent partitions by the induced equiva-
lence relations.

Another common way to represent partitions is by functions. If F is a
function, then PF

df= {〈x, y〉 | F(x) = F(y)} is a partition of dom(F). Similarly, if
P is a partition, we may put FP (x) df= min(P[x]) for x ∈ dom(P); then F = PFP

and F(x)≤ x for all x ∈ dom(P).
Let P and FP be as above and let rng(FP ) be coded or of the order-type

of the universe. We then define ‖P‖ df= |rng(FP )| and let P(i)
df= P[x] if P[x] the

i-th block of P, i.e. if x satisfies |{y< x | y ∈ rng(FP )}| = i.
We say that Y ⊆ dom(P) is a choice set for a partition P, if x P y implies

x = y whenever x, y ∈Y ; Y is a total choice set if Y = dom(P). Clearly, rng(FP )
with FP defined as above is a total choice set for P.

Let 〈X 〉d denote the class of codes of all increasing sequences with ele-
ments in X , i.e. such that u ∈ 〈X 〉d iff OSeq(u)∧ (∀x)(x ε u → x ∈ X )∧`(u)= d.

Let P be a partition of 〈X 〉y for some y> 0. We say that Y ⊆ X is homoge-
neous for P, if 〈Y 〉y ⊆ P[z] for some z ∈ 〈X 〉y.

If 〈A,<A〉 is an ordered set and X ⊆ A, then sup≤A (X ) denotes the small-
est lower subset of 〈A,<A〉 that includes X and inf≤A (X ) denotes the largest
lower subset of 〈A,<A〉 disjoint from X ; that is:

sup≤A (X ) df= {a ∈ A | (∃b ∈ X )(a ≤A b)},

inf≤A (X ) df= {a ∈ A | (∀b ∈ X )(a <A b)}.

If Y ⊆ X ⊆ A and sup≤A (Y ) = sup≤A (X ), we say that Y is cofinal in X ; if
inf≤A (Y ) = inf≤A (X ), we say that Y is coinitial in X . When A is known from
the context, we abbreviate sup≤A (X ) and inf≤A (X ) as sup X and inf X , respec-
tively. We use (typographically distinct) symbols sup≤A X and inf≤A X to de-
note supremum and infimum of X in 〈A,≤A〉 in the usual sense. If X ,Y ⊆ A
are subsets of A, we write a <A X if a ∈ inf≤A (X ) and write X <A a if X ⊆ [0,a).
We write Y <A X if (∀a ∈Y )a <A X .
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The following notation is used for intervals: [x, y] df= {z | x ≤ z ≤ y}, [x, y) df=
{z | x ≤ z < y}, (x,→) df= {z | z > x}; intervals [x, y), (x, y), and [x,→) are defined
analogously.

1.6 Satisfaction and Σn-sets

We now only roughly introduce the concepts of Σn and Πn sets and their rel-
ativized counterparts. The details are tedious rather than particularly diffi-
cult. Hopefully, these things are generally well known; a reader unfamiliar
with formalization may refer e.g. to [HP93].

It is well known that IΣ1 (and also some weaker theories) can formal-
ize basic logical concepts, like terms, formulae, the language of arithmetic,
classes of Σn and Πn formulae, etc. and prove their basic properties; we refer
to these formalized concepts as formal.

For n ≥ 1, there are a ∆1(IΣ1) formula SatΣ0(x, y), a Πn formula SatΠn (x, y)
and a Σn formula SatΣn (x, y) formalizing in IΣ1 satisfaction for formal Σ0, Πn
and Σn formulae respectively, where x is the formula and y is a sequence
representing an evaluation of variables that covers all free variables in x.

In other words, if Γ is one of Σ0, Πn, or Σn for n ≥ 1, then IΣ1 proves:

SatΓ(x,u) ↔ ‘x is a Γ-formula whose all free variables are among
the first `(u) variables (in some fixed ordering of all formal vari-
ables v0,v1, . . .) and that satisfies Tarski’s truth conditions for the
evaluation assigning (u)i to the variable vi ’.

(Notions appearing within ‘. . . ’ are meant in the appropriate formalization;
this in particular applies the class of formulae Γ.) Moreover, for every (meta-
mathematical) Γ-formula ϕ, there is a natural number pϕq called the Gödel
number of ϕ such that

IΣ1 `ϕ(x̄)↔SatΓ(pϕ(v0)q, ‹x̄›).

This fact is often referred to as It’s snowing ↔ ‘it’s snowing’ lemma and says
that a sentence does not change its meaning when formalized.

This justifies the following definitions which will allow us to quantify over
(possibly infinite) Σn, Πn, and ∆n sets in IΣ1 using their codes:

1.6.1 Definition (IΣ1).
a) c is a (code of a) Σn set (n ≥ 0) if c is a formal Σn formula whose only

free variable is the 0-th formal variable v0.

b) x ∈Σn c if c is a Σn set and SatΣn (c, ‹x›).

c) Πn sets and the predicate ∈Πn (n ≥ 1) are defined analogously.
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d) For n ≥ 1, a ∆n set is a pair 〈c,d〉 where c is a Σn set, d is a Πn set and
for all x, x ∈Σn c ↔ x ∈Πn d. We define x ∈∆n 〈c,d〉 as x ∈Σn c (which holds
iff x ∈Πn d).

Note that in IΣ1, being a Σn (or Πn) set is a ∆1 predicate, x ∈Σ0 c is ∆1,
x ∈Σn c for n ≥ 1 is Σn and x ∈Πn c for n ≥ 1 is Πn. The statement that e is a ∆n
set is Πn+1 in IΣ1 but the predicate x ∈∆n e is ∆n.

Instead of working with the codes explicitly, we shall normally use set
(i.e. 2nd order) variables X ,Y , . . . to denote Σn, Πn and ∆n sets and indicate
to which of the classes each set belongs. We then write ∈ instead of ∈Σn , ∈Πn ,
and ∈∆n .

We will also need relativized version of these concepts. This requires the
following definition:

1.6.2 Definition.
a) In IΣ1, we define a set X to be piecewise coded if for each u there is a

sequence s of 0’s and 1’s of length u such that (∀i < u)((s)i = 1↔ i ∈ X ).

b) If Y is a set variable, then Σn(Y ) denotes the set of all Σ0
n formulae that

do not contain other set variables than Y . We refer to formulae from
Σn(Y ) as Σn in Y .

1.6.3 Fact. There are formulae SatΣn(Y )(x, y,u) (n ≥ 0) such that IΣ1 proves
(all notions formal): ‘If y is a piecewise coded set, then SatΣn(Y ) obeys Tarski’s
truth conditions for Σn(Y ) formulae x if Y is interpreted by y’. Moreover,
SatΣn(Y ) is Σn(Y ) for n ≥ 1 and SatΣ0(Y ) is ∆1(Y ) in IΣ1 under the assumption
that ‘Y is piecewise-coded’.

The last sentence should be interpreted as follows: there are a Σ1(Y ) for-
mulae ϕ(Y , z̄),ψ(Y , z̄) such that

IΣ1 ` (∀x, y, z̄)(y is piecewise-coded→ (SatΣ0(Y )(x, y, ‹z̄›)↔ϕ(y, z̄)↔ψ(y, z̄)).

Under the assumption that X is piecewise coded we also have the corre-
sponding version of the It’s snowing ↔ ‘it’s snowing’ lemma.

The class of formulae Πn(Y ) (n > 1) and related notions are introduced
similarly. We further define:

1.6.4 Definition.
a) If H is a total ∆1 function, we further define ΣH

0 (X ) as a class of for-
mulae obtained from first-order atomic formulae and atomic formulae
of the form x ∈ X by bounded quantification of the forms (∀x ≤ y) and
(∀x ≤ H(y)).

b) A formula is Σ∗
0 (X ) if it is ΣH

0 (X ) for some total ∆1 function H.
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The corresponding SatΣH
0 ,X formula for ΣH

0 (X ) formulae is introduced as
before; under the assumption ‘Y is piecewise-coded’ it is ∆1(Y ) in IΣ1.

The satisfaction formulae allow us to define the notions of Σn(X ) (n ≥ 0),
Πn(X ) (n > 0), and Σ∗

0 (X ) sets and the corresponding membership relations,
as we did in Definition 1.6.1 for Σn and Πn sets. We refer to Σn(X ) sets as sets
Σn in X ; similarly for the other classes.

1.6.5 Definition. If each of Γ1,Γ1 is Σn (n ≥ 0), Πn (n > 0), ΣH
0 , then a set is

said to be Γ1(Γ2) if it is Γ1(X ) for some Γ2 set X .

To be able to quantify over Γ1(Γ2) sets in a theory T, we must ensure that
Γ2 sets are piecewise coded in T. For this, we have

1.6.6 Lemma. [HP93, Lemma I.2.63]
For n ≥ 0 (notions within ‘. . . ’ meant formally):

a) IΣn ` ‘each Σn set is piecewise coded’.

b) BΣn+1 ` ‘each ∆n+1 set is piecewise coded’.

c) IΣn ` ‘∆n total functions are closed under primitive recursion’. 2

1.7 Low sets and Low Basis Theorem

In Section 2.1, we rely on the following definitions and facts and on the Low
basis theorem, and its corollary; all details can be found in [HP93], which is
our fundamental reference on this topic:

1.7.1 Definition (Low sets). Let n ≥ 1.
a) We define X to be a low∆n+1 set if it is ∆n+1 and every Σ1(X ) set Y

is also ∆n+1. The definition is meaningful in BΣn+1, which has satisfaction
for Σ1(∆n+1) formulae; in particular, we may quantify over low∆n+1 sets in
BΣn+1.

b) Similarly, we define X to be a lowΣ∗
0 (Σn) set (or LLn set, briefly) if it

is Σ∗
0 (Σn) and every Σ1(X ) set Y is also Σ∗(Σn). The definition is meaningful

in IΣn, which has satisfaction for Σ∗
0 (Σn) formulae; in particular, we may

quantify over LLn sets in IΣn. C.f. [HP93, I.2.69,2.76, and 2.77] for details.

1.7.2 Fact. Let n ≥ 1. Then

a) BΣn proves: Σ∗
0 (∆n)⊆∆n (easy).

b) BΣn+1 proves: ∆1(low∆n+1)= low∆n+1 and Σ2(low∆n+1)=Σn+1
(cf. [HP93, I.2.71]).
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c) BΣn+1 proves induction (and, trivially, collection) for low∆n+1 formulae
(since BΣn+1 → I∆n+1 by 1.2.2).

d) IΣn proves: ∆1(LLn)= LLn and ∆n ⊆ LLn ⊆∆n+1
(cf. [HP93, I.2.79 and I.2.72]).

e) IΣn proves induction and collection for LLn formulae. 2

1.7.3 Definition. A tree is a set T of sequences that is closed under initial
subsequences, formally:

Tree(T)
df⇐⇒ (∀s ∈ T)Seq(s)∧ (∀s, t)(Seq(s)∧ s ⊆ t∧ t ∈ T → s ∈ T).

T is finitely branching if for each s ∈ T the set of all sequences t ∈ T such
that s ⊆ t and `(t) = `(s)+ 1 is bounded. T is Γ-estimated if there is a Γ-
definable function F such that (∀x)(∀s ∈ T)(`(s) = x → s ≤ F(x)). A subtree
B ⊆ T is a branch in T if it is linearly ordered by inclusion of sequences.

1.7.4 Theorem (Low basis theorem). IΣ1 ` ‘every unbounded ∆1 tree that
is ∆1-estimated has a lowΣ∗(Σ1) unbounded branch’.

Proof. See [HP93, I.3.8] or [HK89]. 2

1.7.5 Corollary. Let k ≥ 1.

a) IΣk+1 ` ‘every LLk unbounded finitely branching tree has an LLk+1 un-
bounded branch’.

b) BΣk+2 ` ‘every low∆k+1 unbounded finitely branching tree has a
low∆k+2 unbounded branch’.

Proof. Follows from 1.7.4 by relativization and 1.7.2. See [HP93, I.3.10]. 2

1.8 Useful facts

1.8.1 Fact (Pigeon-hole principle for finite sets).
IΣ1 proves that if |x| < |y|, then there is no injection of x to y. 2

The following two facts have elementary proofs.

1.8.2 Fact. Let Γ be a class of formulae and let I be a proper cut of M |=LΓ.

a) (Overspill) If M |=ϕ(a) for all a ∈ I, then there exists some b ∈ M\I such
that M |= (∀x < b)ϕ(x).

b) (Underspill) If M |= ϕ(a) for all a ∈ M \ I, then there exists some b ∈ I
such that M |= (∀x)(x > b →ϕ(a)). 2
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1.8.3 Fact. Let I ⊆e M |=LAr. Then I 40 M. If M |= IΣ0, then I |= IΣ0. 2

1.8.4 Fact. Let n ≥ 0, M |= IΣn and I ≺e
n M (i.e. I is a proper Σn-elementary

initial substructure of M). Then I |=BΣn+1.

Proof. First of all, I |= IΣ0 by Fact 1.8.3. Let a ∈ I and I |= (∀x < a)(∃y)ϕ(x, y)
with ϕ ∈Πn. If x < a and y ∈ I such that I |= ϕ(x, y), then x, y ∈ M and M |=
ϕ(x, y), by n-elementarity. Therefore M |= (∀x < a)(∃y < b)ϕ(x, y) for all b ∈
M \ I. By Fact 1.2.2, the last formula is Πn(Colln), so by underspill, it holds
also for some b ∈ I. If now x < a, y < b, and M |= ϕ(x, y), then x, y ∈ I and
I |=ϕ(x, y), by I 4n M. Thus I |= (∀x < a)(∃y< b)ϕ(x, y), as required. 2

1.8.5 Fact (MRDP Theorem). Every recursively enumerable set is Diophan-
tine, i.e. of the form {x̄ | (∃ ȳ)p(x̄, ȳ) = q(x̄, ȳ)} where p, q are multivariate poly-
nomials with natural number coefficients. 2

The theorem is a result of combined efforts of Robinson, Davis, Putnam,
and Matiyasevič; see e.g. [Dav73]. The proof can be carried out in IΣ0 +Exp
(c.f. [GD82]), which yields the following important corollary: every Σ1 formula
is equivalent to an ∃1 formula in IΣ0 +Exp (where ∃1 formulae are formulae
of the form (∃x̄)ϕ(x̄) with ϕ quantifier-free). In consequence, we obtain:

1.8.6 Corollary. If N, M are models of IΣ0 +Exp and M ⊆ N, then M40 N.

Proof. [Kay91b, pp. 88–89] 2

1.8.7 Fact (Gaifman).
a) Let M |=PA, M ⊆cf N |=PA− and M40 N. Then M4N |=PA.

b) (Splitting theorem:) If M ⊆ N are both models of PA, then for I df=
sup≤N (M), M ⊆cf I ⊆e N and M4 I |=PA.

Proof. See e.g. [Kay91b, pp. 87–89] for proof; in Example 2.3.8 on page 35 we
give an alternative proof that illustrates our results of Section 2.3. 2

The MRDP and Gaifman’s theorems tell us that as long as we are inter-
ested in submodels of a given M |= PA that satisfy PA, we may narrow our
concern to initial substructures. This does not mean, though, that we may
also narrow to one particular model M. Firstly, one model of PA does not
cover all non-isomorphic types: PA does not have the 0-joint embedding prop-
erty, i.e. there a two (countable) models of PA that have no common extension
satisfying PA [MS75]; similarly for fragments: [Ote92], [Ote93]. Secondly, no
model of PA has submodels for all possible complete extensions of PA:

1.8.8 Fact. For every model M |= PA, there is a model N |= PA such that no
submodel of M is elementary equivalent to N.
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Proof. Gaifman’s theorem allows us to restrict ourselves to initial substruc-
ture, since if N ≡ K ⊆cf I ⊆e M and N |=PA, then N ≡ I.

If T is a consistent theory, we say that formulae ϕ,ψ are mutually inde-
pendent over T iff each of T ∪ {ϕ,ψ}, T ∪ {¬ϕ,ψ}, T ∪ {ϕ,¬ψ}, T ∪ {¬ϕ,¬ψ} is a
consistent theory. The presented proof is based on the fact, shown below, that
there is a pair of mutually independent Π1 formulae over PA. The claim then
follows in this way: assume ϕ,ψ is such a pair. If M |=ϕ, then ϕ (being Π1), is
satisfied in all initial substructures of M. Thus any N |= PA∪ {¬ϕ} gives the
claim. The case of M |=ψ is analogous. Let, on the other hand, M |= ¬ϕ∧¬ψ.
Since ¬ϕ and ¬ψ are equivalent to some Σ1 formulae, we can find the least
w¬ϕ and w¬ψ ∈ M witnessing† ¬ϕ and ¬ψ in M, respectively. Assume for
example M |= w¬ϕ ≤ w¬ψ and let N |=PA∪{ϕ,¬ψ}. If N ≡ I ⊆e M, then I |= ¬ψ
and thus w¬ψ ∈ I, by I 40 M. Hence w¬ϕ ∈ I and I |= ¬ϕ, by I 40 M; this
contradicts I ≡ N.

It remains to find the mutually independent pair. This is analogous to
the proof of the independence of Rosser’s formula. The presented elementary
form of the proof was suggested by E. Jeřábek.

For a pair of Σ1 formulae ϕ,ψ of the form (∃x)ϕ′(x), (∃x)ψ′(x) with ϕ′,ψ′

bounded, we define the following Σ1 witness comparison sentence:

ϕ¿ψ
df⇐⇒ (∃x)(ϕ′(x)∧ (∀y< x)¬ψ′(y)).

Let pϕq denote the numeral of the code of a formula ϕ in the Gödel num-
bering and let Pr(x) be a Σ1 formula such that PA ` ϕ iff N |= Pr(pϕq). By a
variant of Gödel’s Diagonal lemma generalized for self-referential tuples of
formulae (see e.g. [Hec]), there are Σ1 sentences θi for i ∈ {1, . . . ,4} such that

(1.3) PA` θi ↔ (Pr(p¬θiq) ¿ ∨
j∈{1,...,4}

i 6= j

Pr(p¬θ jq) )

Clearly, PA` θi →¬θ j for all i 6= j, i, j ∈ {1, . . . ,4}. Let ϕ be the formula θ1∨θ2
and ψ the formula θ1 ∨ θ3. If PA∪ {ϕ,ψ} were inconsistent, then PA ` ¬θ1
(since θ1 → (ϕ∧ψ)). Similarly, possible inconsistencies of PA∪ {¬ϕ,ψ}, PA∪
{ϕ,¬ψ}, and PA∪ {¬ϕ,¬ψ} imply PA `¬θ3, PA `¬θ2, and PA `¬θ4, in order.
Thus, it suffices to prove PA 6` ¬θi for i ∈ {1, . . . ,4}.

Suppose PA ` ¬θi. In particular, N |= ¬θi and N |= Pr(p¬θiq). If there
are more such i’s, we take the one for which the witness of Pr(p¬θiq) in N is
minimal, i.e. such that N |= Pr(p¬θiq) ¿ Pr(p¬θ jq) whenever i 6= j ∈ {1, . . . ,4}.
Then N |= θi, by (1.3)—a contradiction. 2

1.8.9 Fact (Prime models). Let M |= PA, X ⊆ M. Then X ⊆ Dfe(M, X )4M.
In particular, Dfe(M, X ) |= PA. Moreover, every complete type p(x̄) over X in
M that is realized in Dfe(M, X ), is principal.

†w ∈ M witnesses ϕ in M iff ϕ is a sentence of the form (∃x)ψ(x) and M |=ψ(a).
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Consequently, if T is a complete extension of PA and M |= T, then KT
df=

Dfe(M,;) is a minimal model of T (has no proper elementary substructures)
and it is a prime model for T, i.e. for every N |= T, there is a unique elementary
embedding of KT into N (which sends KT onto Dfe(N,;)). 2

See e.g. [Kay91b, pp. 91-95] for proofs.

1.8.10 Definition. For a subset X ⊆ M and a set of LAr-formulae Γ, we let

IΓ(M; X ) df= sup≤M (DfeΓ(M; X ))

be the cut determined by the set of all Γ-definable elements of M over X .
We say that an element a ∈ M is Γ-minimal over X , if a = µx : ϕ(x, p̄) for

some ϕ ∈Γ, p̄ ∈ X .

For any n ≥ 0 and X ⊆ M |= PA, IΣn+1(M; X ) = I∆n+1(M; X ). The right-to-
left inclusion is trivial; conversely, if a ∈ IΣn+1(M; X ) is defined by a formula
(∃y)ϕ(x, y), where ϕ is Πn over X , then a ≤ b = µx : ϕ((x)0, (x)1), where b is a
Πn-minimal element of M over X , hence a ∆n+1-definable one. It also follows
that Πn-minimal elements of M over X are cofinal in IΣn+1(M; X ). It can be
shown that every Πn-minimal element of M over X is less than some ele-
ment from DfeΠn (M; X ), so we also have IΣn+1(M; X ) = IΠn (M; X ). Moreover,
DfeΣn (M; X ) is an initial substructure of DfeΠn (M; X ). Cf. [CFFMLM05].

The following well-known facts show among other things that the vertical
arrows in 1.2.3 cannot be reverted (see e.g. [Kay91b] for proofs):

1.8.11 Fact. Let M |= LAr and let I df= IΣn+1(M; X ) and K df= DfeΣn+1(M; X ) for a
subset X ⊆ M and n ≥ 0.

a) If M |= IΣn, then K 4n+1 M and I 4n M.

b) If M |= PA, X is finite, and K 6= N, then I |= BΣn+1, but I 6|= IΣn+1 and
K 6|=BΣn+1. In particular, I 64n+1 M.

c) If M |=BΣn+1, and ϕ(x̄) is Πn+2 and ā ∈ X, then M |=ϕ(ā) iff I |=ϕ(ā).

d) BΣn+1 is Πn+2-conservative over IΣn ‘that is, BΣn+1 and IΣn prove the
same Πn+2 sentences’. 2

1.8.12 Corollary (Ryll-Nardzewski [RN52], Rabin [Rab61]).
a) P has no finite axiomatization.

b) P is not implied by any consistent set of Σn sentences for any n ∈N.

Proof. a) follows from b) since every finite set of LAr-sentences in the prenex
form is a set of Σn sentences for some n. Now, let Γ be a consistent set of
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Σn-sentences, n ≥ 1, such that Γ implies PA; let M |= Γ be non-standard (Γ
has non-standard models by compactness). Let a ∈ M \N and I df= IΣn+1(M,a).
Then I 4n M, so I |=Γ and hence I |=PA. By 1.8.11, however, I 6|= IΣn+1. 2

1.8.13 Definition. Let M ⊆ N be models of LAr. We say that N is a conser-
vative extension of M if for any X ∈D(N, N), X ∩M ∈D(M, M).

Clearly, if N is a conservative extension of M |=PA, then M ⊆e N, since if
b ∈ N \ M, then Y df= {a ∈ M | N |= a < b} ∈D(M, M) and is unbounded in M, for
otherwise b =max(Y )+1 ∈ M, contradicting b ∉ M.

1.8.14 Theorem (McDowell, Specker, Gaifman). Every model of PA has a
proper conservative elementary extension of the same cardinality. Moreover, if
M |=PA is countable, there are 2ℵ0 pairwise non-isomorphic countable conser-
vative elementary extensions of M.

Proof. A full proof is given in Appendix A as an application of a diagonal
partition theorem discussed in Chapter 2. 2

In Chapter 4, when proving basic properties of the Rudin-Keisler order-
ing, we recall Katětov’s the lemma On Three Sets; for PA we prove it below.

1.8.15 Lemma. Let M |= PA, Y ⊆ M a subset and X ,F ∈ D(M,Y ), where F ⊆
X ×X is a partial function such that F(x) 6= x for every x ∈ dom(F). Then there
are X0, X1, X2 ∈D(M,Y ) such that F[X i]∩ X i =; for i ≤ 2.

Proof. For X bounded, the well-known proof by induction on |X | formalizes in
PA; here is a sketch: For |X | ≤ 2, the claim is trivial. Let |X | > 2 and assume
the claim holds for all X ′ ⊂ X . For some x ∈ X , |F−1[{x}]| ≤ 1 (F is a map). The
induction hypothesis applied on X ′ df= X \ {x} and F ′ df= F ∩ X ′ × X ′ produces
some X ′

i, i ≤ 2. Now, the set Z df= {F(x) }∪F−1[{x}] has at most two elements,
so for some j ≤ 2, Z∩ X ′

j =;; take the least such j and put X j
df= X ′

j ∪ {x} and

X i
df= X ′

i for i 6= j. Clearly F[X i]∩ X i =; for i ≤ 2 and
⋃

i≤2 X i = X .
We derive the unbounded case using McDowell-Specker’s Theorem 1.8.14.

We may assume Y = M (otherwise we replace M with M′ df=Dfe(M,Y ) and use
elementarity to translate between M′ and M). Let M ≺e N be conservative
and fix some c ∈ N \ M. For a formula ϕ ∈ Fm(LAr

M ) such that X = ϕ(M), let
X ′ df= [0, c]∩ϕ(N) ∈D(N, N); then X = X ′∩M. Now define F ′ from F similarly,
so that F ′�M = F. But X ′ is bounded in N, so by the previous part of the proof,
there are sets X ′

i ∈D(N, N), i ≤ 2 such that
⋃

i≤2 X ′
i = X ′ and N |= F ′[X ′

i]∩X i =
; for i ≤ 2. Since N is a conservative extension of M, there are X i ∈D(M, M),
i ≤ 2, such that X i = X ′

i ∩M. They have the required properties. 2



CHAPTER 2
DIAGONALLY INDISCERNIBLE

ELEMENTS

This chapter consists of three sections. In Section 2.1, we introduce and prove
an infinite combinatorial principle in arithmetic that is a diagonal version of
the Infinite Ramsey Theorem; the principle is tied closely to the notion of di-
agonally indiscernible elements. The results provide a detailed level-by-level
analysis of the principle in terms of the arithmetical hierarchy and schemes
of induction and collection. The proofs are based on the Low Basis Theorem
and follow closely the pattern of a similar analysis for the usual Infinite Ram-
sey Theorem given in [HP93, II.1]. The principle is first formulated for PA
in Theorem 2.1.2, which is in fact a corollary of the main results in Theo-
rems 2.1.5 and 2.1.6, where restricted versions of the principle are proved in
the theories IΣn and BΣn+1. By finely balancing restrictions of the principle
and the strengths of theories, we are able to derive further results, presented
in Section 2.3. We conclude the first section by reformulating the combina-
torial principle in terms of functions; in this light, the principle can be pre-
sented as an infinite version of the Kanamori-McAloon principle generalized
to h-regressive functions.

Section 2.2 is a brief survey of finite partition principles in arithmetic. An
iterated version of the Paris-Harrington principle is proved here using Theo-
rem 2.1.3 in preparation for Chapter 4, where it is used to prove the existence
of so-called Ramsey monads.

Section 2.3 provides a new theorem characterizing k-elementary cuts
satisfying (fragments of) PA as cuts on certain systems of diagonal indis-
cernibles.

Remark. All following results are formulated for (fragments of) PA in the
language LAr. In spite of that, the same results apply without modification
to any theory T ⊇ PA− in any language L that extends LAr by adding some

22
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recursive set of new predicate symbols, provided that T has the amount of
induction and collection for L-formulae as required by the assumptions of the
propositions.

2.1 Diagonal partition theorem in arithmetic

Ramsey-type theorems have been soon discovered to play an important role
in the model theory of Peano arithmetic because they relate to the strength of
the induction scheme. Many of the results in this area rely (often implicitly)
on the notion of diagonal indiscernibles (in some variants also called strong
indiscernibles). In this section, we present a form of the Infinite Ramsey the-
orem provable in PA (and partially in fragments) that explicates this notion.
We also demonstrate its relationship to the induction and collection schemes.

2.1.1 Definition.
a) For a ≥ 1, a diagonal partition of 〈X 〉a is a system D = {Dt}t∈X such

that each Dt is an equivalence on 〈X \ [0, t]〉a with a bounded number
of equivalence classes (‖Dt‖ < ∞). Formally, we represent the system
D by a relation D ⊆ X × (〈X 〉a ×〈X 〉a) and define for t ∈ X , Dt

df= D[t] =
{〈x, y〉 | 〈t,〈x, y〉〉 ∈ D}.

�
�
�
�
�
�
�
�
�
�
��

� ��� ��Q
Q
Q

Dt[x], t < x ∈ X

�� ��
�� ��� �

Dt

〈X \ [0, t]〉a

t X

b) We say that H ⊆ X is diagonally homogeneous for D (or simply D-
homogeneous) if for every t ∈ H, the set H \ [0, t] is homogeneous for
the equivalence Dt.

With this, we may formulate our basic theorem, which will be proved and
substantially refined in the course of this section.

2.1.2 Theorem (Infinite Diagonal Partition Theorem). For every n ≥ 1,
PA proves: Let D be a diagonal partition of 〈X 〉n with X unbounded. Then
there exists an unbounded class H ⊆ X diagonally homogeneous for D. (If the
classes D, X are defined from parameters, then H is defined from the same
parameters.)
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Of course, if we let Dt
df= P for some partition P of X with ‖P‖ <∞, we get

just the Infinite Ramsey Theorem:

2.1.3 Corollary (Infinite Ramsey Theorem). For each n ≥ 1, PA proves: if
P partitions an unbounded class X into boundedly many classes, there is an
unbounded class H ⊆ X homogeneous for P.

In this formulation of the theorems, the existential quantification over H
in the above propositions is meta-theoretic rather than ‘inside PA’. We shall
actually prove a more elaborate version of Theorem 2.1.2 that bounds the
complexity of the homogeneous set; this will allow us to quantify inside the
underlying theory. We first introduce some notation.

2.1.4 Definition. Let Γ1 and Γ2 be classes of sets. The following definitions
are meaningful in every T ⊇ IΣ1 that allows for quantifying over Γ1 and Γ2
sets.

a) Γ1 â (Γ2)a denotes the following assertion:

For every unbounded Γ1 set X and every Γ1 diagonal parti-
tion D of 〈X 〉a, there is an unbounded Γ2 set Y ⊆ X diagonally
homogeneous for D.

b) Γ1 â (Γ2)a
Γ1

denotes the same assertion with the additional requirement
that D is Γ1-estimated, which means that for some Γ1 function G with
dom(G)⊇ X , ‖Dt‖ ≤G(t) for all t ∈ X .

c) Γ1 â (c)a denotes the assertion:

For every unbounded Γ1 set X and every Γ1 diagonal parti-
tion D of 〈X 〉a, there is a coded set u ⊆ X diagonally homoge-
neous for D with |u| = c

The main theorems of this section are the following:

2.1.5 Theorem. For every m,n ≥ 1,

a) BΣn+m+1 ` low∆m+1 â (low∆m+n+1)n,

b) IΣn+m ` LLmâ(LLm+n)n
LLm

, so in particular IΣn+m `∆mâ(∆m+n+1)n
∆m

.

Recall that LLk
df= lowΣ∗

0 (Σk) (Definition 1.7.1 on page 16).

2.1.6 Theorem. For every m,n,k ≥ 1:

a) BΣm+n ` low∆m+1 â (k)n,

b) IΣm+n−1 `∆m â (k)n
∆m

.



2.1 DIAGONAL PARTITION THEOREM IN ARITHMETIC 25

The Infinite Diagonal Partition Theorem 2.1.2 is an obvious consequence
of 2.1.5 a) since every class in PA is ∆m and hence low∆m+1 for some m.

We now prove the main theorems 2.1.5 and 2.1.6. In the end of the section,
we reformulate 2.1.5 b) and 2.1.6 b) in terms of functions.

The proofs are similar to [HP93, II.1]. We start with the following defini-
tion and lemma.

2.1.7 Definition. Let D be a diagonal partition of 〈X 〉n, s an increasing se-
quence of elements from X (that is OSeq(s), s ⊆ X ) and x ∈ X . We say that

• s is D-pre-homogeneous if either `(s)≤ n+1 and s is an initial segment
of the set X , or `(s) > n+1 and u`‹x› Dt u`‹y› whenever u ∈ 〈s〉n−1 and
t, x, y ε s, t <Min(u), Max(u)< x, y.

• s`‹x› is a minimal D-pre-homogeneous extension of s if it is D-pre-
homogeneous and for every y ∈ (Max(s), x) such that s`‹y› is D-pre-
homogeneous, there are u ∈ 〈s〉n and t ε s with t < Min(u), such that
¬(u`‹x› Dt u`‹y›).

• s is hereditarily minimal D-pre-homogeneous (D-h.m.p.h.) if for all
i < `(s), s�i is D-minimal D-pre-homogeneous, where s�i denotes the
unique initial subsequence s′ of s with `(s′)= i.

2.1.8 Lemma. For every m,n ≥ 1, BΣm+1 proves: Let D be a diagonal parti-
tion of 〈X 〉n, where D, X are low∆m+1, n ≥ 1. Then TD

df= {s | s is D-h.m.p.h.}
ordered by inclusion (which on TD coincides with the relation ‘is an initial
subsequence’) is an unbounded finitely branching low∆m+1 tree (see Defini-
tion 1.7.3 on page 17).

Proof. First observe that the definition of a D-h.m.p.h. sequence can be ex-
pressed as a ∆1-formula in D, X , so by 1.7.2 b), TD is low∆m+1.

Clearly TD is a tree. To show that TD is finitely branching, let s ∈ TD and
Y df= {x | s`‹x› ∈ TD}, and suppose Y is unbounded. We aim for a contradiction
with the finite pigeon-hole principle in IΣ1 (1.8.1). Surely, Y is low∆m+1. Let
F be a function on 〈X 〉1+n such that for ‹t›`u ∈ 〈X 〉1+n, F(‹t›`u) = i iff i is
the maximal cardinality of a choice set for Dt with elements less than u0 =
µv ≤ u : v Dt u. This definition formalizes easily in BΣm+1 as a ∆1 formula in
D, X , hence F is low∆m+1. It is evident that for every ‹t›`u, ‹t›`v ∈ 〈X 〉1+n,
F(‹t›`u)= F(‹t›`v)↔ u Dt v. Since TD is bounded,

(2.1) (∀t ε s)(∃z)[(∀u)(‹t›`u ∈ T → F(‹t›`u)≤ z)].

The subformula in square brackets is Π1(low∆m+1), hence ∆m+1. (Indeed, if
U ∈ low∆m+1 and W ∈Π1(U), then −W ∈Σ1(U)⊆∆m+1, so W ∈∆m+1).

Thus, by Σm+1-collection, there exists z0 such that

(2.2) (∀t ε s)(∀u)(‹t›`u ∈ T → F(‹t›`u)≤ z0).
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It follows that we may assign to every x ∈Y a finite function fx ⊆ 〈s〉n×z0 such
that fx(‹t›`u) = F(‹t›`t`‹x›). If x < y are from Y , then by minimality there is
some ‹t›`u ∈ 〈s〉n such that u`‹x› and u`‹y› fall into different equivalence
classes of Dt, so fx(‹t›`u) 6= f y(‹t›`u), hence fx 6= f y. Now 〈s〉n × z0 is clearly
bounded, hence all f ⊆ 〈s〉n × z0 are less than some a. Then for every b, there
is a finite subset s′ of Y with |s′| = b and a finite set f that is a 1-1 map of
s′ on a subset of [0,a). (This is proved by induction on b where the induction
formula is Σ1(Y )). For b = a+1 this gives the desired contradiction.

In order to prove that TD is unbounded, we show that for every x ∈ X ,
there is some s such that s`‹x› ∈ TD . Assume it is not the case. Let s0 consist
of the first n elements of X . Then s0 ∈ TD , x > max(s0) and s0`‹x› is clearly
D-pre-homogeneous. Let s ∈ TD be such that s`‹x› is D-pre-homogeneous and
`(s) ≤ x is maximal possible. By the assumption, s`‹x› is not minimal (other-
wise it would be D-h.m.p.h.), hence there is some y < x such that s0`‹y, x› is
pre-homogeneous. For the least such y, we have s`‹y› ∈ TD . (Note that the
argument only involves the Least number principle for ∆m+1 formulae, which
is provable in BΣm+1). 2

2.1.9 Remark. By the same argument, IΣm proves that if D, X as above but
LLm and D is LLm-estimated, then TD is an unbounded finitely branching
LLm tree.

For the most part, it suffices to proceed exactly as above, only replacing
everywhere BΣm+1 with IΣm and low∆m+1 with LLm (since IΣm proves in-
duction and collection for Σ1(LLm) sets and ∆1(LLm)= LLm under IΣm). The
only problematic spot is in Lemma 2.1.8, where Π1(LLm)-collection (which
IΣm does not prove) is needed to derive (2.2) from (2.1). But if D is estimated
by some LLm function G, we may replace (2.2) with (∀t ε s)G(t) ≤ z0, where
z0 is obtained trivially from (∀t ε s)(∃z)G(t) ≤ z by Σm-collection. The rest of
the proof then goes as before.

Proof of 2.1.5 a). We prove for every m,n ≥ 1 that

BΣn+m+1 ` low∆m+1 â (low∆m+n+1)n.

Let D an diagonal partition of 〈X 〉n, both D and X low∆m+1. By 2.1.8, TD
is an unbounded finitely branching low∆m+1 tree, so by the corollary 1.7.5 to
the Low Basis Theorem, BΣm+2 proves that TD has a low∆m+2 unbounded
branch Y .

We now proceed by induction on n ≥ 1. If n = 1, Y is diagonally homoge-
neous for D and we are done. So, let n ≥ 2 and suppose the theorem holds for
n−1 and all m. Let TD and Y be as above. We define a diagonal partition D̃
on 〈Y 〉n−1 by

(2.3) u Dt v
df⇐⇒ (∃x > (u)n−2)(∃y> (v)n−2)u`‹x› Dt v`‹y›
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for every u,v ∈ 〈Y \ [0, t]〉n−1. The definition of D̃ is clearly Σ1 in D,Y . Since
Y is D-pre-homogeneous and unbounded, the ∃ quantifiers in (2.3) can be
equivalently replaced with ∀, so D̃ is also Π1(D,Y ); hence it is ∆1(low∆m+2),
which is low∆m+2. By the induction hypothesis, BΣ(n−1)+(m+2)(= BΣn+m+1)
proves that D̃ has an unbounded diagonally homogeneous set H ⊆ Y that is
low∆(n−1)+(m+2) = low∆n+m+1. H is diagonally homogeneous also for D. 2

Proof of 2.1.5 b). Repeat the previous proof replacing everywhere BΣk+1 with
IΣk, low∆k+1 with LLk, and Lemma 2.1.8 by Remark 2.1.9. The sequel for
∆m follows from the inclusions in 1.7.2 d). 2

Proof of 2.1.6. a). For every m,n,k ≥ 1, we prove

BΣm+n ` low∆m+1 â (k)n

by induction on n. The induction step is as in the proof of Theorem 2.1.5, we
only need to verify the case for n = 1, i.e. BΣm+1 ` low∆m+1 â (k)1.

First observe that if T is a low∆m+1 finitely branching unbounded tree,
then for some s ∈ T, the subtree Ts

df= {t | s`t ∈ T} is a low∆m+1 unbounded
finitely branching tree. Indeed, since T is finitely branching, the set of s ∈ T
such that `(s) = 1 is bounded by some d. Suppose Ts is bounded for every
s ≤ d, i.e.

(∀s ≤ d)(∃b)[(∀t)(s ⊆ t ∈ T → t < b)].

The subformula in square brackets is Π1 in T, hence ∆m+1. By Σm+1 collec-
tion, there is some b0 such that

(∀s ≤ d)(∀t)(s ⊆ t ∈ T → t < b0).

Now, every t ∈ T (except for ;) prolongs some s with `(s)= 1, so it follows that
T ⊆ [0,b0], which contradicts T being unbounded.

Now, D defines an unbounded finitely branching low∆m+1 tree T of D-
h.m.p.h. sequences. By iterating the observation in the last paragraph at
most k-times, we arrive at some s ∈ T with `(s) ≥ k (and Ts unbounded). In
particular, s is pre-homogeneous for D; yet n = 1, so s is D-homogeneous.

b) We prove that for every m,n,k ≥ 1

IΣm+n−1 `∆m â (k)n
∆m

.

By a), the statement is provable in BΣm+n. Because this theory is Πm+n+1-
conservative over IΣn+m−1 by Fact 1.8.11, d), and n ≥ 1, it suffices to check
that the statement is Πm+2. This is a straightforward task using the corre-
sponding definitions and the facts from Section 1.6, namely that the state-
ment ‘X is ∆m’ can be expressed as a Πm+1 formula and ‘x ∈ X ’ as a ∆m
formula. 2
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The notions of diagonal partition and diagonal homogeneity can be re-
phrased it in terms of functions. Thus, our Infinite Diagonal Partition Theo-
rem can be viewed as an infinite version of the Kanamori-McAloon principle
(see 2.2.1) generalized to G-regressive functions.

2.1.10 Definition. Let F,G be functions, dom(F)= 〈X 〉a, a ≥ 1, dom(G)= X .

a) F is said to be G-regressive on 〈X 〉a, if for all u ∈ 〈X 〉a, F(u) = 0 or
F(u)<G((u)0). F is regressive if it is id-regressive.

b) A set H ⊆ X is said to be min-homogeneous for F if for all u,v ∈ 〈H〉a,
(u)0 = (v)0 implies F(u)= F(v).

A G-regressive function F with dom(F) = 〈X 〉a+1 determines a diagonal
partition D of 〈X 〉a such that

u Dt v
df⇐⇒ F(‹t›`u)= F(‹t›`v)

for ‹t›`u, ‹t›`v ∈ 〈X 〉a+1 and ‖Dt‖ ≤G(t) for all t ∈ X . Clearly, if F is ∆n, then
D is ∆n, too; similarly for low∆n.

Conversely, as in the proof of 2.1.8, every diagonal partition D of 〈X 〉a

determines a ‖Dt‖-regressive function F with dom(F)= 〈X 〉a+1.
The preceding results thus give the following simple corollary:

2.1.11 Corollary. Let m,n ≥ 1.

a) IΣn+m proves: For each F,G, X ∈ ∆m where X is unbounded and F is
a G-regressive function on 〈X 〉n+1, there is an unbounded ∆m+n subset
Y ⊆ X, min-homogeneous for F.

b) IΣn+m−1 proves: For every k ≥ 1 and F,G, X ∈∆m where X is unbounded
and F is a G-regressive function on 〈X 〉n+1, there is a subset Y ⊆ X min-
homogeneous for F with |Y | = k. 2

2.2 Variants of the Finite Ramsey Theorem

This section is a brief survey of variants of the Finite Ramsey theorem in
Peano arithmetic and its fragments. In the end of the section we prove
Lemma 2.2.7 which is an iterated version of the Paris-Harrington principle.
We shall recall the lemma in Chapter 4.

2.2.1 Definition.
a) For a codable set u and d, c > 0, let 〈u〉d

c denote the set of all codable
partitions p of 〈u〉d into at most c parts, i.e. such that ‖p‖ ≤ c.
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b) For a codable set u and d, c, e > 0, the Ramsey arrow u → (e)d
c denotes

the assertion that for every p ∈ 〈u〉d
c , there is a coded subset v ⊆ u with

|v| ≥ e such that v is homogeneous for p.

c) The Paris-Harrington arrow u −→∗ (e)d
c is defined analogously, except

that it further requires the homogeneous subset v to be relatively large,
i.e. to satisfy |v| ≥min(v).

d) The Kanamori-McAloon arrow u → (e)d
reg is the assertion that for ev-

ery regressive function f on 〈u〉d, there is a v ⊆ u such that f is min-
homogeneous on 〈v〉d and |v| ≥ e.

The proofs of the following statements are well-known ([Kay91b]):

2.2.2 Fact. For all 1≤ m ∈N,

a) Paris-Harrington: PA` (∀a, c, e ≥ 1)(∃b)[a,b]−→∗ (m+1)m
c

b) Kanamori-McAloon: PA` (∀a, e)(∃b)[a,b]→ (e)m
reg

c) Finite Ramsey Theorem: IΣ1 ` (∀d, c, e ≥ 1)(∃b)[0,b]→ (e)d
c 2

2.2.3 Remark. In c), [0,b]→ (e)d
c implies u → (e)d

c for any u with |u| > b.

2.2.4 Remark. The Paris-Harrington (PH) and Kanamori-McAloon (KM)
principles are provable in PA as schemes for m ranging over numerals. The
full versions of PH and KM that quantify over all m are true in N but unprov-
able in PA ([PH77] and [KM87]).

A detailed discussion of these principles and their various restricted ver-
sions can be found in a recent paper [Bov05] by Andrey Bovykin.

The principles have refinements for fragments of Peano arithmetic:

2.2.5 Fact. Let n ≥ 1.

a) IΣn ` (∀a, c, e)(∃b)[a,b]−→∗ (e)n
c

b) IΣn 6` (∀a, c)(∃b)[a,b]−→∗ (n+2)n+1
c

c) (∀k ∈N)IΣn ` (∀a, e)(∃b)[a,b]−→∗ (e)n+1
k

d) IΣ1 proves: for a set u, if u −→∗ (n+2)n+1
e and min(u) ≥ max{n2n,2e},

then u → (e−n)n+1
reg . 2

The first three results are due to Paris [Par80] who gave model-theoretic
proofs; alternative proofs can be found e.g. in [HP93, Theorem II.1.9]. The
last result is attributed to P. Clote and appears in [KM87]. Its proof relies
substantially on earlier results by G. Mills [Mil80].
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2.2.6 Definition. The i-th iteration of the Paris-Harrington arrow is defined
as follows:

a) u −→∗ 0 (e)d
c if u includes a relatively large subset v with |v| > e.

b) u −→∗ i+1 (e)d
c if for every p ∈ 〈u〉d

c , u includes a codable subset v homo-
geneous for p and satisfying v −→∗ i (e)d

c .

Clearly, if u −→∗ i (e)d
c for i ≥ 0, then u contains at least e elements and is

relatively large.

2.2.7 Lemma. For every unbounded class X and every 1≤ m, i ∈N,

PA` (∀c, e)(∃ j)(X ∩ [0, j]−→∗ i (e)m
c )

Proof. The claim is proved by induction on i. For i = 0, it suffices to take j
such that |X ∩ [0, j]| >Max(e,min X ), which is possible since X is unbounded.

Suppose the proposition holds for given m, i, and arbitrary unbounded
class X . For the sake of obtaining a contradiction, suppose that for a certain
X , (∀ j)¬(u j −→∗ i+1 (e)m

c ), where u j denotes the codable set X ∩ [0, j]. For con-
venience, we shall use functions f : 〈u j〉m → [1, c] instead of partitions from
〈u j〉m

c . Hence, for every j, there is a codable function f j : 〈u j〉m → [1, c] such
that for every v ⊆ X ∩ [0, j] satisfying v −→∗ i (e)m

c , f j is not constant on 〈v〉m.
For x1, . . . , xm, y ∈ X \ [0, c] such that x1 < . . . < xm < y, let F(‹x1, . . . , xm, y›) df=
f y(‹x1, . . . , xm›). Then F : 〈X 〉m+1 → [1, c] is a definable function with bounded
range, hence, by the Infinite Ramsey Theorem 2.1.3, there is an unbounded
class H of X \ [0, c] such that F is constant on 〈H〉m+1. By induction hypothe-
sis, there is some j0 such that H∩[0, j0]−→∗ i (e)m

c . Let j1 =min(H\[0, j0]). We
show that for v df= H∩[0, j0]⊆ u j1 , f j1 is constant on 〈v〉m, which together with
v −→∗ i (e)m

c gives the desired contradiction with the choice of the functions f j.
Let ‹~x›, ‹~y› ∈ 〈v〉m. Then ‹~x, j1›, ‹~y, j1› ∈ 〈H〉m+1, so F(‹~x, j1›) = F(‹~y, j1›), hence
f j1(‹~x›)= f j1(‹~y›). Indeed, f j1 is constant on 〈v〉m. 2

2.3 Systems of diagonal indiscernibles

In this section, we characterize Σn-elementary cuts satisfying IΣk+n by the
existence of certain systems of diagonally indiscernible elements. The main
results are formulated after the following definition.

2.3.1 Definition.
a) An overlay in a model M is a sequence O = {X i | i ∈ ω} of non-empty

subsets of M with no last element such that sup X i = sup X j and i < j → X j ⊆
X i for every i, j ∈ ω. In particular, if ; 6= X ⊆ M and X has no last element,
then {X } is an overlay in M. Let I be a cut of M. We write OI

df= {X ∩ I; X ∈ O}
and say that O is unbounded in I, if for every X ∈ O, X ∩ I is cofinal in I.
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Clearly, if O is unbounded in I, then OI is an overlay in I (but note that
not all overlays in I have to be unbounded in it and that an overlay can be
unbounded in many different cuts).

b) Let ϕ be a Σk formula (k ≥ 1) of the form (∃x0)(∀x1) . . .ψ( ȳ, x̄) with ψ ∈
∆0. A set X ⊆ M is said to be ϕ-bounding in M if for every e < e0 < ·· · < ek−1
from X ,

(2.4) M |= (∀ ȳ< e)(ϕ( ȳ)↔ (∃x0 < e0)(∀x1 < e1) . . .ψ( ȳ, x̄)).

An overlay O is Σk-bounding in M if for every ϕ ∈Σk (of the considered form),
there exists X ∈O such that X is ϕ-bounding in M. Bounding for Πk formulae
is defined by duality.

c) The symbol ϕ( ȳ;x̄) denotes a formula ϕ with two designated lists of
variables ȳ and x̄ (not necessarily of the same length) such that ϕ has all
free variables among those in ȳ, x̄ and each two variables from these lists are
distinct. If Γ is a class of formulae, then Γ( ȳ;x̄) denotes a class of all ϕ( ȳ;x̄)
where ϕ ∈ Γ; Γ(l;k) further denotes a class of all ϕ( ȳ;x̄) with arbitrary desig-
nated lists ȳ, x̄ of lengths l,k ≥ 0, in order. We identify Γ with

⋃
l,k∈ωΓ(l;k).

d) We say that X ⊆ M is a set of ϕ( ȳ;x̄)-diagonally indiscernible elements
in M if for each e ∈ X and every two increasing tuples of elements ~a,~b from
X \ [0, e] (of the length of x̄)

M |= (∀ ȳ< e)(ϕ( ȳ,~a)↔ϕ( ȳ,~b)).

X is a set of Γ-diagonally indiscernible elements in M if X is a set of ϕ( ȳ;x̄)-
diagonally indiscernible elements for every ϕ( ȳ;x̄) from Γ. An overlay O in M
is Γ-diagonally indiscernible in M, if for every ϕ( ȳ;x̄) from Γ, O contains a set
of ϕ( ȳ;x̄)-diagonally indiscernible elements in M.

The main results of this section are the following theorems (note that for
n = 0, 2.3.2 b) fully characterizes cuts satisfying PA in terms of overlays):

2.3.2 Theorem. Let M |= IΣ0, I a cut of M and n ≥ 0,k ≥ 1.

a) If O is a Σn(1;k)-diagonally indiscernible Σn-bounding overlay in M,
unbounded in I, then I 4n M and I |= IΣn+k. If, moreover, J ⊂ I is a cut
and O is unbounded also in J, then J4n+k I and J |=BΣn+k+1.

b) I |= PA and I 4n M iff there is a Σn-bounding ∆0-diagonally indis-
cernible overlay O in M that is unbounded in I. In left-to-right, O can be
formed so as to consist only of ;-definable subsets of I.

c) If O is a ∆0-diagonally indiscernible overlay in M, J ⊂ I are cuts, and O
is unbounded in both I, J, then J4 I.

We additionally prove that models of IΣn+2 can capture all its (n+ 1)-
elementary cuts by a single unbounded overlay:
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2.3.3 Theorem. If M |= IΣn+2 (n ≥ 0), then there exists an unbounded
Σn(1;1)-diagonally indiscernible overlay O in M consisting of ∆n+3-definable
subsets of M such that for every cut I of M, I 4n+1 M iff O is unbounded in I.

The rest of this section is devoted to proving these results; we first make
some easy observations.

2.3.4 Proposition. Let I 4e
k M, M |= LAr and let O be an overlay in I. Then

O is Σk( ȳ;x̄)-diagonally indiscernible in I iff it is Σk( ȳ;x̄)-diagonally indis-
cernible in M.

Proof. Clearly O is an overlay in M, too. Let ϕ(x̄; ȳ) be Σk and let χ(z, ū, v̄)
be the formula (∀ ȳ < z)(ϕ( ȳ, ū) ↔ ϕ( ȳ, v̄)). Now, I 4e

ϕ M implies I 4χ M, so
in particular, I |= χ(e, ā, b̄) iff M |= χ(e, ā, b̄) whenever e, ā, b̄ ∈ X ∈ O and the
proposition follows. 2

Trivially, the property of being ϕ-bounding is preserved downwards, i.e. if
X ⊆ M is ϕ bounding in M, then so is every X ′ ⊆ X .

2.3.5 Proposition. Let M |= IΣ0, k ≥ 0, and let O be an overlay in M. Then O
is Σk+1-bounding in M iff for every ϕ(y, x) ∈Πk there is X ∈O such that

(2.5) for every a < b in X, M |= (∀y< a)[(∃x)ϕ→ (∃x < b)ϕ].

Proof. Left to right: Let ϕ(y, x) be a Πk formula of the form (∀x0) . . .ψ(y, x, x̄)
with ψ ∈ ∆0. There is some X ∈ O that is both ϕ- and (∃x)ϕ-bounded in M;
we prove that X has the required property. Take a < b from X , some p <
a, and assume M |= (∃x)ϕ(p, x). Since X has no last element, we may take
some b0 < ·· · < bk−1 from X \ [0,b]; applying (∃y)ϕ-bounding we get M |=
(∃x < b)(∀x0 < b0) . . .ψ(p, x, x̄). Let d < b be a witness of the first existential
quantifier in the last formula; using ϕ-bounding, we obtain M |= ϕ(p,d); in
particular M |= (∃x < b)ϕ(p, x) as required.

Right to left is proved by induction on k ≥ 0. First observe that the condi-
tion on the right implies a stronger one that allows a tuple ȳ in place of y. To
see that, first find X ′ ∈ O satisfying (2.5) for the formula (y+1)m = x, m ≥ 1.
This ensures that am < b whenever a < b are from X ′. Then translate ϕ( ȳ, x)
to some ϕ′(y, x) ∈Πk employing a suitable ∆0-coding of m-tuples from a given
interval such that, for a given a, the code of each p̄ < a is less than am, take
X ⊆ X ′ in O satisfying (2.5) for ϕ′. The set X then satisfies (2.5) for ϕ; With
this observation the equivalence for k = 0 is trivial.

For the induction step, assume O is Σk-bounding (hence, by duality, also
Πk-bounding) and let ϕ be a Σk+1 formula of the form (∃x)(∀x0) . . .ψ( ȳ, x, x̄)
with ψ ∈ ∆0. We prove that O contains some ϕ-bounding set. By induction
hypothesis, O contains a (∀x0) . . .ψ( ȳ, x, x̄)-bounding set X ′. Using (2.5) (gen-
eralized for tuples), we may find some X ∈ O such that for every a < b from
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X , M |= (∀ ȳ < a)[ϕ( ȳ) ↔ (∃x < b)(∀x0) . . .ψ( ȳ, x, x̄)]. We may assume X ⊆ X ′

(otherwise X ′ ⊆ X and we take X ′ instead), and thus by the choice of X ′, the
subformula (∀x0) . . .ψ on the right side of the equivalence can be equivalently
replaced by (∀x0 < b0) . . .ψ, where b0 < ·· · < bk−1 are arbitrary elements from
X with b < b0; this finishes the proof of the induction step. 2

2.3.6 Corollary. If M |= IΣ0, k ≥ 1, and O is an unbounded Σk-bounding
overlay in M, then M |= IΣk.

Proof. For every ϕ(y, x) ∈Πk−1, there is an unbounded X ∈ O such that (2.5)
holds. Thus, M |=SΠk−1, which equivalent to IΣk in IΣ0 by Fact 1.2.3. 2

2.3.7 Proposition. Let M |= IΣ0, I a cut of M and n, l ≥ 0, k ≥ 1.

a) If O is a Σk-bounding overlay in M unbounded in I, then I 4k M.

b) If O is a Σn(1;1)-diagonally indiscernible overlay unbounded in M, then
O is Σn+1-bounding in M and M |= IΣn+1.

c) Let O be a Σn(l;k+1)-diagonally indiscernible overlay unbounded in M.
Then it is Σn+1(l;k)-diagonally indiscernible.

Proof. a) Applying (2.5) on the formulae y+ y= x and y· y= x and considering
the fact that O is unbounded in I, observe that I is closed under operations,
so I ⊆e M. The rest follows from (2.5) by Vaught-Tarski’s test.

b) It suffices to prove that O is Σn+1-bounding in M since then M |= IΣn+1,
by 2.3.6. Let ϕ(y, x) be a Πn. It suffices to verify that X satisfies the con-
dition (2.5) for ϕ(y, x). We proceed by induction on n ≥ 0, so for a given n,
we may assume M |= IΣn by induction hypothesis. By BΣn, (∃x < z)ϕ(y, x)
is equivalent in M to some Πn formula θ(y, z); since O is Σn(1;1)- and hence
Πn(1;1)-diagonally indiscernible, there exists a set of θ(y;z)-diagonally indis-
cernible elements X ∈ O. Let a < b be from X , p < a and d ∈ M such that
M |=ϕ(p,d). Since X is unbounded in M, there is some c ∈ X , c > max {a,d}.
Then M |= (∃x < c)ϕ(p, x) and by the choice of X , M |= (∃x < b)ϕ(p, x). This is
exactly what was required for (2.5).

c) This proof follows the same pattern as the one above, only involving ex-
tra parameters. Let ϕ( ȳ;x̄) ∈Σn+1(l;k) be of the form (∃z)ψ( ȳ, x̄, z) with ψ ∈Πn
and let X ∈ O be a set of ((∃z ≤ x)ψ)( ȳ;x̄, x)-diagonally indiscernible elements.
Such X exists because O is Σn(l;k+1)-diagonally indiscernible and the for-
mula in question is equivalent to a Πn formula in Colln, which is satisfied
in M due to b). Take e ∈ X , p̄ < e, and two increasing k-tuples ~a, ~b from
X \ [0, e] and assume M |= ϕ(p̄,~a). We must prove M |= ϕ(p̄,~b). Let d ∈ M be
such that M |=ψ(p̄,~a,d); since X is unbounded in M, there is some c ∈ X with
c >max{d, ā, b̄}. But then M |= (∃x < c)ψ(~p,~a, x) and also M |= (∃x < c)ψ(p̄,~b, x)
due to the choice of X and c, hence M |=ϕ(p̄,~b) as required. 2



2.3 SYSTEMS OF DIAGONAL INDISCERNIBLES 34

Proof of 2.3.2.
a) Let O be a Σn(1;k)-diagonally indiscernible Σn-bounding overlay in M

and let I be a cut of M such that O is unbounded in I.
If n ≥ 1, we have I 4n M by 2.3.7 a). For n = 0 it suffices to prove that I is

closed under addition and multiplication. Let X ∈O be a set of diagonally in-
discernible elements w.r.t. the formulae y+ y≤ x and y · y≤ x with designated
variables (y;x). Suppose c ∈ I but c+ c ∈ M \ I. Then for some a < b from X ,
c < a but b < c+ c. Fix these a,b and the least c with this property (using IΣ0
in M). Obviously c > 0, so c = d+1 for some d ∈ I. Then d < a and d+d ≤ b.
By the choice of X , however, this last inequality holds for every b′ ∈ X \ [0,b].
Since X is cofinal in I, we thus have d+d ∈ I and hence c+ c = d+d+2 ∈ I,
since I is a cut. The proof for multiplication is similar.

Now, since I 4e
n M, OI is a Σn(1;k)-diagonally indiscernible overlay in I,

by 2.3.4; hence by k−1 applications of 2.3.7 c) and by 2.3.7 b), I |= IΣn+k and
OI is Σn+k-bounding in I. If J ⊂ I is a cut and OI is unbounded in J, then by
the same argument as above, J is closed under addition and multiplication,
so J ⊂e I. By 2.3.7 a) (where J, I,OI ,k+n are to be substituted for I, M,O,k),
J4n+k I. Finally, J |=BΣn+k+1, by Fact 1.8.4.

b) The implication from right to left follows from a) taking n = 0 and every
k ≥ 1. To prove left to right, it suffices to show that if I |= PA, there is a ∆0-
diagonally indiscernible overlay O in I unbounded in I, since then O is a ∆0-
diagonally indiscernible overlay in M by 2.3.4; moreover O is Σn-bounding in
I for all n, by 2.3.7 c), b); thus, if I 4n M, O is Σn-bounding in M, using 2.3.5.

We construct O = {X i | i ∈ ω} in stages along some fixed enumeration of
∆0 formulae. We start with X0 = I. At (i + 1)-th stage, let ϕi( ȳ;x̄) be the
i-th formula considered and assume X i is ;-definable and unbounded in I.
Let m be the length of x̄ in ϕi( ȳ;x̄). By Infinite Diagonal Partition Theorem
(2.1.2) in I, there is an ;-definable and unbounded subset X i+1 ⊆ X i that is
homogeneous for the diagonal partition D i of 〈X i〉m, defined by

u D i
t v

df⇐⇒ (∀ ȳ< t)(ϕi( ȳ, (u)0, . . . , (u)m−1)↔ϕi( ȳ, (v)0, . . . , (v)m−1), t ∈ X i.

Clearly ‖D i
t‖ is bounded in I for each t, so the definition of X i+1 is correct.

Obviously, X i+1 is a set of ϕi( ȳ;x̄)-diagonally indiscernible elements in I.
c) First, I |= PA, by b). Applying 2.3.7 c) and b), OI is Σk-bounding for

every k ≥ 1, therefore by 2.3.7 a), J4k I for every k ≥ 1. 2

Proof of 2.3.3. First, if O is an unbounded Σn(1;1)-diagonally indiscernible
overlay in M, then by 2.3.7 b), O is Σn+1-bounding, so if O is unbounded in
a cut I of M, then I 4n+1 M, by 2.3.7 a). It remains to prove the existence.

Let D be a diagonal partition of M such that

x Dt y iff SatΣn ( f ,〈p, x〉)↔SatΣn ( f ,〈p, y〉),
whenever f , p < t and f codes a Σn formula in variables (v0;v1). It straight-
forward to check that D is ∆n+1 and that IΣn+2 proves ‖Dt‖ ≤ 2t2

for every
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t, hence D is ∆1 estimated. In particular, D is a LLn+1-estimated LLn+1-
diagonal partition of M. Let TD be the tree of D-h.m.p.h. sequences ordered
by inclusion (c.f. Definition 2.1.7). Then by 2.1.9, TD is LLn+1; by the Corol-
lary 1.7.5 to the Low Basis Theorem, TD has an LLn+2 unbounded branch B
in M. Let X df= {a ∈ M | (∃s ∈ B)a ∈ s}; then X is D-homogeneous and LLn+2,
hence ∆n+3. Now, the set O df= {X \ [0,m] | m ∈ N} is an unbounded Σn(1;1)-
diagonally indiscernible overlay in M, since for a Σn(v0;v1)-formula ϕ with
m = pϕq, X \ [0,m] is a set of ϕ-diagonally indiscernible elements in M. Let
I 4n+1 M; it remains to be proved that X ∩ I is cofinal in I. Assume X ∩ I < a
for some a ∈ I and let b df= min(X \ [0,a]). Then there is a sequence s`‹b› ∈ B
such that Max(s)< a. There is a ∆n+1 formula θ(s, y,w) expressing that ‘s`‹y›
is D-homogeneous and w codes the set {〈 f , p〉 ∈ [0,Max(s)]2 | SatΣn ( f ,〈p, y〉)}’.
Let wb be such that M |= θ(s,b,wb); since Max(s) ∈ I, wb ∈ I, too. Then
M |= (∃y)θ(s, y,wb) and by I 4n+1 M, I |= θ(s, c,wb) for some c ∈ I. But
then s`‹c,b› is D-homogeneous; this, however, contradicts the minimality
condition of s`‹b› in the definition of TD . This contradiction completes the
proof. 2

2.3.8 Example. Our results on overlays reveal somewhat hidden structure
of models of arithmetic. As an example of this, we give an illuminating proof
of Gaifman’s Theorem 1.8.7, a) based on overlays. With them at hand, the
whole thing becomes obvious:

Proof of Gaifman’s theorem. Let M |= PA and M 4cf
0 N. Surely all Π1 sen-

tences true in M hold in N as well, hence N |= IΣ0. Now, M has an unbounded
∆0-diagonally indiscernible overlay O which, due to M 40 N and M ⊆cf N, is
also an unbounded ∆0-diagonally indiscernible overlay in N. Thus N |= PA.
Also, if ϕ is an LAr-formula, then some X ∈O is ϕ-bounding in both M and N;
thus M4ϕ N. Thus M is elementary in N. 2

2.3.9 Remark. We may finally note that there is no unbounded set X of
∆0-diagonally indiscernible elements in M |= PA definable in M from param-
eters; i.e. a definable ∆0-diagonally indiscernible overly cannot be singleton
or finite. Indeed, if M is non-standard (otherwise pass to some elementary
end-extension) and X is as above with X = ϕ(M, p̄) for some ϕ ∈ Σn and
p̄ ∈ M, then for K df=DfeΣn+1(M;a, p̄) with a ∈ M \N we have K 4n+1 M, hence
ϕ(K , p̄) = X ∩K is unbounded in K . It follows that {X ∩K} is an unbounded
∆0-diagonally indiscernible overlay in K and consequently K |=PA. This con-
tradicts 1.8.11, b).



CHAPTER 3
FAMILIES OF CUTS

Given a countable model M |= IΣ1, we refer to any set of its cuts that have a
certain common property as a family. Each family is linearly ordered by inclu-
sion. Under this order, the family of all cuts of M is topologically isomorphic
to the Cantor space. Given a particular family, say P0

df= { I ⊆e M | I |= PA },
there are many natural questions to ask, such as: What is the order type
of P0? What is the order type of its topological closure P0? What are the
relationships between P0 and other similar families of cuts of M?

In Theorem 3.2.1, we gather general topological consequences obtained
for any family R that has an ∆n-definable indicator (a notion introduced by
Kirby and Paris [KP76]) with reasonable properties. The results apply to
majority of those families of cuts that could be described as ‘interesting’. We
cannot say that the information provided by the theorem is entirely new, be-
cause for certain particular families, some of the properties have been ob-
served and pointed out by others ([Kot83], [Kot84b],[Ign86], etc.). But to our
knowledge, the scattered ideas were never collected in a single theorem of a
similar general form.

The rest of the chapter is devoted to some concrete subfamilies of the
family En of Σn-elementary cuts. Among others they include: family Pn of
the cuts satisfying PA, family In of the cuts that are isomorphic to the model
M, and family Dn of the cuts determined by Σn-definable elements. For each
of the families we provide additional results that cannot be derived from the
general theorem and conclude the study by proving, with some assumptions,
the following inclusions Pn ) In ⊇ Dn+1 ) En+1 ) Pn+1, where the overline
denotes topological closure in the set of all cuts. We apply the results on
overlays from Section 2.3 in Theorem 3.4.1.

We also correct a false claim made by R. Kaye in [Kay91b] (Re-
mark 3.5.13).

36
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3.1 Definitions and preliminaries

Assumption. Throughout this chapter, M is an arbitrary but fixed countable
non-standard model of IΣ1.

We study a variety of families of cuts and initial substructures of M.

3.1.1 Definition. If a,b ∈ M and I is a cut of M, we say that the interval
(a,b) contains I, or that I lies between a and b, if a ∈ I < b.

For a family of cuts R, let ∼R denote the relation on M such that x ∼R y
iff no cut from R lies between x and y.

Two families of cuts of M, R and R′, are said to be symbiotic, if every
interval (a,b) of M containing a cut from R contains a cut from R′ and vice
versa.

Clearly ∼R is an equivalence on M, partitioning M into contiguous blocks
w.r.t. the order <. Hence, the order < of M induces a total order on M /∼R.

3.1.2 Proposition. Two families of cuts of M, R and R′, are symbiotic if
∼R =∼R′ , that is, if M /∼R = M /∼R′ 2

3.1.3 Definition. Let R be a non-empty family cuts of M. We define:

I−a,R
df= ⋃

{J ⊆e M | J ∈R and a ∈ M \ J},

I+a,R
df= ⋂

{J ⊆e M | a ∈ J ∈R}.†

For I ⊆e M, we write

R↗ I iff I =⋃
{J ⊂e I | J ∈R},

I ↙R iff I =⋂
{J ⊆e M | I ⊂e J ∈R},

If R′ is also a family of cuts of M, we write R↗R′ iff R↗ I for every I ∈R′,
and we write R′ ↙R iff I ↙R for every I ∈R′, I 6= M.

We further use the symbols à↗ and à↙ to denote respectively the negations
of the relations ↗ and ↙.

(Since M is fixed, we do not decorate the symbols I+a,R, I−a,R and ↙,↗ with
an additional superscript indicating their reference to the model M.)

Clearly, I−a,R
à↙R and R à↗ I+a,R. Also, if ; 6= I−a,R ∉R, then R↗ I−a,R, and

if I+a,R is defined and I+a,R ∉R, then I+a,R↙R. Moreover, for I ⊂e M, I à↙R iff
I−a,R ⊆ I < a for some a ∈ M, and I à↗R iff either I+a,R is undefined or I ⊆ I+a,R
for some a ∈ I.

†I+a,R is undefined if
⋂; stands on the right .
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3.1.4 Definition. For a family R of cuts of M, let

R
df= {I ⊆e M | I ∈R or R↗ I or I ↙R}

Clearly 〈R,⊆〉 is the unique (up to isomorphism) order-completion of 〈R,⊆〉; it
is the topological closure of R in the space of all cuts of M whose topology is
induced by the ordering ⊆. We further define

R+ df= {I+a,R | a ∈ M}, and

R− df= {I−a,R | a ∈ M}.

Finally, let for a,b ∈ M, a < b, (a,b)R denote the subfamily {I ∈R | a ∈ I < b}.

Note that M / ∼R= {I+a,R \ I−a,R | a ∈ M}; this set with its natural ordering
induced by ≤M it is order-isomorphic to 〈R+,⊆〉.

3.1.5 Proposition. Families of cuts R and R′ are symbiotic iff R=R′
.

Proof. First let R and R′ be symbiotic and let I ∈R. If R↗ I, then for every
a ∈ I there exists b ∈ I, a < b such that (a,b)R is non-empty. Hence (a,b)R

′

is non-empty and R′ ↗ I. The remaining cases when I ↙ R or when I ∈ R
but neither R↗ I nor I ↙ R are similar. We thus have R ⊆ R′

. The other
inclusion follows from symmetry.

Conversely, if R = R
′

and the interval (a,b) contains a cut I ∈ R, then
I ∈ R′

, hence either I ∈ R′ in which case we are done, or one of R′ ↗ I or
I ↙ R′ holds, and we can therefore easily find a cut J ∈ R′ such that either
a ∈ J ⊂e I or one satisfying I ⊂e J < b. 2

The following definitions extend Kirby and Paris’ notion of a well-behaved
indicator:

3.1.6 Definition (Indicators).
a) Let M |= PA− be non-standard and let R be a family of cuts of M. A

function Y : M2 → M is said to be an indicator forR in M if the following
properties hold for every a,b ∈ M:

Y (a,b)≥N iff there exists I ∈R with a ∈ I < b(3.1)

if M ∈R, then M |= (∀x)(∃y)Y (x, y)> n for every n ∈N.(3.2)

If Γ is a class of LAr formulae and Y is defined in M (without parame-
ters) by a Γ-formula, we say that Y is a Γ-indicator. We say that R has
a Γ-indicator in M, if there exists a Γ-indicator Y for R in M.

b) More generally, if T is a theory extending PA−, and R is defined by
some property Φ(I, M) of cuts of M, i.e. R= { I ⊆e M |Φ(I, M) }, then a Γ-
formula ξ(x, y, z) (also written as Y (x, y) = z) is said to be a Γ-indicator
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for R in T if in every countable N |= T the formula ξ(x, y, z) defines a
Γ-indicator for RN df= { I ⊆e N |Φ(I, N) } in N. We then say that R has a
Γ-indicator in T.

3.1.7 Remark. Indicators were introduced by Paris and Kirby in [KP76]. In-
dicators provide a method for finding independent results ([Par78], [PH77])
and reveal symbiosis as well as the distribution of initial substructures of var-
ious types in the base model (cf. for example [Kir77], [Par80], and [Kot84b]).
In this chapter we pursue the latter application.

We only deal with Γ-indicators for some Γ ⊆ Fm(LAr). Note that if Y is a
Σn-indicator in M for a family R, then there exists a Σn-indicator Y ′ for R in
M with the following ‘monotony’ property:

(3.3) (y≤ x →Y ′(x, y)= 0)∧ (x1 ≤ x2 ≤ y2 ≤ y1 →Y ′(x2, y2)≤Y ′(x1, y1)).

Assumption. From now on, we assume all considered indicators sat-
isfy (3.3).

3.1.8 Remark. For every Σn+1-indicator Y the relation Y (x, y) = z is in fact
∆n+1 in M, since M |= (∀x, y)(∃z)Y (x, y)= z and hence Y (x, y)= z is equivalent
in M to the Πn+1 formula (∀z′ 6= z)¬Y (x, y)= z′.

We use the following lemma from [Kot84b], which characterizes the order-
type of the Cantor set.

3.1.9 Lemma. A complete linear ordering 〈X ,≤〉 is isomorphic to the Cantor
set (that is to 〈ω2,<Le〉 where <Le is the lexicographic ordering) iff there is a
subset Y ⊆ X such that 〈Y ,≤〉 has the order type 1+η†, and

a) x = sup〈X ,≤〉{y ∈Y | y< x}, for all x ∈ X \Y , and

b) x > sup〈X ,≤〉{y ∈Y | y< x} (and the supremum exists), for all x ∈Y .

Sketch of the proof. Since Y has order-type 1+ η, there is an isomorphism
between Y and the set of functions in ω2 that are eventually constantly 0,
and this isomorphism extends uniquely (via suprema) to an isomorphism of
〈X ,≤〉 and 〈ω2,<Le〉. 2

3.2 The general theorem

Let I be a cut of M and Y an indicator of some family in M. For future
reference, we recognize the following situations:

†That is, 〈Y ,≤〉 is a countable dense linear order with a least but no last element.
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(A) (∀a ∈ I)(∃c ∈ I \N)(∃b ∈ I)M |=Y (a,b)> c,

(B) (∃c ∈ I \N)(∀a ∈ I)(∃b ∈ I)M |=Y (a,b)> c.

3.2.1 Theorem. If M |= IΣn+1 and R 6= ; has a Σn+1-indicator Y in M, then

a) 〈R,⊆〉 is order-isomorphic to the Cantor set. In particular, R has the
cardinality 2ℵ0 ; for every I ∈R either R↗ I or I ↙R.

b) Under this isomorphism, R− and R+ correspond to the sets of the right-
and left-isolated points of the Cantor set, respectively.

c) There is a densely ordered countable subset Q⊆R such that Q=R.

d) If I is any cut of M satisfying (A), then R↗ I.

Assume additionally that every I ∈R satisfies (B). Then:

e) R ↗ R ↙ R. In other words, R has no left- or right- isolated points
(except possibly for end-points N and M, which, if in R, may be left- and
right-isolated, respectively), and, in particular, I−a,R ∉R, I+a,R ∉R for all
a ∈ M non-standard.

f) R is meager in R.

g) Every non-empty interval (a,b)R includes a subset X ⊆R\R with |X | =
2ℵ0 and 〈X ,⊆〉 ordered as reals.

In the proof and also later in this chapter we refer to the following defini-
tion:

3.2.2 Definition. A sequence {ck}k∈ω of elements of M is called downward
cofinal in M if for every a ∈ M, a is non-standard iff a > ck for some k ∈ ω,
that is, if {ck}k∈ω is coinitial in M \N.

Since M is countable, there is a downward cofinal sequence in M.

Proof of 3.2.1. Let Y be a ∆n+1-indicator for R. First observe that if a < b,
then I+a,R 6= I−b,R (that is R+∩R− =;). Otherwise we have (a,b)R = {I} where
I+a,R = I−b,R = I ∈ R. But then Y (a,b) = c is nonstandard. For every n ∈ N,
considering the element µx : Y (a, x)> n, we obtain

M |= (∃x)(a < x < b∧Y (a, y)> n∧Y (y,b)> n)

and thus by overspill, there are c ∈ M \N and d ∈ M such that a < d < b∧
Y (a,d) > c∧Y (d,b) > c. Then (a,d)R and (d,b)R are disjoint, yet both non-
empty, in contradiction to (a,b)R being a singleton.
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We prove a) and b) using Lemma 3.1.9, in which we let R+ take the role of
the set Y . First we must show that the order-type of R+ is 1+η. Countability
of R+ follows from that of M. Since R 6= ;, I+0,R is defined and is clearly the

least element of R+. Suppose I df= I+a,R for some a ∈ M is the greatest element
of R+. Then I ∈R since if I ⊂e J ∈R, we would have some b ∈ J \ I and I+b,R
greater than I. If I = M, then Y (a,b)>N for some b ∈ M by overspill and (3.2)
in the definition of an indicator; this produces a cut from R between a and I,
which contradicts I = I+a,R. Hence I 6= M. But then again, there is some b ∈ M
with a ∈ I < b and since we observed, I ∉R−, so I 6= I−b,R, hence there must be
a cut from R between I and b, contradicting maximality of I.

The proof that R+ is densely ordered goes similarly: if I ⊂e J for I df= I+a,R,

J df= I+b,R and some a,b ∈ M, then I ⊂e I−b,R. Hence, for arbitrary d ∈ I−b,R\ I we
have I < d ∈ I+d,R < b ∈ J.

It remains to verify the conditions 3.1.9 a), b), which means to prove that
R+ ↗ I when I ∈R\R+ and R+ à↗ I when I ∈R+. The latter is obvious. Let
a ∈ I ∈R\R+. We show that I+a,R ⊂e I. If I ∈R, then clearly I+a,R ⊆e I and the
inequality follows from I ∉R+. If R↗ I, we may apply the same argument
on some J ∈R with a ∈ J ⊂e I. Finally, I ↙R implies R↗ I in this case, since
otherwise I+b,R = I for some large enough b ∈ I, contradicting I ∉R+.

c) For every a,b ∈ M such that (a,b)R 6= ; pick Ia,b ∈ (a,b)R and put

Q
df= {Ia,b | a,b ∈ M}.

Q is countable and it is easy to verify that Q=R.
d) is trivial.
Assume from now that every I ∈R satisfies (B).
e) Let I ∈R. Then immediately R↗ I for I 6= N, by from (B). It remains

to show I ↙ R for I 6= M. We first deal with the case I 6= N. Let c ∈ I \N
be as in (B) and fix arbitrary b > I. We have M |= (∃y < b)Y (a, y) > c for all
a ∈ I. Applying overspill to this formula, we obtain some a0 and b0 such
that I < a0 < b0 < b and M |= Y (a0,b0) > c. It follows that some I ⊂e J < b
for some J ∈ R. The case of I = N ∈ R goes analogously: we first note that
M |= Y (m,b) > m for all m ∈ N, b ∈ M \N, then apply overspill to obtain a
non-standard a < b satisfying M |=Y (a,b)> a.

f) Let {ck}k∈ω be a downward cofinal sequence in M. Let

Rk
df= {I ∈R | ck ∈ I and (∀a ∈ I)(∃b ∈ I)M |=Y (a,b)> ck}.

Clearly, R\{N} =⋃
k∈ωRk, since for every N 6= I ∈R we have some c ∈ I \N as

in (B). Then c > ck for some k ∈ ω, so I ∈Rk. It remains to show that all Rk
are nowhere dense in R.

Fix k ∈ω. Every non-empty open subset of R includes a non-empty open
subset of the form (a,b)R, so it suffices to show that if (a,b)R is non-empty,
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then for some d ∈ (a,b), (a,d)R 6= ; but (a,d)Rk = ;. Assume (a,b)R 6= ;,
a,b ∈ M. Then clearly (a,b)R 6= ;, hence M |=Y (a,b)>N. Let, in M,

d df=max{x < b |Y (a, x)≤ ck}.

It is easy to see that d is correctly defined and that M |= Y (a,d) > N. Let
I be a cut from (a,d)R and assume ck ∈ I. Then for all e ∈ I, M |= Y (a, e) ≤
Y (a,d)≤ ck, which means that I ∉Rk.

g) First observe that whenever u,v ∈ M satisfy M |= N < Y (u,v), we can
find e ∈ (u,v) so that M |= N < Y (u, e) and M |= N < Y (e,v), and that we may
further require M |=N < Y (u, e) < c for a given non-standard c ∈ M. Indeed,
we may e.g. put

(3.4) e df=max{x < v |Y (u, x)≤ c∧Y (u, x)≤Y (x,v)}

and observe that if Y (u, e) ∈ N, then Y (u, e+1) would be in N, too, and thus
less than both c and Y (e,v) (which must be non-standard). This contradicts
maximality of e.

Let (a,b)R be non-empty, a,b ∈ M, and let {ck}k∈ω be a downward cofinal
sequence in M as before. We use the fact just proved to construct a family
{aσ}σ∈<ω2 of points from the interval (a,b) indexed by finite sequences of 0’s
and 1’s such that the following conditions hold for every τ ∈ <ω2:

1) a < aτ < aτ0 < aτ00 < aτ01 < aτ1 < aτ10 < aτ11 < b

2) M |=N<Y (aτ,aτ0), M |=N<Y (aτ0,aτ1)< c|τ|, and M |=N<Y (aτ1,b),

where τi denotes the function τ∪ {〈|τ|, i〉}. We put a;
df= a+1 and proceed by

induction on the length of τ. Let σ ∈ <ω2 and assume ασ is defined together
with all ατ such that |τ| ≤ |σ|. We obtain aσ0 and aσ1 as follows: let b′ df= τ1
if |σ| ≥ 1 and σ is of the form τ0 for some τ ∈ |σ|−12, and b′ df= b otherwise. In
both cases we assume M |= N < Y (aσ,b′) based on the property 2). Now, we
first apply (3.4) with u = aσ, v = b′ and c = c0 to find aσ0 and then again with
u = aσ0, v = b′, and c = c|σ| to find aσ1. Clearly, 1) holds and 2) holds with σ

substituted for τ, so the induction may proceed.
For any f ∈ ω2 we now let

I f
df= {x ∈ M | x ≤ aτ0 for some τ= f �k,k ∈ω}.

If f , g ∈ ω2 and f 6= g, let k ∈ ω be the least such that f (k) 6= g(k). If, say,
f (k) = 0, then aσ0 ∈ I f < aσ1 ∈ Ig, where σ = f �k = g�k, so I f 6= Ig. Note
also that R ↗ I f for every f ∈ ω2, since {a f �k | k ∈ ω} is cofinal in I f and
every (a f �k,a f �(k+1))R is non-empty by 2). Finally, note that perhaps with the
countably many exceptions when f is eventually constantly 1, I f ∉R. Indeed,
assume I f ∈R and let c >N be as in (B) for I df= I f ; since f is not eventually
constantly 1, there exists k ∈ω such that f (k)= 0 and ck < c. Then for τ= f �k
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we have aτ0 < aτ00 ∈ I f < aτ1 and M |= Y (aτ0,aτ1) < ck. For all e ∈ I thus
M |=Y (aτ0, e)< c, which contradicts the choice of c.

We have shown that X ′ = {I f | f ∈ ω2∧ f is not eventually constantly 1} ⊆
R\R. By removing from X ′ the least element I0 where 0=ω× {0}, we obtain

a set X of cuts from (a,b)R \R ordered as reals. 2

There are two typical examples for the conditions (A), (B).

3.2.3 Proposition. Let n ≥ 0, M |= IΣn+1 and let Y be an indicator for a
family R in M that is ∆n+1 in IΣn+1. Then, for every I ∈R,

a) If N 6= I 4n M and I |= IΣn+1, then I satisfies (A).

b) If N 6= I 4n M and I |= IΣn+2, then I satisfies (B).

Proof. If M ∈R, then (3.4) with I = M follows immediately by overspill from
the condition (3.2) in the definition of indicator.

Let I ∈R, N 6= I ≺e
n M, I |= IΣn+1. Then for a fixed m ∈N and every a ∈ I

and b ∈ M \ I, M |= Y (a,b) > m. Let us fix a ∈ I. Since I 4n M I satisfies
all Πn+1 formulae true in M with parameters from I. Now, the assumption
ensure that Y (a,b) > m is equivalent to a Πn+1 formula in both M and I.
So, using these facts and underspill in M, there exists some b ∈ I such that
I |= Y (a,b) > m. Now a) follows by Σn+1-overspill of I |= (∃y)Y (a, y) > m in I
and n-elementarity and b) follows byΠn+2-overspill of I |= (∀x)(∃y)Y (a, y)> m
in I and n-elementarity. 2

In [Kot84b], Kotlarski investigated the family of cuts satisfying PA and
obtained a theorem which generalizes easily as follows:

3.2.4 Theorem (Kotlarski). Let M |= IΣn+1 and assume R 6= ; has a ∆n+1-
indicator in M. Then there exists a countably infinite family {qk}k∈ω, of recur-
sive Σn+1-types such that if a realizes qi and j 6= i, then q j is not realized by
any element of I+a,R\ I−a,R. It follows that there is a countable family {ak}k∈ω of
elements of M such that the models I+ak,R are pairwise non-isomorphic.

Proof. C.f. [Kot84b, Theorem 4] and note that the proof there translates di-
rectly from the family of initial substructure satisfying PA with Y ∈ Σ1 to
our general setting. The existence of the family {ak}k∈ω ⊆ M follows from the
bounded complexity of the types {qk}k∈ω. 2

3.2.5 Remark. Indicators for models of theories yield unprovable theorems
of the form (∀x)(∃y)Y (x, y) > x (see esp. [Par78], [Kir77]). We may approxi-
mate the distribution of initial substructures satisfying this formula. Let Y
be a ∆n+1-indicator for a family R of cuts of M |= IΣn+1 and let

(3.5) RY
df= {I ⊆e M | (∀a ∈ I)(∃b ∈ I)M |=Y (a,b)> a}.
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Then RY =RY ⊆R, yet R 6⊆RY .
The closeness of RY is trivial and clearly, if N 6= I ∈RY , then R↗ I. If N ∈

RY , then for every standard n and non-standard b, M |= (∃y < b)Y (n, y) > n.
By overspill, M |= (∃y < b)Y (a, y) > a for some non-standard a; in particular,
(a,b)R is non-empty. Since we can start with arbitrarily small b >N, we have
N↙R. Finally, in order to show that R is not a subset of RY , take any non-
standard I ∈R and a ∈ I \N and let b df= µy : Y (a, y)> a. Note that (a,b)RY is
empty, while (a,b)R is not. 2

3.3 Specific families, n-elementary cuts

In the rest of the chapter, we focus on some prominent families of cuts.

3.3.1 Definition. Let n ≥ 0, a ∈ M. We define the following families of cuts
of M:

En
df= {I ⊆e M | I 4n M} (n-elementary cuts)

RT
df= {I ⊆e M | I |= T} (cuts satisfying an LAr-theory T)

Pn
df= En ∩RPA (n-elementary cuts satisfying PA)

In
df= {I ∈ En | M ∼= I} (n-elementary cuts isomorphic to M)

Dn
df= {IΣn (M;a) | a ∈ M} (cuts determined by elements Σn-defined

from a parameter)

3.3.2 Remark.
a) E0 is the family of all initial substructures of M.
b) En = En for all n ≥ 0.
c) It is easy to see that if the family E= ⋂

n∈ωEn of all elementary initial
substructures of M |=PA is non-empty, it does not have a ;-defined indicator
in M (for consider some non-standard a for which b df= µy : Y (a, y)> a exists
in M, take I ∈ (a,b)E, and arrive at a contradiction by proving that b ∈ I). The
same argument applies to any non-empty subfamily of E.

d) No non-empty subfamily of En has a Σn- or Πn-indicator (by the same
argument as above).

e) The order type and related properties of the family E heavily depend
on the model M. The saturated and recursively saturated cases have been
investigated by Kotlarski in [Kot83], [Kot84a].

If R is either of the above families, RN is defined by replacing our model
M with N in the definition of R, as in item b) in the Definition 3.1.6.

3.3.3 Fact. Let T be a recursively axiomatized LAr-theory. Then

a) RT has a ∆1(IΣ1)-indicator in PA.
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b) RT ∩En has a ∆n+1(IΣn+1)-indicator in PA.

c) RT is symbiotic with its subfamily consisting of recursively saturated
initial substructures satisfying T. Moreover, if (a,b)RT is non-empty,
then there are 2ℵ0 initial substructures I |= T such that a ∈ I < b and I
is recursively saturated.

d) If T ′ is a recursively axiomatized LAr-theory that proves the same Π2
sentences as T, then RT and RT ′ are symbiotic.

Proof. Cf. e.g. [Kay91b], pp. 198-206. 2

3.3.4 Remark. Alternative proofs can be found in [KMM81] (and references),
where it is further shown that if T is a recursively axiomatized second-order
arithmetical theory then the family of initial substructures of M that are
expandable to models of T (meaning there exists ∃X⊆P(M) such that 〈I,X〉 |=
T) is symbiotic with the family of initial substructures satisfying the first-
order Π2-consequences of T.

Applying the general Theorem 3.2.1, we obtain:

3.3.5 Corollary.
• En and En ∩RIΣk with k ≤ n satisfy 3.2.1 a)–c).

• En ∩RIΣn+1 satisfies 3.2.1 a)–d).

• Pn and En ∩RIΣk with k ≥ n+2 satisfy 3.2.1 a)–g).

• If R⊆ En∩RIΣn+1 has a ∆n+1(IΣn+1) indicator, then I+a,R 6|= IΣn+1 for very
a ∈ M \N, so R+∩R=;.

Proof. Follows from 3.3.3, b) and 3.2.3. The last item follows by 3.2.1 d). 2

3.3.6 Fact. For every n ∈ N, if R ⊆ P0 is a family of initial substructures of
M |=PA closed under isomorphism, then for every a,b ∈ M, (a,b)R∩En is either
empty or of cardinality 2ℵ0 .

Proof. Cf. e.g. [Kay91b, Theorem 12.7. on page 167]. 2

3.3.7 Proposition. Let M |= IΣn+1 and a ∈ M \N. Then I+a,En
⊂e I+a,En∩RIΣn+1

.

In particular, En ∩RIΣn+1 ( En and Pn ( En.

Proof. Inclusion ⊆e is clear, we show that it is strict. We define

ξ(x, y, z,u)
df⇐⇒

{
x+ z ≤ y∧u ∈ 〈[x, y]〉z+1 ∧ (∀i < z−1)(∀ f < i)(∀p < (u)i)

[ (∃s)SatΠn−1( f , ‹p, s›)→ (∃s < (u)i+1)SatΠn−1( f , ‹p, s›) ].
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The formula in square brackets is Πn, so ξ is ∆n+1 in IΣ1. For z non-standard,
the formula ensures that u is a sequence of elements from the interval [x, y]
such that O df= {{(u)i | i ≥ j} | j ∈ω} is a Σn-bounding overlay in M (c.f. 2.3.5). It
follows that a formula Y (x, y) = z of the form z = max{z′ ≤ y | (∃u)ξ(x, y, z′,u)}
is an indicator for the family En in models of IΣn+1. Observe that Y (x, y) =
z is equivalent to a Σn+1 formula (since we may find some w such that all
sequences of elements from (x, y) are below w and then replace the unbounded
quantifier (∃u) occurring within the maximization with (∃u < w)).

We now show that IΣn+1 ` (∀x, z)(∃y)(∃u)ξ(x, y, z,u). By induction on z:
For z = 0, we have trivially ξ(x, x,0, ‹x›). Let z ≥ 1 and let ξ(x, y′, z,v) for some
v, y′. By SΠn−1 (provable in IΣn) we have

(∃y)(∀ f ≤ z)(∀p ≤ (v)z−1)[(∃s)SatΠn−1( f ,〈p, s〉)→ (∃s < y)SatΠn−1( f ,〈p, s〉)].

This is a Σn+1-formula in BΣn+1, Let y be as above; we may assume y> y′+1.
Then clearly ξ(x, y, z+1,v`‹y›). This completes the induction. In particular,
we have

(3.6) IΣn+1 ` (∀x, z)(∃y)Y (x, y)≥ z.

Let a ∈ M be non-standard and let, in M, b = µy : Y (a, y)≥ a whose existence
is ensured by (3.6) and M |= IΣn+1. Then Y (a,b) > N, hence there exists I ∈
(a,b)En and so I+a,En

⊂ I < b. We show that I 6|= IΣn+1, i.e. that (a,b)RIΣn+1 = ;,
which gives b < I+a,En∩RIΣn+1

and completes the proof. Indeed, if I |= IΣn+1,
then by (3.6) I |= Y (a,d) ≥ a for some d ∈ I. But since this is a Σn+1 formula,
we have by n-elementarity M |= Y (a,d) ≥ a with d < b, contradicting the
minimality of b. 2

3.4 Cuts satisfying IΣn or PA

We now turn our attention to the families Pn and En∩RIΣn+k . We already know
a lot about them from Corollary 3.3.5. To squeeze a bit more, we applying our
previous results on overlays, studied in Section 2.3:

3.4.1 Theorem. Let M |= IΣn+1, n ≥ 0, k ≥ 1, and let R be either En∩RIΣn+k or
Pn. Then (a,b)R is non-empty iff (a,b)R contains a closed subsetR′ isomorphic
to the Cantor set; moreover, if I ⊆e J are from R′, then I 4n+k J (and I 4 J if
R=Pn).

Proof. Let (a,b)R 6= ;. We will define a certain increasing sequence u of ele-
ments from [a,b] with `(u) >N and define R′ as the family of all cuts I such
that I ∩ u is unbounded in I. Then, clearly, R′ is closed under union and
intersection and order-isomorphic to the set of all cuts of M in the interval
(0,`(u)), hence also to the Cantor set.
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Let Σ<z
m denote the set of all formal Σm formulae f with f < z. We may de-

fine (formal) notions such as Σ<z
m -bounding and Σ<z

m -diagonally indiscernible
as in Definition 2.3.1, using SatΣn ( f , ‹. . .›).

Depending on the choice of R, let ξ(u,a,b) be a Σn+1-formula expressing:

1) for R = En ∩RIΣn+k : ξ(u,a,b)
df⇐⇒ ‘u is an increasing sequence of ele-

ments from [a,b] coding a Σ<`(u)
n -bounding set of Σ<`(u)

n (v0;v1, . . . ,vk)-
diagonally indiscernible elements’,

2) for R = Pn: ξ(u,a,b)
df⇐⇒ ‘u is an increasing sequence of elements from

[a,b] coding a Σ<`(u)
n -bounding set of ∆<`(u)

0 -diagonally indiscernible el-
ements’.

If M |= ξ(u,a,b) for u with `(u)>N, then R′ df= {I | u∩ I is unbounded in I} has
the required properties by Theorem 2.3.2, a) (or b) and c) for Pn) applied on
the overlay O df= {U} where U df= {(u)i |N< i and N< `(u)− i}. It suffices to show
that for every l ∈N, M |= (∃u)(`(u)= l ∧ξ(u,a,b)) and apply Σn+1-overspill in
M to obtain u of non-standard length.

Fix some I ∈ (a,b)R and l standard. We discuss the two cases separately:
1) R = Pn: By Theorem 2.3.2 b), there is a ∆0-diagonally indiscernible

Σn-bounding overlay O in M, unbounded in I. Since l is finite, there is some
X ∈ O that is a Σ<l

n -bounding ∆<l
0 -diagonally indiscernible elements. X is

unbounded in I and we may take u as the first l elements from X (since l is
truly finite, we may code u in I).

2) R= En ∩RIΣn+k : In I, using IΣn+1 we may find an unbounded ∆n+1-set
X that is Σ<l

n -bounding in I. As I 4n M, X (as a subset of M) is Σ<l
n -bounding

in M. Let D be a diagonal partition of 〈X 〉k defined by

u Dt v
df⇐⇒ (∀y< t)

∧
f ∈Σ<l

n

[SatΣn ( f , ‹y›`u)↔SatΣn ( f , ‹y›`v)], t ∈ X , u,v ∈ 〈X 〉k.

D is clearly ∆n+1 in I and ∆1-estimated (‖Dt‖ ≤ 2lt). By 2.1.6 b), X has
a D-homogeneous (in I) subset u ⊆ X with |u| = l; u is ∆<l

0 (1;k)-diagonally
indiscernible in I (and hence in M).

2

3.4.2 Remarks.
a) If M |= IΣn+1, then En ⊆RIΣn , so in the last theorem, the case of k = 0

is trivial.
b) If ξ(u,a,b) is the formula from the last proof (for either R), then

Y (x, y)=max{z ≤ b | (∃u)(ξ(u, x, y)∧`(u)= z)}

is a Σn+1-indicator forR (the quantifier (∃u) can be bounded by a ∆1-definable
function of y).

c) En ∩RBΣn+k+1 and En ∩RIΣn+k are symbiotic families in models of IΣn+1.
This is a consequence of the last theorem and 1.8.4.



3.5 ISOMORPHIC CUTS 48

3.5 Isomorphic cuts

In this section, we study the family In. First, we abbreviate the notation:

3.5.1 Definition. If A is a substructure of B, a ∈ A and b ∈ B, we write
〈A,a〉 ∼=n 〈B,a〉 if A4n B and 〈A,a〉 ∼= 〈B,b〉 (i.e. there is an isomorphism of A
and B sending a on b).

The main tool in this part will be the following well-known fundamental
lemma:

3.5.2 Lemma (Friedman). Let M be a countable model of PA, n ≥ 0 and
a,b, c ∈ M. Then the following conditions are equivalent:

a) there exists I ⊂e M such that I < b and 〈I,a〉 ∼=n 〈M, c〉
b) M |= (∃x̄)θ(x̄, c)→ (∃x̄ < b)θ(x̄,a) for any Πn formula θ(x̄, y).

Proof. See [Kay91b, Theorem 12.3.]. 2

3.5.3 Corollary. Let M be a countable model of PA, let a,b, n ≥ 0. Then the
following are equivalent:

a) there exists an initial substructure I < b of M such that 〈M,a〉 ∼=n 〈I,a〉,
b) M |= (∃x̄)θ(x̄,a)→ (∃x̄ < b)θ(x̄,a) for any Πn formula θ(x̄, y). 2

3.5.4 Proposition. Let N 6= I ∈Pn and I ↙ In. Then In ↗ I.

Proof. It follows from 3.5.3 that there is a Πn+1 formula ξ(x, y, z) such that for
every non-standard model N |= PA, N |= ξ(a,b, c) for a,b, c ∈ N with c,b non-
standard if and only if there is an n-elementary initial substructure I of N
such that I < b and 〈N,a〉 ∼= 〈I,a〉. By Friedman’s theorem for any N |=PA and
arbitrary large a ∈ N there exists an initial substructure I 4n N satisfying
〈N,a〉 ∼= 〈I,a〉.

Let I ⊂e M satisfy the hypothesis of the claim and fix some a ∈ I. We
may assume the formula ξ(x, y, z) to be of the form (∀u)θ(x, y, z,u) with θ ∈
Σn. Since I |= PA, there is an initial substructure I ′ 4n I with 〈I ′,a〉 ∼= 〈I,a〉.
Hence, for some non-standard b, c ∈ I, I |= (∀u)θ(a,b, c,u). Thus, using n-
elementarity of I in M and overspill in M, we have M |= (∀u < d)θ(a,b, c,u)
for some d ∈ M \ I. Since I ↙ In, there exists some J ∈ In with I ⊂e J < d.
By n-elementarity of J, J |= (∀u)θ(a,b, c,u). It follows that there exists an
initial substructure J′ 4n J with J′ < b and 〈J′,a〉 ∼= 〈J,a〉; we thus have
M ∼= J ∼= J′4n J4n M so J′ ∈ In and a ∈ J′ ⊂e I, which finishes the proof. 2

We now also immediately obtain the following provisional information
about the set

⋂
In, which we fully characterize later.
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3.5.5 Corollary. If
⋂
In 6=N, then

⋂
In ∈ En \Pn. 2

Recall from 1.8.10 that for X ⊆ M and a set of LAr-formulae Γ,

IΓ(M; X ) df= {x ∈ M | M |= x < a for some a ∈DfeΓ(M; X )}.

3.5.6 Proposition. For every I ⊆e M and n ≥ 0, I 4n+1 M iff for every a ∈ I,
IΣn+1(M;a)⊆ I.

Proof. Left-to-right: Let a ∈ I 4n+1 M, b ∈ IΣn+1(M;a), and let ϕ(x, y) be
a Σn+1-formula such that M |= ϕ(b,a) ∧ (∀x)(ϕ(x,a) → x = b). Then M |=
(∃x)ϕ(x,a), hence by (n+ 1)-elementarity of I, I |= ϕ(b′,a) for some b′ ∈ I.
But then again M |=ϕ(b′,a), so b′ = b and b ∈ I as required.

Conversely, assume IΣn+1(M;a) ⊆ I for all a ∈ I. Clearly, I is closed under
operations. Let ā ∈ I and let ϕ(x, ȳ) be aΠn-formula such that M |= (∃x)ϕ(x, ā).
Let b df= µx : ϕ(x, ā). Then b ∈ IΣn+1(M; ā). Since I is closed under operations,
we may use some trivial coding to represent ā as an element c ∈ I and see
that b ∈ IΣn+1(M; c). Then, by the premise, b ∈ I. 2

3.5.7 Proposition. Let n ≥ 0, a,b ∈ M |= BΠn. Then b ∈ Dfe∆n+1(M;a) iff
h(b)= b for every every isomorphism h : M → I with I 4e

n M and h(a)= a.

Proof. Let b ∈ Dfe∆n+1(M;a). Then some Σn+1-formula ϕ(x, y) defines b in M
over a. In particular, we have

M |=ϕ(b,a)∧ (∀y)(ϕ(y,a)→ y= b).

Let I ∈ Ia
n be arbitrary and let h : M → I be an arbitrary isomorphism of 〈M,a〉

and 〈I,a〉. Let b′ = h(b). Then I |= ϕ(b′,a). Since ϕ is Σn+1 and I 4n M, we
have M |=ϕ(b′,a) and hence b′ = b.

Conversely, suppose b ∉ Dfe∆n+1(M;a). We find h and I so that h(b) 6= b.
Let

p(x) df= {ϕ(x,a) |ϕ ∈Σn+1 and M |=ϕ(b,a)}∪ {x 6= b}.

Clearly p(x) is a type over M of bounded complexity, codable in M, and finitely
satisfied in M (since otherwise some ϕ1(x,a)∧ . . .ϕk(x,a) with ϕi(x,a) ∈ p(x)
Σn+1-defines b in M over a). It follows that p(x) is realized in M by some b′

(c.f. e.g. [Kay91b, 12.1 and 12.2]). Since M |= BΠn, there exists c ∈ M such
that the following holds for every Πn formula ψ(ū, x, y):

M |= (∃ū)ψ(ū,a,b′)→ (∃ū < c)ψ(ū,a,b′).

Since b and b′ satisfy in M the same Σn+1 formulae over a, we have for every
Πn-formula

M |= (∃ū)ψ(ū,a,b)→ (∃ū < c)ψ(ū,a,b′).

By Corollary 3.5.3 (and an obvious use of coding on the pairs 〈a,b〉 and 〈a,b′〉),
there exists I ≺e

n M such that a,b′ ∈ I < c and 〈M,a,b〉 ∼= 〈I,a,b′〉, which com-
pletes the proof. 2
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We now investigate a localized version of the family In, namely the family
of initial substructures of M satisfying 〈I,a〉 ∼=n 〈M,a〉 for some a ∈ M. For
this we introduce:

3.5.8 Definition. Let n ≥ 0 and a ∈ M. Define

Ia
n

df= {I ⊆e M | 〈I,a〉 ∼=n 〈M,a〉}.

In particular, I0
n = In.

3.5.9 Proposition. Let n ≥ 0, a ∈ M. Then
⋂
Ia

n = IΣn+1(M;a).

Proof. For ⊇, let e ∈ DfeΣn+1(M;a) and I ∈ Ia
n. We show that e ∈ I. Let

(∃y)ϕ(x, y,a) with ϕ ∈ Πn be a Σn+1-formula defining e in M over {a}. Since
〈I,a〉 ∼=n 〈M,a〉, I |= (∃x, y)ϕ(x, y,a). Let c,d ∈ I be such that I |= ϕ(c,d,a).
Since I 4n M, we have M |= ϕ(c,d,a), hence M |= (∃y)ϕ(c, y,a) which yields
c = e, so e ∈ I.

Conversely, let b > IΣn+1(M;a). We show that there is an I ∈ Ia
n with b > I.

By Corollary 3.5.3, we only need to check that for every Πn-formula ϕ(x, y)
satisfies M |= (∃x)ϕ(x,a) → (∃x < b)ϕ(x,a). Assume otherwise; that is, let us
for some Πn-formula ϕ(x, y) have

(3.7) M |= (∃x)ϕ(x,a)∧ (∀x < b)¬ϕ(x,a).

By Πn-induction in M, we can take b0
df= µx :ϕ(x,a). Then b0 ∈ DfeΣn+1(M;a),

so b0 < b in contradiction with (3.7). 2

3.5.10 Corollary.
a) N 6= I 4n+1 M iff for all a ∈ I, there exists J ⊂e I with 〈J,a〉 ∼=n 〈M,a〉.
b) N4n+1 M iff N↙ In.

Proof. a) If a is trivial, the claim is trivial; for a > N it follows immediately
from 3.5.6, 3.5.9 and 1.8.11 b).

b), apply 3.5.6 on I =N and 3.5.9 on a ∈N. 2

The following result indicates that there is a substantial difference be-
tween the families Ia

n and {I ∈ In | a ∈ I}.

3.5.11 Proposition. Let M |=PA be non-standard. For every c ∈ M, there are
a,b ∈ M such that c < a < b and (a,b)In 6= ;, but (a,b)I

a
n =;.

Proof. Let c ∈ M \N. Using SatΣ(n+1), it is easy to verify that the cut
Ic

df= ⋃
x≤c IΣn+1(M; x) is bounded in M. Let Ic < d ∈ M. Then J df= I+d,In

is
the intersection of all I ∈ In containing d. We show that for some a ∈ J,
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IΣn+1(M;a) 6⊆ J, which gives both c < a (by our choice of d) and using 3.5.9
also

(3.8)
⋂

{I ∈ In | a ∈ I}= I+a,In
= I+d,In

= J ( IΣn+1(M;a)=⋂
Ia

n.

Indeed, suppose IΣn+1(M;a)⊆ J for all a ∈ J; then J4n+1 M, by 3.5.6, and J =
IΣn+1(M;d), since by the assumption, IΣn+1(M;d) ⊆ J and J = I+d,In

⊆ ⋂
Id

n =
IΣn+1(M;d), by 3.5.9. We thus have IΣn+1(M;d) |= IΣn+1, contradicting 1.8.11.
This proves (3.8). Now, any b ∈ IΣn+1(M;a)\ J has the required property. 2

3.5.12 Corollary. En+1 ( In. 2

3.5.13 Remark. R. Kaye claims in the Exercise 12.8 in his book [Kay91b]
that ‘if M |= PA is countable and non-standard, a,b ∈ M, n ∈ N, and there
is I 4n M with a ∈ I < b and M ∼= I ⊆e M, then there exists J 4n M with
a ∈ J < b, J ⊆e M, and an isomorphism h : M → J such that h(a) = a’. Our
last Proposition clearly falsifies his claim. In fact, it can be refuted in an even
more straightforward way, just by using 3.5.3 (or Theorem 12.3. of [Kay91b])
and Vaught-Tarski’s test to show that if the claim were true, then every non-
standard initial substructure I of M such that M ∼= I would satisfy I 4 M,
which is of course contradictory.

3.5.14 Proposition. Let M |= IΣn+1. Let Y be a ∆n+1-indicator Y in M for
a family R such that R↗ M. Let p ∈ M be such that for some non-standard
c ∈DfeΣn+1(M; p), M |= (∀x)(∃y)Y (x, y)> c. Then R↗ IΣn+1(M; p).

(The last assumption is satisfied for example, if M |= IΣn+2 and M has a
downward cofinal sequence of Πn-minimal elements in M. Then the required
c can be found for arbitrary p.)

Proof. Let R, Y be as above. First, if M |= IΣn+2, then M |= (∀x)(∃y)Y (x, y)> c
for some non-standard c by overspill; thus if M has a downward cofinal
sequence of Πn-minimal elements, we may find such a non-standard c in
DfeΣn+1(M;;). This proves the sequel. Let p, c ∈ M meet the assumptions
and let a ∈ IΣn+1(M; p). We must find some I ∈R with a ∈ I ⊂e IΣn+1(M; p). Let
b = µy : Y (a, y)> c. Note that b ∈ DfeΣn+1(M; c) and since c ∈ DfeΣn+1(M; p),
we have b ∈ DfeΣn+1(M; p). Now, Y (a,b) > N, so a ∈ I < b for some I ∈ R as
required. 2

3.5.15 Remark. Models of PA with downward cofinal sequences of Πn-
minimal elements exist by [McA78, Theorem 4.4]; McAloon proved that ev-
ery first-order theory T extending PA consistent with the set of true Πn+2
sentences and represented in N by a Πn formula has such a model and every
recursively axiomatized extension of PA has a model with a downward cofinal
sequence of ∆1-definable elements.
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3.5.16 Corollary. Pn ↗ I does not necessarily imply In ↗ I.

Proof. Assume M |= IΣn+2 has a downward cofinal sequence of Πn-minimal
elements. Then by 3.5.14, we have Pn ↗ IΣn+1(M;;)=⋂

I0
n =⋂

In 6=N. 2

3.6 Cuts determined by Σn-definable elements

We have seen that elements of the family Dn
df= {IΣn+1(M;a) | a ∈ M} are exactly

intersections of the form
⋂
Ia

n with a ∈ M; in particular Dn+1 ⊆ In.

3.6.1 Proposition. For every n ≥ 0 the family Dn+1 has a ∆n+2-indicator in
models of IΣn+1.

Proof. Let Y (x, y)= z be the following formula:

z =max{z′ ≤ y | (∃w ∈ (x, y))[(∀ f < z′)((∃v)SatΠn ( f ,〈w,v〉)→
(∃v < y)SatΠn ( f ,〈w,v〉))]}(3.9)

Note that this formula is ∆n+2 in BΣn+1. We claim that Y (x, y) = z is an in-
dicator for the family Dn+1. Indeed, if Y (a,b)= c ≥N, then according to (3.9),
there exists d ∈ (a,b) such that for every Πn formula ϕ(w,v) (∃v)ϕ(v,d) im-
plies (∃v < b)ϕ(v,d). In particular, if e ∈ DfeΠn (M;d), then there is a Πn for-
mula ϕ(w,v) such that M |=ϕ(d, e)∧(∀v)(ϕ(d,v)→ v = e). It follows that e < b.
Since DfeΠn (M;d) is cofinal in IΣn+1(M;d), we have a ∈ IΣn+1(M;d)< b.

Conversely, let a ∈ IΣn+1(M;d) < b for some d ∈ M. Then there exists e ∈
(a,b)∩DfeΠn (M;d). Clearly, DfeΠn (M; e) ⊆ DfeΠn (M;d), so a ∈ IΣn+1(M; e) < b.
Let ϕ(w,v) be a Πn formula such that M |= (∃v)ϕ(e,v) and let v0

df= µv :ϕ(e,v).
Then v0 ∈ IΣn+1(M; e)= IΠn (M; e). In particular, v0 < b. Hence the subformula
in square brackets in (3.9) holds for every z′ standard and w, x, y equal to
e,a,b respectively. In particular, M |= Y (a,b) > N (the subformula in square
brackets is Πn+1, so IΣn+1 suffices to define Y (a,b)). 2

3.6.2 Remark. There can be no Σn+1 or Πn+1 indicator for Dn+1 in models
of PA since otherwise, as we show below, the families Dn+1 and Pn would
be symbiotic. This, however, is not the case since Pn 6= Dn+1 (this will be
discussed in the concluding Section 3.7 that follows). Suppose Y is either
a Σn+1- or Πn+1-indicator for Dn+1 in models of PA. Let a ∈ I ∈ Pn be non-
standard. Then there are some b, c ∈ I non-standard such that I |=Y (a,b)= c.
If Y is Σn+1, then, by Σn-elementarity, M |= Y (a,b) = c, and consequently
Dn+1 ↗ I, so I ∈Dn+1. For a Πn+1 indicator, we arrive at the same conclusion
because I |=Y (a,b)= c implies M |=Y (a,b) 6= n for every n ∈N.

3.6.3 Remark. We do not know any ∆n+2 indicator for the family In. Of
course, it would exist if Dn+1 and In turned out to be symbiotic, but as we
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remark later, this remains unclear. A ∆n+3 indicator can be constructed using
Friedman’s theorem:

Y (x, y) df=max{z′ ≤ y | (∃w0)(∃w ∈ (x, y))[(∀ f < z′)((∃v)SatΠn ( f ,〈w0,v〉)→
(∃v < y)SatΠn ( f ,〈w,v〉))]}

3.7 Conclusion to the Chapter

For a given non-standard element a, the cuts I+a,R for the families studied in
this chapter are ordered according to the following figure:

...........
..........
..........
..........

N a

...........
..........
..........
..........

I+a,In

...........
..........
..........
..........

I+a,Ia
n

IΣn+1 (M;a)
...........
..........
..........
..........

I+a,En+1

...........
..........
..........
..........

I+a,Pn+1

...........
..........
..........
..........

M

For some a, the first two cuts on the picture may actually equal (for example,
when a is Σn+1-definable in M), however, by 3.5.11, I+a,Ia

n
6= I+a,In

for unbound-
edly many a’s. All other cuts on the picture are distinct.

In terms of the closure of the families of cuts in question, we have

Pn ) In ⊇Dn+1 ) En+1 )Pn+1.

The inclusions are clear, only their strictness deserves some explanation:

• Pn ) In: for example, if N4n M but N 64n+1 M, then N = I+0,Pn
6= I+0,In

.
C.f. also Corollary 3.5.16.

• Dn+1 ) En+1: IΣn+1(M;a) for a non-standard belongs to the family on the
left by definition, but not to the family on the right (Fact 1.8.11).

• En+1 )Pn+1: see 3.3.7.

• In ⊇Dn+1: although we have proved that for some a ∈ M there are cuts
from In below IΣn+1(M;a), we did not actually prove that there is no
b ∈ IΣn+1(M;a) with a < b and IΣn+1(M;b) ⊂ IΣn+1(M;a). Whether such a
b exists for every a we leave as an open problem (although the solution
might turn out to be easy). To that we remark, that if M includes a
cofinal subset X such that DfeΣ1(N;a) ⊆ M whenever a ∈ X and M ⊂e

N |=PA, then I0 and D1 are symbiotic.

3.7.1 Remark. The inclusion In ⊇Pn+1 was proved by Ignjatović’s in [Ign86];
we have presented a finer result slicing En+1 strictly in between.

3.7.2 Remark. Let M |= PA be non-standard, I ⊆e M ∼=n I, a,b ∈ M, and a ∈
I < b. Do these assumption imply either of the following?

a) There exists exist some c < b and J ⊆e M such that a ≤ c ∈ J < b and
〈J, c〉 ∼=n 〈M, c〉.

b) There exist some c < b and J ⊆e M such that 〈J,a〉 ∼=n 〈M, c〉?



CHAPTER 4
THE STONE SPACE OF THE

ALGEBRA OF DEFINABLE

SUBSETS

In this chapter, we study non-principal ultrafilters on the algebra D(M, M) of
definable subsets of some countable model M |=PA, confronting properties of
the ultrafilters with properties of the corresponding cuts.

There is a natural analogy with a classical topic, the study of βω, the
Stone space of P(ω); here ω is replaced by the model M and the full algebra
P(ω) by a countable subalgebra with arithmetical comprehension; the notion
of finiteness is replaced with M-finiteness or I-finiteness for some cut I of
M. This analogy brings both similarities and differences (for example, while
in βω selective ultrafilters are exactly the Ramsey ultrafilters [Boo71], here
these two notions do not coincide with a prominent counterexample where N
is not a strong cut of M).

This field has been studied before, most notably by Kirby in [Kir82] and
esp. [Kir84], where he introduced and analyzed the notions of definable and
weakly definable ultrafilters (see also [KP86], [Sch93]), giving a partial solu-
tion to a related 2-3-problem.

The topic of this chapter relates closely to the study of types of a com-
plete extension T of PA, pioneered by Gaifman [Gai76]. If M is a minimal
model of T and p(x) is a complete type in T, then p(x) determines uniquely
an ultrafilter on the algebra of definable subsets of M. Conversely, every such
ultrafilter determines uniquely a type in T. These connection have been fur-
ther pursued by Kirby in [Kir84]. For arithmetic the situation is simplified
by the fact that due to coding, it suffices to consider 1-types instead of n-types
for all n ∈ω as usual in general model theory.

This chapter describes of the topic from a non-standard viewpoint: we sit-
uate the countable base model M into some ℵ1-saturated elementary exten-
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sion C, which can be seen as a ‘big model’, a tool widely exploited in modern
model theory allowing useful descriptions of different situations. In partic-
ular, this allows us to replace the algebra D(M, M) with its isomorphic copy
D(C, M) and identify ultrafilters on the latter algebra with their non-empty
intersections, called monads.

This description establishes a close relationship with the so-called ba-
sic equivalences studied in the context of Vopěnka’s Alternative Set Theory
(AST) [Vop79], see e.g. [ČK83], [ČV87], [ČV89]; specifically, we use here a
certain description of minimal monads as stated in Theorem 4.3.40.

In Section 4.2, we introduce the basic notions, namely monads and gaps,
and develop some essential tools for their study, namely an overspill principle
for certain Π-like properties of monads that covers most combinatorial no-
tions studied in this Chapter and then standard tools like the Rudin-Keisler
ordering on monads and model extensions that go hand in hand with each
other as expected.

In Section 4.3 we first briefly survey semi-regular, regular and strong cuts
as introduced by Kirby and Paris, and then characterize these cuts in terms
of monads and gaps.

The chief new results are contained in Section 4.4, where we return to the
topic of diagonal indiscernibility explored previously in Chapter 2, this time
in a new context of monads. We analyze in detail the combinatorial strength
of diagonally indiscernible monads in Theorems 4.4.6, 4.4.11, and 4.4.16. In
the second part of the section, we investigate relationships between relatively
large RK-minimal monads (corresponding to selective ultrafilters), relatively
large p-monads, and regular monads, proving that, in this order, the proper-
ties are of strictly decreasing strength. In particular, we show that p-monads
that are not RK-minimal form a dense subset of every gap that contains a reg-
ular monad. This result contrasts with the classical situation in βω, where
the proof of the existence of p-point ultrafilters that are not selective relies
on assumptions beyond ZFC, such as Martin’s axiom ([Boo71]).

To make the text to a large extent self-contained, this Chapter is accom-
panied by Appendix B, where we reprove the well-known fact that a cut I is
strong iff I∗ |= ACA0 and a theorem derived by Kirby, which complements our
investigation of diagonal partition properties of monads.
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4.1 Definitions and preliminaries

Recall that by C is ℵ1-saturated it is meant that every 1-type p(x) in C over
a countable set of parameters X ⊆ C is realized in C, i.e. C |= p(α) for some
α ∈ C. Equivalently, every countable system of definable subsets of C (from
parameters) with the finite intersection property has non-empty intersection.

Assumption. Throughout this chapter, M is a fixed countable model of PA
and C is a fixed ℵ1-saturated elementary extension of M.

4.1.1 Definition. Let B be a boolean algebra. The Stone space of B, S(B), is
a set of all ultrafilters on B augmented with the topology whose (cl)open basis
consists of all sets of the form {U ∈ S(B) | b ∈U} with b ∈ B.

4.1.2 Fact. The topology of S(B) is Hausdorff, compact, and totally discon-
nected. 2

4.1.3 Definition. For a model N |=LAr, a class Γ of LAr-formulae closed under
propositional combinations, and a set X ⊆ N,

DΓ(N, X ) df= {ϕ(N, p̄) | p̄ ∈ X and ϕ(x, ȳ) ∈Γ},

is the set of Γ-definable subsets of N over parameters from X ; DΓ(N, X ) forms
a Boolean algebra of sets. We denote the Stone space of this algebra by
SΓ(N, X ).

Notation. In the most typical setting for this chapter, N = C. In that case
we simplify the notation by omitting the reference to C, writing just DΓ(X )
and SΓ(X ) instead of DΓ(C, X ) and SΓ(C, X ); if further X = M, we reduce the
notation to just DΓ, SΓ. If Γ consists of all LAr-formulae, we omit the subscript
Γ. In particular,

D
df=DFm(LAr)(C, M) and S df= SFm(LAr)(M,C).

Since M4C, a function sending each X ∈D to X ∩M ∈D(M, M) is an isomor-
phism of D and D(M, M):

D∼=D(M, M).

4.1.4 Proposition. Every infinite set from D can be divided into two infi-
nite sets from D. Consequently, D is the up to isomorphism unique countable
atomic saturated Boolean algebra.

Proof. The following is known: there is an up to isomorphism unique Boolean
algebra B that is countable, atomic and satisfies the following splitting prop-
erty: ‘if the set of atoms below an a ∈ B is infinite, then there are disjoint
a1,a2 ∈ B whose supremum is a such that the sets of atoms below a1 and
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a2 are also infinite’. There exists a countable saturated model for the theory
of atomic Boolean algebras; by saturation, this model has the splitting prop-
erty. Consequently, every countable atomic Boolean algebra with the splitting
property is saturated.

Now, D is countable and atomic ({min X } being an atom under X ∈ D).
If X ∈ D, let X (0) df= {α ∈ X | |X ∩ [0,α]| is odd} and X (1) df= {α ∈ X | |X ∩
[0,α]| is even}. Then X (0) ∪ X (1) = X , X (0) ∩ X (1) =;, and if X is infinite, then
so are X (0), X (1). Thus D has the splitting property. 2

4.2 The enlarged setting

We now have the basic situation 〈M,D(M, M)〉 naturally enlarged by
〈C,D(C, M)〉. In this section, we introduce basic notions related to this en-
larged setting, such as monads and gaps, and develop some necessary tools
and methods of description, namely an overspill principle for properties of
monads, Rudin-Keisler pre-order, and model extensions. We show that the
Rudin-Keisler pre-order is closely related to model extensions in a way usu-
ally expected in similar contexts.

Equivalences, monads, and gaps

4.2.1 Definition. Let Γ be a class of LAr-formulae and X ⊆ C countable.
a) We define an equivalence ∼Γ,X on C by

α∼Γ,X β
df⇐⇒ (∀Y ∈DΓ(X ))(α ∈Y ↔β ∈Y ).

b) Equivalence classes of ∼Γ,X are called monads of ∼Γ,X or just ∼Γ,X -
monads. (The notion is borrowed from AST, c.f. [ČK83]).

c) A ∼Γ,X -monad is said to be trivial, if it is an atom of the algebra DΓ(X );
otherwise we say that the monad is non-trivial.

d) The equivalence ∼Γ,X induces a natural topology on C whose basic open
sets are the sets from DΓ(X ). We refer to this topology as ∼Γ,X -topology
on C; thus we say, for example, that Y ⊆ C is ∼Γ,X -closed if it is a com-
plement of an open set in the ∼Γ,X -topology.

e) Z ⊆ C is ∼Γ,X -figure if α∼Γ,X β ∈ Z implies α ∈ Z.

If X ⊆ C and X is countable, there is a one-to-one correspondence be-
tween monads of ∼Γ,X and ultrafilters from SΓ(X ): if U ∈ SΓ(X ), then, by
ℵ1-saturation of C,

⋂
U is non-empty and clearly a ∼Γ,X -monad; conversely,

every ∼Γ,X -monad Z determines an ultrafilter

U(Z) df= {Y |Y ∈DΓ(X )∧Z ⊆Y }



4.2 THE ENLARGED SETTING 58

Then U(Z) ∈ SΓ(X ) and
⋂
U(Z) = Z. Moreover, U(Z) is principal iff Z is a

trivial ∼Γ,X -monad.
Observe that the quotient C/∼Γ,X with the topology induced by ∼Γ,X -

topology on C is homeomorphic to SΓ(X ) via the correspondence between
monads and ultrafilters outlined above. We therefore refer to this topology
as the Stone topology of C/∼Γ,X .

∼Γ,X -figures are just unions of arbitrary subsets of the factor C/∼Γ,X . In
particular, every Y ∈ DΓ(X ) is a ∼Γ,X -figure, as is every ∼Γ,X -open or ∼Γ,X -
closed set.

Notation. From now on, we reserve the letters a,b, . . . (possibly with sub-
scripts or primes) for elements of M and the symbols α,β, . . . (possibly with
subscripts or primes) for elements of C. When comparing elements from C,
the symbol < always refers to the ordering <C. Since the model C underlines
most our work, we shall from now implicitly consider all intervals of the form
[α,β], (α,β) with α,β ∈ C as intervals in 〈C,<C〉, even if α,β ∈ M. We further
abbreviate the symbols sup≤C (Z) and inf≤C (Z) for Z ⊆ C (see the definitions
on page 13) as supZ and inf Z.

Let Γ< be the class of all formulae in the language 〈<〉. The algebra DΓ< is
isomorphic to the interval algebra of 〈M,<M〉; it coincides with the subalgebra
of D generated by intervals of the form [a,→) with a ∈ M.

4.2.2 Definition. We denote ∼Γ< as m and refer to non-trivial m-monads as
gaps.† We reserve the symbol g for denoting gaps.

For α < β from C, αm β iff [α,β]∩M = ;; thus the trivial m-monads are
of the form {a} with a ∈ M, while non-trivial m-monads (gaps) are maximal
convex subsets of 〈C,<〉 that are disjoint from M.

The factor C/m is naturally ordered by representatives. Under this order-
ing, the set of all gaps, C/m\{{a} | a ∈ M}, is order-isomorphic to the Cantor’s
set.

To each cut I of M naturally correspond two cuts of C: sup I and inf (M\I).
Their difference is the gap of I:

gI
df= inf (M \ I)\ sup I =⋂

{ [a,b] | a ∈ I ∧b ∈ M \ I}.

Correspondingly, each gap g determines a unique cut of M:

Ig
df= inf (g)∩M = sup (g)∩M.

The gap gM is called the unbounded gap and is also denoted by g∞; all other
gaps are bounded.

†In some literature the term gap is used for a different concept, namely for interstical gaps,
also called skies, c.f. [KS06, p. 17].
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For a gap g, we put

D(g) df= {X ∈D | g∩ X 6= ;}.

(This slight abuse of notation is hopefully redeemed by the fact that the sym-
bols for gaps are reserved so there should be no confusion with other usage of
the symbol D(. . .). Observe that D(g) is not a Boolean algebra!)

4.2.3 Proposition. X ∈D(g) iff X ∈D and X ∩ Ig is cofinal in Ig.

Proof. Immediate from M4C and ℵ1-saturation of C. 2

The larger the class Γ, the finer the equivalence ∼Γ. For example: if
Γ+ = Fm((〈0,S,+,<〉)), then applying the well known quantifier elimination
theorem for Presburger arithmetic, we obtain

α∼Γ+ β iff αmβ∧ (∀k ∈N)(α≡β (mod k)).

Our fundamental equivalence will be ∼Γ,M for Γ df= Fm(LAr). This equiva-
lence represents the basic form of indiscernibility in the model C with respect
to M, sometimes referred to as 1-indiscernibility—if α∼Γ.M β, then α cannot
be distinguished from β by any LAr-formula with parameters from M. The
equivalence refines both m and ∼Γ+ ; in particular, non-trivial ∼Γ,M-monads
are included in gaps.

4.2.4 Definition. We shall denote ∼Γ,M with Γ df=Fm(LAr) by just ∼ and refer
to ∼-monads simply as monads. We reserve symbols m and n (possibly with
subscripts or primes) for non-trivial monads. For a non-trivial monad m, the
symbol Im will denote the cut inf(m)∩M ⊆e M. For α ∈ C\M, the symbol m(α)
will denote the non-trivial monad containing α.

4.2.5 Proposition.
a) Every infinite X ∈D intersects a gap. For every gap g and every X ∈D(g),

X ∩g decomposes into 2ℵ0 monads.

b) Every infinite interval [a,b] with a,b ∈ M includes 2ℵ0 gaps.

c) Every monad is both cofinal and coinitial in its gap.

d) Every monad is densely ordered by <.

Proof. a) If X ∈D is infinite, let Y df= {a ∈ X | |X ∩ [0,a]| ∈N}. Then Y consists
of the first ω elements from X in the order < and I = M∩supY is a cut of M.
By saturation, X ∩gI 6= ;.
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The proof that every gap decomposes into 2ℵ0 monads is basically itera-
tion of the splitting process described in the proof of 4.1.4 above. We post-
pone the details to 4.2.15 where we present a generalized version of the con-
struction. Its application yielding our present claim is described in Exam-
ple 4.2.16.

b) This has an elementary proof, but we may reuse our previous general
results: By a), an infinite interval (a,b) with a,b ∈ M intersects a gap. Thus,
for the family R

df= {I | I ⊆e M} of all cuts of M, (a,b)R 6= ;. The function
Y (x, y) = y− x is clearly an indicator for R. Thus, by 3.2.1, (a,b)R is of cardi-
nality 2ℵ0 .

c) First, for every X ∈ D(g), X ∩ g is both cofinal and coinitial in g. In-
deed, for every a ∈ I, C |= (∃x ∈ X )x > a. The same holds in M and for
b df= min(X ∩ (a,→)) we thus have b ∈ M, b ≤ α, so b ∈ I. This proves that
X ∩ I is unbounded in I. Then β

df= max X ∩ [a,α) gives β ∈ g∩ X with β < α,
proving coinitiality of X ∩g in g. Cofinality is proved similarly.

For monads, the claim follows by ℵ1-saturation: Let m = ⋂
n∈ω Xn with

Xn ∈ D for n ∈ ω and let α ∈ g. Then [0,α)∩ Xn 6= ; for all n ∈ ω. Hence
by saturation, [0,α)∩m 6= ;, so m is coinitial in g. The proof of cofinality is
similar.

d) To prove that < is a dense order on m, it suffices to show that X∩(α,β) 6=
; for every X ∈U(m) and α < β from m, and apply ℵ1-saturation. Indeed, if
X ∩ (α,β) were empty, then α,β would each fall in a different block of the
partition {X (0), X (1)} of X defined above. But as both blocks are in D, m must
be included in one of them. 2

The following lemma is a variant of the overspill principle.

4.2.6 Lemma. Let g be a gap, γ ∈ g, X ∈D. If g∩ [0,γ] ⊆ X or g∩ [γ,→) ⊆ X,
then g⊆ X.

Proof. Assume g∩ [0,γ] ⊆ X with γ ∈ g and let δ df= µx < γ : [x,γ]⊆ X . Then
δ ∈ inf g, so there is some d ∈ Ig such that δ < d; then [d,γ] ⊆ X . If g = g∞,
then [d,→)∩M ⊆ X∩M, so [d,→)⊆ X by elementarity. Otherwise let c ∈ M\N
and e df=max{y< c | [d, y]⊆ X }. Then e ∈ M and e > γ, so e > g and we are done.
The case with [γ,→)⊆ X is proved similarly. 2

Functions and images of monads and gaps

We apply the basic set-theoretic notation and terminology described in Sec-
tion 1.5 to the model C. In particular, functions and relations on C are sets of
pairs obtained using Cantor’s pairing function.

4.2.7 Definition. We define

F
df= {F ∈D | F is a function}.
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As usual, if F ∈ F, we write F(α) = β if 〈α,β〉 ∈ F. For a cut I, we further
denote

F(I) df= {F ∈F | F ′′I ⊆ I ∧dom(F) ∈D(gI )}

and refer to functions from F(I) as I-functions.

We now describe how functions operate on monads and gaps:

4.2.8 Theorem. Let g be a gap, m⊆ g a monad and F ∈F. Then:

a) If dom(F)∩m 6= ;, then dom(F) ⊆ m and F ′′m is a monad (trivial or
non-trivial).

b) If F ′′m∩m 6= ;, then F�m is the identity on m.

c) If F ′′Ig ⊆ Ig, then F ′′ sup Ig ⊆ sup Ig and F ′′ supg⊆ supg. If, additionally,
x ≤ F(x) for all x ∈ dom(F), then F ′′g⊆ g.

d) Let α,β ∈ g be such that G(α) < β for every G ∈ F(Ig) with α ∈ dom(G).
Then m∩ [α,β] 6= ;.

Proof. a) Let F ∈ F be a function with dom(F)∩m 6= ;; then m ⊆ dom(F) be-
cause dom(F) ∈D. Let α,β ∈m and X ∈D. If F(α) ∈ X ∈D, then α ∈ F−1[X ] ∈D,
thus m ⊆ F−1[X ], hence F(β) ∈ X . Thus F(α) ∼ F(β), so F ′′m is included
in some monad; if it is a trivial monad, we are done. Otherwise assume
F ′′m ⊆ n where n is a non-trivial monad. Let γ ∈ n, X ∈ U(m), and α ∈ m.
Then γ∼ F(α) ∈ F ′′X ∈D, so γ ∈ F ′′X . By ℵ1-saturation, γ ∈ F ′′m; altogether,
F ′′m= n.

b) Let F ′′m∩m 6= ;. By Item a), F ′′m is a monad, so F ′′m = m. Suppose
F(α) 6=α for some α ∈m. Then β 6= F(β) for all β ∈m since α ∈Y df= {β ∈ dom(F) |
β 6= F(β)} ∈ D and hence m ⊆ Y . Let X df= Y ∩F−1[Y ]. Clearly, m ⊆ X . By the
3-set Lemma 1.8.15, there is an M-definable partition P of X with ‖P‖ = 3
such that F ′′P(i)∩P(i) =; for all i < 3. For some i0 ∈ {0,1,2} thus α ∈ P(i0) and
hence m⊆ P(i0). Now F(α) ∉ P(i0) contradicts the fact that F(α) ∈m⊆ P(i0).

c) Let I df= Ig and F ∈ F such that F ′′I ⊆ I. Let a ∈ I. Now, F ′′[0,a] ⊆ sup I,
for otherwise F ′′[0,a]∩[b,→) 6= ; for all b ∈ I and by overspill in M, this holds
also for some b ∈ M \ I. Thus there exist c ∈ M ∩ [0,a] such that F(c) > b > I,
contradicting F ′′I ⊆ I. This proves the inclusion F ′′ sup I ⊆ sup I. Similarly,
if α ∈ g and F(α) > g, then F(α) > b for some b ∈ M \ I. Let c df= µx : F(x)> b.
Then c ∈ M and c <α, contradicting F ′′I ⊆ I. This proves F ′′ supg⊆ supg. The
sequel is an immediate consequence.

d) Let α,β ∈ g be as in the claim. It suffices to show that X ∩ [α,β] 6= ;
for every X ∈ U(m) and apply ℵ1-saturation. For a given X , let GX ∈ F be
defined by GX (x) df= min(X ∩ [x,→)). Now, X ∩ I is cofinal in I, so we have
GX ∈F(I). Also, since X∩g is cofinal in g, we have g⊆ dom(GX ). In particular,
GX (α) is defined and by our assumption, GX (α) < β. Now, GX (α) ∈ X , so
GX (α) ∈ [α,β]∩ X . 2
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Monadic overspill and distribution of monads in gaps

For properties of monads studied in this work, occurrence of one monad with
such property in a gap often yields a great plenitude of monads of the kind.
In this paragraph, we identify some common features of such properties and
give a general theorem about this.

4.2.9 Definition. Let ϕ(X , x̄) be an arithmetical LII-formula in one set vari-
able X . We say that the formula ϕ(X , x̄) has monadic overspill over X for
parameters ᾱ ∈ C, if for every non-trivial monad m,

(4.1) C |=ϕ(m, ᾱ) iff (∃Y0 ∈U(m))(∀Y ∈U(m))C |= (Y ⊆Y0 →ϕ(Y , ᾱ)).

(This definition is meaningful according to the notation established in Sec-
tion 1.5; C |= ϕ(m, ᾱ) just means that ϕ(X , ᾱ) holds in the expansion of C in
which X is interpreted by m.)

4.2.10 Definition. Let X ⊆ C be any subset (not necessarily M-definable).
Then for α ∈ C, 〈X 〉α denotes the set of all increasing sequences (coded in C)
of length α with elements in X .

Note that for X ∈D and a ∈ M, 〈X 〉a ∈D.

4.2.11 Lemma (on monadic overspill).
Let ϕ(X , z, ȳ) be an arithmetical LII-formula of the form

(∀x1, . . . , xn ∈ 〈X 〉z)ψ(x1, . . . , xn, ȳ),

where ψ is an LAr-formula. Then ϕ(X ,d, ᾱ) has monadic overspill over X for
parameters d ∈ M, ᾱ ∈ C.

Proof. The implication from right to left in (4.1) is trivial in this case. For
the converse implication, assume C |=ϕ(m, ᾱ), but suppose that for every Y0 ∈
U(m) there is Y ⊆ Y0, Y ∈ U(m), such that C |= ¬ϕ(Y , ᾱ); then for some δ̄ ∈
〈Y 〉d ⊆ 〈Y0〉d, C |= ¬ψ(δ̄, ᾱ). This makes p( ȳ) df= {¬ψ( ȳ, ᾱ)∧ ȳ ∈ 〈Y0〉a | Y0 ∈
U(m) } an n-type in C. By ℵ1-saturation, p( ȳ) is satisfied by some γ̄ ∈ C.
Then γ̄ ∈ 〈m〉a = ⋂

{〈Y0〉a | Y0 ∈U(m)} and C |= ¬ψ(γ̄, ᾱ). This contradicts the
assumption C |=ϕ(m, ᾱ). 2

4.2.12 Example. For a fixed F ∈ F, the formulae ‘F is 1-1 on X ’ and ‘F is
constant on X ’ have monadic overspill over X (applying the lemma for z = 2
and replacing F with its LAr

M definition to meet the requirements on ψ).

4.2.13 Remark. The restriction on the form (or rather complexity) of ϕ in
the Lemma on monadic overspill is important. For example the formula (∀x ∈
X )(∃y ∈ X )y< x holds if X is a monad but not if X ∈D.
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4.2.14 Definition.
a) A simple property in C is a sequence Φ(X )= {ϕ(X )n}n∈ω of arithmetical

LII-formulae with parameters from M and a single set variable X . We say
that a subset Y ⊆ C satisfies (or has) the simple property Φ(X ) in C, writing
C |=Φ(Y ) or just Φ(Y ), if C |=ϕ(Y ) for each formula ϕ(X ) from Φ(X ).

b) We say that a simple property Φ(X ) has monadic overspill (over X ) if
every ϕ(X ) from Φ(X ) has monadic overspill over X (for the parameters from
M occurring in ϕ).

c) A simple property Φ(X ) is dense in a gap g if

(∀Y ∈D(g))(∃m⊆Y )C |=Φ(m).

(This just means that the set of monads {m | C |=Φ(m) } is dense in g/∼ with
the Stone topology).

d) A simple property Φ(X ) is distributive over a gap g if for each Y ∈D(g),
Y ∩g includes a closed ∼-figure Z consisting of 2ℵ0 monads that satisfy Φ(X ).

4.2.15 Theorem. LetΦ(X ) be a simple property with monadic overspill. Then
Φ(X ) is dense in a gap g if and only if it is distributive over g.

Proof. Right-to-left, it is trivial. Let Φ(X ) be as assumed and dense in g and
let Y ∈ D(g). Let {D i}i∈ω be a complete enumeration of D and L0 ⊃ L1 ⊃ . . . a
sequence of intervals with endpoints in M such that g=⋂

n∈ωLn.
For X ∈D, let X (0), X (1) be the partition of X such that X (0) contains just

every other element of X in the canonical order and X (1) = X \ X (0) (as in the
proof of 4.1.4). Clearly for X ∈D(g), both X (0), X (0) ∈D(g).

We shall construct an ω-high binary tree with elements from D(g) indexed
by functions from n2. For f : n → 2, let f` i denote the function f ∪{〈n, i〉}. The
construction starts with X; = Y . At the n-th stage, given X f ∈ D(g) with
f ∈ n2, we find X f`0 and X f`1 in D(g) such that for i ∈ {0,1}:

1) X f`0 ∩ X f`1 =;,

2) either X f` i ⊆ Dn or X f` i ⊆ C \ Dn,

3) X f` i ⊆ X f ∩Ln,

4) ϕk(X f` i) for all k < n.

We first show that such X f`0 and X f`1 can indeed be found. Fix i ∈ {0,1}, and
using the fact that the property Φ(X ) is dense in g, let m be arbitrary monad
satisfying Φ(m) and included in g∩X (i)

f . One of the sets Dn,C\Dn includes m;
let us denote that set by D. Using monadic overspill for m, we may now find
X f` i ⊆ X (i)

f ∩Ln ∩D such that ϕk(X f` i) for all k < n. Thus, all requirements
of 3)–4) have been met.

For every f ∈ ω2 now put X f
df=⋂

n∈ω X f �n and let Z df=⋃
f ∈ω2 X f .
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Let f ∈ ω2. The condition 1) ensures that if g ∈ ω2 and g 6= f , then X f ∩
X g = ;, 2) ensures that X f is a monad, 3) ensures that X f ⊆ Y ∩g, and 4)
ensures that Φ(X f ) by monadic overspill. Thus Z is a figure included in Y ∩g

and consists of 2ℵ0 monads that all satisfy Φ(X ).
It thus remains to show that Z is closed in the ∼-topology. For that, ob-

serve that
⋃

f ∈ω2 X f =⋂
n∈ω

⋃
g∈n2 X g. The inclusion ⊇ follows from 1). The set

on the right is closed because it is an intersection of sets from D, which are
clopen. 2

4.2.16 Example. Every gap includes 2ℵ0 monads. This follows from Theo-
rem 4.2.15 by the fact that {(∀x ∈Y )x = x} is a simple property that (trivially)
has monadic overspill and is dense in every gap.

Rudin-Keisler pre-order on monads

4.2.17 Definition. The Rudin-Keisler (RK) pre-order on non-trivial monads
is defined as follows:

m¹RK n
df⇐⇒ (∃F ∈F)F ′′n=m.

It is accompanied by the Rudin-Keisler equivalence on non-trivial monads:

m³RK n
df⇐⇒ (∃F ∈F)(F ′′m= n∧F is one-to-one).

For F,m,n as above, we write F : m³RK n.

4.2.18 Theorem. Let m,n be non-trivial monads and F,G ∈F.

a) If m³RK n and F ′′m= n, then F is one-to-one on m.

b) m³RK n iff m¹RK n and n¹RK m.

c) If F ′′m=G′′m= n and m³RK n, then F�m=G�m.

d) ¹RK is a pre-order and induces a partial order vRK on the equivalence
classes of ³RK. The partial order vRK is upward directed (thus for every
m0,m1 there is m such that both m0 ¹RK m and m1 ¹RK m) and has no
maximal elements (thus for every m there is n such that m¹RK n 6³RK m).

e) Every equivalence class [m]³RK
is countable and totally ordered by the

relation ≤F defined for m1,m2 ∈ [m]³RK
as follows:

m1 ≤F m2
df⇐⇒α≤ F(α), whenever α ∈m1 and F ′′m1 ³RK m2.

Moreover, if inf(m) 6=N, then the order type of 〈 [m]³RK
,≤F 〉 is η · (∗ω+ω),

i.e. that of the lexicographical ordering on Q×Z.
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Proof. a) Let F, m, and n be as assumed in the claim. The relation ³RK is
clearly an equivalence, so G : n³RK m for some G ∈F. Then F ◦G maps m onto
m, hence (F ◦G)�m= id�m by 4.2.8 b). It follows that F is one-to-one on m.

b) Left-to-right is immediate. Assume F,G ∈ F, F ′′m = n and G′′n = m.
Then, just as above, F ◦G is identical on m, so F is 1-1 on m. Using monadic
overspill, F is 1-1 on some X . The restriction F�X witnesses m³RK n.

c) By item a), F is 1-1 on m so by monadic overspill, we may assume F
to be 1-1 on its domain. Then F−1 ∈ F and maps n onto m. Thus G ◦F−1 is
identical on m. Hence, restricting everything to m, F = id◦F =G◦F−1◦F =G.

d) Clearly ¹RK is reflexive and transitive, so it is a pre-order on monads.
It induces a partial order vRK on the set of ³RK-equivalence classes as follows:

[m]³RK
vRK [n]³RK

df⇐⇒m¹RK n.

The correctness of the definition is obvious. The anti-symmetry of vRK follows
from b).

Let m0,m1 be non-trivial monads and take α0 ∈ m1,α0 ∈ m1 and let m
df=

m(〈α0,α1〉). For i ∈ {0,1}, the i-th projections of the Cantor’s pairing function,
πi(x)= 〈x〉i, maps m onto mi, so mi ¹RK m.

Let m be a non-trivial monad. Take α,β ∈ m such that α 6= β and for
γ = 〈α,β〉, let n

df= m(γ). For πi as above, we have πi
′′n = n for both i = 0,1.

Thus m ¹RK n. But m 6³RK n, since otherwise π0�n = π1�n by item c) which is
not possible, since π1(γ) = α 6= β = π2(γ), γ ∈ n. For any m, we have found n

strictly
e) Clearly, if α,β ∈m1, then F(α) ≤ α↔ F(β) ≤ β. This, and item c) estab-

lish correctness of the definition of the order ≤F. The weak anti-symmetry
of the relation ≤F is proved as follows: let m1 ≤F m2 and m2 ≤F m1. Then for
F : m1 ³RK m2 and G : m2 ³RK m1, G(F(α)) ≤ F(α) ≤ α. Since G(F(α)) ∈ m1,
F ◦G coincides with the identity map on m1 by 4.2.8 b). It thus follows that
G(F(α)) = F(α) = α, hence m1 =m2. Verifying that ≤F is reflexive, transitive,
and total is trivial.

Since F is countable, [m]³RK
is countable, too. If m is a monad, then m+1 df=

{α+ 1 | α ∈ m} and m− 1 df= {α− 1 | α ∈ m} are its immediate successor and
predecessor in the order of ≤F. Hence the [m]³RK

decomposes into Z-blocks of
the ordering ≤F. Let m1 ≤F m2 be monads from different Z-blocks of [m]³RK

and F : m1 ³RK m2. Then x < F(x) on m1. Since N < F(x)− x, there exists
a ∈ M \N such that x < x+2a < F(x). It is obvious that the Z-block of the
monad m1 +a df= {α+a |α ∈m} ∈ [m]³RK

lies strictly between the Z-blocks of m1
and m2. 2

RK-minimal monads

By the last theorem, there may be no ¹RK-maximal monad. We shall see,
however, that there are (in fact many) minimal non-trivial monads, which
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contrasts with the situation of 〈ω,P(ω)〉, where the existence of minimal ul-
trafilters cannot be established using the axioms of ZFC.

4.2.19 Definition. A non-trivial monad m is said to be RK-minimal or just
minimal, if it is minimal with respect to the pre-order ¹RK on non-trivial
monads, i.e. if n¹RK m implies n³RK m for every non-trivial monad n.

4.2.20 Theorem. Let m be a non-trivial monad. The following statements are
equivalent:

a) m is minimal.

b) For every F ∈F with m⊆ dom(F), F�m is constant or one-to-one.

c) For every F ∈F(Im) with m⊆ dom(F), F�m is constant or one-to-one.

d) U(m) is a selective ultrafilter, i.e. for every X ∈U(m) and every partition
P ∈ D of X, there is Y ∈ U(m) such that Y is either homogeneous or
anti-homogeneous for P.

Proof. a)→b) Let m be minimal, F ∈ F, and m⊆ dom(F), and assume F is not
constant on m. Then F ′′m is not a singleton, so by 4.2.8 a), it is a non-trivial
monad. Let n = F ′′m. Then n ¹RK m and by minimality G : n ³RK m for some
1-1 function G ∈F. By 4.2.18 c), F�m=G�m, hence F�m is 1-1.

b)→c) is trivial. c)→d) Let P be a partition on X , P ∈ D, X ∈U(m). Let
G(x) df= min(P[x]) for every x ∈ X ; then G(x) ≤ x. Thus G(x) ∈ F(Im). By the
assumption, one of the following is true: 1) G is constant on m; then m is
homogeneous for P. 2) G is 1-1 on m; then m is anti-homogeneous for P.
Both homogeneity and anti-homogeneity for P are properties with monadic
overspill (4.2.11), so the claim follows.

d)→a) Let F ′′m= n be a non-trivial monad, F ∈ F, X = dom(F) ∈U(m). We
must show that m ³RK n. F naturally determines a partition P on X such
that x P y iff F(x) = F(y). Let Y ⊆ X , Y ∈ U(m) be homogeneous for P or
anti-homogeneous for the partition; in the first case, F ′′Y is a singleton, so n

is trivial—a contradiction. So Y must be anti-homogeneous for P, so F�Y is
1-1. Thus F�X : m³RK n as required. 2

4.2.21 Proposition. If m is a minimal monad included in a gap g, then for
every X ∈D(g), there exists a (minimal) monad n⊆ X ∩g such that m³RK n. In
other words, [m]³RK

is dense in the Stone topology of g/∼.

Proof. Let m be a minimal monad from the gap g and let X ∈D(g). Fix arbi-
trary Y ∈U(m) and define F : Y → X by F(α)=µγ : (γ ∈ X ∧α≤ γ). Since X ∩g

is cofinal in g, Y ∩g ⊆ dom(F) and F ′′m ⊆ g. Thus F ′′m = n is a non-trivial
monad by 4.2.8 a); it is minimal since n¹RK m. 2
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By 4.2.12, { ‘F is one-to-one or constant on X ’ }F∈F is a simple property with
monadic overspill and by 4.2.20 and 4.2.21 it is dense in every gap that in-
cludes a minimal monad. Thus by Theorem 4.2.15, minimal monads are dis-
tributive over every gap that includes one.

Relatively large monads

4.2.22 Definition.
a) A set X ∈D relatively large if it is unbounded or min(X )≤ |X |.
b) A monad m is relatively large if every X ∈U(m) is relatively large.

4.2.23 Proposition. Let I be a proper cut and m ⊆ gI a non-trivial monad.
Then the following conditions are equivalent:

a) m is relatively large

b) (∀a ∈ I)〈m〉a 6= ;,

c) If X ∈U(m) is bounded, then a ≤ |X \ [0,a]| for some a ∈ M \ I,

d) (∀α,β ∈ gI )〈m∩ [α,→)〉β 6= ;.

e) m 6¹RK n for every non-trivial monad n⊆ inf m

f) m 6³RK n for every non-trivial monad n⊆ inf m

Proof. a)→b) Let a ∈ I be arbitrary. For every X ∈U(m), |X \ [0,a]| ≥ a by the
assumption, so 〈X 〉a 6= ;. Since 〈m〉a = ⋂

{〈X 〉a | X ∈U(m)}, the claim follows
by ℵ1-saturation.

b)→c) Let X ∈U(m) be bounded. Then the set Y df= {α |α≤ |X \[0,α]|} ∈D is
bounded too. Now, I ⊆Y because for each b ∈ I we have some u ⊆m⊆ X \[0,b]
with |u| = b, as 〈m〉b 6= ;. Let a df=maxY ∈ M. Then a has the desired property.

c)→d) Let α,β ∈ gI and γ = max{α,β}. Let X ∈U(m). By the assumption,
either |X \[0,γ]| is unbounded or |X \[0,γ]| ≥ γ. In either case, 〈X \[0,γ]〉γ 6= ;.
The claim now follows by ℵ1-saturation.

d)→e) Assume F : n ³RK m for some F ∈ F and n ⊆ inf m. The latter gives
n ⊆ [0,a) for some a ∈ I. By the assumption, there is a coded subset u ⊆ m,
u ∈ C, such that |u| ∈ gI . Then F maps some coded subset v ⊆ [0,a) onto u; we
have a ≥ |v| ≥ |u| ∈ gI—a contradiction.

e)→f) is trivial. f)→a) Let X ∈U(m) and assume it is not relatively large.
Then a = |X | < min X for some a ∈ M, so in fact, a ∈ I. There exists a 1-1
function F ∈ F such that F ′′X = [0,a). But then F maps m on a non-trivial
monad F ′′n= n⊆ [0,a)⊆ inf m and F : m³RK n—a contradiction. 2
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Original gaps

4.2.24 Definition. A gap g is original if

(∀m⊆ g)(∀n⊆ inf g)(m 6³RK n).

An original gap consists of monads that are new, i.e. inequivalent to the
monads in the preceding part of the model C; hence the term.

It is easy to see that the unbounded gap g∞ is original; since every X ∈
D(g∞) is unbounded, all monads from g∞ are relatively large.

4.2.25 Proposition. The following statements are equivalent:

a) The gap g is original.

b) Every monad from g is relatively large.

Proof. Follows from 4.2.23, a)↔e). 2

4.2.26 Proposition. Let g be an original gap, m ⊆ g a monad and X ∈ D(g).
Then there is a monad n⊆ g∩ X such that m³RK n.

Proof. For m, g, and X as above, let F ∈F be the unique enumeration of X , i.e.
an order-preserving map such that rng(F) = X and dom(F) is some interval
in C starting at 0. Then F is 1-1 so n= F ′′m³RK m. Moreover, F(x)≤ x for all
x ∈ X , so n⊆ supg. Originality of g gives n 6⊆ inf g, hence n⊆ g, 2

4.2.27 Remark. The proposition says that for an original gap g and a monad
m ⊆ g, [m]³RK

is dense in g /∼. Still, Theorem 4.2.15 fails, since [m]³RK
is

only countable and thus not distributive over g. This means that for a given
monad m, X ∈ [m]³RK

cannot be expressed by a simple property with monadic
overspill over X .

4.2.28 Remark. Proposition 4.2.26 cannot be reversed in the following sense:
Let g be a bounded original gap and a ∈ M \ Ig. Then a+g

df= {a+α | α ∈ g} is
clearly a gap that is not original but every [m]³RK

with m⊆ a+g is still dense
in (a+g) /∼. Indeed, if we let F(α) df=α−a for α≥ a, then for m⊆ a+g and X ∈
D(a+g) we have F ′′m⊆ g and F ′′X ∈D(g). Applying 4.2.26, there is a monad
n⊆ g∩F ′′X such that F ′′m³RK n. Then m³RK F ′′m³RK n³RK a+n⊆ a+g∩X ,
where a+n

df= {a+α |α ∈ n}.

Model extensions

We now introduce a natural way of obtaining elementary extensions of the
model M. This will allow us to give model-theoretic interpretations to various
properties of monads studied in this chapter.
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4.2.29 Definition. Let Z ⊆ C be a set. Then M[Z] denotes the smallest ele-
mentary submodel of C that includes M∪Z. If Z is finite, say {α1, . . . ,αn}, we
often write M[Z] as M[α1, . . . ,αn].

Clearly M4M[Z]4C. Then 1.8.9 gives

M[Z]=Dfe(C, M∪Z),

which can be in our present context expressed as

(4.2) M[Z]= {F(‹ᾱ›) | F ∈F∧ ᾱ ∈ Z }.

Indeed, if γ ∈ Dfe(C, M ∪ Z), there is an LAr
M -formula ϕ(x, ȳ) and ᾱ ∈ Z such

that C |= γ = µx : ϕ(x, ᾱ). Then F(y) = µx : ϕ(x, (y)0, . . .) defines a function
from F such that F(‹ᾱ›) = γ. This yields ⊆ in the equation (4.2). The reverse
inclusion is similar.

We shall often use the representation of M[Z] given in (4.2).
Let us remark that for α ∈ C, M[α] is isomorphic to the so-called definable

ultrapower of M over the ultrafilter U=U(m(α)) on D:

MU df= {[F]U | F ∈F∧dom(F) ∈U}, where [F]U
df= {G ∈F | dom(F ∩G) ∈U},

with operations defined on MU in the usual way.

4.2.30 Theorem. Let α,β ∈ C. Then

a) m(α) ¹RK m(β) iff there is an elementary embedding f : M[α] → M[β]
that is identical on M.

b) m(α) ³RK m(β) iff there is an isomorphism f : M[α] → M[β] that is iden-
tical on M.

c) α ∼ β iff there is an isomorphism f : M[α] → M[β] such that f (α) = β

and f is identical on M.

Proof. We start by proving c). If α ∼ β, they satisfy the same complete type
in C over M and hence the map id�M∪〈α,β〉 extends uniquely to an isomor-
phism of M[α] and M[β]. Conversely, if f is an isomorphism of M[α] and
M[β] identical on M and f (α) = β, then α and β satisfy the same complete
type in C over M and hence α∼β.

a) Let m(α) ¹RK m(β). This means that for some F ∈ F, F(β) ∼ α. By c),
M[α] ∼= M[F(β)] via some isomorphism f identical on M. Since F(β) ∈ M[β],
we have M[F(β)] 4 M[β] and f is the required embedding. Conversely, if
f : M[α] → M[β] is an elementary embedding identical on M, then M[α] ∼=
M[ f (α)]4M[β]. But then α ∼ f (α) by c) and since f (α) ∈ M[β], f (α) = F(β)
for some F ∈F, hence m(α)=m( f (α))¹RK m(β).

b) Let F : m(α) ³RK m(β), F ∈ F. Since F is 1-1, F−1 ∈ F, so α= F−1(F(α)) ∈
M[F(α)]. Thus M[α] = M[F(α)]. Now, F(α) ∼ β, so by c), M[F(α)] ∼= M[β] via
an isomorphism identical on M. The converse implication follows by a). 2
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We now give two characterizations of minimal monads based on exten-
sions:

4.2.31 Proposition. The following are equivalent for a non-trivial monad m:

a) m is minimal

b) M[α]∩M[β]= M for all α,β ∈m, α 6=β.

c) for some (all) α ∈ m, M[α] is a minimal elementary extension of M (i.e.
if M4N 4M[α] , then either N = M or N = M[α]).

Proof. a)→b) Let m be minimal, α,β ∈m, α 6=β. If γ ∈ M[α]∩M[β], then there
are functions F,G ∈ F such that F(α) = G(β) = γ. By minimality, F is either
one-to-one or constant on m. In the later case, F ′′m = {γ} and γ ∈ M. If F is
one-to-one on m, we may assume it is one-to-one on its whole domain. Then
F−1(G(β)) = α, hence (F−1 ◦G′′m)∩m 6= ; and by item b) of Theorem 4.2.8,
F−1 ◦G is identical on m, hence α=β. This contradiction finishes the proof of
the left-to-right implication.

b)→c) Let α ∈m and M ≺ N 4M[α]. Let γ ∈ N \ M. Since γ ∈ M[α], there
is a function F ∈ F such that F(α) = γ. Now, for every β ∈m, F(β) ∈ M[β]; but
M[β] coincides with M[α] only on M, hence F(β) 6= γ. It follows that F is 1-1
on m. But then there is G ∈F such that G(γ)=α. Thus G(γ) ∈ N, hence α ∈ N,
so M[α]⊆ N.

c)→a) Let M[α] with α ∈m be a minimal elementary extension of M and
n¹RK m. Let F ∈ F be such that F(α) = β ∈ n. Then β ∈ M[α]. Since β ∉ M, we
have M ≺ M[β]4M[α], hence M[α] = M[β] by minimality of the extension.
In particular, α ∈ M[β], thus for some function G ∈F, G(β)=α. It follows that
m¹RK n. 2

4.3 Cuts in the enlarged setting

This section studies how properties of monads and gaps relate to the proper-
ties of the corresponding cuts. For this, we start with a brief survey of basic
types of cuts of models of arithmetic identified by Kirby and Paris.

Basic types of cuts

Kirby and Paris, [Kir77], defined several types of cuts of models of arithmetic
that proved to play prominent roles in the model theory of PA; these are
semi-regular, regular, and strong cuts. We briefly introduce these notions
and recall some well known results about them. The reader may refer to
Kossak’s and Schmerl’s book [KS06] or Kirby’s thesis [Kir77] for details.

4.3.1 Definition. A cut I is said to be semi-regular (in M) if for every F ∈F
(∀a ∈ I)(F ′′[0,a]∩ I is bounded in I).



4.3 CUTS IN THE ENLARGED SETTING 71

Note that if F ′′[0,a] is bounded in I, then F ′′[0,a]∩gI = ; and hence by
overspill, there are b, c ∈ M such that b ∈ I < c and F ′′[0,a]∩ [b, c]=;. Put in
yet another way, I is semi-regular iff gI ∩F ′′ sup I =; for every F ∈F.

Semi-regularity is a direct analogy of regularity for cardinal numbers in
set theory; this analogy becomes explicit when the notion of cofinality for cuts
is introduced: For I ⊆e M, the cofinality of I in M, cfM(I), is the intersection of
all J ⊆e M for which there is a function F ∈ F such that J ⊆ dom(F) and F ′′J
is cofinal in I, i.e. sup≤M (F ′′J) = I. Then I is semi-regular in M iff cfM(I) = I
[Kir77, 2.7]. Thus, I is semi-regular iff for every X ∈ D such that X ∩ I is
cofinal in I there exists an order-preserving function F ∈F ‘compressing’ X∩I
onto I.

In analogy with regular filters rather than regular cardinals, the estab-
lished terminology in the model theory of arithmetic uses the attribute regu-
lar for cuts with the following property:

4.3.2 Definition. A cut I ⊆e M is regular if for every F ∈ F such that
I ⊆ dom(F) and F ′′I ⊆ [0,a] for some a ∈ I, there exists b ∈ [0,a] such that
F−1[{b}]∩ I is cofinal in I.

4.3.3 Remark. Regularity implies semi-regularity, for let I be a regular cut
and let F ∈ F, dom(F) = [0,a], a ∈ I; aiming for a contradiction, assume
rng(F) ∈ D(gI ). The elements of rng(F) naturally partition I into intervals:
let G be a function with dom(G) = sup (rng(F)) such that G(x) df= min{y | x ≤
F(y)∧ [x,F(y))∩ rng(F) = ;}. Then G ∈ F, I ⊆ dom(G), rng(G) ⊆ [0,a], and
each G−1[{y}] with y ∈ rng(G) is an interval, whose only intersection with
rng(F) is its end point, F(y). By regularity, there is b ∈ [0,a] such that
G−1[{b}] ∈ D(gI ). But then gI ⊆ G−1[{b}] and there is some b′ ∈ rng(F) such
that (F(b′),F(b))∩ rng(F) = ;. Then F(b′) is the last element of rng(F) in
I—a contradiction.

Using semi-regularity, we may now replace the condition I ⊆ dom(F) in
the definition of regularity with the condition that dom(F)∩ I is cofinal in I.

4.3.4 Definition. Let X ⊆ C be any subset (not necessarily M-definable).
• Recall that for an equivalence P ∈D, ‖P‖ is the number of equivalence

classes of P (assuming there are only boundedly many of them).
• Let a,b ∈ M, a,b ≥ 1. Let I ⊆e M. We define:

〈X 〉a
b

df= {P ∈D | P is an equivalence, ‖P‖ ≤ b, and 〈X 〉a ⊆ dom(P)},

〈X 〉a
<I

df= ⋃
b∈I

〈X 〉a
b.

We refer to equivalences from 〈X 〉a
b as partitions and to their equivalence

classes as their blocks or parts. Note that if a,b ∈ M, then by our definition
〈X 〉a

b ⊆ D for any subset X ⊆ C and 〈X 〉a ∈ D for X ∈ D. Moreover, if X is
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bounded, it is coded in M, and hence 〈X 〉a, every element of 〈X 〉a
b, as well as

〈X 〉a
b itself are coded in M, too.

The combinatorial property of cuts introduced with regularity naturally
generalizes as follows:

4.3.5 Definition. Let I ⊆e M and X ⊆ C. Then

X → (I)a
b

asserts that for every P ∈ 〈X 〉a
b there exists Y ⊆ X such that Y ∈D(gI ) and Y is

homogeneous for P. The symbol X → (I)a
<I is defined similarly for partitions

from 〈X 〉a
<I .

An equivalent definition in terms of functions would be: X → (I)a
b iff for

every F : 〈X 〉a → [0,b) there is Y ⊆ X with Y ∈ D(gI ) such that F�〈Y 〉a is
constant.

Under this notation, an cut I is regular in M iff I → (I)1
<I .

4.3.6 Proposition. Let I be a semi-regular cut, a ∈ M, and b ∈ I. Then the
following statements are equivalent:

a) I → (I)a
b,

b) (∀X ∈D(gI )) X → (I)a
b.

Proof. b)→a) is trivial. Conversely: Let X ∈D(gI ) and P ∈ 〈X 〉a
b. Let F ∈ F be

the unique order-preserving map of X onto a lower subset of C (i.e. x ∈ X is
the F(x)-th element in X in the ordering by ≤) and let X ′ df= rng(F). It follows
easily from semi-regularity, that F−1 ∈D(I). In particular, X ′∩I is unbounded
in I, so I ⊆ X ′. We transfer the partition P to X ′ as follows: For α ∈ 〈X 〉a, let
Fα denote the unique element of 〈X ′〉a such that (Fα)i = F((α)i) for all i < a.
We may now define an equivalence Q on 〈X ′〉a by

(4.3) 〈α,β〉 ∈Q
df⇐⇒〈Fα,Fβ〉 ∈ P,

for all α,β ∈ 〈X ′〉a. Clearly ‖P‖ = ‖Q‖ ≤ b, so we have Q ∈ 〈X ′〉a
b. Now, I → (I)a

b
gives some Y ′ ∈D(gI ), Y ′ ⊆ X ′, homogeneous for Q. Then Y = F−1[Y ′] ⊆ X is
clearly homogeneous for P; since F−1 ∈F(I) and x ≤ F−1(x) for all x ∈ X ′, Y ∩ I
is unbounded in I. 2

4.3.7 Definition. A cut I ⊆e M is strong in M, if I → (I)n
<I , for every n ∈N.

There is a nice equivalent of strength:

4.3.8 Lemma. A proper cut I of M is strong iff for every F ∈ F there exists
c ∈ M \ I such that F ′′I ⊆ I ∪ [c,→).
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Proof. We shall sometimes use the implication from left-to-right, which we
prove now. We may assume dom(F) is C. Let X df= {‹a,b, c› ∈ 〈C〉3 | F ′′[0,a]∩
[b, c]=;} and X ′ = 〈C〉3\X . The partition of 〈C〉3 to X , X ′ has a homogeneous
set Y ∈D(gI ). The result follows immediately if 〈Y 〉3 ⊆ X by taking arbitrary
c ∈ X ∩ (M \ I). Now, semi-regularity eliminates the other case as it gives for
every a ∈ Y some b, c ∈ M such that gI ⊆ [b, c] and F ′′[0,a]∩ [b, c] = ;; since
Y ∈D(gI ), we may take b, c ∈Y and a < b; then ‹a,b, c› ∈ X .

For proof of the converse implication, see [KS06, 7.3] or [Kir77, 7.5]. 2

We are now about to summarize some fundamental facts concerning the
types of cuts we have just introduced. Some of them are best formulated in
terms of second-order arithmetic, which we introduced in 1.4.

4.3.9 Definition. For an initial substructure I ⊆e M, we define

Cod(M/I) df= {I ∩ X | X ∈D}.

We shall denote the LII structure 〈I,Cod(M/I)〉 by I∗.

Cod(M/I) is a countable Boolean subalgebra of P(I); obviously, Cod(M/M)
is just an isomorphic copy of D. For I =N, Cod(M/N) is the standard system
of M, SSy(M), introduced by H. Friedman ([Fri73]).

Note that for I ⊂e M, Cod(M/I) = {I ∩ X | X ∈ D∆1}, since every set from
Cod(M/I) is of the form A = {(a)i ∈ I | i < `(a)} for some a ∈ M. Moreover, if
I |= IΣ1, then for a given A, the coding element a can be taken from M \ I
arbitrarily close to I, since every bounded part of A is coded in I. Thus if
I ⊂e J ⊂e M and I, J |= IΣ1, then Cod(M/I)=Cod(J/I).

If I ⊂e M and X ,Y ∈D determine the same set from Cod(M/I), i.e. I∩X =
I ∩Y , then the least element of X .− Y is in M \ I; in particular X ∩ supgI =
Y ∩ supgI .

4.3.10 Lemma. For any I ⊂e M |= IΣ0, I∗ |=∆0
1CA0 +BΣ0

1.

Proof. We prove this well-known lemma in B.1. 2

Now we are ready to formulate

4.3.11 Fact. Let I be an initial substructure of M.

a) I is semi-regular in M iff I∗ |= IΣ0
1.

b) I is regular in M iff I∗ |=BΣ0
2.

c) I is strong in M iff I∗ |= ACA0.

Proof. C.f. for example [KS06, Chapter 7]. We prove c) in B.2. 2
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4.3.12 Corollary.
a) If I is semi-regular, then I |= IΣ1.

b) If I is regular, then I |=BΣ2.

c) If I is strong, then I |=PA.

The converse implications do not hold. More specifically, for every n ≥ 0
there are n-elementary initial substructures of M satisfying PA that are not
even semi-regular. Consider the indicator Y from 3.4.2 b) for the family Pn
of n-elementary initial substructures of M satisfying PA. If Y (a,b) = c > N
for a,b ∈ M, then the interval (a,b) includes a coded sequence u of length
`(u) = c, such that every cut in which the elements of u are unbounded, be-
longs to Pn. Thus I = sup≤M { (u)n | n ∈N } ∈ Pn. Yet, if a is non-standard, then
{ (u)i | i < min(a, c) } ∈D(gI ) while min(a, c) ∈ I, hence I is not semi-regular. It
even follows that the families Pn and { I ∈Pn | I is not semi-regular in M } are
symbiotic.

The following well known results are due Kirby and Paris. The proofs can
be found in [Kir77, namely 2.16, 2.18,4.13, 4.19].

4.3.13 Theorem (Kirby and Paris).
a) There is a Σ1 indicator for semi-regular cuts.

b) Semi-regular cuts of M and cuts from RIΣ1 are symbiotic.

c) Regular cuts and semi-regular cuts are symbiotic. In particular, there is
a Σ1 indicator for regular cuts.

d) For every a ∈ M, there is a semi-regular cut I of M such that a ∈ I and I
is not regular; i.e., semi-regular 6= regular.

e) For every a ∈ M, there is a regular cut I such that a ∈ I and I 6|= IΣ2 (and
in fact RIΣ2 à↗ I). Hence BΣ2 in 4.3.12 b) is optimal.

f) A cut I of M is strong in M iff I is semi-regular and I → (I)3
2.

g) There is a Σ1 indicator for the family of strong cuts.

h) There is an elementary end extension N of M such that M is a strong
cut of N.

i) Strong cuts in M and cuts from P0 are symbiotic. 2

In particular, since each of the families of cuts has a Σ1 (and thus ∆1)
indicator, all items from our Theorem 3.2.1 apply. We now start relating the
basic properties of cuts with properties of monads and gaps.

4.3.14 Proposition. A cut I is semi-regular iff gI is an original gap.
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Proof. Let g denote gI . Left-to-right: suppose F : m ³RK n, with m ⊆ g and
n ⊆ inf g. Then n ⊆ [0,a] for some a ∈ I; we have F−1 ∈ F, m ⊆ F−1′′[0,a] ∈
D(g)), which contradicts semi-regularity of I. Conversely: let a ∈ I, F ∈ F,
and suppose F ′′[0,a] ∈ D(g). Let G(x) df= min(F−1[{x}]) for x ∈ dom(F). Then
G is a 1-1 map with dom(G) = rng(F) and rng(F) ⊆ [0,a]. In particular, it
maps some monad m⊆ g onto a non-trivial monad G′′m⊆ inf g, contradicting
originality. 2

Regular monads

In analogy with regular cuts we define:

4.3.15 Definition. Let I be a cut and m a monad in the gap of I. We call m

a regular monad if every function F ∈ F such that m ⊆ dom(F) and rng(F) ⊆
[0,a] for some a ∈ I is constant on m.

In terms of partitions, m is regular iff it is homogeneous for every parti-
tion P ∈ 〈m〉1<I , symbolically m→ (m)1

<I .

4.3.16 Remark. The property of the ultrafilter U(m) corresponding to regu-
larity is called additivity by Kirby [Kir84].

4.3.17 Proposition. Every relatively large minimal monad is regular.

Proof. Let m be relatively large and minimal, F : X → [0,a], X ∈U(m), F ∈ F,
and a ∈ inf (m). By minimality, F is either constant on m (in which case we
are done), or 1-1. In the latter case, F is 1-1 on some Y ⊆ X , Y ∈U(m). Since
m is relatively large, |Y | ≥ |Y \ [0,a]| > a+1, a contradiction. 2

4.3.18 Remark.
a) Every regular monad m is relatively large. Otherwise we could enu-

merate some Y from U(m) by elements less than a = minY < m and thus
partition m into less than a singleton parts.

b) Not every minimal monad is relatively large; in particular, there are
minimal monads that are not regular. Indeed, if m is a minimal monad and
m< a ∈ M, then a+m

df= {a+α |α ∈m} is minimal, but not relatively large.
c) Not every regular monad is minimal; in particular, 4.3.17 cannot be

reversed. As a simple counterexample, consider the gap gN in which all mon-
ads are regular for trivial reasons, yet not all of them are minimal. To find a
non-minimal one, take e.g. the first projection of Cantor’s pairing function:
π0 : x 7→ 〈x〉0. This ;-definable function partitions N into infinitely many
infinite blocks. Since D is countable, we may enumerate (in meta-theory)
all M-definable choice sets for this partition. We may thus construct a non-
increasing sequence {Xn}n∈ω of subsets of N codable in M such that Xn avoids
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both the n-th choice set and the n-th block of the considered partition, while
ensuring that π0 still partitions Xn into infinitely many infinite blocks. The
intersection of {Xn}n∈ω yields a non-minimal monad. We have a stronger re-
sult that generalizes of this construction in Theorem 4.4.25.

4.3.19 Theorem (On regularity). Let I be a cut. The following conditions
are equivalent:

a) I is regular.

b) I is semi-regular and and gI includes a minimal monad.

c) gI includes a relatively large minimal monad.

d) gI includes a regular monad.

Proof. Let g denote the gap gI for brevity.
a)→b) I is semi-regular by 4.3.3. We shall construct a non-increasing se-

quence {Xn}n∈ω of sets from D(g) whose intersection will be a minimal monad
included in g. For that, let {Fn}n∈ω be some enumeration of F and let {Ln}n∈ω
be a sequence of intervals with endpoints in M such that

⋂
n∈ωLn = g. We de-

fine {Xn}n∈ω inductively, starting from arbitrary X0 ∈D(g). At (n+1)-st stage
we ensure that Xn+1 ⊆ Ln and that Fn is either constant of 1-1 on Xn+1.
Let Y df= dom(Fn)∩ Xn ∩ Ln. If Y ∩ g = ;, we put Xn+1

df= Xn ∩ Ln. Other-
wise Y ∈ D(g). Let F df= Fn�Y and Z df= {α ∈ Y | (∀β < α)(β ∈ Y → F(α) 6= F(β))}.
Clearly, F is 1-1 on Z, so if Z ∈ D(g), we may put Xn+1

df= Z. Otherwise Z
is bounded in I, so for some a ∈ I, Z ⊆ [0,a]. Let G(x) = min(F−1[{F(x)}])
for every x ∈ Y . Then G ∈ F, dom(G) = Y and rng(G) = Z ⊆ [0,a]. Applying
regularity of I (and the sequel in Remark 4.3.3), we have G−1[{b}] ∈ D(g) for
some b ∈ Z; we put Xn+1

df= G−1[{b}]. Now, for every x ∈ Xn+1, G(x) = b, thus
F(x) = F(b), hence F is constant on Xn+1. This completes the induction step.
By ℵ1-saturation, there exists α ∈ ⋂

n∈ω Xn. The construction ensures that
m(α) ⊆ g and that every F ∈ F with α ∈ dom(F) is either constant or 1-1 on
m(α), so the monad is minimal by 4.2.20.

b)→c) Trivial, since if I is semi-regular, then every monad included in g

is relatively large by 4.2.25,
c)→d) is a consequence of 4.3.17 .
d)→a) Let m ⊆ g be a regular monad. If F ∈ F satisfies I ⊆ dom(F) and

F ′′I ⊆ [0,a] for some a ∈ I, then m⊆ dom(F), so by definition of regularity for
monads, F is constant on m. By monadic overspill, F is constant on some
X ∈D(m). In particular, X ∈D(g), witnessing regularity of g. 2

The construction in the proof of the implication a)→b) started with arbi-
trary X0 ∈ D(g) and yielded a relatively large minimal monad m ⊆ X0 ∩D(g).
This means that the set of relatively large minimal monads is dense in the
Stone topology of g /∼. Applying 4.2.15, we have
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4.3.20 Corollary. Let g be a gap of a regular cut. Then the set of relatively
large minimal monads is distributive over g. 2

We now give two characterizations of regular monads, one based on the
notion of the Rudin-Keisler pre-order, the other of a model-theoretic nature.
For the latter we need a definition.

4.3.21 Definition. Let N ⊆ C be a submodel such that M ⊆ N and let I be a
cut of M. We write M4I N if N is an elementary I-end extension of M, i.e. if
M4N and N ∩ sup≤N (I)= I.

4.3.22 Proposition. Let M 4I N. If X ∈ D(C, N) and Y ∈ D are such that
X ∩ I =Y ∩ I, then X ∩ sup I =Y ∩ sup I.

Proof. Let X ,Y be as assumed and let Z = X .− Y . Then Z ∈ D(C, N). Let
z ∈ Z be the least element of Z. Then clearly z ∈ N; suppose z ∈ sup I. Then
z ∈ N ∩ sup≤N (I)= I, which contradicts X ∩ I =Y ∩ I. 2

4.3.23 Theorem. Let m be a non-trivial monad, I = Im, and α ∈ m. The fol-
lowing properties are equivalent:

a) m is regular,

b) M4I M[α],

c) n 6¹RK m for every non-trivial monad n⊆ inf m.

Proof. a)→b) Let m be a regular monad, α ∈ m. We only have to prove that
M[α]∩ sup I = I. Recall that M[α] = {F(α) | α ∈ C ∧F ∈ F}. Let F ∈ F satisfy
F(α) ∈ sup I. There is some a ∈ I such that F(α)< a. Let X df= F−1′′[0,a). Then
X ∈U(m) and F�X induces a partition P ∈ 〈X 〉1a such that P(y) = F−1′′{y} for
y ∈ [0,a). Being regular, m is homogeneous for P, hence F ′′m is a singleton. It
follows that F(α) ∈ I.

b)→c) Let M 4I M[α] and suppose there is some n ⊆ sup I such that
n ¹RK m. Then for a certain F ∈ F, F ′′m = n, so F(α) ∈ M[α]∩ sup I \ I—a
contradiction.

c)→a) To see that m is regular, we only have to verify that every F ∈ F
with dom(F) ∈U(m) and rng(F) ⊇ [0,a] for some a ∈ I is constant on m. But
if, for a certain F this was not the case, then n= F ′′m would be a non-trivial
monad from sup I, less or equal to m in the Rudin-Keisler pre-order, which
contradicts our assumption. 2

4.3.24 Remark. Item c) above with 4.2.23 e) give that a regular monad m is
RK-incomparable with any <-less non-trivial monad.
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From Remark 4.3.18 we know there are regular monads that are not min-
imal in the Rudin-Keisler pre-order. At least, regularity is preserved down-
wards within a gap:

4.3.25 Proposition. Let m,n⊆ g be monads such that n¹RK m. If m is regu-
lar, then n is regular, too.

Proof. Let F ∈ F be such that F ′′m = n. It suffices to prove that M[β] is a
I-end extension of M for all β ∈ n. Indeed, if β ∈ n, there is some α ∈ m with
F(α) = β. Clearly M[β] ⊆ M[α], since β = F(α) ∈ M[α], and M[α] is a I-end
extension of M by regularity of m. Hence M[β] must be a I-end extension of
M as well. 2

Ramsey monads

We have already expressed regularity of a monad m ⊆ gI as m → (m)1
<I . The

first item in the following definition generalizes the associated combinatorial
property in the usual way.

4.3.26 Definition. Let k ∈N, a,b ∈ M, a,b,k ≥ 1.

• Let m be a non-trivial monad. We write m→ (m)a
b if m is homogeneous

for every partition P ∈ 〈m〉a
b. If I ⊆e M, we write m→ (m)a

<I meaning
that m→ (m)a

b holds for every b ∈ I.

• In accordance with the terminology for cuts, we say that m is a strong
monad, if m→ (m)n

2 for every n ∈N.

• A non-trivial monad m is an a-monad if 〈m〉a is a monad.

• A subset Y ⊆ C is a set of k-indiscernible elements (over M) if for any
LAr

M -formula ϕ(x1, . . . , xk) and any two increasing k-tuples ~α, ~β of ele-
ments from Y , C |=ϕ(~α)↔ϕ(~β).

Of course, every non-trivial monad m is a 1-monad and satisfies m→ (m)1
2.

Note that by 4.2.11, homogeneity for a partition P with P ∈D is a property
with monadic overspill; thus, if m is homogeneous for P ∈ 〈m〉a

b, then so is
some X ∈U(m).

The following two propositions are easy.

4.3.27 Proposition. Let a,b ∈ M, a ≥ 1, b ≥ 2.

a) If m→ (m)a
2 then m→ (m)a

<N.

b) If m→ (m)a
b and 〈m〉a 6= ;, then (∀c ≤ a)m→ (m)c

b.
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Proof. a) Let m → (m)a
n with n ≥ 2 and P ∈ 〈m〉a

n+1. By joining the first two
blocks of P together (the blocks being naturally ordered by their first ele-
ments), we obtain some P ′ ∈ 〈m〉a

n. The hypothesis gives homogeneity for P ′.
If 〈m〉a falls into the joint pair of blocks of P, we apply m→ (m)a

2 on a partition
consisting just of these two blocks.

b) For c < a, P ∈ 〈X 〉c
b, and X ∈ U(m), let P ′ df= {〈α,β〉 | α,β ∈ 〈X 〉a ∧

〈α�c,β�c〉 ∈ P}, where α�c denotes the initial subsequence of the sequence
α with `(α�c) = c. Then P ′ ∈ 〈m〉a

b. By the assumption, m is homogeneous
for P ′. Let γ,δ ∈ 〈m〉c. We shall show that there is some ε ∈ 〈m〉a−c such
that (ε)0 > max((δ)c−1, (γ)c−1) ∈ m. Then 〈γ`ε,δ`ε〉 ∈ P ′, so 〈γ,δ〉 ∈ P. The
existence of ε follows from the fact that 〈m〉a 6= ;; by this assumption, for ev-
ery X ∈U(m) and e ∈ I, |X \ [0, e]| ≥ a. For every ε0 ∈ m, |X \ [0,ε0]| ≥ a, i.e.
〈X \ [0,ε0]〉a 6= ;, by overspill. Thus 〈m\ [0,ε0]〉a 6= ;, by ℵ1-saturation. 2

4.3.28 Proposition. Let m be a non-trivial monad and k ≥ 2 natural. Then
the following properties are equivalent:

a) m→ (m)k
2

b) m is a monad of k-indiscernible elements.

c) m is a k-monad.

Proof. a)→b) Let ϕ(x1, . . . , xk) be an LAr
M -formula and let

Pϕ
df= {〈u,v〉 | u,v ∈ 〈C〉k ∧C |=ϕ((u)0, . . . , (u)k−1)↔ϕ((v)0, . . . , (v)k−1)}.

Then Pϕ ∈ 〈C〉k
2 . Hence m is homogeneous for Pϕ. For any two increasing

k-tuples ~α,~β ∈m thus 〈‹~α›, ‹~β›〉 ∈ Pϕ, so C |=ϕ(~α)↔ϕ(~β).
b)→c) We have to show that 〈m〉k is a monad. Let α,β ∈ 〈m〉k and X ∈ D.

The set X is defined in C by an LAr
M , so there is an LAr

M formula ϕ(x0, . . . , xk−1)
such that γ ∈ X iff C |= ϕ((γ)0, . . . , (γ)k−1), whenever γ ∈ 〈C〉k. Applying this
equivalence and k-indiscernibility of m for ϕ, we have α ∈ X iff β ∈ X . Since
X ∈D was arbitrary, we have α∼β.

c)→a) Let P ∈ 〈X 〉k
2 with X ∈U(m). Since there are only two blocks of the

partition P, they are both in D. By the assumption, 〈m〉k is a monad, so it
falls into exactly one of them. 2

4.3.29 Proposition.
a) If m→ (m)2

2, then m is minimal.

b) Let a,b ∈ M, a,b ≥ 2. If m→ (m)a
b and n³RK m, then n→ (n)a

b.

Proof. a) By 4.3.28, m be a 2-monad. Assume F ∈ F with m ⊆ dom(F) is not
1-1 on m. Then F(α)= F(β) for some α<β from m; since 〈m〉2 is a monad, the
equality holds for every ‹α,β› ∈ 〈m〉2. Thus F is constant on m.
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b) Let m,a,b be as assumed and F : m ³RK n. Let P ∈ 〈X 〉a
b with X ∈U(n)

and let Y df= F−1[X ]. Then Y ∈U(m). For α ∈ 〈Y 〉a, let αF denote the element
from 〈X 〉a such that {(αF )i | i < a} = {F((α) j) | j < a}, i.e. αF is a pointwise
image of α, with elements arranged to form an increasing sequence; since
F is 1-1, this rearrangement is possible and is unique. The map α 7→ αF is
clearly definable. We may now define a partition P ′ ∈ 〈Y 〉a

b as follows: P ′ df=
{〈α,β〉 ∈ 〈Y 〉a | 〈αF ,βF〉 ∈ P}. Since m is P ′-homogeneous each pair γ,δ ∈ 〈n〉a

is of the form αF ,βF for some α,β ∈ 〈m〉a, n is P-homogeneous. 2

4.3.30 Remark.
1. Item b) also works for a = 1 and n¹RK m.
2. By b), monads satisfying m → (m)a

b do not have to be relatively large.
For instance, if c > Im, then the monad c+m defined as in 4.3.18 is not rela-
tively large, but if m is as above we still have c+m→ (c+m)a

b.

4.3.31 Proposition. Let I ⊆e M and a,b ∈ M, a,b ≥ 2. The following are
equivalent:

a) I is semi-regular and I → (I)a
b.

b) There exists a relatively large monad m⊆ gI such that m→ (m)a
b.

Proof. a)→b). Let {Pn}n∈ω be an enumeration of 〈C〉a
b, and assume gI =⋂

n∈ωLn where {Ln}n∈ω are intervals with endpoints in M. We define a
non-increasing sequence {Xn}n∈ω of sets from D(gI ) in stages, starting with
arbitrary X0 ∈ D(gI ). If Xn is defined, then by 4.3.6, there exists some
Xn+1 ⊆ Xn∩Ln homogeneous for Pn such that Xn+1 ∈D(gI ). By ℵ1-saturation,
there exists α ∈⋂

n∈ω Xn ⊆ gI 6= ;. Then m(α)⊆ Xn for all n ∈ω, so m(α) is ho-
mogeneous for every Pn n ∈ ω, i.e. for every P ∈ 〈C〉a

b. This gives the arrow
m(α)→ (m(α))a

b.
b)→a) By 4.3.29, m is minimal, so I is even regular, by 4.3.19. The impli-

cation from m→ (m)a
b to I → (I)a

b is trivial. 2

4.3.32 Corollary. I is a strong cut iff gI includes a relatively large strong
monad.

Note that the initial choice of X0 ∈ D(gI ) in the proof of 4.3.31 was ar-
bitrary. This means that if g contains a relatively large monad satisfying
m→ (m)a

b (a,b ≥ 2), then such monads form a dense subset of g /∼ with Stone
topology. Now, m → (m)a

b can be expressed using a simple property Φ(m),
where

Φ(X ) df= { (∀x, y ∈ 〈X 〉a)〈x, y〉 ∈ P | X ∈D,P ∈ 〈X 〉a
b }.

By 4.2.11, Φ(X ) has monadic overspill, so applying 4.2.15 we have our usual
corollary on distributivity.
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4.3.33 Corollary. Relatively large monads satisfying the arrow m → (m)a
b

with 2≤ a,b ∈ M are distributive in every gap that includes one. 2

Infinite Ramsey Theorem in PA 2.1.3 gives M → (M)n
<M for every n ∈ N;

in particular, M is strong in M. Consequently, g∞ includes a strong monad.
The following will show that bounded gaps containing strong monads are fre-
quent, too. The results concerning strong cuts are known [Kir77], the proofs
are ours.

Recall from Definition 2.2.6 on page 30 that for a set u codable in M and
for i, e,d, c ∈ M, u −→∗ i (e)d

c denotes the i-th iteration of the Paris-Harrington
arrow in C.

4.3.34 Proposition. Let a,b, c,d, i ∈ M and let d ≥ 1, c ≥ 2, and i ≥ N. If
[a,b]−→∗ i (d+1)d

c , then the interval [a,b] includes a relatively large monad m

such that m→ (m)d
c .

Proof. Let {Pn | n ∈ ω} be some fixed enumeration of 〈C〉d
c . Put X0 = [a,b].

If Xn is defined and Xn −→∗ i−n (d +1)d
c , then Xn includes a relatively large

subset Xn+1 coded in M such that, Xn+1 is homogeneous for Pn and satisfies
Xn+1 −→∗ i−n−1 (d + 1)d

c . Let α ∈ ⋂
n∈ω Xn, by ℵ1-saturation. Then m(α) is a

relatively large monad that is homogeneous for every P ∈ 〈C〉d
c . 2

4.3.35 Corollary.
a) For every a ∈ M, the interval [a,→) includes a bounded relatively large

strong monad.

b) For every a ∈ M, there exists a strong cut I ⊂e M such that a ∈ I.

c) Y (a,b) df= max{c ≤ b | [a,b] −→∗ c (c+1)c
2} is a ∆1-indicator for strong cuts.

Thus all items of Theorem 3.2.1 for n = 1 apply to the family Rstrong of
strong cuts in M. In fact, Y is also an indicator for P0, so Rstrong =P0.

Proof. a) Let a, c ∈ M be fixed. By Lemma 2.2.7, for every k ∈N,

(4.4) M |= (∃b)[a,b]−→∗ k (k+1)k
c .

By overspill, there is some d ∈ M \N such that (4.4) with k replaced by d
holds. Then 4.3.34 produces a relatively large bounded monad m ⊆ [a,→)
satisfying m→ (m)d

c . By 4.3.27, m→ (m)k
2 for every k ∈N, so m is strong.

b) By a), there is a bounded, relatively large strong monad m such that
a ∈ Im. By 4.3.32, Im is a strong cut.

c) It is a straightforward task to verify that Y is Σ1 and thus ∆1. If
Y (a,b) = c > N, then [a,b] contains a strong cut I by the arguments used
in the proofs of a) and b). By 4.3.12, I |=PA, so I ∈P0. It now suffices to prove
that, conversely, if a ∈ I < b and I |= PA, then Y (a,b) > N. We may assume
I 6= N, since N↙ P0 by 3.2.1, e). Then by 2.2.2, I |= (∃b)[a,b] −→∗ k (k+ 1)k

2 ,
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i.e. I |= (∃b)Y (a,b) ≥ k, for every k ∈ N. Applying overspill in I, we get
I |= Y (a,b) ≥ c for some b, c ∈ I non-standard. Since Y is Σ1, we have
M |=Y (a,b)≥ c by ∆0-elementarity of I. 2

2-monads and regular monads of pairs

For a non-trivial monad m, we now have:

• m→ (m)1
<N.

• m→ (m)1
<Im

iff m is regular.

• m→ (m)2
2 iff m→ (m)2

<N iff 〈m〉2 is a monad; also, m is minimal.

• m→ (m)2
<Im

iff 〈m〉2 is a regular monad.

4.3.36 Proposition.
a) Let m be a relatively large 2-monad. Then for every ∆0 formula θ(x, y, z̄),

ā ∈ M, and ‹α0,α1› ∈ 〈m〉2,

(4.5) Im |= (∀x0)(∃x1)θ(x0, x1, ā) iff C |= (∀x0 <α0)(∃x1 <α1)θ(x0, x1, ā).

b) If m→ (m)2
<Im

, then Im |= IΣ2.

Proof. Let I denote the cut Im.
a) The assumption ensures that m is relatively large and minimal; in par-

ticular, I is semi-regular, and I 40 M. Let α0 <α1 be elements of m. Let θ be
a bounded LAr

I -formula. If I |= (∀x0)(∃x1)θ(x0, x1), then ∆0-elementarity gives
C |= (∃x1 < α1)θ(c, x1) for every c ∈ I. By overspill, there is γ ∈ gI such that
C |= (∀x0 < γ)(∃x1 < α1)θ(x0, x1). Since m is coinitial in gI , we may assume
γ ∈ m and γ < α1. Thus ‹γ,α1› ∈ 〈m〉2. Now, m is a 2-monad, so we may re-
place γ with α0, concluding the left-to-right implication. The converse follows
easily by underspill and does not even require m to be a 2-monad.

b) As above, I 40 M; we prove I |= LΠ2. Let ϕ(y) be an LAr
I -formula of

the form (∀x0)(∃x1)θ(x0, x1, y) with θ bounded; assume I |= ϕ(c) for some c ∈
I. For ‹α0,α1› ∈ 〈m〉2, let γ df= µx : (∀x0 <α0)(∃x1 <α1)θ(x0, x1, y). Then γ ∈
M[‹α0,α1›]. By (4.5), γ ≤ c. Now, 〈m〉2 is a regular monad (⊆ gI ), therefore
M4I M[‹α0,α1›], by 4.3.23. Thus γ ∈ I. By (4.5), I |=ϕ(γ)∧ (∀y< γ)¬ϕ(y). 2

4.3.37 Corollary. There is a gap that includes relatively large minimal mon-
ads, but no monad satisfying m→ (m)2

<Im
.

Proof. By 4.3.13, there is a regular cut I such that I 6|= IΣ2. Its gap includes
relatively large minimal monads and 4.3.36 b) gives the result. 2

4.3.38 Remark. This corollary only partially answers the following natural
questions: Are there I, M such that I ⊂e M |=PA and
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• I is regular but fails to satisfy I → (I)2
2?

• I → (I)2
2 but not I → (I)2

<I?

• I → (I)2
<I but not I → (I)3

2?

At least to our knowledge, these particular questions remain open, although
there is a strong suggestion of positive answers to the latter two of them:
Cholak, Jockusch, and Theodore ([CJS01]) proved recently using forcing that
over IΣ0

1 +∆1CA0, Ramsey Theorem for pairs with 2 colors (RT2
2) is strictly

weaker than Ramsey Theorem for pairs for any number of colors (RT2
<∞) and

that the latter is strictly stronger than RT3
2. This improved earlier Seetapun

and Slaman’s [SS95] negative answer to Jockuch’s well-known 2-3-problem.
In contrast, it follows from a result by Kirby [Kir84, Theorem 5.7] on

ultrafilters on models of ACA0 that if I is a strong cut (i.e. its gap already
contains some 3-monad), then every 2-monad from gI is a 3-monad (see B.3
for proof). In light of this Kirby’s result, a strong cut with Cod(M/I) resem-
ble a bit closer ω with P(()ω), where every non-trivial selective ultrafilter is
Ramsey.

We now return briefly to minimal monads to see how M-definable func-
tions operate on them locally. A theorem given below has a sequel about
2-monads, which is why we had inserted it here. The theorem will be useful
in the subsequent study of diagonal partition properties.

4.3.39 Definition. For α ∈ C, we write

�α� df= {γ ∈ C | ¬(∃β∼α)(γ≤β<α∨α<β≤ γ}.

Thus, �α� is the maximal convex subset around α that does not contain
any other element from m(α). Since every non-trivial monad m spans across
its gap and is densely ordered by <, {�γ� | γ ∈ m} is a partition of the gap
containing m.

The following theorem is a variant of [ČV87, Theorem 8] in AST. It says
that for a minimal monad m, α ∈ m, and F ∈ F(Im), the image F(α) cannot
leave �α� (that is to say, α cannot jump over another element from m) unless
it leaves the entire gap.

4.3.40 Theorem (Čuda-Vojtášková). Let m be a minimal monad, F ∈ F,
m⊆ dom(F). If F is regressive on m and Im 6= M, then either

a) F(α) ∈ �α� for all α ∈m, or

b) (∃d ∈ M \ Im)F(d) ∈ Im.

If m is a relatively large 2-monad or if Im = M, then b) can be replaced by the
condition
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c) F is constant on m.

Similarly, if F(α) ≥ α for some (and hence all) α ∈ m and F ′′Im ⊆ Im, then
F(α) ∈ �α� for all α ∈m.

Proof. Let I denote Im. The sequel about functions with F(α) ≥ α for α ∈ m,
is obtained from the first part by passing from F to F−1 and from m to the
monad F ′′m, which is also minimal. The assumption of F ′′I ⊆ I eliminates
the alternative b) for F−1. It thus suffices to prove the case for F regressive.

Now, F is either constant or one-to-one on m. In the first case, c) holds,
which for I 6= M gives b). This reduces the problem to the case when F is 1-1
on m; we may assume F is 1-1 on its whole domain.

We first deal with the case when m is a relatively large 2-monad. Assume
¬a). Then F(α) ≥ β for some α,β ∈ m, β < α; by 2-indiscernibility of m, the
inequality holds for arbitrarily small β ∈m, hence, by underspill, F(α)< b for
some b ∈ I. Thus F ′′m⊆ [0,b], in contradiction with m being relatively large.

Now we resolve the general case, for m minimal. Aiming towards a con-
tradiction, assume neither a) nor b) holds. In particular, F−1′′I ⊆ I by ¬b). Let
b df= min(rng(F)). For each α ∈ [b,→) define H(α) df= max((F−1′′[0,α])∪ {α+1}).
Clearly H ∈ F, H is non-decreasing, H(α) > α for α ∈ [b,→), and, by ¬b),
H′′I ⊆ I. Let G ∈F be defined as follows: G(0) df= b, G(γ+1) df= H(G(γ)), i.e. G(γ)
is the γ’s iteration of H. Thus F(α)≤G(γ)→α≤G(γ+1) for every α ∈ dom(F).
Finally, we put g(α) df= max{γ | G(γ) < α} for every α ∈ (b,→). Then g ∈ F, g is
non-decreasing, and G(g(α))<α≤G(g(α)+1) for all α ∈ (b,→).

Now, fix α ∈ m such that F(α) 6= �α� and let γ df= g(α). Since F(α) < α

and F(α) 6= �α�, there is some β ∈ m such that F(α) ≤ β < α. We first aim
for proving that γ ∈ M (and thus γ ∈ I). For that, it suffices to show that
g(α) = g(β). Indeed, as g is non-decreasing, we have g(β) ≤ g(α). For the
converse inequality, we have β<α ∈ (G(γ),G(γ+1)], so we only need to show
that G(γ) < β. Assume otherwise and let δ df= g(β), that is, β ∈ (G(δ),G(δ+1)]
with δ < γ. Now, F(α) ≤ β, so F(α) ∈ [0,G(δ+1)], so we have α ∈ [0,G(δ+2)]
and hence γ = δ+ 1. Thus g(α) = g(β)+ 1, but then parity of the g-image
discerns α from β, contradicting α∼β. This proves that g(α)= g(β)= γ. Thus
by minimality, g is constant on m, so γ ∈ M and also G(γ),G(γ+1) ∈ M. Since
G(γ) < α≤ G(γ+1), G(γ) ∈ I, but H(G(γ)) = G(γ+1) ∈ M \ I. This contradicts
H′′I ⊆ I. 2

4.4 Diagonal partitions of monads and p-monads

In the first part of this section, we return to the topic of diagonal indiscernibil-
ity started in Chapter 2 by studying diagonal partition properties of monads.
In the second part, we introduce p-monads (in analogy with p-points in βω)
and prove that being a p-monad is a property of monads that stands strictly
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between RK-minimality and regularity (in any gap that contains a regular
monad).

On overlays in the enlarged setting

First of all, we briefly note what our previous results concerning diagonal
homogeneity, namely the results on overlays from Section 2.3.1, tell us in the
present context.

4.4.1 Proposition.
a) There is an unbounded ∼-closed subset O ⊆ C such that g∞ ∩O is a

monad and for every I ⊆e M,

I 4M iff gI ∩O 6= ;.

(If gI ∩O is non-empty, then it is a ∼-figure and a ∼Fm(LAr),I -monad.)

b) There is an unbounded ∼-closed subset On ⊆ C such that for I ⊆e M,

I 4n M iff gI ∩On 6= ;.

c) If I ⊆e M, then I |= PA iff there exists a subset Z ⊆ C of ∆0-diagonally
indiscernible elements such that sup I = inf Z. If I |= PA then Z can be
taken as an intersection of countably many coded subsets of C.

Sketch of the proof. a) Let O be an unbounded ∆0-diagonally indiscernible
overlay in C consisting of ;-definable sets; such an overlay exists by 2.3.2 b).
By ℵ1-saturation, O = ⋂

O is non-empty; since it is an intersection of clopen
sets, it is ∼-closed; it is unbounded in C by ℵ1-saturation. Clearly O in-
tersects the unbounded gap g∞. By 2.3.7, O is a set of Fm(LAr)-diagonally
indiscernible elements from which it follows easily that O∩g∞ is a monad.
Moreover, if I 4 M, I ⊆e M, then by elementarity, every X ∩ I with X ∈ O
is cofinal in I, so O ∩gI 6= ;. This time O ∩gI is a ∼-closed figure, but not
necessarily a single ∼-monad; nevertheless, diagonal indiscernibility gives
that elements from O∩gI are indiscernible over parameters from I, so it is a
∼Fm(LAr),I -monad. Conversely, if O∩gI 6= ;, then 2.3.2 b) gives I 4M.

b) is proved similarly, using Theorem 2.3.3 for a Σn(1;1)-diagonally indis-
cernible overlay and cuts with I 4n+1 M.

c) If I |=PA, I ⊆e M, then there is a ∆0-diagonally indiscernible overlay O
unbounded in I. A set X ∈ O may not be definable in M, but, due to count-
ability of I, we may define (outside C) an increasing sequence {an}n∈ω cofinal
in I such that for each n the subsequence {ak}k≥n is a set of ∆<k

0 -diagonally
indiscernible elements (where ∆<k

0 denotes the set of the first k formal ∆0
formulae, c.f. the proof of 3.4.1). By ℵ1-saturation in C, there is an element
γ ∈ C coding an increasing sequence of some non-standard length such that
(γ)n = an for n ∈ N and with the property that for every α < `(γ), the set
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uα
df= {(γ)β | α ≤ β < `(γ)} is a set of ∆<α

0 -diagonally indiscernible elements.
Then Z =⋂

n∈ω un has the required property. Conversely, let Z ⊆ C be a set of
∆0-diagonally indiscernible elements in C such that sup I = inf Z for I ⊆e M.
We have I 4 sup I, by I 40 M4C, sup I 40 C, and 1.8.7 a). It is easy to verify
by induction on number of quantifiers (using ∆0-diagonal indiscernibility and
overspill) that for every bounded LAr-formula ψ, ā ∈ I, and~e ∈ Z,

sup I |= (∃x0)(∀x1) . . .ψ(ā, x̄) iff C |= (∃x0 < e0)(∀x1 < e1) . . .ψ(ā, x̄)).

From this, it follows easily using sup I = inf Z that sup I |= PA, hence I |= PA
by elementarity. 2

Diagonal partitions of monads

We now turn our attention to M-definable diagonal partitions on monads.

4.4.2 Definition.
a) Let D be a diagonal partition of 〈X 〉a (see Definition 2.1.1), X ∈D, a ∈ M,

and let h ∈F. Say that D is h-estimated, if for every t ∈ X , ‖Dt‖ ≤ h(t).

b) Let m be a non-trivial monad and h ∈F(Im). Then mâ (m)a
h denotes the

following assertion:

For every X ∈U(m) and every h-estimated diagonal partition
D of 〈X 〉a, there exists a set Y ∈ U(m) diagonally homoge-
neous for D.

If mâ (m)a
h holds for every h ∈F(Im), we write mâ (m)a

F(Im). If mâ (m)a
h

for a constant function h with the value b ∈ Im, we write m â (m)a
b.

Finally, we write, mâ (m)a
<Im

if (∀b ∈ Im)mâ (m)a
b.

4.4.3 Remark. By Lemma 4.2.11, D-homogeneity for diagonal partition D ∈
D is a property with monadic overspill.

Notice that h-estimated diagonal homogeneity can equivalently be ex-
pressed as min-homogeneity for h-regressive functions. Indeed, if D is a h-
estimated diagonal partition of 〈X 〉n, let for each t ∈ X and u ∈ 〈X \ [0, t]〉n,
F(‹t›`u) = y if u falls into the y-th block of Dt, i.e. u ∈ (Dt)(y). Then
F(v) < h(Min(v)) for every v ∈ 〈X 〉n+1 (which is referred to as F being h-
regressive). Clearly, a subset H ⊆ X is diagonally homogeneous for D if and
only if it is min-homogeneous for F i.e. if F(v) = F(w) for every v,w ∈ 〈H〉n+1

with (v)0 = (w)0.
Similarly, every h-regressive F : 〈X 〉n+1 → C determines a h-estimated di-

agonal partition of 〈X 〉n such that for all t ∈ X and u,v ∈ 〈X \[0, t]〉n, u Dt v iff
F(‹t›`u) = F(‹t›`v). Then min-homogeneity for F causes diagonal homogene-
ity for D. From this, we have:
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4.4.4 Proposition. mâ (m)a
h iff m is min-homogeneous for every h-regressive

function F ∈F with 〈m〉a+1 ⊆ dom(F). 2

For its brevity, we prefer this functional description, namely in proofs.

4.4.5 Lemma. If mâ (m)1
2, then m is minimal.

Proof. Let F ∈ F with dom(F) = X ∈ U(m) be not 1-1 on m. For ‹α,β› ∈
〈X 〉2, we put G(‹α,β›) df= 0 if F(α) = F(β) and G(‹α,β›) df= 1 otherwise.
Then some Y ∈ U(m) is min-homogeneous for G. Let a df= µx ∈ Y :
(∀y ∈Y )(x < y→G(‹x, y›)= 0). If a ∈ Im, then clearly F ′′m = {F(a)}, so F is
constant on m. Otherwise m< a, but in that case for every α ∈m, if α<β ∈Y ,
then G(‹α,β›)= 1, so F(α) 6= F(β). In particular, F is 1-1 on m. 2

4.4.6 Theorem. Let I be a semi-regular cut, m⊆ gI , a,b ∈ I, a ≥ 1, b ≥ 2, and
h ∈F(I):

a) mâ (m)a
h iff (∀k ∈N)mâ (m)a

hk , where hk(x) df= (h(x))k.

b) g′′mâ (g′′m)a
h implies mâ (m)a

g◦h, whenever m⊆ dom(g ◦h), g ∈ F(I) is
increasing, and h ∈F.

c) mâ (m)a
b iff m→ (m)a+1

b . Consequently, mâ (m)a
<I iff m→ (m)a+1

<I .

d) m→ (m)a+2
2 implies mâ (m)a

F(I)

e) mâ (m)a+1
2 implies mâ (m)a

F(I)

Proof. a) The right-to-left is trivial. Suppose m â (m)a
h for h ∈ F(I). We pro-

ceed by induction on k ∈ N. For k ≤ 1 the claim is trivial. Let X ∈ U(m)
and F : 〈X 〉a+1 → C, and let F be hk+1-regressive. We define G : 〈X 〉a+1 by
G(α) df= (F(α) mod h((α)0)). Then G(α) < h((α)0), so G is h-regressive (and
thus also hk-regressive). The induction hypothesis gives some Y ∈ U(m)
that is min-homogeneous for G. We now put F ′(α) df= bF(α)/h((α)0)c for ev-
ery α ∈ 〈Y 〉a+1; clearly, F(α) = F ′(α) · h((α)0)+G(α). Since F(α) < hk+1((α)0),
F ′(α) < hk((α)0). Applying again the induction hypothesis, we have that m is
min-homogeneous for F ′ (and of course also for G). Thus, if α,β ∈ 〈m〉a and
(α)0 = (β)0, we have

F(α)= F ′(α) ·h((α)0)+G(α)= F ′(β) ·h((β)0)+G(β)= F(β).

b) Let g be increasing on m. Then g′′m is a non-trivial monad and
g′′m³RK m. Moreover, I is semi-regular, so gI is original and thus g′′m 6⊆ sup I.
Yet g′′I ⊆ I, so g′′m, like m, belongs to the gap gI . Let F ∈ F be a (g ◦ h)-
regressive function defined on 〈X 〉a+1 for some X ∈ U(m). We may assume
that g is increasing on X . For α ∈ 〈X 〉a, let G(α) denote the pointwise image
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of α over g, i.e. (∀i < a)(G(α))i = g((α)i. Then G ∈ F and since g is increas-
ing, G : 〈X 〉a → 〈g′′X 〉a. Let β ∈ 〈g′′X 〉a and let β df= G(α) for α ∈ 〈X 〉a. Then
F(G−1(β))= F(α)< h(g((α)0))= h((G(α))0)= h((β)0), so G−1 ◦F is h-regressive
on 〈g′′X 〉a. According to the premise, g′′m is min-homogeneous for G−1◦F. It
now follows easily that m is min-homogeneous for F.

c) First, let m â (m)a
b, a ≥ 1, b ≥ 2, a,b ∈ I, and let F : 〈X 〉a+1 → [0,b)

for some X ∈ U(m). We must prove that F is constant on 〈m〉a+1. By the
assumption, there exists Y ∈U(m) that is min-homogeneous for F. For t ∈ Y
such that |Y ∩ [t,→)| ≥ a, let γt ∈ 〈Y 〉a consist of the first a elements following
t in Y and let G(t) df= F(‹t›`γt). Since m is relatively large, m⊆ dom(G). Now,
m is minimal by 4.4.5, so by 4.3.17 it is regular. Thus G is constant on m with
some value d ∈ [0,b)∩M. We show that F is constantly d on 〈m〉a+1. Indeed, if
‹t›`γ ∈ 〈m〉a+1, then by min-homogeneity for F, F(‹t›`γ)= F(‹t›`γt)=G(t)= d.

As for the reversed implication, we are supposed to prove that if X ∈U(m)
and F : 〈X 〉a+1 → [0,b), then m is min-homogeneous for F. But this is trivial,
since m→ (m)a+1

b establishes that F is actually constant on 〈m〉a+1.
d) (The method of this proof is borrowed from [KM87, Theorem 1.3]). Let

F : 〈X 〉a+1 → C with X ∈ D and F h-regressive for some h ∈ F(I). Assume
m → (m)a+2

2 . By 4.3.27, m → (m)a+2
3 . We define G : 〈X 〉a+2 → [0,2] as follows:

for u ∈ 〈X 〉a−1 (for a = 1 let u be an empty sequence) and α,β,γ ∈ X such that
α<β< (u)0 and (u)a−2 < γ, put

(4.6) G(‹α,β›`u`‹γ›) df=


0 if F(‹α,β›`u)= F(‹α›`u`‹γ›),
1 if F(‹α,β›`u)< F(‹α›`u`‹γ›),
2 if F(‹α,β›`u)> F(‹α›`u`‹γ›).

By the assumption, there exists Y ∈U(m) such that G is constant on 〈Y 〉a+2.
We show that the value of G on this set is 0. Otherwise, let c df= minY and
for α ∈Y ∩ (c,→) let f (α) df= F(‹c,α›`uα) where uα ∈ 〈Y 〉a−1 consists of the first
a−1 elements following α in Y . We have c ∈ I, and thus h(c) ∈ I. Since m

is relatively large, |Y ∩ (c,→)| ≥ h(c)+ a. If G were 1 or 2 on 〈Y 〉a+2, then
f would be increasing or decreasing, respectively, producing at least h(c)+1
different values on Y ∩ (c,→). But this contradicts the assumption that F is
h-bounded.

Thus G is constantly 0 on 〈m〉a+2. We show that m is min-homogeneous
for F. For α ∈ m, u,v ∈ 〈m〉a, α < (u)0, (v)0, we must show that F(‹α›`u) =
F(‹α›`v). Since m is relatively large, there is a w ∈ 〈m〉a such that
max{(u)a−1, (v)a−1} < (w)0. Now consider the sequence σ df= u`w. Let σ(i) be a
contiguous subsequence of σ of length a whose first element is (σ)i and whose
last element is (σ)i+a−1. Then u =σ(0) and w =σ(a), and by (4.6) (the case for
0), F(‹α›`σ(i)) = F(‹α›`σ(i+1)) for every i < a. Thus (using induction in C),
F(‹α›`u) = F(‹α›`v). The same argument gives F(‹α›`w) = F(‹α›`v) and we
are done.

e) By c), mâ (m)a+1
2 implies m→ (m)a+2

2 , the rest follows by d). 2
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4.4.7 Corollary. Let g be a gap. Let f ∈ F(Ig) be increasing. If g∩ rng( f )
includes a monad m satisfying mâ (m)1

id, then g includes a monad satisfying
nâ (n)1

f .

Proof. Since m is clearly regular, g is original. Thus f ′′g⊆ g and also f −1[g]⊆
g using the fact that f is increasing. Now n

df= f −1[m] witnesses the claim
by 4.4.6 b). 2

We shall now apply the notions from Definition 2.3.1 c) on subsets of C
and formulae with parameters from M.

Notation. For brevity, (k;n) denotes the class of formulae Fm(LAr
M )(k;n).

4.4.8 Remark. By Lemma 4.2.11, the property ‘X is a set of (k;n)-diagonally
indiscernible elements’ has monadic overspill.

4.4.9 Definition. Let ϕ(x̄; ȳ) be a (k;n) formula and let X ∈D. Then DX ,ϕ(z̄;x̄)

denotes the diagonal partition of 〈X 〉n such that for every t ∈ X and ‹~α›, ‹~β› ∈
〈X \ [0, t]〉n,

(4.7) ‹~α› DX ,ϕ(z̄;x̄)
t ‹~β›

df⇐⇒ (∀z̄ < t)[ϕ(z̄,~α)↔ϕ(z̄,~β)].

It follows from definitions that Y ⊆ C is a set of ϕ(z̄;x̄)-diagonally indis-
cernible elements iff it is diagonally homogeneous for DC,ϕ(z̄;x̄). The following
lemma is easy:

4.4.10 Lemma.
a) DX ,ϕ(z̄;x̄) is expk-estimated, where k is the length of z̄ and expk(x) df= 2xk

.

b) If mâ (m)n
expk

, then m is a monad of (k;n)-diagonally indiscernible ele-
ments. 2

4.4.11 Theorem. The following assertions are equivalent for every non-trivial
relatively large monad m:

a) m is a set of (1;1)-diagonally indiscernible elements,

b) m is a set of (n;1)-diagonally indiscernible elements for all n ∈ω,

c) m→ (m)n
2 for all n ∈N, i.e. m is strong,

d) mâ (m)n
F(Im) for all n ∈N.

e) m→ (m)3
2,

f) mâ (m)1
exp,
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Proof. Let I denote the cut Im. By 4.4.5 and either of the premises, m is
minimal, so I is regular, by 4.3.19.

a)→b) Let Gn : Cn → C be defined by G(x̄) df= 2x0 ·3x1 · · · pxn−1
n , where pn is

the n-th prime. G is 1-1 and provides a coding of n-tuples such that G′′Jn ⊆ J
whenever J is closed under operations. Let further gn ∈ F be defined by
gn(x) df=Gn(x, . . . , x). Then gn ∈D(I), x ≤ gn(x) for all x ∈ C, and Gn(x1, . . . , xn)≤
gn(y) whenever y≥max{x1, . . . , xn}. Hence, if ᾱ< γ<β, with β,γ ∈m, then by
Theorem 4.3.40, gn(γ) ∈ �γ�, hence Gn(ᾱ) ≤ gn(γ) < β. Now, let ϕ(z1, . . . , zn, x)
be an LAr

M -formula. We prove that m is a set of ϕ(z̄; x)-diagonally indiscernible
elements. Let ψ(z, x) denote the formula (∃z1, . . . , zn)(z =Gn(z̄)∧ϕ(z̄, x)). Then
C |= (∀z̄)(∀x)(ϕ(z̄, x) ↔ψ(Gn(z̄), x)). Let γ,β1,β2 ∈ m be such that γ < β1 < β2
and let p̄ < γ. Since m is densely ordered, there is some γ′ ∈ m such that
Gn(p̄) ≤ gn(γ) < γ′ < β1, hence C |= ψ(Gn(p̄),β1) ↔ ψ(Gn(p̄),β2) by (1;1)-
diagonal indiscernibility of m. But then C |= ϕ(p̄,β1) ↔ ϕ(p̄,β2). Since
γ,β1,β2 were arbitrary, m is a monad of ϕ(z̄, x)-diagonally indiscernible el-
ements.

b)→c) We show by induction on n ≥ 0 that if m is a monad of (n;1)-
diagonally indiscernible elements, then m is a monad of (n+1)-indiscernible
elements (and thus m→ (m)n+1

2 , by 4.3.28). The argument is based on trading
between the number of parameters and the dimension. There is nothing to
prove if n = 0. Assume the implication to hold for n− 1, n ≥ 1, i.e. in par-
ticular, m → (m)n

2 . Let ϕ(x1, . . . , xn+1) be an LAr
M -formula. By (n;1)-diagonal

indiscernibility of m, there exists a set X of ϕ(x1, . . . , xn; xn+1)-diagonally in-
discernible elements, such that X ∈U(m). If I 6= M, let a ∈ X ∩ (M \ I) and put
ψ(x1, . . . , xn)

df⇐⇒ ϕ(x1, . . . , xn,a); if I = M, let ψ(x1, . . . , xn)
df⇐⇒ (∃a0 ∈ X )(∀a ∈

X )(a0 < a →ϕ(x1, . . . , xn,a)). Now, let ‹ᾱ›, ‹β̄› ∈ 〈m〉n+1. There exists γ ∈m such
that αn < γ<αn+1, hence by ϕ(x1, . . . , xn; xn+1)-diagonal indiscernibility of X ,
ϕ(α1, . . . ,αn+1) ↔ ψ(α1, . . . ,αn). Similarly, ϕ(β1, . . . ,βn+1) ↔ ψ(β1, . . . ,βn). By
our induction hypothesis, m is a monad of n-indiscernible elements, hence
ψ(α1, . . . ,αn) ↔ψ(β1, . . . ,βn), that is ϕ(α1, . . . ,αn+1) ↔ϕ(β1, . . . ,βn+1). Since ϕ
was arbitrary, m is a monad of (n+1)-indiscernible elements.

c)→d) follows from 4.4.6 d). d)→e) is trivial. e)→f) follows again
from 4.4.6 d). f)→a) follows from Lemma 4.4.10. 2

4.4.12 Remark. The equivalence of c) and e) was first proved by
Kirby [Kir84] in terms of ultrafilters.

The weakest diagonal partition property, m â (m)1
2, is equivalent to

m → (m)2
2. Let D be a 2-estimated diagonal partition. Diagonal homogene-

ity for D ensures Dt-homogeneity for a ‘large’ set of indeces t. To ensure
Dt-homogeneity for all indeces t in a general case, one must replace Dt with
a common refinement of the equivalences Ds for all s < t. The resulting parti-
tion is exp-estimated, so mâ (m)1

exp is required. This is exactly how a monad
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of (1;1)-diagonally indiscernible elements is obtained. A seemingly weaker
partition property than m â (m)1

exp would be m â (m)1
id. We shall see that,

considering relatively large monads, it is no weaker at all. This will need
some preparation.

4.4.13 Definition. We say that a model N ⊆ C is a I-conservative extension
of M, written as M4c

I N, if N is an elementary extension of M, and

(∀X ∈D(N))(∃Y ∈D(M))(X ∩ I =Y ∩ I).

4.4.14 Lemma. M4c
I N implies M4I N.

Proof. Assume, for the sake of obtaining a contradiction, that there are α ∈
N \ M and a ∈ I such that α < a. For X df= {β ∈ N | α ≤ β}, there is some
Y ∈ D(M) with X ∩ I = Y ∩ I. Clearly, a ∈ Y ∩ I 6= ;. Let b df= min(Y ). Then
b > α since α ∉ M. Consequently b−1 ∈ X ∩ I = Y ∩ I. This contradicts the
choice of b. 2

4.4.15 Lemma. Let I be a cut and α ∈ gI such that M4c
I M[α]. Then

a) M4c
I M[β] for all β∼α.

b) If n¹RK m(α) and β ∈ n, then M4c
I M[β].

Proof. a) To prove that the condition M 4c
I M[α] does not depend on the

choice of α ∈ m, assume that α,β ∈ m and Z ∈ D(M[β]). Then Z = ϕ(C,β)
for some LAr

M -formula ϕ(x, y) (recall that ϕ(C,β) df= {γ ∈ C | C |= ϕ(γ,β)}). Since
α∼β, we have ϕ(C,β)∩M =ϕ(C,α)∩M. In particular, if Z′ =ϕ(C,α) and for
some X ∈D X ∩ I = Z′∩ I, then X ∩ I = Z∩ I, too.

b) By 4.4.14 and 4.3.23, n ⊆ gI . Let F ∈ F be such that F ′′m = n and
α ∈ m. Then F(α) ∈ M[α], so M[F(α)] 4M [α]. Hence, if M 4c

I M[α], then
M4c

I M[F(α)]. The rest follows from a). 2

4.4.16 Theorem. The following are equivalent for a monad m:

a) m is a relatively large strong monad.

b) m is relatively large and mâ (m)1
id.

c) m is minimal and M4c
Im

M[α] for some (and hence all) α ∈m.

Proof. Let I denote the cut Im.
a)→b) From 4.4.11 we even know mâ (m)1

exp, which is stronger.
b)→c) Let X ∈ D(M[α]) for α ∈ m be of the form ϕ(C,α) for some LAr

M -
formula ϕ(x, y). Define F ∈F so that F(〈t,u〉) codes the set {z | 2z < t∧ϕ(z,u)}.
By our choice of coding of bounded sets, we may assume F(〈t,u〉)< t. Now let
D be a diagonal partition of C such that u Dt v iff F(〈t,u〉)= F(〈t,v〉). Clearly
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‖Dt‖ ≤ t, so there is some Y ∈U(m) homogeneous for D. Let I df= Im and a ∈ I.
By 4.4.5, m is minimal and relatively large, so I is regular (in particular, I is
closed under exponentiation). Since Y is unbounded in I, there is a t ∈ Y ∩ I
such that 2a < t and some c ∈ Y ∩ I such that t < c. By D-homogeneity of Y
and the definition of F we now have:

ϕ(a,α) iff ϕ(a, c) iff (∀x, y ∈Y )(2a < x < y→ϕ(a, y)).

In particular, ifψ(a) denotes the formula on the right, then ϕ(C,α)∩I =ψ(C)∩
I and ψ(C) ∈D as required.

c)→a) Let M 4c
Im

M[α] for all α ∈ m and, aiming towards contradiction,
suppose that m is not strong, in particular not a set of (1;1)-diagonally indis-
cernible elements. Thus, there are an LAr

M -formula ϕ(x, y), γ,α1,α2 ∈ m, and
δ ∈ C such that δ≤ γ<α1 <α2 but C |=ϕ(δ,α1)∧¬ϕ(δ,α2).

Let Yx =ϕ(C, x). Then δ ∈Yα1 \Yα2 . Let Y ∈D be such that Y ∩ I =Yα1 ∩ I.
Then Y ∩ I =Yα2 ∩ I and by 4.3.22, Y ∩sup I =Yαi ∩sup I for i = 1,2. It follows
that δ ∈ gI . Let X df= {x ∈ C | Y 6= Yx} and let F(x) df= min(Y .− Yx) for all x ∈ X .
Then X ∈D and F ∈ F. If δ ∈ Y , then α2 ∈ X , if δ ∉ Y , then α1 ∈ X ; so, either
way, m ⊆ X . For at least one i ∈ {1,2}, F(αi) ≤ δ. Since, δ < α1 < α2, this
among other means that F is regressive on m. It further follows that F is
not constant on m since otherwise we would have F ′′m = {b} for some b ∈ I,
and thus b ∈ Y .− Yα1 , contradicting our choice of Y . Thus F is 1-1 on m. By
restricting F if necessary, we may assume F is 1-1 on its domain. For the last
step of the proof we need to ensure that

F ′′(M \ I)∩ I =;.

If F has this property, let F̃ df= F. Otherwise we proceed as follows: Let G df=
F−1 and Z df= {y ∈ dom(G) | y<α1 <G(y)}. By the assumption, Z∩ I 6= ;. There
exists some Z0 ∈D such that Z∩ I = Z0 ∩ I and we may assume Z0 ⊆ dom(G).
Let c df= min(G′′Zo). Clearly G′′Z0 ⊆ [c,→). Moreover, c ∈ M \ I (otherwise
G−1(c)< c since G−1 = F and F is regressive; hence G−1(c) ∈ Z0∩ I = Z∩ I and
by definition of Z, α1 < G(G−1(c)) = c, a contradiction with c ∈ I). If a ∈ I is
such that G(a) ∈ M\I; then G(a)>α1, so a ∈ Z and also a ∈ Z0, hence G(a)> c.
This proves G′′I ⊆ I ∪ [c,→). Now let F̃ df= F�[0, c). We have F̃ ′′(M \ I)∩ I =;
and F̃�m= F�m.

Now, F̃ is regressive on a minimal monad m and F̃ ′′(M \ I)∩ I = ;, so
by 4.3.40, for every α ∈ m, F̃(α) = F(α) ∈ �α�. But for some i ∈ {1,2} we have
F(αi)≤ δ< γ<αi with γ ∈m, so F(αi) ∉ �αi�—a contradiction. 2

4.4.17 Remark. The requirement of minimality in item c) of the preceding
theorem is necessary since there exist non-minimal monads m satisfying the
condition M4c

I M[α] for all α ∈m. Indeed, if n is a strong monad, then n is a
monad of (1;2)-diagonally indiscernible elements and also a 2-monad, so m

df=
〈n〉2 is a monad, but clearly not minimal (m≺RK n). We show that M4c

I M[α].
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For simplicity, we shall further suppose that Im 6= M (although the argument
could be easily modified for Im = M, too). Let α ∈ m, X ∈ D(M[α]). Then α =
〈α1,α2〉 for some α1,α2 ∈ n, hence X ∈D(M[α1,α2]). Assume for example α1 <
α2 and let ϕ(x, y1, y2) ∈ Fm(LAr

M ) be such that X = ϕ(C,α1,α2). Let X ∈U(n)
be a set of ϕ(x; y1, y2)-diagonally indiscernible elements and a1 < a2 arbitrary
elements from X ∩ (M \ I). Then X ∩ I =ϕ(C,a1,a2)∩ I and ϕ(C,a1,a2) ∈D as
required.

Nevertheless, we have

4.4.18 Proposition. A cut I is strong iff for some α ∈ gI , M4c
I M[α].

Proof. The left-to-right implication follows from 4.4.16 by the fact that ev-
ery strong cut includes a relatively large strong monad (Corollary 4.3.32).
Conversely, assume α ∈ gI satisfies M 4c

I M[α]. Then I is regular, by 4.4.14
and 4.3.23. Thus every monad from gI is relatively large; by 4.4.16, it suffices
to show that at least one of them satisfies m â (m)1

id. For that again, it suf-
fices to show that if X ∈ D(gI ) and a diagonal partition D of X with ‖Dt‖ ≤ t
for every t ∈ X , there is a D-homogeneous H ⊆ X with H ∈ D(gI ). Then m is
obtained by a construction analogous to that in the proof of 4.3.31.

Let D, X be as above and, in C, let σ be a D-h.m.p.h. sequence (recall
Definition 2.1.7) such that σ ⊆ [0,α], σ`‹α› is D-homogeneous and σ is of
maximal length. Clearly σ exists, is D-homogeneous, and σ ∈ M[α]. Let
Y df= {(σ)i | i < `(σ)}. Then Y ∈D(M[α]). We first show that Y ∩ I is unbounded
in I. It is non-empty, since minY = min X . Let (σ)i ∈ I, i < `(σ). Then the
initial subsequence of σ up to (σ)i, i.e. σ�(i +1), is in sup I and hence in I,
too. For a given x ∈ X ∩ [(σ)i,→), let h(x) denote the unique sequence τ with
`(τ) = i+1 such that and for each j ≤ i, x belongs to the (τ) j-th block of the
partition D(σ) j (counting from 0). Thus (τ) j < ‖D(σ) j‖ ≤ i. Then h ∈ F, so
h(α) ∈ M[α]. Moreover, since h(α) is a sequence of length i + 1 with each
element less than i ∈ I, we have that h(α) ∈ sup I by semi-regularity, and in
fact h(α) ∈ I, by 4.4.14. Clearly (σ)i+1 = µx : h(x)= h(α), so (σ)i+1 ∈ I. Hence
Y ∩ I is unbounded. Let H′ ∈ D be such that Y ∩ I = H′∩ I. For every a ∈ I,
H′∩ [0,a] is D-homogeneous. Thus, if I = M, we may take H df= H′. For the
bounded case, there is by overspill some a ∈ M \ I such that H′∩ [0,a] is D-
homogeneous. Then H df= H′∩ [0,a] is as required. 2

4.4.19 Remarks.
a) The ultrafilter over α satisfying M 4c

I M[α] would be called definable
in Kirby’s terminology [Kir84]. We do not adopt this terminology for monads
to avoid confusion with definable sets.

b) Diagonal partition properties of singletons are closely related to diag-
onal intersections and normal ultrafilters, which are some of the properties
studied in a similar context by Kirby in [Kir84]. In analogy with set the-
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ory, he defines an ultrafilter U on M-coded subsets of I ⊆e M to be weakly
normal if for every M-coded system of sets {A i}i∈I such that (∀i ∈ I)A i ∈U,
there is X ∈U such that ‹i, j› ∈ 〈X 〉2 → j ∈ A i An ultrafilter U is weakly defin-
able if for any {A i}i∈I , there is X ∈U(m) such that either (∀i ∈ X )A i ∈U, or
(∀i ∈ X )A i ∉U. It follows easily from the definitions that m→ (m)1

2 iff U(m) is
weakly normal and weakly definable. From left to right, it works as follows:
given a 2-estimated diagonal partition, weak definability uniformly selects
the large one of the two classes of Dt on a large set of indeces t. Once this is
done, weak normality produces a large subset from the diagonal intersection.
The notion of normal ultrafilter is obtained by replacing j ∈ A i with j ∈⋂

k≤ j A i in the definition of weak normality; this produces the full diagonal
intersection. As easily observed, for a relatively large monad m, U(m) is nor-
mal and weakly definable iff m→ (m)2

2. Now, mâ (m)1
exp clearly implies that

U(m) is normal; and if m is further relatively large, we have that U(m) is
definable from 4.4.16. On the other hand, Kirby proved that either of ‘nor-
mal+definable’ and ‘weakly normal+definable’ give m→ (m)3

2.
c) Our so far ‘weakest’ equivalent of strength in terms of diagonal par-

tition properties for monads has been m â (m)1
id. In [Kir84, Theorem 5.7],

Kirby gave a result which translated to our terminology says that every 2-
monad included in the gap of a strong cut is a 3-monad. For completeness, we
provide a proof of his result in Appendix B as B.3. Kirby’s result gives us the
following corollary, via 4.4.6 and 4.4.11.

4.4.20 Corollary. Let I be a strong cut and m ⊆ gI . Then m â (m)1
2 iff m is

strong. 2

P-monads

Recall that a non-trivial ultrafilter U on ω is a p-point iff for every f :ω→ω,
f is either constant on finite-to-one on some set from U. A q-point is a non-
principal ultrafilter p ∈ βω such that every finite-to-one function f :ω→ω is
one-to-one on some set from p. Clearly, an ultrafilter p ∈ βω is selective iff p
is both a p-point and q-point.

The definition will apply to our situation if we translate the notion finite-
to-one in the right way:

4.4.21 Definition.
a) Say that F ∈F(I) is I-finite-to-one on X ∈D with X ⊆ dom(F) if for every

x ∈ X ∩ I the set

{y ∈ X | F(x)= F(y)}= F−1′′{F(x)}∩ X

is bounded in I. In other words, F partitions the set X ∩ I into blocks
that are bounded in I. Say further that F is I-finite-to-one on a monad
m if it is I-finite-to-one on some X ∈U(m).
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b) A non-trivial monad m is a p-monad if for every F ∈ F(Im), F is either
constant on m or I-finite-to-one on m.

c) A non-trivial monad m is a q-monad if every function which is Im-finite-
to-one on m is one-to-one on m

In other words, F ∈ F(I) is I-finite-to-one on X if F is non-constant on all
monads included in X ∩gI . Hence a monad m is a p-monad iff every F ∈F(Im)
is either constant on m, or F is non-constant on every monad from a certain
neighborhood of m, i.e. m is not an accumulation point of monads on which F
is constant. Similarly, m is a q-monad iff for every F ∈F(Im) with m⊆ dom(F),
F is 1-1 on m or m is an accumulation point of monads on which F is constant.

4.4.22 Remark. In topological terminology, a point is called a p-point if the
intersection of any countable system of its neighborhoods is also its neighbor-
hood. Since our algebra is countable, we cannot apply the topological defini-
tion; for every non-trivial monad m, {m} is not a neighborhood of m, but is an
intersection of the countable system of its (clopen) neighborhoods of m in the
Stone topology of C /∼.

4.4.23 Proposition. A non-trivial monad m is minimal iff it is both a p-
monad and a q-monad.

Proof. Trivially from 4.2.20. 2

4.4.24 Proposition. A non-trivial monad m⊆ gI is a p-monad iff every func-
tion F ∈ F(m) such that F(x) ≤ x for all x ∈ dom(F), is either constant or I-
finite-to-one on some set from U(m).

Proof. The implication from left to right is trivial. Suppose m has the later
property. Let F ∈ F(I) and put F̃(x) = min(F(x), x). Clearly, F̃(x) ≤ x for all
x ∈ dom(F̃), so F̃ is either constant or I-finite-to-one on some X ∈U(m) by the
premise. Yet, for every y, the sets F−1[{y}] and F̃−1[{x}] may only differ by the
point y. Hence, if F̃ is constant on X , then so is F. Let F̃ be I-finite-to-one
on X ∈U(m) and let x ∈ X . We show that the set Z df= {z ∈ X | F(z) = F(x)} is
bounded in I. Assume otherwise. Then there is some z0 ∈ Z ∩ I such that
z0 ≥ F(x) (note that F(x) ∈ I since otherwise Z ∩ I would be empty as F is a
I-function). Then F(z0) = F̃(z0) = F(x) ∈ X . Since F equals F̃ on Z \ [0, z0),
the set {z ∈ X | F̃(z) = F̃(z0)} is unbounded in I, in contradiction with F̃ being
I-finite-to-one on X . 2

In the rest of the paragraph, we investigate the relationship between reg-
ular monads, (relatively large) p-monads, and (relatively large) minimal mon-
ads.
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As we already remarked in 4.3.18, there are regular non-minimal monads
in the gap of N. The following proposition is a generalization.

4.4.25 Proposition. If I → (I)2
<I , then gI includes a regular monad that is

not minimal and, in fact, not even a p-monad.

Proof. By 4.3.31, the gap gI includes a monad m such that m→ (m)2
<I . In par-

ticular, n= 〈m〉2 is a regular monad. Notice that n⊆ gI . Let π1 ∈F be the map-
ping π1 : 〈C〉2 → C defined by π1(〈α,β〉) = α. Then π′′

1n = m and π1 is clearly
neither constant nor one-to-one on n (we also see that m ≺RK n). Hence, n is
a non-minimal regular monad. Clearly, π1(x)≤ x and, in particular, π1 ∈ F(I).
Suppose π1 was I-finite-to-one on X ∈ U(n). It follows easily by saturation
that there is some Y ∈ U(m) such that 〈Y 〉2 ⊆ X . Now, if y ∈ 〈Y 〉2 ∩ M and
y1 =π1(y), then y1 ∈Y ∩M and Y \ [0, y1]⊆π−1

1 [{y1}]∩ X , hence the latter set
belongs to U(m) and is therefore unbounded in I. 2

We may improve the result slightly for strong cuts:

4.4.26 Corollary. If I is strong, then regular monads that are not p-monads
are dense in gI /∼.

Proof. It is straightforward to verify that if F : m³RK n, where m and n both
belong to the gap gI and F ∈ F(I), then m is a p-monad if and only if n is a
p-monad. For I = M, F(I)=F, so the result is clear.

Otherwise, let I be a proper strong cut of M, F ∈ F, and F : m³RK n. Then
by 4.3.8, for some c ∈ M \ I, F ′′I ∩ [0, c]. Now, for G df= F�(F−1′′[0, c]), G ∈ F(I)
and G�sup I = F�sup I. Thus G : m³RK n. 2

4.4.27 Proposition. Let I be a regular cut. Then every p-monad in gI is
regular.

Proof. Let m ⊆ gI be a p-monad and F : C → [0,a] for some a ∈ I. We need
to show that F is constant on some X ∈ U(m). Since m is a p-monad, F is
either I-finite-to-one or constant on some X ∈ U(m). In the later case, we
are done, so suppose that F was I-finite-to-one on X . By 4.3.19, X includes
some regular monad (even a relatively large minimal one), say n. But then
F is constant on n, hence F ′′n = {b} for some b ∈ [0,a]. Thus X ∩F−1[{b}] is
unbounded in I, in contradiction with F being I-finite-to-one on X . 2

We have shown that the property of being a p-monad is strictly stronger
than being regular. We now show that it is strictly weaker than being mini-
mal.

4.4.28 Remark. An equivalent of the following theorem for 〈N,P(N)〉 requires
assumptions beyond ZFC, such as Martin’s axiom (see [Boo71, 4.12]).
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4.4.29 Theorem. If I is a regular cut, then non-minimal p-monads form a
dense subset of gI .

Proof. Let g denote the gap of I and let X ∈ D(g). Let P be a partition of X
into a sequence of adjacent intervals of 〈X ,≤〉 of increasing lengths so that
the set of the start points of the intervals is unbounded in I. Specifically, we
shall assume that:

• for each α ∈ X , P[α] is an interval of 〈X ,≤〉,
• for each a ∈ X ∩ I there is some b > a, b ∈ X , such that b ∉ P[a],

• |P[α]| =min(P[α])+1 for all α ∈ X . (We may need to extend or truncate
X to meet this condition on the last block P[α]).

Note that such a partition P can easily be obtained, say by letting P(α) =
[F(α),F(α+1)) where F is a function defined by F(0) df=min(X ) and

F(α+1) df=µγ ∈ X : (γ=max(X )∨ |X ∩ [F(α),γ) | = F(α)+1).

We will show that there is a p-monad m ⊆ X ∩ g that is not anti-
homogeneous for P. (Clearly, m cannot be homogeneous for P, since other-
wise some P[a] with a ∈ I ∩ X would intersect g, which is not possible due to
our assumptions on P and semi-regularity of I.)

Let {Hn}n∈ω be an enumeration of all M-definable P-homogeneous sets,
{Fn}n∈ω an enumeration of all functions F ∈ F satisfying F(x) ≤ x for all x ∈
dom(F), and {In}n∈ω a non-increasing sequence of closed intervals of 〈C,≤〉
with endpoints in M such that g=⋂

n∈ωLn. We shall define a non-increasing
sequence {Xn}n∈ω of sets from D that will satisfy the following:

1) Ln ⊇ Xn ∈D(g),

2) Fn is either constant or I-finite-to-one on dom(Fn)∩ Xn+1,

3) Xn+1 ∩Hn =;,

4) the partition Q = P ∩ (Xn × Xn) of Xn has the following properties:

For every r ∈ I there exists a ∈ dom(Q)∩ I such that r < |Q[a]|(Q-1)

|Q[x]| ≤ |Q[y]| for all x < y from dom(Q).(Q-2)

If such a sequence {Xn}n∈ω is given, there exists some α ∈⋂
n∈ω Xn ⊆ g by

saturation and the monad m(α) is a p-monad due to 2), but not a minimal
monad due to 3) and 4) (Q-1). In the rest of the proof we construct the family
{Xn}n∈ω.

First observe that if the property (Q-1) is assured for a partition Q ⊆ P
of Y ∈ D(g), we may find Y ′ ⊆ Y , Y ′ ∈ D(g) so that Q′ df= Q ∩ (Y ′ ×Y ′) satis-
fies both (Q-1) and (Q-2). We obtain Y ′ by simply throwing away from Y
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those equivalence classes Q[x], x ∈Y , for which there is some y< x in Y with
|Q[y]| > |Q[x]|. Then Y ′ ∈ D(g) by the fact that for all a ∈ I, Q[a] ⊆ P[a] and
the latter is bounded in I.

Now, we may put X0
df= L0. If Xn is given, let Y df= (Ln ∩ Xn) \ Hn. The

intersection with Ln clearly affects neither of the conditions (Q-1) and (Q-2).
In the following, we let Pn

df= P∩(Xn×Xn). Since Hn takes out at most one
point from each block of Pn and Pn satisfies the condition (Q-1), the partition
P ′ = P ∩ (Y ×Y ) satisfies (Q-1) too. As noted above, we may assume without
loss of generality that P ′ satisfies (Q-2) as well (replacing Y with a suitable
subset, if needed).

Without loss of generality, we may further assume Y ⊆ dom(Fn) (other-
wise we take F ′

n = Fn ∪ {〈x,0〉 | x ∈Y \dom(Fn)} instead). In order to assure 2)
while retaining (Q-1), we consider the following cases:

CASE I. Assume rng(Fn)∩I ⊆ [0,d] for some d ∈ I. Let Y ′ df=Y∩F−1
n

′′[0,d].
Since Fn(x) ≤ x on the domain of Fn, F ′′

n I ⊆ I, hence Y ∩ I ⊆ Y ′ and Y ′ ∈D(g).
Let P ′ df= P∩(Y ′×Y ′). Now, on each block of P ′[α] with α ∈Y ′∩ I, Fn induces a
partition with at most d+1 sub-blocks; we keep from each P ′[α] one sub-block
whose size is at least average. Formally: for each x ∈ {min(P ′[α]) |α ∈Y ′}, let

(4.8) G(x) df=µz ≤ d : (d+1) · |{y ∈ P ′[x] | Fn(y)= z}| ≥ |P ′[x]|.

Then rng(G) ⊆ [0,d] and dom(G) ∈ D(g). Since I is regular, there is some
c ∈ [0,d]∩ M such that Z df= G−1′′[c] is unbounded in I. We now let Xn+1

df=⋃
x∈Z P ′[x]∩ F−1

n
′′[c]. Clearly Xn+1 ⊆ Y ′ ⊆ Xn. Also, since for every x ∈ Z,

Xn+1 ∩ P ′[x] 6= ;, Xn+1 is unbounded in I. If α ∈ Xn+1, then α ∈ P ′[x] for
precisely one x ∈ dom(G) and Fn(α) = c, so Fn is constant on Xn+1, hence
the condition 2) is fulfilled. It remains to check that the property (Q-1) was
preserved. Let r ∈ I. We know that (Q-1) holds for P ′. Hence, there is some
x ∈ dom(G)∩ I such that r ·(d+1)< |P ′[x]|. Using (Q-2) for P ′ and the fact that
Z is unbounded in I, we can conclude that r · (d+1)< |P ′[x]| for some x ∈ Z as
well. But then for x′ ∈ P ′[x]∩F−1

n
′′[c], |Pn+1[x′]| = |P ′[x]∩F−1

n
′′[c]| > r by (4.8).

As observed above, now that (Q-1) is established for Pn+1, we may assume
the condition (Q-2) fulfilled as well (correcting Xn+1 slightly, if needed).

CASE II. Assume rng(Fn)∩ I is unbounded in I, but for some d ∈ I, the
partition P ′ df= P ∩ (Y ′×Y ′), where Y ′ df= Y ∩F−1

n
′′[0,d] has the property (Q-1).

In that case, we prune Y ′ in the usual way to satisfy (Q-2) and proceed with
the result as in Case I.

CASE III. Assume rng(Fn) is unbounded in I, yet for every d ∈ I, there
is some rd ∈ I such that for all x ∈ I, |P ′[x] ∩ F−1

n
′′[0,d]| ≤ rd. Let Z df=

{min(P ′[α]) | α ∈ Y ′}. We now define a function h with rng(h) ⊆ Z in the fol-
lowing way: h(0) df=min(Y ′). If h(α) is defined, let h(α+1) be the least element
of Z \ [0,h(α)] such that

(4.9) |P ′[h(α+1)]\ F−1
n [0,h(α)]| > h(α).



4.4 DIAGONAL PARTITIONS OF MONADS AND P-MONADS 99

In other words, h(α+1) = x if x is the least element of the first P ′-block such
that after removing the first h(α) equivalence classes of the partition induced
by Fn from P ′[x], there are still at least h(α)+1 elements left (provided such
x exists).
We shall now prove that rng(h) is unbounded in I. Suppose otherwise and
let d df= h(α) be the last element of rng(h)∩ I. By our assumption, there is
some rd ∈ I such that |P ′[x]∩F−1

n
′′[0,d]| ≤ rd for all x ∈ I. Using the prop-

erty (Q-1) of P ′, let a ∈ I \ [0,d] be such that |P ′′[a]| > rd + d. Then clearly
|P ′[a] \ F−1

n
′′[0,d]| > d. It follows that h(α+1) is defined and belongs to I in

contradiction with our choice of d and α as the last element of rng(h) in I.
Now that the unboundedness of rng(h) in I is established, we let

(Xn+1
df=⋃

{P ′[h(α+1)]\ F−1
n

′′
[0,h(α)] |α ∈ dom(h)}.

Since the condition (4.9) guarantees that Pn+1 has the property (Q-1), we are
done (the property (Q-2) can be established as usual). It remains to show that
Fn is I-finite-to-one on Xn+1. Indeed, if y ∈ I, take some a ∈ I with h(a) > y
and note that according to the definition of Xn+1, F−1

n
′′{y}∩ [h(a+1),→)=;.

2

More extensions

4.4.30 Definition. For I ⊆e M and α ∈ supgI , let I[α] df= {F(α) | F ∈ F(I)∧α ∈
dom(F)}.

Note that our notation suppresses M, which (represented in the definition
by the set F) is an important parameter of the definition.

Clearly, I[α] is closed under every function from F(I); in particular, it is
closed under operations, so I[α] is a substructure if M[α].

4.4.31 Proposition. For every I ⊆e M and α ∈ supgI , I 41 I[α] 40 M[α].
Moreover, if I is a strong cut, I 4 I[α].

Proof. For an open LAr formula ϕ, we clearly have

(4.10) I 4ϕ I[α]4ϕ M[α]

Assume ϕ(x, ȳ) is bounded and satisfies (4.10). We first show that
I[α]4(∃x≤u)ϕ M[α]. Let β, γ̄ ∈ I[α] and M[α] |= (∃x ≤ β)ϕ(x, γ̄). Let F(‹u, ȳ›) df=
µx ≤ u : ϕ(x, ȳ). Clearly F is regressive on its domain, so F ∈ F(I), and as
‹β, γ̄› ∈ I[α]∩dom(F), we have F(‹β, γ̄›) ∈ I[α]. This proves I[α]40 M[α].

Next we prove I 4(∃x)ϕ I[α] for ϕ(x, ȳ) a bounded ϕ satisfying (4.10).
(Then, by induction on complexity of formulae, we first obtain I 4o I[α],
and subsequently I 41 I[α]). For that, let β ∈ I[α], ā ∈ I, and I[α] |= ϕ(β, ā).
Then C |= ϕ(β, ā) (by the first part of the proof). There exists F ∈ F(I) such
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that F(α) = β. Let X df= {γ ∈ C | C |= ϕ(F(γ), ā)}. Clearly X ∈ D and α ∈ X ,
so I ∩ X 6= ;, since α ∈ supgI . For c ∈ I ∩ X we thus have F(c) ∈ I and
C |=ϕ(F(c), ā), so I |=ϕ(F(c), ā), by I 40 M.

Finally, assume I is strong. By 4.3.11, a), I∗ |= ACA0. Let for each X ∈D,
X I = X ∩ I. Then X I ∈ Cod(I/M). Conversely, for each A ∈ Cod(I/M), let
Ã ∈ D be such that A = ÃI . Note that Ã ∩ supgI is uniquely determined,
since if X ,Y ∈ D and X I = Y I , X 6= Y , then min X .−Y > I. Let UI (α) denote
the ultrafilter on Cod(I/M) defined by UI (α) df= {X I | α ∈ X ∈ D}. Clearly A ∈
UI (α) iff Ã ∈U(m(α)). Clearly for all F ∈ F(I), F I is a function with dom(F)=
(dom(F))I and rng(F)= (rng(F))I .

We first prove, the following version of Łoś’s lemma: for any LAr-formula
ϕ(x1, . . . , xk) and Fi ∈F(I), i = 1, . . . ,k:

(4.11) I[α] |=ϕ(F1(α), . . . ,Fk(α)) iff {a ∈ I | I∗ |=ϕ(F I
1(a), . . . ,F I

k(a))} ∈UI (α),

where on the left side, we evaluate Fi(α) in C and the set on the right is
in Cod(I/M) by ACA0, so the equivalence makes sense. For bounded ϕ this
follows from I[α]40 C. If the equivalence holds for ϕ(x, ȳ), A df= {a ∈ I | I∗ |=
(∃x)ϕ(x,F I

1(a), . . .)}, and A ∈UI (α), then A 6= ;. In I∗, we may define a function
f (y)=µx :ϕ(x,F I

1(y), . . .). Then f ∈Cod(I/M) by ACA0, so f = F I for some F ∈
F. We may clearly assume dom(F)∩ I = A, so F ∈ F(I). But then A = {a ∈ I∗ |
I |= ϕ(F I (a),F I

1(a), . . .)}, so by induction hypothesis I[α] |= ϕ(F(α),F1(α), . . .).
The proof of the converse implication in the induction step is simple.

Now, if c̄ ∈ I and kc
df= C×{c}, we have I[α] |=ϕ(c1, . . .) iff I[α] |=ϕ(kc1(α), . . .)

iff A df= {a ∈ I | I |= ϕ(kc1(a), . . .)} = {a ∈ I | I |= ϕ(c̄)} ∈ U(α) iff A 6= ; iff I |=
ϕ(c̄). 2

4.4.32 Lemma. If I is strong, α,β ∈ gI , and m(α)¹RK m(β), then I[β]4 I[α].

Proof. Let β = G(α) for some G ∈ F. Using 4.3.8, we may assume G ∈
F(I). Then using the notation of the previous proof, B ∈ UI (β) iff β ∈ B̃
iff G(α) ∈ B̃ iff α ∈ G−1[B̃] iff (G I )−1[B] ∈ UI (α). Thus by (4.11), we have
for F1, . . . ,Fk ∈ F(I) and a LAr formula ϕ(x1, . . . , xk): I[α] |= ϕ(F1(β), . . .) iff
I[α] |=ϕ(F1(G(α)), . . .) iff {a ∈ I | I∗ |=ϕ((G ◦F1)I (a), . . .)} ∈UI (α) iff {a ∈ I | I∗ |=
ϕ(F I

1(G I (a)), . . .)} ∈UI (α) iff {G I (a) | a ∈ I and I∗ |=ϕ(F I
1(G I (a)), . . .)} ∈UI (β) iff

{b ∈ I | I∗ |=ϕ(F I
1(b), . . .)} ∈UI (β) iff I[β] |=ϕ(F I

1(β), . . .). 2

4.4.33 Proposition. Let I be a strong cut, α ∈ gI . Then m(α) is a p-monad
iff I[α] is a minimal elementary end-extension of I, i.e., if I 4e I[α], and
I 4e N 4e I[α] implies I = N or I[α]= N.

Proof. For left-to-right, assume I ≺e N ≺e I[α] and let β ∈ N \ I. Then I[β]≺e

I[α]. For some F ∈F(I), F(α)=β. It follows that F is not constant on m(α), so
by the property of p-monad, there exists X ∈U(m(α)) such that F is I-finite-
to-one on X . For γ ∈ F ′′X , let G(γ) df=max(F−1[{γ}]); then G′′I ⊆ I, so G ∈ F(I).
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Since clearly β ∈ dom(G), α ≤ G(β). But G(β) is a I-function, so G(β) ∈ I[β].
This contradicts with I[β]≺e I[α].

Conversely, let I[α] be a minimal elementary end-extension of I; in partic-
ular, M 4I M[α], so m(α) is regular. Let F ∈ F(I) be such that m(α) ⊆ dom(F)
and let F(x) ≤ x holds on the domain of F. If F is not constant on m(α), then
F(α) ∈ gI by regularity. Let β df= F(α) and let N df= I[β]. Then I 4e N 4 I[α].
But I 6= N, since β ∉ I. Suppose I[α] = N; then α ∈ I[β], so some function
from F(I) sends β to α. In that case, F is 1-1 on m. Assume I[α] 6= N.
Then N 6⊂e I[α]. But then for some γ ∈ N, α ≤ γ. There is a function
G ∈ F(I) such that γ = G(β). Then α ≤ G(F(α)). The same inequality holds
on some X ∈ U(m(α)). Let a,b ∈ X be such that F(a) = F(b) = c. Then
max{a,b}≤G(F(a))=G(F(b)) ∈ I. Thus F−1({c}) cannot be unbounded in I, so
F is I-finite-to-one. 2

4.4.34 Proposition. If m is a relatively large strong monad, then for any
Z ⊆m, M4c

Im
M[Z] and Im is a strong cut of M[Z].

Proof. Let m and Z be as above. The proof that M 4c
Im

M[Z] is a generaliza-

tion of Remark 4.4.17. Let ϕ(x, ȳ) ∈ Fm(LAr
M ) and let X df=ϕ(C,~α) for some pa-

rameters α1 < ·· · <αk, or briefly ~α, from Z. We must show that X ∩ I = Y ∩ I
for some Y ∈ D. But m is a set of ϕ(x; ȳ)-diagonally indiscernible elements.
Thus if c1 < ·· · < ck are arbitrary elements from X∩(M\I), we have ϕ(C,~c) ∈D
and X ∩ I =ϕ(C,~c)∩ I, as required. (If I = M, we may not take such~c, but we
may replace ϕ(C,~c) with (∃y)(∀ ȳ ∈ X )(y< y1 < ·· · < yk →ϕ(C, ȳ)).)

To see that Im is strong in M[Z], simply deduce from M 4c
Im

M[Z], that
for any partition Q ∈D(M[Z]) of 〈M[Z]〉n (n ∈N) into two sets coincides on Im

with some partition P ∈D of 〈M〉n into two sets. Since Im is strong in M, there
is an P-homogeneous subset X ∈D unbounded in Im. Let Y ∈D(M[Z]) be the
largest Q-homogeneous initial segment of the set X . Then Y ∩ I = X ∩ I. This
gives (∀n ∈N)Im → (Im)n

2 with respect to partitions from D(M[Z]). 2
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APPENDIX A
CONSERVATIVE EXTENSIONS

This appendix contains a proof of the well-known McDowell, Specker theo-
rem with an addendum attributed to Gaifman. The crucial step of the proof,
Lemma A.3, is an immediate consequence of our Infinite Diagonal Partition
Theorem 2.1.2, and thus serves also as an example of its usage.

A.1 Theorem (McDowell, Specker, Gaifman). Every model of PA has a
proper conservative elementary extension of the same cardinality. Moreover, if
M |=PA is countable, there are 2ℵ0 pairwise non-isomorphic countable conser-
vative elementary extensions of M.

A.2 Definition. For the rest of this section, say that a formula ψ(x) decides
θ(x, ā) in M, where ā ∈ M, iff ψ(M) is unbounded in M and M |= (∃x0)(∀x >
x0)(ψ(x) → θ(x, ā)). Say that ψ(x) forces θ(x, ȳ) in M iff for every ā ∈ M, ψ(x)
either decides θ(x, ā) or decides ¬θ(x, ā) in M.

A.3 Lemma. Let M be a model of P and ϕ(x) an LAr-formula such that ϕ(M)
is unbounded in M. Then for every LAr-formula θ(x, ȳ) there is an LAr-formula
ψ(x) such that ψ(M)⊆ϕ(M) and ψ(x) forces θ(x, ȳ) in M.

Proof. Given ϕ(x),θ(x, ȳ), ψ is found using 2.1.2 so thatψ(M) is an unbounded
diagonally homogeneous set for the diagonal partition D of ϕ(M) defined by:

〈t,〈u,v〉〉 ∈ D
df⇐⇒ [ϕ(u)∧ϕ(v)∧ (∀t0, . . . , tn−1 < t)(θ(u, t̄)↔ θ(v, t̄)) ].

Dt is clearly an equivalence on ϕ(M) and ‖Dt‖ ≤ 2tn
, so ψ exists. Let ā ∈ M.

There is some d ∈ ψ(M) such that ā < d; by D-homogeneity of ψ(M), either
(∀x > d)(ψ(x)→ θ(x, ā)) or (∀x > d)(ψ(x)→¬θ(x, ā)), as required. 2

Proof of McDowell, Specker, Gaifman. We shall prove both claims at the
same time. However, in order to derive the second part for countable M,
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we need to fix arbitrary F ∈ ω2, as a parameter of our construction. Now,
let {ξ j(x)} j∈ω be some enumeration of all LAr-formulae with the only free
variable x and let {θi(x, ȳ)}i∈ω enumerate all LAr-formulae with all free vari-
ables among x, ȳ, where ȳ stands for tuples of arbitrary lengths. For a
formula ξ(x), let ξ[0](x) and ξ[1](x) denote LAr-formulae equivalent in PA to
ξ(x)∧ ‘|{y≤ x | ξ(y)}| is even’ and ξ(x)∧ ‘|{y≤ x | ξ(y)}| is odd’, respectively. Then
{ξ[0](M),ξ[1](M)} is a partition of ξ(M) and if ξ(M) is unbounded in M, then so
are both ξ[0](M) and ξ[1](M).

The sequence of LAr-formulae {ϕF
i (x)}i∈ω = {ϕi(x)}i∈ω is defined by induc-

tion on i as follows: ϕ0(x) is the formula (x = x)[F(0)]. Clearly, ϕ0(M) is un-
bounded in M. If ϕi is defined, let ϕi+1(x) be the formula ξ[F(i)]

j where j is
least such that ξ j(M) ⊆ ϕi(M) and ξ j(x) forces θi(x, ā) in M. Since {ξ j} j∈ω
enumerates all LAr-formulae with one free variable, such j exists due to the
preceding lemma. Especially, all ϕi(M) are unbounded.

Let T denote the following theory in the language LAr
M∪{c} with a new con-

stant symbol c :

Thm(M)∪ {ϕi+1(c)∧θi(c, ā) | ā ∈ M and ϕi+1(x) decides θi(x, ā) in M}

Surely, T is consistent, since every finite subset of T is satisfied in some
expansion of M where c is realized by a sufficiently large element.

T is complete. Indeed, let θ be an LAr
M∪{c}-formula. There are ā ∈ M and

i,k ∈ ω such that θ and ¬θ are of the form (or equivalent to in predicate
calculus) θi(c, ā) and θk(c, ā), respectively. Without loss of generality, we
may assume that i < k. By the definition of ϕi+1, θi(x, ȳ) is forced in M by
some ξ j(x). Now, if ξ j(x) decides θi(x, ā), then so does ϕi+1 and T ` θ be-
cause ϕi+1(c)∧ θi(c, ā) ∈ T. Otherwise ξ j(x) decides θk(x, ā) in M and since
ϕk+1(M)⊆ϕi+1(M)⊆ ξ j(M), so does ϕk+1(x). It follows that ϕk+1(c)∧θk(c, ā) ∈
T and therefore and T ` ¬θ. We also see that T ` θi(c, ā) iff ϕi+1(x) decides
θi(c, ā) in M.

Now, let N |= T and K df= K(F) = Dfe(N, M ∪ {cN }). Then M 4 K . We
shall show that c ∈ K \ M and that K is a conservative extension of M. Let
cN = a for some a ∈ M. Then the formula c = y is θi(c, y) for some i ∈ ω and
T ` θi(c,a). Thus ϕi+1(x, y) decides θi(x,a) in M and since ϕi+1(M) is un-
bounded, x = a must hold in M for unboundedly many x, which, of course, is
not possible—a contradiction.

Let ϕ(z, ȳ, x) be an LAr-formula and b1, . . . ,bn elements defined in K re-
spectively by LAr-formulae ηk(u, c, ā), 1 ≤ k ≤ n, where ā ∈ M. There exists
i ∈ω such that θi(c, z, ȳ) is the formula

(∃ū)
( n∧

j=1
η j(u j, c, ȳ)∧ϕ(z, ȳ, c)

)
.
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Then for any d ∈ M,

K |=ϕ(d, b̄, c) iff K |= θi(c,d, ā) iff

T ` θi(c,d, ā) iff M |= (∃x0)(∀x > x0)(ϕi+1(x)→ θi(x,d, ā)).

It follows that for any choice of ϕ and b̄, the set {d ∈ M | K |= ϕ(d, b̄, c)} is
definable in M, hence K is a proper conservative extension of M.

We now proceed to show the remaining part of the claim. Assume M is
countable. Then K(F) is also countable and cK(F) realizes the complete 1-
type pF (x) df= {ϕF

i (x) | i ∈ω}. Let F1,F2 ∈ ω2, F1 6= F2 and let i0 ∈ω be the least
i satisfying F1(i) 6= F2(i). Then for all i < i0, ϕF1

i = ϕ
F2
i . Hence ϕF1

i0
= ξ

[F1(i0)]
j ,

ϕ
F2
i0

= ξ
[F2(i0)]
j for some j ∈ω. Now ϕ

F1
i0

(x) ∈ pF
1 (x), ϕF2

i0
(x) ∈ pF

2 (x), but F1(i0) 6=
F2(i0) and hence ξ[F1(i0)]

j (M)∩ξ[F1(i0)]
j (M)=;, so pF1(x) 6= pF2(x).

It follows that there are 2ω-many complete 1-types in the language LAr
M

each of which can be realized in some proper countable conservative elemen-
tary extension of M. If there were, up to isomorphism, only κ-many such
extensions for some cardinal κ < 2ω, then they would altogether realize at
most ω ·κ < 2ω complete 1-types. Hence, to realize all the 2ω different com-
plete 1-types, the number of such non-isomorphic models must be also at least
(and obviously at most, too) 2ω. 2



APPENDIX B
STRONG CUTS AND ACA0

In this appendix, we provide a proof of the well-known fact that a cut I is
strong iff I∗ |= ACA0 and a theorem derived by Kirby. The proofs use the
background of Chapter 4.

Recall that for I ⊆e M, I∗ denotes the model 〈I,Cod(I/M)〉 of LII.

B.1 Lemma. If I ⊂e M |= IΣ1, then I∗ |=∆0
0CA0 +BΣ0

1 and

(B.1) I∗ |= (∀X )[(0 ∈ X ∧ (∀x)(x ∈ X → x+1 ∈ X ))→ (∀x)x ∈ X ].

In particular, if I∗ |= ACA0, then I |=PA.

Proof. BΣ0
1 follows as in 1.8.4. For every A ∈ Cod(I/M), let Ã denote some

(arbitrary but fixed) set from D such that A = Ã ∩ I. In particular, we may
further assume that Ã is coded by some element in M. The induction for-
mula (B.1) for I∗ thus follows easily from LΣ1 in M. To prove I∗ |= ∆0

0CA0,
first observe that if t(x̄) is an LAr-term and ā ∈ I, then tM(ā) = tI (ā) ∈ I, so
I |= t(ā) ∈ A iff M |= t(ā) ∈ Ã. Since Cod(I/M) is a Boolean algebra, we have for
every open LII-formula ϕ and any ā ∈ I, A1, . . . , Ak ∈Cod(I/M)

(B.2) I∗ |=ϕ(ā, A1, . . . , Ak) iff M |=ϕ(ā, Ã1, . . . , Ãk).

If (B.2) holds for a formula ϕ(x̄, y, X1, . . . , Xk) (with all second-order variables
among X1, . . . , Xk and all first-order variables among x̄, y) and ψ is of the
form (∃y ≤ t(x̄))ϕ, then (B.2) holds for ψ too since I is a cut. Consequently,
(B.2) holds for all ∆0

0 formulae, so I∗ |= ∆0
0CA0. The sequel about ACA0 is

obvious. 2

B.2 Theorem. If I is strong iff 〈I,Cod(I/M)〉 |= ACA0.

Proof. From left to right:
Let I be strong, α ∈ gI , and M 4c

I M[α]. By 1.4.2, it suffices to prove
I∗ |= Σ0

1CA0. For a ∆0
0 formula ϕ(x, y, x̄, X1, . . . , Xk) and parameters ā ∈ I,
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A1, . . . , Ak ∈ Cod(I/M), let A df= {a ∈ I | I∗ |= (∃y)ϕ(a, y, ā, A1, . . . , Ak)}. We must
show that A ∈ Cod(I/M). Let Y df= {γ ∈ C | C |= (∃y < α)ϕ(γ, y, ā, Ã1, . . . , Ãk)}.
Then Y ∈ D(M[α]) and hence for some Ã ∈ D we have Y ∩ I = Ã ∩ I. It now
suffices to show that Ã∩ I = A. Let a ∈ A. Then there exists b ∈ I such that
I∗ |= ϕ(a,b, ā, A1, . . . , Ak) hence by (B.2), C |= ϕ(a,b, ā, Ã1, . . . , Ãk), b < α, so
a ∈ Ã∩ I. Conversely, if a ∈ Ã∩ I, then C |= (∃y < α)ϕ(a, y, ā, Ã1, . . . , Ãk). Let
Y df= {β ∈ C | (∃y < β)ϕ(a, y, ā, Ã1, . . . , Ãk)}. Then α ∈ Y ∈ D, so Y ∩ I is non-
empty (and cofinal in I), hence for some b ∈ I, M |= ϕ(a,b, ā, Ã1, . . . , Ãk) and
thus a ∈ A by (B.2).

For the reversed implication, it suffices to observe that the Infinite Ram-
sey Theorem holds in I∗ in the following form: for every unbounded A ∈
Cod(I/M) and a partition P ∈Cod(I/M) of 〈A〉n (n ≥ 1) into a parts with a ∈ I,
there is B ∈Cod(I/M), homogeneous for P. Indeed, by B.1, 〈I, A,P〉 is a model
of Peano arithmetic with induction scheme extended to all formulae of the
language L′ = LAr ∪ {Ȧ, Ṗ} with two new predicate symbols Ȧ, Ṗ. Hence The-
orem 2.1.3 applies and provides an unbounded P-homogeneous subset B ⊆ I
defined in I by some L′-formula. In particular, B is definable in I∗ by some
LII formula with parameters A,P; by ACA0, B ∈Cod(I/M). Thus I → (I)n

<I , so
I is strong. 2

For completeness, we now provide is a short version of Kirby’s proof of
[Kir84, Theorem 5.7] that every 2-monad in a gap of a strong cut is strong,
which gave us Corollary 4.4.20.

B.3 Theorem (Kirby). Let I be strong. Then every 2-monad from gI is strong.

Proof. Let m be a 2-monad, α ∈m. Then m is minimal and by semi-regularity
of I, relatively large; it follows that m is regular, so M 4I M[α]. By 4.4.16,
it suffices to prove that M 4c

I M[α]. For a set X ∈ D(C,C), let X I denote
X ∩ I. For that, let ϕ(x, y) be an LAr

M -formula; we must show that ϕ(C,α)I ∈
Cod(M/I). Let Ax

df= (ϕ(C, x)∩ [0, x])∪ {x}; then ϕ(C,α)I = AI
α. Note that for

x 6= y, Ax
.− A y is non-empty, so we may define:

P0
df= {‹x, y› ∈ 〈C〉2 |min(Ax

.− A y) ∈ A y},

P1
df= {‹x, y› ∈ 〈C〉2 |min(Ax

.− A y) ∈ Ax} = 〈C〉2 \ P0.

Now, m is homogeneous for the partition P ∈ 〈C〉22 with blocks P0,P1, so for
some H ∈U(m), either 〈H〉2 ⊆ P0 or 〈H〉2 ⊆ P1. Let

B df= {b ∈ I | I∗ |= (∃x0)(∀x ≥ x0)(x ∈ H I → b ∈ AI
x)},

B′ df= {b ∈ I | I∗ |= (∃x0)(∀x ≥ x0)(x ∈ H I → b ∉ AI
x)}.

These definitions are correct because {AI
x}x∈I ,H I ∈ Cod(M/I). Since I∗ |=

ACA0, B,B′ ∈ Cod(M/I). We show that B = AI
α. Observe that for b ∈ I, b ∈ B
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iff b ∈ Aγ for every γ ∈ H ∩gI ; similarly, b ∈ B′ iff b ∉ Aγ for every γ ∈ H ∩gI .
In particular, B ⊆ AI

α and B′ ⊆ I \ Aα, since α ∈ H∩gI . To complete the proof,
it suffices to show that I = B∪B′. Aiming for a contradiction, suppose the set
I\B∪B′ is non-empty and let b be its least element (which exists by restricted
induction in I∗). Then for all γ,δ ∈ H∩gI , AI

γ∩[0,b)= AI
δ
∩[0,b). Since b ∉ B′,

there is some γ ∈ H ∩gI such that b ∈ Aγ. Let X df= {x | b ∈ Ax}. If 〈H〉2 ⊆ P0,
then b ∈ Aδ for every δ > γ from H ∩gI , so H ∩gI ∩ (γ,→) ⊆ X . Similarly, if
〈H〉2 ⊆ P1, then b ∈ Aδ for every δ < γ from H ∩gI , so H ∩gI ∩ [0,γ) ⊆ X . In
either case we obtain the full equality X ∩gI = H ∩gI as an easy application
of 4.2.6. Thus b ∈ Aδ for all δ ∈ H∩gI , i.e. b ∈ B—a contradiction. 2

B.4 Remark. The use of ACA0 (i.e. strength of the cut) was essential for the
proof. Thus, the theorem provides only little guidance towards answering
the general question whether all (relatively large) 2-monads are strong and
is in no conflict with Seetapun and Slaman’s [SS95] result that suggests the
answer to that question is more likely to be negative (see Remark 4.3.38 for
more details).
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